Sample records for naked plasmid dna

  1. Transgene expression and local tissue distribution of naked and polymer-condensed plasmid DNA after intradermal administration in mice

    PubMed Central

    Palumbo, R. Noelle; Zhong, Xiao; Panus, David; Han, Wenqing; Ji, Weihang; Wang, Chun

    2012-01-01

    DNA vaccination using cationic polymers as carriers has the potential to be a very powerful method of immunotherapy, but typical immune responses generated have been less than robust. To better understand the details of DNA vaccine delivery in vivo, we prepared polymer/DNA complexes using three structurally distinct cationic polymers and fluorescently labeled plasmid DNA and injected them intradermally into mice. We analyzed transgene expression (luciferase) and the local tissue distribution of the labeled plasmid at the injection site at various time points (from hours to days). Comparable numbers of luciferase expressing cells were observed in the skin of mice receiving naked plasmid or polyplexes one day after transfection. At day 4, however, the polyplexes appeared to result in more transfected skin cells than naked plasmid. Live animal imaging revealed that naked plasmid dispersed quickly in the skin of mice after injection and had a wider distribution than any of the three types of polyplexes. However, naked plasmid level dropped to below detection limit after 24 h, whereas polyplexes persisted for up to 2 weeks. The PEGylated polyplexes had a significantly wider distribution in the tissue than the nonPEGylated polyplexes. PEGylated polyplexes also distributed more broadly among dermal fibroblasts and allowed greater interaction with antigen-presenting cells (APCs) (dendritic cells and macrophages) starting at around 24 h post-injection. By day 4, co-localization of polyplexes with APCs was observed at the injection site regardless of polymer structure, whereas small amounts of polyplexes were found in the draining lymph nodes. These in vivo findings demonstrate the superior stability of PEGylated polyplexes in physiological milieu and provide important insight on how cationic polymers could be optimized for DNA vaccine delivery. PMID:22300619

  2. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B.

    PubMed

    Khatri, Kapil; Goyal, Amit K; Gupta, Prem N; Mishra, Neeraj; Vyas, Suresh P

    2008-04-16

    This work investigates the preparation and in vivo efficacy of plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Chitosan pDNA nanoparticles were prepared using a complex coacervation process. Prepared nanoparticles were characterized for size, shape, surface charge, plasmid loading and ability of nanoparticles to protect DNA against nuclease digestion and for their transfection efficacy. Nasal administration of nanoparticles resulted in serum anti-HBsAg titre that was less compared to that elicited by naked DNA and alum adsorbed HBsAg, but the mice were seroprotective within 2 weeks and the immunoglobulin level was above the clinically protective level. However, intramuscular administration of naked DNA and alum adsorbed HBsAg did not elicit sIgA titre in mucosal secretions that was induced by nasal immunization with chitosan nanoparticles. Similarly, cellular responses (cytokine levels) were poor in case of alum adsorbed HBsAg. Chitosan nanoparticles thus produced humoral (both systemic and mucosal) and cellular immune responses upon nasal administration. The study signifies the potential of chitosan nanoparticles as DNA vaccine carrier and adjuvant for effective immunization through non-invasive nasal route.

  3. In vivo induction of interferon gamma expression in grey horses with metastatic melanoma resulting from direct injection of plasmid DNA coding for equine interleukin 12.

    PubMed

    Müller, J-M V; Wissemann, J; Meli, M L; Dasen, G; Lutz, H; Heinzerling, L; Feige, K

    2011-11-01

    Whole blood pharmacokinetics of intratumourally injected naked plasmid DNA coding for equine Interleukin 12 (IL-12) was assessed as a means of in vivo gene transfer in the treatment of melanoma in grey horses. The expression of induced interferon gamma (IFN-g) was evaluated in order to determine the pharmacodynamic properties of in vivo gene transduction. Seven grey horses bearing melanoma were injected intratumourally with 250 µg naked plasmid DNA coding for IL-12. Peripheral blood and biopsies from the injection site were taken at 13 time points until day 14 post injection (p.i.). Samples were analysed using quantitative real-time PCR. Plasmid DNA was quantified in blood samples and mRNA expression for IFN-g in tissue samples. Plasmid DNA showed fast elimination kinetics with more than 99 % of the plasmid disappearing within 36 hours. IFN-g expression increased quickly after IL-12 plasmid injection, but varied between individual horses. Intratumoural injection of plasmid DNA is a feasible method for inducing transgene expression in vivo. Biological activity of the transgene IL-12 was confirmed by measuring expression of IFN-g.

  4. Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice.

    PubMed

    Koh, J J; Ko, K S; Lee, M; Han, S; Park, J S; Kim, S W

    2000-12-01

    Recently, we have reported that biodegradable poly [alpha-(4-aminobutyl)-L-glycolic acid] (PAGA) can condense and protect plasmid DNA from DNase I. In this study, we investigated whether the systemic administration of pCAGGS mouse IL-10 (mIL-10) expression plasmid complexed with PAGA can reduce the development of insulitis in non-obese diabetic (NOD) mice. PAGA/mIL-10 plasmid complexes were stable for more than 60 min, but the naked DNA was destroyed within 10 min by DNase I. The PAGA/DNA complexes were injected into the tail vein of 3-week-old NOD mice. Serum mIL-10 level peaked at 5 days after injection, and could be detected for more than 9 weeks. The prevalence of severe insulitis on 12-week-old NOD mice was markedly reduced by the intravenous injection of PAGA/DNA complex (15.7%) compared with that of naked DNA injection (34.5%) and non-treated controls (90.9%). In conclusion, systemic administration of pCAGGS mIL-10 plasmid/PAGA complexes can reduce the severity of insulitis in NOD mice. This study shows that the PAGA/DNA complex has the potential for the prevention of autoimmune diabetes mellitus. Gene Therapy (2000) 7, 2099-2104.

  5. Novel synthetic (S,S) and (R,R)-secoisolariciresinol diglucosides (SDGs) protect naked plasmid and genomic DNA From gamma radiation damage.

    PubMed

    Mishra, Om P; Pietrofesa, Ralph; Christofidou-Solomidou, Melpo

    2014-07-01

    Secoisolariciresinol diglucoside (SDG) is the major lignan in wholegrain flaxseed. However, extraction methods are complex and are associated with low yield and high costs. Using a novel synthetic pathway, our group succeeded in chemically synthesizing SDG (S,S and R,R enantiomers), which faithfully recapitulates the properties of their natural counterparts, possessing strong antioxidant and free radical scavenging properties. This study further extends initial findings by now investigating the DNA-radioprotective properties of the synthetic SDG enantiomers compared to the commercial SDG. DNA radioprotection was assessed by cell-free systems such as: (a) plasmid relaxation assay to determine the extent of the supercoiled (SC) converted to open-circular (OC) plasmid DNA (pBR322) after exposure of the plasmid to gamma radiation; and (b) determining the extent of genomic DNA fragmentation. Exposure of plasmid DNA to 25 Gy of γ radiation resulted in decreased supercoiled form and increased open-circular form, indicating radiation-induced DNA damage. Synthetic SDG (S,S) and SDG (R,R), and commercial SDG at concentrations of 25-250 μM significantly and equipotently reduced the radiation-induced supercoiled to open-circular plasmid DNA in a dose-dependent conversion. In addition, exposure of calf thymus DNA to 50 Gy of gamma radiation resulted in DNA fragments of low-molecular weight (<6,000 bps), which was prevented in a dose-dependence manner by all synthetic and natural SDG enantomers, at concentrations as low as 0.5 μM. These novel results demonstrated that synthetic SDG (S,S) and SDG (R,R) isomers and commercial SDG possess DNA-radioprotective properties. Such properties along with their antioxidant and free radical scavenging activity, reported earlier, suggest that SDGs are promising candidates for radioprotection for normal tissue damage as a result of accidental exposure during radiation therapy for cancer treatment.

  6. Novel Synthetic (S,S) and (R,R)-Secoisolariciresinol Diglucosides (SDGs) Protect Naked Plasmid and Genomic DNA From Gamma Radiation Damage

    PubMed Central

    Mishra, Om P.; Pietrofesa, Ralph; Christofidou-Solomidou, Melpo

    2014-01-01

    Secoisolariciresinol diglucoside (SDG) is the major lignan in wholegrain flaxseed. However, extraction methods are complex and are associated with low yield and high costs. Using a novel synthetic pathway, our group succeeded in chemically synthesizing SDG (S,S and R,R enantiomers), which faithfully recapitulates the properties of their natural counterparts, possessing strong antioxidant and free radical scavenging properties. This study further extends initial findings by now investigating the DNA-radioprotective properties of the synthetic SDG enantiomers compared to the commercial SDG. DNA radioprotection was assessed by cell-free systems such as: (a) plasmid relaxation assay to determine the extent of the supercoiled (SC) converted to open-circular (OC) plasmid DNA (pBR322) after exposure of the plasmid to gamma radiation; and (b) determining the extent of genomic DNA fragmentation. Exposure of plasmid DNA to 25 Gy of γ radiation resulted in decreased supercoiled form and increased open-circular form, indicating radiation-induced DNA damage. Synthetic SDG (S,S) and SDG (R,R), and commercial SDG at concentrations of 25–250 μM significantly and equipotently reduced the radiation-induced supercoiled to open-circular plasmid DNA in a dose-dependent conversion. In addition, exposure of calf thymus DNA to 50 Gy of gamma radiation resulted in DNA fragments of low-molecular weight (<6,000 bps), which was prevented in a dose-dependence manner by all synthetic and natural SDG enantomers, at concentrations as low as 0.5 μM. These novel results demonstrated that synthetic SDG (S,S) and SDG (R,R) isomers and commercial SDG possess DNA-radioprotective properties. Such properties along with their antioxidant and free radical scavenging activity, reported earlier, suggest that SDGs are promising candidates for radioprotection for normal tissue damage as a result of accidental exposure during radiation therapy for cancer treatment. PMID:24945894

  7. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eun-Sung; Yang, Seung-Woo; Hong, Dong-Ki

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS,more » and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 {mu}g of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.« less

  8. Large-scale preparation of plasmid DNA.

    PubMed

    Heilig, J S; Elbing, K L; Brent, R

    2001-05-01

    Although the need for large quantities of plasmid DNA has diminished as techniques for manipulating small quantities of DNA have improved, occasionally large amounts of high-quality plasmid DNA are desired. This unit describes the preparation of milligram quantities of highly purified plasmid DNA. The first part of the unit describes three methods for preparing crude lysates enriched in plasmid DNA from bacterial cells grown in liquid culture: alkaline lysis, boiling, and Triton lysis. The second part describes four methods for purifying plasmid DNA in such lysates away from contaminating RNA and protein: CsCl/ethidium bromide density gradient centrifugation, polyethylene glycol (PEG) precipitation, anion-exchange chromatography, and size-exclusion chromatography.

  9. Tissue distribution of a plasmid DNA encoding Hsp65 gene is dependent on the dose administered through intramuscular delivery

    PubMed Central

    Coelho-Castelo, AAM; Trombone, AP; Rosada, RS; Santos, RR; Bonato, VLD; Sartori, A; Silva, CL

    2006-01-01

    In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system. PMID:16445866

  10. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection.

    PubMed

    Magro, Massimiliano; Martinello, Tiziana; Bonaiuto, Emanuela; Gomiero, Chiara; Baratella, Davide; Zoppellaro, Giorgio; Cozza, Giorgio; Patruno, Marco; Zboril, Radek; Vianello, Fabio

    2017-11-01

    Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rapid screening for plasmid DNA.

    PubMed

    Hughes, C; Meynell, G G

    1977-03-07

    A procedure is described for demonstrating plasmid DNA and its molecular weight, based on rate zonal centrifugation of unlabelled DNA in neutral sucrose gradients containing a low concentration of ethidium bromide. Each DNA species is then visualized as a discrete fluorescent band when the centrifuge tube is illuminated with ultra-violet light. Plasmids exist as closed circular and as relaxed circular molecules, which sediment separately, but during preparation of lysates, closed circular molecules are nicked so that each plasmid forms only a single band of relaxed circles within the gradient.

  12. [Replication of Streptomyces plasmids: the DNA nucleotide sequence of plasmid pSB 24.2].

    PubMed

    Bolotin, A P; Sorokin, A V; Aleksandrov, N N; Danilenko, V N; Kozlov, Iu I

    1985-11-01

    The nucleotide sequence of DNA in plasmid pSB 24.2, a natural deletion derivative of plasmid pSB 24.1 isolated from S. cyanogenus was studied. The plasmid amounted by its size to 3706 nucleotide pairs. The G-C composition was equal to 73 per cent. The analysis of the DNA structure in plasmid pSB 24.2 revealed the protein-encoding sequence of DNA, the continuity of which was significant for replication of the plasmid containing more than 1300 nucleotide pairs. The analysis also revealed two A-T-rich areas of DNA, the G-C composition of which was less than 55 per cent and a DNA area with a branched pin structure. The results may be of value in investigation of plasmid replication in actinomycetes and experimental cloning of DNA with this plasmid as a vector.

  13. Plasmid fermentation process for DNA immunization applications.

    PubMed

    Carnes, Aaron E; Williams, James A

    2014-01-01

    Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.

  14. Plasmid DNA Delivery: Nanotopography Matters.

    PubMed

    Song, Hao; Yu, Meihua; Lu, Yao; Gu, Zhengying; Yang, Yannan; Zhang, Min; Fu, Jianye; Yu, Chengzhong

    2017-12-20

    Plasmid DNA molecules with unique loop structures have widespread bioapplications, in many cases relying heavily on delivery vehicles to introduce them into cells and achieve their functions. Herein, we demonstrate that control over delicate nanotopography of silica nanoparticles as plasmid DNA vectors has significant impact on the transfection efficacy. For silica nanoparticles with rambutan-, raspberry-, and flower-like morphologies composed of spike-, hemisphere-, and bowl-type subunit nanotopographies, respectively, the rambutan-like nanoparticles with spiky surfaces demonstrate the highest plasmid DNA binding capability and transfection efficacy of 88%, higher than those reported for silica-based nanovectors. Moreover, it is shown that the surface spikes of rambutan nanoparticles provide a continuous open space to bind DNA chains via multivalent interactions and protect the gene molecules sheltered in the spiky layer against nuclease degradation, exhibiting no significant transfection decay. This unique protection feature is in great contrast to a commercial transfection agent with similar transfection performance but poor protection capability against enzymatic cleavage. Our study provides new understandings in the rational design of nonviral vectors for efficient gene delivery.

  15. Hofmeister series salts enhance purification of plasmid DNA by non-ionic detergents

    PubMed Central

    Lezin, George; Kuehn, Michael R.; Brunelli, Luca

    2011-01-01

    Ion-exchange chromatography is the standard technique used for plasmid DNA purification, an essential molecular biology procedure. Non-ionic detergents (NIDs) have been used for plasmid DNA purification, but it is unclear whether Hofmeister series salts (HSS) change the solubility and phase separation properties of specific NIDs, enhancing plasmid DNA purification. After scaling-up NID-mediated plasmid DNA isolation, we established that NIDs in HSS solutions minimize plasmid DNA contamination with protein. In addition, large-scale NID/HSS solutions eliminated LPS contamination of plasmid DNA more effectively than Qiagen ion-exchange columns. Large-scale NID isolation/NID purification generated increased yields of high quality DNA compared to alkali isolation/column purification. This work characterizes how HSS enhance NID-mediated plasmid DNA purification, and demonstrates that NID phase transition is not necessary for LPS removal from plasmid DNA. Specific NIDs such as IGEPAL CA-520 can be utilized for rapid, inexpensive and efficient laboratory-based large-scale plasmid DNA purification, outperforming Qiagen-based column procedures. PMID:21351074

  16. Electrotransfer of Plasmid Vector DNA into Muscle

    NASA Astrophysics Data System (ADS)

    Miyazaki, Satsuki; Miyazaki, Jun-Ichi

    Wolff et al. (1990) first reported that plasmid DNA injected into skeletal muscle is taken up by muscle cells and the genes in the plasmid are expressed for more than two months thereafter, although the transfected DNA does not usually undergo chromosomal integration (Wolff et al., 1991, 1992). However, the relatively low expression levels attained by this method have hampered its applications for uses other than as a DNA vaccine (Davis et al., 1995). There are a number of reports analyzing the conditions that affect the efficiency of gene transfer by intramuscular DNA injection and assessing the fine structures of expression plasmid vectors that may affect expression levels (Davis et al., 1993; Liang et al., 1996; Norman et al., 1997). Furthermore, various attempts were done to improve the efficiency of gene transfer by intramus cular DNA injection. Consequently, regenerating muscle was shown to produce 80-fold or more protein than did normal muscle, following injection of an expression plas-mid. Muscle regeneration was induced by treatment with cardiotoxin or bupivacaine (Wells, 1993; Vitadello et al., 1994). We previously demonstrated that by combining a strong promoter and bupivacaine pretreatment intramuscular injection of an IL-5 expression plasmid results in IL-5 production in muscle at a level sufficient to induce marked proliferation of eosinophils in the bone marrow and eosinophil infiltration of various organs (Tokui et al., 1997). It was also reported that a single intramuscular injection of an erythropoietin expression plasmid produced physiologically significant elevations in serum erythropoietin levels and increased hematocrits in adult mice (Tripathy et al., 1996). Hematocrits in these animals remained elevated at >60% for at least 90 days after a single injection. However, improvements to this method have not been sufficient to extend its applications including clinical use.

  17. Multiple Pathways of Plasmid DNA Transfer in Helicobacter pylori

    PubMed Central

    Rohrer, Stefanie; Holsten, Lea; Weiss, Evelyn; Benghezal, Mohammed; Fischer, Wolfgang; Haas, Rainer

    2012-01-01

    Many Helicobacter pylori (Hp) strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12), contain a mobilisation region, but no cognate type IV secretion system (T4SS) for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12) can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4). Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method), a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS). Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation) as well as a DNaseI-resistant manner (conjugative transfer). However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR) mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species. PMID:23029142

  18. Multiple pathways of plasmid DNA transfer in Helicobacter pylori.

    PubMed

    Rohrer, Stefanie; Holsten, Lea; Weiss, Evelyn; Benghezal, Mohammed; Fischer, Wolfgang; Haas, Rainer

    2012-01-01

    Many Helicobacter pylori (Hp) strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12), contain a mobilisation region, but no cognate type IV secretion system (T4SS) for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12) can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4). Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method), a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS). Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation) as well as a DNaseI-resistant manner (conjugative transfer). However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR) mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species.

  19. Plasmid-derived DNA Strand Displacement Gates for Implementing Chemical Reaction Networks.

    PubMed

    Chen, Yuan-Jyue; Rao, Sundipta D; Seelig, Georg

    2015-11-25

    DNA nanotechnology requires large amounts of highly pure DNA as an engineering material. Plasmid DNA could meet this need since it is replicated with high fidelity, is readily amplified through bacterial culture and can be stored indefinitely in the form of bacterial glycerol stocks. However, the double-stranded nature of plasmid DNA has so far hindered its efficient use for construction of DNA nanostructures or devices that typically contain single-stranded or branched domains. In recent work, it was found that nicked double stranded DNA (ndsDNA) strand displacement gates could be sourced from plasmid DNA. The following is a protocol that details how these ndsDNA gates can be efficiently encoded in plasmids and can be derived from the plasmids through a small number of enzymatic processing steps. Also given is a protocol for testing ndsDNA gates using fluorescence kinetics measurements. NdsDNA gates can be used to implement arbitrary chemical reaction networks (CRNs) and thus provide a pathway towards the use of the CRN formalism as a prescriptive molecular programming language. To demonstrate this technology, a multi-step reaction cascade with catalytic kinetics is constructed. Further it is shown that plasmid-derived components perform better than identical components assembled from synthetic DNA.

  20. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles

    PubMed Central

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-01-01

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518

  1. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles.

    PubMed

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-10-28

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Naked eye detection of mutagenic DNA photodimers using gold nanoparticles.

    PubMed

    Kim, Joong Hyun; Chung, Bong Hyun

    2011-01-15

    We developed a method to detect mutagenic DNA photodimers by the naked eye using gold nanoparticles. The stability of gold nanoparticles in a high ionic strength solution is maintained by straight ssDNA adsorbed physically on the AuNPs. However, we found that UV-irradiated DNA was less adsorptive onto gold nanoparticles because of a conformational change of UV-irradiated DNA. The accumulated deformation of the DNA structure by multiple-dimer formation triggered aggregation of the gold nanoparticles mixed with the UV-irradiated DNA and thus red to purple color changes of the mixture, which allowed colorimetric detection of the DNA photodimers by the naked eye. No fragmented mass and reactive oxygen species production under the UVB irradiation confirmed that the aggregation of gold nanoparticles was solely attributed to the accumulated deformation of the UV irradiated DNA. The degree of gold nanoparticles-aggregation was dependent on the UVB irradiated time and base compositions of the UV-irradiated oligonucleotides. In addition, we successfully demonstrated how to visually qualify the photosensitizing effect of chemical compounds in parallel within only 10 min by applying this new method. Since our method does not require any chemical or biochemical treatments or special instruments for purifying and qualifying the DNA photolesions, it should provide a feasible tool for the studies of the UV-induced mutagenic or carcinogenic DNA dimers and accelerate screening of a large number of drug candidates. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  3. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  4. Supercoiled plasmid DNA purification by integrating membrane technology with a monolithic chromatography.

    PubMed

    Nunes, Catherine; Sousa, Angela; Nunes, José C; Morão, António M; Sousa, Fani; Queiroz, João A

    2014-06-01

    The present study describes the integration of membrane technology with monolithic chromatography to obtain plasmid DNA with high quality. Isolation and clarification of plasmid DNA lysate were first conducted by a microfiltration step, by using a hydrophilic nylon microfiltration membrane, avoiding the need of centrifugation. For the total elimination of the remaining impurities, a suitable purification step is required. Monolithic stationary phases have been successfully applied as an alternative to conventional supports. Thus, the sample recovered from the membrane process was applied into a nongrafted CarbonylDiImidazole disk. Throughout the global procedure, a reduced level of impurities such as proteins and RNA was obtained, and no genomic DNA was detectable in the plasmid DNA sample. The chromatographic process demonstrated an efficient performance on supercoiled plasmid DNA purity and recovery (100 and 84.44%, respectively). Thereby, combining the membrane technology to eliminate some impurities from lysate sample with an efficient chromatographic strategy to purify the supercoiled plasmid DNA arises as a powerful approach for industrial-scale systems aiming at plasmid DNA purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2005-11-28

    This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in

  6. The pPSU Plasmids for Generating DNA Molecular Weight Markers.

    PubMed

    Henrici, Ryan C; Pecen, Turner J; Johnston, James L; Tan, Song

    2017-05-26

    Visualizing nucleic acids by gel electrophoresis is one of the most common techniques in molecular biology, and reference molecular weight markers or ladders are commonly used for size estimation. We have created the pPSU1 & pPSU2 pair of molecular weight marker plasmids which produce both 100 bp and 1 kb DNA ladders when digested with two common restriction enzymes. The 100 bp ladder fragments have been optimized to migrate appropriately on both agarose and native polyacrylamide, unlike many currently available DNA ladders. Sufficient plasmid DNA can be isolated from 100 ml E. coli cultures for the two plasmids to produce 100 bp or 1 kb ladders for 1000 gels. As such, the pPSU1 and pPSU2 plasmids provide reference fragments from 50 to 10000 bp at a fraction of the cost of commercial DNA ladders. The pPSU1 and pPSU2 plasmids are available without licensing restrictions to nonprofit academic users, affording freely available high-quality, low-cost molecular weight standards for molecular biology applications.

  7. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  8. Ultrasound-mediated gene delivery of naked plasmid DNA in skeletal muscles: a case for bolus injections.

    PubMed

    Sanches, Pedro Gomes; Mühlmeister, Mareike; Seip, Ralf; Kaijzel, Eric; Löwik, Clemens; Böhmer, Marcel; Tiemann, Klaus; Grüll, Holger

    2014-12-10

    Localized gene delivery has many potential clinical applications. However, the nucleic acids (e.g. pDNA and siRNA) are incapable of passively crossing the endothelium, cell membranes and other biological barriers which must be crossed to reach their intracellular targets. A possible solution is the use of ultrasound to burst circulating microbubbles inducing transient permeabilization of surrounding tissues which mediates nucleic acid extravasation and cellular uptake. In this study we report on an optimization of the ultrasound gene delivery technique. Naked pDNA (200 μg) encoding luciferase and SonoVue® microbubbles were co-injected intravenously in mice. The hindlimb skeletal muscles were exposed to ultrasound from a non-focused transducer (1 MHz, 1.25 MPa, PRI 30s) and injection protocols and total amounts as well as ultrasound parameters were systemically varied. Gene expression was quantified relative to a control using a bioluminescence camera system at day 7 after sonication. Bioluminescence ratios in sonicated/control muscles of up to 101× were obtained. In conclusion, we were able to specifically deliver genetic material to the selected skeletal muscles and overall, the use of bolus injections and high microbubble numbers resulted in increased gene expression reflected by stronger bioluminescence signals. Based on our data, bolus injections seem to be required in order to achieve transient highly concentrated levels of nucleic acids and microbubbles at the tissue of interest which upon ultrasound exposure should lead to increased levels of gene delivery. Thus, ultrasound mediated gene delivery is a promising technique for the clinical translation of localized drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Continuous Production of Discrete Plasmid DNA-Polycation Nanoparticles Using Flash Nanocomplexation

    PubMed Central

    Santos, Jose Luis; Ren, Yong; Vandermark, John; Archang, Maani M.; Williford, John-Michael; Liu, Heng-wen; Lee, Jason; Wang, Tza-Huei; Mao, Hai-Quan

    2016-01-01

    Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress towards clinical translation of these nanoparticle-based gene medicine. Here we report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles. PMID:27717227

  10. Arginine homopeptides for plasmid DNA purification using monolithic supports.

    PubMed

    Cardoso, Sara; Sousa, Ângela; Queiroz, João A; Azzoni, Adriano R; Sousa, Fani

    2018-06-15

    Purification of plasmid DNA targeting therapeutic applications still presents many challenges, namely on supports and specific ligand development. Monolithic supports have emerged as interesting approaches for purifying pDNA due to its excellent mass transfer properties and higher binding capacity values. Moreover, arginine ligands were already described to establish specific and preferential interactions with pDNA. Additionally, some studies revealed the ability of arginine based cationic peptides to condense plasmid DNA, which increased lengthening can result in strongest interactions with higher binding capacities for chromatographic purposes of large molecules such as pDNA. In this work, arginine homopeptides were immobilized in monolithic supports and their performance was evaluated and compared with a single arginine monolithic column regarding supercoiled (sc) plasmid DNA purification. Specific interactions of arginine based peptides with several nucleic acids present in a clarified Escherichia coli lysate sample showed potential for the sc pDNA purification. Effectively, the immobilization of the arginine homopeptides became more functional compared with the single arginine amino acid, showing higher binding capacities, which was also reflected in the intensity of the interactions. The combination of structural versatilities of monoliths with the specificity of arginine peptides raised as a promising strategy for sc pDNA purification. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. 3G vector-primer plasmid for constructing full-length-enriched cDNA libraries.

    PubMed

    Zheng, Dong; Zhou, Yanna; Zhang, Zidong; Li, Zaiyu; Liu, Xuedong

    2008-09-01

    We designed a 3G vector-primer plasmid for the generation of full-length-enriched complementary DNA (cDNA) libraries. By employing the terminal transferase activity of reverse transcriptase and the modified strand replacement method, this plasmid (assembled with a polydT end and a deoxyguanosine [dG] end) combines priming full-length cDNA strand synthesis and directional cDNA cloning. As a result, the number of steps involved in cDNA library preparation is decreased while simplifying downstream gene manipulation, sequencing, and subcloning. The 3G vector-primer plasmid method yields fully represented plasmid primed libraries that are equivalent to those made by the SMART (switching mechanism at 5' end of RNA transcript) approach.

  12. Continuous Production of Discrete Plasmid DNA-Polycation Nanoparticles Using Flash Nanocomplexation.

    PubMed

    Santos, Jose Luis; Ren, Yong; Vandermark, John; Archang, Maani M; Williford, John-Michael; Liu, Heng-Wen; Lee, Jason; Wang, Tza-Huei; Mao, Hai-Quan

    2016-12-01

    Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress toward clinical translation of these nanoparticle-based gene medicine. Here the authors report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    PubMed

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  14. Trial watch: Naked and vectored DNA-based anticancer vaccines

    PubMed Central

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm. PMID:26155408

  15. Chemotherapeutic Drug-Conjugated Microbeads Demonstrate Preferential Binding to Methylated Plasmid DNA.

    PubMed

    Lin, Kevin N; Grandhi, Taraka Sai Pavan; Goklany, Sheba; Rege, Kaushal

    2018-04-10

    Plasmid DNA (pDNA) is an attractive therapeutic biomolecule in several diseases including cancer, AIDS, cystic fibrosis, Parkinson's disease, and Alzheimer's disease. Increasing demand for plasmid DNA as a therapeutic biomolecule for transgene expression or vaccine applications necessitate novel approaches to bioprocessing. The synthesis, characterization and evaluation of aminoglycoside-derived hydrogel microbeads (Amikabeads) for pDNA binding is described previously. Here, the generation and evaluation of novel chemotherapeutic drug-conjugated microbeads for application in pDNA binding and recovery is described. Chemotherapeutic drug-conjugated Amikabeads demonstrate higher binding of methylated pDNA compared to unmethylated pDNA in presence of high salt concentrations. Desorption of plasmids from drug-conjugated microbeads is facilitated by the use of organic modifiers. The observed differences in binding methylated versus unmethylated DNA can make drug-conjugated microbeads useful in diagnostic as well as therapeutic applications. These results demonstrate that anti-cancer drugs represent a diverse set of ligands that may be exploited for molecular engineering of novel DNA binding materials for applications in delivery, diagnostics, and biomanufacturing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Liposomal lipid and plasmid DNA delivery to B16/BL6 tumors after intraperitoneal administration of cationic liposome DNA aggregates.

    PubMed

    Reimer, D L; Kong, S; Monck, M; Wyles, J; Tam, P; Wasan, E K; Bally, M B

    1999-05-01

    The transfer of plasmid expression vectors to cells is essential for transfection after administration of lipid-based DNA formulations (lipoplexes). A murine i.p. B16/BL6 tumor model was used to characterize DNA delivery, liposomal lipid delivery, and gene transfer after regional (i.p.) administration of free plasmid DNA and DNA lipoplexes. DNA lipoplexes were prepared using cationic dioleoyldimethylammonium chloride/dioleoylphosphatidylethanolamine (50:50 mol ratio) liposomes mixed with plasmid DNA (1 microgram DNA/10 nmol lipid). The plasmid used contained the chloramphenicol acetyltransferase gene and chloramphenicol acetyltransferase expression (mU/g tumor) was measured to estimate transfection efficiency. Tumor-associated DNA and liposomal lipid levels were measured to estimate the efficiency of lipid-mediated DNA delivery to tumors. Plasmid DNA delivery was estimated using [3H]-labeled plasmid as a tracer, dot blot analysis, and/or Southern analysis. Liposomal lipid delivery was estimated using [14C]-dioleoylphosphatidylethanolamine as a liposomal lipid marker. Gene expression in the B16/BL6 tumors was highly variable, with values ranging from greater than 2,000 mU/g tumor to less than 100 mU/g tumor. There was a tendency to observe enhanced transfection in small (<250 mg) tumors. Approximately 18% of the injected dose of DNA was associated with these small tumors 2 h after i.p. administration. Southern analysis of extracted tumor DNA indicated that plasmid DNA associated with tumors was intact 24 h after administration. DNA and associated liposomal lipid are efficiently bound to tumors after regional administration; however, it is unclear whether delivery is sufficient to abet internalization and appropriate subcellular localization of the expression vector.

  17. Fate of plasmids containing Mu DNA: chromosome association and mobilization.

    PubMed

    Bialy, H; Waggoner, B T; Pato, M L

    1980-01-01

    The fluorescent dye, diamidinophenylindole-dihydrochloride (DAPI) can be added to CsCl gradients to enhance the density resolution of DNA species, independent of their topological configurations. When Proteus mirabilis and Escherichia coli strains carrying an RP4::Mucts plasmid were examined with the use of such a technique, it was found that after thermal induction of the prophage essentially al of the plasmid DNA became associated with the chromosome. This quantitative association is detergent-RNase- and pronase-resistant and dependent on the expression of Mu genes. The association is temporally, and probably functionally, correlated with the onset of Mu DNA replication. Genetic studies with F'::mini Mu plasmids indicate that some of the association results in stable Hfr formation, and does not require the product of Mu gene B.

  18. Adsorption behavior of plasmid DNA onto perfusion chromatographic matrix.

    PubMed

    Limonta, Miladys; Zumalacárregui, Lourdes; Soler, Dayana

    2012-05-01

    Anion exchange chromatography is the most popular chromatographic method for plasmid separation. POROS RI 50 is a perfusion chromatographic support which is a reversed phase matrix and is an alternative to conventional ones due to its mass transfer properties. The adsorption and elution of the pIDKE2 plasmid onto reversed phase POROS R1 50 was studied. Langmuir isotherm model was adjusted in order to get the maximum adsorption capacity and the dissociation constant for POROS R1 50-plasmid DNA (pDNA) system. Breakthrough curves were obtained for volumetric flows between 0.69-3.33 mL/min, given dynamic capacity up to 2.3 times higher than those reported for ionic exchange matrix used during the purification process of plasmids with similar size to that of pIDKE2. The efficiency was less than 45% for the flow conditions and initial concentration studied, which means that the support will not be operated under saturation circumstances.

  19. Development of new plasmid DNA vaccine vectors with R1-based replicons

    PubMed Central

    2012-01-01

    Background There has been renewed interest in biopharmaceuticals based on plasmid DNA (pDNA) in recent years due to the approval of several veterinary DNA vaccines, on-going clinical trials of human pDNA-based therapies, and significant advances in adjuvants and delivery vehicles that have helped overcome earlier efficacy deficits. With this interest comes the need for high-yield, cost-effective manufacturing processes. To this end, vector engineering is one promising strategy to improve plasmid production. Results In this work, we have constructed a new DNA vaccine vector, pDMB02-GFP, containing the runaway R1 origin of replication. The runaway replication phenotype should result in plasmid copy number amplification after a temperature shift from 30°C to 42°C. However, using Escherichia coli DH5α as a host, we observed that the highest yields of pDMB02-GFP were achieved during constant-temperature culture at 30°C, with a maximum yield of approximately 19 mg pDNA/g DCW being observed. By measuring mRNA and protein levels of the R1 replication initiator protein, RepA, we determined that RepA may be limiting pDMB02-GFP yield at 42°C. A mutant plasmid, pDMB-ATG, was constructed by changing the repA start codon from the sub-optimal GTG to ATG. In cultures of DH5α[pDMB-ATG], temperature-induced plasmid amplification was more dramatic than that observed with pDMB02-GFP, and RepA protein was detectable for several hours longer than in cultures of pDMB02-GFP at 42°C. Conclusions Overall, we have demonstrated that R1-based plasmids can produce high yields of high-quality pDNA without the need for a temperature shift, and have laid the groundwork for further investigation of this class of vectors in the context of plasmid DNA production. PMID:22889338

  20. Scaleable processes for the manufacture of therapeutic quantities of plasmid DNA.

    PubMed

    Shamlou, Parviz Ayazi

    2003-06-01

    The need for scaleable processes to manufacture therapeutic plasmid DNA (pDNA) is easy to overlook when attention is focused primarily on vector design and establishment of early clinical results. pDNA is a large molecule and has properties that are similar to those of the contaminating chromosomal DNA. These, combined with the low initial concentration of plasmids in the host cell, provide unique process challenges that require significant upfront design to establish robust manufacturing processes that can also comply with current Good Manufacturing Practice ('cGMP') and produce milligram-to-kilogram quantities of pDNA product. This review describes promising scaleable processes that are currently being assessed for production of therapeutic supercoiled pDNA. Fermentation strategies for improving supercoiled plasmid yield and reducing contaminant concentrations are reviewed, and downstream processes are assessed for their ability to efficiently remove cellular contaminants, separate the supercoiled form of the pDNA from its open circular and linear forms, and prepare the purified drug substance for formulation. Current strategies are presented for developing stable delivery systems, and approaches to quality assurance and quality control are discussed.

  1. A cell engineering strategy to enhance supercoiled plasmid DNA production for gene therapy.

    PubMed

    Hassan, Sally; Keshavarz-Moore, Eli; Ward, John

    2016-09-01

    With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase-mediated plasmid supercoiling. SGS from three different replicons, (the Mu bacteriophage and two plasmids, pSC101 and pBR322) were inserted into the plasmid, pUC57. Different sizes of these variants were transformed into E. coli DH5α, and their supercoiling properties and segregational stability measured. A 36% increase in supercoiling density was found in pUC57-SGS, but only when SGS was derived from the Mu phage and was the larger sized version of this fragment. These results were also confirmed at fermentation scale. Total percentage supercoiled monomer was maintained to 85-90%. A twofold increase in plasmid yield was also observed for pUC57-SGS in comparison to pUC57. pUC57-SGS displayed greater segregational stability than pUC57-cer and pUC57, demonstrating a further potential advantage of the SGS site. These findings should augment the potential of plasmid DNA vectors in plasmid DNA manufacture. Biotechnol. Bioeng. 2016;113: 2064-2071. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  2. A multimodal histamine ligand for chromatographic purification of plasmid DNA.

    PubMed

    Černigoj, Urh; Vidic, Urška; Barut, Miloš; Podgornik, Aleš; Peterka, Matjaž; Štrancar, Aleš

    2013-03-15

    To exploit different chromatographic modes for efficient plasmid DNA (pDNA) purification a novel monolithic chromatographic support bearing multimodal histamine (HISA) groups was developed and characterized. Electrostatic charge of HISA groups depends on the pH of the mobile phase, being neutral above pH 7 and becoming positively charged below. As a consequence, HISA groups exhibit predominantly ion-exchange character at low pH values, which decreases with titration of the HISA groups resulting in increased hydrophobicity. This feature enabled separation of supercoiled (sc) pDNA from other plasmid isoforms (and other process related impurities) by adjusting salt or pH gradient. The dynamic binding capacity (DBC) for a 5.1kbp large plasmid at pH 5 was 4.0 mg/ml under low salt binding conditions, remaining relatively high (3.0 mg/ml) even in the presence of 1.0 M NaCl due to the multimodal nature of HISA ligand. Only slightly lower DBC (2.7 mg/ml) was determined under preferentially hydrophobic conditions in 3.0 M (NH(4))(2)SO(4), pH 7.4. Open circular and sc pDNA isoforms were baseline separated in descending (NH(4))(2)SO(4) gradient. Furthermore, an efficient plasmid DNA separation was possible both on analytical as well as on preparative scale by applying the descending pH gradient at a constant concentration (above 3.0 M) of (NH(4))(2)SO(4). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Plasmid P1 replication: negative control by repeated DNA sequences.

    PubMed Central

    Chattoraj, D; Cordes, K; Abeles, A

    1984-01-01

    The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pieces of the incA fragment that each contain only three repeats destabilize P1 plasmids efficiently. This result makes it unlikely that incA specifies a regulatory product. Our in vivo results suggest that the repeating DNA sequence itself negatively controls replication by titrating a P1-determined protein, RepA, that is essential for replication. Consistent with this hypothesis is the observation that the RepA protein binds to the incA fragment in vitro. Images PMID:6387706

  4. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2004-05-31

    The objective of this study is to investigate feasibility of a non-viral gene carrier with repeated RGD sequences (Pronectin F+) in tumor targeting for gene expression. The Pronectin F+ was cationized by introducing spermine (Sm) to the hydroxyl groups to allow to polyionically complex with plasmid DNA. The cationized Pronectin F+ prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have active ester and methoxy groups at the terminal, to form various PEG-introduced cationized Pronectin F+. The cationized Pronectin F+ with or without PEGylation at different extents was mixed with a plasmid DNA of LacZ to form respective cationized Pronectin F+-plasmid DNA complexes. The plasmid DNA was electrophoretically complexed with cationized Pronectin F+ and PEG-introduced cationized Pronectin F+, irrespective of the PEGylation extent, although the higher N/P ratio of complexes was needed for complexation with the latter Pronectin F+. The molecular size and zeta potential measurements revealed that the plasmid DNA was reduced in size to about 250 nm and the charge was changed to be positive by the complexation with cationized Pronectin F+. For the complexation with PEG-introduced cationized Pronectin F+, the charge of complex became neutral being almost 0 mV with the increasing PEGylation extents, while the molecular size was similar to that of cationized Pronectin F+. When cationized Pronectin F+-plasmid DNA complexes with or without PEGylation were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass, the PEG-introduced cationized Pronectin F+-plasmid DNA complex specifically enhanced the level of gene expression in the tumor, to a significantly high extent compared with the cationized Pronectin F+-plasmid DNA complexes and free plasmid DNA. The enhanced level of gene expression depended on the percentage of PEG introduced, the N/P ratio, and the plasmid DNA dose. A fluorescent microscopic study revealed that the

  5. Topological Behavior of Plasmid DNA

    PubMed Central

    Higgins, N. Patrick; Vologodskii, Alexander V.

    2015-01-01

    The discovery of the B-form structure of DNA by Watson and Crick led to an explosion of research on nucleic acids in the fields of biochemistry, biophysics, and genetics. Powerful techniques were developed to reveal a myriad of different structural conformations that change B-DNA as it is transcribed, replicated, and recombined and as sister chromosomes are moved into new daughter cell compartments during cell division. This article links the original discoveries of superhelical structure and molecular topology to non-B form DNA structure and contemporary biochemical and biophysical techniques. The emphasis is on the power of plasmids for studying DNA structure and function. The conditions that trigger the formation of alternative DNA structures such as left-handed Z-DNA, inter- and intra-molecular triplexes, triple-stranded DNA, and linked catenanes and hemicatenanes are explained. The DNA dynamics and topological issues are detailed for stalled replication forks and for torsional and structural changes on DNA in front of and behind a transcription complex and a replisome. The complex and interconnected roles of topoisomerases and abundant small nucleoid association proteins are explained. And methods are described for comparing in vivo and in vitro reactions to probe and understand the temporal pathways of DNA and chromosome chemistry that occur inside living cells. PMID:26104708

  6. Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins

    PubMed Central

    Gruber, Christian J.; Lang, Silvia; Rajendra, Vinod K. H.; Nuk, Monika; Raffl, Sandra; Schildbach, Joel F.; Zechner, Ellen L.

    2016-01-01

    Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination. PMID:27486582

  7. Plasmid ColE1 as a Molecular Vehicle for Cloning and Amplification of DNA

    PubMed Central

    Hershfield, Vickers; Boyer, Herbert W.; Yanofsky, Charles; Lovett, Michael A.; Helinski, Donald R.

    1974-01-01

    DNA fragments obtained from EcoRI endonuclease digestion of bacteriophage ϕ80pt190 (trp+) and the plasmid ColE1 were covalently joined with polynucleotide ligase. Transformation of Escherichia coli trp- strains to tryptophan independence with the recombined DNA selected for reconstituted ColE1 plasmids containing the tryptophan operon and the ϕ80 immunity region. Similarly, an EcoRI endonuclease generated fragment of plasmid pSC105 DNA containing the genetic determinant of kanamycin resistance was inserted into the ColE1 plasmid and recovered in E. coli. The plasmids containing the trp operon (ColE1-trp) and the kanamycin resistance gene were maintained under logarithmic growth conditions at a level of 25-30 copies per cell and accumulate to the extent of several hundred copies per cell in the presence of chloramphenicol. Cells carrying the ColE1-trp plasmid determined the production of highly elevated levels of trp operon-specific mRNA and tryptophan biosynthetic enzymes. Images PMID:4610576

  8. Reporter gene expression in dendritic cells after gene gun administration of plasmid DNA.

    PubMed

    Watkins, Craig; Hopkins, John; Harkiss, Gordon

    2005-07-21

    Dendritic cells (DC) play an integral role in plasmid DNA vaccination. However, the interaction between plasmid DNA and DC in vivo is incompletely understood. In this report, we utilise the sheep pseudoafferent cannulation model to examine the interaction between plasmid DNA encoding enhanced green fluorescent protein (pEGFP) and afferent lymph DC (ALDC) following gene gun administration. The results show that peaks of fluorescent ALDC tended to appear around days 1-4 and 9-13, then erratically thereafter for up to 2 months. Phenotypic analysis showed that EGFP+ ALDC expressed MHC class II, WC6, CD1b, and SIRPalpha markers. Plasmid, detected by PCR, was found in lymph cells and cell-free plasma on a daily basis, and was present variably for up to 2 months. Plasmid was also detected in purified CD1b+ ALDC, but the presence of plasmid did not correlate with EGFP expression by ALDC. Free EGFP in afferent lymph plasma was detectable by luminometry only after three administrations of the plasmid. The results show that gene gun administered pEGFP persisted for extended periods after a single administration, leeching out of skin on a daily basis. The plasmid was associated with both the cellular and fluid components of afferent lymph. EGFP protein appeared in afferent lymph in a pulsatile manner, but associated only with ALDC.

  9. Evaluation of the effect of non-B DNA structures on plasmid integrity via accelerated stability studies.

    PubMed

    Ribeiro, S C; Monteiro, G A; Prazeres, D M F

    2009-04-01

    Plasmid biopharmaceuticals are a new class of medicines with an enormous potential. Attempts to increase the physical stability of highly purified supercoiled (SC) plasmid DNA in pharmaceutical aqueous solutions have relied on: (i) changing the DNA sequence, (ii) improving manufacturing to reduce deleterious impurities and initial DNA damage, and (iii) controlling the storage medium characteristics. In this work we analyzed the role of secondary structures on the degradation of plasmid molecules. Accelerated stability experiments were performed with SC, open circular (OC) and linear (L) isoforms of three plasmids which differed only in the "single-strandlike" content of their polyadenylation (poly A) signals. We have proved that the presence of more altered or interrupted (non-B) DNA secondary structures did not directly translate into an easier strand scission of the SC isoforms. Rather, those unusual structures imposed a lower degree of SC in the plasmids, leading to an increase in their resistance to thermal degradation. However, this behavior was reversed when the relaxed or L isoforms were tested, in which case the absence of SC rendered the plasmids essentially double-stranded. Overall, this work suggests that plasmid DNA sequence and secondary structures should be taken into account in future investigations of plasmid stability during prolonged storage.

  10. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  11. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds.

    PubMed

    Liu, Jianhua; Zhang, Xiaoliang; Yu, Mei; Li, Songmei; Zhang, Jindan

    2012-01-23

    Biological scaffolds are being actively explored for the synthesis of nanomaterials with novel structures and unexpected properties. Toroidal plasmid DNA separated from the Bacillus host is applied as a sacrificial mold for the synthesis of silver nanoparticles and nanorings. The photoirradiation method is applied to reduce Ag(I) on the plasmid. The nanoparticles are obtained by varying the concentration of the Ag(I) ion solution and the exposure time of the plasmid-Ag(I) complex under UV light at 254 nm and room temperature. It is found that the plasmid serves not only as a template but also as a reductant to drive the silver nucleation and deposition. The resulting nanoparticles have a face-centered cubic (fcc) crystal structure and 20-30 nm average diameter. The detailed mechanism is discussed, and other metals or alloys could also be synthesized with this method. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. DNA Inversion on Conjugative Plasmid pVT745

    PubMed Central

    Chen, Jinbiao; Leblanc, Donald J.; Galli, Dominique M.

    2002-01-01

    Plasmid pVT745 from Actinobacillus actinomycetemcomitans strain VT745 can be transferred to other A. actinomycetemcomitans strains at a frequency of 10−6. Screening of transconjugants revealed that the DNA of pDMG21A, a pVT745 derivative containing a kanamycin resistance gene, displayed a structural rearrangement after transfer. A 9-kb segment on the plasmid had switched orientation. The inversion was independent of RecA and required the activity of the pVT745-encoded site-specific recombinase. This recombinase, termed Inv, was highly homologous to invertases of the Din family. Two recombination sites of 22 bp, which are arranged in opposite orientation and which function as DNA crossover sequences, were identified on pVT745. One of the sites was located adjacent to the 5′ end of the invertase gene, inv. Inversion of the 9-kb segment on pVT745 derivatives has been observed in all A. actinomycetemcomitans strains tested except for the original host, VT745. This would suggest that a host factor that is either inactive or absent in VT745 is required for efficient recombination. Inactivation of the invertase in the donor strain resulted in a 1,000-fold increase in the number of transconjugants upon plasmid transfer. It is proposed that an activated invertase causes the immediate loss of the plasmid in most recipient cells after mating. No biological role has been associated with the invertase as of yet. PMID:12374826

  13. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.

    PubMed

    Singh, Ravi; Pantarotto, Davide; McCarthy, David; Chaloin, Olivier; Hoebeke, Johan; Partidos, Charalambos D; Briand, Jean-Paul; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2005-03-30

    Carbon nanotubes (CNTs) constitute a class of nanomaterials that possess characteristics suitable for a variety of possible applications. Their compatibility with aqueous environments has been made possible by the chemical functionalization of their surface, allowing for exploration of their interactions with biological components including mammalian cells. Functionalized CNTs (f-CNTs) are being intensively explored in advanced biotechnological applications ranging from molecular biosensors to cellular growth substrates. We have been exploring the potential of f-CNTs as delivery vehicles of biologically active molecules in view of possible biomedical applications, including vaccination and gene delivery. Recently we reported the capability of ammonium-functionalized single-walled CNTs to penetrate human and murine cells and facilitate the delivery of plasmid DNA leading to expression of marker genes. To optimize f-CNTs as gene delivery vehicles, it is essential to characterize their interactions with DNA. In the present report, we study the interactions of three types of f-CNTs, ammonium-functionalized single-walled and multiwalled carbon nanotubes (SWNT-NH3+; MWNT-NH3+), and lysine-functionalized single-walled carbon nanotubes (SWNT-Lys-NH3+), with plasmid DNA. Nanotube-DNA complexes were analyzed by scanning electron microscopy, surface plasmon resonance, PicoGreen dye exclusion, and agarose gel shift assay. The results indicate that all three types of cationic carbon nanotubes are able to condense DNA to varying degrees, indicating that both nanotube surface area and charge density are critical parameters that determine the interaction and electrostatic complex formation between f-CNTs with DNA. All three different f-CNT types in this study exhibited upregulation of marker gene expression over naked DNA using a mammalian (human) cell line. Differences in the levels of gene expression were correlated with the structural and biophysical data obtained for the f-CNT:DNA

  14. The construction, identification and partial characterization of plasmids containing guinea-pig milk protein complementary DNA sequences.

    PubMed Central

    Craig, R K; Hall, L; Parker, D; Campbell, P N

    1981-01-01

    A complementary DNA (cDNA) plasmid library has been constructed in the plasmid pAT153, using poly(A)-containing RNA isolated from the lactating guinea-pig mammary gland as the starting material. Double stranded cDNA was inserted into the EcoRI site of the plasmid using poly(dA . dT) tails, then transformed into Escherichia coli HB101. From the resulting colonies we have selected and partially characterized plasmids containing cDNA copies of the mRNAs for casein A, casein B, casein C and alpha-lactalbumin. However, the proportion containing casein C cDNA was exceptionally low, and these contained at best 60% of the mRNA sequence. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:7306038

  15. Efficient plasmid DNA cleavage by a mononuclear copper(II) complex.

    PubMed

    Sissi, Claudia; Mancin, Fabrizio; Gatos, Maddalena; Palumbo, Manlio; Tecilla, Paolo; Tonellato, Umberto

    2005-04-04

    The Cu(II) complex of the ligand all-cis-2,4,6-triamino-1,3,5-trihydroxycyclohexane (TACI) is a very efficient catalyst of the cleavage of plasmid DNA in the absence of any added cofactor. The maximum rate of degradation of the supercoiled plasmid DNA form, obtained at pH 8.1 and 37 degrees C, in the presence of 48 microM TACI.Cu(II), is 2.3 x 10(-3) s(-1), corresponding to a half-life time of only 5 min for the cleavage of form I (supercoiled) to form II (relaxed circular). The dependence of the rate of plasmid DNA cleavage from the TACI.Cu(II) complex concentration follows an unusual and very narrow bell-like profile, which suggests an high DNA affinity of the complexes but also a great tendency to form unreactive dimers. The reactivity of the TACI.Cu(II) complexes is not affected by the presence of several scavengers for reactive oxygen species or when measured under anaerobic conditions. Moreover, no degradation of the radical reporter Rhodamine B is observed in the presence of such complexes. These results are consistent with the operation of a prevailing hydrolytic pathway under the normal conditions used, although the failure to obtain enzymatic religation of the linearized DNA does not allow one to rule out the occurrence of a nonhydrolytic oxygen-independent cleavage. A concurrent oxidative mechanism becomes competitive upon addition of reductants or in the presence of high levels of molecular oxygen: under such conditions, in fact, a remarkable increase in the rate of DNA cleavage is observed.

  16. Effect of cold atmospheric pressure He-plasma jet on DNA change and mutation

    NASA Astrophysics Data System (ADS)

    Yaopromsiri, C.; Yu, L. D.; Sarapirom, S.; Thopan, P.; Boonyawan, D.

    2015-12-01

    Cold atmospheric pressure plasma jet (CAPPJ) effect on DNA change was studied for assessment of its safety. The experiment utilized a home-developed CAPPJ using 100% helium to directly treat naked DNA plasmid pGFP (plasmid green fluorescent protein). A traversal electric field was applied to separate the plasma components and both dry and wet sample conditions were adopted to investigate various factor roles in changing DNA. Plasma species were measured by using optical emission spectroscopy. DNA topological form change was analyzed by gel electrophoresis. The plasma jet treated DNA was transferred into bacterial Escherichia coli cells for observing mutation. The results show that the He-CAPPJ could break DNA strands due to actions from charge, radicals and neutrals and potentially cause genetic modification of living cells.

  17. In vitro transfection of plasmid DNA by amine derivatives of gelatin accompanied with ultrasound irradiation.

    PubMed

    Hosseinkhani, Hossein; Aoyama, Ternyoshi; Yamamoto, Shingo; Ogawa, Osamu; Tabata, Yasuhiko

    2002-10-01

    The purpose of this study is to examine the ultrasound (US)-enhanced gene expression by the complexes of a plasmid DNA with gelatin derivatives of aminization. Gelatin derivatives with different introduced extents of ethylenediamine (Ed), spermidine (Sd), and spermine (Sm) were prepared with a water-soluble carbodiimide. The molecular size and zeta potential of the gelatin derivatives before and after complexation with the plasmid DNA were examined. After incubation with the complexes with or without US exposure, the DNA expression of rat gastric mucosal cells was measured to evaluate the effect of the type of gelatin derivatives on their gene expression. The cell uptake of the complexes, the cell viability, and the buffering effect of gelatin derivatives were examined. The apparent molecular size and zeta potential of gelatin derivatives became larger as their aminization extent increased although the Sm gelatin derivative of higher aminization showed a larger value than other corresponding derivatives. Irrespective of the type of gelatin derivatives, the apparent molecular size of plasmid DNA was reduced by increasing the gelatin-DNA mixing ratio to attain a saturated value of about 150 nm. The condensed gelatin-DNA complexes showed the zeta potential of 10-15 mV. The cells incubated with the complex exhibited significantly stronger luciferase activities than free plasmid DNA, and the activity was further enhanced by US irradiation. The enhancement was significant for the Sm derivative compared with the corresponding Ed and Sd derivatives. The amount of plasmid DNA internalized into the cells was significantly increased by the complexation with every gelatin derivative, whereas US irradiation did not significantly increase the DNA internalization. US irradiation had no effect on the viability of cells incubated with every gelatin derivative-plasmid DNA complex, although the viability was decreased by the complex incubation. The buffering capacity of Sm derivative

  18. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction.

    PubMed

    Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z

    2016-11-15

    Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Quaternary complexes composed of plasmid DNA/protamine/fish sperm DNA/stearic acid grafted chitosan oligosaccharide micelles for gene delivery.

    PubMed

    Du, Yong-Zhong; Lu, Ping; Yuan, Hong; Zhou, Jian-Ping; Hu, Fu-Qiang

    2011-01-01

    Quaternary complexes with condensed core of plasmid DNA, protamine, fish sperm DNA and shell of stearic acid grafted chitosan oligosaccharide (CSO-SA), were prepared. The CSO-SA could self-assemble to form nano-sized micelles in aqueous solution and demonstrated excellent internalization ability of tumor cells. Dynamic light scattering (DLS) measurement and transmission electrostatic microscope (TEM) images showed that quaternary complexes had spherical shape with about 25 nm number average diameter, and the size of quaternary complexes was smaller than that of CSO-SA micelles and CSO-SA micelles/plasmid DNA binary complexes. The transfection efficiencies of quaternary complexes on HEK293 and MCF-7 cells increased with incubation time, and were significantly higher than that of CSO-SA micelles/plasmid DNA binary complexes. The optimal transfection efficiency of quaternary complexes on HEK293 and MCF-7 cells measured by flow cytometer after 96 h was 23.82% and 41.43%, respectively. Whereas, the transfection efficiency of Lipofectamine™ 2000 on HEK293 and MCF-7 cells after 96 h was 32.45% and 33.23%, respectively. The data of luciferease activity measurement showed that the optimal ratio of plasmid DNA:fish sperm DNA:protamine:CSO-SA was 1:1:5:5. The results indicated that the present quaternary complexes were potential non-viral gene delivery system. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Cationic microparticle [poly(D,L-lactide-co-glycolide)]-coated DNA vaccination induces a long-term immune response against foot and mouth disease in guinea pigs.

    PubMed

    Reddy, Kotla S; Rashmi, Brabhi R; Dechamma, Hosur J; Gopalakrishna, Susarla; Banumathi, N; Suryanarayana, Veluvarthy V S; Reddy, Golla R

    2012-05-01

    Foot and mouth disease (FMD) can be controlled by regular vaccination and restriction of the movement of infected animals in the endemic countries. Although presently used, tissue culture inactivated vaccine gives protection, it has several limitations, including a short duration of immunity. DNA vaccine delivered through microparticles could comprise an alternative approach to conventional vaccine when aiming to circumvent these limitations. We constructed the expression plasmid (pVAC-1D) containing 1D gene FMD virus serotype Asia 1. Poly(D,L-lactide-co-glycolide) (PLG) microparticles were prepared and coated with the pVAC-1D plasmid. Guinea pigs were vaccinated with PLG-coated and naked DNA vaccine constructs intramuscularly. The humoral response was measured by an enzyme-linked immunosorbent assay (ELISA) and the serum neutralization test (SNT). Analysis of the persistence and the expression of pVAC-1D plasmid construct was carried out by quantitative polymerase chain reaction (qPCR). The humoral response lasted for 1 year, as measured by ELISA and SNT. Analysis of the persistence and the expression of pVAC-1D plasmid construct by qPCR has shown that pVAC-1D expression was seen for a longer duration compared to the naked DNA vaccine. Microparticles coated plasmid DNA-injected guinea pigs were protected when challenged with FMD virus. The present study has shown that the delivery of plasmid coated on cationic PLG microparticles enhance the duration of immunity of the DNA vaccine constructs. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Solid lipid nanoparticles mediate non-viral delivery of plasmid DNA to dendritic cells

    NASA Astrophysics Data System (ADS)

    Penumarthi, Alekhya; Parashar, Deepti; Abraham, Amanda N.; Dekiwadia, Chaitali; Macreadie, Ian; Shukla, Ravi; Smooker, Peter M.

    2017-06-01

    There is an increasing demand for novel DNA vaccine delivery systems, mainly for the non-viral type as they are considered relatively safe. Therefore, solid lipid nanoparticles (SLNs) were investigated for their suitability as a non-viral DNA vaccine delivery system. SLNs were synthesised by a modified solvent-emulsification method in order to study their potential to conjugate with plasmid DNA and deliver them in vitro to dendritic cells using eGFP as the reporter plasmid. The DNA-SLN complexes were characterised by electron microscopy, gel retardation assays and dynamic light scattering. The cytotoxicity assay data supported their biocompatibility and was used to estimate safe threshold concentration resulting in high transfection rate. The transfection efficiency of these complexes in a dendritic cell line was shown to increase significantly compared to plasmid alone, and was comparable to that mediated by lipofectamine. Transmission electron microscopy studies delineated the pathway of cellular uptake. Endosomal escape was observed supporting the mechanism of transfection.

  2. Identification and DNA annotation of a plasmid isolated from Chromobacterium violaceum.

    PubMed

    Lima, Daniel C; Nyberg, Lena K; Westerlund, Fredrik; Batistuzzo de Medeiros, Silvia R

    2018-03-28

    Chromobacterium violaceum is a ß-proteobacterium found widely worldwide with important biotechnological properties and is associated to lethal sepsis in immune-depressed individuals. In this work, we report the discover, complete sequence and annotation of a plasmid detected in C. violaceum that has been unnoticed until now. We used DNA single-molecule analysis to confirm that the episome found was a circular molecule and then proceeded with NGS sequencing. After DNA annotation, we found that this extra-chromosomal DNA is probably a defective bacteriophage of approximately 44 kilobases, with 39 ORFs comprising, mostly hypothetical proteins. We also found DNA sequences that ensure proper plasmid replication and partitioning as well as a toxin addiction system. This report sheds light on the biology of this important species, helping us to understand the mechanisms by which C. violaceum endures to several harsh conditions. This discovery could also be a first step in the development of a DNA manipulation tool in this bacterium.

  3. Plasmid DNA production combining antibiotic-free selection, inducible high yield fermentation, and novel autolytic purification.

    PubMed

    Carnes, Aaron E; Hodgson, Clague P; Luke, Jeremy M; Vincent, Justin M; Williams, James A

    2009-10-15

    DNA vaccines and gene medicines, derived from bacterial plasmids, are emerging as an important new class of pharmaceuticals. However, the challenges of performing cell lysis processes for plasmid DNA purification at an industrial scale are well known. To address downstream purification challenges, we have developed autolytic Escherichia coli host strains that express endolysin (phage lambdaR) in the cytoplasm. Expression of the endolysin is induced during fermentation by a heat inducible promoter. The endolysin remains in the cytoplasm, where it is separated from its peptidoglycan substrate in the cell wall; hence the cells remain alive and intact and can be harvested by the usual methods. The plasmid DNA is then recovered by autolytic extraction under slightly acidic, low salt buffer conditions and treatment with a low concentration of non-ionic detergent. Under these conditions the E. coli genomic DNA remains associated with the insoluble cell debris and is removed by a solid-liquid separation. Here, we report fermentation, lysis methods, and plasmid purification using autolytic hosts.

  4. Improvement of electroporation to deliver plasmid DNA into dental follicle cells

    PubMed Central

    Yao, Shaomian; Rana, Samir; Liu, Dawen; Wise, Gary E.

    2010-01-01

    Electroporation DNA transfer is a simple and versatile approach to deliver genes. To develop an optimal electroporation protocol to deliver DNA into cells, we conducted square wave electroporation experiments with using rat dental follicle cells as follows: 1) the cells were electroporated at different electric field strengths with lac Z plasmid; 2) plasmid concentrations were tested to determine the optimal doses; 3) various concentrations of bovine serum albumin or fetal bovine serum were added to the pulsing buffer; and, 4) the pulsing durations were studied to determine the optimal duration. These experiments indicated that the optimal electroporation electric field strength was 375 V/cm, and that plasmid concentrations greater than 0.18 μg/μl were required to achieve high transfection efficiency. BSA or FBS in the pulsing buffer significantly improved cell survival and increased the number of transfected cells. The optimal pulsing duration was in the range of 45 to 120 milliseconds (ms) at 375 V/cm. Thus, an improved electroporation protocol was established by optimizing the above parameters. In turn, this electroporation protocol can be used to deliver DNA into dental follicle cells to study the roles of candidate genes in regulating tooth eruption. PMID:19830717

  5. Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers

    NASA Astrophysics Data System (ADS)

    Dehshahri, Ali; Sadeghpour, Hossein; Kazemi Oskuee, Reza; Fadaei, Mahin; Sabahi, Zahra; Alhashemi, Samira Hossaini; Mohazabieh, Erfaneh

    2014-05-01

    In this study, l-thyroxine was covalently grafted on 25 kDa branched polyethylenimine (PEI), and the ability of the nano-sized polyplexes for transferring plasmid encoding interleukin-12 (IL-12) gene was evaluated. As there are several problems in systemic administration of recombinant IL-12 protein, local expression of the plasmid encoding IL-12 gene inside the tumor tissue has been considered as an effective alternative approach. The l-thyroxine-conjugated PEI polyplexes were prepared using pUMVC3-hIL12 plasmid, and their transfection activity was determined in HepG2 human liver carcinoma and Neuro2A neuroblastoma cell lines. The polyplexes characterized in terms of DNA condensation ability, particle size, zeta potential, and buffering capacity as well as cytotoxicity and resistance to enzyme digestion. The results revealed that l-thyroxine conjugation of PEI increased gene transfer ability by up to two fold relative to unmodified 25 kDa PEI, the gold standard for non-viral gene delivery, with the highest increase occurring at degrees of conjugation around 10 %. pDNA condensation tests and dynamic light scattering measurements exhibited the ability of PEI conjugates to optimally condense the plasmid DNA into polyplexes in the size range around 200 nm. The modified polymers showed remarkable buffering capacity and protection against enzymatic degradation comparable to that of unmodified PEI. These results suggest that l-thyroxine conjugation of PEI is a simple modification strategy for future investigations aimed at developing a targeting gene vehicle.

  6. Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids

    NASA Astrophysics Data System (ADS)

    Martins, W. A.; Polignano, G. A. C.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2015-04-01

    Dichromatic and consecutive laser radiations have attracted increased attention for clinical applications as offering new tools for the treatment of dysfunctional tissues in situations where monochromatic radiation is not effective. This work evaluated the survival, filamentation and morphology of Escherichia coli cells, and the induction of DNA lesions, in plasmid DNA exposed to low-intensity consecutive dichromatic laser radiation. Exponential and stationary wild type and formamidopyrimidine DNA glycosylase/MutM protein deficient E. coli cultures were exposed to consecutive low-intensity dichromatic laser radiation (infrared laser immediately after red laser) to study the survival, filamentation and morphology of bacterial cells. Plasmid DNA samples were exposed to dichromatic radiation to study DNA lesions by electrophoretic profile. Dichromatic laser radiation affects the survival, filamentation and morphology of E. coli cultures depending on the growth phase and the functional repair mechanism of oxidizing lesions in DNA, but does not induce single/double strands breaks or alkali-labile DNA lesions. Results show that low-intensity consecutive dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation, suggesting that other therapeutic effects could be obtained using dichromatic radiation.

  7. Evaluation of plasmid and genomic DNA calibrants used for the quantification of genetically modified organisms.

    PubMed

    Caprioara-Buda, M; Meyer, W; Jeynov, B; Corbisier, P; Trapmann, S; Emons, H

    2012-07-01

    The reliable quantification of genetically modified organisms (GMOs) by real-time PCR requires, besides thoroughly validated quantitative detection methods, sustainable calibration systems. The latter establishes the anchor points for the measured value and the measurement unit, respectively. In this paper, the suitability of two types of DNA calibrants, i.e. plasmid DNA and genomic DNA extracted from plant leaves, for the certification of the GMO content in reference materials as copy number ratio between two targeted DNA sequences was investigated. The PCR efficiencies and coefficients of determination of the calibration curves as well as the measured copy number ratios for three powder certified reference materials (CRMs), namely ERM-BF415e (NK603 maize), ERM-BF425c (356043 soya), and ERM-BF427c (98140 maize), originally certified for their mass fraction of GMO, were compared for both types of calibrants. In all three systems investigated, the PCR efficiencies of plasmid DNA were slightly closer to the PCR efficiencies observed for the genomic DNA extracted from seed powders rather than those of the genomic DNA extracted from leaves. Although the mean DNA copy number ratios for each CRM overlapped within their uncertainties, the DNA copy number ratios were significantly different using the two types of calibrants. Based on these observations, both plasmid and leaf genomic DNA calibrants would be technically suitable as anchor points for the calibration of the real-time PCR methods applied in this study. However, the most suitable approach to establish a sustainable traceability chain is to fix a reference system based on plasmid DNA.

  8. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    NASA Astrophysics Data System (ADS)

    Roos, C.; Santos, J. N.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2013-07-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm-2) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms.

  9. Transgene and immune gene expression following intramuscular injection of Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano- and microparticles.

    PubMed

    Hølvold, Linn Benjaminsen; Fredriksen, Børge N; Bøgwald, Jarl; Dalmo, Roy A

    2013-09-01

    The use of poly-(D,L-lactic-co-glycolic) acid (PLGA) particles as carriers for DNA delivery has received considerable attention in mammalian studies. DNA vaccination of fish has been shown to elicit durable transgene expression, but no reports exist on intramuscular administration of PLGA-encapsulated plasmid DNA (pDNA). We injected Atlantic salmon (Salmo salar L.) intramuscularly with a plasmid vector containing a luciferase (Photinus pyralis) reporter gene as a) naked pDNA, b) encapsulated into PLGA nano- (~320 nm) (NP) or microparticles (~4 μm) (MP), c) in an oil-based formulation, or with empty particles of both sizes. The ability of the different pDNA-treatments to induce transgene expression was analyzed through a 70-day experimental period. Anatomical distribution patterns and depot effects were determined by tracking isotope labeled pDNA. Muscle, head kidney and spleen from all treatment groups were analyzed for proinflammatory cytokines (TNF-α, IL-1β), antiviral genes (IFN-α, Mx) and cytotoxic T-cell markers (CD8, Eomes) at mRNA transcription levels at days 1, 2, 4 and 7. Histopathological examinations were performed on injection site samples from days 2, 7 and 30. Injection of either naked pDNA or the oil-formulation was superior to particle treatments for inducing transgene expression at early time-points. Empty particles of both sizes were able to induce proinflammatory immune responses as well as degenerative and inflammatory pathology at the injection site. Microparticles demonstrated injection site depots and an inflammatory pathology comparable to the oil-based formulation. In comparison, the distribution of NP-encapsulated pDNA resembled that of naked pDNA, although encapsulation into NPs significantly elevated the expression of antiviral genes in all tissues. Together the results indicate that while naked pDNA is most efficient for inducing transgene expression, the encapsulation of pDNA into NPs up-regulates antiviral responses that could be

  10. Genotoxic activity of 4,4',5'-trimethylazapsoralen on plasmid DNA.

    PubMed

    Lagatolla, C; Dolzani, L; Granzotto, M; Monti-Bragadin, C

    1998-01-01

    The genotoxic activities of 8-methoxypsoralen (8-MOP) and 4,4',5'-trimethylazapsoralen (4,4',5'-TMAP) on plasmid DNA have been compared. In a previous work, 4,4',5'-TMAP, a methyl derivative of a psoralen isoster, had shown potential photochemotherapeutic activity. The mutagenic activity of mono- and bifunctional lesions caused by these compounds was evaluated both after UVA irradiation, which causes the formation of both kinds of lesions, and after a two-step irradiation procedure of the psoralen-plasmid DNA complex, which allowed monoadducts and interstrand crosslinks to be studied separately. Furthermore, we used a procedure that allowed us to evaluate both the mutagenic and recombinogenic activity of the two compounds. Results indicate that the most important difference between 8-MOP and 4,4',5'-TMAP consists in their mode of photoreaction with DNA rather than in their mutagenic potential. In fact, in all of the experimental procedures, 4,4',5'-TMAP shows a lower ability than 8-MOP to generate interstrand crosslinks. However, when comparable toxicity levels are reached, the two compounds show the same mutagenic potentiality.

  11. DOTAP cationic liposomes prefer relaxed over supercoiled plasmids.

    PubMed

    Even-Chen, S; Barenholz, Y

    2000-12-20

    Cationic liposomes and DNA interact electrostatically to form complexes called lipoplexes. The amounts of unbound (free) DNA in a mixture of cationic liposomes and DNA at different cationic lipid:DNA molar ratios can be used to describe DNA binding isotherms; these provide a measure of the binding efficiency of DNA to different cationic lipid formulations at various medium conditions. In order to quantify the ratio between the various forms of naked DNA and supercoiled, relaxed and single-stranded DNA, and the ratio between cationic lipid bound and unbound DNA of various forms we developed a simple, sensitive quantitative assay using agarose gel electrophoresis, followed by staining with the fluorescent cyanine DNA dyes SYBR Green I or SYBR Gold. This assay was compared with that based on the use of ethidium bromide (the most commonly used nucleic acid stain). Unlike ethidium bromide, SYBR Green I DNA sensitivity and concentration-dependent fluorescence intensity were identical for supercoiled and nicked-relaxed forms. DNA detection by SYBR Green I in solution is approximately 40-fold more sensitive than by ethidium bromide for double-stranded DNA and approximately 10-fold for single-stranded DNA, and in agarose gel it is 16-fold more sensitive for double-stranded DNA compared with ethidium bromide. SYBR Gold performs similarly to SYBR Green I. This study shows that: (a) there is no significant difference in DNA binding isotherms to the monocationic DOTAP (DOTAP/DOPE) liposomes and to the polycationic DOSPA (DOSPA/DOPE) liposomes, even when four DOSPA positive charges are involved in the electrostatic interaction with DNA; (b) the helper lipids affect DNA binding, as DOTAP/DOPE liposomes bind more DNA than DOTAP/cholesterol; (c) in the process of lipoplex formation, when the DNA is a mixture of two forms, supercoiled and nicked-relaxed (open circular), there is a preference for the binding to the cationic liposomes of plasmid DNA in the nicked-relaxed over the

  12. An improved method for large-scale preparation of negatively and positively supercoiled plasmid DNA.

    PubMed

    Barth, Marita; Dederich, Debra; Dedon, Peter

    2009-07-01

    A rigorous understanding of the biological function of superhelical tension in cellular DNA requires the development of new tools and model systems for study. To this end, an ethidium bromide[#x02013]free method has been developed to prepare large quantities of either negatively or positively super-coiled plasmid DNA. The method is based upon the known effects of ionic strength on the direction of binding of DNA to an archaeal histone, rHMfB, with low and high salt concentrations leading to positive and negative DNA supercoiling, respectively. In addition to fully optimized conditions for large-scale (>500 microg) supercoiling reactions, the method is advantageous in that it avoids the use of mutagenic ethidium bromide, is applicable to chemically modified plasmid DNA substrates, and produces both positively and negatively supercoiled DNA using a single set of reagents.

  13. A plasmid-based lacZα gene assay for DNA polymerase fidelity measurement

    PubMed Central

    Keith, Brian J.; Jozwiakowski, Stanislaw K.; Connolly, Bernard A.

    2013-01-01

    A significantly improved DNA polymerase fidelity assay, based on a gapped plasmid containing the lacZα reporter gene in a single-stranded region, is described. Nicking at two sites flanking lacZα, and removing the excised strand by thermocycling in the presence of complementary competitor DNA, is used to generate the gap. Simple methods are presented for preparing the single-stranded competitor. The gapped plasmid can be purified, in high amounts and in a very pure state, using benzoylated–naphthoylated DEAE–cellulose, resulting in a low background mutation frequency (∼1 × 10−4). Two key parameters, the number of detectable sites and the expression frequency, necessary for measuring polymerase error rates have been determined. DNA polymerase fidelity is measured by gap filling in vitro, followed by transformation into Escherichia coli and scoring of blue/white colonies and converting the ratio to error rate. Several DNA polymerases have been used to fully validate this straightforward and highly sensitive system. PMID:23098700

  14. Instability of plasmid DNA sequences: macro and micro evolution of the antibiotic resistance plasmid R6-5.

    PubMed

    Timmis, K N; Cabello, F; Andrés, I; Nordheim, A; Burkhardt, H J; Cohen, S N

    1978-11-16

    Detailed examination of the structure of cloned DNA fragments of the R6-5 antibiotic resistance plasmid has revealed a substantial degree of polynucleotide sequence heterogeneity and indicates that sequence rearrangements in plasmids and possible other replicons occur more frequently than has hitherto been appreciated. The sequences changes in cloned R6-5 fragments were shown in some instances to have occurred prior to cloning, i.e. existing in the original population of R6-5 molecules that was obtained from a single bacterial clone and by several different criteria judged to be homogeneous, and in others to have occurred either during the cloning procedure or during subsequent propagation of hybrid molecules. The molecular changes that are described involved insertion/deletion of the previously characterized IS2 insertion element, formation of a new inverted repeat structure probably by duplication of a preexisting R6-5 DNA sequence, sequence inversion, and loss and gain of restriction endonuclease cleavage sites.

  15. The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Rebekah Potts; Habibi, Sohrab; Cheng, Yuan

    2010-11-15

    Bacteria expand their genetic diversity, spread antibiotic resistance genes, and obtain virulence factors through the highly coordinated process of conjugative plasmid transfer (CPT). A plasmid-encoded relaxase enzyme initiates and terminates CPT by nicking and religating the transferred plasmid in a sequence-specific manner. We solved the 2.3 {angstrom} crystal structure of the relaxase responsible for the spread of the resistance plasmid pCU1 and determined its DNA binding and nicking capabilities. The overall fold of the pCU1 relaxase is similar to that of the F plasmid and plasmid R388 relaxases. However, in the pCU1 structure, the conserved tyrosine residues (Y18,19,26,27) that aremore » required for DNA nicking and religation were displaced up to 14 {angstrom} out of the relaxase active site, revealing a high degree of mobility in this region of the enzyme. In spite of this flexibility, the tyrosines still cleaved the nic site of the plasmid's origin of transfer, and did so in a sequence-specific, metal-dependent manner. Unexpectedly, the pCU1 relaxase lacked the sequence-specific DNA binding previously reported for the homologous F and R388 relaxase enzymes, despite its high sequence and structural similarity with both proteins. In summary, our work outlines novel structural and functional aspects of the relaxase-mediated conjugative transfer of plasmid pCU1.« less

  16. [Effect of endonuclease G depletion on plasmid DNA uptake and levels of homologous recombination in hela cells].

    PubMed

    Misic, V; El-Mogy, M; Geng, S; Haj-Ahmad, Y

    2016-01-01

    Endonuclease G (EndoG) is a mitochondrial apoptosis regulator that also has roles outside of programmed cell death. It has been implicated as a defence DNase involved in the degradation of exogenous DNA after transfection of mammalian cells and in homologous recombination of viral and endogenous DNA. In this study, we looked at the effect of EndoG depletion on plasmid DNA uptake and the levels of homologous recombination in HeLa cells. We show that the proposed defence role of EndoG against uptake of non-viral DNA vectors does not extend to the cervical carcinoma HeLa cells, as targeting of EndoG expression by RNA interference failed to increase intracellular plasmid DNA levels. However, reducing EndoG levels in HeLa cells resulted in a statistically significant reduction of homologous recombination between two plasmid DNA substrates. These findings suggest that non-viral DNA vectors are also substrates for EndoG in its role in homologous recombination.

  17. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.

    PubMed

    Upadhya, Archana; Sangave, Preeti C

    2016-10-01

    Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa-arginine (R 8 ) and CHK 6 HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep-3, flanked with CH 3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide-plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non-covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide-plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  18. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficientmore » in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.« less

  19. Synthesis and characterization of azo-guanidine based alcoholic media naked eye DNA sensor

    PubMed Central

    Hashmat, Uzma; Yousaf, Muhammad; Lal, Bhajan; Ullah, Shafiq; Holder, Alvin A.; Badshah, Amin

    2016-01-01

    DNA sensing always has an open meadow of curiosity for biotechnologists and other researchers. Recently, in this field, we have introduced an emerging class of molecules containing azo and guanidine functionalities. In this study, we have synthesized three new compounds (UA1, UA6 and UA7) for potential application in DNA sensing in alcoholic medium. The synthesized materials were characterized by elemental analysis, FTIR, UV-visible, 1H NMR and 13C NMR spectroscopies. Their DNA sensing potential were investigated by UV-visible spectroscopy. The insight of interaction with DNA was further investigated by electrochemical (cyclic voltammetry) and hydrodynamic (viscosity) studies. The results showed that compounds have moderate DNA binding properties, with the binding constants range being 7.2 × 103, 2.4 × 103 and 0.2 × 103 M−1, for UA1, UA6 and UA7, respectively. Upon binding with DNA, there was a change in colour (a blue shift in the λmax value) which was observable with a naked eye. These results indicated the potential of synthesized compounds as DNA sensors with detection limit 1.8, 5.8 and 4.0 ng µl−1 for UA1, UA6 and UA7, respectively. PMID:28018613

  20. Plasmid-linked ampicillin resistance in haempohilus influenza type b.

    PubMed

    Elwell, L P; De Graaff, J; Seibert, D; Falkow, S

    1975-08-01

    Four ampicillin-resistant, beta-lactamase-producing strains of Haempohilus influenzae type b were examined for the presence of plasmid deoxyribonucleic acid (DNA). Three resistant strains contained a 30 x 10-6-dalton (30Mdal) plasmid and one resitant strain contained a 3-Mdal plasmid. The ampicillin-sensitive Haemophilus strains examined did not contain plasmid DNA. Transformation of a sensitive H. influenzae strain to ampicillin resistance with isolated plasmid DNA preparations revealed that the structural gene for beta-lactamase resided on both plasmid species. DNA-DNA hybridization studies showed that the 30-Mdal Haemophilus plasmid contained the ampicillin translocation DNA segment (TnA) found on some R-factors of enteric origin of the H. influenzae plasmids.

  1. In vitro excision of adeno-associated virus DNA from recombinant plasmids: Isolation of an enzyme fraction from HeLa cells that cleaves DNA at poly(G) sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottlieb, J.; Muzyczka, N.

    1988-06-01

    When circular recombinant plasmids containing adeno-associated virus (AAV) DNA sequences are transfected into human cells, the AAV provirus is rescued. Using these circular AAV plasmids as substrates, the authors isolated an enzyme fraction from HeLa cell nuclear extracts that excises intact AAV DNA in vitro from vector DNA and produces linear DNA products. The recognition signal for the enzyme is a polypurine-polypyrimidine sequence which is at least 9 residues long and rich in G . C base pairs. Such sequences are present in AAV recombinant plasmids as part of the first 15 base pairs of the AAV terminal repeat andmore » in some cases as the result of cloning the AAV genome by G . C tailing. The isolated enzyme fraction does not have significant endonucleolytic activity on single-stranded or double-stranded DNA. Plasmid DNA that is transfected into tissue culture cells is cleaved in vivo to produce a pattern of DNA fragments similar to that seen with purified enzyme in vitro. The activity has been called endo R for rescue, and its behavior suggests that it may have a role in recombination of cellular chromosomes.« less

  2. Formation of AAV Single Stranded DNA Genome from a Circular Plasmid in Saccharomyces cerevisiae

    PubMed Central

    Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro

    2011-01-01

    Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3+ clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway. PMID:21853137

  3. Formation of AAV single stranded DNA genome from a circular plasmid in Saccharomyces cerevisiae.

    PubMed

    Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro

    2011-01-01

    Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3(+) clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway.

  4. Process optimisation for anion exchange monolithic chromatography of 4.2kbp plasmid vaccine (pcDNA3F).

    PubMed

    Ongkudon, Clarence M; Danquah, Michael K

    2010-10-15

    Anion exchange monolithic chromatography is increasingly becoming a prominent tool for plasmid DNA purification but no generic protocol is available to purify all types of plasmid DNA. In this work, we established a simple framework and used it to specifically purify a plasmid DNA model from a clarified alkaline-lysed plasmid-containing cell lysate. The framework involved optimising ligand functionalisation temperature (30-80°C), mobile phase flow rate (0.1-1.8mL/min), monolith pore size (done by changing the porogen content in the polymerisation reaction by 50-80%), buffer pH (6-10), ionic strength of binding buffer (0.3-0.7M) and buffer gradient elution slope (1-10% buffer B/min). We concluded that preferential pcDNA3F adsorption and optimum resolution could be achieved within the tested conditions by loading the clarified cell lysate into 400nm pore size of monolith in 0.7M NaCl (pH 6) of binding buffer followed by increasing the NaCl concentration to 1.0M at 3%B/min. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Strategies and hurdles using DNA vaccines to fish

    PubMed Central

    2014-01-01

    DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen – and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish. PMID:24552235

  6. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1991-03-26

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 figure.

  7. Correction of the lack of commutability between plasmid DNA and genomic DNA for quantification of genetically modified organisms using pBSTopas as a model.

    PubMed

    Zhang, Li; Wu, Yuhua; Wu, Gang; Cao, Yinglong; Lu, Changming

    2014-10-01

    Plasmid calibrators are increasingly applied for polymerase chain reaction (PCR) analysis of genetically modified organisms (GMOs). To evaluate the commutability between plasmid DNA (pDNA) and genomic DNA (gDNA) as calibrators, a plasmid molecule, pBSTopas, was constructed, harboring a Topas 19/2 event-specific sequence and a partial sequence of the rapeseed reference gene CruA. Assays of the pDNA showed similar limits of detection (five copies for Topas 19/2 and CruA) and quantification (40 copies for Topas 19/2 and 20 for CruA) as those for the gDNA. Comparisons of plasmid and genomic standard curves indicated that the slopes, intercepts, and PCR efficiency for pBSTopas were significantly different from CRM Topas 19/2 gDNA for quantitative analysis of GMOs. Three correction methods were used to calibrate the quantitative analysis of control samples using pDNA as calibrators: model a, or coefficient value a (Cva); model b, or coefficient value b (Cvb); and the novel model c or coefficient formula (Cf). Cva and Cvb gave similar estimated values for the control samples, and the quantitative bias of the low concentration sample exceeded the acceptable range within ±25% in two of the four repeats. Using Cfs to normalize the Ct values of test samples, the estimated values were very close to the reference values (bias -13.27 to 13.05%). In the validation of control samples, model c was more appropriate than Cva or Cvb. The application of Cf allowed pBSTopas to substitute for Topas 19/2 gDNA as a calibrator to accurately quantify the GMO.

  8. Deletion of the Clostridium thermocellum recA gene reveals that it is required for thermophilic plasmid replication but not plasmid integration at homologous DNA sequences.

    PubMed

    Groom, Joseph; Chung, Daehwan; Kim, Sun-Ki; Guss, Adam; Westpheling, Janet

    2018-05-28

    A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (≥ 60 °C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a result also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ∆recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.

  9. Deletion of the Clostridium thermocellum recA Gene Reveals that it is Required for Thermophilic Plasmid Replication but not Plasmid Integration at Homologous DNA Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Daehwan; Groom, Joseph; Kim, Sun-Ki

    A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (>/= 60 degrees C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a resultmore » also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ..delta..recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.« less

  10. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    PubMed

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. DNA fusion product of phage P2 with plasmid pBR322 - A new phasmid

    NASA Technical Reports Server (NTRS)

    Nicoletti, M.; Bertani, G.

    1983-01-01

    The chromosome of the temperate bacteriophage P2 and that of the plasmid pBR322 have been joined in vitro after treatment with restriction endonuclease EcoRI. The fusion product - a phasmid - can behave as a plasmid, as a phage and as a prophage. It can replicate its DNA under the control of either the specific replication mechanism of the parent phage in a polA mutant or that of the parent plasmid in a rep mutant. Several interesting interactions between the two replication modes are indicated. In particular, phage particles may be produced even when the phage mode of DNA replication is blocked, and this throws new light on the involvement of the early gene A in the regulation of late gene expression in phage P2.

  12. The construction and partial characterization of plasmids containing complementary DNA sequences to human calcitonin precursor polyprotein.

    PubMed Central

    Allison, J; Hall, L; MacIntyre, I; Craig, R K

    1981-01-01

    (1) Total poly(A)-containing RNA isolated from human thyroid medullary carcinoma tissue was shown to direct the synthesis in the wheat germ cell-free system of a major (Mr 21000) and several minor forms of human calcitonin precursor polyproteins. Evidence for processing of these precursor(s) by the wheat germ cell-free system is also presented. (2) A small complementary DNA (cDNA) plasmid library has been constructed in the PstI site of the plasmid pAT153, using total human thyroid medullary carcinoma poly(A)-containing RNA as the starting material. (3) Plasmids containing abundant cDNA sequences were selected by hybridization in situ, and two of these (ph T-B3 and phT-B6) were characterized by hybridization--translation and restriction analysis. Each was shown to contain human calcitonin precursor polyprotein cDNA sequences. (4) RNA blotting techniques demonstrate that the human calcitonin precursor polyprotein is encoded within a mRNA containing 1000 bases. (5) The results demonstrate that human calcitonin is synthesized as a precursor polyprotein. Images Fig. 1. Fig. 2. Fig. 3. PMID:6896146

  13. Transformation of Saccharomyces cerevisiae with linear DNA killer plasmids from Kluyveromyces lactis.

    PubMed Central

    Gunge, N; Murata, K; Sakaguchi, K

    1982-01-01

    Protoplasts of Saccharomyces cerevisiae were mixed with linear DNA plasmids, pGKl1 and pGKl2, isolated from a Kluyveromyces lactis killer strain and treated with polyethylene glycol. Out of 2,000 colonies regenerated on a nonselective medium, two killer transformants were obtained. The pGKl plasmids and the killer character were stably maintained in one (Pdh-1) of them. Another transformant, Pdl-1, was a weak killer, and the subclones consisted of a mixture of weak and nonkiller cells. The weak killers were characterized by the presence of pGKl1 in a decreased amount, and nonkillers were characterized by the absence of pGKl1. The occurrence of two new plasmids which migrated faster than pGKl1 in an agarose gel was observed in Pdl-1 and its subclones, whether weak or nonkillers. Staining with 4',6-diamidino-2-phenylindole revealed that the pGKl plasmids exist in the cytosol of transformant cells with numerous copy numbers. Images PMID:7045080

  14. Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification

    PubMed Central

    Dean, Frank B.; Nelson, John R.; Giesler, Theresa L.; Lasken, Roger S.

    2001-01-01

    We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and φ29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified products can also be used for in vitro cloning, library construction, and other molecular biology applications. PMID:11381035

  15. Iron(II) supramolecular helicates condense plasmid DNA and inhibit vital DNA-related enzymatic activities.

    PubMed

    Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor

    2015-07-27

    The dinuclear iron(II) supramolecular helicates [Fe2 L3 ]Cl4 (L=C25 H20 N4 ) bind to DNA through noncovalent (i.e., hydrogen-bonding, electrostatic) interactions and exhibit antimicrobial and anticancer effects. In this study, we show that the helicates condense plasmid DNA with a much higher potency than conventional DNA-condensing agents. Notably, molecules of DNA in the presence of the M enantiomer of [Fe2 L3 ]Cl4 do not form intermolecular aggregates typically formed by other condensing agents, such as spermidine or spermine. The helicates inhibit the activity of several DNA-processing enzymes, such as RNA polymerase, DNA topoisomerase I, deoxyribonuclease I, and site-specific restriction endonucleases. However, the results also indicate that the DNA condensation induced by the helicates does not play a crucial role in these inhibition reactions. The mechanisms for the inhibitory effects of [Fe2 L3 ]Cl4 helicates on DNA-related enzymatic activities have been proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Infrared laser effects at fluences used for treatment of dentin hypersensitivity on DNA repair in Escherichia coli and plasmids

    NASA Astrophysics Data System (ADS)

    Rocha Teixeira, Gleica; da Silva Marciano, Roberta; da Silva Sergio, Luiz Philippe; Castanheira Polignano, Giovanni Augusto; Roberto Guimarães, Oscar; Geller, Mauro; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2014-12-01

    Low-intensity infrared lasers are proposed in clinical protocols based on biostimulative effects, yet dosimetry is inaccurate and their effects on DNA at therapeutic doses are controversial. The aim of this work was to evaluate the effects of low-intensity infrared laser on survival and induction of filamentation of Escherichia coli cells, and induction of DNA lesions in bacterial plasmids. E. coli cultures were exposed to laser (808 nm, 100 mW, 40 and 60 J/cm2) to study bacterial survival and filamentation. Also, bacterial plasmids were exposed to laser to study DNA lesions by electrophoretic profile and action of DNA repair enzymes. Data indicate low-intensity infrared laser has no effect on survival of E. coli wild type and exonuclease III, but decreases the survival of formamidopyrimidine DNA glycosylase/MutM protein and endonuclease III deficient cells in stationary growth phase, induces bacterial filamentation, does not alter the electrophoretic profile of plasmids in agarose gels and does not alter the electrophoretic profile of plasmids incubated with endonuclease III, formamidopyrimidine DNA glycosylase/MutM protein and exonuclease III. Our findings show that low-intensity laser exposure causes DNA lesions at sub-lethal level and induces cellular mechanisms involved in repair of oxidative lesions in DNA. Studies about laser dosimetry and safety strategies are necessary for professionals and patients exposed to low-intensity lasers at therapeutic doses.

  17. Fast kinetic studies of plasmid DNA transfer in intact yeast cells mediated by electropulsation.

    PubMed

    Ganeva, V; Galutzov, B; Teissie, J

    1995-09-25

    Intact yeast cell Electrotransformation process was investigated. It is a two step process. The plasmid must be pre-mixed and present in contact with the cells during the pulse. During the millisecond field pulse, plasmid DNA is associated to the envelope. It therefore crosses the membrane by a process which lasts several seconds as shown by its sensitivity to a post pulse addition of DNase. Electrotransformation is not supported by an electrophoretic transfer due to the external field nor by a free diffusion across the electropermeabilized envelope. DNA is first bound during the field pulse and then is transferred by a still unknown active process due to cell metabolism.

  18. A comparison of plasmid DNA delivery efficiency and cytotoxicity of two cationic diblock polyoxazoline copolymers

    NASA Astrophysics Data System (ADS)

    Lehner, Roman; Liu, Kegang; Wang, Xueya; Wolf, Marc; Hunziker, Patrick

    2017-04-01

    Cationic polymers as non-viral gene delivery carriers are widely used because of their strong condensing properties and long-term safety, but acute cytotoxicity is a persistent challenge. In this study, two types of polyplexes were prepared by co-formulating plasmid DNA and two cationic diblock copolymers PABOXA5-b-PMOXA33-PA (primary amine) and PABOXA5-b-PMOXA33-TA (tertiary amine) to check their transfection efficacies in HeLa cells and HEK293T cells, respectively. The plasmid DNA/PABOXA5-b-PMOXA33-PA polyplex showed higher transfection efficacy compared to the plasmid DNA/PABOXA5-b-PMOXA33-TA polyplex under an N/P ratio of 40. Both polymers exhibited low toxicity, attributed to the shielding effect of a hydrophilic, noncharged block. Mechanistic insight into differential transfection efficiencies of the polymers were gained by visualization and comparison of the condensates via transmission electron and atomic force microscopy. The results provide information suited for further structure optimization of polymers that are aimed for targeted gene delivery.

  19. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1987-08-28

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of /und Streptococcus/ /und pneumoniae/. Plasmid pSM22, the vector containing the pneumococcal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 fig., 1 tab.

  20. Proposal for a better integration of bacterial lysis into the production of plasmid DNA at large scale.

    PubMed

    O'Mahony, Kevin; Freitag, Ruth; Hilbrig, Frank; Müller, Patrick; Schumacher, Ivo

    2005-09-23

    The paper addresses the question of how to achieve bacterial lysis in large-scale plasmid DNA production processes, where conventional alkaline lysis may become awkward to handle. Bacteria were grown in shaker flasks and a bioreactor. Suboptimal growth conditions were found advantageous for stable plasmid production at high copy numbers (up to 25mg/L could be achieved). Cells were harvested by filtration in the presence of a filter aid. A linear relationship between the biomass and the optimal filter aid concentration in terms of back pressure could be established. Bacteria-containing filter cakes were washed with isotonic buffer and lysis was achieved in situ by a two-step protocol calling for fragilisation of the cells followed by heat lysis in a suitable buffer. RNA and other soluble cell components where washed out of the cake during this step, while the plasmid DNA was retained. Afterwards a clear lysate containing relatively pure plasmid DNA could be eluted from the cake mostly as the desired supercoiled topoisomer, while cell debris and genomic DNA were retained. Lysis is, thus, integrated not only with cell capture but also with a significant degree of isolation/purification, as most impurities were considerably reduced during the procedure.

  1. Explanatory chapter: how plasmid preparation kits work.

    PubMed

    Koontz, Laura

    2013-01-01

    To isolate plasmid DNA from bacteria using a commercial plasmid miniprep kit (if interested, compare this protocol with Isolation of plasmid DNA from bacteria). Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Properties of an unusual DNA primase from an archaeal plasmid

    PubMed Central

    Beck, Kirsten; Lipps, Georg

    2007-01-01

    Primases are specialized DNA-dependent RNA polymerases that synthesize a short oligoribonucleotide complementary to single-stranded template DNA. In the context of cellular DNA replication, primases are indispensable since DNA polymerases are not able to start DNA polymerization de novo. The primase activity of the replication protein from the archaeal plasmid pRN1 synthesizes a rather unusual mixed primer consisting of a single ribonucleotide at the 5′ end followed by seven deoxynucleotides. Ribonucleotides and deoxynucleotides are strictly required at the respective positions within the primer. Furthermore, in contrast to other archaeo-eukaryotic primases, the primase activity is highly sequence-specific and requires the trinucleotide motif GTG in the template. Primer synthesis starts outside of the recognition motif, immediately 5′ to the recognition motif. The fidelity of the primase synthesis is high, as non-complementary bases are not incorporated into the primer. PMID:17709343

  3. Fabrication of Size-Tunable Metallic Nanoparticles Using Plasmid DNA as a Biomolecular Reactor

    PubMed Central

    Samson, Jacopo; Piscopo, Irene; Yampolski, Alex; Nahirney, Patrick; Parpas, Andrea; Aggarwal, Amit; Saleh, Raihan; Drain, Charles Michael

    2011-01-01

    Plasmid DNA can be used as a template to yield gold, palladium, silver, and chromium nanoparticles of different sizes based on variations in incubation time at 70 °C with gold phosphine complexes, with the acetates of silver or palladium, or chromium acetylacetonate. The employment of mild synthetic conditions, minimal procedural steps, and aqueous solvents makes this method environmentally greener and ensures general feasibility. The use of plasmids exploits the capabilities of the biotechnology industry as a source of nanoreactor materials. PMID:28348280

  4. A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles.

    PubMed

    Cai, Xue; Nash, Zack; Conley, Shannon M; Fliesler, Steven J; Cooper, Mark J; Naash, Muna I

    2009-01-01

    Previously we have shown that compacted DNA nanoparticles can drive high levels of transgene expression after subretinal injection in the mouse eye. Here we delivered compacted DNA nanoparticles containing a therapeutic gene to the retinas of a mouse model of retinitis pigmentosa. Nanoparticles containing the wild-type retinal degeneration slow (Rds) gene were injected into the subretinal space of rds(+/-) mice on postnatal day 5. Gene expression was sustained for up to four months at levels up to four times higher than in controls injected with saline or naked DNA. The nanoparticles were taken up into virtually all photoreceptors and mediated significant structural and biochemical rescue of the disease without histological or functional evidence of toxicity. Electroretinogram recordings showed that nanoparticle-mediated gene transfer restored cone function to a near-normal level in contrast to transfer of naked plasmid DNA. Rod function was also improved. These findings demonstrate that compacted DNA nanoparticles represent a viable option for development of gene-based interventions for ocular diseases and obviate major barriers commonly encountered with non-viral based therapies.

  5. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    NASA Technical Reports Server (NTRS)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  6. Adsorption of plasmid DNA on anion exchange chromatography media.

    PubMed

    Tarmann, Christina; Jungbauer, Alois

    2008-08-01

    Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.

  7. Genetic alteration of Mycobacterium smegmatis to improve mycobacterium-mediated transfer of plasmid DNA into mammalian cells and DNA immunization.

    PubMed

    Mo, Yongkai; Quanquin, Natalie M; Vecino, William H; Ranganathan, Uma Devi; Tesfa, Lydia; Bourn, William; Derbyshire, Keith M; Letvin, Norman L; Jacobs, William R; Fennelly, Glenn J

    2007-10-01

    Mycobacteria target and persist within phagocytic monocytes and are strong adjuvants, making them attractive candidate vectors for DNA vaccines. We characterized the ability of mycobacteria to deliver transgenes to mammalian cells and the effects of various bacterial chromosomal mutations on the efficiency of transfer in vivo and in vitro. First, we observed green fluorescent protein expression via microscopy and fluorescence-activated cell sorting analysis after infection of phagocytic and nonphagocytic cell lines by Mycobacterium smegmatis or M. bovis BCG harboring a plasmid encoding the fluorescence gene under the control of a eukaryotic promoter. Next, we compared the efficiencies of gene transfer using M. smegmatis or BCG containing chromosomal insertions or deletions that cause early lysis, hyperconjugation, or an increased plasmid copy number. We observed a significant-albeit only 1.7-fold-increase in the level of plasmid transfer to eukaryotic cells infected with M. smegmatis hyperconjugation mutants. M. smegmatis strains that overexpressed replication proteins (Rep) of pAL5000, a plasmid whose replicon is incorporated in many mycobacterial constructs, generated a 10-fold increase in plasmid copy number and 3.5-fold and 3-fold increases in gene transfer efficiency to HeLa cells and J774 cells, respectively. Although BCG strains overexpressing Rep could not be recovered, BCG harboring a plasmid with a copy-up mutation in oriM resulted in a threefold increase in gene transfer to J774 cells. Moreover, M. smegmatis strains overexpressing Rep enhanced gene transfer in vivo compared with a wild-type control. Immunization of mice with mycobacteria harboring a plasmid (pgp120(h)(E)) encoding human immunodeficiency virus gp120 elicited gp120-specific CD8 T-cell responses among splenocytes and peripheral blood mononuclear cells that were up to twofold (P < 0.05) and threefold (P < 0.001) higher, respectively, in strains supporting higher copy numbers. The magnitude

  8. Phylogenetic analysis of DNA and RNA polymerases from a Moniliophthora perniciosa mitochondrial plasmid reveals probable lateral gene transfer.

    PubMed

    Andrade, B S; Góes-Neto, A

    2015-10-30

    The filamentous fungus Moniliophthora perniciosa is a hemibiotrophic basidiomycete that causes witches' broom disease of cacao (Theobroma cacao L.). Many fungal mitochondrial plasmids are DNA and RNA polymerase-encoding invertrons with terminal inverted repeats and 5'-linked proteins. The aim of this study was to carry out comparative and phylogenetic analyses of DNA and RNA polymerases for all known linear mitochondrial plasmids in fungi. We performed these analyses at both gene and protein levels and assessed differences between fungal and viral polymerases in order to test the lateral gene transfer (LGT) hypothesis. We analyzed all mitochondrial plasmids of the invertron type within the fungal clade, including five from Ascomycota, seven from Basidiomycota, and one from Chytridiomycota. All phylogenetic analyses generated similar tree topologies regardless of the methods and datasets used. It is likely that DNA and RNA polymerase genes were inserted into the mitochondrial genomes of the 13 fungal species examined in our study as a result of different LGT events. These findings are important for a better understanding of the evolutionary relationships between fungal mitochondrial plasmids.

  9. Spiroplasma species share common DNA sequences among their viruses, plasmids and genomes.

    PubMed

    Ranhand, J M; Nur, I; Rose, D L; Tully, J G

    1987-01-01

    Alkaline-Southern-blot analyses showed that a spiroplasma plasmid, pRA1, obtained from Spiroplasma citri (Maroc-R8A2), contained DNA sequences that were homologous to spiroplasma type 3 viruses (SV3) obtained from S. citri (Maroc-R8A2), S. citri (608) and S. mirum (SMCA). In addition, pRA1 and SV3(608) DNA shared common, but not necessarily related, sequences with extrachromosomal DNA derived from 11 Spiroplasma species or strains. Furthermore, SV3(608) had DNA homology with the chromosome from 6 distinct spiroplasmas but not with chromosomal DNA from eight other Spiroplasma species or strains. The biological function of these common sequences is unknown.

  10. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    NASA Astrophysics Data System (ADS)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad

    2016-05-01

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and 1H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol40 %) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  11. Construction of Biologically Functional Bacterial Plasmids In Vitro

    PubMed Central

    Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Helling, Robert B.

    1973-01-01

    The construction of new plasmid DNA species by in vitro joining of restriction endonuclease-generated fragments of separate plasmids is described. Newly constructed plasmids that are inserted into Escherichia coli by transformation are shown to be biologically functional replicons that possess genetic properties and nucleotide base sequences from both of the parent DNA molecules. Functional plasmids can be obtained by reassociation of endonuclease-generated fragments of larger replicons, as well as by joining of plasmid DNA molecules of entirely different origins. Images PMID:4594039

  12. Use of Ti plasmid DNA probes for determining tumorigenicity of agrobacterium strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, T.J.; Norelli, J.L.; Katz, B.H.

    1990-06-01

    Probes consisting of T-DNA genes from the Ti plasmid of Agrobacterium tumefaciens were used for determining tumorigenicity of strains. Two {sup 32}P-labeled probes hybridized with 28 of 28 tumorigenic strains of the pathogen but not with 20 of 22 nontumorigenic strains. One probe, pTHE17, consists of all but the far left portion of the T-DNA of strain C58. Probe SmaI7 consists of SmaI fragment 7 of pTiC58, including onc genes 1, 4, and 6a and most of 2. Another probe, pAL4044, consisting of the vir region of strain Ach-5, hybridized with several nontumorigenic as well as tumorigenic strains. Colony hybridizationsmore » were done with 28 tumorigenic and 22 nontumorigenic Agrobacterium strains. About 10{sup 6} CFU of the different tumorigenic strains were detectable with this method. Southern analyses confirmed the presence or absence of Ti plasmids in strains for which tumorigenicity was questioned. Colony hybridization with the T-DNA probes provides a rapid and sensitive means for determining the tumorigenic nature of Agrobacterium strains.« less

  13. “Direct cloning in Lactobacillus plantarum: Electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete”

    PubMed Central

    2012-01-01

    Background Lactic acid bacteria (LAB) play an important role in agricultural as well as industrial biotechnology. Development of improved LAB strains using e.g. library approaches is often limited by low transformation efficiencies wherefore one reason could be differences in the DNA methylation patterns between the Escherichia coli intermediate host for plasmid amplification and the final LAB host. In the present study, we examined the influence of DNA methylation on transformation efficiency in LAB and developed a direct cloning approach for Lactobacillus plantarum CD033. Therefore, we propagated plasmid pCD256 in E. coli strains with different dam/dcm-methylation properties. The obtained plasmid DNA was purified and transformed into three different L. plantarum strains and a selection of other LAB species. Results Best transformation efficiencies were obtained using the strain L. plantarum CD033 and non-methylated plasmid DNA. Thereby we achieved transformation efficiencies of ~ 109 colony forming units/μg DNA in L. plantarum CD033 which is in the range of transformation efficiencies reached with E. coli. Based on these results, we directly transformed recombinant expression vectors received from PCR/ligation reactions into L. plantarum CD033, omitting plasmid amplification in E. coli. Also this approach was successful and yielded a sufficient number of recombinant clones. Conclusions Transformation efficiency of L. plantarum CD033 was drastically increased when non-methylated plasmid DNA was used, providing the possibility to generate expression libraries in this organism. A direct cloning approach, whereby ligated PCR-products where successfully transformed directly into L. plantarum CD033, obviates the construction of shuttle vectors containing E. coli-specific sequences, as e.g. a ColEI origin of replication, and makes amplification of these vectors in E. coli obsolete. Thus, plasmid constructs become much smaller and occasional structural instability or

  14. Study of the Efficiency of the Hydroporation for Delivery of Plasmid DNA to the Cells on the Model of Toxic Neuropathy.

    PubMed

    Yudin, M A; Bykov, V N; Nikiforov, A S; Al-Shekhadat, R I; Ivanov, I M; Ustinova, T M

    2018-04-01

    We compared the efficiency of delivery of plasmid DNA (active ingredient concentration 1 mg/kg) that provides production of nerve growth factor (NGF) after intravenous administration to rats and after administration by hydroporation. The method of hydroporation ensured plasmid penetration into the liver tissue and lengthened the time of its detection in the organ. DNA concentration in 1 h after its introduction by hydroporation or intravenous route was 0.7 and 0.05 ng/mg tissue, respectively. The use of this transfection method ensured preservation of NGF DNA in the liver tissue at a level of 0.24 ng/mg of tissue 1 day after administration of the plasmid construct, while after intravenous administration, expression of the analyzed DNA was not detected in blood and liver samples. After hydroporation, the maximum of relative normalized expression of cDNA (270 rel. units) was observed after 4 h, and after 1 day, this parameter decreased to 35 rel. units. Introduction of plasmid DNA of NGF by hydroporation prevented the development of disorders of neuromuscular conduction in a rats model of toxic neuropathy induced by subacute administration of malathion in a dose of 0.5 LD 50 .

  15. Adenosine monophosphate affects competence development and plasmid DNA transformation in Escherichia coli.

    PubMed

    Zhang, Yan; Li, Wenhua; Wang, Liming; Shen, Ping; Xie, Zhixiong

    2013-11-01

    Artificial plasmid DNA transformation of Escherichia coli induced by calcium chloride is a routine technique in molecular biology and genetic engineering processes, but its mechanism has remained elusive. Because adenosine monophosphate (AMP) has been found to regulate natural transformation in Haemophilus influenza, we aimed to investigate the effects of AMP and its derivatives on E. coli transformation by treating competence with different concentrations of them. Analysis of the transformation efficiencies revealed that AMP inhibited the artificial plasmid DNA transformation of E. coli in a concentration- and time-dependent manner. Furthermore, we found that AMP had no effect on the expression of the transformed gene but that the intracellular AMP level of the competent cells rose after a 6 h treatment. These results suggested that the intracellular AMP level had an important role in E. coli transformation. And these have useful implications for the further investigation of the mechanism of E. coli transformation.

  16. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography.

    PubMed

    Hilbrig, Frank; Freitag, Ruth

    2012-01-01

    Hydroxyapatite and related stationary phases increasingly play a role in the downstream processing of high-value biological materials, such as recombinant proteins, therapeutic antibodies and pharmaceutical-grade plasmid DNA. Chromatographic hydroxyapatite is an inorganic, ceramic material identical in composition, if not in structure, to calcium phosphate found in human bones and teeth. The interaction of hydroxyapatite with biomacromolecules is complex and highly dynamic, which can make predicting performance difficult, but also allows the design of very selective isolation processes. This review discusses the currently commercially available chromatographic materials, different retention mechanisms supported by these materials and differential exploitation for the design of highly specific isolation procedures. The state of the art of antibody purification by hydroxy- and fluoroapatite is reviewed together with tested routines for method development and implementation. Finally, the isolation of plasmid DNA is discussed, since the purification of DNA therapeutics at a sufficiently large scale is an emerging need in bioprocess development and perhaps the area in bioseparation where apatite chromatography can make its most important contribution to date. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Staphylococcus aureus pSK41 plasmid-encoded ArtA protein is a master regulator of plasmid transmission genes and contains a RHH motif used in alternate DNA-binding modes.

    PubMed

    Ni, Lisheng; Jensen, Slade O; Ky Tonthat, Nam; Berg, Tracey; Kwong, Stephen M; Guan, Fiona H X; Brown, Melissa H; Skurray, Ronald A; Firth, Neville; Schumacher, Maria A

    2009-11-01

    Plasmids harbored by Staphylococcus aureus are a major contributor to the spread of bacterial multi-drug resistance. Plasmid conjugation and partition are critical to the dissemination and inheritance of such plasmids. Here, we demonstrate that the ArtA protein encoded by the S. aureus multi-resistance plasmid pSK41 is a global transcriptional regulator of pSK41 genes, including those involved in conjugation and segregation. ArtA shows no sequence homology to any structurally characterized DNA-binding protein. To elucidate the mechanism by which it specifically recognizes its DNA site, we obtained the structure of ArtA bound to its cognate operator, ACATGACATG. The structure reveals that ArtA is representative of a new family of ribbon-helix-helix (RHH) DNA-binding proteins that contain extended, N-terminal basic motifs. Strikingly, unlike most well-studied RHH proteins ArtA binds its cognate operators as a dimer. However, we demonstrate that it is also able to recognize an atypical operator site by binding as a dimer-of-dimers and the extended N-terminal regions of ArtA were shown to be essential for this dimer-of-dimer binding mode. Thus, these data indicate that ArtA is a master regulator of genes critical for both horizontal and vertical transmission of pSK41 and that it can recognize DNA utilizing alternate binding modes.

  18. The Staphylococcus aureus pSK41 plasmid-encoded ArtA protein is a master regulator of plasmid transmission genes and contains a RHH motif used in alternate DNA-binding modes

    PubMed Central

    Ni, Lisheng; Jensen, Slade O.; Ky Tonthat, Nam; Berg, Tracey; Kwong, Stephen M.; Guan, Fiona H. X.; Brown, Melissa H.; Skurray, Ronald A.; Firth, Neville; Schumacher, Maria A.

    2009-01-01

    Plasmids harbored by Staphylococcus aureus are a major contributor to the spread of bacterial multi-drug resistance. Plasmid conjugation and partition are critical to the dissemination and inheritance of such plasmids. Here, we demonstrate that the ArtA protein encoded by the S. aureus multi-resistance plasmid pSK41 is a global transcriptional regulator of pSK41 genes, including those involved in conjugation and segregation. ArtA shows no sequence homology to any structurally characterized DNA-binding protein. To elucidate the mechanism by which it specifically recognizes its DNA site, we obtained the structure of ArtA bound to its cognate operator, ACATGACATG. The structure reveals that ArtA is representative of a new family of ribbon–helix–helix (RHH) DNA-binding proteins that contain extended, N-terminal basic motifs. Strikingly, unlike most well-studied RHH proteins ArtA binds its cognate operators as a dimer. However, we demonstrate that it is also able to recognize an atypical operator site by binding as a dimer-of-dimers and the extended N-terminal regions of ArtA were shown to be essential for this dimer-of-dimer binding mode. Thus, these data indicate that ArtA is a master regulator of genes critical for both horizontal and vertical transmission of pSK41 and that it can recognize DNA utilizing alternate binding modes. PMID:19759211

  19. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  20. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  1. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  2. Plasmid DNA partitioning and separation using poly(ethylene glycol)/poly(acrylate)/salt aqueous two-phase systems.

    PubMed

    Johansson, Hans-Olof; Matos, Tiago; Luz, Juliana S; Feitosa, Eloi; Oliveira, Carla C; Pessoa, Adalberto; Bülow, Leif; Tjerneld, Folke

    2012-04-13

    Phase diagrams of poly(ethylene glycol)/polyacrylate/Na(2)SO(4) systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coli can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coli homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na(2)SO(4)-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine.

    PubMed

    Zhou, Xianfeng; Zhang, Xizhen; Yu, Xianghui; Zha, Xiao; Fu, Qiuan; Liu, Bin; Wang, Xueyun; Chen, Yan; Chen, Yue; Shan, Yaming; Jin, Yinghua; Wu, Yongge; Liu, Junqiu; Kong, Wei; Shen, Jiacong

    2008-01-01

    Nonviral gene delivery systems based on conventional high molecular weight chitosans are efficient as DNA vaccine delivery system, but have poor physical properties such as aggregated shapes, low solubility at neutral pH, high viscosity at concentrations used for in vivo delivery and a slow onset of action. Furthermore, Chitosan oligomers shorter than 14 monomers units were recently found to form only weak complexes with DNA, resulting in physically unstable polyplexes in vitro and in vivo. Here, low molecular weight chitosans with an average molecular mass of 6kDa (Chito6) have been covalently attached to gold nanoparticles (GNPs), and the potency of the resulting Chito6-GNPs conjugates as vectors for the delivery of plasmid DNA has been investigated in vitro and in vivo. After delivery by intramuscular immunization in BALB/c mice, the Chito6-GNPs conjugates induced an enhanced serum antibody response 10 times more potent than naked DNA vaccine. Additionally, in contrast to naked DNA, the Chito6-GNPs conjugates induced potent cytotoxic T lymphocyte responses at a low dose.

  4. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Müller, Vilhelm; Rajer, Fredrika; Frykholm, Karolin; Nyberg, Lena K.; Quaderi, Saair; Fritzsche, Joachim; Kristiansson, Erik; Ambjörnsson, Tobias; Sandegren, Linus; Westerlund, Fredrik

    2016-12-01

    Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode that can be used to identify and trace the plasmid of interest and information about which plasmid that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at a specific location that is identified using the optical DNA maps. We demonstrate the principle on clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to identify a homogeneous group of genes or general to detect several groups of genes at the same time. Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.

  5. Identification and Application of Plasmids Suitable for Transfer of Foreign DNA to Members of the Genus Gordonia

    PubMed Central

    Arenskötter, Matthias; Baumeister, Dirk; Kalscheuer, Rainer; Steinbüchel, Alexander

    2003-01-01

    Gene transfer systems for Gordonia polyisoprenivorans strains VH2 and Y2K based on electroporation and conjugation, respectively, were established. Several parameters were optimized, resulting in transformation efficiencies of >4 × 105 CFU/μg of plasmid DNA. In contrast to most previously described electroporation protocols, the highest efficiencies were obtained by applying a heat shock after the intrinsic electroporation. Under these conditions, transfer and autonomous replication of plasmid pNC9503 was also demonstrated to proceed in G. alkanivorans DSM44187, G. nitida DSM44499T, G. rubropertincta DSM43197T, G. rubropertincta DSM46038, and G. terrae DSM43249T. Conjugational plasmid DNA transfer to G. polyisoprenivorans resulted in transfer frequencies of up to 5 × 10−6 of the recipient cells. Recombinant strains capable of polyhydroxyalkanoate synthesis from alkanes were constructed. PMID:12902293

  6. Characterization of a linear DNA plasmid from the filamentous fungal plant pathogen Glomerella musae [Anamorph: Colletotrichum musae (Berk. and Curt.) arx.

    USGS Publications Warehouse

    Freeman, S.; Redman, R.S.; Grantham, G.; Rodriguez, R.J.

    1997-01-01

    A 7.4-kilobase (kb) DNA plasmid was isolated from Glomerella musae isolate 927 and designated pGML1. Exonuclease treatments indicated that pGML1 was a linear plasmid with blocked 5' termini. Cell-fractionation experiments combined with sequence-specific PCR amplification revealed that pGML1 resided in mitochondria. The pGML1 plasmid hybridized to cesium chloride-fractionated nuclear DNA but not to A + T-rich mitochondrial DNA. An internal 7.0-kb section of pGML1 was cloned and did not hybridize with either nuclear or mitochondrial DNA from G. musae. Sequence analysis revealed identical terminal inverted repeats (TIR) of 520 bp at the ends of the cloned 7.0-kb section of pGML1. The occurrence of pGML1 did not correspond with the pathogenicity of G. musae on banana fruit. Four additional isolates of G. musae possessed extrachromosomal DNA fragments similar in size and sequence to pGML1.

  7. DNA Vaccines - A Modern Gimmick or a Boon to Vaccinology?

    PubMed

    Manickan, Elanchezhiyan; Karem, Kevin L; Rouse, Barry T

    2017-01-01

    The reports in 1993 that naked DNA encoding viral genes conferred protective immunity came as a surprise to most vaccinologists. This review analyses the expanding number of examples where plasmid DNA induces immune responses. Issues such as the type of immunity induced, mechanisms of immune protection, and how DNA vaccines compare with other approaches are emphasized. Additional issues discussed include the likely means by which DNA vaccines induce CTL, how the potency and type of immunity induced can be modified, and whether DNA vaccines represent a practical means of manipulating unwanted immune response occurring during immunoinflammatory diseases. It seems doubtful if DNA vaccines will replace currently effective vaccines, but they may prove useful for prophylactic use against some agents that at present lack an effective vaccine. DNA vaccines promise to be valuable to manipulate the immune response in situations where responses to agents are inappropriate or ineffective.

  8. Optimization of supercoiled HPV-16 E6/E7 plasmid DNA purification with arginine monolith using design of experiments.

    PubMed

    Almeida, A M; Queiroz, J A; Sousa, F; Sousa, A

    2015-01-26

    The progress of DNA vaccines is dependent on the development of suitable chromatographic procedures to successfully purify genetic vectors, such as plasmid DNA. Human Papillomavirus is associated with the development of tumours due to the oncogenic power of E6 and E7 proteins, produced by this virus. The supercoiled HPV-16 E6/E7 plasmid-based vaccine was recently purified with the arginine monolith, with 100% of purity, but only 39% of recovery was achieved. Therefore, the present study describes the application of experimental design tools, a newly explored methodology in preparative chromatography, in order to improve the supercoiled plasmid DNA recovery with the arginine monolith, maintaining the high purity degree. In addition, the importance and influence of pH in the pDNA retention to the arginine ligand was also demonstrated. The Composite Central Face design was validated and the recovery of the target molecule was successfully improved from 39% to 83.5%, with an outstanding increase of more than double, while maintaining 100% of purity. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of chromatographic conditions and plasmid DNA size on the dynamic binding capacity of a monolithic support.

    PubMed

    Bicho, Diana; Sousa, Ângela; Sousa, Fani; Queiroz, João; Tomaz, Cãndida

    2014-09-01

    DNA therapies are becoming recognized alternatives for the treatment and prevention of severe pathologies. Although most current trials have used plasmids <10 kbp, in the future larger plasmids would be required. The purpose of this work was to study the chromatographic behavior of nongrafted carbonyldiimidazole monolithic disks using plasmids with different sizes under hydrophobic conditions. Thereunto, the purification of several plasmids was performed. Higher size plasmids needed lower ammonium sulfate concentration, due to the greater number of interactions between the plasmids and monolith. The dynamic binding capacity experiments for the different plasmids revealed a lower capacity for bigger plasmids. It was also verified that the increase of salt concentration from 2.5 to 3 M of ammonium sulfate increased the capacity. At the highest salt concentration, a slight improvement in the capacity using lower flow rate was observed, possibly due to compaction of plasmid molecules and its better organization on the monolith channels. Finally, a low pH also had a positive effect on the capacity. So, this monolithic support proved to be appropriate to purify the supercoiled isoform of different plasmids with different sizes, providing a valuable instrument as a purification technique. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Community-wide plasmid gene mobilization and selection

    PubMed Central

    Sentchilo, Vladimir; Mayer, Antonia P; Guy, Lionel; Miyazaki, Ryo; Green Tringe, Susannah; Barry, Kerrie; Malfatti, Stephanie; Goessmann, Alexander; Robinson-Rechavi, Marc; van der Meer, Jan R

    2013-01-01

    Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host's chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions. PMID:23407308

  11. Abnormal ultraviolet mutagenic spectrum in plasmid DNA replicated in cultured fibroblasts from a patient with the skin cancer-prone disease, xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seetharam, S.; Protic-Sabljic, M.; Seidman, M.M.

    1987-12-01

    A shuttle vector plasmid, pZ189, was utilized to assess the types of mutations that cells from a patient with xeroderma pigmentosum, complementation group D, introduce into ultraviolet (UV) damaged, replicating DNA. Patients with xeroderma pigmentosum have clinical and cellular UV hypersensitivity, increased frequency of sun-induced skin cancer, and deficient DNA repair. In comparison to UV-treated pZ189 replicated in DNA repair-proficient cells, there were fewer surviving plasmids, a higher frequency of plasmids with mutations, fewer plasmids with two or more mutations in the marker gene, and a new mutagenic hotspot. The major type of base substitution mutation was the G:C tomore » A:T transition with both cell lines. These results, together with similar findings published earlier with cells from a xeroderma pigmentosum patient in complementation group A, suggest that isolated G:C to A:T somatic mutations may be particularly important in generation of human skin cancer by UV radiation.« less

  12. Immune responses of mice immunized by DNA plasmids encoding PCV2 ORF 2 gene, porcine IL-15 or the both.

    PubMed

    Dong, Bo; Feng, Jing; Lin, Hai; Li, Lanxiang; Su, Dingding; Tu, Di; Zhu, Weijuan; Yang, Qing; Ren, Xiaofeng

    2013-11-19

    Porcine circovirus type 2 (PCV2) is associated with many kinds of diseases including postweaning multisystemic wasting syndrome (PMWS). It affects the immune system of swine and causes huge epidemic losses every year. In our previous study, we provided evidence that DNA plasmid bearing porcine IL-15 (pVAX-pIL-15) might serve as an immune enhancer for DNA plasmid encoding porcine reproductive and respiratory syndrome virus GP5 gene. In this study, PCV2 open reading frame (ORF)2 gene was cloned into the eukaryotic expression vector pVAX, resulting in the plasmid pVAX-PCV2-ORF2. Transient expression of the plasmid in BHK-21 cells could be detected using immunofluorescence assay. Experimental mice were divided into 5 groups and immunized with PBS, pVAX, pVAX-pIL-15, pVAX-PCV2-ORF2 or pVAX-pIL-15 plus pVAX-PCV2-ORF2. The results showed that the mice co-inoculated with pVAX-PCV2-ORF2 plus pVAX-pIL-15 had higher humoral and cellular immune responses than the others. In addition, DNA plasmid bearing PCV2 ORF2 gene had a protective effect against challenge with PCV2 in mice which could be promoted with the utilization of pIL-15. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Polyplex formation between four-arm poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) and plasmid DNA in gene delivery.

    PubMed

    He, E; Yue, C Y; Simeon, F; Zhou, L H; Too, H P; Tam, K C

    2009-12-01

    Amphiphilic polyelectrolytes comprising cationic and uncharged hydrophilic segments condensed negatively charged DNA to form a core-shell structure stabilized by a layer of hydrophilic corona chains. At physiological pH, four-arm star-shaped poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) (four-arm PEO-b-PDEAEMA) block copolymer possessed positively charged amine groups that interacted with negatively charged plasmid DNA to form polymer/DNA complexes. The mechanism and physicochemical properties of the complex formation were investigated at varying molar ratio of amine groups on polymer chains and phosphate group on plasmid DNA segments (N/P ratio). The capability of the star block copolymer to condense DNA was demonstrated through gel electrophoresis and ethidium bromide exclusion assay. In the absence of salt, the hydrodynamic radius of polyplexes was about 94 nm at low polymer/DNA ratio, and it decreased to about 34 nm at large N/P ratios, forming a compact spherical structure with a weighted average molecular weight of 4.39 +/- 0.22 x 10(6) g/mol. Approximately 15 polymeric chains were required to condense a plasmid DNA. The addition of monovalent salt to the polyplexes significantly altered the size of the complexes, which would have an impact on cell transfection. Because of the electrostatic interaction induced by the diffusion of small ions, the polyplex increased in size to about 53 nm with a less compact structure. In vitro cytotoxicty of polymer and polymer/pDNA complexes were evaluated, and the polyplexes exhibited low toxicity at low N/P ratios. At N/P ratio of 4.5, the four-arm PEO-b-PDEAEMA showed the highest level of transfection in Neuro-2A cells. These observations showed that the star-shaped multi-arm polymers offers interesting properties in self-association and condensation ability for plasmid DNA and can serve as a nonviral DNA delivery system. Copyright 2008 Wiley Periodicals, Inc.

  14. Plasmids in Gram negatives: molecular typing of resistance plasmids.

    PubMed

    Carattoli, Alessandra

    2011-12-01

    A plasmid is defined as a double stranded, circular DNA molecule capable of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under non-stressed conditions but they have systems which guarantee their autonomous replication also controlling the copy number and ensuring stable inheritance during cell division. Most of the plasmids confer positively selectable phenotypes by the presence of antimicrobial resistance genes. Plasmids evolve as an integral part of the bacterial genome, providing resistance genes that can be easily exchanged among bacteria of different origin and source by conjugation. A multidisciplinary approach is currently applied to study the acquisition and spread of antimicrobial resistance in clinically relevant bacterial pathogens and the established surveillance can be implemented by replicon typing of plasmids. Particular plasmid families are more frequently detected among Enterobacteriaceae and play a major role in the diffusion of specific resistance genes. For instance, IncFII, IncA/C, IncL/M, IncN and IncI1 plasmids carrying extended-spectrum beta-lactamase genes and acquired AmpC genes are currently considered to be "epidemic resistance plasmids", being worldwide detected in Enterobacteriaceae of different origin and sources. The recognition of successful plasmids is an essential first step to design intervention strategies preventing their spread. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Antibacterial effect of cationic porphyrazines and anionic phthalocyanine and their interaction with plasmid DNA

    NASA Astrophysics Data System (ADS)

    Hassani, Leila; Hakimian, Fatemeh; Safaei, Elham; Fazeli, Zahra

    2013-11-01

    Resistance to antibiotics is a public health issue and identification of new antibacterial agents is one of the most important goals of pharmacological research. Among the novel developed antibacterial agents, porphyrin complexes and their derivatives are ideal candidates for use in medical applications. Phthalocyanines differ from porphyrins by having nitrogen atoms link the individual pyrrol units. The aza analogues of the phthalocyanines (azaPcs) such as tetramethylmetalloporphyrazines are heterocyclic Pc analogues. In this investigation, interaction of an anionic phthalocyanine (Cu(PcTs)) and two cationic tetrapyridinoporphyrazines including [Cu(2,3-tmtppa)]4+ and [Cu(3,4-tmtppa)]4+ complexes with plasmid DNA was studied using spectroscopic and gel electrophoresis methods. In addition, antibacterial effect of the complexes against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was investigated using dilution test method. The results indicated that both porphyrazines have significant antibacterial properties, but Cu(PcTs) has weak antibacterial effect. Compairing the binding of the phthalocyanine and the porphyrazines to DNA demonstrated that the interaction of cationic porphyrazines is stronger than the anionic phthalocyanine remarkably. The extent of hypochromicity and red shift of absorption spectra indicated preferential intercalation of the two porphyrazine into the base pairs of DNA helix. Gel electrophoresis result implied Cu(2,3-tmtppa) and Cu(3,4-tmtppa) are able to perform cleavage of the plasmid DNA. Consequently, DNA binding and cleavage might be one of the antibacterial mechanisms of the complexes.

  16. pLS010 plasmid vector

    DOEpatents

    Lacks, Sanford A.; Balganesh, Tanjore S.

    1988-01-01

    Disclosed is recombinant plasmid pLS101, consisting essentially of a 2.0 Kb malM gene fragment ligated to a 4.4 Kb T.sub.c r DNA fragment, which is particularly useful for transforming Gram-positive bacteria. This plasmid contains at least four restriction sites suitable for inserting exogeneous gene sequences. Also disclosed is a method for plasmid isolation by penicillin selection, as well as processes for enrichment of recombinant plasmids in Gram-positive bacterial systems.

  17. Nanoparticle formulation enhanced protective immunity provoked by PYGPI8p-transamidase related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria model.

    PubMed

    Cherif, Mahamoud Sama; Shuaibu, Mohammed Nasir; Kodama, Yukinobu; Kurosaki, Tomoaki; Helegbe, Gideon Kofi; Kikuchi, Mihoko; Ichinose, Akitoyo; Yanagi, Tetsuo; Sasaki, Hitoshi; Yui, Katsuyuki; Tien, Nguyen Huy; Karbwang, Juntra; Hirayama, Kenji

    2014-04-07

    We have previously reported the new formulation of polyethylimine (PEI) with gamma polyglutamic acid (γ-PGA) nanoparticle (NP) to have provided Plasmodium yoelii merozoite surface protein-1 (PyMSP-1) plasmid DNA vaccine with enhanced protective cellular and humoral immunity in the lethal mouse malaria model. PyGPI8p-transamidase-related protein (PyTAM) was selected as a possible candidate vaccine antigen by using DNA vaccination screening from 29 GPI anchor and signal sequence motif positive genes picked up using web-based bioinformatics tools; though the observed protection was not complete. Here, we observed augmented protective effect of PyTAM DNA vaccine by using PEI and γ-PGA complex as delivery system. NP-coated PyTAM plasmid DNA immunized mice showed a significant survival rate from lethal P. yoelii challenge infection compared with naked PyTAM plasmid or with NP-coated empty plasmid DNA group. Antigen-specific IgG1 and IgG2b subclass antibody levels, proportion of CD4 and CD8T cells producing IFN-γ in the splenocytes and IL-4, IFN-γ, IL-12 and TNF-α levels in the sera and in the supernatants from ex vivo splenocytes culture were all enhanced by the NP-coated PyTAM DNA vaccine. These data indicates that NP augments PyTAM protective immune response, and this enhancement was associated with increased DC activation and concomitant IL-12 production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Immunization with plasmid DNA encoding the hemagglutinin and the nucleoprotein confers robust protection against a lethal canine distemper virus challenge.

    PubMed

    Dahl, Lotte; Jensen, Trine Hammer; Gottschalck, Elisabeth; Karlskov-Mortensen, Peter; Jensen, Tove Dannemann; Nielsen, Line; Andersen, Mads Klindt; Buckland, Robin; Wild, T Fabian; Blixenkrone-Møller, Merete

    2004-09-09

    We have investigated the protective effect of immunization of a highly susceptible natural host of canine distemper virus (CDV) with DNA plasmids encoding the viral nucleoprotein (N) and hemagglutinin (H). The combined intradermal and intramuscular routes of immunization elicited high virus-neutralizing serum antibody titres in mink (Mustela vison). To mimic natural exposure, we also conducted challenge infection by horizontal transmission from infected contact animals. Other groups received a lethal challenge infection by administration to the mucosae of the respiratory tract and into the muscle. One of the mink vaccinated with N plasmid alone developed severe disease after challenge. In contrast, vaccination with the H plasmid together with the N plasmid conferred solid protection against disease and we were unable to detect CDV infection in PBMCs or in different tissues after challenge. Our findings show that DNA immunization by the combined intradermal and intramuscular routes can confer solid protective immunity against naturally transmitted morbillivirus infection and disease.

  19. pLS101 plasmid vector

    DOEpatents

    Lacks, S.A.; Balganesh, T.S.

    1985-02-19

    Disclosed is recombinant plasmid pLS101, consisting essentially of a 2.0 Kb ma1M gene fragment ligated to a 4.4 Kb Tcr DNA fragment, which is particularly useful for transforming Gram-positive bacteria. This plasmid contains at least four restriction sites suitable for inserting exogeneous gene sequences. Also disclosed is a method for plasmid isolation by penicillin selection, as well as processes for enrichment of recombinant plasmids in Gram-positive bacterial systems. 5 figs., 2 tabs.

  20. Plasmids of corynebacteria.

    PubMed

    Deb, J K; Nath, N

    1999-06-01

    Corynebacteria are pleomorphic, asporogenous, Gram-positive bacteria. Included in this group are nonpathogenic soil corynebacteria, which are widely used for the industrial production of amino acids and detergents, and in biotransformation of steroids. Other members of this group are plant and animal pathogens. This review summarizes the current information available about the plasmids of corynebacteria. The emphasis is mainly on the small plasmids, which have been used for construction of vectors for expression of genes in these bacteria. Moreover, considerable information is now available on their nucleotide sequence, gene organization and modes of replication, which would make it possible to further manipulate these plasmids. Other plasmid properties, such as incompatibility and host range, are also discussed. Finally, use of these plasmids as cloning vectors for the expression of heterologous proteins using corynebacteria as hosts is also summarized to highlight the potential of these bacteria as hosts for recombinant DNA.

  1. Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice.

    PubMed

    Campos-Neto, A; Webb, J R; Greeson, K; Coler, R N; Skeiky, Y A W; Reed, S G

    2002-06-01

    We have recently shown that a cocktail containing two leishmanial recombinant antigens (LmSTI1 and TSA) and interleukin-12 (IL-12) as an adjuvant induces solid protection in both a murine and a nonhuman primate model of cutaneous leishmaniasis. However, because IL-12 is difficult to prepare, is expensive, and does not have the stability required for a vaccine product, we have investigated the possibility of using DNA as an alternative means of inducing protective immunity. Here, we present evidence that the antigens TSA and LmSTI1 delivered in a plasmid DNA format either as single genes or in a tandem digene construct induce equally solid protection against Leishmania major infection in susceptible BALB/c mice. Immunization of mice with either TSA DNA or LmSTI1 DNA induced specific CD4(+)-T-cell responses of the Th1 phenotype without a requirement for specific adjuvant. CD8 responses, as measured by cytotoxic-T-lymphocyte activity, were generated after immunization with TSA DNA but not LmSTI1 DNA. Interestingly, vaccination of mice with TSA DNA consistently induced protection to a much greater extent than LmSTI1 DNA, thus supporting the notion that CD8 responses might be an important accessory arm of the immune response for acquired resistance against leishmaniasis. Moreover, the protection induced by DNA immunization was specific for infection with Leishmania, i.e., the immunization had no effect on the course of infection of the mice challenged with an unrelated intracellular pathogen such as Mycobacterium tuberculosis. Conversely, immunization of BALB/c mice with a plasmid DNA that is protective against challenge with M. tuberculosis had no effect on the course of infection of these mice with L. major. Together, these results indicate that the protection observed with the leishmanial DNA is mediated by acquired specific immune response rather than by the activation of nonspecific innate immune mechanisms. In addition, a plasmid DNA containing a fusion construct

  2. Delivery of Plasmid DNA to Vascular Tissue in vivo using Catheter Balloons Coated with Polyelectrolyte Multilayers

    PubMed Central

    Saurer, Eric M.; Yamanouchi, Dai; Liu, Bo; Lynn, David M.

    2010-01-01

    We report an approach for the localized delivery of plasmid DNA to vascular tissue from the surfaces of inflatable embolectomy catheter balloons. Using a layer-by-layer approach, ultrathin multilayered polyelectrolyte films were fabricated on embolectomy catheter balloons by alternately adsorbing layers of a hydrolytically degradable poly(β-amino ester) and plasmid DNA. Fluorescence microscopy revealed that the films coated the surfaces of the balloons uniformly. Coated balloons that were incubated in phosphate-buffered saline at 37 °C released ~25 μg DNA/cm2 over 24 hours. Analysis of the DNA by gel electrophoresis showed that the DNA was released in open-circular (‘nicked’) and supercoiled conformations, and in vitro cell transfection assays confirmed that the released DNA was transcriptionally active. Arterial injury was induced in the internal carotid arteries of Sprague-Dawley rats using uncoated balloons, followed by treatment with film-coated balloons for 20 minutes. X-gal, immunohistochemical, and immunofluorescence staining of sectioned arteries indicated high levels of β-galactosidase or enhanced green fluorescent protein (EGFP) expression in arteries treated with film-coated balloons. β-galactosidase and EGFP expression were observed throughout the medial layers of arterial tissue, and around approximately two-thirds of the circumference of the treated arteries. The layer-by-layer approach reported here provides a general platform for the balloon-mediated delivery of DNA to vascular tissue. Our results suggest the potential of this approach to deliver therapeutically relevant DNA to prevent complications such as intimal hyperplasia that arise after vascular interventions. PMID:20933275

  3. [The plasmid profile of Neisseria meningitidis strains].

    PubMed

    Khetsuriani, K G; Namgaladze, M Z; Lomsadze, Kh V; Kakuberi, D R

    1993-01-01

    The distribution of plasmids in N. meningitidis strains according to their origin and serological groups has been studied. Plasmids have been discovered in N. meningitidis of all groups, plasmid-carrying strains constituting 55% of strains isolated from healthy carriers and 46.2% of strains isolated from patients. The molecular weight of N. meningitidis plasmid DNA varies from 2.9 MD to 95 MD.

  4. Secure and effective gene delivery system of plasmid DNA coated by polynucleotide.

    PubMed

    Kodama, Yukinobu; Ohkubo, Chikako; Kurosaki, Tomoaki; Egashira, Kanoko; Sato, Kayoko; Fumoto, Shintaro; Nishida, Koyo; Higuchi, Norihide; Kitahara, Takashi; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-01-01

    Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system.

  5. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation

    PubMed Central

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J.; Fox, Catherine A.

    2016-01-01

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid

  6. Monolith-based immobilized metal affinity chromatography increases production efficiency for plasmid DNA purification.

    PubMed

    Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok

    2011-08-05

    Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Antibiotic resistance of vibrio cholerae: special considerations of R-plasmids.

    PubMed

    Kuwahara, S

    1978-09-01

    Studies on the transmission of R plasmid by conjugation between enterobacteria and vibrio or related bacteria were reviewed. The majority of the reports confirmed successful transmission from enterobacteria to Vibrio cholerae and related species, although the transmission frequencies were extremely low and the transmitted R plasmid was very unstable except for thermosensitive kanamycin plasmid and usual R plasmid coexisting with P plasmid. Strains of V. cholerae and Aeromonas liquefaciens as well as A. salmonicida bearing R plasmid were detected in nature. R plasmid was relatively unstable in V. cholerae strains with which transmission of R plasmid to enterobacteria was confirmed. At present, only 3 R plasmids have been obtained from naturally occurring strains of V. cholerae. Although the 2 European plasmids belong to the C incompatibility group with 98 megadalton closed covalent circular DNA molecule, one plasmid belongs to the J group with more than 25 megadalton molecular weight, and no CCC of satelite DNA was detected in bacteria harboring this plasmid.

  8. Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase.

    PubMed

    Zakian, V A; Brewer, B J; Fangman, W L

    1979-08-01

    Saccharomyces cerevisiae contains 50-100 copies per cell of a circular plasmid called 2 micron DNA. Replication of this DNA was studied in two ways. The distribution of replication events among 2 micron DNA molecules was examined by density transfer experiments with asynchronous cultures. The data show that 2 micron DNA replication is similar to chromosomal DNA replication: essentially all 2 micron duplexes were of hybrid density at one cell doubling after the density transfer, with the majority having one fully dense strand and one fully light strand. The results show that replication of 2 micron DNA occurs by a semiconservative mechanism where each of the plasmid molecules replicates once each cell cycle. 2 micron DNA is the only known example of a multiple-copy, extrachromosomal DNA in which every molecule replicates in each cell cycle. Quantitative analysis of the data indicates that 2 micron DNA replication is limited to a fraction of the cell cycle. The period in the cell cycle when 2 micron DNA replicates was examined directly with synchronous cell cultures. Synchronization was accomplished by sequentially arresting cells in G1 phase using the yeast pheromone alpha-factor and incubating at the restrictive temperature for a cell cycle (cdc 7) mutant. Replication was monitored by adding 3H-uracil to cells previously labeled with 14C-uracil, and determining the 3H/14C ratio for purified DNA species. 2 micron DNA replication did not occur during the G1 arrest periods. However, the population of 2 micron DNA doubled during the synchronous S phase at the permissive temperature, with most of the replication occurring in the first third of S phase. Our results indicate that a mechanism exists which insures that the origin of replication of each 2 micron DNA molecule is activated each S phase. As with chromosomal DNA, further activation is prevented until the next cell cycle. We propose that the mechanism which controls the replication initiation of each 2 micron DNA

  9. Asymmetry and Extent of In Vivo Transcripition of R-Plasmid Deoxyribonucleic Acid in Escherichia coli

    PubMed Central

    Vapnek, Daniel; Spingler, Elizabeth

    1974-01-01

    Deoxyribonucleic acid-ribonucleic acid (DNA-RNA) hybridization studies have been performed with R-plasmid DNA (R538-1drd) and in vivo-synthesized RNA. R-plasmid DNA was isolated from Escherichia coli K-12, and the complementary strands were separated in cesium chloride-polyuridylic acid-polyguanylic acid gradients. DNA-RNA hybridization was performed with the separated DNA strands and RNA purified from R-plasmid-carrying cells. The results demonstrated that an asymmetric transcription of the R-plasmid DNA occurs in vivo. Hybridization was only detected with the H strand (denser strand in cesium chloride-polyuridylic acid-polyguanylic acid). By determining the density of the RNA-DNA hybrid in CsCl gradients, it was estimated that greater than 60% of the nucleotide sequences in the R-plasmid DNA are transcribed in logarithmically growing E. coli cells. No R-plasmid-specific RNA was detected in E. coli cells that did not carry the plasmid. PMID:4612013

  10. Enhancement of immunogenic response and protection in model rats by CSTM nanoparticles anticaries DNA vaccine.

    PubMed

    Li, Hongjiao; Lu, Yiming; Xiang, Jingjie; Jiang, Hailong; Zhong, Yanqiang; Lu, Ying

    2016-06-01

    To construct anticaries DNA vaccine and evaluate its ability to elicit mucosal and systemic immune responses in rats. wapA fragment was cloned into pVAX1 plasmid to generate pVAX1-wapA. The pVAX1-wapA/trimethyl chitosan nanoparticles were prepared by complex coacervation method. Significantly higher specific IgG antibody titers were observed in rats immunized with nanoparticles compared with rats immunized with naked pVAX1-wapA. Anti-WapA IgA and IgG antibody levels after intranasal immunization were significantly higher than those following intramuscular delivery of nanoparticles or naked pVAX1-wapA. Furthermore, fewer enamel, slight dentin and dentin moderate lesions were observed in rats immunized with nanoparticles. The results implicate WapA as an excellent candidate for anticaries vaccine development and nanoparticles as an effective delivery system.

  11. Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping.

    PubMed

    Ni, W; Le Guiner, C; Gernoux, G; Penaud-Budloo, M; Moullier, P; Snyder, R O

    2011-07-01

    Legitimate uses of gene transfer technology can benefit from sensitive detection methods to determine vector biodistribution in pre-clinical studies and in human clinical trials, and similar methods can detect illegitimate gene transfer to provide sports-governing bodies with the ability to maintain fairness. Real-time PCR assays were developed to detect a performance-enhancing transgene (erythropoietin, EPO) and backbone sequences in the presence of endogenous cellular sequences. In addition to developing real-time PCR assays, the steps involved in DNA extraction, storage and transport were investigated. By real-time PCR, the vector transgene is distinguishable from the genomic DNA sequence because of the absence of introns, and the vector backbone can be identified by heterologous gene expression control elements. After performance of the assays was optimized, cynomolgus macaques received a single dose by intramuscular (IM) injection of plasmid DNA, a recombinant adeno-associated viral vector serotype 1 (rAAV1) or a rAAV8 vector expressing cynomolgus macaque EPO. Macaques received a high plasmid dose intended to achieve a significant, but not life-threatening, increase in hematocrit. rAAV vectors were used at low doses to achieve a small increase in hematocrit and to determine the limit of sensitivity for detecting rAAV sequences by single-step PCR. DNA extracted from white blood cells (WBCs) was tested to determine whether WBCs can be collaterally transfected by plasmid or transduced by rAAV vectors in this context, and can be used as a surrogate marker for gene doping. We demonstrate that IM injection of a conventional plasmid and rAAV vectors results in the presence of DNA that can be detected at high levels in blood before rapid elimination, and that rAAV genomes can persist for several months in WBCs.

  12. Ca(2+)-mediated anionic lipid-plasmid DNA lipoplexes. Electrochemical, structural, and biochemical studies.

    PubMed

    Barrán-Berdón, Ana L; Yélamos, Belén; Malfois, Marc; Aicart, Emilio; Junquera, Elena

    2014-10-07

    Several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering, gene transfection, fluorescence microscopy, flow cytometry, and cell viability/cytotoxicity assays, have been used to analyze the potential of anionic lipids (AL) as effective nontoxic and nonviral DNA vectors, assisted by divalent cations. The lipoplexes studied are those comprised of the green fluorescent protein-encoding plasmid DNA pEGFP-C3, an anionic lipid as 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) or 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), and a zwitterionic lipid, the 1,2-dioleoyl-sn -glycero-3-phosphatidylethanolamine (DOPE, not charged at physiological pH). The studies have been carried on at different liposome and lipoplex compositions and in the presence of a variety of [Ca2+]. Electrochemical experiments reveal that DOPG/DOPE and DOPS/DOPE anionic liposomes may compact more effectively pDNA at low molar fractions (with an excess of DOPE) and at AL/pDNA ratios ≈20. Calcium concentrations around 15-20 mM are needed to yield lipoplexes neutral or slightly positive. From a structural standpoint, DOPG/DOPE-Ca2+-pDNA lipoplexes are self-assembled into a HIIc phase (inverted cylindrical micelles in hexagonal ordering with plasmid supercoils inside the cylinders), while DOPS/DOPE-Ca2+-pDNA lipoplexes show two phases in coexistence: one classical HIIc phase which contains pDNA supercoils and one Lα phase without pDNA among the lamellae, i.e., a lamellar stack of lipidic bilayers held together by Ca2+ bridges. Transfection and cell viability studies were done with HEK293T and HeLa cells in the presence of serum. Lipoplexes herein studied show moderate-to-low transfection levels combined with moderate-to-high cell viability, comparable to those yield by Lipofectamine2000*, which is a cationic lipid (CL) standard formulation, but none of them improve the output of typical CL gen vectors, mostly if they are gemini or dendritic

  13. Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode

    PubMed Central

    2012-01-01

    Background Plasmid DNA (pDNA) is a promising molecule for therapeutic applications. pDNA is produced by Escherichia coli in high cell-density cultivations (HCDC) using fed-batch mode. The typical limitations of such cultivations, including metabolic deviations like aerobic acetate production due to the existence of substrate gradients in large-scale bioreactors, remain as serious challenges for fast and effective pDNA production. We have previously demonstrated that the substitution of the phosphotransferase system by the over-expressed galactose permease for glucose uptake in E. coli (strain VH33) allows efficient growth, while strongly decreases acetate production. In the present work, additional genetic modifications were made to VH33 to further improve pDNA production. Several genes were deleted from strain VH33: the recA, deoR, nupG and endA genes were inactivated independently and in combination. The performance of the mutant strains was evaluated in shake flasks for the production of a 6.1 kb plasmid bearing an antigen gene against mumps. The best producer strain was cultivated in lab-scale bioreactors using 100 g/L of glucose to achieve HCDC in batch mode. For comparison, the widely used commercial strain DH5α, carrying the same plasmid, was also cultivated under the same conditions. Results The various mutations tested had different effects on the specific growth rate, glucose uptake rate, and pDNA yields (YP/X). The triple mutant VH33 Δ (recA deoR nupG) accumulated low amounts of acetate and resulted in the best YP/X (4.22 mg/g), whereas YP/X of strain VH33 only reached 1.16 mg/g. When cultivated at high glucose concentrations, the triple mutant strain produced 186 mg/L of pDNA, 40 g/L of biomass and only 2.2 g/L of acetate. In contrast, DH5α produced only 70 mg/L of pDNA and accumulated 9.5 g/L of acetate. Furthermore, the supercoiled fraction of the pDNA produced by the triple mutant was nearly constant throughout the cultivation

  14. Vaccination with plasmid DNA encoding a mutant toxic shock syndrome toxin-1 ameliorates toxin-induced lethal shock in mice.

    PubMed

    Feng, Mao-Hui; Cui, Jing-Chun; Nakane, Akio; Hu, Dong-Liang

    2013-09-01

    Staphylococcal toxic shock syndrome toxin-1 (TSST-1), a superantigenic toxin produced by Staphylococcus (S.) aureus, is a major cause of septic shock and toxic shock syndrome. To investigate whether vaccination with a plasmid DNA encoding a non-toxic mutant TSST-1 (mTSST-1) can protect mice against wild-type TSST-1-induced lethal shock, the mice were intranasally immunized with the plasmid DNA (named pcDNA-mTSST-1) plus a mucosal adjuvant, a non-toxic mutant labile toxin (mLT). After the immunization, the mice were challenged with TSST-1 and lipopolysaccharide (LPS). The survival rate of mice immunized with pcDNA-mTSST-1 plus mLT was higher than that of the control mice immunized with PBS alone, mLT alone, pcDNA-mTSST-1 alone, or a parent plasmid plus mLT. The titers of interferon-γ (IFN-γ) in the sera of mice immunized with pcDNA-mTSST-1 plus mLT were significantly lower than those of the mLT control mice. Immunization with pcDNA-mTSST-1 plus mLT increased the serum levels of TSST-1-specific antibodies, especially immunoglobulin G1 (IgG1) and IgG2a subclasses. Furthermore, the sera obtained from mice immunized with pcDNA-mTSST-1 plus mLT significantly inhibited the TSST-1-induced secretion of IFN-γ and tumor necrosis factor-α (TNF-α) in murine spleen cells in vitro. These results indicate that immunization with pcDNA-mTSST-1 plus mLT provides protection against the lethal toxic shock of mice induced by wild-type TSST-1. The protective effect could be due to TSST-1-specific neutralizing antibodies as well as the inhibition of IFN-γ and TNF-α secretions. Since TSST-1 is commonly released by invasive S. aureus, the pcDNA-mTSST-1 should be useful in preventing toxin-induced shock resulting from S. aureus infection.

  15. A new trinuclear complex of platinum and iron efficiently promotes cleavage of plasmid DNA.

    PubMed Central

    Lempers, E L; Bashkin, J S; Kostić, N M

    1993-01-01

    The compound [[Pt(trpy)]2Arg-EDTA]+ is synthesized in five steps, purified, and characterized by 1H, 13C, and 195Pt NMR spectroscopy, mass spectrometry, UV-vis spectrophotometry, and elemental analysis. The binuclear [[(Pt(trpy)]2Arg]3+ moiety binds to double-stranded DNA, and the chelating EDTA moiety holds metal cations. In the presence of ferrous ions and the reductant dithiothreitol, the new compound cleaves DNA. It cleaves a single strand in the pBR322 plasmid nearly as efficiently as methidiumrpropyl-EDTA (MPE), and it cleaves a restriction fragment of the XP10 plasmid nonselectively and more efficiently than [Fe(EDTA)]2-. The mechanism of cleavage was studied in control experiments involving different transition-metal ions, superoxide dismutase, catalase, glucose oxidase with glucose, metal-sequestering agents, and deaeration. These experiments indicate that adventitious iron and copper ions, superoxide anion, and hydrogen peroxide are not involved and that dioxygen is required. The cleavage apparently is done by hydroxyl radicals generated in the vicinity of the DNA molecule. The reagent [[Pt(trypy)]2Arg-EDTA]+ differs from methidiumpropyl-EDTA in not containing an intercalator. This difference in binding modes between the binuclear platinum(II) complex and the planar heterocycle may cause useful differences between the two reagents in cleavage of nucleic acids. Images PMID:8493109

  16. Effect of storage and processing on plasmid, yeast and plant genomic DNA stability in juice from genetically modified oranges.

    PubMed

    Weiss, Julia; Ros-Chumillas, Maria; Peña, Leandro; Egea-Cortines, Marcos

    2007-01-30

    Recombinant DNA technology is an important tool in the development of plant varieties with new favourable features. There is strong opposition towards this technology due to the potential risk of horizontal gene transfer between genetically modified plant material and food-associated bacteria, especially if genes for antibiotic resistance are involved. Since horizontal transfer efficiency depends on size and length of homologous sequences, we investigated the effect of conditions required for orange juice processing on the stability of DNA from three different origins: plasmid DNA, yeast genomic DNA and endogenous genomic DNA from transgenic sweet orange (C. sinensis L. Osb.). Acidic orange juice matrix had a strong degrading effect on plasmid DNA which becomes apparent in a conformation change from supercoiled structure to nicked, linear structure within 5h of storage at 4 degrees C. Genomic yeast DNA was degraded during exposure to acidic orange juice matrix within 4 days, and also the genomic DNA of C. sinensis suffered degradation within 2 days of storage as indicated by amplification results from transgene markers. Standard pasteurization procedures affected DNA integrity depending on the method and time used. Our data show that the current standard industrial procedures to pasteurize orange juice as well as its acidic nature causes a strong degradation of both yeast and endogenous genomic DNA below sizes reported to be suitable for horizontal gene transfer.

  17. Macrophage Repolarization with Targeted Alginate Nanoparticles Containing IL-10 Plasmid DNA for the Treatment of Experimental Arthritis

    PubMed Central

    Jain, Shardool; Tran, Thanh-Huyen; Amiji, Mansoor

    2015-01-01

    In this study, we have shown for the first time the effectiveness of a non-viral gene transfection strategy to re-polarize macrophages from M1 to M2 functional sub-type for the treatment of rheumatoid arthritis (RA). An anti-inflammatory (IL-10) cytokine encoding plasmid DNA was successfully encapsulated into non-condensing alginate based nanoparticles and the surface of the nano-carriers was modified with tuftsin peptide to achieve active macrophage targeting. Enhanced localization of tuftsin-modified alginate nanoparticles was observed in the inflamed paws of arthritic rats upon intraperitoneal administration. Importantly, targeted nanoparticle treatment was successful in reprogramming macrophage phenotype balance as ~66% of total synovial macrophages from arthritic rats treated with the IL-10 plasmid DNA loaded tuftsin/alginate nanoparticles were in the M2 state compared to ~9% of macrophages in the M2 state from untreated arthritic rats. Treatment significantly reduced systemic and joint tissue pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression and prevented the progression of inflammation and joint damage as revealed by magnetic resonance imaging and histology. Treatment enabled animals to retain their mobility throughout the course of study, whereas untreated animals suffered from impaired mobility. Overall, this study demonstrates that targeted alginate nanoparticles loaded with IL-10 plasmid DNA can efficiently re-polarize macrophages from an M1 to an M2 state, offering a novel treatment paradigm for treatment of chronic inflammatory diseases. PMID:26004232

  18. Evaluation of Biological and Physical Protection against Nuclease Degradation of Clay-Bound Plasmid DNA

    PubMed Central

    Demanèche, Sandrine; Jocteur-Monrozier, Lucile; Quiquampoix, Hervé; Simonet, Pascal

    2001-01-01

    In order to determine the mechanisms involved in the persistence of extracellular DNA in soils and to monitor whether bacterial transformation could occur in such an environment, we developed artificial models composed of plasmid DNA adsorbed on clay particles. We determined that clay-bound DNA submitted to an increasing range of nuclease concentrations was physically protected. The protection mechanism was mainly related to the adsorption of the nuclease on the clay mineral. The biological potential of the resulting DNA was monitored by transforming the naturally competent proteobacterium Acinetobacter sp. strain BD413, allowing us to demonstrate that adsorbed DNA was only partially available for transformation. This part of the clay-bound DNA which was available for bacteria, was also accessible to nucleases, while the remaining fraction escaped both transformation and degradation. Finally, transformation efficiency was related to the perpetuation mechanism, with homologous recombination being less sensitive to nucleases than autonomous replication, which requires intact molecules. PMID:11133458

  19. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes

    PubMed Central

    Lee, JunMo; Kim, Kyeong Mi; Yang, Eun Chan; Miller, Kathy Ann; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su

    2016-01-01

    The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta. PMID:27030297

  20. Armored long RNA controls or standards for branched DNA assay for detection of human immunodeficiency virus type 1.

    PubMed

    Zhan, Sien; Li, Jinming; Xu, Ruihuan; Wang, Lunan; Zhang, Kuo; Zhang, Rui

    2009-08-01

    The branched DNA (bDNA) assay is a reliable method for quantifying the RNA of human immunodeficiency virus type 1 (HIV-1). The positive controls and standards for this assay for the detection of HIV-1 consist of naked RNA, which is susceptible to degradation by RNase. Armored RNA is a good candidate for an RNase-resistant positive control or standard. However, its use has been limited by the maximal length of the exogenous RNA packaged into virus-like particles by routine armored RNA technology. In the present study, we produced armored long RNA (armored L-RNA) controls or standards (AR-HIV-pol-3034b) for a bDNA assay of HIV-1 by increasing the amount and affinity of the pac sites (the pac site is a specific 19-nucleotide stem-loop region located at the 5' terminus of the MS2 bacteriophage replicase gene) by a one-plasmid double-expression system. AR-HIV-pol-3034b was completely resistant to DNase and RNase, was stable in normal human EDTA-preserved plasma at 4 degrees C for at least 6 months, and produced reproducible, linear results in the Versant HIV-1 RNA 3.0 assay. In conclusion, AR-HIV-pol-3034b could act as a positive control or standard in a bDNA assay for the detection of HIV-1. In addition, the one-plasmid double-expression system can be used as a better platform than the one-plasmid expression system and the two-plasmid coexpression system for expressing armored L-RNA.

  1. Induction of single- and double-strand breaks in plasmid DNA by monoenergetic alpha-particles with energies below the Bragg-maximum.

    PubMed

    Scholz, V; Weidner, J; Köhnlein, W; Frekers, D; Wörtche, H J

    1997-01-01

    The yield of single-strand breaks (ssb) and double-strand breaks (dsb) produced by alpha-particles at the end of their track in DNA-films was determined experimentally. Helium nuclei were accelerated to 600 keV in the 400 kV ion accelerator and scattered at a carbon target. The elastically scattered alpha-particles with energies of 344 keV and 485 keV were used to irradiate supercircular plasmid DNA in vacuo. For the dosimetry of the alpha-particles a surface barrier detector was used and the energy distribution of the alpha-particles determined. The energy loss of the particles in the DNA-layer was calculated. DNA samples were separated into the three conformational isomers using agarose gel electrophoresis. After fluorochromation the number of ssb and dsb per plasmid DNA molecule was established from the band intensities assuming the validity of Poisson statistics. Linear dose effect correlations were found for ssb and dsb per plasmid molecule. In the case of 344 keV-alpha-particles the yield of dsb was (8.6 +/- 0.9) x 10(-11) breaks/Gy x dalton. The ratio of ssb/dsb was 0.5 +/- 0.2. This is at least a factor of six larger than the ratio found in experiments with higher energy alpha-particles and from model calculations. Similar experiments with protons yielded a relative biological effectiveness (rbe) value of 2.8 for the induction of double-strand breaks by track end alpha-particles.

  2. Biophysical modeling of fragment length distributions of DNA plasmids after X and heavy-ion irradiation analyzed by atomic force microscopy.

    PubMed

    Elsässer, Thilo; Brons, Stephan; Psonka, Katarzyna; Scholz, Michael; Gudowska-Nowak, Ewa; Taucher-Scholz, Gisela

    2008-06-01

    The investigation of fragment length distributions of plasmid DNA gives insight into the influence of localized energy distribution on the induction of DNA damage, particularly the clustering of double-strand breaks. We present an approach that determines the fragment length distributions of plasmid DNA after heavy-ion irradiation by using the Local Effect Model. We find a good agreement of our simulations with experimental fragment distributions derived from atomic force microscopy (AFM) studies by including experimental constraints typical for AFM. Our calculations reveal that by comparing the fragmentation in terms of fluence, we can uniquely distinguish the effect of different radiation qualities. For very high-LET irradiation using nickel or uranium ions, no difference between their fragment distributions can be expected for the same dose level. However, for carbon ions with an intermediate LET, the fragmentation pattern differs from the distribution for very high-LET particles. The results of the model calculations can be used to determine the optimal experimental parameters for a demonstration of the influence of track structure on primary radiation damage. Additionally, we compare the results of our model for two different plasmid geometries.

  3. Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR.

    PubMed

    Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz

    2017-01-01

    Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a

  4. Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR

    PubMed Central

    Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz

    2017-01-01

    Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a

  5. Oral delivery of microparticles containing plasmid DNA encoding hepatitis-B surface antigen.

    PubMed

    Bhowmik, Tuhin; D'Souza, Bernadette; Uddin, Mohammad N; D'Souza, Martin J

    2012-05-01

    The role of albumin-based chitosan microparticles on enhancing immune response of plasmid DNA (pDNA) to hepatitis-B surface antigen (HBsAg) vaccine after oral administration was investigated in mice. The pDNA encoding HBsAg was entrapped in albumin microparticles using a one-step spray drying technique optimized in our laboratory. The encapsulated particles were also characterized in vitro for their shape, size, encapsulation efficiency, content, and stability. Albumin microparticles could protect the DNA from nuclease degradation as confirmed in our agarose gel study. Further immune modulating effect was studied in our formulation by measuring IgG antibodies in serum as well as IgA antibodies in fecal extracts. The mice were immunized with a prime dose of 100 μg of pDNA in microparticle formulations with and without interleukins biweekly until week 7 followed by a booster dose of equivalent strength on week 33 to compare the response with the subcutaneous group. The oral immunization with the pDNA to HBsAg microparticles gave significantly higher titer level of both sIgA and IgG at week 9 and 34, respectively, in oral vaccine with interleukins group when compared with the subcutaneous group. Thus, we observed an augmentation of both humoral and cellular immune responses for prolonged periods after immunization.

  6. Armored Long RNA Controls or Standards for Branched DNA Assay for Detection of Human Immunodeficiency Virus Type 1▿

    PubMed Central

    Zhan, Sien; Li, Jinming; Xu, Ruihuan; Wang, Lunan; Zhang, Kuo; Zhang, Rui

    2009-01-01

    The branched DNA (bDNA) assay is a reliable method for quantifying the RNA of human immunodeficiency virus type 1 (HIV-1). The positive controls and standards for this assay for the detection of HIV-1 consist of naked RNA, which is susceptible to degradation by RNase. Armored RNA is a good candidate for an RNase-resistant positive control or standard. However, its use has been limited by the maximal length of the exogenous RNA packaged into virus-like particles by routine armored RNA technology. In the present study, we produced armored long RNA (armored L-RNA) controls or standards (AR-HIV-pol-3034b) for a bDNA assay of HIV-1 by increasing the amount and affinity of the pac sites (the pac site is a specific 19-nucleotide stem-loop region located at the 5′ terminus of the MS2 bacteriophage replicase gene) by a one-plasmid double-expression system. AR-HIV-pol-3034b was completely resistant to DNase and RNase, was stable in normal human EDTA-preserved plasma at 4°C for at least 6 months, and produced reproducible, linear results in the Versant HIV-1 RNA 3.0 assay. In conclusion, AR-HIV-pol-3034b could act as a positive control or standard in a bDNA assay for the detection of HIV-1. In addition, the one-plasmid double-expression system can be used as a better platform than the one-plasmid expression system and the two-plasmid coexpression system for expressing armored L-RNA. PMID:19494069

  7. Lipofection of plasmid DNA into human mast cell lines using lipid nanoparticles generated by microfluidic mixing.

    PubMed

    Duguay, Brett A; Huang, Kate Wei-Chen; Kulka, Marianna

    2018-04-18

    Mast cells are important immune cells that have significant roles in mediating allergy and asthma. Therefore, studying the molecular mechanisms regulating these and other processes in mast cells is important to elucidate. Methods such as lipofection, transduction, and electroporation are often employed to dissect these mechanisms by disrupting gene expression in mast cell lines. However, as with other leukocytes, human mast cells (HMCs) are often refractory to the delivery of plasmids by lipofection. In this study, we investigated the utility of lipid nanoparticles (LNPs) containing the ionizable cationic lipids 1,2-dioleoyloxy-3-dimethylaminopropane, 1,2-dioleyloxy-3-dimethylaminopropane, or 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane for the delivery of plasmid DNA into HMC lines. Herein, we demonstrate for the first time the use of LNPs to achieve significant and reproducible levels of plasmid DNA transfection in HMC-1.2 and laboratory of allergic diseases 2 (LAD2) cells. These levels reached 53.2% and 16.0% in HMC-1.2 and LAD2 cells, respectively; and outperformed Lipofectamine 3000 in both cases. Moreover, cell viability in the transfected cells remained above 65% for all LNP conditions tested. Together, these observations illustrate the efficacy of this technique for mast cell researchers and further support the use of LNPs for nucleic acid delivery into leukocytes. ©2018 Society for Leukocyte Biology.

  8. MAGNETIC TOPOLOGY OF A NAKED SUNSPOT: IS IT REALLY NAKED?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sainz Dalda, A.; Vargas Dominguez, S.; Tarbell, T. D.

    The high spatial, temporal, and spectral resolution achieved by Hinode instruments gives much better understanding of the behavior of some elusive solar features, such as pores and naked sunspots. Their fast evolution and, in some cases, their small sizes have made their study difficult. The moving magnetic features (MMFs) have been studied during the last 40 years. They have been always associated with sunspots, especially with the penumbra. However, a recent observation of a naked sunspot (one with no penumbra) has shown MMF activity. The authors of this reported observation expressed their reservations about the explanation given to the bipolarmore » MMF activity as an extension of the penumbral filaments into the moat. How can this type of MMF exist when a penumbra does not? In this Letter, we study the full magnetic and (horizontal) velocity topology of the same naked sunspot, showing how the existence of a magnetic field topology similar to that observed in sunspots can explain these MMFs, even when the intensity map of the naked sunspot does not show a penumbra.« less

  9. [Construction of plant expression plasmid of chimera SBR-CT delta A1].

    PubMed

    Mai, Sui; Ling, Junqi

    2003-08-01

    The purpose of this study is to construct plant expression plasmid containing the gene encoding chimera SBR-CT delta A1. The target gene fragment P2, including the gene-encoded chimera SBR-CT delta A1 (3,498-5,378 bp), was obtained by standard PCR amplification. The PCR products were ligated with pGEM-easy vector through TA clone to form plasmid pTSC. The plasmid pTSC and plasmid pPOKII were digested by restricted endonuclease BamHI and KpnI, and the digested products were extracted and purified for recombination. Then the purified P2 and plasmid pPOKII were recombined by T4 DNA ligase to form recombinant plasmid pROSC; inserting bar gene into the plasmid and form pROSB plasmid. The recombined plasmids were isolated and identified by restricted endonuclease cutting and Sanger dideoxy DNA sequencing. P2 gene was linked to pPOKII plasmid and formed recombinant plasmid pROSC. The DNA sequence and orientation were corrected. And bar gene was inserted into pPOSC and form recombinant plasmid pROSB. Plant expression vector pROSC and pROSB containing the gene encoding chimera SBR-CT delta A1, which may provide useful experiment foundation for further study on edible vaccine against caries have been successfully constructed.

  10. Characterization of two new plasmid DNAs found in mitochondria of wild-type Neurospora intermedia strains.

    PubMed Central

    Stohl, L L; Collins, R A; Cole, M D; Lambowitz, A M

    1982-01-01

    Mitochondria from two Neurospora intermedia strains (P4O5-Labelle and Fiji N6-6) were found to contain plasmid DNAs in addition to the standard mitochondrial DNA species. The plasmid DNAs consist of monomeric circles (4.1-4.3 kbp and 5.2-5.3 kbp for Labelle and Fiji, respectively) and oligomers in which monomers are organized as head-to-tail repeats. DNA-DNA hybridization experiments showed that the plasmids have no substantial sequence homology to mtDNA, to each other, or to a previously characterized mitochondrial plasmid from N. crassa strain Mauriceville-lc (Collins et al. Cell 24, 443-452, 1981). The intramitochondrial location of the plasmids was established by cell fractionation and nuclease protection experiments. In sexual crosses, the plasmids showed strict maternal inheritance, the same as Neurospora mitochondrial DNA. The plasmids may represent a novel class of mitochondrial genetic elements. Images PMID:6280144

  11. The effect of eukaryotic expression vectors and adjuvants on DNA vaccines in chickens using an avian influenza model.

    PubMed

    Suarez, D L; Schultz-Cherry, S

    2000-01-01

    Vaccination of poultry with naked plasmid DNA has been successfully demonstrated with several different poultry pathogens, but the technology needs to be further developed before it can be practically implemented. Many different methods can conceivably enhance the efficacy of DNA vaccines, and this report examines the use of different eukaryotic expression vectors with different promoters and different adjuvants to express the influenza hemagglutinin protein. Four different promoters in five different plasmids were used to express the hemagglutinin protein of an H5 avian influenza virus, including two different immediate early cytomegaloviruses (CMVs), Rous sarcoma virus, chicken actin, and simian virus 40 promoters. All five constructs expressed detectable hemagglutinin protein in cell culture, but the pCI-neo HA plasmid with the CMV promoter provided the best response in chickens when vaccinated intramuscularly at 1 day of age on the basis of antibody titer and survivability after challenge with a highly pathogenic avian influenza virus at 6 wk postinoculation. A beneficial response was observed in birds boostered at 3 wk of age, in birds given larger amounts of DNA, and with the use of multiple injection sites to administer the vaccine. With the use of the pCI-neo construct, the effects of different adjuvants designed to increase the uptake of plasmid DNA, including 25% sucrose, diethylaminoethyl dextran, calcium phosphate, polybrene, and two different cationic liposomes, were examined. Both liposomes tested enhanced antibody titers as compared with the positive controls, but the other chemical adjuvants decreased the antibody response as compared with the control chickens that received just the plasmid alone. The results observed are promising for continued studies, but continued improvements in vaccine response and reduced costs are necessary before the technology can be commercially developed.

  12. NanoSMGT: transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency.

    PubMed

    Campos, Vinicius Farias; de Leon, Priscila Marques Moura; Komninou, Eliza Rossi; Dellagostin, Odir Antônio; Deschamps, João Carlos; Seixas, Fabiana Kömmling; Collares, Tiago

    2011-11-01

    The objectives were to investigate whether: 1) nanotransfectants are more effective than other common transfection methods for SMGT; 2) NanoSMGT is able to transmit exogenous DNA molecules to bovine embryos; and 3) halloysite clay nanotubes (HCNs) can be used as a transfection reagent to improve transgene transmission. Four transfection systems were used: naked DNA (without transfectant), lipofection, nanopolymer, and halloysite clay nanotubes. Plasmid uptake by sperm and its transfer to embryos were quantified by conventional and real-time PCR, as well as EGFP expression by fluorescence microscopy. Furthermore, sperm motility and viability, and embryo development were investigated. Mean number of plasmids taken up was affected (P < 0.05) by transfection procedure, with the nanopolymer being the most effective transfectant (∼ 153 plasmids per spermatozoon). None of the treatments affected sperm motility or viability. The mean number of plasmids transmitted to four-cell stage embryos was higher (P < 0.05) in nanopolymer and HCNs than liposomes and naked DNA groups. The number of embryos carrying the transgene increased from 8-10% using naked DNA or liposomes to 40-45% using nanopolymer or HCN as transfectants (P < 0.05). There were no significant differences among transfection procedures regarding blastocyst formation rate of resulting embryos. However, no EGFP-expressing embryo was identified in any treatment. Therefore, nanotransfectants improved transgene transmission in bovine embryos without deleterious effects on embryo development. To our knowledge, this was the first time that bovine embryos carrying a transgene were produced by NanoSMGT. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The extent of the uptake of plasmid into the skin determines the immune responses induced by a DNA vaccine applied topically onto the skin

    PubMed Central

    Yu, Zhen; Chung, Woon-Gye; Sloat, Brian R.; Löhr, Christiane V.; Weiss, Richard; Rodriguez, B. Leticia; Li, Xinran; Cui, Zhengrong

    2011-01-01

    Objectives Non-invasive immunization by applying plasmid DNA topically onto the skin is an attractive immunization approach. However, the immune responses induced are generally weak. Previously, we showed that the antibody responses induced by topical DNA vaccine were significantly enhanced when hair follicles in the application area were induced into anagen (growth) stage by hair plucking. In the present study, we further investigated the mechanism of immune enhancement. Methods Three different methods, hair plucking or treatment with retinoic acid (RA) or O- tetradecanoylphorbol-13-acetate (TPA), were used to induce hair follicles into anagen stage before mice were dosed with a β-galactosidase-encoding plasmid, and the specific antibody responses induced were evaluated. Key findings The hair plucking method was more effective at enhancing the resultant antibody responses. Treatment with RA or TPA caused more damages to the skin and induced more severe local inflammations than hair plucking. However, hair plucking was most effective at enhancing the uptake or retention of the DNA in the application area. Conclusions The uptake of plasmid DNA in the application area correlated with the antibody responses induced by a topically applied DNA. PMID:21235583

  14. Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in Escherichia coli cells.

    PubMed

    Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A; Agu, Chukwuma A; Wang, Xindan; Bernal, Juan A; Sherratt, David J; de la Cueva-Méndez, Guillermo

    2014-02-18

    Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid-bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.

  15. Seamless Insert-Plasmid Assembly at High Efficiency and Low Cost

    PubMed Central

    Benoit, Roger M.; Ostermeier, Christian; Geiser, Martin; Li, Julia Su Zhou; Widmer, Hans; Auer, Manfred

    2016-01-01

    Seamless cloning methods, such as co-transformation cloning, sequence- and ligation-independent cloning (SLIC) or the Gibson assembly, are essential tools for the precise construction of plasmids. The efficiency of co-transformation cloning is however low and the Gibson assembly reagents are expensive. With the aim to improve the robustness of seamless cloning experiments while keeping costs low, we examined the importance of complementary single-stranded DNA ends for co-transformation cloning and the influence of single-stranded gaps in circular plasmids on SLIC cloning efficiency. Most importantly, our data show that single-stranded gaps in double-stranded plasmids, which occur in typical SLIC protocols, can drastically decrease the efficiency at which the DNA transforms competent E. coli bacteria. Accordingly, filling-in of single-stranded gaps using DNA polymerase resulted in increased transformation efficiency. Ligation of the remaining nicks did not lead to a further increase in transformation efficiency. These findings demonstrate that highly efficient insert-plasmid assembly can be achieved by using only T5 exonuclease and Phusion DNA polymerase, without Taq DNA ligase from the original Gibson protocol, which significantly reduces the cost of the reactions. We successfully used this modified Gibson assembly protocol with two short insert-plasmid overlap regions, each counting only 15 nucleotides. PMID:27073895

  16. Adsorption of bacterial plasmids in pure mineral mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Cochran, J. P.; Seaman, J. C.; Parrott, B.

    2017-12-01

    Microorganisms play an important role in controlling the fate and transport of subsurface contaminants through the direct degradation of organic contaminants to the control of chemical redox conditions that impact the speciation and partitioning of inorganic contaminants. Genes that control these processes, including the relative tolerance associated with direct exposure to toxic contaminants, are found within the bacteria's chromosomal DNA and also within distinct, circular DNA elements called plasmids. Plasmids are mobile genetic elements that can be exchanged with other bacterial species through horizontal gene transfer (HGT). The frequency of HGT in soil is influenced by several factors, with the physicochemical characteristics of soil possibly being a primary factor. Thus, the objective for our research was to determine the movement and persistence of bacterial plasmids within soil. Our current study focuses on batch sorption experiments designed to evaluate the partitioning of bacterial plasmids in idealized mineral mixtures that represent the clay mineralogy of highly weathered soils of the Southeastern US. Specifically, we compared plasmid adsorption among pure goethite, kaolinite, and a mixture of goethite and kaolinite. We also determined the adsorption of plasmids on the above minerals over increasing pH (3 to 10). Our results show that adsorption decreased in the following order: goethite > kaolinite > mixture of goethite and kaolinite. We also found that plasmids adsorption was higher at lower pH levels, with pH 3 having the adsorption maximum. However, at pH 3, DNA denaturing may have occurred, leading to aggregation or precipitation of plasmids on the mineral surfaces. Our study was the first steps in determining the influence of soil properties on plasmid adsorption. Our future goals are to determine the adsorption in other pure minerals and in natural soils.

  17. Two-Level factorial screening of new plasmid/strain combinations for prodution of recombinant-DNA products.

    PubMed

    Emborg, C; Jepsen, P K; Biedermann, K

    1989-05-01

    This article treats the basic problem of selection of experimental conditions for microbiological experiments for evaluation of newly isolated bacterial strains, mutants, or plasmid/strain combinations. For this purpose shake flask experiments in a 2(10-4)confounded factorial design at resolution IV with four blocks of 16 flasks were used. The design was used for testing of two new strain/plasmid combinations (E. coli MT 102/403-SD2 and W 3110/403-SD2) i.e., both strains with the same plasmid 403-SD2. Both strains were integrated in the design, so both strains were tested with nine factors (temperature, aeration, glucose, initial pH, pH regulation, reduced aeration, chloramphenicol, acetate, and glycerol). With both strains the interaction between initial pH and reduced aeration had a significant influence on the yield of the recombinant-DNA product nuclease. There was more than a factor of 10 between lowest and highest yield of product. In this interactive system the strains reacted differently. MT 102/403-SD2 had highest yields at high initial pH (8.4) and no reduction in aeration, whereas W 3110/403-SD2 had highest yields of nuclease at low initial pH (7.4) and reduced aeration (rubber stopper inserted after cultivation for 12 h). These data (and previous work) clearly demonstrate that it is impossible to suggest a simple set of experimental conditions for testing of new plasmid/strain combinations. It is clear that the exclusive application of a standardized growth technique e.g., LB-medium at 37 degrees C at an unspecified and uncontrolled aeration level, may lead to wrong conclusions on properties and potentials of now plasmid/strain combinations and may lead to rejection of useful strains or plasmids.

  18. Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in Escherichia coli cells

    PubMed Central

    Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A.; Agu, Chukwuma A.; Wang, Xindan; Bernal, Juan A.; Sherratt, David J.; de la Cueva-Méndez, Guillermo

    2014-01-01

    Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid–bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs. PMID:24449860

  19. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology

    PubMed Central

    2010-01-01

    Research in plant molecular biology involves DNA purification on a daily basis. Although different commercial kits enable convenient extraction of high-quality DNA from E. coli cells, PCR and agarose gel samples as well as plant tissues, each kit is designed for a particular type of DNA extraction work, and the cost of purchasing these kits over a long run can be considerable. Furthermore, a simple method for the isolation of binary plasmid from Agrobacterium tumefaciens cells with satisfactory yield is lacking. Here we describe an easy protocol using homemade silicon dioxide matrix and seven simple solutions for DNA extraction from E. coli and A. tumefaciens cells, PCR and restriction digests, agarose gel slices, and plant tissues. Compared with the commercial kits, this protocol allows rapid DNA purification from diverse sources with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1) DNA fragments as small as a MYC-epitope tag coding sequence can be successfully recovered from an agarose gel slice; (2) Miniprep DNA from E. coli can be eluted with as little as 5 μl water, leading to high DNA concentrations (>1 μg/μl) for efficient biolistic bombardment of Arabidopsis seedlings, polyethylene glycol (PEG)-mediated Arabidopsis protoplast transfection and maize protoplast electroporation; (3) Binary plasmid DNA prepared from A. tumefaciens is suitable for verification by restriction analysis without the need for large scale propagation; (4) High-quality genomic DNA is readily isolated from several plant species including Arabidopsis, tobacco and maize. Thus, the silicon dioxide matrix-based DNA purification protocol offers an easy, efficient and economical way to extract DNA for various purposes in plant research. PMID:20180960

  20. Enhancing Electrotransfection Efficiency through Improvement in Nuclear Entry of Plasmid DNA.

    PubMed

    Cervia, Lisa D; Chang, Chun-Chi; Wang, Liangli; Mao, Mao; Yuan, Fan

    2018-06-01

    The nuclear envelope is a physiological barrier to electrogene transfer. To understand different mechanisms of the nuclear entry for electrotransfected plasmid DNA (pDNA), the current study investigated how manipulation of the mechanisms could affect electrotransfection efficiency (eTE), transgene expression level (EL), and cell viability. In the investigation, cells were first synchronized at G2-M phase prior to electrotransfection so that the nuclear envelope breakdown (NEBD) occurred before pDNA entered the cells. The NEBD significantly increased the eTE and the EL while the cell viability was not compromised. In the second experiment, the cells were treated with a nuclear pore dilating agent (i.e., trans-1,2-cyclohexanediol). The treatment could increase the EL, but had only minor effects on eTE. Furthermore, the treatment was more cytotoxic, compared with the cell synchronization. In the third experiment, a nuclear targeting sequence (i.e., SV40) was incorporated into the pDNA prior to electrotransfection. The incorporation was more effective than the cell synchronization for enhancing the EL, but not the eTE, and the effectiveness was cell type dependent. Taken together, the data described above suggested that synchronization of the NEBD could be a practical approach to improving electrogene transfer in all dividing cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Tian, Jiyuan; Yu, Juan; Sun, Xiuqin

    2008-12-15

    Oral DNA-based immunotherapy is a new treatment option for fish immunisation in intensive culture. However, because of the existence of the nucleases and severe gastrointestinal conditions, DNA-based vaccines can be hydrolyzed or denatured. In our laboratory, a plasmid DNA (pDNA) containing major capsid protein (MCP) gene of lymphocystis disease virus (LCDV) was prepared, and then pDNA was encapsulated in chitosan microspheres through an emulsion-based methodology. The yield, loading percent and encapsulation efficiency of microspheres were 93.6%, 0.3% and 94.5%, respectively. Scanning electron microscopy (SEM) showed that pDNA-loaded microspheres yielded a spherical shape with smooth surfaces. The disproportion of super-coiled to open circle and linear pDNA suggested that high transfection efficiencies of pDNA in microspheres were retained. The cumulative release of pDNA showed that chitosan microspheres were resistant to degradation in simulated gastrointestinal tract environment. The release profile at PBS buffer (pH 7.4) displayed that pDNA-loaded chitosan microspheres had a release up to 42 days after intestinal imbibition. RT-PCR showed that RNA containing information of MCP gene existed in various tissues 10-90 days post-vaccination. SDS-PAGE and immunofluorescent images indicated that pDNA expressed MCP in tissues of fish 10-90 days after oral administration. In addition, indirect ELISA displayed that the immune responses of sera were positive (O.D.> or =0.3) from week 1 to week 16 for fish vaccinated with microspheres, in comparison with fish vaccinated with naked pDNA. Data obtained suggested that chitosan microspheres were promising carriers for oral pDNA vaccine. Because this encapsulation technique was easy to operate and immunisation efficacy of microspheres loaded with pDNA was significant, it had potential to be used in drug delivery applications.

  2. In vivo transcription of R-plasmid deoxyribonucleic acid in Escherichia coli strains with altered antibiotic resistance levels and/or conjugal proficiency.

    PubMed Central

    Davis, R; Vapnek, D

    1976-01-01

    The amounts of plasmid deoxyribonucleic acid (DNA) and the levels of the in vivo transcription of the Escherichia coli plasmids R538-1 (repressed for conjugal transfer) and R538-1drd (derepressed for transfer) were determined by DNA-DNA hybridization and DNA-ribonucleic acid hybridization, respectively. The results demonstrate that the level of plasmid transcription is increased by two-fold in the strain carrying the derepressed plasmid, compared to an isogenic strain carrying the repressed plasmid, whereas the amount of plasmid DNA is approximately the same, suggesting that the transfer genes are under transcriptional control. Levels of plasmid DNA, plasmid DNA transcription, and chloramphenicol acetyltransferase activity were also compared in a mutant strain that carried the R538-1drd plasmid and was resistant to high levels of antibiotics. This strain produces about 13 copies of plasmid DNA per chromosome compared to five copies for the parent strain. The level of transcription of plasmid DNA was found to be twofold higher in the high-level resistant strain, whereas the level of chloramphenition, acetyltransferase activity was increased by 10-fold. In addition the levels of plasmid DNA transcription and chloramphenicol acetyltransferase activity in the high-level resistant strain were found to be further increased by the presence of high levels of chloramphenicol in the growth medium. The amount of plasmid DNA remained constant under these conditions, indicating that high levels of chloramphenicol can stimulate the expression of plasmid genes at the level of transcription in this strain. PMID:767321

  3. Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.

    PubMed

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2017-04-11

    Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation

  4. Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollet, Rebecca M.; Ingle, James D.; Hymes, Jeff P.

    Antimicrobial resistance inStaphylococcus aureuspresents an increasing threat to human health. This resistance is often encoded on mobile plasmids, such as pSK41; however, the mechanism of transfer of these plasmids is not well understood. In this study, we first examine key protein-DNA interactions formed by the relaxase enzyme, NES, which initiates and terminates the transfer of the multidrug resistance plasmid pSK41. Two loops on the NES protein, hairpin loops 1 and 2, form extensive contacts with the DNA hairpin formed at theoriTregion of pSK41, and here we establish that these contacts are essential for proper DNA cleavage and religation by themore » full 665-residue NES proteinin vitro. Second, pSK156 and pCA347 are nonconjugativeStaphylococcus aureusplasmids that contain sequences similar to theoriTregion of pSK41 but differ in the sequence predicted to form a DNA hairpin. We show that pSK41-encoded NES is able to bind, cleave, and religate theoriTsequences of these nonconjugative plasmidsin vitro. Although pSK41 could mobilize a coresident plasmid harboring its cognateoriT, it was unable to mobilize plasmids containing the pSK156 and pCA347 variantoriTmimics, suggesting that an accessory protein like that previously shown to confer specificity in the pWBG749 system may also be involved in transmission of plasmids containing a pSK41-likeoriT. These data indicate that the conjugative relaxase intransmechanism recently described for the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further heightening the potential significance of this mechanism in the horizontal transfer of staphylococcal plasmids. IMPORTANCEUnderstanding the mechanism of antimicrobial resistance transfer in bacteria such asStaphylococcus aureusis an important step toward potentially slowing the spread of antimicrobial-resistant infections. This work establishes protein-DNA interactions essential for the transfer of theStaphylococcus aureusmultiresistance plasmid

  5. Comparison of the Deoxyribonucleic Acid Molecular Weights and Homologies of Plasmids Conferring Linked Resistance to Streptomycin and Sulfonamides

    PubMed Central

    Barth, Peter T.; Grinter, Nigel J.

    1974-01-01

    Bacterial strains showing linked resistance to streptomycin (Sm) and sulfonamides (Su) were chosen representing a wide taxonomic and geographical range. Their SmSu resistances were transferred to Escherichia coli K-12 and then plasmid deoxyribonucleic acid (DNA) was isolated by ethidium bromide CsCl centrifugation. The plasmid DNA was examined by electron microscopy and analyzed by sedimentation through 5 to 20% neutral sucrose gradients. Plasmid DNA from strains having transmissible SmSu resistance consisted of two or three molecular species, one of which had a molecular mass of about 5.7 Mdal (106 daltons), the others varying between 20 to 60 Mdal. By using transformation or F′ mobilization, we isolated the SmSu-resistance determinant from any fellow resident plasmids in each strain and again isolated the plasmid DNA. Cosedimentation of each of these with a differently labeled reference plasmid DNA (R300B) showed 9 out of 12 of the plasmids to have a molecular mass not significantly different from the reference (5.7 Mdal); two others were 6.3 and 9.2 Mdal, but PB165 consisted of three plasmids of 7.4, 14.7, and 21.4 Mdal. Three separate isolations of the SmSu determinant from PB165 gave the same three plasmids, which we conclude may be monomer, dimer, and trimer, respectively. DNA-DNA hybridizations at 75 C demonstrated 80 to 93% homology between reference R300B DNA and each isolated SmSu plasmid DNA, except for the 9.2-Mdal plasmid which had 45% homology and PB165 which had 35%. All the SmSu plasmids were present as multiple copies (about 10) per chromosome. The conjugative plasmid of R300 (present as 1.3 copies per chromosome) has been shown to have negligible effect on the number of copies of its accompanying SmSu plasmid R300B. We conclude that the SmSu plasmids are closely related and probably have a common evolutionary origin. Images PMID:4616941

  6. The suitability of DEAE-Cl active groups on customized poly(GMA-co-EDMA) continuous stationary phase for fast enzyme-free isolation of plasmid DNA.

    PubMed

    Danquah, Michael K; Forde, Gareth M

    2007-06-15

    The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5alpha-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.

  7. Exponential Megapriming PCR (EMP) Cloning—Seamless DNA Insertion into Any Target Plasmid without Sequence Constraints

    PubMed Central

    Ulrich, Alexander; Andersen, Kasper R.; Schwartz, Thomas U.

    2012-01-01

    We present a fast, reliable and inexpensive restriction-free cloning method for seamless DNA insertion into any plasmid without sequence limitation. Exponential megapriming PCR (EMP) cloning requires two consecutive PCR steps and can be carried out in one day. We show that EMP cloning has a higher efficiency than restriction-free (RF) cloning, especially for long inserts above 2.5 kb. EMP further enables simultaneous cloning of multiple inserts. PMID:23300917

  8. Exponential megapriming PCR (EMP) cloning--seamless DNA insertion into any target plasmid without sequence constraints.

    PubMed

    Ulrich, Alexander; Andersen, Kasper R; Schwartz, Thomas U

    2012-01-01

    We present a fast, reliable and inexpensive restriction-free cloning method for seamless DNA insertion into any plasmid without sequence limitation. Exponential megapriming PCR (EMP) cloning requires two consecutive PCR steps and can be carried out in one day. We show that EMP cloning has a higher efficiency than restriction-free (RF) cloning, especially for long inserts above 2.5 kb. EMP further enables simultaneous cloning of multiple inserts.

  9. 8-Methoxypsoralen photoinduced plasmid-chromosome recombination in Saccharomyces cerevisiae using a centromeric vector.

    PubMed Central

    Meira, L B; Henriques, J A; Magaña-Schwencke, N

    1995-01-01

    The characterization of a new system to study the induction of plasmid-chromosome recombination is described. Single-stranded and double-stranded centromeric vectors bearing 8-methoxypsoralen photoinduced lesions were used to transform a wild-type yeast strain bearing the leu2-3,112 marker. Using the SSCP methodology and DNA sequencing, it was demonstrated that repair of the lesions in plasmid DNA was mainly due to conversion of the chromosomal allele to the plasmid DNA. Images PMID:7784218

  10. Enhanced plasmid DNA production by enzyme-controlled glucose release and an engineered Escherichia coli.

    PubMed

    Ramírez, Elisa A; Velázquez, Daniela; Lara, Alvaro R

    2016-04-01

    To evaluate the combination of a culture medium employing glucoamylase-mediated glucose reléase from a gluco-polysaccharide and an E. coli strain engineered in its glucose transport system for improving plasmid DNA (pDNA) production. The production of pDNA was tested using E. coli DH5α grown in shake-flasks and the recently developed VH33 Δ(recA deoR)-engineered strain, which utilizes glucose more efficiently than wild type strains. Three glucoamylase concentrations for releasing glucose from the polysaccharide carbon source were used: 1, 2 and 3 U l(-1). Both strains reached similar cell densities ranging from 5 to 8.8 g l(-1) under the different conditions. The highest pDNA yields on biomass (YpDNA/X) for both strains were obtained when 3 U enzyme l(-1)were used. Under these conditions, 35 ± 3 mgof pDNA l(-1) were produced by DH5α after 24 h of culture. Under the same conditions, the engineered strain produced 66 ± 1 mgpDNAl(-1) after 20 h. pDNA supercoiled fractionswere close to 80 % for both strains. The pDNA concentration achieved by the engineered E. coli was 89 % higher than that of DH5α. The combination of the engineered strain and enzyme-controlled glucose release is an attractive alternative for pDNA production in shake-flasks.

  11. Evidence for autonomous replication and stabilization of recombinant plasmids in the transformants of yeast Hansenula polymorpha.

    PubMed

    Tikhomirova, L P; Ikonomova, R N; Kuznetsova, E N

    1986-01-01

    For the transformation of the yeast Hansenula polymorpha we have constructed a set of hybrid plasmids carrying the LEU2 gene of Saccharomyces cerevisiae as a selective marker and fragments of mitochondrial DNA of Candida utilis and H. polymorpha or chromosomal DNA fragments of H. polymorpha as replicator sequences. The replication properties of chimeric plasmids in the yeast H. polymorpha were investigated. We showed that for plasmids propagated autonomously in this yeast the plasmid monomers could be detected in the transformants only during the immediate time after the transformation event. Further growth under selective conditions led to the selection of polymeric forms of plasmid DNA as it was clearly shown for transformants carrying cosmid pL2 with mtDNA fragment of C. utilis. Such transformants carrying polymerized plasmids showed a remarkably increased stability of the transformed phenotype. Cosmid pL2 was able to shuttle between Escherichia coli, S. cerevisiae and H. polymorpha, whereas plasmids with DNA fragments from H. polymorpha did not transform S. cerevisiae effectively.

  12. An oligonucleotide microarray to characterize multidrug resistant plasmids

    USDA-ARS?s Scientific Manuscript database

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the host organism like antibiotic drug resistance. Many of the Enterobacteriaceae carry multiple drug resistance (MDR) genes on large plasmids of replic...

  13. DNA and RNA polymerase activity in a Moniliophthora perniciosa mitochondrial plasmid and self-defense against oxidative stress.

    PubMed

    Andrade, B S; Villela-Dias, C; Gomes, D S; Micheli, F; Góes-Neto, A

    2013-06-13

    Moniliophthora perniciosa (Stahel) Aime and Phillips-Mora is a hemibiotrophic basidiomycete (Agaricales, Tricholomataceae) that causes witches' broom disease in cocoa (Theobroma cacao L.). This pathogen carries a stable integrated invertron-type linear plasmid in its mitochondrial genome that encodes viral-like DNA and RNA polymerases related to fungal senescence and longevity. After culturing the fungus and obtaining its various stages of development in triplicate, we carried out total RNA extraction and subsequent complementary DNA synthesis. To analyze DNA and RNA polymerase expression levels, we performed real-time reverse transcriptase polymerase chain reaction for various fungal phases of development. Our results showed that DNA and RNA polymerase gene expression in the primordium phase of M. perniciosa is related to a potential defense mechanism against T. cacao oxidative attack.

  14. Phototransfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Thobakgale, Lebogang; Manoto, Sello Lebohang; Ombinda Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Cellular manipulation by delivery of molecules into cells has been applied extensively in tissue engineering research for medical applications . The different molecular delivery techniques used range from viral and chemical agents to physical and electrical methods. Although successful in most studies, these techniques have inherent difficulties such as toxicity, unwanted genetic mutations and low reproducibility respectively. Literature recognizes pulsed lasers at femtosecond level to be most efficient in photonic interactions with biological material. As of late, laser pulses have been used for drug and DNA delivery into cells via transient optical perforation of the cellular membrane. Thus in this study, we design and construct an optical system coupled to a femtosecond laser for the purpose of phototransfection or insertion of plasmid DNA (pDNA) into cells using lasers. We used fluorescent green protein (pGFP) to transfect mouse embryonic stem cells as our model. Secondly, we applied fluorescence imaging to view the extent of DNA delivery using this method. We also assessed the biocompatibility of our system by performing molecular assays of the cells post irradiation using adenosine triphosphate (ATP) and lactate dehydrogenase (LDH).

  15. Optimization of kinetic parameters for the degradation of plasmid DNA in rat plasma

    NASA Astrophysics Data System (ADS)

    Chaudhry, Q. A.

    2014-12-01

    Biotechnology is a rapidly growing area of research work in the field of pharmaceutical sciences. The study of pharmacokinetics of plasmid DNA (pDNA) is an important area of research work. It has been observed that the process of gene delivery faces many troubles on the transport of pDNA towards their target sites. The topoforms of pDNA has been termed as super coiled (S-C), open circular (O-C) and linear (L), the kinetic model of which will be presented in this paper. The kinetic model gives rise to system of ordinary differential equations (ODEs), the exact solution of which has been found. The kinetic parameters, which are responsible for the degradation of super coiled, and the formation of open circular and linear topoforms have a great significance not only in vitro but for modeling of further processes as well, therefore need to be addressed in great detail. For this purpose, global optimization techniques have been adopted, thus finding the optimal results for the said model. The results of the model, while using the optimal parameters, were compared against the measured data, which gives a nice agreement.

  16. MobB protein stimulates nicking at the R1162 origin of transfer by increasing the proportion of complexed plasmid DNA.

    PubMed Central

    Perwez, T; Meyer, R

    1996-01-01

    An essential early step in conjugal mobilization of R1162, nicking of the DNA strand that is subsequently transferred, is carried out in the relaxosome, a complex of two plasmid-encoded proteins and DNA at the origin of transfer (oriT). A third protein, MobB, is also required for efficient mobilization. We show that in the cell this protein increases the proportion of molecules specifically nicked at oriT, resulting in lower yields of covalently closed molecules after alkaline extraction. These nicked molecules largely remain supercoiled, with unwinding presumably constrained by the relaxosome. MobB enhances the sensitivity of the oriT DNA to oxidation by permanganate, indicating that the protein acts by increasing the fraction of complexed molecules. Mutations that significantly reduce the amount of complexed DNA in the cell were isolated. However, plasmids with these mutations were mobilized at nearly the normal frequency, were nicked at a commensurate level, and still required MobB. Our results indicate that the frequency of transfer is determined both by the amount of time each molecule is in the nicked form and by the proportion of complexed molecules in the total population. PMID:8824623

  17. Naked mole-rats maintain healthy skeletal muscle and Complex IV mitochondrial enzyme function into old age

    PubMed Central

    Stoll, Elizabeth A; Karapavlovic, Nevena; Rosa, Hannah; Woodmass, Michael; Rygiel, Karolina; White, Kathryn; Turnbull, Douglass M; Faulkes, Chris G

    2016-01-01

    The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades. PMID:27997359

  18. Effect of thiol pendant conjugates on plasmid DNA binding, release, and stability of polymeric delivery vectors.

    PubMed

    Bacalocostantis, Irene; Mane, Viraj P; Kang, Michael S; Goodley, Addison S; Muro, Silvia; Kofinas, Peter

    2012-05-14

    Polymers have attracted much attention as potential gene delivery vectors due to their chemical and structural versatility. However, several challenges associated with polymeric carriers, including low transfection efficiencies, insufficient cargo release, and high cytotoxicity levels have prevented clinical implementation. Strong electrostatic interactions between polymeric carriers and DNA cargo can prohibit complete cargo release within the cell. As a result, cargo DNA never reaches the cell's nucleus where gene expression takes place. In addition, highly charged cationic polymers have been correlated with high cytotoxicity levels, making them unsuitable carriers in vivo. Using poly(allylamine) (PAA) as a model, we investigated how pH-sensitive disulfide cross-linked polymer networks can improve the delivery potential of cationic polymer carriers. To accomplish this, we conjugated thiol-terminated pendant chains onto the primary amines of PAA using 2-iminothiolane, developing three new polymer vectors with 5, 13, or 20% thiol modification. Unmodified PAA and thiol-conjugated polymers were tested for their ability to bind and release plasmid DNA, their capacity to protect genetic cargo from enzymatic degradation, and their potential for endolysosomal escape. Our results demonstrate that polymer-plasmid complexes (polyplexes) formed by the 13% thiolated polymer demonstrate the greatest delivery potential. At high N/P ratios, all thiolated polymers (but not unmodified counterparts) were able to resist decomplexation in the presence of heparin, a negatively charged polysaccharide used to mimic in vivo polyplex-protein interactions. Further, all thiolated polymers exhibited higher buffering capacities than unmodified PAA and, therefore, have a greater potential for endolysosomal escape. However, 5 and 20% thiolated polymers exhibited poor DNA binding-release kinetics, making them unsuitable carriers for gene delivery. The 13% thiolated polymers, on the other hand

  19. Plasmid DNA vaccination using skin electroporation promotes poly-functional CD4 T-cell responses.

    PubMed

    Bråve, Andreas; Nyström, Sanna; Roos, Anna-Karin; Applequist, Steven E

    2011-03-01

    Plasmid DNA vaccination using skin electroporation (EP) is a promising method able to elicit robust humoral and CD8(+) T-cell immune responses while limiting invasiveness of delivery. However, there is still only limited data available on the induction of CD4(+) T-cell immunity using this method. Here, we compare the ability of homologous prime/boost DNA vaccinations by skin EP and intramuscular (i.m.) injection to elicit immune responses by cytokine enzyme-linked immunosorbent spot (ELISPOT) assay, as well as study the complexity of CD4(+) T-cell responses to the human immunodeficiency virus antigen Gag, using multiparamater flow cytometry. We find that DNA vaccinations by skin EP and i.m. injection are capable of eliciting both single- and poly-functional vaccine-specific CD4(+) T cells. However, although DNA delivered by skin EP was administered at a five-fold lower dose it elicited significant increases in the magnitude of multiple-cytokine producers compared with i.m. immunization suggesting that the skin EP could provide greater poly-functional T-cell help, a feature associated with successful immune defense against infectious agents.

  20. Plasmid incidence in bacteria from deep subsurface sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, J.K.; Hicks, R.J.; Li, S.W.

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu{sup 2+}, Cr{sup 3+}, and Hg{sup 2+} for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of themore » individual antibiotics in the disks used for assaying resistance and to the production of low levels of {beta}-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacterial to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.« less

  1. A surface plasmon resonance study of the intermolecular interaction between Escherichia coli topoisomerase I and pBAD/Thio supercoiled plasmid DNA

    PubMed Central

    Tiwari, Purushottam Babu; Annamalai, Thirunavukkarasu; Cheng, Bokun; Narula, Gagandeep; Wang, Xuewen; Tse-Dinh, Yuk-Ching; He, Jin; Darici, Yesim

    2014-01-01

    To date, the bacterial DNA topoisomerases are one of the major target biomolecules for the discovery of new antibacterial drugs. DNA topoisomerase regulates the topological state of DNA, which is very important for replication, transcription and recombination. The relaxation of negatively supercoiled DNA is catalyzed by bacterial DNA topoisomerase I (topoI) and this reaction requires Mg2+. In this report, we first quantitatively studied the intermolecular interactions between Escherichia coli topoisomerase I (EctopoI) and pBAD/Thio supercoiled plasmid DNA using surface plasmon resonance (SPR) technique. The equilibrium dissociation constant (Kd) for EctopoI-pBAD/Thio interactions is determined to be about 8 nM. We then studied the effect of Mg2+ on the catalysis of EctopoI-pBAD/Thio reaction. A slightly higher equilibrium dissociation constant (~15 nM) was obtained for Mg2+ coordinated EctopoI (Mg2+EctopoI)-pBAD/Thio interactions. In addition, we observed a larger dissociation rate constant (kd) for Mg2+EctopoI-pBAD/Thio interactions (~0.043 s−1), compared to EctopoI-pBAD/Thio interactions (~0.017 s−1). These results suggest that enzyme turnover during plasmid DNA relaxation is enhanced due to the presence of Mg2+ and furthers the understanding of importance of the Mg2+ ion for bacterial topoisomerase I catalytic activity. PMID:24530905

  2. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165).

    PubMed

    Keeney, Michael; van den Beucken, Jeroen J J P; van der Kraan, Peter M; Jansen, John A; Pandit, Abhay

    2010-04-01

    Collagen/calcium phosphate scaffolds have been used for bone reconstruction due to their inherent similarities to the bone extracellular matrix. Calcium phosphate alone has also been used as a non-viral vector for gene delivery. The aim of this study was to determine the capability of a collagen/calcium phosphate scaffold to deliver naked plasmid DNA and mediate transfection in vivo. The second goal of the study was to deliver a plasmid encoding vascular endothelial growth factor(165) (pVEGF(165)) to promote angiogenesis, and hence bone formation, in a mouse intra-femoral model. The delivery of naked plasmid DNA resulted in a 7.6-fold increase in mRNA levels of beta-Galactosidase compared to the delivery of plasmid DNA complexed with a partially degraded PAMAM dendrimer (dPAMAM) in a subcutaneous murine model. When implanted in a muirne intra-femoral model, the delivery of pVEGF(165) resulted in a 2-fold increase in bone volume at the defect site relative to control scaffolds without pVEGF(165). It was concluded that a collagen/calcium phosphate scaffold can mediate transfection without the use of additional transfection vectors and can promote bone formation in a mouse model via the delivery of pVEGF(165). 2009 Elsevier Ltd. All rights reserved.

  3. CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.

    PubMed

    Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo

    2017-06-25

    Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.

  4. Development of a novel rDNA based plasmid for enhanced cell surface display on Yarrowia lipolytica.

    PubMed

    Bulani, Siyavuya Ishmael; Moleleki, Lucy; Albertyn, Jacobus; Moleleki, Ntsane

    2012-05-20

    In this study, a novel rDNA based plasmid was developed for display of heterologous proteins on the cell surface of Yarrowia lipolytica using the C-terminal end of the glycosylphosphatidylinositol (GPI) anchored Y. lipolytica cell wall protein 1 (YlCWP1). mCherry was used as a model protein to assess the efficiency of the constructed plasmid. Y. lipolytica transformants harbouring the expression cassettes showed a purple colour phenotype on selective YNB-casamino plates as compared to control cells indicating that mCherry was displayed on the cells. Expression of mCherry on cells of Y. lipolytica was confirmed by both fluorescent microscopy and flow cytometry. Furthermore, SDS-PAGE analysis and matrix-assisted laser desorption/ionization (MALDI)-time-of (TOF)-mass spectrometry (MS) peptide mass fingerprinting (PMF) confirmed that the protein cleaved from the yeast cells using enterokinase was mCherry. Efficient cleavage of mCherry reported in this work offers an alternative purification method for displayed heterologous proteins on Y. lipolytica cells using the plasmid constructed in this study. The developed displaying system offers great potential for industrial production and purification of heterologous proteins at low cost.

  5. Alternatives for the intermediate recovery of plasmid DNA: performance, economic viability and environmental impact.

    PubMed

    Freitas, Sindelia; Canário, Sónia; Santos, José A L; Prazeres, Duarte M F

    2009-02-01

    Robust cGMP manufacturing is required to produce high-quality plasmid DNA (pDNA). Three established techniques, isopropanol and ammonium sulfate (AS) precipitation (PP), tangential flow filtration (TFF) and aqueous two-phase systems (ATPS) with PEG600/AS, were tested as alternatives to recover pDNA from alkaline lysates. Yield and purity data were used to evaluate the economic and environmental impact of each option. Although pDNA yields > or = 90% were always obtained, ATPS delivered the highest HPLC purity (59%), followed by PP (48%) and TFF (18%). However, the ability of ATPS to concentrate pDNA was very poor when compared with PP or TFF. Processes were also implemented by coupling TFF with ATPS or AS-PP. Process simulations indicate that all options require large amounts of water (100-200 tons/kg pDNA) and that the ATPS process uses large amounts of mass separating agents (65 tons/kg pDNA). Estimates indicate that operating costs of the ATPS process are 2.5-fold larger when compared with the PP and TFF processes. The most significant contributions to the costs in the PP, TFF and ATPS processes came from operators (59%), consumables (75%) and raw materials (84%), respectively. The ATPS process presented the highest environmental impact, whereas the impact of the TFF process was negligible.

  6. DNA plasmid vaccine carrying Chlamydia trachomatis (Ct) major outer membrane and human papillomavirus 16L2 proteins for anti-Ct infection.

    PubMed

    Wang, Ledan; Cai, Yiqi; Xiong, Yirong; Du, Wangqi; Cen, Danwei; Zhang, Chanqiong; Song, Yiling; Zhu, Shanli; Xue, Xiangyang; Zhang, Lifang

    2017-05-16

    Chlamydia trachomatis (Ct) is one of the most frequently encountered sexual infection all over the world, yielding tremendous reproductive problems (e.g. infertility and ectopic pregnancy) in the women. This work described the design of a plasmid vaccine that protect mice from Ct infection, and reduce productive tract damage by generating effective antibody and cytotoxic T cell immunity. The vaccine, s was composed of MOMP multi-epitope and HPV16L2 genes carried in pcDNA plasmid (i.e. pcDNA3.1/MOMP/HPV16L). In transfection, the vaccine expressed the chimeric genes (i.e. MOMP and HPV16L2), as demonstrated via western blot, RT-PCR and fluorescence imaging. In vitro, the vaccine transfected COS-7 cells and expressed the proteins corresponding to the genes carried in the vaccine. Through intramuscular immunization in BALB/c mice, the vaccine induced higher levels of anti-Ct IgG titer, anti-HPV16L2 IgG titer in serum and IgA titer in local mucosal secretions, compared to plasmid vaccines that carry only Ct MOMP multi-epitope or HPV16L2 chimeric component only. In mice intravaginally challenged with Ct, the vaccines pcDNA3.1/MOMP/HPV16L2 generated a higher level of genital protection compared to other vaccine formulations. Additionally, histochemical staining indicated that pcDNA3.1/MOMP/HPV16L2 eliminated mouse genital tract tissue pathologies induced by Ct infection. This work demonstrated that pcDNA/MOMP/HPV16L2 vaccine can protect against Ct infection by regulating antibody production, cytotoxic T cell killing functions and reducing pathological damage in mice genital tract. This work can potentially offer us a new vaccine platform against Ct infection.

  7. Functional activity of plasmid DNA after entry into the atmosphere of earth investigated by a new biomarker stability assay for ballistic spaceflight experiments.

    PubMed

    Thiel, Cora S; Tauber, Svantje; Schütte, Andreas; Schmitz, Burkhard; Nuesse, Harald; Moeller, Ralf; Ullrich, Oliver

    2014-01-01

    Sounding rockets represent an excellent platform for testing the influence of space conditions during the passage of Earth's atmosphere and re-entry on biological, physical and chemical experiments for astrobiological purposes. We designed a robust functionality biomarker assay to analyze the biological effects of suborbital spaceflights prevailing during ballistic rocket flights. During the TEXUS-49 rocket mission in March 2011, artificial plasmid DNA carrying a fluorescent marker (enhanced green fluorescent protein: EGFP) and an antibiotic resistance cassette (kanamycin/neomycin) was attached on different positions of rocket exterior; (i) circular every 90 degree on the outer surface concentrical of the payload, (ii) in the grooves of screw heads located in between the surface application sites, and (iii) on the surface of the bottom side of the payload. Temperature measurements showed two major peaks at 118 and 130 °C during the 780 seconds lasting flight on the inside of the recovery module, while outer gas temperatures of more than 1000 °C were estimated on the sample application locations. Directly after retrieval and return transport of the payload, the plasmid DNA samples were recovered. Subsequent analyses showed that DNA could be recovered from all application sites with a maximum of 53% in the grooves of the screw heads. We could further show that up to 35% of DNA retained its full biological function, i.e., mediating antibiotic resistance in bacteria and fluorescent marker expression in eukaryotic cells. These experiments show that our plasmid DNA biomarker assay is suitable to characterize the environmental conditions affecting DNA during an atmospheric transit and the re-entry and constitute the first report of the stability of DNA during hypervelocity atmospheric transit indicating that sounding rocket flights can be used to model the high-speed atmospheric entry of organics-laden artificial meteorites.

  8. Functional Activity of Plasmid DNA after Entry into the Atmosphere of Earth Investigated by a New Biomarker Stability Assay for Ballistic Spaceflight Experiments

    PubMed Central

    Thiel, Cora S.; Tauber, Svantje; Schütte, Andreas; Schmitz, Burkhard; Nuesse, Harald; Moeller, Ralf; Ullrich, Oliver

    2014-01-01

    Sounding rockets represent an excellent platform for testing the influence of space conditions during the passage of Earth's atmosphere and re-entry on biological, physical and chemical experiments for astrobiological purposes. We designed a robust functionality biomarker assay to analyze the biological effects of suborbital spaceflights prevailing during ballistic rocket flights. During the TEXUS-49 rocket mission in March 2011, artificial plasmid DNA carrying a fluorescent marker (enhanced green fluorescent protein: EGFP) and an antibiotic resistance cassette (kanamycin/neomycin) was attached on different positions of rocket exterior; (i) circular every 90 degree on the outer surface concentrical of the payload, (ii) in the grooves of screw heads located in between the surface application sites, and (iii) on the surface of the bottom side of the payload. Temperature measurements showed two major peaks at 118 and 130°C during the 780 seconds lasting flight on the inside of the recovery module, while outer gas temperatures of more than 1000°C were estimated on the sample application locations. Directly after retrieval and return transport of the payload, the plasmid DNA samples were recovered. Subsequent analyses showed that DNA could be recovered from all application sites with a maximum of 53% in the grooves of the screw heads. We could further show that up to 35% of DNA retained its full biological function, i.e., mediating antibiotic resistance in bacteria and fluorescent marker expression in eukariotic cells. These experiments show that our plasmid DNA biomarker assay is suitable to characterize the environmental conditions affecting DNA during an atmospheric transit and the re-entry and constitute the first report of the stability of DNA during hypervelocity atmospheric transit indicating that sounding rocket flights can be used to model the high-speed atmospheric entry of organics-laden artificial meteorites. PMID:25426925

  9. Transformation of Saccharomyces cerevisiae with UV-irradiated single-stranded plasmid.

    PubMed

    Zgaga, Z

    1991-08-01

    UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.

  10. Plasmid pVAX1-NH36 purification by membrane and bead perfusion chromatography.

    PubMed

    Franco-Medrano, Diana Ivonne; Guerrero-Germán, Patricia; Montesinos-Cisneros, Rosa María; Ortega-López, Jaime; Tejeda-Mansir, Armando

    2017-03-01

    The demand for plasmid DNA (pDNA) has increased in response to the rapid advances in vaccines applications to prevent and treat infectious diseases caused by virus, bacteria or parasites, such as Leishmania species. The immunization protocols require large amounts of supercoiled plasmid DNA (sc-pDNA) challenging the development of efficient and profitable processes for capturing and purified pDNA molecules from large volumes of lysates. A typical bioprocess involves four steps: fermentation, primary recovery, intermediate recovery and final purification. Ion-exchange chromatography is one of the key operations in the purification schemes of pDNA owing the chemical structure of these macromolecules. The goal of this research was to compare the performance of the final purification step of pDNA using ion-exchange chromatography on columns packed with Mustang Q membranes or perfusive beads POROS 50 HQ. The experimental results showed that both matrixes could separate the plasmid pVAX1-NH36 (3936 bp) from impurities in clarified Escherichia coli lysates with an adequate resolution. In addition, a 24- and 21-fold global purification factor was obtained. An 88 and 63% plasmid recuperation was achieved with ion-exchange membranes and perfusion beads, respectively. A better understanding of perfusion-based matrices for the purification of pDNA was developed in this research.

  11. Effect of West Nile virus DNA-plasmid vaccination on response to live virus challenge in red-tailed hawks (Buteo jamaicensis).

    PubMed

    Redig, Patrick T; Tully, Thomas N; Ritchie, Branson W; Roy, Alma F; Baudena, M Alexandra; Chang, Gwong-Jen J

    2011-08-01

    To evaluate the safety and efficacy of an experimental adjuvanted DNA-plasmid vaccine against West Nile virus (WNV) in red-tailed hawks (Buteo jamaicensis). 19 permanently disabled but otherwise healthy red-tailed hawks of mixed ages and both sexes without detectable serum antibodies against WNV. Hawks were injected IM with an experimental WNV DNA-plasmid vaccine in an aluminum-phosphate adjuvant (n = 14) or with the adjuvant only (control group; 5). All birds received 2 injections at a 3-week interval. Blood samples for serologic evaluation were collected before the first injection and 4 weeks after the second injection (day 0). At day 0, hawks were injected SC with live WNV. Pre- and postchallenge blood samples were collected at intervals for 14 days for assessment of viremia and antibody determination; oropharyngeal and cloacal swabs were collected for assessment of viral shedding. Vaccination was not associated with morbidity or deaths. Three of the vaccinated birds seroconverted after the second vaccine injection; all other birds seroconverted following the live virus injection. Vaccinated birds had significantly less severe viremia and shorter and less-intense shedding periods, compared with the control birds. Use of the WNV DNA-plasmid vaccine in red-tailed hawks was safe, and vaccination attenuated but did not eliminate both the viremia and the intensity of postchallenge shedding following live virus exposure. Further research is warranted to conclusively determine the efficacy of this vaccine preparation for protection of red-tailed hawks and other avian species against WNV-induced disease.

  12. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors.

    PubMed

    Sirsi, Shashank R; Hernandez, Sonia L; Zielinski, Lukasz; Blomback, Henning; Koubaa, Adel; Synder, Milo; Homma, Shunichi; Kandel, Jessica J; Yamashiro, Darrell J; Borden, Mark A

    2012-01-30

    Microbubble ultrasound contrast agents are being developed as image-guided gene carriers for targeted delivery in vivo. In this study, novel polyplex-microbubbles were synthesized, characterized and evaluated for systemic circulation and tumor transfection. Branched polyethylenimine (PEI; 25 kDa) was modified with polyethylene glycol (PEG; 5 kDa), thiolated and covalently attached to maleimide groups on lipid-coated microbubbles. The PEI-microbubbles demonstrated increasingly positive surface charge and DNA loading capacity with increasing maleimide content. The in vivo ultrasound contrast persistence of PEI-microbubbles was measured in the healthy mouse kidney, and a two-compartment pharmacokinetic model accounting for free and adherent microbubbles was developed to describe the anomalous time-intensity curves. The model suggested that PEI loading dramatically reduced free circulation and increased nonspecific adhesion to the vasculature. However, DNA loading to form polyplex-microbubbles increased circulation in the bloodstream and decreased nonspecific adhesion. PEI-microbubbles coupled to a luciferase bioluminescence reporter plasmid DNA were shown to transfect tumors implanted in the mouse kidney. Site-specific delivery was achieved using ultrasound applied over the tumor area following bolus injection of the DNA/PEI-microbubbles. In vivo imaging showed over 10-fold higher bioluminescence from the tumor region compared to untreated tissue. Ex vivo analysis of excised tumors showed greater than 40-fold higher expression in tumor tissue than non-sonicated control (heart) tissue. These results suggest that the polyplex-microbubble platform offers improved control of DNA loading and packaging suitable for ultrasound-guided tissue transfection. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters (223)Ra, (188)Re, and (99m)Tc.

    PubMed

    Runge, Roswitha; Oehme, Liane; Kotzerke, Jörg; Freudenberg, Robert

    2016-12-01

    DNA damage occurs as a consequence of both direct and indirect effects of ionizing radiation. The severity of DNA damage depends on the physical characteristics of the radiation quality, e.g., the linear energy transfer (LET). There are still contrary findings regarding direct or indirect interactions of high-LET emitters with DNA. Our aim is to determine DNA damage and the effect on cellular survival induced by (223)Ra compared to (188)Re and (99m)Tc modulated by the radical scavenger dimethyl sulfoxide (DMSO). Radioactive solutions of (223)Ra, (188)Re, or (99m)Tc were added to either plasmid DNA or to PC Cl3 cells in the absence or presence of DMSO. Following irradiation, single strand breaks (SSB) and double strand breaks (DSB) in plasmid DNA were analyzed by gel electrophoresis. To determine the radiosensitivity of the rat thyroid cell line (PC Cl3), survival curves were performed using the colony formation assay. Exposure to 120 Gy of (223)Ra, (188)Re, or (99m)Tc leads to maximal yields of SSB (80 %) in plasmid DNA. Irradiation with 540 Gy (223)Ra and 500 Gy (188)Re or (99m)Tc induced 40, 28, and 64 % linear plasmid conformations, respectively. DMSO prevented the SSB and DSB in a similar way for all radionuclides. However, with the α-emitter (223)Ra, a low level of DSB could not be prevented by DMSO. Irradiation of PC Cl3 cells with (223)Ra, (188)Re, and (99m)Tc pre-incubated with DMSO revealed enhanced survival fractions (SF) in comparison to treatment without DMSO. Protection factors (PF) were calculated using the fitted survival curves. These factors are 1.23 ± 0.04, 1.20 ± 0.19, and 1.34 ± 0.05 for (223)Ra, (188)Re, and (99m)Tc, respectively. For (223)Ra, as well as for (188)Re and (99m)Tc, dose-dependent radiation effects were found applicable for plasmid DNA and PC Cl3 cells. The radioprotection by DMSO was in the same range for high- and low-LET emitter. Overall, the results indicate the contribution of mainly indirect radiation

  14. Nanofabrication and characterization of PVA-organofiller/Ag nanocoatings on pMAD plasmids

    NASA Astrophysics Data System (ADS)

    Erdonmez, D.; Mosayyebi, S.; Erkan, K.; Salimi, K.; Nagizade, N.; Saglam, N.; Rzayev, Z. M. O.

    2014-11-01

    Nowadays, the most important problem in microbial researches is bacterial resistance which is carried out by DNA plasmids against antibacterial agents. The effect of antibacterial nanoparticles on bacteria is remarkable, but studies on the interactions of these particles with plasmids do not search or there are no adequate studies. We proposed that the nanoparticles, which are disrupted the self-assembled structure of plasmids, may decrease the resistance of bacteria, and therefore, increase the activity of utilized antibacterial agents. In this work, we synthesized polymer nanofiber webs samples by electrospinning technique from pure water solution of nanocomposites with different contents of silver nanoparticles, and surface morphology of nanofibers composites were characterized by SEM microscopy. Their interactions with pMAD DNA plasmids were investigated. It was demonstrated that the synthesized Ag-carrying nanohybrid composites with higher surface contacted areas were significantly inhibited the activity of plasmid DNA against bacterial resistance. Agreeing with obtained results, synthesized nanofiber coatings can be recommended for the widely applications in nanobiotechnology, nanomedicine, and bioengineering processing.

  15. Naked singularity resolution in cylindrical collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurita, Yasunari; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502; Nakao, Ken-ichi

    In this paper, we study the gravitational collapse of null dust in cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the backreaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the nakedmore » singularity. In this case, although this naked singularity satisfies the strong curvature condition by Krolak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore, we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally, the singularity completely disappears and the flat spacetime remains.« less

  16. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines.

    PubMed

    Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei

    2015-08-01

    DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.

  17. Application of methylation in improving plasmid transformation into Helicobacter pylori.

    PubMed

    Zhao, Huilin; Xu, Linlin; Rong, Qianyu; Xu, Zheng; Ding, Yunfei; Zhang, Ying; Wu, Yulong; Li, Boqing; Ji, Xiaofei

    2018-05-23

    Helicobacter pylori is an important gastrointestinal pathogen. Its strains possess different levels of powerful restriction modification systems, which are significant barriers to genetic tools used for studying the role of functional genes in its pathogenesis. Methylating vectors in vitro was reported as an alternative to overcome this barrier in several bacteria. In this study we used two H. pylori-E. coli shuttle plasmids and several single/double-crossover homologous recombination gene-targeting plasmids, to test the role of methylation in H. pylori transformation. According to our results, transformants could be obtained only after shuttle plasmids were methylated before transformation. It is helpful in gene complementation and over-expression although at a low frequency. The frequency of gene-targeting transformation was also increased after methylation, especially for the single-crossover recombination plasmids, the transformants of which could only be obtained after methylation. For the double-crossover recombination targeting plasmids, the initial yield of transformants was 0.3-0.8 × 10 2 CFUs per microgram plasmid DNA. With the help of methylation, the yield was increased to 0.4-1.3 × 10 2 CFUs per microgram plasmid DNA. These results suggest that in vitro methylation can improve H. pylori transformation by different plasmids, which will benefit the pathogenic mechanism research. Copyright © 2018. Published by Elsevier B.V.

  18. Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine.

    PubMed

    Knudsen, Maria L; Mbewe-Mvula, Alice; Rosario, Maximillian; Johansson, Daniel X; Kakoulidou, Maria; Bridgeman, Anne; Reyes-Sandoval, Arturo; Nicosia, Alfredo; Ljungberg, Karl; Hanke, Tomás; Liljeström, Peter

    2012-04-01

    Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.

  19. Biodegradable polymers as non-viral carriers for plasmid DNA delivery.

    PubMed

    Luten, Jordy; van Nostrum, Cornelus F; De Smedt, Stefaan C; Hennink, Wim E

    2008-03-03

    Gene therapy holds a great promise for the treatment of acquired and inherited diseases with a genetic origin that are currently incurable. Non-viral gene delivery systems are gaining recognition as an alternative to viral gene vectors for their potential in avoiding immunogenicity and toxicity problems inherently associated with the use of viral systems. Many cationic polymers have been studied both in vitro and in vivo for gene delivery purposes. However, in recent years there has been a focus on biodegradable carrier systems. The potential advantage of biodegradable carriers as compared to their non-degradable counterparts is their reduced toxicity and the avoidance of accumulation of the polymer in the cells after repeated administration. Also, the degradation of the polymer can be used as a tool to release the plasmid DNA into the cytosol. In this article the recent results obtained with two classes of degradable gene delivery systems, namely those based on water-soluble cationic polymers and on micro- and nanoparticles will be summarized and discussed.

  20. Synthesis, characterization, and immune efficacy of layered double hydroxide@SiO2 nanoparticles with shell-core structure as a delivery carrier for Newcastle disease virus DNA vaccine

    PubMed Central

    Zhao, Kai; Rong, Guangyu; Guo, Chen; Luo, Xiaomei; Kang, Hong; Sun, Yanwei; Dai, Chunxiao; Wang, Xiaohua; Wang, Xin; Jin, Zheng; Cui, Shangjin; Sun, Qingshen

    2015-01-01

    Layered double hydroxide (LDH)@SiO2 nanoparticles were developed as a delivery carrier for the plasmid DNA expressing the Newcastle disease virus F gene. The LDH was hydrotalcite-like materials. The plasmid DNA encapsulated in the LDH@SiO2 nanoparticles (pFDNA-LDH@SiO2-NPs) was prepared by the coprecipitation method, and the properties of pFDNA-LDH@SiO2-NPs were characterized by transmission electron microscopy, zeta potential analyzer, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The results demonstrated that the pFDNA-LDH@SiO2-NPs had a regular morphology and high stability with a mean diameter of 371.93 nm, loading capacity of 39.66%±0.45%, and a zeta potential of +31.63 mV. A release assay in vitro showed that up to 91.36% of the total plasmid DNA could be sustainably released from the pFDNA-LDH@SiO2-NPs within 288 hours. The LDH@SiO2 nanoparticles had very low toxicity. Additionally, their high transfection efficiency in vitro was detected by fluorescent microscopy. Intranasal immunization of specific pathogen-free chickens with pFDNA-LDH@SiO2-NPs induced stronger cellular, humoral, and mucosal immune responses and achieved a greater sustained release effect than intramuscular naked plasmid DNA, and the protective efficacy after challenge with the strain F48E9 with highly virulent (mean death time of chicken embryos ≤60 hours, intracerebral pathogenicity index in 1 -day-old chickens >1.6) was 100%. Based on the results, LDH@SiO2 nanoparticles can be used as a delivery carrier for mucosal immunity of Newcastle disease DNA vaccine, and have great application potential in the future. PMID:25926734

  1. Synthesis, characterization, and immune efficacy of layered double hydroxide@SiO2 nanoparticles with shell-core structure as a delivery carrier for Newcastle disease virus DNA vaccine.

    PubMed

    Zhao, Kai; Rong, Guangyu; Guo, Chen; Luo, Xiaomei; Kang, Hong; Sun, Yanwei; Dai, Chunxiao; Wang, Xiaohua; Wang, Xin; Jin, Zheng; Cui, Shangjin; Sun, Qingshen

    2015-01-01

    Layered double hydroxide (LDH)@SiO2 nanoparticles were developed as a delivery carrier for the plasmid DNA expressing the Newcastle disease virus F gene. The LDH was hydrotalcite-like materials. The plasmid DNA encapsulated in the LDH@SiO2 nanoparticles (pFDNA-LDH@SiO2-NPs) was prepared by the coprecipitation method, and the properties of pFDNA-LDH@SiO2-NPs were characterized by transmission electron microscopy, zeta potential analyzer, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The results demonstrated that the pFDNA-LDH@SiO2-NPs had a regular morphology and high stability with a mean diameter of 371.93 nm, loading capacity of 39.66%±0.45%, and a zeta potential of +31.63 mV. A release assay in vitro showed that up to 91.36% of the total plasmid DNA could be sustainably released from the pFDNA-LDH@SiO2-NPs within 288 hours. The LDH@SiO2 nanoparticles had very low toxicity. Additionally, their high transfection efficiency in vitro was detected by fluorescent microscopy. Intranasal immunization of specific pathogen-free chickens with pFDNA-LDH@SiO2-NPs induced stronger cellular, humoral, and mucosal immune responses and achieved a greater sustained release effect than intramuscular naked plasmid DNA, and the protective efficacy after challenge with the strain F48E9 with highly virulent (mean death time of chicken embryos ≤60 hours, intracerebral pathogenicity index in 1 -day-old chickens >1.6) was 100%. Based on the results, LDH@SiO2 nanoparticles can be used as a delivery carrier for mucosal immunity of Newcastle disease DNA vaccine, and have great application potential in the future.

  2. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hata, Kuniki; Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195; Urushibara, Ayumi

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield ofmore » DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.« less

  3. Naked singularity, firewall, and Hawking radiation.

    PubMed

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  4. pSK41-Like Plasmid Is Necessary for Inc18-Like vanA Plasmid Transfer from Enterococcus faecalis to Staphylococcus aureus In Vitro

    PubMed Central

    Clark, Nancye; Patel, Jean B.

    2013-01-01

    Vancomycin-resistant Staphylococcus aureus (VRSA) is thought to result from the in vivo conjugative transfer of a vanA plasmid from an Enterococcus sp. to S. aureus. We studied bacterial isolates from VRSA cases that occurred in the United States to identify microbiological factors which may contribute to this plasmid transfer. First, vancomycin-susceptible, methicillin-resistant S. aureus (MRSA) isolates from five VRSA cases were tested for their ability to accept foreign DNA by conjugation in mating experiments with Enterococcus faecalis JH2-2 containing pAM378, a pheromone-response conjugative plasmid. All of the MRSA isolates accepted the plasmid DNA with similar transfer efficiencies (∼10−7/donor CFU) except for one isolate, MRSA8, for which conjugation was not successful. The MRSA isolates were also tested as recipients in mating experiments between an E. faecalis isolate with an Inc18-like vanA plasmid that was isolated from a VRSA case patient. Conjugative transfer was successful for 3/5 MRSA isolates. Successful MRSA recipients carried a pSK41-like plasmid, a staphylococcal conjugative plasmid, whereas the two unsuccessful MRSA recipients did not carry pSK41. The transfer of a pSK41-like plasmid from a successful MRSA recipient to the two unsuccessful recipients resulted in conjugal transfer of the Inc18-like vanA plasmid from E. faecalis at a frequency of 10−7/recipient CFU. In addition, conjugal transfer could be achieved for pSK41-negative MRSA in the presence of a cell-free culture filtrate from S. aureus carrying a pSK41-like plasmid at a frequency of 10−8/recipient CFU. These results indicated that a pSK41-like plasmid can facilitate the transfer of an Inc18-like vanA plasmid from E. faecalis to S. aureus, possibly via an extracellular factor produced by pSK41-carrying isolates. PMID:23089754

  5. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica.

    PubMed

    Hoffmann, Maria; Pettengill, James B; Gonzalez-Escalona, Narjol; Miller, John; Ayers, Sherry L; Zhao, Shaohua; Allard, Marc W; McDermott, Patrick F; Brown, Eric W; Monday, Steven R

    2017-01-01

    Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in

  6. Multiple Antibiotic Resistance Plasmids Allow Scalable,
PCR-Mediated DNA Manipulation and Near-Zero Background Cloning

    PubMed Central

    Arnak, Remigiusz; Altun, Burcin; Tosato, Valentina

    2016-01-01

    Summary We have constructed two plasmids that can be used for cloning as templates for PCR- -based gene disruption, mutagenesis and the construction of DNA chromosome translocation cassettes. To our knowledge, these plasmids are the first vectors that confer resistance to ampicillin, kanamycin and hygromycin B in bacteria, and to geneticin (G418) and hygromycin B in Saccharomyces cerevisiae simultaneously. The option of simultaneously using up to three resistance markers provides a highly stringent control of recombinant selection and the almost complete elimination of background resistance, while unique restriction sites allow easy cloning of chosen genetic material. Moreover, we successfully used these new vectors as PCR templates for the induction of chromosome translocation in budding yeast by the bridge-induced translocation system. Cells in which translocation was induced carried chromosomal rearrangements as expected and exhibited resistance to both, G418 and hygromycin B. These features make our constructs very handy tools for many molecular biology applications. PMID:27956856

  7. Effects of sequence on DNA wrapping around histones

    NASA Astrophysics Data System (ADS)

    Ortiz, Vanessa

    2011-03-01

    A central question in biophysics is whether the sequence of a DNA strand affects its mechanical properties. In epigenetics, these are thought to influence nucleosome positioning and gene expression. Theoretical and experimental attempts to answer this question have been hindered by an inability to directly resolve DNA structure and dynamics at the base-pair level. In our previous studies we used a detailed model of DNA to measure the effects of sequence on the stability of naked DNA under bending. Sequence was shown to influence DNA's ability to form kinks, which arise when certain motifs slide past others to form non-native contacts. Here, we have now included histone-DNA interactions to see if the results obtained for naked DNA are transferable to the problem of nucleosome positioning. Different DNA sequences interacting with the histone protein complex are studied, and their equilibrium and mechanical properties are compared among themselves and with the naked case. NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM T15LM007359).

  8. Naked singularities as particle accelerators. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as themore » final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.« less

  9. Gravitational lensing by rotating naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyulchev, Galin N.; Yazadjiev, Stoytcho S.; Institut fuer Theoretische Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen

    We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentummore » is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.« less

  10. A mitochondrial mutator plasmid that causes senescence under dietary restricted conditions

    PubMed Central

    Maas, Marc FPM; Hoekstra, Rolf F; Debets, Alfons JM

    2007-01-01

    Background Calorie or dietary restriction extends life span in a wide range of organisms including the filamentous fungus Podospora anserina. Under dietary restricted conditions, P. anserina isolates are several-fold longer lived. This is however not the case in isolates that carry one of the pAL2-1 homologous mitochondrial plasmids. Results We show that the pAL2-1 homologues act as 'insertional mutators' of the mitochondrial genome, which may explain their negative effect on life span extension. Sequencing revealed at least fourteen unique plasmid integration sites, of which twelve were located within the mitochondrial genome and two within copies of the plasmid itself. The plasmids were able to integrate in their entirety, via a non-homologous mode of recombination. Some of the integrated plasmid copies were truncated, which probably resulted from secondary, post-integrative, recombination processes. Integration sites were predominantly located within and surrounding the region containing the mitochondrial rDNA loci. Conclusion We propose a model for the mechanism of integration, based on innate modes of mtDNA recombination, and discuss its possible link with the plasmid's negative effect on dietary restriction mediated life span extension. PMID:17407571

  11. Development of a genetically engineered Escherichia coli strain for plasmid transformation in Corynebacterium glutamicum.

    PubMed

    Li, Hedan; Zhang, Lirong; Guo, Wei; Xu, Daqing

    2016-12-01

    Gene disruption and replacement in Corynebacterium glutamicum is dependent upon a high transformation efficiency. The cglIR-cgIIR restriction system is a major barrier to introduction of foreign DNA into Corynebacterium glutamicum cells. To improve the transformation efficiency of C. glutamicum, the cglIM gene encoding methyltransferase in the cglIR-cglIIR-cglIM restriction-modification system of C. glutamicum ATCC 13032 was chromosomally integrated and expressed in Escherichia coli, resulting in an engineered strain E. coli AU1. The electro-transformation experiments of C. glutamicum ATCC 13032 with the E. coli-C. glutamicum shuttle plasmid pAU4 showed that the transformation efficiency of C. glutamicum with pAU4 DNA extracted from E. coli TG1/pAU4 was 1.80±0.21×10 2 cfu/μg plasmid DNA, while using pAU4 DNA extracted from E. coli AU1/pAU4, the transformation efficiency reached up to 5.22±0.33×10 6 cfu/μg plasmid DNA. The results demonstrated that E. coli AU1 is able to confer the cglIM-specific DNA methylation pattern to its resident plasmid, which makes the plasmid resistant to the cglIR-cglIIR restriction and efficiently transferred into C. glutamicum. E. coli AU1 is a useful intermediate host for efficient transformation of C. glutamicum. Copyright © 2016. Published by Elsevier B.V.

  12. Recombination between bacteriophage lambda and plasmid pBR322 in Escherichia coli.

    PubMed Central

    Pogue-Geile, K L; Dassarma, S; King, S R; Jaskunas, S R

    1980-01-01

    Recombinant lambda phages were isolated that resulted from recombination between the lambda genome and plasmid pBR322 in Escherichia coli, even though these deoxyribonucleic acids (DNAs) did not share extensive regions of homology. The characterization of these recombinant DNAs by heteroduplex analysis and restriction endonucleases is described. All but one of the recombinants appeared to have resulted from reciprocal recombination between a site on lambda DNA and a site on the plasmid. In general, there were two classes of recombinants. One class appeared to have resulted from recombination at the phage attachment site that probably resulted from lambda integration into secondary attachment sites on the plasmid. Seven different secondary attachment sites on pBR322 were found. The other class resulted from plasmid integration at other sites that were widely scattered on the lambda genome. For this second class of recombinants, more than one site on the plasmid could recombine with lambda DNA. Thus, the recombination did not appear to be site specific with respect to lambda or the plasmid. Possible mechanisms for generating these recombinants are discussed. Images PMID:6247334

  13. Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats.

    PubMed

    Pasetti, Marcela F; Barry, Eileen M; Losonsky, Genevieve; Singh, Mahender; Medina-Moreno, Sandra M; Polo, John M; Ulmer, Jeffrey; Robinson, Harriet; Sztein, Marcelo B; Levine, Myron M

    2003-05-01

    Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.

  14. A recombinant plasmid containing CpG motifs as a novel vaccine adjuvant for immune protection against herpes simplex virus 2.

    PubMed

    He, Zhuojing; Xu, Juan; Tao, Wei; Fu, Ting; He, Fang; Hu, Ruxi; Jia, Lan; Hong, Yan

    2016-08-01

    The aim of the present study was to evaluate the efficacy of a herpes simplex virus type 2 (HSV-2) DNA vaccine co‑immunized with a plasmid adjuvant containing CpG motifs. A novel eukaryotic expression plasmid vector containing kanamycin resistance gene (pcDNA3Kan) was acquired from pET‑28a(+) and pcDNA3 plasmids. A gene encoding full length HSV‑2 glycoprotein D (gD) was amplified from the pcDNA3‑gD plasmid, which was cloned into pcDNA3Kan resulting in the construction of the recombinant plasmid pcDNA3Kan‑gD (pgD). A DNA segment containing 8 CpG motifs was synthesized, and cloned into pcDNA3Kan, resulting in the recombinant plasmid pcDNA3Kan‑CpG (pCpG). Mice were co‑inoculated with pgD (used as a DNA vaccine) and pCpG (used as an adjuvant) by bilateral intramuscular injection. Mice inoculated with pgD+pCpG showed higher titers of antibodies than those inoculated with the DNA vaccine alone (P<0.05). In addition, mice inoculated with pgD+pCpG showed the highest percentage of CD4+ T cells in the blood of all the groups (P﹤0.05). Thus, the present study demonstrated that pCpG could stimulate the HSV‑2 DNA vaccine to induce a stronger cell‑mediated immune response than the DNA vaccine alone. The aim of the present study was to evaluate the efficacy of a HSV‑2 DNA vaccine (pgD) co‑immunized with a plasmid adjuvant containing CpG motifs (pCpG). Whether the pCpG would be able to stimulate the pgD to induce a stronger immune response compared with pgD alone.

  15. Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system.

    PubMed

    Jang, Ye-Ji; Seo, Seung-Oh; Kim, Seul-Ah; Li, Ling; Kim, Tae-Jip; Kim, Sun Chang; Jin, Yong-Su; Han, Nam Soo

    2017-06-10

    Leuconostoc spp. are important lactic acid bacteria for the fermentation of foods. In particular, L. citreum strains isolated from various foods have been used as host strains for genetic and metabolic engineering studies. In order to develop a food-grade genetic engineering system, L. citreum CB2567 was isolated from Kimchi. However, the isolated bacterium contained a cryptic plasmid which was difficult to eliminate. As the existence of the plasmid might hinder strain engineering, we eliminated the plasmid using an RNA-guided DNA endonuclease CRISPR/Cas9 system. We demonstrated that a plasmid-free L. citreum CB2567 host strain could be efficiently constructed through a two-step procedure: 1) transformation of the "killer" plasmid expressing Cas9 endonuclease and a guide RNA (gRNA) targeting for a specific sequence in the cryptic plasmid, and 2) serial subculture without antibiotics for curing the killer plasmid. When the crude extract of L. citreum expressing Cas9 and the guide RNA was incubated with a PCR fragment containing the specific sequence recognized by the guide RNA, the PCR fragment was cleaved. Also, the cryptic plasmid pCB42 was successfully eliminated from the host strain after transforming the plasmid harboring Cas9 and the guide RNA. The Cas9 and gRNA expression plasmid used in this study can be applied for genome engineering purposes by additionally introducing an editing DNA template to repair the double strand DNA breakage caused by Cas9 in the genome of L. citreum. This study demonstrates the feasibility of developing CRISPR/Cas9-based genetic engineering tools to develop a safe host strain and construct food-grade lactic acid bacteria without residual antibiotic markers. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Naked singularities as particle accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Mandar; Joshi, Pankaj S.

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energymore » of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.« less

  17. Facile Recovery of Individual High-Molecular-Weight, Low-Copy-Number Natural Plasmids for Genomic Sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, L.E.; Detter, C,; Barrie, K.

    2006-06-01

    Sequencing of the large (>50 kb), low-copy-number (<5 per cell) plasmids that mediate horizontal gene transfer has been hindered by the difficulty and expense of isolating DNA from individual plasmids of this class. We report here that a kit method previously devised for purification of bacterial artificial chromosomes (BACs) can be adapted for effective preparation of individual plasmids up to 220 kb from wild gram-negative and gram-positive bacteria. Individual plasmid DNA recovered from less than 10 ml of Escherichia coli, Staphylococcus, and Corynebacterium cultures was of sufficient quantity and quality for construction of highcoverage libraries, as shown by sequencing fivemore » native plasmids ranging in size from 30 kb to 94 kb. We also report recommendations for vector screening to optimize plasmid sequence assembly, preliminary annotation of novel plasmid genomes, and insights on mobile genetic element biology derived from these sequences. Adaptation of this BAC method for large plasmid isolation removes one major technical hurdle to expanding our knowledge of the natural plasmid gene pool.« less

  18. Plasmid Capture by the Bacillus thuringiensis Conjugative Plasmid pXO16▿

    PubMed Central

    Timmery, Sophie; Modrie, Pauline; Minet, Olivier; Mahillon, Jacques

    2009-01-01

    Conjugation, mobilization, and retromobilization are three related mechanisms of horizontal gene transfer in bacteria. They have been extensively studied in gram-negative species, where retromobilization, the capture of DNA from a recipient by a donor cell, was shown to result from two successive steps: the transfer of the conjugative plasmid from the donor to the recipient followed by the retrotransfer of the mobilizable plasmid to the donor. This successive model was established for gram-negative bacteria but was lacking experimental data from the gram-positive counterparts. In the present work, the mobilization and retromobilization abilities of the conjugative plasmid pXO16 from Bacillus thuringiensis subsp. israelensis were studied using the mobilizable plasmids pUB110 and pE194 and the “nonmobilizable” element pC194 lacking the mob and oriT features (all from Staphylococcus aureus). Experimental data suggested a successive model, since different retromobilization frequencies were observed between the small plasmids. More importantly, retromobilization was shown to be delayed by 50 and 150 min for pUB110 and pE194, respectively, compared to pXO16 conjugation. Natural liquid foods (cow milk, soy milk, and rice milk) were used to evaluate the putative ecological impact of these transfers. In cow and soy milk, conjugation, mobilization, and retromobilization were shown to occur at frequencies of 8.0 × 10−1, 1.0 × 10−2, and 1.2 × 10−4 transconjugants per recipient, respectively. These data are comparable to those obtained with LB medium and about 10-fold lower than in the case of rice milk. Taken together, these results emphasize the potential role of plasmid capture played by B. thuringiensis in natural environments. PMID:19181805

  19. Analysis of Heat-Labile Sites Generated by Reactions of Depleted Uranium and Ascorbate in Plasmid DNA

    PubMed Central

    Wilson, Janice; Young, Ashley; Civitello, Edgar R.

    2013-01-01

    The goal of this study was to characterize how depleted uranium (DU) causes DNA damage. Procedures were developed to assess the ability of organic and inorganic DNA adducts to convert to single strand breaks (SSB) in pBR322 plasmid DNA in the presence of heat or piperidine. DNA adducts formed by methyl methanesulfonate (MMS), cis-platin (cis-Pt), and chromic chloride were compared to those formed by reaction of uranyl acetate (UA) and ascorbate (Asc). Uranyl ion in the presence of Asc produced U-DNA adducts that converted to SSB upon heating. Piperidine, which acted on DNA methylated by MMS to convert methyl-DNA adducts to SSB, served in the opposite fashion with U-DNA adducts by decreasing SSB. The observation that piperidine also decreased the gel shift for metal-DNA adducts formed by monofunctional cis-Pt and chromic chloride was interpreted to suggest that piperidine served to remove U-DNA adducts. Radical scavengers did not affect formation of U-induced SSB, suggesting that SSB arose from the presence of U-DNA adducts and not from free radicals. A model is proposed to predict how U-DNA adducts may serve as initial lesions that convert to SSB or AP sites. Results suggest that DU can act as a chemical genotoxin that does not require radiation for its mode of action. Characterizing the DNA lesions formed by DU is necessary to assess the relative importance of different DNA lesions in the formation of DU-induced mutations. Understanding mechanisms of formation of DU-induced mutations may contribute to identification of biomarkers of DU exposures in humans. PMID:24218036

  20. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye

    PubMed Central

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-01-01

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions. PMID:25199907

  1. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye

    NASA Astrophysics Data System (ADS)

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-09-01

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.

  2. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye.

    PubMed

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-09-09

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.

  3. Feasibilty of in utero DNA vaccination following naked gene transfer into pig fetal muscle: transgene expression, immunity and safety.

    PubMed

    Rinaldi, Monica; Signori, Emanuela; Rosati, Paolo; Cannelli, Giorgio; Parrella, Paola; Iannace, Enrico; Monego, Giovanni; Ciafrè, Silvia Anna; Farace, Maria Giulia; Iurescia, Sandra; Fioretti, Daniela; Rasi, Guido; Fazio, Vito Michele

    2006-05-22

    The high toll of death among first-week infants is due to infections occurring at the end of pregnancy, during birth or by breastfeeding. This problem significantly concerns industrialized countries also. To prevent the typical "first-week infections", a vaccine would be protective as early as at the birth. In utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. We have already published results of a 2-year follow-up showing long-term safety, protective antibody titers at birth and long-term immune memory, following intramuscular in utero anti-HBV DNA immunization in 90-days pig fetuses. We have now analyzed further parameters of short-term safety. Two different reporter genes were injected in the thigh muscles of 90-days fetuses. At 8 days following DNA injection, we found high-level of transgenes expression in all injected fetuses. A step gradient of expression from the area of injection was observed with both reporter genes. CMV promoter/enhancer produced higher levels of expression compared to SV40 promoter/enhancer. Moreover, no evidence of local or systemic flogistic alterations or fetal malformations, mortality or haemorrhage following intramuscular injection were observed. A single anti-HBV s-antigen DNA immunization in 90-days fetuses supported protective antibody levels in all immunized newborns, lasting at least up to 4 months after birth. Our report further sustains safety and efficacy of intramuscular in utero naked gene transfer and immunization. This approach may support therapeutic or prophylactic procedure in many early life-threatening pathologic conditions.

  4. Evaluation of droplet digital PCR for characterizing plasmid reference material used for quantifying ammonia oxidizers and denitrifiers.

    PubMed

    Dong, Lianhua; Meng, Ying; Wang, Jing; Liu, Yingying

    2014-02-01

    DNA reference materials of certified value have a critical function in many analytical processes of DNA measurement. Quantification of amoA genes in ammonia oxidizing bacteria (AOB) and archaea (AOA), and of nirS and nosZ genes in the denitrifiers is very important for determining their distribution and abundance in the natural environment. A plasmid reference material containing nirS, nosZ, amoA-AOB, and amoA-AOA is developed to provide a DNA standard with copy number concentration for ensuring comparability and reliability of quantification of these genes. Droplet digital PCR (ddPCR) was evaluated for characterization of the plasmid reference material. The result revealed that restriction endonuclease digestion of plasmids can improve amplification efficiency and minimize the measurement bias of ddPCR. Compared with the conformation of the plasmid, the size of the DNA fragment containing the target sequence and the location of the restriction site relative to the target sequence are not significant factors affecting plasmid quantification by ddPCR. Liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) was used to provide independent data for quantifying the plasmid reference material. The copy number concentration of the digested plasmid determined by ddPCR agreed well with that determined by LC-IDMS, improving both the accuracy and reliability of the plasmid reference material. The reference value, with its expanded uncertainty (k = 2), of the plasmid reference material was determined to be (5.19 ± 0.41) × 10(9) copies μL(-1) by averaging the results of two independent measurements. Consideration of the factors revealed in this study can improve the reliability and accuracy of ddPCR; thus, this method has the potential to accurately quantify DNA reference materials.

  5. Histamine monolith versatility to purify supercoiled plasmid deoxyribonucleic acid from Escherichia coli lysate.

    PubMed

    Sousa, A; Almeida, A M; Černigoj, U; Sousa, F; Queiroz, J A

    2014-08-15

    Preparation of high quantities of supercoiled plasmid DNA of pharmaceutical grade purity is a research area where intensive investigation is being performed. From this standpoint, several downstream methods have been proposed, among them the monolithic chromatographic strategies owing to excellent mass transfer properties of monolithic supports and their high binding capacity for large biomolecules. The present study explores the physicochemical properties of histamine ligand in a supercoiled plasmid DNA purification process from an Escherichia coli clarified lysate, where the emphasis is given to the elution strategy that allows higher selectivity and efficient removal of other impurities besides the open circular isoform. The combination of high NaCl concentration and acidic pH allowed the elimination of 89% of RNA during the preparative loading of the lysate sample. The results of the purification strategy with ascending sodium chloride gradient revealed that 97% of supercoiled plasmid DNA was recovered with a purity degree of 99%. In addition, using a combined purification strategy with ascending sodium chloride (capture step) and then descending ammonium sulfate (polishing step) gradient, it was achieved a lower supercoiled plasmid DNA recovery yield of 79% with a purity degree of 92%, although the dynamic binding capacity under these conditions was higher than in the previous strategy. A significant reduction of host contents, such as proteins, RNA and genomic DNA, was obtained in both purification strategies. Accordingly, histamine is a useful and versatile ligand that allows the desirable supercoiled plasmid purification with high yield and purity level. Copyright © 2014. Published by Elsevier B.V.

  6. Molecular characterization of Syrian date palm cultivars using plasmid-like DNA markers.

    PubMed

    Haider, N; Nabulsi, I

    2012-02-01

    Date palm (Phoenix dactylifera L.) is one of the most important domesticated fruit trees in the Near East and North African countries. This tree has been, for several decades, in serious threat of being completely destroyed by the "Bayoud" disease caused by Fusarium oxysporum f. sp. albedinis. In this study, 18 Syrian date palm cultivars and four male trees were analyzed according to the identity of mitochondrial plasmid-like DNAs. A PCR strategy that employs plasmid-like DNAs-specific primer pair was used. These primers amplify a product of either 373-bp or 265-bp that corresponds to the S-(Bayoud-susceptible) or the R-plasmid (Bayoud-resistant), respectively. Generated data revealed that only six cultivars ('Medjool', 'Ashrasi', 'Gish Rabi', 'Khineze', and yellow- and red-'Kabkab') have the S-plasmid, suggesting their susceptibility to the fusariosis, while the remaining 12 cultivars and the four male trees contain the R-plasmid, suggesting their resistance to the fusariosis. The PCR process applied here has been proved efficient for the rapid screening for the presence of the S and R DNAs in Syrian date palm. PCR markers developed in this study could be useful for the screening of date palm lines growing in the field. The availability of such diagnostic tool for plasmid characterization in date palm would also be of great importance in establishing propagation and breeding programs of date palm in Syria.

  7. Vaccination of plasmid DNA encoding ORF81 gene of CJ strains of KHV provides protection to immunized carp.

    PubMed

    Zhou, Jingxiang; Xue, Jiangdong; Wang, Qiuju; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming

    2014-06-01

    In order to construct the recombinant plasmid of pIRES-ORF81, the nucleic acid isolated from Koi herpes virus-CJ (KHV-CJ) strains was used as a template to insert the ORF81 gene fragments amplified by PCR into the pIRES-neo, a kind of eukaryotic expression vector. Using Western blotting analysis, it was verified that ORF81 gene protein can be expressed correctly by pIRES-ORF81, after MFC cells were transfected. The recombinant plasmid pIRES-ORF81 was set into three immunization dose gradients: 1, 10, and 50 μg/carp. Empty plasmid group, PBS group, and blank control group were set simultaneously. Giving intramuscular injections to healthy carps with an average body mass of 246 ± 20 g, indirect ELISA was used to regularly determine antibody levels after three times immunization injection. Neutralizing antibodies were detected by neutralization assay. The results of inoculation tests showed that the pIRES-ORF81 recombinant plasmid can induce the production of carp-specific antibodies. The differences of immune effect between the three different doses of immune gradients were not significant (P > 0.05), but they can induce the production of neutralizing antibodies. After 25 d of inoculation, carp mortality of pIRES-neo empty vector treatment groups was 85%, while the carp mortality of eukaryotic expression recombinant plasmid pIRES-ORF81 injected with three different doses of immune gradients was 20, 17.5, and 12.5%, respectively. Differences in comparison to the control group were highly significant (P < 0.01). However, histopathological section of immunohistochemistry organization revealed no significant changes. It demonstrated that the DNA vaccine pIRES-ORF81 constructed in the experiment displayed a good protective effect against KHV, which had the potential to industrial applications.

  8. Development and Host Compatibility of Plasmids for Two Important Ruminant Pathogens, Mycoplasma bovis and Mycoplasma agalactiae

    PubMed Central

    Sharma, Shukriti; Citti, Chistine; Sagné, Eveline; Marenda, Marc S.

    2015-01-01

    Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae. PMID:25746296

  9. Growth responses following a single intra-muscular hGH plasmid administration compared to daily injections of hGH in dwarf mice.

    PubMed

    Higuti, Eliza; Cecchi, Claudia R; Oliveira, Nelio A J; Vieira, Daniel P; Jensen, Thomas G; Jorge, Alexander A L; Bartolini, Paolo; Peroni, Cibele N

    2012-12-01

    In previous work, sustained levels of circulating human growth hormone (hGH) and a highly significant weight increase were observed after electrotransfer of naked plasmid DNA (hGH-DNA) into the muscle of immunodeficient dwarf mice (lit/scid). In the present study, the efficacy of this in vivo gene therapy strategy is compared to daily injections (5 μg/twice a day) of recombinant hGH (r-hGH) protein, as assessed on the basis of several growth parameters. The slopes of the two growth curves were found to be similar (P > 0.05): 0.095 g/mouse/d for protein and 0.094 g/mouse/d for DNA injection. In contrast, the weight increases averaged 35.5% (P < 0.001) and 23.1% (P < 0.01) for protein and DNA administration, respectively, a difference possibly related to the electroporation methodology. The nose-to-tail linear growth increases were 15% and 9.6% for the protein and DNA treatments, respectively, but mouse insulin-like growth factor I (mIGF-I) showed a greater increase over the control with DNA (5- to 7-fold) than with protein (3- to 4-fold) administration. The weight increases of several organs and tissues (kidneys, spleen, liver, heart, quadriceps and gastrocnemius muscles) were 1.3- to 4.6-fold greater for protein than for DNA administration, which gave a generally more proportional growth. Glucose levels were apparently unaffected, suggesting the absence of effects on glucose tolerance. A gene transfer strategy based on a single hGH-DNA administration thus appears to be comparable to repeated hormone injections for promoting growth and may represent a feasible alternative for the treatment of growth hormone deficiency.

  10. Inhibition of gamma-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E.

    PubMed

    Rajagopalan, Rema; Wani, Khalida; Huilgol, Nagaraj G; Kagiya, Tsutomu V; Nair, Cherupally K Krishnan

    2002-06-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of alpha-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of gamma-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 microM of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by gamma-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC.

  11. A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains.

    PubMed Central

    Hong, S B; Hwang, I; Dessaux, Y; Guyon, P; Kim, K S; Farrand, S K

    1997-01-01

    The mechanisms that ensure that Ti plasmid T-DNA genes encoding proteins involved in the biosynthesis of opines in crown gall tumors are always matched by Ti plasmid genes conferring the ability to catabolize that set of opines on the inducing Agrobacterium strains are unknown. The pathway for the biosynthesis of the opine agropine is thought to require an enzyme, mannopine cyclase, coded for by the ags gene located in the T(R) region of octopine-type Ti plasmids. Extracts prepared from agropine-type tumors contained an activity that cyclized mannopine to agropine. Tumor cells containing a T region in which ags was mutated lacked this activity and did not contain agropine. Expression of ags from the lac promoter conferred mannopine-lactonizing activity on Escherichia coli. Agrobacterium tumefaciens strains harboring an octopine-type Ti plasmid exhibit a similar activity which is not coded for by ags. Analysis of the DNA sequence of the gene encoding this activity, called agcA, showed it to be about 60% identical to T-DNA ags genes. Relatedness decreased abruptly in the 5' and 3' untranslated regions of the genes. ags is preceded by a promoter that functions only in the plant. Expression analysis showed that agcA also is preceded by its own promoter, which is active in the bacterium. Translation of agcA yielded a protein of about 45 kDa, consistent with the size predicted from the DNA sequence. Antibodies raised against the agcA product cross-reacted with the anabolic enzyme. These results indicate that the agropine system arose by a duplication of a progenitor gene, one copy of which became associated with the T-DNA and the other copy of which remained associated with the bacterium. PMID:9244272

  12. Intracellular trafficking pathways for nuclear delivery of plasmid DNA complexed with highly efficient endosome escape polymers.

    PubMed

    Gillard, Marianne; Jia, Zhongfan; Hou, Jeff Jia Cheng; Song, Michael; Gray, Peter P; Munro, Trent P; Monteiro, Michael J

    2014-10-13

    Understanding the pathways for nuclear entry could see vast improvements in polymer design for the delivery of genetic materials to cells. Here, we use a novel diblock copolymer complexed with plasmid DNA (pDNA) to determine both its cellular entry and nuclear pathways. The diblock copolymer (A-C3) is specifically designed to bind and protect pDNA, release it at a specific time, but more importantly, rapidly escape the endosome. The copolymer was taken up by HEK293 cells preferentially via the clathrin-mediated endocytosis (CME) pathway, and the pDNA entered the nucleus to produce high gene expression levels in all cells after 48 h, a similar observation to the commercially available polymer transfection agent, PEI Max. This demonstrates that the polymers must first escape the endosome and then mediate transport of pDNA to the nucleus for occurrence of gene expression. The amount of pDNA within the nucleus was found to be higher for our A-C3 polymer than PEI Max, with our polymer delivering 7 times more pDNA than PEI Max after 24 h. We further found that entry into the nucleus was primarily through the small nuclear pores and did not occur during mitosis when the nuclear envelope becomes compromised. The observation that the polymers are also found in the nucleus supports the hypothesis that the large pDNA/polymer complex (size ~200 nm) must dissociate prior to nucleus entry and that cationic and hydrophobic monomer units on the polymer may facilitate active transport of the pDNA through the nuclear pore.

  13. Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge.

    PubMed

    Dröge, M; Pühler, A; Selbitschka, W

    2000-04-01

    In order to isolate antibiotic resistance plasmids from bacterial communities found in activated sludge, derivatives of the 3-chlorobenzoate-degrading strain Pseudomonas sp. B13, tagged with the green fluorescent protein as an identification marker, were used as recipients in filter crosses. Transconjugants were selected on agar plates containing 3-chlorobenzoate as the sole carbon source and the antibiotic tetracycline, streptomycin or spectinomycin, and were recovered at frequencies in the range of 10(-5) to 10(-8) per recipient. A total of 12 distinct plasmids, designated pB1-pB12, was identified. Their sizes ranged between 41 to 69 kb and they conferred various patterns of antibiotic resistance on their hosts. Two of the plasmids, pB10 and pB11, also mediated resistance to inorganic mercury. Seven of the 12 plasmids were identified as broad-host-range plasmids, displaying extremely high transfer frequencies in filter crosses, ranging from 10(-1) to 10(-2) per recipient cell. Ten of the 12 plasmids belonged to the IncP incompatibility group, based on replicon typing using IncP group-specific PCR primers. DNA sequencing of PCR amplification products further revealed that eight of the 12 plasmids belonged to the IncPbeta subgroup, whereas two plasmids were identified as IncPalpha plasmids. Analysis of the IncP-specific PCR products revealed considerable differences among the IncPbeta plasmids at the DNA sequence level. In order to characterize the gene "load" of the IncP plasmids, restriction fragments were cloned and their DNA sequences established. A remarkable diversity of putative proteins encoded by these fragments was identified. Besides transposases and proteins involved in antibiotic resistance, two putative DNA invertases belonging to the Din family, a methyltransferase of a type I restriction/modification system, a superoxide dismutase, parts of a putative efflux system belonging to the RND family, and proteins of unknown function were identified.

  14. Dendritic cell targeted chitosan nanoparticles for nasal DNA immunization against SARS CoV nucleocapsid protein.

    PubMed

    Raghuwanshi, Dharmendra; Mishra, Vivek; Das, Dipankar; Kaur, Kamaljit; Suresh, Mavanur R

    2012-04-02

    This work investigates the formulation and in vivo efficacy of dendritic cell (DC) targeted plasmid DNA loaded biotinylated chitosan nanoparticles for nasal immunization against nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) as antigen. The induction of antigen-specific mucosal and systemic immune response at the site of virus entry is a major challenge for vaccine design. Here, we designed a strategy for noninvasive receptor mediated gene delivery to nasal resident DCs. The pDNA loaded biotinylated chitosan nanoparticles were prepared using a complex coacervation process and characterized for size, shape, surface charge, plasmid DNA loading and protection against nuclease digestion. The pDNA loaded biotinylated chitosan nanoparticles were targeted with bifunctional fusion protein (bfFp) vector for achieving DC selective targeting. The bfFp is a recombinant fusion protein consisting of truncated core-streptavidin fused with anti-DEC-205 single chain antibody (scFv). The core-streptavidin arm of fusion protein binds with biotinylated nanoparticles, while anti-DEC-205 scFv imparts targeting specificity to DC DEC-205 receptor. We demonstrate that intranasal administration of bfFp targeted formulations along with anti-CD40 DC maturation stimuli enhanced magnitude of mucosal IgA as well as systemic IgG against N protein. The strategy led to the detection of augmented levels of N protein specific systemic IgG and nasal IgA antibodies. However, following intranasal delivery of naked pDNA no mucosal and systemic immune responses were detected. A parallel comparison of targeted formulations using intramuscular and intranasal routes showed that the intramuscular route is superior for induction of systemic IgG responses compared with the intranasal route. Our results suggest that targeted pDNA delivery through a noninvasive intranasal route can be a strategy for designing low-dose vaccines.

  15. Lipophilic Polycation Vehicles Display High Plasmid DNA Delivery to Multiple Cell Types.

    PubMed

    Wu, Yaoying; Smith, Adam E; Reineke, Theresa M

    2017-08-16

    A class of cationic poly(alkylamidoamine)s (PAAAs) containing lipophilic methylene linkers were designed and examined as in vitro plasmid DNA (pDNA) delivery agents. The PAAAs were synthesized via step-growth polymerization between a diamine monomer and each of four different diacid chloride monomers with varying methylene linker lengths, including glutaryl chloride, adipoyl chloride, pimeloyl chloride, and suberoyl chloride, which served to systematically increase the lipophilicity of the polymers. The synthesized polymers successfully complexed with pDNA in reduced serum medium at N/P ratios of 5 and greater, resulting in polyplexes with hydrodynamic diameters of approximately 1 μm. These polyplexes were tested for in vitro transgene expression and cytotoxicity using HDFa (human dermal fibroblast), HeLa (human cervical carcinoma), HMEC (human mammary epithelial), and HUVEC (human umbilical vein endothelial) cells. Interestingly, select PAAA polyplex formulations were found to be more effective than Lipofectamine 2000 at promoting transgene expression (GFP) while maintaining comparable or higher cell viability. Transgene expression was highest in HeLa cells (∼90% for most formulations) and lowest in HDFa cells (up to ∼20%) as measured by GFP fluorescence. In addition, the cytotoxicity of PAAA polyplex formulations was significantly increased as the molecular weight, N/P ratio, and methylene linker length were increased. The PAAA vehicles developed herein provide a new delivery vehicle design strategy of displaying attributes of both polycations and lipids, which show promise as a tunable scaffold for refining the structure-activity-toxicity profiles for future genome editing studies.

  16. Timelike naked singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Rituparno; Joshi, Pankaj S.; Vaz, Cenalo

    We construct a class of spherically symmetric collapse models in which a naked singularity may develop as the end state of collapse. The matter distribution considered has negative radial and tangential pressures, but the weak energy condition is obeyed throughout. The singularity forms at the center of the collapsing cloud and continues to be visible for a finite time. The duration of visibility depends on the nature of energy distribution. Hence the causal structure of the resulting singularity depends on the nature of the mass function chosen for the cloud. We present a general model in which the naked singularitymore » formed is timelike, neither pointlike nor null. Our work represents a step toward clarifying the necessary conditions for the validity of the Cosmic Censorship Conjecture.« less

  17. The 987P fimbrial gene cluster of enterotoxigenic Escherichia coli is plasmid encoded.

    PubMed Central

    Schifferli, D M; Beachey, E H; Taylor, R K

    1990-01-01

    A clone containing the 987P fimbrial gene cluster was selected from a cosmid library of total DNA of the prototype Escherichia coli strain 987 by using 987P-specific antiserum. A subclone of 12 kilobases containing all of the genes required for fimbrial expression on a nonfimbriated K-12 strain of E. coli and a DNA fragment internal to the fimbrial subunit gene were used to probe the prototype strain and various isolates of 987P-fimbriated enterotoxigenic E. coli. All strains had several plasmids, as shown by agarose gel electrophoresis, and each of five strains which expressed 987P fimbriae showed a plasmid of 35 to 40 megadaltons (MDa) hybridizing to both 987P-specific probes. Hybridization to restricted DNA of strain 987 supported a plasmid origin for the cloned 987P gene cluster. Moreover, an isogenic strain which had lost its 35-MDa plasmid was no longer capable of synthesizing fimbrial subunits, but regained fimbrial expression after reintroduction of the TnphoA (Tn5 IS50L::phoA)-tagged 35-MDa plasmid. Absence of fimbrial subunit synthesis in K-12 strains transformed with the 35-MDa plasmid alone suggested the requirement of regulatory elements existing in strain 987 but missing in K-12 strains. A probe for the heat-stable enterotoxin STIa hybridized in each of the 987P-fimbriated strains to the plasmid containing the 987P genes and in most of these strains to an additional plasmid which contained the gene for the heat-stable enterotoxin STII. Occurrence of the 987P and STIa genes on the same replicon correlates with epidemiological observations, STIa being the most prevalent toxin produced by 987P-fimbriated E. coli. Images PMID:1967167

  18. Module-based construction of plasmids for chromosomal integration of the fission yeast Schizosaccharomyces pombe

    PubMed Central

    Kakui, Yasutaka; Sunaga, Tomonari; Arai, Kunio; Dodgson, James; Ji, Liang; Csikász-Nagy, Attila; Carazo-Salas, Rafael; Sato, Masamitsu

    2015-01-01

    Integration of an external gene into a fission yeast chromosome is useful to investigate the effect of the gene product. An easy way to knock-in a gene construct is use of an integration plasmid, which can be targeted and inserted to a chromosome through homologous recombination. Despite the advantage of integration, construction of integration plasmids is energy- and time-consuming, because there is no systematic library of integration plasmids with various promoters, fluorescent protein tags, terminators and selection markers; therefore, researchers are often forced to make appropriate ones through multiple rounds of cloning procedures. Here, we establish materials and methods to easily construct integration plasmids. We introduce a convenient cloning system based on Golden Gate DNA shuffling, which enables the connection of multiple DNA fragments at once: any kind of promoters and terminators, the gene of interest, in combination with any fluorescent protein tag genes and any selection markers. Each of those DNA fragments, called a ‘module’, can be tandemly ligated in the order we desire in a single reaction, which yields a circular plasmid in a one-step manner. The resulting plasmids can be integrated through standard methods for transformation. Thus, these materials and methods help easy construction of knock-in strains, and this will further increase the value of fission yeast as a model organism. PMID:26108218

  19. Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex

    PubMed Central

    Ghosh, Santanu K.; Huang, Chu-Chun; Hajra, Sujata; Jayaram, Makkuni

    2010-01-01

    Sister chromatid cohesion, crucial for faithful segregation of replicated chromosomes in eukaryotes, is mediated by the multi-subunit protein complex cohesin. The Saccharomyces cerevisiae plasmid 2 micron circle mimics chromosomes in assembling cohesin at its partitioning locus. The plasmid is a multi-copy selfish DNA element that resides in the nucleus and propagates itself stably, presumably with assistance from cohesin. In metaphase cell lysates, or fractions enriched for their cohesed state by sedimentation, plasmid molecules are trapped topologically by the protein ring formed by cohesin. They can be released from cohesin’s embrace either by linearizing the DNA or by cleaving a cohesin subunit. Assays using two distinctly tagged cohesin molecules argue against the hand-cuff (an associated pair of monomeric cohesin rings) or the bracelet (a dimeric cohesin ring) model as responsible for establishing plasmid cohesion. Our cumulative results most easily fit a model in which a single monomeric cohesin ring, rather than a series of such rings, conjoins a pair of sister plasmids. These features of plasmid cohesion account for its sister-to-sister mode of segregation by cohesin disassembly during anaphase. The mechanistic similarities of cohesion between mini-chromosome sisters and 2 micron plasmid sisters suggest a potential kinship between the plasmid partitioning locus and centromeres. PMID:19920123

  20. Reversible entrapment of plasmid deoxyribonucleic acid on different chromatographic supports.

    PubMed

    Gabor, Boštjan; Černigoj, Urh; Barut, Miloš; Štrancar, Aleš

    2013-10-11

    HPLC based analytical assay is a powerful technique that can be used to efficiently monitor plasmid DNA (pDNA) purity and quantity throughout the entire purification process. Anion exchange monolithic and non-porous particle based stationary phases were used to study the recovery of the different pDNA isoforms from the analytical column. Three differently sized pDNA molecules of 3.0kbp, 5.2kbp and 14.0kbp were used. Plasmid DNA was injected onto columns under the binding conditions and the separation of the isoforms took place by increasing the ionic strength of the elution buffer. While there was no substantial decrease of the recovered supercoiled and linear isoforms of the pDNA with the increase of the plasmid size and with the increase of the flow rate (recoveries in all cases larger than 75%), a pronounced decrease of the oc isoform recovery was observed. The entrapment of the oc pDNA isoform occurred under non-binding conditions as well. The partial oc isoform elution from the column could be achieved by decreasing the flow rate of the elution mobile phase. The results suggested a reversible entrapment of the oc isoform in the restrictions within the pores of the monolithic material as well as within the intra-particle space of the non-porous particles. This phenomenon was observed on both types of the stationary phase morphologies and could only be connected to the size of a void space through which the pDNA needs to migrate. A prediction of reversible pDNA entrapment was successfully estimated with the calculation of Peclet numbers, Pe, which defines the ratio between a convective and diffusive mass transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Two novel families of plasmids from hyperthermophilic archaea encoding new families of replication proteins

    PubMed Central

    Soler, Nicolas; Marguet, Evelyne; Cortez, Diego; Desnoues, Nicole; Keller, Jenny; van Tilbeurgh, Herman; Sezonov, Guennadi; Forterre, Patrick

    2010-01-01

    Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication. PMID:20403814

  2. Stable transformation of a mosquito cell line results in extraordinarily high copy numbers of the plasmid.

    PubMed Central

    Monroe, T J; Muhlmann-Diaz, M C; Kovach, M J; Carlson, J O; Bedford, J S; Beaty, B J

    1992-01-01

    Stable incorporation of high copy numbers (greater than 10,000 per cell) of a plasmid vector containing a gene conferring resistance to the antibiotic hygromycin was achieved in a cell line derived from the Aedes albopictus mosquito. Plasmid sequences were readily observed by ethidium bromide staining of cellular DNA after restriction endonuclease digestion and agarose gel electrophoresis. The plasmid was demonstrated by in situ hybridization to be present in large arrays integrated in metaphase chromosomes and in minute and double-minute replicating elements. In one subclone, approximately 60,000 copies of the plasmid were organized in a large array that resembles a chromosome, morphologically and in the segregation of its chromatids during anaphase. The original as well as modified versions of the plasmid were rescued by transformation of Escherichia coli using total cellular DNA. Southern blot analyses of recovered plasmids indicate the presence of mosquito-derived sequences. Images PMID:1631052

  3. Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.

    PubMed

    Cortés, José T; Flores, Noemí; Bolívar, Francisco; Lara, Alvaro R; Ramírez, Octavio T

    2016-03-01

    A two-compartment scale-down system was used to mimic pH heterogeneities that can occur in large-scale bioreactors. The system consisted of two interconnected stirred tank reactors (STRs) where one of them represented the conditions of the bulk of the fluid and the second one the zone of alkali addition for pH control. The working volumes ratio of the STRs was set to 20:1 in order to simulate the relative sizes of the bulk and alkali addition zones, respectively, in large-scale bioreactors. Residence times (tR ) in the alkali addition STR of 60, 120, 180, and 240 s were simulated during batch cultures of an engineered Escherichia coli strain that produced plasmid DNA (pDNA). pH gradients of up to 0.9 units, between the two compartments, were attained. The kinetic, stoichiometric, and pDNA topological changes due to the pH gradients were studied and compared to cultures at constant pH of 7.2 and 8.0. As the tR increased, the pDNA and biomass yields, as well as pDNA final titer decreased, whereas the accumulation of organic acids increased. Furthermore, the transcriptional response of 10 selected genes to alkaline stress (pH 8.0) and pH gradients was monitored at different stages of the cultures. The selected genes coded for ion transporters, amino acids catabolism enzymes, and transcriptional regulators. The transcriptional response of genes coding for amino acids catabolism, in terms of relative transcription level and stage of maximal expression, was different when the alkaline stress was constant or transient. This suggests the activation of different mechanisms by E. coli to cope with pH fluctuations compared to constant alkaline pH. Moreover, the transcriptional response of genes related to negative control of DNA synthesis did not correlate with the lower pDNA yields. This is the first study that reports the effects of pH gradients on pDNA production by E. coli cultures. The information presented can be useful for the design of better bioreactor scale

  4. Peroxynitrite modified DNA presents better epitopes for anti-DNA autoantibodies in diabetes type 1 patients.

    PubMed

    Tripathi, Prashant; Moinuddin; Dixit, Kiran; Mir, Abdul Rouf; Habib, Safia; Alam, Khursheed; Ali, Asif

    2014-07-01

    Peroxynitrite (ONOO(-)), formed by the reaction between nitric oxide (NO) and superoxide (O2(-)), has been implicated in the etiology of numerous disease processes. Peroxynitrite interacts with DNA via direct oxidative reactions or via indirect radical-mediated mechanism. It can inflict both oxidative and nitrosative damages on DNA bases, generating abasic sites, resulting in the single strand breaks. Plasmid pUC 18 isolated from Escherichiacoli was modified with peroxynitrite, generated by quenched flow process. Modifications incurred in plasmid DNA were characterized by ultraviolet and fluorescence spectroscopy, circular dichroism, HPLC and melting temperature studies. Binding characteristics and specificity of antibodies from diabetes patients were analyzed by direct binding and inhibition ELISA. Peroxynitrite modification of pUC 18 plasmid resulted in the formation of strand breaks and base modification. The major compound formed when peroxynitrite reacted with DNA was 8-nitroguanine, a specific marker for peroxynitrite induced DNA damage in inflamed tissues. The concentration of 8-nitroguanine was found to be 3.8 μM. Sera from diabetes type 1 patients from different age groups were studied for their binding to native and peroxynitrite modified plasmid. Direct binding and competitive-inhibition ELISA results showed higher recognition of peroxynitrite modified plasmid, as compared to the native form, by auto-antibodies present in diabetes patients. The preferential recognition of modified plasmid by diabetes autoantibodies was further reiterated by gel shift assay. Experimentally induced anti-peroxynitrite-modified plasmid IgG was used as a probe to detect nitrosative lesions in the DNA isolated from diabetes patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Plasmid-mediated resistance to protein biosynthesis inhibitors in staphylococci.

    PubMed

    Schwarz, Stefan; Fessler, Andrea T; Hauschild, Tomasz; Kehrenberg, Corinna; Kadlec, Kristina

    2011-12-01

    Protein biosynthesis inhibitors (PBIs) represent powerful antimicrobial agents for the control of bacterial infections. In staphylococci, numerous resistance genes are known to be involved in resistance to PBIs, most of which mediate resistance to a specific class/subclass of PBIs, though a few genes do confer a multidrug resistance phenotype-up to five classes/subclasses of PBIs. Plasmids play a key role in the dissemination of PBI resistance among staphylococci, as they primarily carry plasmid-borne PBI resistance genes; however, plasmids also can be vectors for transposon-borne PBI resistance genes. Small plasmids that carry single PBI resistance genes are widespread among staphylococci of human and animal origin. Various mechanisms exist by which they can recombine, form cointegrates, or integrate into chromosomal DNA or larger plasmids. We provide an overview of the current knowledge of plasmid-mediated PBI resistance in staphylococci, with particular reference to the currently known PBI resistance genes, their association with mobile genetic elements, and the recombination/integration processes that control their mobility. © 2011 New York Academy of Sciences.

  6. A naked-eye colorimetric "PCR developer"

    NASA Astrophysics Data System (ADS)

    Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Despite several advances in molecular biology and diagnostics, Polymerase Chain Reaction (PCR) is currently the gold standard for nucleic acids amplification and detection, due to its versatility, low-cost and universality, with estimated <10 billion reactions per year and a worldwide market of several billion dollars/year. Nevertheless, PCR still relies on the laborious, time-consuming, and multi-step gel electrophoresis-based detection, which includes gel casting, electrophoretic run, gel staining, and gel visualization. In this work, we propose a "PCR developer", namely a universal one-step, one-tube method, based on controlled aggregation of gold nanoparticles (AuNPs), to detect PCR products by naked eye in few minutes, with no need for any instrumentation. We demonstrated the specificity and sensitivity of the PCR developer on different model targets, suitable for a qualitative detection in real-world diagnostics (i.e., gene rearrangements, genetically modified organisms, and pathogens). The PCR developer proved to be highly specific and ultra-sensitive, discriminating down to few copies of HIV viral DNA, diluted in an excess of interfering human genomic DNA, which is a clinically relevant viral load. Hence, it could be a valuable tool for both academic research and clinical applications.

  7. Can accretion disk properties observationally distinguish black holes from naked singularities?

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2010-12-01

    Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black

  8. The “Naked Coral” Hypothesis Revisited – Evidence for and Against Scleractinian Monophyly

    PubMed Central

    Forêt, Sylvain; Huttley, Gavin; Miller, David J.; Chen, Chaolun Allen

    2014-01-01

    The relationship between Scleractinia and Corallimorpharia, Orders within Anthozoa distinguished by the presence of an aragonite skeleton in the former, is controversial. Although classically considered distinct groups, some phylogenetic analyses have placed the Corallimorpharia within a larger Scleractinia/Corallimorpharia clade, leading to the suggestion that the Corallimorpharia are “naked corals” that arose via skeleton loss during the Cretaceous from a Scleractinian ancestor. Scleractinian paraphyly is, however, contradicted by a number of recent phylogenetic studies based on mt nucleotide (nt) sequence data. Whereas the “naked coral” hypothesis was based on analysis of the sequences of proteins encoded by a relatively small number of mt genomes, here a much-expanded dataset was used to reinvestigate hexacorallian phylogeny. The initial observation was that, whereas analyses based on nt data support scleractinian monophyly, those based on amino acid (aa) data support the “naked coral” hypothesis, irrespective of the method and with very strong support. To better understand the bases of these contrasting results, the effects of systematic errors were examined. Compared to other hexacorallians, the mt genomes of “Robust” corals have a higher (A+T) content, codon usage is far more constrained, and the proteins that they encode have a markedly higher phenylalanine content, leading us to suggest that mt DNA repair may be impaired in this lineage. Thus the “naked coral” topology could be caused by high levels of saturation in these mitochondrial sequences, long-branch effects or model violations. The equivocal results of these extensive analyses highlight the fundamental problems of basing coral phylogeny on mitochondrial sequence data. PMID:24740380

  9. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes

    PubMed Central

    Rosada, Rogério S; Torre, Lucimara Gaziola de la; Frantz, Fabiani G; Trombone, Ana PF; Zárate-Bladés, Carlos R; Fonseca, Denise M; Souza, Patrícia RM; Brandão, Izaíra T; Masson, Ana P; Soares, Édson G; Ramos, Simone G; Faccioli, Lúcia H; Silva, Célio L; Santana, Maria HA; Coelho-Castelo, Arlete AM

    2008-01-01

    Background The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally. Results We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 μg of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-γ and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 μg). Conclusion Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease. PMID

  10. Epstein-Barr Virus (EBV) DNA in plasma is not encapsidated in patients with EBV-related malignancies.

    PubMed

    Ryan, Julie L; Fan, Hongxin; Swinnen, Lode J; Schichman, Steven A; Raab-Traub, Nancy; Covington, Mary; Elmore, Sandra; Gulley, Margaret L

    2004-06-01

    Epstein-Barr Virus (EBV), a ubiquitous gamma herpes virus, infects more than 95% of the human population before adulthood. Life-long persistence, usually without adverse health consequences, relies on a balance between viral latency, viral replication, and host immune response. Patients with EBV-related disease often have high levels of EBV DNA in their plasma. This study addresses whether this circulating, cell-free EBV DNA is encapsidated in virions or exists as naked genomes. First, an assay was developed, combining DNase I and quantitative real-time PCR, to discriminate encapsidated from naked EBV DNA. EBV DNA was almost always naked in the plasma of AIDS-related lymphoma patients (n = 11) and immunosuppressed/posttransplantation patients (n = 8). In contrast, infectious mononucleosis patients (n = 30) often had a mixture of encapsidated and naked EBV DNA. These findings may be important in understanding how viral load relates to disease status and in predicting response to nucleoside analogs and other antiviral therapies.

  11. Effects of poly(lactic-co-glycolic acid) on preparation and characteristics of plasmid DNA-loaded solid lipid nanoparticles.

    PubMed

    Zhu, L; Xie, S; Dong, Z; Wang, X; Wang, Y; Zhou, W

    2011-09-01

    Poly(lactic-co-glycolic acid) (PLGA) was used as a polymeric emulsifier to encapsulate plasmid DNA into hydrogenated castor oil (HCO)-solid lipid nanoparticles (SLN) by w/o/w double emulsion and solvent evaporation techniques. The effects of PLGA on the preparation, characteristics and transfection efficiency of DNA-loaded SLN were studied. The results showed that PLGA was essential to form the primary w/o emulsion and the stability of the emulsion was enhanced with the increase of PLGA content. DNA-loaded SLN were spherical with smooth surfaces. The SLN had a negative charge in weak acid and alkaline environment but acquired a positive charge in acidic pH and the cationisation capacity of the SLN increased with the increase of PLGA/HCO ratio. Agarose gel electrophoresis demonstrated that the majority of the DNA maintained its structural integrity after preparation and being extracted or released from DNA-loaded SLN. When PLGA/HCO ratio increased from 5 to 15%, the encapsulation efficiency, loading capacity and transfection efficiency of the nanoparticles increased significantly, whereas the changes of particle size and polydispersity index were insignificant. Cytotoxicity study in cell culture demonstrated that the SLN was not toxic.

  12. Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism

    PubMed Central

    Vecchiarelli, Anthony G.; Hwang, Ling Chin; Mizuuchi, Kiyoshi

    2013-01-01

    Increasingly diverse types of cargo are being found to be segregated and positioned by ParA-type ATPases. Several minimalistic systems described in bacteria are self-organizing and are known to affect the transport of plasmids, protein machineries, and chromosomal loci. One well-studied model is the F plasmid partition system, SopABC. In vivo, SopA ATPase forms dynamic patterns on the nucleoid in the presence of the ATPase stimulator, SopB, which binds to the sopC site on the plasmid, demarcating it as the cargo. To understand the relationship between nucleoid patterning and plasmid transport, we established a cell-free system to study plasmid partition reactions in a DNA-carpeted flowcell. We observed depletion zones of the partition ATPase on the DNA carpet surrounding partition complexes. The findings favor a diffusion-ratchet model for plasmid motion whereby partition complexes create an ATPase concentration gradient and then climb up this gradient toward higher concentrations of the ATPase. Here, we report on the dynamic properties of the Sop system on a DNA-carpet substrate, which further support the proposed diffusion-ratchet mechanism. PMID:23479605

  13. Linear Streptomyces plasmids form superhelical circles through interactions between their terminal proteins

    PubMed Central

    Tsai, Hsiu-Hui; Huang, Chih-Hung; Tessmer, Ingrid; Erie, Dorothy A.; Chen, Carton W.

    2011-01-01

    Linear chromosomes and linear plasmids of Streptomyces possess covalently bound terminal proteins (TPs) at the 5′ ends of their telomeres. These TPs are proposed to act as primers for DNA synthesis that patches the single-stranded gaps at the 3′ ends during replication. Most (‘archetypal’) Streptomyces TPs (designated Tpg) are highly conserved in size and sequence. In addition, there are a number of atypical TPs with heterologous sequences and sizes, one of which is Tpc that caps SCP1 plasmid of Streptomyces coelicolor. Interactions between the TPs on the linear Streptomyces replicons have been suggested by electrophoretic behaviors of TP-capped DNA and circular genetic maps of Streptomyces chromosomes. Using chemical cross-linking, we demonstrated intramolecular and intermolecular interactions in vivo between Tpgs, between Tpcs and between Tpg and Tpc. Interactions between the chromosomal and plasmid telomeres were also detected in vivo. The intramolecular telomere interactions produced negative superhelicity in the linear DNA, which was relaxed by topoisomerase I. Such intramolecular association between the TPs poses a post-replicational complication in the formation of a pseudo-dimeric structure that requires resolution by exchanging TPs or DNA. PMID:21109537

  14. Hybridizing bacteria, crossing methods, cross-checking arguments: the transition from episomes to plasmids (1961-1969).

    PubMed

    Grote, Mathias

    2008-01-01

    Plasmids are non-chromosomal hereditary determinants, mostly found in prokaryotes. Whereas Joshua Lederberg coined the term "plasmid" as early as 1952, today's concept was not established until the early 1970s. In this eclipse period, the plasmid's place was taken by the episome, following the 1958 publication of Elie Wollman and François Jacob. This paper analyzes the transition from the episome to a renewed plasmid concept both on the experimental and the conceptual level. It will become clear that intergeneric transfer experiments were central to this development. These studies rely on conjugational transfer of extrachromosomal hereditary determinants between different bacterial genera. First, experimental systems employing intergeneric transfer shaped the new plasmid by enabling its representation as a species of circular DNA. Moreover, they had a destabilizing effect on the episome, leading to a crisis in the concepts of microbial genetics towards the end of the 1960s. The new plasmid then became one of the cornerstones of recombinant DNA technologies. In an historic perspective, intergeneric transfer experiments indicate a gradual transition of molecular biology from its early "analytic" to the "synthetic" phase of genetic engineering. Hence, the construction of genetic hybrids in vivo as epitomized in the studies shown here marks an intermediate state that one could designate as "recombinant DNA avant la lettre".

  15. Naked singularities in higher dimensional Vaidya space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S. G.; Dadhich, Naresh

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension.

  16. Transformation of Saccharomyces cerevisiae and Schizosaccharomyces pombe with linear plasmids containing 2 micron sequences.

    PubMed Central

    Guerrini, A M; Ascenzioni, F; Tribioli, C; Donini, P

    1985-01-01

    Linear plasmids were constructed by adding telomeres prepared from Tetrahymena pyriformis rDNA to a circular hybrid Escherichia coli-yeast vector and transforming Saccharomyces cerevisiae. The parental vector contained the entire 2 mu yeast circle and the LEU gene from S. cerevisiae. Three transformed clones were shown to contain linear plasmids which were characterized by restriction analysis and shown to be rearranged versions of the desired linear plasmids. The plasmids obtained were imperfect palindromes: part of the parental vector was present in duplicated form, part as unique sequences and part was absent. The sequences that had been lost included a large portion of the 2 mu circle. The telomeres were approximately 450 bp longer than those of T. pyriformis. DNA prepared from transformed S. cerevisiae clones was used to transform Schizosaccharomyces pombe. The transformed S. pombe clones contained linear plasmids identical in structure to their linear parents in S. cerevisiae. No structural re-arrangements or integration into S. pombe was observed. Little or no telomere growth had occurred after transfer from S. cerevisiae to S. pombe. A model is proposed to explain the genesis of the plasmids. Images Fig. 1. Fig. 2. Fig. 4. PMID:3896773

  17. Isolation of a novel plasmid from Couchioplanes caeruleus and construction of two plasmid vectors for gene expression in Actinoplanes missouriensis.

    PubMed

    Jang, Moon-Sun; Fujita, Azusa; Ikawa, Satomi; Hanawa, Keitaro; Yamamura, Hideki; Tamura, Tomohiko; Hayakawa, Masayuki; Tezuka, Takeaki; Ohnishi, Yasuo

    2015-01-01

    To date, no plasmid vector has been developed for the rare actinomycete Actinoplanes missouriensis. Moreover, no small circular plasmid has been reported to exist in the genus Actinoplanes. Here, a novel plasmid, designated pCAZ1, was isolated from Couchioplanes caeruleus subsp. azureus via screening for small circular plasmids in Actinoplanes (57 strains) and Couchioplanes (2 strains). Nucleotide sequencing revealed that pCAZ1 is a 5845-bp circular molecule with a G + C content of 67.5%. The pCAZ1 copy number was estimated at 30 per chromosome. pCAZ1 contains seven putative open reading frames, one of which encodes a protein containing three motifs conserved among plasmid-encoded replication proteins that are involved in the rolling-circle mechanism of replication. Detection of single-stranded DNA intermediates in C. caeruleus confirmed that pCAZ1 replicates by this mechanism. The ColE1 origin from pBluescript SK(+) and the oriT sequence with the apramycin resistance gene aac(3)IV from pIJ773 were inserted together into pCAZ1, to construct the Escherichia coli-A. missouriensis shuttle vectors, pCAM1 and pCAM2, in which the foreign DNA fragment was inserted into pCAZ1 in opposite directions. pCAM1 and pCAM2 were successfully transferred to A. missouriensis through the E. coli-mediated conjugative transfer system. The copy numbers of pCAM1 and pCAM2 in A. missouriensis were estimated to be one and four per chromosome, respectively. Thus, these vectors can be used as effective genetic tools for homologous and heterologous gene expression studies in A. missouriensis. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Transformation of Streptococcus lactis Protoplasts by Plasmid DNA

    PubMed Central

    Kondo, Jeffery K.; McKay, Larry L.

    1982-01-01

    Polyethylene glycol-treated protoplasts prepared from Streptococcus lactis LM3302, a lactose-negative (Lac−) derivative of S. lactis ML3, were transformed to lactose-fermenting ability by a transductionally shortened plasmid (pLM2103) coding for lactose utilization. Images PMID:16346019

  19. Minichromosome assembly of non-integrated plasmid DNA transfected into mammalian cells.

    PubMed Central

    Reeves, R; Gorman, C M; Howard, B

    1985-01-01

    The nucleoprotein structures formed on various plasmid expression vectors transfected into mammalian cells by both the calcium phosphate and DEAE-dextran methods have been studied. We demonstrate by a variety of means that mammalian cells are capable of rapidly assembling non-integrated circular plasmids (both replicating and non-replicating) into typical "minichromosomes" containing nucleosomes with a 190 bp repetitive spacing. Treatment of recipient cells with sodium butyrate for a short period of time (12-16 h) immediately following transfection markedly increased the DNase I digestion sensitivity of the newly assembled plasmid chromatin. Furthermore, minichromosomes isolated from such butyrate-treated cells are depleted in histone H1 and contain highly acetylated forms of histone H4. These findings are entirely consistent with our earlier speculation (Gorman et al., Nucleic Acids Res. 11, 1044; 1983) that appropriate butyrate treatment might stimulate transient expression of newly transfected genes by facilitating their assembly into an "active" type of chromatin structure. Images PMID:3859838

  20. Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus

    PubMed Central

    Greve, Bo; Jensen, Susanne; Phan, Hoa; Brügger, Kim; Zillig, Wolfram; She, Qunxin; Garrett, Roger A.

    2005-01-01

    Three plasmids isolated from the crenarchaeal thermoacidophile Sulfolobus neozealandicus were characterized. Plasmids pTAU4 (7,192 bp), pORA1 (9,689 bp) and pTIK4 (13,638 bp) show unusual properties that distinguish them from previously characterized cryptic plasmids of the genus Sulfolobus. Plasmids pORA1 and pTIK4 encode RepA proteins, only the former of which carries the novel polymerase–primase domain of other known Sulfolobus plasmids. Plasmid pTAU4 encodes a mini-chromosome maintenance protein homolog and no RepA protein; the implications for DNA replication are considered. Plasmid pORA1 is the first Sulfolobus plasmid to be characterized that does not encode the otherwise highly conserved DNA-binding PlrA protein. Another encoded protein appears to be specific for the New Zealand plasmids. The three plasmids should provide useful model systems for functional studies of these important crenarchaeal proteins. PMID:15876565

  1. Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guss, Adam M; Olson, Daniel G.; Caiazza, Nicky

    2012-01-01

    BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than themore » similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.« less

  2. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    PubMed Central

    Bhakta, Gajadhar; Nurcombe, Victor; Maitra, Amarnath; Shrivastava, Anju

    2014-01-01

    The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein)-encapsulated PEGylated (meaning polyethylene glycol coated) magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles) for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-? and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP). Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi) nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation. PMID:24936399

  3. Isolation of plasmid from the blue-green alga Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Qin, Song; Tong, Shun; Zhang, Peijun; Tseng, C. K.

    1993-09-01

    CCC plasmid was isolated from an economically important blue-green alga — Spirulina platensis (1.7×106 dalton from the S6 strain and 1.2×106 dalton from the F3 strain) using a rapid method based on ultrasonic disruption of algal cells and alkaline removal of chromosomal DNA. The difference in the molecular weight of the CCC DNAs from the two strains differing in form suggests that plasmid may be related with the differentiation of algal form. This modified method, which does not use any lysozyme, is a quick and effective method of plasmid isolation, especially for filamentous blue-green algae.

  4. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains.

    PubMed

    Johnson, Timothy J; Siek, Kylie E; Johnson, Sara J; Nolan, Lisa K

    2006-01-01

    ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.

  5. DNA Sequence of a ColV Plasmid and Prevalence of Selected Plasmid-Encoded Virulence Genes among Avian Escherichia coli Strains

    PubMed Central

    Johnson, Timothy J.; Siek, Kylie E.; Johnson, Sara J.; Nolan, Lisa K.

    2006-01-01

    ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains. PMID:16385064

  6. Electron Resonance Decay into a Biological Function: Decrease in Viability of E. coli Transformed by Plasmid DNA Irradiated with 0.5-18 eV Electrons.

    PubMed

    Kouass Sahbani, S; Cloutier, P; Bass, A D; Hunting, D J; Sanche, L

    2015-10-01

    Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.

  7. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    PubMed

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  8. Unique helicase determinants in the essential conjugative TraI factor from Salmonella enterica serovar Typhimurium plasmid pCU1.

    PubMed

    McLaughlin, Krystle J; Nash, Rebekah P; Redinbo, Mathew R

    2014-09-01

    The widespread development of multidrug-resistant bacteria is a major health emergency. Conjugative DNA plasmids, which harbor a wide range of antibiotic resistance genes, also encode the protein factors necessary to orchestrate the propagation of plasmid DNA between bacterial cells through conjugative transfer. Successful conjugative DNA transfer depends on key catalytic components to nick one strand of the duplex DNA plasmid and separate the DNA strands while cell-to-cell transfer occurs. The TraI protein from the conjugative Salmonella plasmid pCU1 fulfills these key catalytic roles, as it contains both single-stranded DNA-nicking relaxase and ATP-dependent helicase domains within a single, 1,078-residue polypeptide. In this work, we unraveled the helicase determinants of Salmonella pCU1 TraI through DNA binding, ATPase, and DNA strand separation assays. TraI binds DNA substrates with high affinity in a manner influenced by nucleic acid length and the presence of a DNA hairpin structure adjacent to the nick site. TraI selectively hydrolyzes ATP, and mutations in conserved helicase motifs eliminate ATPase activity. Surprisingly, the absence of a relatively short (144-residue) domain at the extreme C terminus of the protein severely diminishes ATP-dependent strand separation. Collectively, these data define the helicase motifs of the conjugative factor TraI from Salmonella pCU1 and reveal a previously uncharacterized C-terminal functional domain that uncouples ATP hydrolysis from strand separation activity. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Unique Helicase Determinants in the Essential Conjugative TraI Factor from Salmonella enterica Serovar Typhimurium Plasmid pCU1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, K. J.; Nash, R. P.; Redinbo, M. R.

    The widespread development of multidrug-resistant bacteria is a major health emergency. Conjugative DNA plasmids, which harbor a wide range of antibiotic resistance genes, also encode the protein factors necessary to orchestrate the propagation of plasmid DNA between bacterial cells through conjugative transfer. Successful conjugative DNA transfer depends on key catalytic components to nick one strand of the duplex DNA plasmid and separate the DNA strands while cell-to-cell transfer occurs. The TraI protein from the conjugative Salmonella plasmid pCU1 fulfills these key catalytic roles, as it contains both single-stranded DNA-nicking relaxase and ATP-dependent helicase domains within a single, 1,078-residue polypeptide. Inmore » this work, we unraveled the helicase determinants of Salmonella pCU1 TraI through DNA binding, ATPase, and DNA strand separation assays. TraI binds DNA substrates with high affinity in a manner influenced by nucleic acid length and the presence of a DNA hairpin structure adjacent to the nick site. TraI selectively hydrolyzes ATP, and mutations in conserved helicase motifs eliminate ATPase activity. Surprisingly, the absence of a relatively short (144-residue) domain at the extreme C terminus of the protein severely diminishes ATP-dependent strand separation. Collectively, these data define the helicase motifs of the conjugative factor TraI from Salmonella pCU1 and reveal a previously uncharacterized C-terminal functional domain that uncouples ATP hydrolysis from strand separation activity.« less

  10. The formulation and immunisation of oral poly(DL-lactide-co-glycolide) microcapsules containing a plasmid vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus).

    PubMed

    Tian, Jiyuan; Sun, Xiuqin; Chen, Xiguang; Yu, Juan; Qu, Lingyun; Wang, Lingchong

    2008-06-01

    Nucleic acid-based immunotherapy is a new treatment option for fish immunisation in intensive culture. However, DNA-based vaccines would be hydrolyzed or denaturized because of the existence of nucleases and severe gastrointestinal conditions. Poly(DL-lactide-co-glycolide) (PLGA) microcapsules, loaded with plasmid DNA (pDNA) against lymphocystis disease virus (LCDV), were prepared by modified water in oil in water (W/O/W) double emulsion method in our laboratory. Encapsulation efficiency, loading percent and diameter of microcapsules were 78-88%, 0.5-0.7% and less than 10 mum, respectively. In simulated gastric fluid (SGF), less than 10% of pDNA was released from microcapsules in 12 h, and about 6.5% of pDNA was released in 12 h in simulated intestinal fluid (SIF). The content of the supercoiled of pDNA in microcapsules and control was 80% and 89% respectively, which indicated that a little supercoiled pDNA degradation occurred during encapsulation. RT-PCR showed that lots of RNA containing information of MCP gene existed in all tissues of fish vaccinated with microcapsules 10-90 days after oral administration. SDS-PAGE and immunoblots, as well as immunofluorescence images, displayed that major capsid protein (MCP) of LCDV was expressed in tissues of fish vaccinated with pDNA-loaded microcapsules. In addition, indirect enzyme-linked immunosorbent assay (ELISA) showed that the immune responses of sera were positive (O.D> or =0.3) from week 1 to week 24 for fish vaccinated with microcapsules, in comparison with fish vaccinated with naked pDNA. Our results suggested that PLGA microcapsules were promising oral carriers for pDNA delivery. This encapsulation technique had potential for drug delivery applications due to its ease of operation and notable immunisation efficacy.

  11. Plasmid profile in oral Fusobacterium nucleatum from humans and Cebus apella monkeys.

    PubMed

    Paula, Marcia O; Gaetti-Jardim Júnior, Elerson; Avila-Campos, Mario J

    2003-01-01

    Fusobacterium nucleatum is a strict anaerobe and is indigenous of the human oral cavity. This organism is commonly recovered from different monomicrobial and mixed infections in humans and animals. In this study, the plasmid profile, the plasmid stability and the penicillin-resistance association in oral F. nucleatum isolated from periodontal patients, healthy subjects and Cebus apella monkeys were evaluated. Forty-five F. nucleatum strains from patients, 38 from healthy subjects and seven from C. apella were identified and analyzed. Plasmid extraction was performed in all the isolated strains. These elements were found in 26.7% strains from patients and one strain from C. apella. Strains from healthy subjects did not show any plasmid. Most of strains showed two plasmid bands ranging from 4 to 16 Kb, but digestions with endonucleases showed that they belonged to a single plasmid. The plasmid profile was similar and stable in human and monkey strains. Also, plasmids were classified into three groups according to size. Two strains were positive to beta-lactamase production and no plasmid DNA-hybridization with a beta-lactamase gene probe was observed, suggesting a chromosomal resistance.

  12. Mobilization Function of the pBHR1 Plasmid, a Derivative of the Broad-Host-Range Plasmid pBBR1

    PubMed Central

    Szpirer, Cédric Y.; Faelen, Michel; Couturier, Martine

    2001-01-01

    The pBHR1 plasmid is a derivative of the small (2.6-kb), mobilizable broad-host-range plasmid pBBR1, which was isolated from the gram-negative bacterium Bordetella bronchiseptica (R. Antoine and C. Locht, Mol. Microbiol. 6:1785–1799, 1992). Plasmid pBBR1 consists of two functional cassettes and presents sequence similarities with the transfer origins of several plasmids and mobilizable transposons from gram-positive bacteria. We show that the Mob protein specifically recognizes a 52-bp sequence which contains, in addition to the transfer origin, the promoter of the mob gene. We demonstrate that this gene is autoregulated. The binding of the Mob protein to the 52-bp sequence could thus allow the formation of a protein-DNA complex with a double function: relaxosome formation and mob gene regulation. We show that the Mob protein is a relaxase, and we located the nic site position in vitro. After sequence alignment, the position of the nic site of pBBR1 corresponds with those of the nick sites of the Bacteroides mobilizable transposon Tn4555 and the streptococcal plasmid pMV158. The oriT of the latter is characteristic of a family of mobilizable plasmids that are found in gram-positive bacteria and that replicate by the rolling-circle mechanism. Plasmid pBBR1 thus appears to be a new member of this group, even though it resides in gram-negative bacteria and does not replicate via a rolling-circle mechanism. In addition, we identified two amino acids of the Mob protein necessary for its activity, and we discuss their involvement in the mobilization mechanism. PMID:11222611

  13. [Detection of linear chromosomes and plasmids among 15 genera in the Actinomycetales].

    PubMed

    Ma, Ning; Ma, Wei; Jiang, Chenglin; Fang, Ping; Qin, Zhongjun

    2003-10-01

    Bacterial chromosomes and plasmids are commonly circular, however, linear chromosomes and plasmids were discovered among 5 genera of the Actinomycetales. Here, we use pulsed field gel electrophoresis to study the genomes of 19 species which belong to 15 genera in the Actinomycetales. All chromosomes of 19 species are linear DNA, and linear plasmids with different sizes and copy numbers are detected among 5 species. This work provide basis for investigating the possible novel functions of linear replicons beyond Streptomyces and also helps to develop Actinomycetales artificial linear chromosome.

  14. Particle creation by naked singularities in higher dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Umpei; Nemoto, Hiroya; Shimano, Masahiro

    Recently, the possibility was pointed out by one of the present authors and his collaborators that an effective naked singularity referred to as ''a visible border of spacetime'' is generated by high-energy particle collision in the context of large extra dimensions or TeV-scale gravity. In this paper, we investigate the particle creation by a naked singularity in general dimensions, while adopting a model in which a marginally naked singularity forms in the collapse of a homothetic lightlike pressureless fluid. We find that the spectrum deviates from that of Hawking radiation due to scattering near the singularity but can be recastmore » in quasithermal form. The temperature is always higher than that of Hawking radiation of a same-mass black hole, and can be arbitrarily high depending on a parameter in the model. This implies that, in principle, the naked singularity may be distinguished from a black hole in collider experiments.« less

  15. Occurrence of small Hsd plasmids in Salmonella typhi, Shigella boydii, and Escherichia coli.

    PubMed Central

    Yoshida, Y; Mise, K

    1986-01-01

    The natural occurrence of small Hsd (host specificity for DNA) plasmids was demonstrated in restriction endonuclease-producing strains of Salmonella typhi, Shigella boydii, and Escherichia coli. The five Hsd plasmids isolated were between 5.0 and 12.2 kilobases long. The copy number of all the Hsd plasmids was high (more than 10 copies per cell). Introduction of these small plasmids into E. coli strain 0 drastically lowered the efficiency of plating of the lambda.0 phages (the efficiency of plating was less than 5 X 10(-5) PFU-1). High restriction endonuclease activities were detected in the Hsd plasmid-positive strains because of the elevated copy numbers of the hsdR+ gene. The advantages of using E. coli strains containing the small Hsd plasmids for purification of type II restriction endonucleases are discussed. Images PMID:3003023

  16. New restriction enzymes discovered from Escherichia coli clinical strains using a plasmid transformation method

    PubMed Central

    Kasarjian, Julie K. A.; Iida, Masatake; Ryu, Junichi

    2003-01-01

    The presence of restriction enzymes in bacterial cells has been predicted by either classical phage restriction-modification (R-M) tests, direct in vitro enzyme assays or more recently from bacterial genome sequence analysis. We have applied phage R-M test principles to the transformation of plasmid DNA and established a plasmid R-M test. To validate this test, six plasmids that contain BamHI fragments of phage lambda DNA were constructed and transformed into Escherichia coli strains containing known R-M systems including: type I (EcoBI, EcoAI, Eco124I), type II (HindIII) and type III (EcoP1I). Plasmid DNA with a single recognition site showed a reduction of relative efficiency of transformation (EOT = 10–1–10–2). When multiple recognition sites were present, greater reductions in EOT values were observed. Once established in the cell, the plasmids were subjected to modification (EOT = 1.0). We applied this test to screen E.coli clinical strains and detected the presence of restriction enzymes in 93% (14/15) of cells. Using additional subclones and the computer program, RM Search, we identified four new restriction enzymes, Eco377I, Eco585I, Eco646I and Eco777I, along with their recognition sequences, GGA(8N)ATGC, GCC(6N)TGCG, CCA(7N)CTTC, and GGA(6N)TATC, respectively. Eco1158I, an isoschizomer of EcoBI, was also found in this study. PMID:12595571

  17. Attenuated Shigella as a DNA Delivery Vehicle for DNA-Mediated Immunization

    NASA Astrophysics Data System (ADS)

    Sizemore, Donata R.; Branstrom, Arthur A.; Sadoff, Jerald C.

    1995-10-01

    Direct inoculation of DNA, in the form of purified bacterial plasmids that are unable to replicate in mammalian cells but are able to direct cell synthesis of foreign proteins, is being explored as an approach to vaccine development. Here, a highly attenuated Shigella vector invaded mammalian cells and delivered such plasmids into the cytoplasm of cells, and subsequent production of functional foreign protein was measured. Because this Shigella vector was designed to deliver DNA to colonic mucosa, the method is a potential basis for oral and other mucosal DNA immunization and gene therapy strategies.

  18. Population structure of plasmid-containing strains of Streptococcus mutans, a member of the human indigenous biota.

    PubMed

    Caufield, Page W; Saxena, Deepak; Fitch, David; Li, Yihong

    2007-02-01

    There are suggestions that the phylogeny of Streptococcus mutans, a member of the human indigenous biota that is transmitted mostly mother to child, might parallel the evolutionary history of its human host. The relatedness and phylogeny of plasmid-containing strains of S. mutans were examined based on chromosomal DNA fingerprints (CDF), a hypervariable region (HVR) of a 5.6-kb plasmid, the rRNA gene intergenic spacer region (IGSR), serotypes, and the genotypes of mutacin I and II. Plasmid-containing strains were studied because their genetic diversity was twice as great as that of plasmid-free strains. The CDF of S. mutans from unrelated human hosts were unique, except those from Caucasians, which were essentially identical. The evolutionary history of the IGSR, with or without the serotype and mutacin characters, clearly delineated an Asian clade. Also, a continuous association with mutacin II could be reconstructed through an evolutionary lineage with the IGSR, but not for serotype e. DNA sequences from the HVR of the plasmid produced a well-resolved phylogeny that differed from the chromosomal phylogeny, indicating that the horizontal transfer of the plasmid may have occurred multiple times. The plasmid phylogeny was more congruent with serotype e than with mutacin II evolution, suggesting a possible functional correlation. Thus, the history of this three-tiered relationship between human, bacterium, and plasmid supported both coevolution and independent evolution.

  19. Identification and characterization of plasmids from the western aster yellows mycoplasmalike organism.

    PubMed Central

    Kuske, C R; Kirkpatrick, B C

    1990-01-01

    Supercoiled double-stranded DNA molecules (plasmids) were isolated from plants infected with three laboratory strains of western aster yellows mycoplasma-like organism (AY-MLO) by using cesium chloride-ethidium bromide density gradients. Southern blot analysis, using plasmids from the severe strain of AY-MLO (SAY-MLO) as the probe, identified at least four plasmids in celery, aster, and periwinkle plants and in Macrosteles severini leafhopper vectors infected with either the dwarf AY-MLO, Tulelake AY-MLO, or SAY-MLO strain. Plasmids were also detected in two California field isolates of AY-MLO but not in plants infected with the beet leafhopper-transmitted virescence agent, western X, or elm yellows MLOs. SAY-MLO plasmids were 5.2, 4.9, 3.4, and 1.7 kilobase pairs in size. Plasmids isolated from dwarf AY- and Tulelake AY-MLOs were 7.4, 5.1, 3.5, and 1.7 kilobase pairs in size. No evidence was obtained for integration of SAY-MLO plasmids into the MLO chromosome. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 PMID:2307660

  20. DETECTION OF DNA DAMAGE USING MELTING ANALYSIS TECHNIQUES

    EPA Science Inventory

    A rapid and simple fluorescence screening assay for UV radiation-, chemical-, and enzyme-induced DNA damage is reported. This assay is based on a melting/annealing analysis technique and has been used with both calf thymus DNA and plasmid DNA (puc 19 plasmid from E. coli). DN...

  1. Heterogeneous oxygen availability affects the titer and topology but not the fidelity of plasmid DNA produced by Escherichia coli.

    PubMed

    Jaén, Karim E; Sigala, Juan-Carlos; Olivares-Hernández, Roberto; Niehaus, Karsten; Lara, Alvaro R

    2017-07-04

    Dissolved oxygen tension (DOT) is hardly constant and homogenously distributed in a bioreactor, which can have a negative impact in the metabolism and product synthesis. However, the effects of DOT on plasmid DNA (pDNA) production and quality have not been thoroughly investigated. In the present study, the effects of aerobic (DOT ≥30% air sat.), microaerobic (constant DOT = 3% air sat.) and oscillatory DOT (from 0 to 100% air sat.) conditions on pDNA production, quality and host performance were characterized. Microaerobic conditions had little effect on pDNA production, supercoiled fraction and sequence fidelity. By contrast, oscillatory DOT caused a 22% decrease in pDNA production compared with aerobic cultures. Although in aerobic cultures the pDNA supercoiled fraction was 98%, it decreased to 80% under heterogeneous DOT conditions. The different oxygen availabilities had no effect on the fidelity of the produced pDNA. The estimated metabolic fluxes indicated substantial differences at the level of the pentose phosphate pathway and TCA cycle under different conditions. Cyclic changes in fermentative pathway fluxes, as well as fast shifts in the fluxes through cytochromes, were also estimated. Model-based genetic modifications that can potentially improve the process performance are suggested. DOT heterogeneities strongly affected cell performance, pDNA production and topology. This should be considered when operating or scaling-up a bioreactor with deficient mixing. Constant microaerobic conditions affected the bacterial metabolism but not the amount or quality of pDNA. Therefore, pDNA production in microaerobic cultures may be an alternative for bioreactor operation at higher oxygen transfer rates.

  2. Enhanced plasmid DNA utilization in transiently transfected CHO-DG44 cells in the presence of polar solvents.

    PubMed

    Rajendra, Yashas; Balasubramanian, Sowmya; Kiseljak, Divor; Baldi, Lucia; Wurm, Florian M; Hacker, David L

    2015-01-01

    Although the protein yields from transient gene expression (TGE) with Chinese hamster ovary (CHO) cells have recently improved, the amount of plasmid DNA (pDNA) needed for transfection remains relatively high. We describe a strategy to reduce the pDNA amount by transfecting CHO-DG44 cells with 0.06 μg pDNA/10(6) cells (10% of the optimal amount) in the presence of nonspecific (filler) DNA and various polar solvents including dimethylsufoxide, dimethyl formamide, acetonitrile, dimethyl acetamide (DMA), and hexamethyl phosphoramide (HMP). All of the polar solvents with the exception of HMP increased the production of a recombinant antibody in comparison to the untreated control transfection. In the presence of 0.25% DMA, the antibody yield in a 7-day batch culture was 500 mg/L. This was fourfold higher than the yield from the untreated control transfection. Mechanistic studies revealed that the polar solvents did not affect polyethylenimine-mediated pDNA delivery into cells or nuclei. The steady-state transgene mRNA level was elevated in the presence of each of the polar solvents tested, while the transgene mRNA half-life remained the same. These results indicated that the polar solvents enhanced transgene transcription. When screening a panel of recombinant antibodies and Fc-fusion proteins for production in the presence of the polar solvents, the highest increase in yield was observed following DMA addition for 11 of the 12 proteins. These results are expected to enhance the applicability of high-yielding TGE processes with CHO-DG44 cells by decreasing the amount of pDNA required for transfection. © 2015 American Institute of Chemical Engineers.

  3. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line.

    PubMed

    Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi

    2012-01-01

    TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.

  4. Complete sequences of a novel blaNDM-1-harbouring plasmid from Providencia rettgeri and an FII-type plasmid from Klebsiella pneumoniae identified in Canada.

    PubMed

    Mataseje, L F; Boyd, D A; Lefebvre, B; Bryce, E; Embree, J; Gravel, D; Katz, K; Kibsey, P; Kuhn, M; Langley, J; Mitchell, R; Roscoe, D; Simor, A; Taylor, G; Thomas, E; Turgeon, N; Mulvey, M R

    2014-03-01

    Emergence of plasmids harbouring bla(NDM-1) is a major public health concern due to their association with multidrug resistance and their potential mobility. PCR was used to detect bla(NDM-1) from clinical isolates of Providencia rettgeri (PR) and Klebsiella pneumoniae (KP). Antimicrobial susceptibilities were determined using Vitek 2. The complete DNA sequence of two bla(NDM-1) plasmids (pPrY2001 and pKp11-42) was obtained using a 454-Genome Sequencer FLX. Contig assembly and gap closures were confirmed by PCR-based sequencing. Comparative analysis was done using BLASTn and BLASTp algorithms. Both clinical isolates were resistant to all β-lactams, carbapenems, aminoglycosides, ciprofloxacin and trimethoprim/sulfamethoxazole, and susceptible to tigecycline. Plasmid pPrY2001 (113 295 bp) was isolated from PR. It did not show significant homology to any known plasmid backbone and contained a truncated repA and novel repB. Two bla(NDM-1)-harbouring plasmids from Acinetobacter lwoffii (JQ001791 and JQ060896) shared 100% similarity to a 15 kb region that contained bla(NDM-1). pPrY2001 also contained a type II toxin/antitoxin system. pKp11-42 (146 695 bp) was isolated from KP. It contained multiple repA genes. The plasmid backbone had the highest homology to the IncFIIk plasmid type (51% coverage, 100% nucleotide identity). The bla(NDM-1) region was unique in that it was flanked upstream by IS3000 and downstream by a novel transposon designated Tn6229. pKp11-42 also contained a number of mutagenesis and plasmid stability proteins. pPrY2001 differed from all known plasmids due to its novel backbone and repB. pKp11-42 was similar to IncFIIk plasmids and contained a number of genes that aid in plasmid persistence.

  5. FATE IN SOIL OF A RECOMBINANT PLASMID CARRYING A 'DROSOPHILA' GENE

    EPA Science Inventory

    A recombinant plasmid (C357;3.5 Mdal) containing heterologous DNA(pBR322(2.6 Mdal) with cDNA for an egg yolk protein from Drosophila grimshawi) in Escherichia coli strain HB 101 survived in and was recovered on selective media from sterile and nonsterile soil during 27 days at fr...

  6. Increased B and T Cell Responses in M. bovis Bacille Calmette-Guérin Vaccinated Pigs Co-Immunized with Plasmid DNA Encoding a Prototype Tuberculosis Antigen

    PubMed Central

    Bruffaerts, Nicolas; Pedersen, Lasse E.; Vandermeulen, Gaëlle; Préat, Véronique; Stockhofe-Zurwieden, Norbert; Huygen, Kris; Romano, Marta

    2015-01-01

    The only tuberculosis vaccine currently available, bacille Calmette-Guérin (BCG) is a poor inducer of CD8+ T cells, which are particularly important for the control of latent tuberculosis and protection against reactivation. As the induction of strong CD8+ T cell responses is a hallmark of DNA vaccines, a combination of BCG with plasmid DNA encoding a prototype TB antigen (Ag85A) was tested. As an alternative animal model, pigs were primed with BCG mixed with empty vector or codon-optimized pAg85A by the intradermal route and boosted with plasmid delivered by intramuscular electroporation. Control pigs received unformulated BCG. The BCG-pAg85A combination stimulated robust and sustained Ag85A specific antibody, lymphoproliferative, IL-6, IL-10 and IFN-γ responses. IgG1/IgG2 antibody isotype ratio reflected the Th1 helper type biased response. T lymphocyte responses against purified protein derivative of tuberculin (PPD) were induced in all (BCG) vaccinated animals, but responses were much stronger in BCG-pAg85A vaccinated pigs. Finally, Ag85A-specific IFN-γ producing CD8+ T cells were detected by intracellular cytokine staining and a synthetic peptide, spanning Ag85A131-150 and encompassing two regions with strong predicted SLA-1*0401/SLA-1*0801 binding affinity, was promiscuously recognized by 6/6 animals vaccinated with the BCG-pAg85A combination. Our study provides a proof of concept in a large mammalian species, for a new Th1 and CD8+ targeting tuberculosis vaccine, based on BCG-plasmid DNA co-administration. PMID:26172261

  7. Characterization of a streptomycin-sulfonamide resistance plasmid from Actinobacillus pleuropneumoniae.

    PubMed Central

    Willson, P J; Deneer, H G; Potter, A; Albritton, W

    1989-01-01

    An Actinobacillus pleuropneumoniae strain contained a plasmid (pHD8.1) conferring resistance to streptomycin and sulfonamide. Restriction endonuclease mapping and DNA-DNA hybridization showed that pHD8.1 is related to RSF1010 from Salmonella panama, which also confers resistance to streptomycin and sulfonamide, and to pHD148 from Haemophilus ducreyi, which confers resistance only to sulfonamide. Images PMID:2541656

  8. Combination of bone morphogenetic protein-2 plasmid DNA with chemokine CXCL12 creates an additive effect on bone formation onset and volume.

    PubMed

    Wegman, F; Poldervaart, M T; van der Helm, Y J; Oner, F C; Dhert, W J; Alblas, J

    2015-07-27

    Bone morphogenetic protein-2 (BMP-2) gene delivery has shown to induce bone formation in vivo in cell-based tissue engineering. In addition, the chemoattractant stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is known to recruit multipotent stromal cells towards its release site where it enhances vascularisation and possibly contributes to osteogenic differentiation. To investigate potential cooperative behaviour for bone formation, we investigated combined release of BMP-2 and SDF-1α on ectopic bone formation in mice. Multipotent stromal cell-seeded and cell-free constructs with BMP-2 plasmid DNA and /or SDF-1α loaded onto gelatin microparticles, were implanted subcutaneously in mice for a period of 6 weeks. Histological analysis and histomorphometry revealed that the onset of bone formation and the formed bone volume were both enhanced by the combination of BMP-2 and SDF-1α compared to controls in cell-seeded constructs. Samples without seeded multipotent stromal cells failed to induce any bone formation. We conclude that the addition of stromal cell-derived factor-1α to a cell-seeded alginate based bone morphogenetic protein-2 plasmid DNA construct has an additive effect on bone formation and can be considered a promising combination for bone regeneration.

  9. DNA Camouflage

    DTIC Science & Technology

    2016-01-08

    Kan), and pBZ51 + pBZ52 (selected on Amp ) were grown overnight, and plasmid DNA was extracted and run on a 1% agarose gel. Cells co-transformed with...pBZ51 and pBZ52 were able to stably maintain both plasmids under Amp selection. SI Fig. 10 SI

  10. An automated microplate-based method for monitoring DNA strand breaks in plasmids and bacterial artificial chromosomes

    PubMed Central

    Rock, Cassandra; Shamlou, Parviz Ayazi; Levy, M. Susana

    2003-01-01

    A method is described for high-throughput monitoring of DNA backbone integrity in plasmids and artificial chromosomes in solution. The method is based on the denaturation properties of double-stranded DNA in alkaline conditions and uses PicoGreen fluorochrome to monitor denaturation. In the present method, fluorescence enhancement of PicoGreen at pH 12.4 is normalised by its value at pH 8 to give a ratio that is proportional to the average backbone integrity of the DNA molecules in the sample. A good regression fit (r2 > 0.98) was obtained when results derived from the present method and those derived from agarose gel electrophoresis were compared. Spiking experiments indicated that the method is sensitive enough to detect a proportion of 6% (v/v) molecules with an average of less than two breaks per molecule. Under manual operation, validation parameters such as inter-assay and intra-assay variation gave values of <5% coefficient of variation. Automation of the method showed equivalence to the manual procedure with high reproducibility and low variability within wells. The method described requires as little as 0.5 ng of DNA per well and a 96-well microplate can be analysed in 12 min providing an attractive option for analysis of high molecular weight vectors. A preparation of a 116 kb bacterial artificial chromosome was subjected to chemical and shear degradation and DNA integrity was tested using the method. Good correlation was obtained between time of chemical degradation and shear rate with fluorescence response. Results obtained from pulsed- field electrophoresis of sheared samples were in agreement with those obtained using the microplate-based method. PMID:12771229

  11. The mitochondrial plasmid of the true slime mold Physarum polycephalum bypasses uniparental inheritance by promoting mitochondrial fusion.

    PubMed

    Sakurai, Rakusa; Nomura, Hideo; Moriyam, Yohsuke; Kawano, Shigeyuki

    2004-08-01

    Mitochondrial DNA (mtDNA) is inherited maternally in most eukaryotes. Linear mitochondrial plasmids in higher plants and fungi are also transmitted from the maternal parent to the progeny. However, mF, which is a mitochondrial linear plasmid of Physarum polycephalum, evades uniparental mitochondrial inheritance. We examined 36 myxamoebal strains of Physarum and isolated three novel mF+ strains (JE8, TU111, NG111) that harbored free mF plasmids. These strains were mated with the mF- strain KM88. Of the three mF- x mF+ crosses, only KM88 x JE8 displayed complete uniparental inheritance. However, in KM88 x TU111 and KM88 x NG111, the mtDNA of KM88 and mF of TU111 and NG111 were inherited by the plasmodia and showed recombination. For example, although the mtDNA of TU111 was eliminated, the mF of TU111 persisted and became inserted into the mtDNA of KM88, such that recombinant mtDNA represented 80% of the total mtDNA. The parental mitochondria fused to yield giant mitochondria with two or more mitochondrial nucleoids. The mF appears to exchange mitochondria from the recipient (paternal) to the donor (maternal) by promoting mitochondrial fusion.

  12. Development of oriC-Based Plasmids for Mesoplasma florum.

    PubMed

    Matteau, Dominick; Pepin, Marie-Eve; Baby, Vincent; Gauthier, Samuel; Arango Giraldo, Mélissa; Knight, Thomas F; Rodrigue, Sébastien

    2017-04-01

    The near-minimal bacterium Mesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. However, the lack of genetic engineering tools for this microorganism has limited our capacity to understand its basic biology and modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first generation of artificial plasmids able to replicate in this bacterium. Selected regions of the predicted M. florum chromosomal origin of replication ( oriC ) were used to create different plasmid versions that were tested for their transformation frequency and stability. Using polyethylene glycol-mediated transformation, we observed that plasmids harboring both rpmH-dnaA and dnaA-dnaN intergenic regions, interspaced or not with a copy of the dnaA gene, resulted in a frequency of ∼4.1 × 10 -6 transformants per viable cell and were stably maintained throughout multiple generations. In contrast, plasmids containing only one M. florum oriC intergenic region or the heterologous oriC region of Mycoplasma capricolum , Mycoplasma mycoides , or Spiroplasma citri failed to produce any detectable transformants. We also developed alternative transformation procedures based on electroporation and conjugation from Escherichia coli , reaching frequencies up to 7.87 × 10 -6 and 8.44 × 10 -7 transformants per viable cell, respectively. Finally, we demonstrated the functionality of antibiotic resistance genes active against tetracycline, puromycin, and spectinomycin/streptomycin in M. florum Taken together, these valuable genetic tools will facilitate efforts toward building an M. florum -based near-minimal cellular chassis for synthetic biology. IMPORTANCE Mesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. M. florum is closely related to the mycoides

  13. Auto-assembly of nanometer thick, water soluble layers of plasmid DNA complexed with diamines and basic amino acids on graphite: Greatest DNA protection is obtained with arginine.

    PubMed

    Khalil, T T; Boulanouar, O; Heintz, O; Fromm, M

    2017-02-01

    We have investigated the ability of diamines as well as basic amino acids to condense DNA onto highly ordered pyrolytic graphite with minimum damage after re-dissolution in water. Based on a bibliographic survey we briefly summarize DNA binding properties with diamines as compared to basic amino acids. Thus, solutions of DNA complexed with these linkers were drop-cast in order to deposit ultra-thin layers on the surface of HOPG in the absence or presence of Tris buffer. Atomic Force Microscopy analyses showed that, at a fixed ligand-DNA mixing ratio of 16, the mean thickness of the layers can be statistically predicted to lie in the range 0-50nm with a maximum standard deviation ±6nm, using a simple linear law depending on the DNA concentration. The morphology of the layers appears to be ligand-dependent. While the layers containing diamines present holes, those formed in the presence of basic amino acids, except for lysine, are much more compact and dense. X-ray Photoelectron Spectroscopy measurements provide compositional information indicating that, compared to the maximum number of DNA sites to which the ligands may bind, the basic amino acids Arg and His are present in large excess. Conservation of the supercoiled topology of the DNA plasmids was studied after recovery of the complex layers in water. Remarkably, arginine has the best protection capabilities whether Tris was present or not in the initial solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Plasmid Stability in Dried Cells of the Desert Cyanobacterium Chroococcidiopsis and its Potential for GFP Imaging of Survivors on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Billi, Daniela

    2012-06-01

    Two GFP-based plasmids, namely pTTQ18-GFP-pDU1mini and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1mini-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecASyn distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecASyn structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.

  15. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    PubMed

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  16. Replication and Transcription of Eukaryotic DNA in Esherichia coli

    PubMed Central

    Morrow, John F.; Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Goodman, Howard M.; Helling, Robert B.

    1974-01-01

    Fragments of amplified Xenopus laevis DNA, coding for 18S and 28S ribosomal RNA and generated by EcoRI restriction endonuclease, have been linked in vitro to the bacterial plasmid pSC101; and the recombinant molecular species have been introduced into E. coli by transformation. These recombinant plasmids, containing both eukaryotic and prokaryotic DNA, replicate stably in E. coli. RNA isolated from E. coli minicells harboring the plasmids hybridizes to amplified X. laevis rDNA. Images PMID:4600264

  17. Characterization of a cfr-Carrying Plasmid from Porcine Escherichia coli That Closely Resembles Plasmid pEA3 from the Plant Pathogen Erwinia amylovora.

    PubMed

    Zhang, Rongmin; Sun, Bin; Wang, Yang; Lei, Lei; Schwarz, Stefan; Wu, Congming

    2016-01-01

    The multiresistance gene cfr was found in two porcine Escherichia coli isolates, one harboring it on the conjugative 33,885-bp plasmid pFSEC-01, the other harboring it in the chromosomal DNA. Sequence analysis of pFSEC-01 revealed that a 6,769-bp fragment containing the cfr gene bracketed by two IS26 elements was inserted into a plasmid closely related to pEA3 from the plant pathogen Erwinia amylovora, suggesting that pFSEC-01 may be transferred between different bacterial genera of both animal and plant origin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa.

    PubMed

    Rogers, Elizabeth E; Stenger, Drake C

    2012-01-01

    A ≈ 38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19(th) century.

  19. A Conjugative 38 kB Plasmid Is Present in Multiple Subspecies of Xylella fastidiosa

    PubMed Central

    Rogers, Elizabeth E.; Stenger, Drake C.

    2012-01-01

    A ∼38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19th century. PMID:23251694

  20. Artificial plasmid labeled with 5-bromo-2'-deoxyuridine: a universal molecular system for strand break detection.

    PubMed

    Zylicz-Stachula, Agnieszka; Polska, Katarzyna; Skowron, Piotr; Rak, Janusz

    2014-07-07

    DNA strand breaks (SBs) are among the most cytotoxic forms of DNA damage, and their residual levels correlate directly with cell death. Hence, the type and amount of SBs is directly related to the efficacy of a given anticancer therapy. In this study, we describe a molecular tool that can differentiate between single (SSBs) and double (DSBs) strand breaks and also assess them quantitatively. Our method involves PCR amplification of a linear DNA fragment labeled with a sensitizing nucleotide, circularization of that fragment, and enzymatic introduction of supercoils to transform the circular relaxed form of the synthesized plasmid into a supercoiled one. After exposure of the molecule to a damaging factor, SSB and DSB levels can be easily assayed with gel electrophoresis. We applied this method to prepare an artificial plasmid labeled with 5-bromo-2'-deoxyuridine and to assay SBs photoinduced in the synthesized plasmid. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities

    NASA Astrophysics Data System (ADS)

    Stuchlík, Z.; Pugliese, D.; Schee, J.; Kučáková, H.

    2015-09-01

    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Hořava quantum gravity, characterized by a dimensionless parameter ω M^2, combining the gravitational mass parameter M of the spacetime with the Hořava parameter ω reflecting the role of the quantum corrections. In dependence on the value of ω M^2, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l= const. In the K-S naked singularity spacetimes with ω M^2 > 0.2811, doubled tori with the same l= const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ω M^2 < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics.

  2. Natural Escherichia coli strains undergo cell-to-cell plasmid transformation.

    PubMed

    Matsumoto, Akiko; Sekoguchi, Ayuka; Imai, Junko; Kondo, Kumiko; Shibata, Yuka; Maeda, Sumio

    2016-12-02

    Horizontal gene transfer is a strong tool that allows bacteria to adapt to various environments. Although three conventional mechanisms of horizontal gene transfer (transformation, transduction, and conjugation) are well known, new variations of these mechanisms have also been observed. We recently reported that DNase-sensitive cell-to-cell transfer of nonconjugative plasmids occurs between laboratory strains of Escherichia coli in co-culture. We termed this phenomenon "cell-to-cell transformation." In this report, we found that several combinations of Escherichia coli collection of reference (ECOR) strains, which were co-cultured in liquid media, resulted in DNase-sensitive cell-to-cell transfer of antibiotic resistance genes. Plasmid isolation of these new transformants demonstrated cell-to-cell plasmid transfer between the ECOR strains. Natural transformation experiments, using a combination of purified plasmid DNA and the same ECOR strains, revealed that cell-to-cell transformation occurs much more frequently than natural transformation under the same culture conditions. Thus, cell-to-cell transformation is both unique and effective. In conclusion, this study is the first to demonstrate cell-to-cell plasmid transformation in natural E. coli strains. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Hydrodynamic delivery of plasmid DNA encoding human FcγR-Ig dimers blocks immune-complex mediated inflammation in mice.

    PubMed

    Shashidharamurthy, R; Machiah, D; Bozeman, E N; Srivatsan, S; Patel, J; Cho, A; Jacob, J; Selvaraj, P

    2012-09-01

    Therapeutic use and function of recombinant molecules can be studied by the expression of foreign genes in mice. In this study, we have expressed human Fcγ receptor-Ig fusion molecules (FcγR-Igs) in mice by administering FcγR-Ig plasmid DNAs hydrodynamically and compared their effectiveness with purified molecules in blocking immune-complex (IC)-mediated inflammation in mice. The concentration of hydrodynamically expressed FcγR-Igs (CD16A(F)-Ig, CD32A(R)-Ig and CD32A(H)-Ig) reached a maximum of 130 μg ml(-1) of blood within 24 h after plasmid DNA administration. The in vivo half-life of FcγR-Igs was found to be 9-16 days and western blot analysis showed that the FcγR-Igs were expressed as a homodimer. The hydrodynamically expressed FcγR-Igs blocked 50-80% of IC-mediated inflammation up to 3 days in a reverse passive Arthus reaction model. Comparative analysis with purified molecules showed that hydrodynamically expressed FcγR-Igs are more efficient than purified molecules in blocking IC-mediated inflammation and had a higher half-life. In summary, these results suggest that the administration of a plasmid vector with the FcγR-Ig gene can be used to study the consequences of blocking IC binding to FcγRs during the development of inflammatory diseases. This approach may have potential therapeutic value in treating IC-mediated inflammatory autoimmune diseases such as lupus, arthritis and autoimmune vasculitis.

  4. Complexes containing cationic and anionic pH-sensitive liposomes: comparative study of factors influencing plasmid DNA gene delivery to tumors.

    PubMed

    Chen, Yan; Sun, Ji; Lu, Ying; Tao, Chun; Huang, Jingbin; Zhang, He; Yu, Yuan; Zou, Hao; Gao, Jing; Zhong, Yanqiang

    2013-01-01

    pH-sensitive liposomes represent an effective gene vector in cancer therapy. However, their use is greatly hampered by their relatively low transfection efficiency. To improve the transfection efficiency of pH-sensitive liposomes, we prepared complexes containing 3β-[N-(N',N'-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) and dioleoylphosphatidyl ethanolamine (DOPE) liposomes and pH-sensitive liposomes composed of cholesteryl hemisuccinate (CHEMS) and DOPE, and evaluated the influence of various factors on plasmid DNA (pDNA) transfection efficiency. All DC-Chol/DOPE liposome/pDNA and pH-sensitive liposome complexes showed similarly potent pH sensitivity. In the presence of serum-containing medium, two optimized complexes of DC-Chol/DOPE liposomes/pDNA and pH-sensitive PEGylated liposomes showed high transfection efficiency of 22.94% and 20.07%, respectively. Notably, DC-Chol/DOPE (2:3) liposomes/pH-sensitive PEGylated (1%) liposome complexes with a charge ratio of 1:1 (m/m [+/-]) showed enhanced accumulation in tumors in vivo. Our results show the influence of various factors on pDNA transfection efficiency in complexes of DC-Chol/DOPE liposomes and pH-sensitive PEGylated liposomes. Understanding of such mechanisms will lead to better design of complexes of DC-Chol/DOPE liposomes and pH-sensitive liposomes for gene therapy.

  5. Complexes containing cationic and anionic pH-sensitive liposomes: comparative study of factors influencing plasmid DNA gene delivery to tumors

    PubMed Central

    Chen, Yan; Sun, Ji; Lu, Ying; Tao, Chun; Huang, Jingbin; Zhang, He; Yu, Yuan; Zou, Hao; Gao, Jing; Zhong, Yanqiang

    2013-01-01

    pH-sensitive liposomes represent an effective gene vector in cancer therapy. However, their use is greatly hampered by their relatively low transfection efficiency. To improve the transfection efficiency of pH-sensitive liposomes, we prepared complexes containing 3β-[N-(N′,N′-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) and dioleoylphosphatidyl ethanolamine (DOPE) liposomes and pH-sensitive liposomes composed of cholesteryl hemisuccinate (CHEMS) and DOPE, and evaluated the influence of various factors on plasmid DNA (pDNA) transfection efficiency. All DC-Chol/DOPE liposome/pDNA and pH-sensitive liposome complexes showed similarly potent pH sensitivity. In the presence of serum-containing medium, two optimized complexes of DC-Chol/DOPE liposomes/pDNA and pH-sensitive PEGylated liposomes showed high transfection efficiency of 22.94% and 20.07%, respectively. Notably, DC-Chol/DOPE (2:3) liposomes/pH-sensitive PEGylated (1%) liposome complexes with a charge ratio of 1:1 (m/m [+/−]) showed enhanced accumulation in tumors in vivo. Our results show the influence of various factors on pDNA transfection efficiency in complexes of DC-Chol/DOPE liposomes and pH-sensitive PEGylated liposomes. Understanding of such mechanisms will lead to better design of complexes of DC-Chol/DOPE liposomes and pH-sensitive liposomes for gene therapy. PMID:23637529

  6. Transfer of plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using a unique bacteriophage.

    PubMed

    Winstel, Volker; Kühner, Petra; Krismer, Bernhard; Peschel, Andreas; Rohde, Holger

    2015-04-01

    Genetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a unique Staphylococcus aureus strain via a specific S. aureus bacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinical Staphylococcus epidermidis isolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Detection of parvovirus B19 DNA in blood: Viruses or DNA remnants?

    PubMed

    Molenaar-de Backer, M W A; Russcher, A; Kroes, A C M; Koppelman, M H G M; Lanfermeijer, M; Zaaijer, H L

    2016-11-01

    Parvovirus B19 (B19V) DNA can be detected in blood over a long period after acute infection. Several reports associate the presence of B19V DNA with disease, irrespective of timing of the initial B19V infection. This study aims to analyze the properties of B19V DNA in blood, differentiating between bare, non-infectious strands of DNA and B19V DNA in viable virions. Ten blood donors with asymptomatic acute B19V infection were followed and sampled up to 22 months after infection. The samples were treated with and without an endonuclease and tested for B19V DNA, to distinguish between DNA in virions and naked DNA. In the acute phase of infection, high levels of B19V DNA were detected, concurrent with B19V IgM antibodies. B19V DNA apparently was encapsidated, as indicated by resistance to endonuclease degradation. Subsequently, B19V DNA remained detectable for more than one year in all donors at low levels (<10 5 IU/mL). Approximately 150days after infection B19V DNA became degradable by an endonuclease, indicating that this concerned naked DNA. In some donors a second endonuclease-resistant peak occurred. Detection of B19V DNA in blood by PCR does not necessarily imply that B19V replication takes place and that infectious B19V virions are present. We propose that remnant B19V DNA strands can be released from tissues without active replication. This finding urges to reconsider an assumed role of B19V infection mainly based on B19V DNA detection in blood, a much debated subject in clinical syndromes such as myocarditis and arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cutaneous gene expression of plasmid DNA in excised human skin following delivery via microchannels created by radio frequency ablation.

    PubMed

    Birchall, James; Coulman, Sion; Anstey, Alexander; Gateley, Chris; Sweetland, Helen; Gershonowitz, Amikam; Neville, Lewis; Levin, Galit

    2006-04-07

    The skin is a valuable organ for the development and exploitation of gene medicines. Delivering genes to skin is restricted however by the physico-chemical properties of DNA and the stratum corneum (SC) barrier. In this study, we demonstrate the utility of an innovative technology that creates transient microconduits in human skin, allowing DNA delivery and resultant gene expression within the epidermis and dermis layers. The radio frequency (RF)-generated microchannels were of sufficient morphology and depth to permit the epidermal delivery of 100 nm diameter nanoparticles. Model fluorescent nanoparticles were used to confirm the capacity of the channels for augmenting diffusion of macromolecules through the SC. An ex vivo human organ culture model was used to establish the gene expression efficiency of a beta-galactosidase reporter plasmid DNA applied to ViaDerm treated skin. Skin treated with ViaDerm using 50 microm electrode arrays promoted intense levels of gene expression in the viable epidermis. The intensity and extent of gene expression was superior when ViaDerm was used following a prior surface application of the DNA formulation. In conclusion, the RF-microchannel generator (ViaDerm) creates microchannels amenable for delivery of nanoparticles and gene therapy vectors to the viable region of skin.

  9. 'Naked' radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallner, Paul E.

    The term 'naked' radiopharmaceuticals, more appropriately, 'unbound' radiopharmaceuticals, refers to any radioisotope used for clinical research or clinical purposes that is not attached to a chemical or biological carrier, and that localizes in various tissues because of a physiologic or chemical propensity/affinity, or secondary to focal anatomic placement. Although they remain useful in selected clinical circumstances, the available agents (except for Iodine-131) have been relegated to an unfortunate and somewhat secondary role. The agents remain useful and worthy of consideration for new clinical investigation and clinical use.

  10. Improved electro-transformation of highly DNA-restrictive corynebacteria with DNA extracted from starved Escherichia coli.

    PubMed

    Ankri, S; Reyes, O; Leblon, G

    1996-07-01

    Differences of up to 33 000-fold in electro-transformability of highly DNA restrictive corynebacteria are observed in the DNA of a shuttle plasmid extracted from Escherichia coli hosts propagated in different nutritional conditions. Growth of the host in minimal medium increases plasmid transformability, whereas growth on rich media decreases it. In the E. coli DH5 alpha host, the starvation-dependent increase DNA transformability is reverted by supplementing with methionine, an obligate 5-adenosyl-methionine (SAM) precursor. This suggests that an E. coli nutritionally modulated SAM-dependent DNA-methyltransferase may be involved in this phenomenon.

  11. Horizontal gene transfer and antibiotic resistance plasmids in multi-drug resistant Salmonella enterica serovars

    USDA-ARS?s Scientific Manuscript database

    Antibiotic resistant foodborne pathogens pose serious public health concerns and increase the burden of disease treatment. Antibiotic resistance genes can reside on the bacterial chromosome or on other self-replicating DNA molecules such as plasmids. The resistance genes/DNA can be transferred int...

  12. Plasmid partition system of the P1par family from the pWR100 virulence plasmid of Shigella flexneri.

    PubMed

    Sergueev, Kirill; Dabrazhynetskaya, Alena; Austin, Stuart

    2005-05-01

    P1par family members promote the active segregation of a variety of plasmids and plasmid prophages in gram-negative bacteria. Each has genes for ParA and ParB proteins, followed by a parS partition site. The large virulence plasmid pWR100 of Shigella flexneri contains a new P1par family member: pWR100par. Although typical parA and parB genes are present, the putative pWR100parS site is atypical in sequence and organization. However, pWR100parS promoted accurate plasmid partition in Escherichia coli when the pWR100 Par proteins were supplied. Unique BoxB hexamer motifs within parS define species specificities among previously described family members. Although substantially different from P1parS from the P1 plasmid prophage of E. coli, pWR100parS has the same BoxB sequence. As predicted, the species specificity of the two types proved identical. They also shared partition-mediated incompatibility, consistent with the proposed mechanistic link between incompatibility and species specificity. Among several informative sequence differences between pWR100parS and P1parS is the presence of a 21-bp insert at the center of the pWR100parS site. Deletion of this insert left much of the parS activity intact. Tolerance of central inserts with integral numbers of helical DNA turns reflects the critical topology of these sites, which are bent by binding the host IHF protein.

  13. Three-Dimensional Imaging of the Intracellular Fate of Plasmid DNA and Transgene Expression: ZsGreen1 and Tissue Clearing Method CUBIC Are an Optimal Combination for Multicolor Deep Imaging in Murine Tissues.

    PubMed

    Fumoto, Shintaro; Nishimura, Koyo; Nishida, Koyo; Kawakami, Shigeru

    2016-01-01

    Evaluation methods for determining the distribution of transgene expression in the body and the in vivo fate of viral and non-viral vectors are necessary for successful development of in vivo gene delivery systems. Here, we evaluated the spatial distribution of transgene expression using tissue clearing methods. After hydrodynamic injection of plasmid DNA into mice, whole tissues were subjected to tissue clearing. Tissue clearing followed by confocal laser scanning microscopy enabled evaluation of the three-dimensional distribution of transgene expression without preparation of tissue sections. Among the tested clearing methods (ClearT2, SeeDB, and CUBIC), CUBIC was the most suitable method for determining the spatial distribution of transgene expression in not only the liver but also other tissues such as the kidney and lung. In terms of the type of fluorescent protein, the observable depth for green fluorescent protein ZsGreen1 was slightly greater than that for red fluorescent protein tdTomato. We observed a depth of ~1.5 mm for the liver and 500 μm for other tissues without preparation of tissue sections. Furthermore, we succeeded in multicolor deep imaging of the intracellular fate of plasmid DNA in the murine liver. Thus, tissue clearing would be a powerful approach for determining the spatial distribution of plasmid DNA and transgene expression in various murine tissues.

  14. Plasmid-encoded amikacin resistance in multiresistant strains of Klebsiella pneumoniae isolated from neonates with meningitis.

    PubMed Central

    Woloj, M; Tolmasky, M E; Roberts, M C; Crosa, J H

    1986-01-01

    Two multiresistant Klebsiella pneumoniae strains isolated from cerebrospinal fluid of human neonates were analyzed for their plasmid content. Two of the plasmids harbored by these strains, pJHCMW1 (11 kilobase pairs) and pJHCMW4 (75 kilobase pairs), carried genetic determinants for amikacin resistance. These plasmids also encoded resistance to kanamycin, tobramycin, and ampicillin which could be transferred to Escherichia coli by conjugation. Extracts from transconjugant derivatives carrying pJHCMW4 produced an acetyltransferase activity that acetylated all three aminoglycosides. Transconjugant derivatives carrying pJHCMW1 encoded both acetylating and phosphorylating activities. Southern blot hybridization analysis indicated considerable DNA homology between these two plasmids. Images PMID:3521478

  15. P62 plasmid can alleviate diet-induced obesity and metabolic dysfunctions.

    PubMed

    Halenova, Tatiana; Savchuk, Oleksii; Ostapchenko, Ludmila; Chursov, Andrey; Fridlyand, Nathan; Komissarov, Andrey B; Venanzi, Franco; Kolesnikov, Sergey I; Sufianov, Albert A; Sherman, Michael Y; Gabai, Vladimir L; Shneider, Alexander M

    2017-08-22

    A high-calorie diet (HCD) induces two mutually exacerbating effects contributing to diet-induced obesity (DIO): impaired glucose metabolism and increased food consumption. A link between the metabolic and behavioral manifestations is not well understood yet. We hypothesized that chronic inflammation induced by HCD plays a key role in linking together the two components of diet-induced pathology. Based on this hypothesis, we tested if a plasmid (DNA vaccine) encoding p62 (SQSTM1) would alleviate DIO including its metabolic and/or food consumption abnormalities. Previously we reported that injections of the p62 plasmid reduce chronic inflammation during ovariectomy-induced osteoporosis. Here we found that the p62 plasmid reduced levels of pro-inflammatory cytokines IL-1β, IL-12, and INFγ and increased levels of anti-inflammatory cytokines IL-4, IL-10 and TGFβ in HCD-fed animals. Due to this anti-inflammatory response, we further tested whether the plasmid can alleviate HCD-induced obesity and associated metabolic and feeding impairments. Indeed, p62 plasmid significantly reversed effects of HCD on the body mass index (BMI), levels of glucose, insulin and glycosylated hemoglobin (HbA1c). Furthermore, p62 plasmid partially restored levels of the satiety hormone, serotonin, and tryptophan, simultaneously reducing activity of monoamine oxidase (MAO) in the brain affected by the HCD. Finally, the plasmid partially reversed increased food consumption caused by HCD. Therefore, the administering of p62 plasmid alleviates both metabolic and behavioral components of HCD-induced obesity.

  16. Cultivation-Independent Screening Revealed Hot Spots of IncP-1, IncP-7 and IncP-9 Plasmid Occurrence in Different Environmental Habitats

    PubMed Central

    Dealtry, Simone; Ding, Guo-Chun; Weichelt, Viola; Dunon, Vincent; Schlüter, Andreas; Martini, María Carla; Papa, María Florencia Del; Lagares, Antonio; Amos, Gregory Charles Auton; Wellington, Elizabeth Margaret Helen; Gaze, William Hugo; Sipkema, Detmer; Sjöling, Sara; Springael, Dirk; Heuer, Holger; van Elsas, Jan Dirk; Thomas, Christopher; Smalla, Kornelia

    2014-01-01

    IncP-1, IncP-7 and IncP-9 plasmids often carry genes encoding enzymes involved in the degradation of man-made and natural contaminants, thus contributing to bacterial survival in polluted environments. However, the lack of suitable molecular tools often limits the detection of these plasmids in the environment. In this study, PCR followed by Southern blot hybridization detected the presence of plasmid-specific sequences in total community (TC-) DNA or fosmid DNA from samples originating from different environments and geographic regions. A novel primer system targeting IncP-9 plasmids was developed and applied along with established primers for IncP-1 and IncP-7. Screening TC-DNA from biopurification systems (BPS) which are used on farms for the purification of pesticide-contaminated water revealed high abundances of IncP-1 plasmids belonging to different subgroups as well as IncP-7 and IncP-9. The novel IncP-9 primer-system targeting the rep gene of nine IncP-9 subgroups allowed the detection of a high diversity of IncP-9 plasmid specific sequences in environments with different sources of pollution. Thus polluted sites are “hot spots” of plasmids potentially carrying catabolic genes. PMID:24587126

  17. Gene transfer of a naked plasmid (pUDK-HGF) encoding human hepatocyte growth factor attenuates skin/muscle incision and retraction-induced chronic post-surgical pain in rats.

    PubMed

    Hu, C; Lu, Y; Chen, X; Wu, Z; Zhang, Q

    2018-05-01

    Chronic post-surgical pain (CPSP) remains a major clinical problem and is often refractory to current treatments. New analgesic medications and strategies for pain relief are needed. Hepatocyte growth factor (HGF) is known to be a multi-functional growth factor and regulates various biological activities. We investigated the analgesic effect and underlying mechanism of plasmid pUDK-HGF encoding human HGF gene on CPSP induced by skin/muscle incision and retraction (SMIR) in rats. The possible changes of inflammatory factors, glial cell activation and pain sensitivity after pUDK-HGF administration were investigated by ELISA, western blot and Von Frey tests, respectively. In behavioural assays, we found that a single intramuscular or intrathecal injection of pUDK-HGF significantly attenuated mechanical hypersensitivity to von Frey stimulation of plantar ipsilateral hind paw after SMIR. Intramuscular injection of pUDK-HGF promoted blood flow and proliferation of satellite cells and inhibited inflammatory cells recruitment, collagen accumulation and expression of pronociceptive factors. Intrathecal injection of pUDK-HGF inhibited activation of spinal glial cells and production of inflammatory mediators induced by SMIR. pUDK-HGF has a strong analgesic potency and efficacy in CPSP induced by SMIR in rats. This study highlights a new strategy for the treatment of CPSP. The CPSP occurs following various surgical procedures and remains a major clinical problem due to the lack of study on the mechanisms of CPSP. Our findings provide the first evidence that pUDK-HGF attenuates SMIR-induced pain behaviuors through peripheral or central mechanisms. The peripheral analgesic effect of pUDK-HGF is associated with promoting tissue repair and inhibiting inflammatory response; furthermore, pUDK-HGF inhibits activation of spinal glial cells and overexpression of inflammatory mediators in spinal cord. Therefore, naked pUDK-HGF may be a potential therapeutic strategy for treatment of

  18. Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    PubMed Central

    Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  19. Plasmids of Carotenoid-Producing Paracoccus spp. (Alphaproteobacteria) - Structure, Diversity and Evolution

    PubMed Central

    Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz

    2013-01-01

    Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria. PMID:24260361

  20. Low-frequency ultrasound increases non-viral gene transfer to the mouse lung.

    PubMed

    Xenariou, Stefania; Liang, Hai-Dong; Griesenbach, Uta; Zhu, Jie; Farley, Raymond; Somerton, Lucinda; Singh, Charanjit; Jeffery, Peter K; Scheule, Ronald K; Cheng, Seng H; Geddes, Duncan M; Blomley, Martin; Alton, Eric W F W

    2010-01-01

    The aim of the study was to assess if low-frequency ultrasound (US), in the range of 30-35 kHz, increases non-viral gene transfer to the mouse lung. US is greatly attenuated in the lung due to large energy losses at the air/tissue interfaces. The advantages of low-frequency US, compared with high-frequency US are: (i) increased cavitation (responsible for the formation of transient pores in the cell membrane) and (ii) reduced energy losses during lung penetration. Cationic lipid GL67/plasmid DNA (pDNA), polyethylenimine (PEI)/pDNA and naked pDNA were delivered via intranasal instillation and the animals were then exposed to US (sonoporation) at 0.07 or 0.1 MPa for 10 min. Under these conditions, US did not enhance GL67 or PEI-mediated transfection. It did, however, increase naked pDNA gene transfer by approximately 4 folds. Importantly, this was achieved in the absence of microbubbles, which are crucial for the commonly used high-frequency (1 MHz) sonoporation but may not be able to withstand nebulization in a clinically relevant setup. Lung hemorrhage was also assessed and shown to increase with US pressure in a dose-dependent manner. We have thus, established that low-frequency US can enhance lung gene transfer with naked pDNA and this enhancement is more effective than the previously reported 1 MHz US.

  1. Plasmid stability in dried cells of the desert cyanobacterium Chroococcidiopsis and its potential for GFP imaging of survivors on Earth and in space.

    PubMed

    Billi, Daniela

    2012-06-01

    Two GFP-based plasmids, namely pTTQ18-GFP-pDU1(mini) and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1(mini)-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecA(Syn) distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecA(Syn) structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.

  2. A three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation

    PubMed Central

    McLeod, Brett N.; Allison-Gamble, Gina E.; Barge, Madhuri T.; Tonthat, Nam K.; Schumacher, Maria A.; Hayes, Finbarr

    2017-01-01

    Abstract Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells. PMID:28034957

  3. DNA packaging by the Bacillus subtilis defective bacteriophage PBSX.

    PubMed Central

    Anderson, L M; Bott, K F

    1985-01-01

    Defective bacteriophage PBSX, a resident of all Bacillus subtilis 168 chromosomes, packages fragments of DNA from all portions of the host chromosome when induced by mitomycin C. In this study, the physical process for DNA packaging of both chromosomal and plasmid DNAs was examined. Discrete 13-kilobase (kb) lengths of DNA were packaged by wild-type phage, and the process was DNase I resistant and probably occurred by a head-filling mechanism. Genetically engineered isogenic host strains having a chloramphenicol resistance determinant integrated as a genetic flag at two different regions of the chromosome were used to monitor the packaging of specific chromosomal regions. No dramatic selectivity for these regions could be documented. If the wild-type strain 168 contains autonomously replicating plasmids, especially pC194, the mitomycin C induces an increase in size of resident plasmid DNA, which is then packaged as 13-kb pieces into phage heads. In strain RB1144, which lacks substantial portions of the PBSX resident phage region, mitomycin C treatment did not affect the structure of resident plasmids. Induction of PBSX started rolling circle replication on plasmids, which then became packaged as 13-kb fragments. This alteration or cannibalization of plasmid replication resulting from mitomycin C treatment requires for its function some DNA within the prophage deletion of strain RB1144. Images PMID:3923209

  4. Incision of trivalent chromium [Cr(III)]-induced DNA damage by Bacillus caldotenax UvrABC endonuclease.

    PubMed

    O'Brien, Travis J; Jiang, Guohui; Chun, Gina; Mandel, H George; Westphal, Craig S; Kahen, Kaveh; Montaser, Akbar; States, J Christopher; Patierno, Steven R

    2006-11-07

    Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr-DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA-Cr-protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr-DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr-DNA adducts processed by NER, the incision of CrCl(3) [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl(3)) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 microM we observed approximately 2 Cr(III)-DNA adducts per plasmid. At this same concentration of Cr(III) we found that approximately 17% of the plasmid DNA contained ICLs ( approximately 0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 microM) was incubated with Bca UvrABC we observed approximately 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)-DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.

  5. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansson, J.; Keyse, S.M.; Lindahl, T.

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurementsmore » of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.« less

  6. A novel immunization method to induce cytotoxic T-lymphocyte responses (CTL) against plasmid-encoded herpes simplex virus type-1 glycoprotein D.

    PubMed

    Cruz, P E; Khalil, P L; Dryden, T D; Chiou, H C; Fink, P S; Berberich, S J; Bigley, N J

    1999-03-05

    DNA molecules complexed with an asialoglycoprotein-polycation conjugate, consisting of asialoorosomucoid (ASOR) coupled to poly-L-lysine, can enter hepatocytes which bear receptors for ASOR. We used this receptor-mediated DNA delivery system to deliver plasmid DNA encoding glycoprotein D (gD) of herpes simplex virus type 1 to ASOR-positive cells. Maximum expression of gD protein was seen at 3 days after injection of this preparation in approximately 13% of cells from BALB/c mice [hepatocytes from mice injected intravenously (i.v.) or peritoneal exudate cells from mice injected intraperitoneally (i.p.)]. In comparison with mice injected with either the plasmid vector alone or the gD-containing plasmid uncomplexed to ASOR, mice immunized with gD-containing plasmid complexed with ASOR-poly-L-lysine induced marked antigen-specific CTL responses. BALB/c mice immunized with gD-DNA developed a T-cell-mediated CTL response against target cells expressing gD and MHC class II glycoproteins, but not against cells expressing only gD and MHC class I molecules. In C3H mice, gD-DNA induced a T-cell-mediated CTL response against target cells expressing gD and class I MHC molecules. Serum anti-gD antibody in low titers were produced in both strains of mice. DNA complexed with ASOR-poly-L-lysine induced CTL responses in mice.

  7. Nanospines incorporation into the structure of the hydrophobic cryogels via novel cryogelation method: an alternative sorbent for plasmid DNA purification.

    PubMed

    Üzek, Recep; Uzun, Lokman; Şenel, Serap; Denizli, Adil

    2013-02-01

    In this study, it was aimed to prepare hydrophobic cryogels for plasmid DNA (pDNA) purification from Escherichia coli lysate. The hydrophobicity was achieved by incorporating a hydrophobic ligand, N-methacryloyl-(L)-phenylalanine (MAPA), into the cryogel backbone. In addition to the conventional cryogelation process, freeze-drying step was included to create nanospines. Three different cryogels {poly(2-hydoxyethyl methacrylate-N-methacryloyl-L-phenylalanine)-freeze dried, [P(HEMA-MAPA)-FD]; poly(2-hydoxyethyl methacrylate-N-methacryloyl-L-phenylalanine, [P(HEMA-MAPA)] and poly(2-hydoxyethyl methacrylate)-freeze dried, [P(HEMA)-FD]} were prepared, characterized, and used for DNA (salmon sperm DNA) adsorption studies from aqueous solution. The specific surface areas of cryogels were determined to be 21.4 m(2)/g for P(HEMA)-FD, 17.65 m(2)/g for P(HEMA-MAPA) and 36.0 m(2)/g for P(HEMA-MAPA)-FD. The parameters affecting adsorption such as temperature, initial DNA concentration, salt type and concentration were examined in continuous mode. The maximum adsorption capacities were observed as 45.31 mg DNA/g, 27.08 mg DNA/g and 1.81 mg DNA/g for P(HEMA-MAPA)-FD, P(HEMA-MAPA) and P(HEMA)-FD, respectively. Desorption process was performed using acetate buffer (pH 5.50) without salt. First, pDNA was isolated from E. coli lysate and the purity of pDNA was then determined by agarose gel electrophoresis. Finally, the chromatographic performance of P(HEMA-MAPA)-FD cryogel for pDNA purification was tested in FPLC. The resolution (R(s)) was 2.84, and the specific selectivity for pDNA was 237.5-folds greater than all impurities. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    NASA Technical Reports Server (NTRS)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  9. Minimal and Contributing Sequence Determinants of the cis-Acting Locus of Transfer (clt) of Streptomycete Plasmid pIJ101 Occur within an Intrinsically Curved Plasmid Region

    PubMed Central

    Ducote, Matthew J.; Prakash, Shubha; Pettis, Gregg S.

    2000-01-01

    Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3′ end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer. PMID:11073933

  10. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region.

    PubMed

    Ducote, M J; Prakash, S; Pettis, G S

    2000-12-01

    Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3' end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer.

  11. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications.

    PubMed

    Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A

    2014-10-31

    Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. Copyright © 2014. Published by Elsevier B.V.

  12. KEY COMPARISON: CCQM-K61: Quantitation of a linearised plasmid DNA, based on a matched standard in a matrix of non-target DNA

    NASA Astrophysics Data System (ADS)

    Woolford, Alison; Holden, Marcia; Salit, Marc; Burns, Malcolm; Ellison, Stephen L. R.

    2009-01-01

    Key comparison CCQM-K61 was performed to demonstrate and document the capability of interested national metrology institutes in the determination of the quantity of specific DNA target in an aqueous solution. The study provides support for the following measurement claim: "Quantitation of a linearised plasmid DNA, based on a matched standard in a matrix of non-target DNA". The comparison was an activity of the Bioanalysis Working Group (BAWG) of the Comité Consultatif pour la Quantité de Matière and was coordinated by NIST (Gaithersburg, USA) and LGC (Teddington, UK). The following laboratories (in alphabetical order) participated in this key comparison. DMSC (Thailand); IRMM (European Union); KRISS (Republic of Korea); LGC (UK); NIM (China); NIST (USA); NMIA (Australia); NMIJ (Japan); VNIIM (Russian Federation) Good agreement was observed between the reported results of all nine of the participants. Uncertainty estimates did not account fully for the dispersion of results even after allowance for possible inhomogeneity in calibration materials. Preliminary studies suggest that the effects of fluorescence threshold setting might contribute to the excess dispersion, and further study of this topic is suggested Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  13. Periastron shift for a spinning test particle around naked singularities

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sajal

    2018-06-01

    In the present article, we investigate the Periastron precession for a spinning test particle moving in nearly circular orbits around naked singularities. We consider two well-known solutions that can produce a spacetime with naked singularity—(a) first, the Reissner-Nordström metric, which is a static charged solution with spherical symmetry, and (b) second, the stationary, axisymmetric Kerr metric. For simplicity, we only consider the motion confined on the equatorial plane in both these cases and solve exactly the Mathisson-Papapetrou equations. In addition, we analytically compute the Periastron precession within the framework of linear spin approximation. The inclusion of the spin parameter modifies the results with nonspinning particles and also reflects some interesting properties of the naked geometries. Furthermore, we carried out a numerical approach without any assumptions to probe the large order spin values. The implication of the spin-curvature coupling in connection with the naked geometries is also discussed.

  14. Efficient Sleeping Beauty DNA Transposition From DNA Minicircles

    PubMed Central

    Sharma, Nynne; Cai, Yujia; Bak, Rasmus O; Jakobsen, Martin R; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2013-01-01

    DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial sequences. To optimize vectors based on the Sleeping Beauty (SB) DNA transposon for clinical use, we examine here SB transposition from DNA minicircles (MCs) devoid of the bacterial plasmid backbone. Potent DNA transposition, directed by the hyperactive SB100X transposase, is demonstrated from MC donors, and the stable transfection rate is significantly enhanced by expressing the SB100X transposase from MCs. The stable transfection rate is inversely related to the size of circular donor, suggesting that a MC-based SB transposition system benefits primarily from an increased cellular uptake and/or enhanced expression which can be observed with DNA MCs. DNA transposon and transposase MCs are easily produced, are favorable in size, do not carry irrelevant DNA, and are robust substrates for DNA transposition. In accordance, DNA MCs should become a standard source of DNA transposons not only in therapeutic settings but also in the daily use of the SB system. PMID:23443502

  15. A Simple And Rapid Minicircle DNA Vector Manufacturing System

    PubMed Central

    Kay, Mark A; He, Cheng-Yi; Chen, Zhi-Ying

    2010-01-01

    Minicircle DNA vectors consisting of a circular expression cassette devoid of the bacterial plasmid DNA backbone provides several advantages including sustained transgene expression in quiescent cells/tissues. Their use has been limited by labor-intensive production. We report on a strategy for making multiple genetic modifications in E.coli to construct a producer strain that stably expresses a set of inducible minicircle-assembly enzymes, the øC31-integrase and I-SceI homing-endonuclease. This bacterial strain is capable of producing highly purified minicircle yields in the same time frame as routine plasmid DNA. It is now feasible for minicircle DNA vectors to replace routine plasmids in mammalian transgene expression studies. PMID:21102455

  16. Suppressive Effects on the Immune Response and Protective Immunity to a JEV DNA Vaccine by Co-administration of a GM-CSF-Expressing Plasmid in Mice

    PubMed Central

    Chen, Hui; Gao, Na; Fan, Dongying; Wu, Jiangman; Zhu, Junping; Li, Jieqiong; Wang, Juan; Chen, Yanlei; An, Jing

    2012-01-01

    As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony–stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF. PMID:22493704

  17. Molecular Diversity of Plasmids Bearing Genes That Encode Toluene and Xylene Metabolism in Pseudomonas Strains Isolated from Different Contaminated Sites in Belarus

    PubMed Central

    Sentchilo, Vladimir S.; Perebituk, Alexander N.; Zehnder, Alexander J. B.; van der Meer, Jan Roelof

    2000-01-01

    Twenty different Pseudomonas strains utilizing m-toluate were isolated from oil-contaminated soil samples near Minsk, Belarus. Seventeen of these isolates carried plasmids ranging in size from 78 to about 200 kb (assigned pSVS plasmids) and encoding the meta cleavage pathway for toluene metabolism. Most plasmids were conjugative but of unknown incompatibility groups, except for one, which belonged to the IncP9 group. The organization of the genes for toluene catabolism was determined by restriction analysis and hybridization with xyl gene probes of pWW0. The majority of the plasmids carried xyl-type genes highly homologous to those of pWW53 and organized in a similar manner (M. T. Gallegos, P. A. Williams, and J. L. Ramos, J. Bacteriol. 179:5024–5029, 1997), with two distinguishable meta pathway operons, one upper pathway operon, and three xylS-homologous regions. All of these plasmids also possessed large areas of homologous DNA outside the catabolic genes, suggesting a common ancestry. Two other pSVS plasmids carried only one meta pathway operon, one upper pathway operon, and one copy each of xylS and xylR. The backbones of these two plasmids differed greatly from those of the others. Whereas these parts of the plasmids, carrying the xyl genes, were mostly conserved between plasmids of each group, the noncatabolic parts had undergone intensive DNA rearrangements. DNA sequencing of specific regions near and within the xylTE and xylA genes of the pSVS plasmids confirmed the strong homologies to the xyl genes of pWW53 and pWW0. However, several recombinations were discovered within the upper pathway operons of the pSVS plasmids and pWW0. The main genetic mechanisms which are thought to have resulted in the present-day configuration of the xyl operons are discussed in light of the diversity analysis carried out on the pSVS plasmids. PMID:10877777

  18. Affinity analysis and application of dipeptides derived from l-tyrosine in plasmid purification.

    PubMed

    Ferreira, Soraia; Carvalho, Josué; Valente, Joana F A; Corvo, Marta C; Cabrita, Eurico J; Sousa, Fani; Queiroz, João A; Cruz, Carla

    2015-12-01

    The developments in the use of plasmid DNA (pDNA) in gene therapy and vaccines have motivated the search and improvement of optimized purification processes. In this context, dipeptides l-tyrosine-l-tyrosine and l-tyrosine-l-arginine are synthetized to explore their application as affinity ligands for supercoiled (sc) plasmid DNA (pDNA) purification. The synthesis is based on the protection of N-Boc-l-tyrosine, followed by condensation with l-tyrosine or l-arginine methyl esters in the presence of dicyclohexylcarbodiimide (DCC), which after hydrolysis and acidification give the afforded dipeptides. The supports are then obtained by coupling l-tyrosine, l-tyrosine-l-tyrosine and l-tyrosine-l-arginine to epoxy-activated Sepharose and are characterized by high resolution magic angle spinning (HR-MAS) NMR and Fourier transform infrared spectroscopy (FTIR). Surface plasmon resonance (SPR) biosensor is used to establish the promising ligand to be used in the chromatographic experiments and ascertain experimental conditions. Sc isoform showed the highest affinity to the dipeptides, followed by linear (ln) pDNA, being the open circular (oc) the one that promoted the lowest affinity to l-tyrosine-l-arginine. Saturation transfer difference (STD)-NMR experiments show that the interaction is mainly hydrophobic with the majority of the 5'-mononucleotides, except for 5'-GMP with l-tyrosine-l-arginine Sepharose that is mainly electrostatic. The support l-tyrosine Sepharose used in chromatographic experiments promotes the separation of native pVAX1-LacZ and pcDNA3-FLAG-p53 samples (oc+sc) by decreasing the salt concentration. The results suggest that it is possible to purify different plasmids with the l-tyrosine Sepharose, with slight adjustments in the gradient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Structure-Function Aspects of Membrane Associated Prokaryotic DNA replication

    DTIC Science & Technology

    1994-09-01

    Membrane associated DNA replication in prokaryotes has been studied intensively using two model systems, Bacillus subtilis and plasmid RK2 cultured...in its Escherichia coli host. In the former a new membrane protein that had previously been found to act as an inhibitor of DNA replication was...prior to a round of DNA replication . In the latter, plasmid DNA replication has been found to be associated with the inner but not outer membrane of

  20. Functional properties and structural requirements of the plasmid pMV158-encoded MobM relaxase domain.

    PubMed

    Fernández-López, Cris; Pluta, Radoslaw; Pérez-Luque, Rosa; Rodríguez-González, Lorena; Espinosa, Manuel; Coll, Miquel; Lorenzo-Díaz, Fabián; Boer, D Roeland

    2013-07-01

    A crucial element in the horizontal transfer of mobilizable and conjugative plasmids is the relaxase, a single-stranded endonuclease that nicks the origin of transfer (oriT) of the plasmid DNA. The relaxase of the pMV158 mobilizable plasmid is MobM (494 residues). In solution, MobM forms a dimer through its C-terminal domain, which is proposed to anchor the protein to the cell membrane and to participate in type 4 secretion system (T4SS) protein-protein interactions. In order to gain a deeper insight into the structural MobM requirements for efficient DNA catalysis, we studied two endonuclease domain variants that include the first 199 or 243 amino acid residues (MobMN199 and MobMN243, respectively). Our results confirmed that the two proteins behaved as monomers in solution. Interestingly, MobMN243 relaxed supercoiled DNA and cleaved single-stranded oligonucleotides harboring oriTpMV158, whereas MobMN199 was active only on supercoiled DNA. Protein stability studies using gel electrophoresis and mass spectrometry showed increased susceptibility to degradation at the domain boundary between the N- and C-terminal domains, suggesting that the domains change their relative orientation upon DNA binding. Overall, these results demonstrate that MobMN243 is capable of nicking the DNA substrate independently of its topology and that the amino acids 200 to 243 modulate substrate specificity but not the nicking activity per se. These findings suggest that these amino acids are involved in positioning the DNA for the nuclease reaction rather than in the nicking mechanism itself.

  1. Enhanced Control of Pathogenic Simian Immunodeficiency Virus SIVmac239 Replication in Macaques Immunized with an Interleukin-12 Plasmid and a DNA Prime-Viral Vector Boost Vaccine Regimen ▿ §

    PubMed Central

    Winstone, Nicola; Wilson, Aaron J.; Morrow, Gavin; Boggiano, Cesar; Chiuchiolo, Maria J.; Lopez, Mary; Kemelman, Marina; Ginsberg, Arielle A.; Mullen, Karl; Coleman, John W.; Wu, Chih-Da; Narpala, Sandeep; Ouellette, Ian; Dean, Hansi J.; Lin, Feng; Sardesai, Niranjan Y.; Cassamasa, Holly; McBride, Dawn; Felber, Barbara K.; Pavlakis, George N.; Schultz, Alan; Hudgens, Michael G.; King, C. Richter; Zamb, Timothy J.; Parks, Christopher L.; McDermott, Adrian B.

    2011-01-01

    DNA priming has previously been shown to elicit augmented immune responses when administered by electroporation (EP) or codelivered with a plasmid encoding interleukin-12 (pIL-12). We hypothesized that the efficacy of a DNA prime and recombinant adenovirus 5 boost vaccination regimen (DNA/rAd5) would be improved when incorporating these vaccination strategies into the DNA priming phase, as determined by pathogenic simian immunodeficiency virus SIVmac239 challenge outcome. The whole SIVmac239 proteome was delivered in 5 separate DNA plasmids (pDNA-SIV) by EP with or without pIL-12, followed by boosting 4 months later with corresponding rAd5-SIV vaccine vectors. Remarkably, after repeated low-dose SIVmac239 mucosal challenge, we demonstrate 2.6 and 4.4 log reductions of the median SIV peak and set point viral loads in rhesus macaques (RMs) that received pDNA-SIV by EP with pIL-12 compared to the median peak and set point viral loads in mock-immunized controls (P < 0.01). In 5 out of 6 infected RMs, strong suppression of viremia was observed, with intermittent “blips” in virus replication. In 2 RMs, we could not detect the presence of SIV RNA in tissue and lymph nodes, even after 13 viral challenges. RMs immunized without pIL-12 demonstrated a typical maximum of 1.5 log reduction in virus load. There was no significant difference in the overall magnitude of SIV-specific antibodies or CD8 T-cell responses between groups; however, pDNA delivery by EP with pIL-12 induced a greater magnitude of SIV-specific CD4 T cells that produced multiple cytokines. This vaccine strategy is relevant for existing vaccine candidates entering clinical evaluation, and this model may provide insights into control of retrovirus replication. PMID:21734035

  2. Evaluation of a plasmid DNA-based anthrax vaccine in rabbits, nonhuman primates and healthy adults.

    PubMed

    Keitel, Wendy A; Treanor, John J; El Sahly, Hana M; Evans, Thomas G; Kopper, Scott; Whitlow, Vanessa; Selinsky, Cheryl; Kaslow, David C; Rolland, Alain; Smith, Larry R; Lalor, Peggy A

    2009-08-01

    VCL-AB01, a cationic lipid-formulated plasmid DNA (pDNA)-based vaccine that contains genes encoding genetically detoxified Bacillus anthracis protective antigen (PA) and lethal factor (LF), was assessed in a Phase 1, dose-escalating clinical trial in healthy adults for safety and immunogenicity, and in nonhuman primates for immunogenicity and efficacy against challenge with a lethal dose of B. anthracis spores. Healthy 18-45 year old subjects were randomly assigned to receive either the investigational vaccine containing 0.2 mg, 0.6 mg, or 2 mg of total pDNA per dose, or saline placebo, administered at 0, 1 and 2 months. The 0.2 mg and 0.6 mg dose levels were generally well tolerated; however, dose-limiting reactogenicity was observed among subjects given the first 2 mg dose and the remaining two injections in the 2 mg group were reduced to 0.6 mg. Dose-related increases in seroconversion frequencies were observed. Overall, 10%, 33.3% and 80% of subjects in the 0.2, 0.6 and 2 mg groups, respectively, developed antibodies to PA and/or LF as measured by ELISA; however, antibodies with toxin neutralizing activity (TNA) were detected in only one subject. In monkeys that received a 0.6 mg dose three times at 2 week intervals, low levels of antibodies were detected by ELISA but not by the TNA assay in all animals just prior to challenge. Despite the absence of TNA, 75% animals survived the lethal challenge. In summary, VCL-AB01 was generally well tolerated in humans at a dose that provided immunity in monkeys despite the lack of robust TNA titers in either species.

  3. Increased Abundance of IncP-1β Plasmids and Mercury Resistance Genes in Mercury-Polluted River Sediments: First Discovery of IncP-1β Plasmids with a Complex mer Transposon as the Sole Accessory Element▿

    PubMed Central

    Smalla, Kornelia; Haines, Anthony S.; Jones, Karen; Krögerrecklenfort, Ellen; Heuer, Holger; Schloter, Michael; Thomas, Christopher M.

    2006-01-01

    Although it is generally assumed that mobile genetic elements facilitate the adaptation of microbial communities to environmental stresses, environmental data supporting this assumption are rare. In this study, river sediment samples taken from two mercury-polluted (A and B) and two nonpolluted or less-polluted (C and D) areas of the river Nura (Kazakhstan) were analyzed by PCR for the presence and abundance of mercury resistance genes and of broad-host-range plasmids. PCR-based detection revealed that mercury pollution corresponded to an increased abundance of mercury resistance genes and of IncP-1β replicon-specific sequences detected in total community DNA. The isolation of IncP-1β plasmids from contaminated sediments was attempted in order to determine whether they carry mercury resistance genes and thus contribute to an adaptation of bacterial populations to Hg pollution. We failed to detect IncP-1β plasmids in the genomic DNA of the cultured Hg-resistant bacterial isolates. However, without selection for mercury resistance, three different IncP-1β plasmids (pTP6, pTP7, and pTP8) were captured directly from contaminated sediment slurry in Cupriavidus necator JMP228 based on their ability to mobilize the IncQ plasmid pIE723. These plasmids hybridized with the merRTΔP probe and conferred Hg resistance to their host. A broad host range and high stability under conditions of nonselective growth were observed for pTP6 and pTP7. The full sequence of plasmid pTP6 was determined and revealed a backbone almost identical to that of the IncP-1β plasmids R751 and pB8. However, this is the first example of an IncP-1β plasmid which had acquired only a mercury resistance transposon but no antibiotic resistance or biodegradation genes. This transposon carries a rather complex set of mer genes and is inserted between Tra1 and Tra2. PMID:16980416

  4. Kid cleaves specific mRNAs at UUACU sites to rescue the copy number of plasmid R1

    PubMed Central

    Pimentel, Belén; Madine, Mark A; de la Cueva-Méndez, Guillermo

    2005-01-01

    Stability and copy number of extra-chromosomal elements are tightly regulated in prokaryotes and eukaryotes. Toxin Kid and antitoxin Kis are the components of the parD stability system of prokaryotic plasmid R1 and they can also function in eukaryotes. In bacteria, Kid was thought to become active only in cells that lose plasmid R1 and to cleave exclusively host mRNAs at UA(A/C/U) trinucleotide sites to eliminate plasmid-free cells. Instead, we demonstrate here that Kid becomes active in plasmid-containing cells when plasmid copy number decreases, cleaving not only host- but also a specific plasmid-encoded mRNA at the longer and more specific target sequence UUACU. This specific cleavage by Kid inhibits bacterial growth and, at the same time, helps to restore the plasmid copy number. Kid targets a plasmid RNA that encodes a repressor of the synthesis of an R1 replication protein, resulting in increased plasmid DNA replication. This mechanism resembles that employed by some human herpesviruses to regulate viral amplification during infection. PMID:16163387

  5. Plasmid-Encoded Phthalate Catabolic Pathway in Arthrobacter keyseri 12B†

    PubMed Central

    Eaton, Richard W.

    2001-01-01

    Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains. PMID:11371533

  6. A three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation.

    PubMed

    McLeod, Brett N; Allison-Gamble, Gina E; Barge, Madhuri T; Tonthat, Nam K; Schumacher, Maria A; Hayes, Finbarr; Barillà, Daniela

    2017-04-07

    Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. High-throughput assays for DNA gyrase and other topoisomerases

    PubMed Central

    Maxwell, Anthony; Burton, Nicolas P.; O'Hagan, Natasha

    2006-01-01

    We have developed high-throughput microtitre plate-based assays for DNA gyrase and other DNA topoisomerases. These assays exploit the fact that negatively supercoiled plasmids form intermolecular triplexes more efficiently than when they are relaxed. Two assays are presented, one using capture of a plasmid containing a single triplex-forming sequence by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by staining with a DNA-specific fluorescent dye. The other uses capture of a plasmid containing two triplex-forming sequences by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by a second oligonucleotide that is radiolabelled. The assays are shown to be appropriate for assaying DNA supercoiling by Escherichia coli DNA gyrase and DNA relaxation by eukaryotic topoisomerases I and II, and E.coli topoisomerase IV. The assays are readily adaptable to other enzymes that change DNA supercoiling (e.g. restriction enzymes) and are suitable for use in a high-throughput format. PMID:16936317

  8. High-throughput assays for DNA gyrase and other topoisomerases.

    PubMed

    Maxwell, Anthony; Burton, Nicolas P; O'Hagan, Natasha

    2006-01-01

    We have developed high-throughput microtitre plate-based assays for DNA gyrase and other DNA topoisomerases. These assays exploit the fact that negatively supercoiled plasmids form intermolecular triplexes more efficiently than when they are relaxed. Two assays are presented, one using capture of a plasmid containing a single triplex-forming sequence by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by staining with a DNA-specific fluorescent dye. The other uses capture of a plasmid containing two triplex-forming sequences by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by a second oligonucleotide that is radiolabelled. The assays are shown to be appropriate for assaying DNA supercoiling by Escherichia coli DNA gyrase and DNA relaxation by eukaryotic topoisomerases I and II, and E.coli topoisomerase IV. The assays are readily adaptable to other enzymes that change DNA supercoiling (e.g. restriction enzymes) and are suitable for use in a high-throughput format.

  9. Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids.

    PubMed

    He, Susu; Chandler, Michael; Varani, Alessandro M; Hickman, Alison B; Dekker, John P; Dyda, Fred

    2016-12-06

    The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance. The spread of antibiotic resistance among Gram-negative bacteria is a serious public health threat, as it can critically limit the types of drugs that can be used to treat infected patients. In particular, carbapenem-resistant members of the Enterobacteriaceae family are responsible for a significant and growing burden of morbidity and mortality. Here, we report on the mechanisms underlying the evolution of several plasmids carried by previously sequenced clinical Enterobacteriaceae isolates from the National Institutes of Health Clinical Center (NIH CC). Our ability to track genetic rearrangements that occurred within resistance plasmids was dependent on accurate annotation of the mobile genetic elements within the plasmids, which was greatly aided by access to long-read DNA sequencing data and knowledge of their mechanisms. Mobile genetic elements such as

  10. A Method for Preparing DNA Sequencing Templates Using a DNA-Binding Microplate

    PubMed Central

    Yang, Yu; Hebron, Haroun R.; Hang, Jun

    2009-01-01

    A DNA-binding matrix was immobilized on the surface of a 96-well microplate and used for plasmid DNA preparation for DNA sequencing. The same DNA-binding plate was used for bacterial growth, cell lysis, DNA purification, and storage. In a single step using one buffer, bacterial cells were lysed by enzymes, and released DNA was captured on the plate simultaneously. After two wash steps, DNA was eluted and stored in the same plate. Inclusion of phosphates in the culture medium was found to enhance the yield of plasmid significantly. Purified DNA samples were used successfully in DNA sequencing with high consistency and reproducibility. Eleven vectors and nine libraries were tested using this method. In 10 μl sequencing reactions using 3 μl sample and 0.25 μl BigDye Terminator v3.1, the results from a 3730xl sequencer gave a success rate of 90–95% and read-lengths of 700 bases or more. The method is fully automatable and convenient for manual operation as well. It enables reproducible, high-throughput, rapid production of DNA with purity and yields sufficient for high-quality DNA sequencing at a substantially reduced cost. PMID:19568455

  11. Recovery of infectious type Asia1 foot-and-mouth disease virus from suckling mice directly inoculated with an RNA polymerase I/II-driven unidirectional transcription plasmid.

    PubMed

    Lian, Kaiqi; Yang, Fan; Zhu, Zixiang; Cao, Weijun; Jin, Ye; Li, Dan; Zhang, Keshan; Guo, Jianhong; Zheng, Haixue; Liu, Xiangtao

    2015-10-02

    We developed an RNA polymerase (pol) I- and II-driven plasmid-based reverse genetics system to rescue infectious foot-and-mouth disease virus (FMDV) from cloned cDNA. In this plasmid-based transfection, the full-length viral cDNA was flanked by hammerhead ribozyme (HamRz) and hepatitis delta ribozyme (HdvRz) sequences, which were arranged downstream of the two promoters (cytomegalovirus (CMV) and pol I promoter) and upstream of the terminators and polyadenylation signal, respectively. The utility of this method was demonstrated by the recovery of FMDV Asia1 HN/CHA/06 in BHK-21 cells transfected with cDNA plasmids. Furthermore, infectious FMDV Asia1 HN/CHA/06 could be rescued from suckling mice directly inoculated with cDNA plasmids. Thus, this reverse genetics system can be applied to fundamental research and vaccine studies, most notably to rescue those viruses for which there is currently an absence of a suitable cell culture system. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  13. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  14. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution

    PubMed Central

    Krupovic, Mart; Koonin, Eugene V.

    2018-01-01

    Polintons (also known as Mavericks) are large DNA transposons that are widespread in the genomes of eukaryotes. We have recently shown that Polintons encode virus capsid proteins, which suggests that these transposons might form virions, at least under some conditions. In this Opinion article, we delineate the evolutionary relationships among bacterial tectiviruses, Polintons, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order ‘Megavirales’, and linear mitochondrial and cytoplasmic plasmids. We hypothesize that Polintons were the first group of eukaryotic double-stranded DNA viruses to evolve from bacteriophages and that they gave rise to most large DNA viruses of eukaryotes and various other selfish genetic elements. PMID:25534808

  15. Isolation, Characterization, and Transfer of Cryptic Gene-Mobilizing Plasmids in the Wheat Rhizosphere

    PubMed Central

    van Elsas, Jan Dirk; McSpadden Gardener, Brian B.; Wolters, Anneke C.; Smit, Eric

    1998-01-01

    A set of self-transmissible plasmids with IncQ plasmid-mobilizing capacity was isolated by triparental exogenous isolation from the wheat rhizosphere with an Escherichia coli IncQ plasmid host and a Ralstonia eutropha recipient. Three plasmids of 38 to 45 kb, denoted pIPO1, pIPO2, and pIPO3, were selected for further study. No selectable traits (antibiotic or heavy-metal resistance) were identified in these plasmids. The plasmids were characterized by replicon typing via PCR and hybridization with replicon-specific probes and other hybridizations. pIPO1 and pIPO3 were similar to each other, whereas pIPO2 was different. None of these plasmids belonged to any known incompatibility group. pIPO2 was selected for further work, and a mini-Tn5-tet transposon was inserted to confer selectability. Plasmid pIPO2 had a broad IncQ plasmid mobilization and self-transfer range among the alpha, beta, and gamma subclasses of the Proteobacteria but did not show productive transfer to gram-positive bacteria. Plasmid pIPO2 mobilized IncQ plasmid pIE723 from Pseudomonas fluorescens to diverse indigenous proteobacteria in the rhizosphere of field-grown wheat. Transfer of pIE723 to indigenous bacteria was not observed in the absence of added pIPO2. A specific PCR primer system and a probe were developed for the detection of pIPO2-type plasmids in soil and rhizosphere. Analysis of soil DNA provided evidence for the presence of pIPO2 in inoculated wheat rhizosphere soil in the field study, as well as in the rhizosphere of uninoculated wheat plants growing in soil microcosms. The system failed to identify major reservoirs of pIPO2 in a variety of other soils. PMID:9501428

  16. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    PubMed

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  17. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  18. Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, T.; Tatsumi-Miyajima, J.; Sato, M.

    1991-06-15

    To assess the contribution to mutagenesis by human DNA repair defects, a UV-treated shuttle vector plasmid, pZ189, was passed through fibroblasts derived from Japanese xeroderma pigmentosum (XP) patients in two different DNA repair complementation groups (A and F). Patients with XP have clinical and cellular UV hypersensitivity, increased frequency of skin cancer, and defects in DNA repair. The XP DNA repair defects represented by complementation groups A (XP-A) and F (XP-F) are more common in Japan than in Europe or the United States. In comparison to results with DNA repair-proficient human cells (W138-VA13), UV-treated pZ189 passed through the XP-A (XP2OS(SV))more » or XP-F (XP2YO(SV)) cells showed fewer surviving plasmids (XP-A less than XP-F) and a higher frequency of mutated plasmids (XP-A greater than XP-F). Base sequence analysis of more than 200 mutated plasmids showed the major type of base substitution mutation to be the G:C----A:T transition with all three cell lines. The XP-A and XP-F cells revealed a higher frequency of G:C----A:T transitions and a lower frequency of transversions among plasmids with single or tandem mutations and a lower frequency of plasmids with multiple point mutations compared to the normal line. The spectrum of mutations in pZ189 with the XP-A cells was similar to that with the XP-F cells. Seventy-six to 91% of the single base substitution mutations occurred at G:C base pairs in which the 5{prime}-neighboring base of the cytosine was thymine or cytosine. These studies indicate that the DNA repair defects in Japanese XP patients in complementation groups A and F result in different frequencies of plasmid survival and mutagenesis but in similar types of mutagenic abnormalities despite marked differences in clinical features.« less

  19. Chromosomal context and replication properties of ARS plasmids in Schizosaccharomyces pombe.

    PubMed

    Pratihar, Aditya S; Tripathi, Vishnu P; Yadav, Mukesh P; Dubey, Dharani D

    2015-12-01

    Short, specific DNA sequences called as Autonomously Replicating Sequence (ARS) elements function as plasmid as well as chromosomal replication origins in yeasts. As compared to ARSs, different chromosomal origins vary greatly in their efficiency and timing of replication probably due to their wider chromosomal context. The two Schizosaccharomyces pombe ARS elements, ars727 and ars2004, represent two extremities in their chromosomal origin activity - ars727 is inactive and late replicating, while ars2004 is a highly active, early-firing origin. To determine the effect of chromosomal context on the activity of these ARS elements, we have cloned them with their extended chromosomal context as well as in the context of each other in both orientations and analysed their replication efficiency by ARS and plasmid stability assays. We found that these ARS elements retain their origin activity in their extended/altered context. However, deletion of a 133-bp region of the previously reported ars727- associated late replication enforcing element (LRE) caused advancement in replication timing of the resulting plasmid. These results confirm the role of LRE in directing plasmid replication timing and suggest that the plasmid origin efficiency of ars2004 or ars727 remains unaltered by the extended chromosomal context.

  20. Characterization of replication and conjugation of plasmid pWTY27 from a widely distributed Streptomyces species

    PubMed Central

    2012-01-01

    Background Streptomyces species are widely distributed in natural habitats, such as soils, lakes, plants and some extreme environments. Replication loci of several Streptomyces theta-type plasmids have been reported, but are not characterized in details. Conjugation loci of some Streptomyces rolling-circle-type plasmids are identified and mechanism of conjugal transferring are described. Results We report the detection of a widely distributed Streptomyces strain Y27 and its indigenous plasmid pWTY27 from fourteen plants and four soil samples cross China by both culturing and nonculturing methods. The complete nucleotide sequence of pWTY27 consisted of 14,288 bp. A basic locus for plasmid replication comprised repAB genes and an adjacent iteron sequence, to a long inverted-repeat (ca. 105 bp) of which the RepA protein bound specifically in vitro, suggesting that RepA may recognize a second structure (e.g. a long stem-loop) of the iteron DNA. A plasmid containing the locus propagated in linear mode when the telomeres of a linear plasmid were attached, indicating a bi-directional replication mode for pWTY27. As for rolling-circle plasmids, a single traA gene and a clt sequence (covering 16 bp within traA and its adjacent 159 bp) on pWTY27 were required for plasmid transfer. TraA recognized and bound specifically to the two regions of the clt sequence, one containing all the four DC1 of 7 bp (TGACACC) and one DC2 (CCCGCCC) and most of IC1, and another covering two DC2 and part of IC1, suggesting formation of a high-ordered DNA-protein complex. Conclusions This work (i) isolates a widespread Streptomyces strain Y27 and sequences its indigenous theta-type plasmid pWTY27; (ii) identifies the replication and conjugation loci of pWTY27 and; (iii) characterizes the binding sequences of the RepA and TraA proteins. PMID:23134842

  1. Effect of serotonin on the expression of antigens and DNA levels in Yersinia pestis cells with different plasmid content

    NASA Astrophysics Data System (ADS)

    Klueva, Svetlana N.; Korsukov, Vladimir N.; Schukovskaya, Tatyana N.; Kravtsov, Alexander L.

    2004-08-01

    Using flow cytometry (FCM) the influence of exogenous serotonin on culture growth, DNA content and fluorescence intensity of cells binding FITC-labelled plague polyclonal immunoglobulins was studied in Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-), Yersinia pestis KM 216 (pFra-, pCad-, pPst+). The results have been obtained by FCM showed serotonin accelerated Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-) culture growth during cultivation in Hottinger broth pH 7.2 at 28°C at concentration of 10-5 M. The presence of 10-5 M serotonin in nutrient broth could modulate DNA content in 37°C growing population of plague microbe independently of their plasmid content. Serotonin have been an impact on the distribution pattern of the cells according to their phenotypical characteristics, which was reflected in the levels of population heterogeneity in the intensity of specific immunofluorescence determined by FMC.

  2. Duck Enteritis Virus Glycoprotein D and B DNA Vaccines Induce Immune Responses and Immunoprotection in Pekin Ducks

    PubMed Central

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks. PMID:24736466

  3. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    PubMed

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  4. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virbhadra, K. S.; Keeton, C. R.; Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginallymore » strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.« less

  5. Synthesis and evaluation of cationic nanomicelles for in vitro and in vivo gene delivery

    NASA Astrophysics Data System (ADS)

    Mandke, Rhishikesh Subhash

    The goal of proposed study was to contribute towards the development of a nano size, high efficiency and low toxicity non-viral polymeric vector for gene delivery in vitro and in vivo. A series of fatty acid grafted low-molecular-weight chitosan (N-acyl LMWCs) were synthesized, purified and characterized for their physicochemical properties using various analytical techniques such as infrared spectroscopy, elemental analysis and dynamic light scattering. The formulation parameters including pH, sonication duration, and filtration altered the physicochemical characteristics of N-acyl LMWC nanomicelles. The acyl chain length and degree of unsaturation in fatty acids also had an impact on the physicochemical properties and the transfection efficiency of nanomicelles. N-acyl LMWC nanomicelles showed efficient in vitro transfection as visualized and quantified using a reporter plasmid (encoding green fluorescent protein), and therapeutic plasmids (encoding for interleukin-4 and interleukin-10), respectively. The in vitro transfection efficiencies of N-acyl LMWCs with 18:1 and 18:2 grafts (oleic and linoleic acids) were comparable with FuGENERTM HD (marketed non-viral vector) but were ˜8-fold and 35-fold higher as compared to LMWC and naked DNA, respectively. The in vivo transfection efficiency of N-acyl LMWC to deliver plasmids individually encoding IL-4 and IL-10 as well as a bicistronic plasmid encoding both IL-4 and IL-10 was studied in a multiple, low-dose streptozotocin induced diabetic mouse model. The transfection efficiency of pDNA/N-acyl LMWC polyplexes injected via intramuscular route showed significant improvement (p<0.05) over passive (naked DNA) or positive (FuGENE HD) controls. Additionally, a sustained and efficient expression of IL-4 and IL-10 was observed, accompanied by a reduction in interferon-gamma (INF-gamma), and tumor necrosis factor-alpha (TNF-alpha) levels. The pancreas of pDNA/N-acyl LMWC polyplex treated animals exhibited protection from

  6. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA

    NASA Astrophysics Data System (ADS)

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-01

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  7. Suppression of initiation defects of chromosome replication in Bacillus subtilis dnaA and oriC-deleted mutants by integration of a plasmid replicon into the chromosomes.

    PubMed

    Hassan, A K; Moriya, S; Ogura, M; Tanaka, T; Kawamura, F; Ogasawara, N

    1997-04-01

    We constructed Bacillus subtilis strains in which chromosome replication initiates from the minimal replicon of a plasmid isolated from Bacillus natto, independently of oriC. Integration of the replicon in either orientation at the proA locus (115 degrees on the genetic map) suppressed the temperature-sensitive phenotype caused by a mutation in dnaA, a gene required for initiation of replication from oriC. In addition, in a strain with the plasmid replicon integrated into the chromosome, we were able to delete sequences required for oriC function. These strains were viable but had a slower growth rate than the oriC+ strains. Marker frequency analysis revealed that both pyrD and metD, genes close to proA, showed the highest values among the markers (genes) measured, and those of other markers decreased symmetrically with distance from the site of the integration (proA). These results indicated that the integrated plasmid replicon operated as a new and sole origin of chromosome replication in these strains and that the mode of replication was bidirectional. Interestingly, these mutants produced anucleate cells at a high frequency (about 40% in exponential culture), and the distribution of chromosomes in the cells was irregular. A change in the site and mechanism (from oriC to a plasmid system) of initiation appears to have resulted in a drastic alteration in coordination between chromosome replication and chromosome partition or cell division.

  8. Characterization of Plasmids in a Human Clinical Strain of Lactococcus garvieae

    PubMed Central

    Blanco, M. Mar; López-Campos, Guillermo H.; Cutuli, M. Teresa; Fernández-Garayzábal, José F.

    2012-01-01

    The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen. PMID:22768237

  9. Plasmid acquisition in microgravity

    NASA Technical Reports Server (NTRS)

    Juergensmeyer, Margaret A.; Juergensmeyer, Elizabeth A.; Guikema, James A.

    1995-01-01

    In microgravity, bacteria often show an increased resistance to antibiotics. Bacteria can develop resistance to an antibiotic after transformation, the acquisition of DNA, usually in the form of a plasmid containing a gene for resistance to one or more antibiotics. In order to study the capacity of bacteria to become resistant to antibiotics in microgravity, we have modified the standard protocol for transformation of Escherichia coli for use in the NASA-flight-certified hardware package, The Fluid Processing Apparatus (FPA). Here we report on the ability of E. coli to remain competent for long periods of time at temperatures that are readily available on the Space Shuttle, and present some preliminary flight results.

  10. Plasmid mapping computer program.

    PubMed Central

    Nolan, G P; Maina, C V; Szalay, A A

    1984-01-01

    Three new computer algorithms are described which rapidly order the restriction fragments of a plasmid DNA which has been cleaved with two restriction endonucleases in single and double digestions. Two of the algorithms are contained within a single computer program (called MPCIRC). The Rule-Oriented algorithm, constructs all logical circular map solutions within sixty seconds (14 double-digestion fragments) when used in conjunction with the Permutation method. The program is written in Apple Pascal and runs on an Apple II Plus Microcomputer with 64K of memory. A third algorithm is described which rapidly maps double digests and uses the above two algorithms as adducts. Modifications of the algorithms for linear mapping are also presented. PMID:6320105

  11. Hormonal induction of transfected genes depends on DNA topology.

    PubMed Central

    Piña, B; Haché, R J; Arnemann, J; Chalepakis, G; Slater, E P; Beato, M

    1990-01-01

    Plasmids containing the hormone regulatory element of mouse mammary tumor virus linked to the thymidine kinase promoter of herpes simplex virus and the reporter gene chloramphenicol acetyltransferase of Escherichia coli respond to glucocorticoids and progestins when transfected into appropriate cells. In the human mammary tumor cell line T47D, the response to progestins, but not to glucocorticoids, is highly dependent on the topology of the transfected DNA. Although negatively supercoiled plasmids respond optimally to the synthetic progestin R5020, their linearized counterparts exhibit markedly reduced progestin inducibility. This is not due to changes in the efficiency of DNA transfection, since the amount of DNA incorporated into the cell nucleus is not significantly dependent on the initial topology of the plasmids. In contrast, cotransfection experiments with glucocorticoid receptor cDNA in the same cell line show no significant influence of DNA topology on induction by dexamethasone. A similar result was obtained with fibroblasts that contain endogenous glucocorticoid receptors. When the distance between receptor-binding sites or between the binding sites and the promoter was increased, the dependence of progestin induction on DNA topology was more pronounced. In contrast to the original plasmid, these constructs also revealed a similar topological dependence for induction by glucocorticoids. The differential influence of DNA topology is not due to differences in the affinity of the two hormone receptors for DNA of various topologies, but probably reflects an influence of DNA topology on the interaction between different DNA-bound receptor molecules and between receptors and other transcription factors. Images PMID:2153920

  12. Testing the Role of Multicopy Plasmids in the Evolution of Antibiotic Resistance.

    PubMed

    Escudero, Jose Antonio; MacLean, R Craig; San Millan, Alvaro

    2018-05-02

    Multicopy plasmids are extremely abundant in prokaryotes but their role in bacterial evolution remains poorly understood. We recently showed that the increase in gene copy number per cell provided by multicopy plasmids could accelerate the evolution of plasmid-encoded genes. In this work, we present an experimental system to test the ability of multicopy plasmids to promote gene evolution. Using simple molecular biology methods, we constructed a model system where an antibiotic resistance gene can be inserted into Escherichia coli MG1655, either in the chromosome or on a multicopy plasmid. We use an experimental evolution approach to propagate the different strains under increasing concentrations of antibiotics and we measure survival of bacterial populations over time. The choice of the antibiotic molecule and the resistance gene is so that the gene can only confer resistance through the acquisition of mutations. This "evolutionary rescue" approach provides a simple method to test the potential of multicopy plasmids to promote the acquisition of antibiotic resistance. In the next step of the experimental system, the molecular bases of antibiotic resistance are characterized. To identify mutations responsible for the acquisition of antibiotic resistance we use deep DNA sequencing of samples obtained from whole populations and clones. Finally, to confirm the role of the mutations in the gene under study, we reconstruct them in the parental background and test the resistance phenotype of the resulting strains.

  13. SAXS Study of Sterically Stabilized Lipid Nanocarriers Functionalized by DNA

    NASA Astrophysics Data System (ADS)

    Angelov, Borislav; Angelova, Angelina; Filippov, Sergey; Karlsson, Göran; Terrill, Nick; Lesieur, Sylviane; Štěpánek, Petr

    2012-03-01

    The structure of novel spontaneously self-assembled plasmid DNA/lipid complexes is investigated by means of synchrotron radiation small-angle X-ray scattering (SAXS) and Cryo-TEM imaging. Liquid crystalline (LC) hydrated lipid systems are prepared using the non-ionic lipids monoolein and DOPE-PEG2000 and the cationic amphiphile CTAB. The employed plasmid DNA (pDNA) is encoding for the human protein brain-derived neurotrophic factor (BDNF). A coexistence of nanoparticulate objects with different LC inner organizations is established. A transition from bicontinuous membrane sponges, cubosome intermediates and unilamelar liposomes to multilamellar vesicles, functionalized by pDNA, is favoured upon binding and compaction of pBDNF onto the cationic PEGylated lipid nanocarriers. The obtained sterically stabilized multicompartment nanoobjects, with confined supercoiled plasmid DNA (pBDNF), are important in the context of multicompartment lipid nanocarriers of interest for gene therapy of neurodegenerative diseases.

  14. Rapid DNA transformation in Salmonella Typhimurium by the hydrogel exposure method.

    PubMed

    Elabed, Hamouda; Hamza, Rim; Bakhrouf, Amina; Gaddour, Kamel

    2016-07-01

    Even with advances in molecular cloning and DNA transformation, new or alternative methods that permit DNA penetration in Salmonella enterica subspecies enterica serovar Typhimurium are required in order to use this pathogen in biotechnological or medical applications. In this work, an adapted protocol of bacterial transformation with plasmid DNA based on the "Yoshida effect" was applied and optimized on Salmonella enterica serovar Typhimurium LT2 reference strain. The plasmid transference based on the use of sepiolite as acicular materials to promote cell piercing via friction forces produced by spreading on the surface of a hydrogel. The transforming mixture containing sepiolite nanofibers, bacterial cells to be transformed and plasmid DNA were plated directly on selective medium containing 2% agar. In order to improve the procedure, three variables were tested and the transformation of Salmonella cells was accomplished using plasmids pUC19 and pBR322. Using the optimized protocol on Salmonella LT2 strain, the efficiency was about 10(5) transformed cells per 10(9) subjected to transformation with 0.2μg plasmid DNA. In summary, the procedure is fast, offers opportune efficiency and promises to become one of the widely used transformation methods in laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electrotransformation of highly DNA-restrictive corynebacteria with synthetic DNA.

    PubMed

    Ankri, S; Reyes, O; Leblon, G

    1996-01-01

    Highly DNA-restrictive Corynebacteria can be transformed with DNA made in vitro by PCR amplification of a sequence that contains the replication origin of pBL1, a plasmid common to many Corynebacteria. In all strains examined, the transformation efficiencies of PCR-synthetized DNA equal or improve the performances of heterologous DNA extracted from wild-type and dam(-)-dcm-strains of Escherichia coli. The transformation efficiencies obtained with PCR-made DNA may be high enough to permit its general application to experiments of gene integration.

  16. The effects of food components on the digestion of DNA by pepsin.

    PubMed

    Zhang, Yanfang; Wang, Xingyu; Pan, Xiaoming; Liu, Yu; Wang, Hanqing; Dong, Ping; Liang, Xingguo

    2016-11-01

    Recently, our study found that naked nucleic acids (NAs) can be digested by pepsin. To better understand the fate of dietary DNA in the digestive tract, in this study we investigated the effects of several food compositions on its digestion. The results showed that protein inhibited the digestion of DNA when the protein:DNA ratio was higher than 80:1 (m/m). DNA found in nucleoprotein (NA), which more closely resembles the state of DNA in food, was as efficiently digested as naked DNA. When the carbohydrate:DNA ratio was 50:1-140:1 (m/m), mono-, di- and polysaccharides did not inhibit DNA digestion. NaCl exhibited an inhibitory effect at 300 mM, whereas divalent cations (Ca(2+ )and Mg(2+)) exerted a much stronger inhibitory effect even at 50 mM. The polycation compounds (e.g. chitosan and spermine) showed a significant inhibitory effect at N/P (NH3(+)/PO4(-)) = 10:1. The close relationship between food composition and DNA digestion suggests that dietary habits and food complexes are important for understanding the in vivo fate of the ingested DNA in the digestive tract.

  17. Accessory factors promote AlfA-dependent plasmid segregation by regulating filament nucleation, disassembly, and bundling

    PubMed Central

    Polka, Jessica K.; Kollman, Justin M.; Mullins, R. Dyche

    2014-01-01

    In bacteria, some plasmids are partitioned to daughter cells by assembly of actin-like proteins (ALPs). The best understood ALP, ParM, has a core set of biochemical properties that contributes to its function, including dynamic instability, spontaneous nucleation, and bidirectional elongation. AlfA, an ALP that pushes plasmids apart in Bacillus, relies on a different set of underlying properties to segregate DNA. AlfA elongates unidirectionally and is not dynamically unstable; its assembly and disassembly are regulated by a cofactor, AlfB. Free AlfB breaks up AlfA bundles and promotes filament turnover. However, when AlfB is bound to the centromeric DNA sequence, parN, it forms a segrosome complex that nucleates and stabilizes AlfA filaments. When reconstituted in vitro, this system creates polarized, motile comet tails that associate by antiparallel filament bundling to form bipolar, DNA-segregating spindles. PMID:24481252

  18. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans.

    PubMed

    Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T

    2007-07-01

    Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.

  19. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    PubMed

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  20. Hydrocarbon Mineralization in Sediments and Plasmid Incidence in Sediment Bacteria from the Campeche Bank

    PubMed Central

    Leahy, Joseph G.; Somerville, Charles C.; Cunningham, Kelly A.; Adamantiades, Grammenos A.; Byrd, Jeffrey J.; Colwell, Rita R.

    1990-01-01

    Rates of degradation of radiolabeled hydrocarbons and incidence of bacterial plasmid DNA were investigated in sediment samples collected from the Campeche Bank, Gulf of Mexico, site of an offshore oil field containing several petroleum platforms. Overall rates of mineralization of [14C]hexadecane and [14C]phenanthrene measured for sediments were negligible; <1% of the substrate was converted to CO2 in all cases. Low mineralization rates are ascribed to nutrient limitations and to lack of adaptation by microbial communities to hydrocarbon contaminants. Plasmid frequency data for sediment bacteria similarly showed no correlation with proximity to the oil field, but, instead, showed correlation with water column depth at each sampling site. Significant differences between sites were observed for proportion of isolates carrying single or multiple plasmids and mean number of plasmids per isolate, each of which increased as a function of depth. PMID:16348204

  1. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences.

    PubMed

    Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando

    2014-12-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  2. Recombinant DNA technology for melanoma immunotherapy: anti-Id DNA vaccines targeting high molecular weight melanoma-associated antigen.

    PubMed

    Barucca, A; Capitani, M; Cesca, M; Tomassoni, D; Kazmi, U; Concetti, F; Vincenzetti, L; Concetti, A; Venanzi, F M

    2014-11-01

    Anti-idiotypic MK2-23 monoclonal antibody (anti-Id MK2-23 mAb), which mimics the high molecular weight melanoma-associated antigen (HMW-MAA), has been used to implement active immunotherapy against melanoma. However, due to safety and standardization issues, this approach never entered extensive clinical trials. In the present study, we investigated the usage of DNA vaccines as an alternative to MK2-23 mAb immunization. MK2-23 DNA plasmids coding for single chain (scFv) MK2-23 antibody were constructed via the insertion of variable heavy (V H) and light (V L) chains of MK2-23 into the pVAC-1mcs plasmids. Two alternative MK2-23 plasmids format V H/V L, and V L/V H were assembled. We demonstrate that both polypeptides expressed by scFv plasmids in vitro retained the ability to mimic HMW-MAA antigen, and to elicit specific anti-HMW-MAA humoral and cellular immunoresponses in immunized mice. Notably, MK2-23 scFv DNA vaccines impaired the onset and growth of transplantable B16 melanoma cells not engineered to express HMW-MAA. This pilot study suggests that optimized MK2-23 scFv DNA vaccines could potentially provide a safer and cost-effective alternative to anti-Id antibody immunization, for melanoma immunotherapy.

  3. DNA sequence analysis of the composite plasmid pTC conferring virulence and antimicrobial resistance for porcine enterotoxigenic Escherichia coli.

    PubMed

    Fekete, Péter Z; Brzuszkiewicz, Elzbieta; Blum-Oehler, Gabriele; Olasz, Ferenc; Szabó, Mónika; Gottschalk, Gerhard; Hacker, Jörg; Nagy, Béla

    2012-01-01

    In this study the plasmid pTC, a 90 kb self-conjugative virulence plasmid of the porcine enterotoxigenic Escherichia coli (ETEC) strain EC2173 encoding the STa and STb heat-stable enterotoxins and tetracycline resistance, has been sequenced in two steps. As a result we identified five main distinct regions of pTC: (i) the maintenance region responsible for the extreme stability of the plasmid, (ii) the TSL (toxin-specific locus comprising the estA and estB genes) which is unique and characteristic for pTC, (iii) a Tn10 transposon, encoding tetracycline resistance, (iv) the tra (plasmid transfer) region, and (v) the colE1-like origin of replication. It is concluded that pTC is a self-transmissible composite plasmid harbouring antibiotic resistance and virulence genes. pTC belongs to a group of large conjugative E. coli plasmids represented by NR1 with a widespread tra backbone which might have evolved from a common ancestor. This is the first report of a completely sequenced animal ETEC virulence plasmid containing an antimicrobial resistance locus, thereby representing a selection advantage for spread of pathogenicity in the presence of antimicrobials leading to increased disease potential. Copyright © 2011. Published by Elsevier GmbH.

  4. Plasmid DNA-encapsulating liposomes: effect of a spacer between the cationic head group and hydrophobic moieties of the lipids on gene expression efficiency.

    PubMed

    Obata, Yosuke; Saito, Shunsuke; Takeda, Naoya; Takeoka, Shinji

    2009-05-01

    We have synthesized a series of cationic amino acid-based lipids having a spacer between the cationic head group and hydrophobic moieties and examined the influence of the spacer on a liposome gene delivery system. As a comparable spacer, a hydrophobic spacer with a hydrocarbon chain composed of 0, 3, 5, 7, or 11 carbons, and a hydrophilic spacer with an oxyethylene chain (10 carbon and 3 oxygen molecules) were investigated. Plasmid DNA (pDNA)-encapsulating liposomes were prepared by mixing an ethanol solution of the lipids with an aqueous solution of pDNA. The zeta potentials and cellular uptake efficiency of the cationic liposomes containing each synthetic lipid were almost equivalent. However, the cationic lipids with the hydrophobic spacer were subject to fuse with biomembrane-mimicking liposomes. 1,5-Dihexadecyl-N-lysyl-N-heptyl-l-glutamate, having a seven carbon atom spacer, exhibited the highest fusogenic potential among the synthetic lipids. Increased fusion potential correlated with enhanced gene expression efficiency. By contrast, an oxyethylene chain spacer showed low gene expression efficiency. We conclude that a hydrophobic spacer between the cationic head group and hydrophobic moieties is a key component for improving pDNA delivery.

  5. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    PubMed

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  6. Virtually Naked: Virtual Environment Reveals Sex-Dependent Nature of Skin Disclosure

    PubMed Central

    Lomanowska, Anna M.; Guitton, Matthieu J.

    2012-01-01

    The human tendency to reveal or cover naked skin reflects a competition between the individual propensity for social interactions related to sexual appeal and interpersonal touch versus climatic, environmental, physical, and cultural constraints. However, due to the ubiquitous nature of these constraints, isolating on a large scale the spontaneous human tendency to reveal naked skin has remained impossible. Using the online 3-dimensional virtual world of Second Life, we examined spontaneous human skin-covering behavior unhindered by real-world climatic, environmental, and physical variables. Analysis of hundreds of avatars revealed that virtual females disclose substantially more naked skin than virtual males. This phenomenon was not related to avatar hypersexualization as evaluated by measurement of sexually dimorphic body proportions. Furthermore, analysis of skin-covering behavior of a population of culturally homogeneous avatars indicated that the propensity of female avatars to reveal naked skin persisted despite explicit cultural norms promoting less revealing attire. These findings have implications for further understanding how sex-specific aspects of skin disclosure influence human social interactions in both virtual and real settings. PMID:23300580

  7. Virtually naked: virtual environment reveals sex-dependent nature of skin disclosure.

    PubMed

    Lomanowska, Anna M; Guitton, Matthieu J

    2012-01-01

    The human tendency to reveal or cover naked skin reflects a competition between the individual propensity for social interactions related to sexual appeal and interpersonal touch versus climatic, environmental, physical, and cultural constraints. However, due to the ubiquitous nature of these constraints, isolating on a large scale the spontaneous human tendency to reveal naked skin has remained impossible. Using the online 3-dimensional virtual world of Second Life, we examined spontaneous human skin-covering behavior unhindered by real-world climatic, environmental, and physical variables. Analysis of hundreds of avatars revealed that virtual females disclose substantially more naked skin than virtual males. This phenomenon was not related to avatar hypersexualization as evaluated by measurement of sexually dimorphic body proportions. Furthermore, analysis of skin-covering behavior of a population of culturally homogeneous avatars indicated that the propensity of female avatars to reveal naked skin persisted despite explicit cultural norms promoting less revealing attire. These findings have implications for further understanding how sex-specific aspects of skin disclosure influence human social interactions in both virtual and real settings.

  8. Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae.

    PubMed

    Chung, K-R; Ehrenshaft, M; Wetzel, D K; Daub, M E

    2003-11-01

    We have successfully adapted plasmid insertion and restriction enzyme-mediated integration (REMI) to produce cercosporin toxin-deficient mutants in the asexual phytopathogenic fungus Cercospora nicotianae. The use of pre-linearized plasmid or restriction enzymes in the transformation procedure significantly decreased the transformation frequency, but promoted a complicated and undefined mode of plasmid integration that leads to mutations in the C. nicotianae genome. Vector DNA generally integrated in multiple copies, and no increase in single-copy insertion was observed when enzymes were added to the transformation mixture. Out of 1873 transformants tested, 39 putative cercosporin toxin biosynthesis ( ctb) mutants were recovered that showed altered levels of cercosporin production. Seven ctb mutants were recovered using pre-linearized plasmids without the addition of enzymes, and these were considered to be non-REMI mutants. The correlation between a specific insertion and a mutant phenotype was confirmed using rescued plasmids as gene disruption vectors in the wild-type strain. Six out of fifteen rescued plasmids tested yielded cercosporin-deficient transformants when re-introduced into the wild-type strain, suggesting a link between the insertion site and the cercosporin-deficient phenotype. Sequence analysis of a fragment flanking the insert site recovered from one insertion mutant showed it to be disrupted in sequences with high homology to the acyl transferase domain of polyketide synthases from other fungi. Disruption of this polyketide synthase gene ( CTB1) using a rescued plasmid resulted in mutants that were defective in cercosporin production. Thus, we provide the first molecular evidence that cercosporin is synthesized via a polyketide pathway as previously hypothesized.

  9. Construction of pTM series plasmids for gene expression in Brucella species.

    PubMed

    Tian, Mingxing; Qu, Jing; Bao, Yanqing; Gao, Jianpeng; Liu, Jiameng; Wang, Shaohui; Sun, Yingjie; Ding, Chan; Yu, Shengqing

    2016-04-01

    Brucellosis, the most common widespread zoonotic disease, is caused by Brucella spp., which are facultative, intracellular, Gram-negative bacteria. With the development of molecular biology techniques, more and more virulence-associated factors have been identified in Brucella spp. A suitable plasmid system is an important tool to study virulence genes in Brucella. In this study, we constructed three constitutive replication plasmids (pTM1-Cm, pTM2-Amp, and pTM3-Km) using the replication origin (rep) region derived from the pBBR1-MCS vector. Also, a DNA fragment containing multiple cloning sites (MCSs) and a terminator sequence derived from the pCold vector were produced for complementation of the deleted genes. Besides pGH-6×His, a plasmid containing the groE promoter of Brucella spp. was constructed to express exogenous proteins in Brucella with high efficiency. Furthermore, we constructed the inducible expression plasmid pZT-6×His, containing the tetracycline-inducible promoter pzt1, which can induce expression by the addition of tetracycline in the Brucella culture medium. The constructed pTM series plasmids will play an important role in the functional investigation of Brucella spp. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. CRISPR/Cas9-based genome editing in mice by single plasmid injection.

    PubMed

    Fujihara, Yoshitaka; Ikawa, Masahito

    2014-01-01

    CRISPR/Cas-mediated genome modification has opened a new era for elucidating gene function. Gene knockout mice can be generated by injecting humanized Cas9 (hCas9) mRNA and guide RNA (sgRNA) into fertilized eggs. However, delivery of RNA instead of DNA to the fertilized oocyte requires extra preparation and extra care with storage. To simplify the method of delivery, we injected the circular pX330 plasmids expressing both hCas9 and sgRNA and found that mutant mice were generated as efficiently as with RNA injection. Different from the linearized plasmid, the circular plasmid decreased the chance of integration into the host genome. We also developed the pCAG-EGxxFP reporter plasmid for evaluating the sgRNA activity by observing EGFP fluorescence in HEK293T cells. The combination of these techniques allowed us to develop a rapid, easy, and reproducible strategy for targeted mutagenesis in living mice. This chapter provides an experimental protocol for the design of sgRNAs, the construction of pX330-sgRNA and pCAG-EGxxFP-target plasmids, the validation of cleavage efficiency in vitro, and the generation of targeted gene mutant mice. These mice can be generated within a month.

  11. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA.

    PubMed

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-15

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Formation and oral administration of alginate microspheres loaded with pDNA coding for lymphocystis disease virus (LCDV) to Japanese flounder.

    PubMed

    Tian, Ji-Yuan; Sun, Xiu-Qin; Chen, Xi-Guang

    2008-05-01

    Oral delivery of plasmid DNA (pDNA) is a desirable approach for fish immunization in intensive culture. However, its effectiveness is limited because of possible degradation of pDNA in the fish's digestive system. In this report, alginate microspheres loaded with pDNA coding for fish lymphocystis disease virus (LCDV) and green fluorescent protein were prepared with a modified oil containing water (W/O) emulsification method. Yield, loading percent and encapsulation efficiency of alginate microspheres were 90.5%, 1.8% and 92.7%, respectively. The alginate microspheres had diameters of less than 10 microm, and their shape was spherical. As compared to sodium alginate, a remarkable increase of DNA-phosphodiester and DNA-phosphomonoester bonds was observed for alginate microspheres loaded with pDNA by Fourier transform infrared (FTIR) spectroscopic analysis. Agarose gel electrophoresis showed a little supercoiled pDNA was transformed to open circular and linear pDNA during encapsulation. The cumulative release of pDNA in alginate microspheres was DNA expressed RNA and green fluorescent protein in tissues of fish 10-90 days after oral administration. An indirect enzyme-linked immunosorbent assay (ELISA) showed that sera were positive (OD >or=0.3) for anti-LCDV antibody from week 3 to week 16 for fish orally vaccinated with alginate microspheres loaded with pDNA, in comparison with fish orally vaccinated with naked pDNA. Our results display that alginate microspheres obtained by W/O emulsification are promising carriers for oral delivery of pDNA. This encapsulation technique has the potential for DNA vaccine delivery applications due to its ease of operation, low cost and significant immune effect.

  13. Food isolate Listeria monocytogenes harboring tetM gene plasmid-mediated exchangeable to Enterococcus faecalis on the surface of processed cheese.

    PubMed

    Haubert, Louise; Cunha, Carlos Eduardo Pouey da; Lopes, Graciela Völz; Silva, Wladimir Padilha da

    2018-05-01

    The genetic basis of tetracycline resistance in a food isolate Listeria monocytogenes (Lm16) was evaluated. Resistance to tetracycline was associated with the presence of the tetM gene in plasmid DNA. The sequence of tetM showed 100% of similarity with the Enterococcus faecalis sequences found in the EMBL database, suggesting that Lm16 received this gene from E. faecalis. Various size bands were detected in the DNA plasmid analysis, the largest being approximately 54.38 kb. Transferability of the tetM gene was achieved in vitro by agar matings between Lm16 and E. faecalis JH2-2, proving the potential for the spread of tetM by horizontal gene transfer. Furthermore, the conjugation experiments were performed on the surface of processed cheese, confirming the transferability in a food matrix. PCR assays were used to confirm the identity of E. faecalis and to detect the tetM gene in transconjugant bacteria. Additionally, the minimal inhibitory concentration for tetracycline and rifampicin and plasmid profiling were performed. This is the first report of a food isolate L. monocytogenes carrying the tetM gene in plasmid DNA, and it highlights the potential risk of spreading antimicrobial resistance genes between different bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Toxin Plasmids of Clostridium perfringens

    PubMed Central

    Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.

    2013-01-01

    SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  15. Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

    PubMed Central

    Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando

    2014-01-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  16. Assessing the biocompatibility of click-linked DNA in Escherichia coli

    PubMed Central

    Sanzone, A. Pia; El-Sagheer, Afaf H.; Brown, Tom; Tavassoli, Ali

    2012-01-01

    The biocompatibility of a triazole mimic of the DNA phosphodiester linkage in Escherichia coli has been evaluated. The requirement for selective pressure on the click-containing gene was probed via a plasmid containing click DNA backbone linkages in each strand of the gene encoding the fluorescent protein mCherry. The effect of proximity of the click linkers on their biocompatibility was also probed by placing two click DNA linkers 4-bp apart at the region encoding the fluorophore of the fluorescent protein. The resulting click-containing plasmid was found to encode mCherry in E. coli at a similar level to the canonical equivalent. The ability of the cellular machinery to read through click-linked DNA was further probed by using the above click-linked plasmid to express mCherry using an in vitro transcription/translation system, and found to also be similar to that from canonical DNA. The yield and fluorescence of recombinant mCherry expressed from the click-linked plasmid was also compared to that from the canonical equivalent, and found to be the same. The biocompatibility of click DNA ligation sites at close proximity in a non-essential gene demonstrated in E. coli suggests the possibility of using click DNA ligation for the enzyme-free assembly of chemically modified genes and genomes. PMID:22904087

  17. Spin precession in a black hole and naked singularity spacetimes

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chandrachur; Kocherlakota, Prashant; Joshi, Pankaj S.

    2017-02-01

    We propose here a specific criterion to address the existence or otherwise of Kerr naked singularities, in terms of the precession of the spin of a test gyroscope due to the frame dragging by the central spinning body. We show that there is indeed an important characteristic difference in the behavior of gyro spin precession frequency in the limit of approach to these compact objects, and this can be used, in principle, to differentiate the naked singularity from a black hole. Specifically, if gyroscopes are fixed all along the polar axis up to the horizon of a Kerr black hole, the precession frequency becomes arbitrarily high, blowing up as the event horizon is approached. On the other hand, in the case of naked singularity, this frequency remains always finite and well behaved. Interestingly, this behavior is intimately related to and is governed by the geometry of the ergoregion in each of these cases, which we analyze here. One intriguing behavior that emerges is, in the Kerr naked singularity case, the Lense-Thirring precession frequency (ΩLT ) of the gyroscope due to frame-dragging effect decreases as (ΩLT∝r ) after reaching a maximum, in the limit of r =0 , as opposed to r-3 dependence in all other known astrophysical cases.

  18. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonella serotypes.

    PubMed

    Helmuth, R; Stephan, R; Bunge, C; Hoog, B; Steinbeck, A; Bulling, E

    1985-04-01

    Antibiotic-sensitive Salmonella isolates belonging to seven common serotypes and originating from 29 different countries from all continents were investigated for their plasmid DNA content (337 isolates) and their outer membrane protein profiles (216 isolates). Of the S. typhimurium, S. enteritidis, S. dublin, and S. choleraesuis isolates, 90% or more carried a serotype-specific plasmid. The molecular sizes of the plasmids were 60 megadaltons (Md) for S. typhimurium, 37 Md for S. enteritidis, 56 Md for S. dublin, and 30 Md for S. choleraesuis. The outer membrane protein profiles were homogeneous within each of the seven serotypes, except that a minority of S. enteritidis and S. dublin strains were lacking one major outer membrane protein. Virulence studies were performed with 39 representative strains by measuring the 50% lethal doses (LD50S) after oral infection of mice. The LD50 values obtained for plasmid-positive strains of S. typhimurium, S. enteritidis, and S. dublin were up to 10(6)-fold lower than the values obtained for the plasmid-free strains of the same serotype. Only the plasmid-positive strains could invade the livers of orally infected mice, and only they were resistant to the bactericidal activity of 90% guinea pig serum. Strains of S. infantis were generally plasmid free, whereas S. panama and S. heidelberg isolates carried heterogeneous plasmid populations. The virulence properties of the latter three serotypes could not be correlated with the predominant plasmids found in these strains.

  19. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonella serotypes.

    PubMed Central

    Helmuth, R; Stephan, R; Bunge, C; Hoog, B; Steinbeck, A; Bulling, E

    1985-01-01

    Antibiotic-sensitive Salmonella isolates belonging to seven common serotypes and originating from 29 different countries from all continents were investigated for their plasmid DNA content (337 isolates) and their outer membrane protein profiles (216 isolates). Of the S. typhimurium, S. enteritidis, S. dublin, and S. choleraesuis isolates, 90% or more carried a serotype-specific plasmid. The molecular sizes of the plasmids were 60 megadaltons (Md) for S. typhimurium, 37 Md for S. enteritidis, 56 Md for S. dublin, and 30 Md for S. choleraesuis. The outer membrane protein profiles were homogeneous within each of the seven serotypes, except that a minority of S. enteritidis and S. dublin strains were lacking one major outer membrane protein. Virulence studies were performed with 39 representative strains by measuring the 50% lethal doses (LD50S) after oral infection of mice. The LD50 values obtained for plasmid-positive strains of S. typhimurium, S. enteritidis, and S. dublin were up to 10(6)-fold lower than the values obtained for the plasmid-free strains of the same serotype. Only the plasmid-positive strains could invade the livers of orally infected mice, and only they were resistant to the bactericidal activity of 90% guinea pig serum. Strains of S. infantis were generally plasmid free, whereas S. panama and S. heidelberg isolates carried heterogeneous plasmid populations. The virulence properties of the latter three serotypes could not be correlated with the predominant plasmids found in these strains. Images PMID:3980081

  20. The reversed terminator of octopine synthase gene on the Agrobacterium Ti plasmid has a weak promoter activity in prokaryotes.

    PubMed

    Shao, Jun-Li; Long, Yue-Sheng; Chen, Gu; Xie, Jun; Xu, Zeng-Fu

    2010-06-01

    Agrobacterium tumefaciens transfers DNA from its Ti plasmid to plant host cells. The genes located within the transferred DNA of Ti plasmid including the octopine synthase gene (OCS) are expressed in plant host cells. The 3'-flanking region of OCS gene, known as OCS terminator, is widely used as a transcriptional terminator of the transgenes in plant expression vectors. In this study, we found the reversed OCS terminator (3'-OCS-r) could drive expression of hygromycin phosphotransferase II gene (hpt II) and beta-glucuronidase gene in Escherichia coli, and expression of hpt II in A. tumefaciens. Furthermore, reverse transcription-polymerase chain reaction analysis revealed that an open reading frame (ORF12) that is located downstream to the 3'-OCS-r was transcribed in A. tumefaciens, which overlaps in reverse with the coding region of the OCS gene in octopine Ti plasmid.

  1. A quantitative and high-throughput assay of human papillomavirus DNA replication.

    PubMed

    Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.

  2. GeneGuard: A modular plasmid system designed for biosafety.

    PubMed

    Wright, Oliver; Delmans, Mihails; Stan, Guy-Bart; Ellis, Tom

    2015-03-20

    Synthetic biology applications in biosensing, bioremediation, and biomining envision the use of engineered microbes beyond a contained laboratory. Deployment of such microbes in the environment raises concerns of unchecked cellular proliferation or unwanted spread of synthetic genes. While antibiotic-resistant plasmids are the most utilized vectors for introducing synthetic genes into bacteria, they are also inherently insecure, acting naturally to propagate DNA from one cell to another. To introduce security into bacterial synthetic biology, we here took on the task of completely reformatting plasmids to be dependent on their intended host strain and inherently disadvantageous for others. Using conditional origins of replication, rich-media compatible auxotrophies, and toxin-antitoxin pairs we constructed a mutually dependent host-plasmid platform, called GeneGuard. In this, replication initiators for the R6K or ColE2-P9 origins are provided in trans by a specified host, whose essential thyA or dapA gene is translocated from a genomic to a plasmid location. This reciprocal arrangement is stable for at least 100 generations without antibiotic selection and is compatible for use in LB medium and soil. Toxin genes ζ or Kid are also employed in an auxiliary manner to make the vector disadvantageous for strains not expressing their antitoxins. These devices, in isolation and in concert, severely reduce unintentional plasmid propagation in E. coli and B. subtilis and do not disrupt the intended E. coli host's growth dynamics. Our GeneGuard system comprises several versions of modular cargo-ready vectors, along with their requisite genomic integration cassettes, and is demonstrated here as an efficient vector for heavy-metal biosensors.

  3. A septal chromosome segregator protein evolved into a conjugative DNA-translocator protein

    PubMed Central

    Sepulveda, Edgardo; Vogelmann, Jutta

    2011-01-01

    Streptomycetes, Gram-positive soil bacteria well known for the production of antibiotics feature a unique conjugative DNA transfer system. In contrast to classical conjugation which is characterized by the secretion of a pilot protein covalently linked to a single-stranded DNA molecule, in Streptomyces a double-stranded DNA molecule is translocated during conjugative transfer. This transfer involves a single plasmid encoded protein, TraB. A detailed biochemical and biophysical characterization of TraB, revealed a close relationship to FtsK, mediating chromosome segregation during bacterial cell division. TraB translocates plasmid DNA by recognizing 8-bp direct repeats located in a specific plasmid region clt. Similar sequences accidentally also occur on chromosomes and have been shown to be bound by TraB. We suggest that TraB mobilizes chromosomal genes by the interaction with these chromosomal clt-like sequences not relying on the integration of the conjugative plasmid into the chromosome. PMID:22479692

  4. Colorimetric detection of UV light-induced single-strand DNA breaks using gold nanoparticles.

    PubMed

    Kim, Joong Hyun; Chung, Chan Ho; Chung, Bong Hyun

    2013-02-21

    We developed a colorimetric method to specifically detect single-strand DNA breaks using gold nanoparticles. In our assay, broken DNA cannot stabilize gold nanoparticles to prevent salt-induced aggregation as good as intact DNA can, and this effect can be easily observed with the naked eye as a red-to-purple color change.

  5. [Genome Rearrangements in Azospirillum brasilense Sp7 with the Involvement of the Plasmid pRhico and the Prophage phiAb-Cd].

    PubMed

    Katsy, E I; Petrova, L P

    2015-12-01

    Alphaproteobacteria of the species Azospirillum brasilense have a multicomponent genome that undergoes frequent spontaneous rearrangements, yielding changes in the plasmid profiles of strains. Specifically, variants (Cd, Sp7.K2, Sp7.1, Sp7.4, Sp7.8, etc.) of the type strainA. brasilense Sp7 that had lost a 115-MDa plasmid were previously selected. In many of them, the molecular weight of a 90-MDa plasmid (p90 or pRhico), which is a kind of "depot" for glycopolymer biosynthesis genes, increased. In this study, a collection of primers was designed to the plasmid pRhico and to the DNA of prophage phiAb-Cd integrated in it. The use ofthese primers in polymerase chain reactions allowed the detection of the probable excision of phiAb-Cd phage from the DNA of A. brasilense variants Sp7.4 and Sp7.8 and other alterations of the pRhico structure in A. brasilense strains Cd, Sp7.K2, and Sp7.8. The developed primers and PCR conditions may be recoin mended for primary analysis of spontaneous plasmid rearrangements in A. brasilense Sp7 and related strains.

  6. Enzyme-linked immunosorbent assays for Z-DNA.

    PubMed

    Thomas, M J; Strobl, J S

    1988-10-01

    Dot blot and transblot enzyme-linked immunosorbent assays (e.l.i.s.a.) are described which provide sensitive non-radioactive methods for screening Z-DNA-specific antisera and for detecting Z-DNA in polydeoxyribonucleotides and supercoiled plasmids. In the alkaline phosphatase dot blot e.l.i.s.a., Z-DNA, Br-poly(dG-dC).poly(dG-dC), or B-DNA, poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), Br-poly(dI-dC).poly(dI-dC), or salmon sperm DNA were spotted onto nitrocellulose discs and baked. The e.l.i.s.a. was conducted in 48-well culture dishes at 37 degrees C using a rabbit polyclonal antiserum developed against Br-poly(dG-dC).poly(dG-dC), an alkaline phosphatase-conjugated second antibody, and p-nitrophenol as the substrate. Under conditions where antibody concentrations were not limiting, alkaline phosphatase activity was linear for 2 h. Dot blot e.l.i.s.a. conditions are described which allow quantification of Z-DNA [Br-poly(dG-dC).poly(dG-dC)] within the range 5-250 ng. Dot blot and transblot horseradish peroxidase e.l.i.s.a. are described that detect Z-DNA within supercoiled plasmid DNAs immobilized on diazophenylthioether (DPT) paper. In the transblot e.l.i.s.a., plasmid pUC8 derivatives containing 16, 24, or 32 residues of Z-DNA were electrophoresed in agarose gels and electrophoretically transferred to DPT paper. Z-DNA-antibody complexes were detected by the horseradish peroxidase-catalysed conversion of 4-chloro-1-naphthol to a coloured product that was covalently bound to the DPT paper. Z-DNA antibody reactivity was specific for supercoiled Z-DNA containing plasmids after removal of the antibodies cross-reactive with B-DNA by absorption onto native DNA-cellulose. The transblot e.l.i.s.a. was sensitive enough to detect 16 base pairs of alternating G-C residues in 100 ng of pUC8 DNA.

  7. A replicative plasmid vector allows efficient complementation of pathogenic Leptospira strains.

    PubMed

    Pappas, Christopher J; Benaroudj, Nadia; Picardeau, Mathieu

    2015-05-01

    Leptospirosis, an emerging zoonotic disease, remains poorly understood because of a lack of genetic manipulation tools available for pathogenic leptospires. Current genetic manipulation techniques include insertion of DNA by random transposon mutagenesis and homologous recombination via suicide vectors. This study describes the construction of a shuttle vector, pMaORI, that replicates within saprophytic, intermediate, and pathogenic leptospires. The shuttle vector was constructed by the insertion of a 2.9-kb DNA segment including the parA, parB, and rep genes into pMAT, a plasmid that cannot replicate in Leptospira spp. and contains a backbone consisting of an aadA cassette, ori R6K, and oriT RK2/RP4. The inserted DNA segment was isolated from a 52-kb region within Leptospira mayottensis strain 200901116 that is not found in the closely related strain L. mayottensis 200901122. Because of the size of this region and the presence of bacteriophage-like proteins, it is possible that this region is a result of a phage-related genomic island. The stability of the pMaORI plasmid within pathogenic strains was tested by passaging cultures 10 times without selection and confirming the presence of pMaORI. Concordantly, we report the use of trans complementation in the pathogen Leptospira interrogans. Transformation of a pMaORI vector carrying a functional copy of the perR gene in a null mutant background restores the expression of PerR and susceptibility to hydrogen peroxide comparable to that of wild-type cells. In conclusion, we demonstrate the replication of a stable plasmid vector in a large panel of Leptospira strains, including pathogens. The shuttle vector described will expand our ability to perform genetic manipulation of Leptospira spp. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. The Naked Mole-Rat Response to Oxidative Stress: Just Deal with It

    PubMed Central

    Lewis, Kaitlyn N.; Andziak, Blazej; Yang, Ting

    2013-01-01

    Abstract Significance: The oxidative stress theory of aging has been the most widely accepted theory of aging providing insights into why we age and die for over 50 years, despite mounting evidence from a multitude of species indicating that there is no direct relationship between reactive oxygen species (ROS) and longevity. Here we explore how different species, including the longest lived rodent, the naked mole-rat, have defied the most predominant aging theory. Recent Advances: In the case of extremely long-lived naked mole-rat, levels of ROS production are found to be similar to mice, antioxidant defenses unexceptional, and even under constitutive conditions, naked mole-rats combine a pro-oxidant intracellular milieu with high, steady state levels of oxidative damage. Clearly, naked mole-rats can tolerate this level of oxidative stress and must have mechanisms in place to prevent its translation into potentially lethal diseases. Critical Issues: In addition to the naked mole-rat, other species from across the phylogenetic spectrum and even certain mouse strains do not support this theory. Moreover, overexpressing or knocking down antioxidant levels alters levels of oxidative damage and even cancer incidence, but does not modulate lifespan. Future Directions: Perhaps, it is not oxidative stress that modulates healthspan and longevity, but other cytoprotective mechanisms that allow animals to deal with high levels of oxidative damage and stress, and nevertheless live long, relatively healthy lifespans. Studying these mechanisms in uniquely long-lived species, like the naked mole-rat, may help us tease out the key contributors to aging and longevity. Antioxid. Redox Signal. 19, 1388–1399. PMID:23025341

  9. Genetic control of ColE1 plasmid stability that is independent of plasmid copy number regulation.

    PubMed

    Standley, Melissa S; Million-Weaver, Samuel; Alexander, David L; Hu, Shuai; Camps, Manel

    2018-06-16

    ColE1-like plasmid vectors are widely used for expression of recombinant genes in E. coli. For these vectors, segregation of individual plasmids into daughter cells during cell division appears to be random, making them susceptible to loss over time when no mechanisms ensuring their maintenance are present. Here we use the plasmid pGFPuv in a recA relA strain as a sensitized model to study factors affecting plasmid stability in the context of recombinant gene expression. We find that in this model, plasmid stability can be restored by two types of genetic modifications to the plasmid origin of replication (ori) sequence: point mutations and a novel 269 nt duplication at the 5' end of the plasmid ori, which we named DAS (duplicated anti-sense) ori. Combinations of these modifications produce a range of copy numbers and of levels of recombinant expression. In direct contradiction with the classic random distribution model, we find no correlation between increased plasmid copy number and increased plasmid stability. Increased stability cannot be explained by reduced levels of recombinant gene expression either. Our observations would be more compatible with a hybrid clustered and free-distribution model, which has been recently proposed based on detection of individual plasmids in vivo using super-resolution fluorescence microscopy. This work suggests a role for the plasmid ori in the control of segregation of ColE1 plasmids that is distinct from replication initiation, opening the door for the genetic regulation of plasmid stability as a strategy aimed at enhancing large-scale recombinant gene expression or bioremediation.

  10. A Recombinant DNA Plasmid Encoding the sIL-4R-NAP Fusion Protein Suppress Airway Inflammation in an OVA-Induced Mouse Model of Asthma.

    PubMed

    Liu, Xin; Fu, Guo; Ji, Zhenyu; Huang, Xiabing; Ding, Cong; Jiang, Hui; Wang, Xiaolong; Du, Mingxuan; Wang, Ting; Kang, Qiaozhen

    2016-08-01

    Asthma is a chronic inflammatory airway disease. It was prevalently perceived that Th2 cells played the crucial role in asthma pathogenesis, which has been identified as the important target for anti-asthma therapy. The soluble IL-4 receptor (sIL-4R), which is the decoy receptor for Th2 cytokine IL-4, has been reported to be effective in treating asthma in phase I/II clinical trail. To develop more efficacious anti-asthma agent, we attempt to test whether the Helicobacter pylori neutrophil-activating protein (HP-NAP), a novel TLR2 agonist, would enhance the efficacy of sIL-4R in anti-asthma therapy. In our work, we constructed a pcDNA3.1-sIL-4R-NAP plasmid, named PSN, encoding fusion protein of murine sIL-4R and HP-NAP. PSN significantly inhibited airway inflammation, decreased the serum OVA-specific IgE levels and remodeled the Th1/Th2 balance. Notably, PSN is more effective on anti-asthma therapy comparing with plasmid only expressing sIL-4R.

  11. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1.

    PubMed

    Cook, W L; Wachsmuth, K; Johnson, S R; Birkness, K A; Samadi, A R

    1984-07-01

    Plasmid profiles, the location of cholera toxin subunit A genes, and the presence of the defective VcA1 prophage genome in classical Vibrio cholerae isolated from patients in Bangladesh in 1982 were compared with those in older classical strains isolated during the sixth pandemic and with those in selected eltor and nontoxigenic O1 isolates. Classical strains typically had two plasmids (21 and 3 megadaltons), eltor strains typically had no plasmids, and nontoxigenic O1 strains had zero to three plasmids. The old and new isolates of classical V. cholerae had two HindIII chromosomal digest fragments containing cholera toxin subunit A genes, whereas the eltor strains from Eastern countries had one fragment. The eltor strains from areas surrounding the Gulf of Mexico also had two subunit A gene fragments, which were smaller and easily distinguished from the classical pattern. All classical strains had 8 to 10 HindIII fragments containing the defective VcA1 prophage genome; none of the Eastern eltor strains had these genes, and the Gulf Coast eltor strains contained a different array of weakly hybridizing genes. These data suggest that the recent isolates of classical cholera in Bangladesh are closely related to the bacterial strain(s) which caused classical cholera during the sixth pandemic. These data do not support hypotheses that either the eltor or the nontoxigenic O1 strains are precursors of the new classical strains.

  12. Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation

    NASA Astrophysics Data System (ADS)

    Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.

    2012-05-01

    Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

  13. Enhancement of anion-exchange chromatography of DNA using compaction agents

    NASA Technical Reports Server (NTRS)

    Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2003-01-01

    The use of adsorptive chromatography for preparative nucleic acid separations is often limited by low capacity. The possibility that the adsorbent surface area sterically accessible to nucleic acid molecules could be increased by reducing their radius of gyration with compaction agents has been investigated. The equilibrium adsorption capacity of Q Sepharose anion-exchange matrix for plasmid DNA at 600 mM NaCl was enhanced by up to ca. 40% in the presence of 2.5 mM spermine. In addition, compaction agent selectivity has been demonstrated. Spermine, for example, enhances the adsorption of both plasmid and genomic DNA, spermidine enhances binding only of plasmid, and hexamine cobalt enhances only the binding of genomic DNA. Compaction may be generally useful for enhancing adsorptive separations of nucleic acids.

  14. Enhancement and optimization of plasmid expression in femtosecond optical transfection.

    PubMed

    Praveen, Bavishna B; Stevenson, David J; Antkowiak, Maciej; Dholakia, Kishan; Gunn-Moore, Frank J

    2011-04-01

    Cell transfection using femtosecond lasers is gaining importance for its proven ability to achieve selective transfection in a sterile and relatively non-invasive manner. However, the net efficiency of this technique is limited due to a number of factors that ultimately makes it difficult to be used as a viable and widely used technique. We report here a method to achieve significant enhancement in the efficiency of femtosecond optical transfection. The transfection procedure is modified by incorporating a suitable synthetic peptide containing nuclear localization and DNA binding sequences, assisting DNA import into the nucleus. We achieved a 3-fold enhancement in the transfection efficiency for adherent Chinese Hamster Ovary (CHO-K1) cells with this modified protocol. Further, in the presence of this biochemical reagent, we were able to reduce the required plasmid concentration by ~70% without compromising the transfection efficiency. Also, we report for the first time the successful photo-transfection of recently trypsinised cells with significantly high transfection efficiency when transfected with modified plasmid. This paves the way for the development of high throughput microfluidic optical transfection devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Protective Cellular Immunity Against Influenza Virus Induced by Plasmid Inoculation of Newborn Mice

    PubMed Central

    Bot, Adrian; Bot, Simona; García-Sastre, Adolfo

    1998-01-01

    Neonate organisms display an intrinsic disability to mount effective immune responses to infectious agents or conventional vaccines. Whereas low. doses of antigens trigger a suboptimal response, higher doses are frequently associated with tolerance induction. We investigated the ability of a plasmid-expressing nucleoprotein of influenza virus to prime a specific cellular immune response when administered to newborn mice. We found that persistent exposure to antigen following plasmid inoculation of neonates leads to a vigorous priming of specific CTLs rather than tolerance induction. The CTLs were cross-reactive against multiple strains of type A influenza viruses and produced IFNγ but no IL-4. The immunity triggered by plasmid inoculation of neonates was protective in terms of pulmonary virus clearance as well as survival rate following lethal challenge with influenza virus. Whereas the persistence of the plasmid at the site of injection was readily demonstrable in adult mice at 3 months after inoculation, mice immunized as newborns displayed no plasmid at 3 months and very little at 1 month after injection. Thus, DNA-based immunization of neonates may prove an effective and safe vaccination strategy for induction of cellular immunity against microbes that cause serious infectious diseases in the early period of life. PMID:9851359

  16. The gene therapy of collagen-induced arthritis in rats by intramuscular administration of the plasmid encoding TNF-binding domain of variola virus CrmB protein.

    PubMed

    Shchelkunov, S N; Taranov, O S; Tregubchak, T V; Maksyutov, R A; Silkov, A N; Nesterov, A E; Sennikov, S V

    2016-07-01

    Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins.

  17. Properties of internalization factors contributing to the uptake of extracellular DNA into tumor-initiating stem cells of mouse Krebs-2 cell line.

    PubMed

    Dolgova, Evgeniya V; Potter, Ekaterina A; Proskurina, Anastasiya S; Minkevich, Alexandra M; Chernych, Elena R; Ostanin, Alexandr A; Efremov, Yaroslav R; Bayborodin, Sergey I; Nikolin, Valeriy P; Popova, Nelly A; Kolchanov, Nikolay A; Bogachev, Sergey S

    2016-05-25

    Previously, we demonstrated that poorly differentiated cells of various origins, including tumor-initiating stem cells present in the ascites form of mouse cancer cell line Krebs-2, are capable of naturally internalizing both linear double-stranded DNA and circular plasmid DNA. The method of co-incubating Krebs-2 cells with extracellular plasmid DNA (pUC19) or TAMRA-5'-dUTP-labeled polymerase chain reaction (PCR) product was used. It was found that internalized plasmid DNA isolated from Krebs-2 can be transformed into competent Escherichia coli cells. Thus, the internalization processes taking place in the Krebs-2 cell subpopulation have been analyzed and compared, as assayed by E. coli colony formation assay (plasmid DNA) and cytofluorescence (TAMRA-DNA). We showed that extracellular DNA both in the form of plasmid DNA and a PCR product is internalized by the same subpopulation of Krebs-2 cells. We found that the saturation threshold for Krebs-2 ascites cells is 0.5 μg DNA/10(6) cells. Supercoiled plasmid DNA, human high-molecular weight DNA, and 500 bp PCR fragments are internalized into the Krebs-2 tumor-initiating stem cells via distinct, non-competing internalization pathways. Under our experimental conditions, each cell may harbor 340-2600 copies of intact plasmid material, or up to 3.097 ± 0.044×10(6) plasmid copies (intact or not), as detected by quantitative PCR. The internalization dynamics of extracellular DNA, copy number of the plasmids taken up by the cells, and competition between different types of double-stranded DNA upon internalization into tumor-initiating stem cells of mouse ascites Krebs-2 have been comprehensively analyzed. Investigation of the extracellular DNA internalization into tumor-initiating stem cells is an important part of understanding their properties and possible destruction mechanisms. For example, a TAMRA-labeled DNA probe may serve as an instrument to develop a target for the therapy of cancer, aiming at elimination of

  18. Development of a screening method for genetically modified soybean by plasmid-based quantitative competitive polymerase chain reaction.

    PubMed

    Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2008-07-23

    A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.

  19. Complete Sequence and Molecular Epidemiology of IncK Epidemic Plasmid Encoding blaCTX-M-14

    PubMed Central

    Cottell, Jennifer L.; Webber, Mark A.; Coldham, Nick G.; Taylor, Dafydd L.; Cerdeño-Tárraga, Anna M.; Hauser, Heidi; Thomson, Nicholas R.; Woodward, Martin J.

    2011-01-01

    Antimicrobial drug resistance is a global challenge for the 21st century with the emergence of resistant bacterial strains worldwide. Transferable resistance to β-lactam antimicrobial drugs, mediated by production of extended-spectrum β-lactamases (ESBLs), is of particular concern. In 2004, an ESBL-carrying IncK plasmid (pCT) was isolated from cattle in the United Kingdom. The sequence was a 93,629-bp plasmid encoding a single antimicrobial drug resistance gene, blaCTX-M-14. From this information, PCRs identifying novel features of pCT were designed and applied to isolates from several countries, showing that the plasmid has disseminated worldwide in bacteria from humans and animals. Complete DNA sequences can be used as a platform to develop rapid epidemiologic tools to identify and trace the spread of plasmids in clinically relevant pathogens, thus facilitating a better understanding of their distribution and ability to transfer between bacteria of humans and animals. PMID:21470454

  20. Z-DNA binding protein from chicken blood nuclei

    NASA Technical Reports Server (NTRS)

    Herbert, A. G.; Spitzner, J. R.; Lowenhaupt, K.; Rich, A.

    1993-01-01

    A protein (Z alpha) that appears to be highly specific for the left-handed Z-DNA conformer has been identified in chicken blood nuclear extracts. Z alpha activity is measured in a band-shift assay by using a radioactive probe consisting of a (dC-dG)35 oligomer that has 50% of the deoxycytosines replaced with 5-bromodeoxycytosine. In the presence of 10 mM Mg2+, the probe converts to the Z-DNA conformation and is bound by Z alpha. The binding of Z alpha to the radioactive probe is specifically blocked by competition with linear poly(dC-dG) stabilized in the Z-DNA form by chemical bromination but not by B-form poly(dC-dG) or boiled salmon-sperm DNA. In addition, the binding activity of Z alpha is competitively blocked by supercoiled plasmids containing a Z-DNA insert but not by either the linearized plasmid or by an equivalent amount of the parental supercoiled plasmid without the Z-DNA-forming insert. Z alpha can be crosslinked to the 32P-labeled brominated probe with UV light, allowing us to estimate that the minimal molecular mass of Z alpha is 39 kDa.

  1. DNAVaxDB: the first web-based DNA vaccine database and its data analysis

    PubMed Central

    2014-01-01

    Since the first DNA vaccine studies were done in the 1990s, thousands more studies have followed. Here we report the development and analysis of DNAVaxDB (http://www.violinet.org/dnavaxdb), the first publically available web-based DNA vaccine database that curates, stores, and analyzes experimentally verified DNA vaccines, DNA vaccine plasmid vectors, and protective antigens used in DNA vaccines. All data in DNAVaxDB are annotated from reliable resources, particularly peer-reviewed articles. Among over 140 DNA vaccine plasmids, some plasmids were more frequently used in one type of pathogen than others; for example, pCMVi-UB for G- bacterial DNA vaccines, and pCAGGS for viral DNA vaccines. Presently, over 400 DNA vaccines containing over 370 protective antigens from over 90 infectious and non-infectious diseases have been curated in DNAVaxDB. While extracellular and bacterial cell surface proteins and adhesin proteins were frequently used for DNA vaccine development, the majority of protective antigens used in Chlamydophila DNA vaccines are localized to the inner portion of the cell. The DNA vaccine priming, other vaccine boosting vaccination regimen has been widely used to induce protection against infection of different pathogens such as HIV. Parasitic and cancer DNA vaccines were also systematically analyzed. User-friendly web query and visualization interfaces are available in DNAVaxDB for interactive data search. To support data exchange, the information of DNA vaccines, plasmids, and protective antigens is stored in the Vaccine Ontology (VO). DNAVaxDB is targeted to become a timely and vital source of DNA vaccines and related data and facilitate advanced DNA vaccine research and development. PMID:25104313

  2. Induction of protective neutralizing antibody responses against botulinum neurotoxin serotype C using plasmid carried by PLGA nanoparticles.

    PubMed

    Ruwona, Tinashe B; Xu, Haiyue; Li, Junwei; Diaz-Arévalo, Diana; Kumar, Amit; Zeng, Mingtao; Cui, Zhengrong

    2016-05-03

    Botulinum neurotoxin (BoNT) is a lethal neurotoxin, for which there is currently not an approved vaccine. Recent efforts in developing vaccine candidates against botulism have been directed at the heavy chain fragment of BoNT, because antibodies against this region have been shown to prevent BoNT from binding to its receptor and thus to nerve cell surface, offering protection against BoNT intoxication. In the present study, it was shown that immunization with plasmid DNA that encodes the 50 KDa C-terminal fragment of the heavy chain of BoNT serotype C (i.e., BoNT/C-Hc50) and is carried by cationic poly (lactic-co-glycolic) acid (PLGA) nanoparticles induces stronger BoNT/C-specific antibody responses, as compared to immunization with the plasmid alone. Importantly, the antibodies have BoNT/C-neutralizing activity, protecting the immunized mice from a lethal dose of BoNT/C challenge. A plasmid DNA vaccine encoding the Hc50 fragments of BoNT serotypes that cause human botulism may represent a viable vaccine candidate for protecting against botulinum neurotoxin intoxication.

  3. Characterization of the Campylobacter jejuni cryptic plasmid pTIW94 recovered from wild birds in the southeastern United States.

    PubMed

    Hiett, Kelli L; Rothrock, Michael J; Seal, Bruce S

    2013-09-01

    The complete nucleotide sequence was determined for a cryptic plasmid, pTIW94, recovered from several Campylobacter jejuni isolates from wild birds in the southeastern United States. pTIW94 is a circular molecule of 3860 nucleotides, with a G+C content (31.0%) similar to that of many Campylobacter spp. genomes. A typical origin of replication, with iteron sequences, was identified upstream of DNA sequences that demonstrated similarity to replication initiation proteins. A total of five open reading frames (ORFs) were identified; two of the five ORFs demonstrated significant similarity to plasmid pCC2228-2 found within Campylobacter coli. These two ORFs were similar to essential replication proteins RepA (100%; 26/26 aa identity) and RepB (95%; 327/346 aa identity). A third identified ORF demonstrated significant similarity (99%; 421/424 aa identity) to the MOB protein from C. coli 67-8, originally recovered from swine. The other two identified ORFs were either similar to hypothetical proteins from other Campylobacter spp., or exhibited no significant similarity to any DNA or protein sequence in the GenBank database. Promoter regions (-35 and -10 signal sites), ribosomal binding sites upstream of ORFs, and stem-loop structures were also identified within the plasmid. These results demonstrate that pTIW94 represents a previously un-reported small cryptic plasmid with unique sequences as well as highly similar sequences to other small plasmids found within Campylobacter spp., and that this cryptic plasmid is present among Campylobacter spp. recovered from different genera of wild birds. Copyright © 2013. Published by Elsevier Inc.

  4. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K [Idaho Falls, ID

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  5. Use of plasmid analysis and determination of aminoglycoside-modifying enzymes to characterize isolates from an outbreak of methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Licitra, C M; Brooks, R G; Terry, P M; Shaw, K J; Hare, R S

    1989-01-01

    We compared disk susceptibility, plasmid analysis, aminoglycoside resistance patterns, and DNA hybridization for their usefulness in characterizing isolates from a hospital outbreak of methicillin-resistant Staphylococcus aureus. Fifteen isolates were susceptible (group 1) and 28 were resistant (group 2) to gentamicin. A total of 15 of 15 (100%) group 1 and 22 of 28 (79%) group 2 isolates carried a 21.5-megadalton plasmid. All group 2 isolates and none of the group 1 isolates possessed a 33-megadalton plasmid. Aminoglycoside resistance pattern determinations revealed the presence of the ANT(4')-I enzyme (aminoglycoside 4' adenyltransferase) in all group 1 isolates but was unable to demonstrate presence of this enzyme in group 2 organisms. The APH(2") + AAC(6')-II enzyme (aminoglycoside 2" phosphotransferase plus 6' acetyltransferase) was found in all of the group 2 isolates but in none of the group 1 isolates. Use of DNA hybridization revealed the presence of the ANT(4')-I enzyme in both groups (group 1, 14 of 15; group 2, 26 of 28). In this hospital outbreak, we found good correlation between disk susceptibility, plasmid profile, aminoglycoside resistance patterns, and DNA hybridization results. It was difficult to predict the presence of the ANT(4')-I enzyme in the presence of the bifunctional [APH(2") + AAC(6')-II] enzyme by the aminoglycoside resistance pattern method because of overlap of the substrate profile. Images PMID:2808676

  6. Preparation of Double-Stranded (Replicative Form) Bacteriophage M13 DNA.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2017-11-01

    The double-stranded, closed-circular, replicative form (RF) of M13 DNA is present in high copy numbers in infected cells, and its physical characteristics are essentially identical to those of closed-circular plasmid DNAs. Any of the methods commonly used to purify plasmid DNA can therefore be used to isolate M13 RF DNA. This protocol describes the isolation of M13 RF DNA by alkaline lysis from small volumes (1-2 mL) of infected bacterial cultures. The yield of DNA (1-4 mg, depending on the size of the M13 clone) is more than enough for most purposes in molecular cloning. However, should more DNA be needed, the procedure can easily be scaled up. © 2017 Cold Spring Harbor Laboratory Press.

  7. Quantification of genetically modified soybeans using a combination of a capillary-type real-time PCR system and a plasmid reference standard.

    PubMed

    Toyota, Akie; Akiyama, Hiroshi; Sugimura, Mitsunori; Watanabe, Takahiro; Kikuchi, Hiroyuki; Kanamori, Hisayuki; Hino, Akihiro; Esaka, Muneharu; Maitani, Tamio

    2006-04-01

    Because the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved genetically modified varieties in many countries, there is a need for a rapid and useful method of GMO quantification in food samples. In this study, a rapid detection system was developed for Roundup Ready Soybean (RRS) quantification using a combination of a capillary-type real-time PCR system, a LightCycler real-time PCR system, and plasmid DNA as the reference standard. In addition, we showed for the first time that the plasmid and genomic DNA should be similar in the established detection system because the PCR efficiencies of using plasmid DNA and using genomic DNA were not significantly different. The conversion factor (Cf) to calculate RRS content (%) was further determined from the average value analyzed in three laboratories. The accuracy and reproducibility of this system for RRS quantification at a level of 5.0% were within a range from 4.46 to 5.07% for RRS content and within a range from 2.0% to 7.0% for the relative standard deviation (RSD) value, respectively. This system rapidly monitored the labeling system and had allowable levels of accuracy and precision.

  8. Sequence analysis of the lactococcal plasmid pNP40: a mobile replicon for coping with environmental hazards.

    PubMed

    O'Driscoll, Jonathan; Glynn, Frances; Fitzgerald, Gerald F; van Sinderen, Douwe

    2006-09-01

    The conjugative lactococcal plasmid pNP40, identified in Lactococcus lactis subsp. diacetylactis DRC3, possesses a potent complement of bacteriophage resistance systems, which has stimulated its application as a fitness-improving, food-grade genetic element for industrial starter cultures. The complete sequence of this plasmid allowed the mapping of previously known functions including replication, conjugation, bacteriocin resistance, heavy metal tolerance, and bacteriophage resistance. In addition, functions for cold shock adaptation and DNA damage repair were identified, further confirming pNP40's contribution to environmental stress protection. A plasmid cointegration event appears to have been part of the evolution of pNP40, resulting in a "stockpiling" of bacteriophage resistance systems.

  9. The repABC plasmids with quorum-regulated transfer systems in members of the Rhizobiales divide into two structurally and separately evolving groups

    DOE PAGES

    Wetzel, Margaret E.; Olsen, Gary J.; Chakravartty, Vandana; ...

    2015-11-19

    The large repABC plasmids of the order Rhizobiales with Class I quorum-regulated conjugative transfer systems often define the nature of the bacterium that harbors them. These otherwise diverse plasmids contain a core of highly conserved genes for replication and conjugation raising the question of their evolutionary relationships. In an analysis of 18 such plasmids these elements fall into two organizational classes, Group I and Group II, based on the sites at which cargo DNA is located. Cladograms constructed from proteins of the transfer and quorum-sensing components indicated that those of the Group I plasmids, while coevolving, have diverged from thosemore » coevolving proteins of the Group II plasmids. Moreover, within these groups the phylogenies of the proteins usually occupy similar, if not identical, tree topologies. Remarkably, such relationships were not seen among proteins of the replication system; although RepA and RepB coevolve, RepC does not. Nor do the replication proteins coevolve with the proteins of the transfer and quorum-sensing systems. Functional analysis was mostly consistent with phylogenies. TraR activated promoters from plasmids within its group, but not between groups and dimerized with TraR proteins from within but not between groups. However, oriT sequences, which are highly conserved, were processed by the transfer system of plasmids regardless of group. Here, we conclude that these plasmids diverged into two classes based on the locations at which cargo DNA is inserted, that the quorum-sensing and transfer functions are coevolving within but not between the two groups, and that this divergent evolution extends to function.« less

  10. The repABC plasmids with quorum-regulated transfer systems in members of the Rhizobiales divide into two structurally and separately evolving groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, Margaret E.; Olsen, Gary J.; Chakravartty, Vandana

    The large repABC plasmids of the order Rhizobiales with Class I quorum-regulated conjugative transfer systems often define the nature of the bacterium that harbors them. These otherwise diverse plasmids contain a core of highly conserved genes for replication and conjugation raising the question of their evolutionary relationships. In an analysis of 18 such plasmids these elements fall into two organizational classes, Group I and Group II, based on the sites at which cargo DNA is located. Cladograms constructed from proteins of the transfer and quorum-sensing components indicated that those of the Group I plasmids, while coevolving, have diverged from thosemore » coevolving proteins of the Group II plasmids. Moreover, within these groups the phylogenies of the proteins usually occupy similar, if not identical, tree topologies. Remarkably, such relationships were not seen among proteins of the replication system; although RepA and RepB coevolve, RepC does not. Nor do the replication proteins coevolve with the proteins of the transfer and quorum-sensing systems. Functional analysis was mostly consistent with phylogenies. TraR activated promoters from plasmids within its group, but not between groups and dimerized with TraR proteins from within but not between groups. However, oriT sequences, which are highly conserved, were processed by the transfer system of plasmids regardless of group. Here, we conclude that these plasmids diverged into two classes based on the locations at which cargo DNA is inserted, that the quorum-sensing and transfer functions are coevolving within but not between the two groups, and that this divergent evolution extends to function.« less

  11. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression.

    PubMed

    Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker

    2016-09-01

    Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.

  12. Naked-eye 3D imaging employing a modified MIMO micro-ring conjugate mirrors

    NASA Astrophysics Data System (ADS)

    Youplao, P.; Pornsuwancharoen, N.; Amiri, I. S.; Thieu, V. N.; Yupapin, P.

    2018-03-01

    In this work, the use of a micro-conjugate mirror that can produce the 3D image incident probe and display is proposed. By using the proposed system together with the concept of naked-eye 3D imaging, a pixel and a large volume pixel of a 3D image can be created and displayed as naked-eye perception, which is valuable for the large volume naked-eye 3D imaging applications. In operation, a naked-eye 3D image that has a large pixel volume will be constructed by using the MIMO micro-ring conjugate mirror system. Thereafter, these 3D images, formed by the first micro-ring conjugate mirror system, can be transmitted through an optical link to a short distance away and reconstructed via the recovery conjugate mirror at the other end of the transmission. The image transmission is performed by the Fourier integral in MATLAB and compares to the Opti-wave program results. The Fourier convolution is also included for the large volume image transmission. The simulation is used for the manipulation, where the array of a micro-conjugate mirror system is designed and simulated for the MIMO system. The naked-eye 3D imaging is confirmed by the concept of the conjugate mirror in both the input and output images, in terms of the four-wave mixing (FWM), which is discussed and interpreted.

  13. Kin discrimination and female mate choice in the naked mole-rat Heterocephalus glaber.

    PubMed

    Clarke, F M; Faulkes, C G

    1999-10-07

    Naked mole-rats are fossorial, eusocial rodents that naturally exhibit high levels of inbreeding. Persistent inbreeding in animals often results in a substantial decline in fitness and, thus, dispersal and avoidance of kin as mates are two common inbreeding avoidance mechanisms. In the naked mole-rat evidence for the former has recently been found. Here we address the latter mechanism by investigating kin recognition and female mate choice using a series of choice tests in which the odour, social and mate preferences of females were determined. Discrimination by females appears to be dependent on their reproductive status. Reproductively active females prefer to associate with unfamiliar males, whereas reproductively inactive females do not discriminate. Females do not discriminate between kin and non-kin suggesting that the criterion for recognition is familiarity, not detection of genetic similarity per se. In the wild, naked mole-rats occupy discrete burrow systems and dispersal and mixing with non-kin is thought to be comparatively rare. Thus, recognition by familiarity may function as a highly efficient kin recognition mechanism in the naked mole-rat. A preference by reproductively active females for unfamiliar males is interpreted as inbreeding avoidance. These findings suggest that, despite an evolutionary history of close inbreeding, naked mole-rats may not be exempt from the effects of inbreeding depression and will attempt to outbreed should the opportunity arise.

  14. Transfer of Herb-Resistance Plasmid From Escherichia coli to Staphylococcus aureus Residing in the Human Urinary Tract

    PubMed Central

    Tong, Yan Qing; Xin, Bing; Zhu, Li

    2014-01-01

    Background: Plasmid transfer among bacteria provides a means for dissemination of resistance. Plasmid Analysis has made it possible to track plasmids that induce resistance in bacterial population. Objectives: To screen the presence of herb-resistance plasmid in Escherichia coli strains and determine the transferability of this resistance plasmid directly from E. coli to the Gram-positive, Staphylococcus aureus. Materials and Methods: The donor strain E. coli CP9 and recipient strain S. aureus RN450RF were isolated from UTI patients. E. coli CP9 was highly resistant to herbal concoction. Isolates of S. aureus RN450RF were fully susceptible. Total plasmid DNA was prepared and transferred into E. coli DH5α. Transconjugants were selected on agar plates containing serial dilutions of herbal concoction. Resistance plasmid was transferred to susceptible S. aureus RN450RFin triple replicas. The mating experiments were repeated twice. Results: The identified 45 kb herb-resistance plasmid could be transferred from E. coli CP9 isolates to E. coli DH5α. As a consequence E. coli DH5α transconjugant MIC increased from 0.0125 g/mL to 0.25 g/mL. The plasmid was easily transferred from E. coli CP9 strain to S. aureus RN450RF with a mean transfer rate of 1×10-2 transconjugants/recipient. The E. coli donor and the S. aureus RN450RF transconjugant contained a plasmid of the same size, which was absent in the recipient before mating. Susceptibility testing showed that the S. aureus RN450RF transconjugant was resistant to herbal concoction. Conclusions: E. coli herb-resistance plasmid can replicate and be expressed in S. aureus. PMID:25147679

  15. Addition of DNA to CrVI and Cytochrome b5 Containing Proteoliposomes Leads to Generation of DNA Strand Breaks and CrIII Complexes

    PubMed Central

    Borthiry, Griselda R.; Antholine, William E.; Myers, Judith M.; Myers, Charles R.

    2009-01-01

    Chromium (Cr) is a cytotoxic metal that can be associated with a variety of types of DNA damage, including Cr-DNA adducts and strand breaks. Prior studies with purified human cytochrome b5 and NADPH :P450 reductase in reconstituted proteoliposomes (PLs) demonstrated rapid reduction of CrVI (hexavalent chromium, as CrO42− ), and the generation of CrV, superoxide (O2·−) , and hydroxyl radical (HO˙). Studies reported here examined the potential for the species produced by this system to interact with DNA. Strand breaks of purified plasmid DNA increased over time aerobically, but were not observed in the absence of O2. CrV is formed under both conditions, so the breaks are not mediated directly by CrV. The aerobic strand breaks were significantly prevented by catalase and EtOH, but not by the metal chelator diethylenetriaminepentaacetic acid (DTPA), suggesting that they are largely due to HO˙ from Cr-mediated redox cycling. EPR was used to assess the formation of Cr-DNA complexes. Following a 10-min incubation of PLs, CrO42− , and plasmid DNA, intense EPR signals at g = 5.7and g = 5.0 were observed. These signals are attributed to specific CrIII complexes with large zero field splitting (ZFS). Without DNA, the signals in the g = 5 region were weak. The large ZFS signals were not seen, when CrIIICl3 was incubated with DNA, suggesting that the CrIII–DNA interactions are different when generated by the PLs. After 24 h, a broad signal at g = 2 is attributed to CrIII complexes with a small ZFS. This g = 2 signal was observed without DNA, but it was different from that seen with plasmid. It is concluded that EPR can detect specific CrIII complexes that depend on the presence of plasmid DNA and the manner in which the CrIII is formed. PMID:18729091

  16. Metal-Induced Stabilization and Activation of Plasmid Replication Initiator RepB

    PubMed Central

    Ruiz-Masó, José A.; Bordanaba-Ruiseco, Lorena; Sanz, Marta; Menéndez, Margarita; del Solar, Gloria

    2016-01-01

    Initiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin (dso) of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities. Binding of Mn2+ to the active site is essential for the catalytic activity of RepB. In this work, we have studied the effects of metal binding on the structure and thermostability of full-length hexameric RepB and each of its separate domains by using different biophysical approaches. The analysis of the temperature-induced changes in RepB shows that the first thermal transition, which occurs at a range of temperatures physiologically relevant for the pMV158 pneumococcal host, represents an irreversible conformational change that affects the secondary and tertiary structure of the protein, which becomes prone to self-associate. This transition, which is also shown to result in loss of DNA binding capacity and catalytic activity of RepB, is confined to its N-terminal domain. Mn2+ protects the protein from undergoing this detrimental conformational change and the observed protection correlates well with the high-affinity binding of the cation to the active site, as substituting one of the metal-ligands at this site impairs both the protein affinity for Mn2+and the Mn2+-driven thermostabilization effect. The level of catalytic activity of the protein, especially in the case of full-length RepB, cannot be explained based only on the high-affinity binding of Mn2+ at the active site and suggests the existence of additional, lower-affinity metal binding site

  17. Gravitational radiation from a cylindrical naked singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, Ken-ichi; Morisawa, Yoshiyuki

    We construct an approximate solution which describes the gravitational emission from a naked singularity formed by the gravitational collapse of a cylindrical thick shell composed of dust. The assumed situation is that the collapsing speed of the dust is very large. In this situation, the metric variables are obtained approximately by a kind of linear perturbation analysis in the background Morgan solution which describes the motion of cylindrical null dust. The most important problem in this study is what boundary conditions for metric and matter variables should be imposed at the naked singularity. We find a boundary condition that allmore » the metric and matter variables are everywhere finite at least up to the first order approximation. This implies that the spacetime singularity formed by this high-speed dust collapse is very similar to that formed by the null dust and the final singularity will be a conical one. Weyl curvature is completely released from the collapsed dust.« less

  18. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    PubMed

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05). The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  19. Sequence of Two Plasmids from Clostridium perfringens Chicken Necrotic Enteritis Isolates and Comparison with C. perfringens Conjugative Plasmids

    PubMed Central

    Parreira, Valeria R.; Costa, Marcio; Eikmeyer, Felix; Blom, Jochen; Prescott, John F.

    2012-01-01

    Twenty-six isolates of Clostridium perfringens of different MLST types from chickens with necrotic enteritis (NE) (15 netB-positive) or from healthy chickens (6 netB-positive, 5 netB-negative) were found to contain 1–4 large plasmids, with most netB-positive isolates containing 3 large and variably sized plasmids which were more numerous and larger than plasmids in netB-negative isolates. NetB and cpb2 were found on different plasmids consistent with previous studies. The pathogenicity locus NELoc1, which includes netB, was largely conserved in these plasmids whereas NeLoc3, present in the cpb2 containing plasmids, was less well conserved. A netB-positive and a cpb2-positive plasmid were likely to be conjugative, and the plasmids were completely sequenced. Both plasmids possessed the intact tcp conjugative region characteristic of C. perfringens conjugative plasmids. Comparative genomic analysis of nine CpCPs, including the two plasmids described here, showed extensive gene rearrangements including pathogenicity locus and accessory gene insertions around rather than within the backbone region. The pattern that emerges from this analysis is that the major toxin-containing regions of the variety of virulence-associated CpCPs are organized as complex pathogenicity loci. How these different but related CpCPs can co-exist in the same host has been an unanswered question. Analysis of the replication-partition region of these plasmids suggests that this region controls plasmid incompatibility, and that CpCPs can be grouped into at least four incompatibility groups. PMID:23189158

  20. Sequence of two plasmids from Clostridium perfringens chicken necrotic enteritis isolates and comparison with C. perfringens conjugative plasmids.

    PubMed

    Parreira, Valeria R; Costa, Marcio; Eikmeyer, Felix; Blom, Jochen; Prescott, John F

    2012-01-01

    Twenty-six isolates of Clostridium perfringens of different MLST types from chickens with necrotic enteritis (NE) (15 netB-positive) or from healthy chickens (6 netB-positive, 5 netB-negative) were found to contain 1-4 large plasmids, with most netB-positive isolates containing 3 large and variably sized plasmids which were more numerous and larger than plasmids in netB-negative isolates. NetB and cpb2 were found on different plasmids consistent with previous studies. The pathogenicity locus NELoc1, which includes netB, was largely conserved in these plasmids whereas NeLoc3, present in the cpb2 containing plasmids, was less well conserved. A netB-positive and a cpb2-positive plasmid were likely to be conjugative, and the plasmids were completely sequenced. Both plasmids possessed the intact tcp conjugative region characteristic of C. perfringens conjugative plasmids. Comparative genomic analysis of nine CpCPs, including the two plasmids described here, showed extensive gene rearrangements including pathogenicity locus and accessory gene insertions around rather than within the backbone region. The pattern that emerges from this analysis is that the major toxin-containing regions of the variety of virulence-associated CpCPs are organized as complex pathogenicity loci. How these different but related CpCPs can co-exist in the same host has been an unanswered question. Analysis of the replication-partition region of these plasmids suggests that this region controls plasmid incompatibility, and that CpCPs can be grouped into at least four incompatibility groups.

  1. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways

    PubMed Central

    Leitner, Wolfgang W.; Hwang, Leroy N.; Deveer, Michael J.; Zhou, Aimin; Silverman, Robert H.; Williams, Bryan R.G.; Dubensky, Thomas W.; Ying, Han; Restifo, Nicholas P.

    2006-01-01

    Cancer vaccines targeting ‘self’ antigens that are expressed at consistently high levels by tumor cells are potentially useful in immunotherapy, but immunological tolerance may block their function. Here, we describe a novel, naked DNA vaccine encoding an alphavirus replicon (self-replicating mRNA) and the self/tumor antigen tyrosinase-related protein-1. Unlike conventional DNA vaccines, this vaccine can break tolerance and provide immunity to melanoma. The vaccine mediates production of double-stranded RNA, as evidenced by the autophosphorylation of protein kinase R. Double-stranded RNA is critical to vaccine function because both the immunogenicity and the anti-tumor activity of the vaccine are blocked in mice deficient for the RNase L enzyme, a key component of the 2′,5′-linked oligoadenylate synthetase antiviral pathway involved in double-stranded RNA recognition. This study shows for the first time that alphaviral replicon-encoding DNA vaccines activate innate immune pathways known to drive antiviral immune responses, and points the way to strategies for improving the efficacy of immunization with naked DNA. PMID:12496961

  2. Physical Characterization of Gemini Surfactant-Based Synthetic Vectors for the Delivery of Linear Covalently Closed (LCC) DNA Ministrings

    PubMed Central

    Sum, Chi Hong; Nafissi, Nafiseh; Slavcev, Roderick A.; Wettig, Shawn

    2015-01-01

    In combination with novel linear covalently closed (LCC) DNA minivectors, referred to as DNA ministrings, a gemini surfactant-based synthetic vector for gene delivery has been shown to exhibit enhanced delivery and bioavailability while offering a heightened safety profile. Due to topological differences from conventional circular covalently closed (CCC) plasmid DNA vectors, the linear topology of LCC DNA ministrings may present differences with regards to DNA interaction and the physicochemical properties influencing DNA-surfactant interactions in the formulation of lipoplexed particles. In this study, N,N-bis(dimethylhexadecyl)-α,ω-propanediammonium(16-3-16)gemini-based synthetic vectors, incorporating either CCC plasmid or LCC DNA ministrings, were characterized and compared with respect to particle size, zeta potential, DNA encapsulation, DNase sensitivity, and in vitro transgene delivery efficacy. Through comparative analysis, differences between CCC plasmid DNA and LCC DNA ministrings led to variations in the physical properties of the resulting lipoplexes after complexation with 16-3-16 gemini surfactants. Despite the size disparities between the plasmid DNA vectors (CCC) and DNA ministrings (LCC), differences in DNA topology resulted in the generation of lipoplexes of comparable particle sizes. The capacity for ministring (LCC) derived lipoplexes to undergo complete counterion release during lipoplex formation contributed to improved DNA encapsulation, protection from DNase degradation, and in vitro transgene delivery. PMID:26561857

  3. A Plasmodium vivax Plasmid DNA- and Adenovirus-Vectored Malaria Vaccine Encoding Blood-Stage Antigens AMA1 and MSP142 in a Prime/Boost Heterologous Immunization Regimen Partially Protects Aotus Monkeys against Blood-Stage Challenge.

    PubMed

    Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L

    2017-04-01

    Malaria is caused by parasites of the genus Plasmodium , which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum , it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP1 42 ) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP1 42 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP1 42 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development. Copyright © 2017 American Society for Microbiology.

  4. ColE1-Plasmid Production in Escherichia coli: Mathematical Simulation and Experimental Validation.

    PubMed

    Freudenau, Inga; Lutter, Petra; Baier, Ruth; Schleef, Martin; Bednarz, Hanna; Lara, Alvaro R; Niehaus, Karsten

    2015-01-01

    Plasmids have become very important as pharmaceutical gene vectors in the fields of gene therapy and genetic vaccination in the past years. In this study, we present a dynamic model to simulate the ColE1-like plasmid replication control, once for a DH5α-strain carrying a low copy plasmid (DH5α-pSUP 201-3) and once for a DH5α-strain carrying a high copy plasmid (DH5α-pCMV-lacZ) by using ordinary differential equations and the MATLAB software. The model includes the plasmid replication control by two regulatory RNA molecules (RNAI and RNAII) as well as the replication control by uncharged tRNA molecules. To validate the model, experimental data like RNAI- and RNAII concentration, plasmid copy number (PCN), and growth rate for three different time points in the exponential phase were determined. Depending on the sampled time point, the measured RNAI- and RNAII concentrations for DH5α-pSUP 201-3 reside between 6 ± 0.7 and 34 ± 7 RNAI molecules per cell and 0.44 ± 0.1 and 3 ± 0.9 RNAII molecules per cell. The determined PCNs averaged between 46 ± 26 and 48 ± 30 plasmids per cell. The experimentally determined data for DH5α-pCMV-lacZ reside between 345 ± 203 and 1086 ± 298 RNAI molecules per cell and 22 ± 2 and 75 ± 10 RNAII molecules per cell with an averaged PCN of 1514 ± 1301 and 5806 ± 4828 depending on the measured time point. As the model was shown to be consistent with the experimentally determined data, measured at three different time points within the growth of the same strain, we performed predictive simulations concerning the effect of uncharged tRNA molecules on the ColE1-like plasmid replication control. The hypothesis is that these tRNA molecules would have an enhancing effect on the plasmid production. The in silico analysis predicts that uncharged tRNA molecules would indeed increase the plasmid DNA production.

  5. Clostridium perfringens type A–E toxin plasmids

    PubMed Central

    Freedman, John C.; Theoret, James R.; Wisniewski, Jessica A.; Uzal, Francisco A.; Rood, Julian I.; McClane, Bruce A.

    2014-01-01

    Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell. PMID:25283728

  6. Tightly-wound miniknot vectors for gene therapy: a potential improvement over supercoiled minicircle DNA.

    PubMed

    Tolmachov, Oleg E

    2010-04-01

    Minimized derivatives of bacterial plasmids with removed bacterial backbones are promising vectors for the efficient delivery and for the long-term expression of therapeutic genes. The absence of the bacterial plasmid backbone, a known inducer of innate immune response and a known silencer of transgene expression, provides a partial explanation for the high efficiency of gene transfer using minimized DNA vectors. Supercoiled minicircle DNA is a type of minimized DNA vector obtained via intra-plasmid recombination in bacteria. Minicircle vectors seem to get an additional advantage from their physical compactness, which reduces DNA damage due to the mechanical stress during gene delivery. An independent topological means for DNA compression is knotting, with some knotted DNA isoforms offering superior compactness. I propose that, firstly, knotted DNA can be a suitable compact DNA form for the efficient transfection of a range of human cells with therapeutic genes, and, secondly, that knotted minimized DNA vectors without bacterial backbones ("miniknot" vectors) can surpass supercoiled minicircle DNA vectors in the efficiency of therapeutic gene delivery. Crucially, while the introduction of a single nick to a supercoiled DNA molecule leads to the loss of the compact supercoiled status, the introduction of nicks to knotted DNA does not change knotting. Tight miniknot vectors can be readily produced by the direct action of highly concentrated type II DNA topoisomerase on minicircle DNA or, alternatively, by annealing of the 19-base cohesive ends of the minimized vectors confined within the capsids of Escherichia coli bacteriophage P2 or its satellite bacteriophage P4. After reaching the nucleoplasm of the target cell, the knotted DNA is expected to be unknotted through type II topoisomerase activity and thus to become available for transcription, chromosomal integration or episomal maintenance. The hypothesis can be tested by comparing the gene transfer efficiency

  7. Critical design criteria for minimal antibiotic-free plasmid vectors necessary to combine robust RNA Pol II and Pol III-mediated eukaryotic expression with high bacterial production yields

    PubMed Central

    Carnes, Aaron E.; Luke, Jeremy M.; Vincent, Justin M.; Anderson, Sheryl; Schukar, Angela; Hodgson, Clague P.; Williams, James A.

    2010-01-01

    Background For safety considerations, regulatory agencies recommend elimination of antibiotic resistance markers and nonessential sequences from plasmid DNA-based gene medicines. In the present study we analyzed antibiotic-free (AF) vector design criteria impacting bacterial production and mammalian transgene expression. Methods Both CMV-HTLV-I R RNA Pol II promoter (protein transgene) and murine U6 RNA Pol III promoter (RNA transgene) vector designs were studied. Plasmid production yield was assessed through inducible fed-batch fermentation. RNA Pol II-directed EGFP and RNA Pol III-directed RNA expression were quantified by fluorometry and quantitative real-time polymerase chain reaction (RT-PCR), respectively, after transfection of human HEK293 cells. Results Sucrose-selectable minimalized protein and therapeutic RNA expression vector designs that combined an RNA-based AF selection with highly productive fermentation manufacturing (>1,000 mg/L plasmid DNA) and high level in vivo expression of encoded products were identified. The AF selectable marker was also successfully applied to convert existing kanamycin-resistant DNA vaccine plasmids gWIZ and pVAX1 into AF vectors, demonstrating a general utility for retrofitting existing vectors. A minimum vector size for high yield plasmid fermentation was identified. A strategy for stable fermentation of plasmid dimers with improved vector potency and fermentation yields up to 1,740 mg/L was developed. Conclusions We report the development of potent high yield AF gene medicine expression vectors for protein or RNA (e.g. short hairpin RNA or microRNA) products. These AF expression vectors were optimized to exceed a newly identified size threshold for high copy plasmid replication and direct higher transgene expression levels than alternative vectors. PMID:20806425

  8. Antibiotic resistance due to an unusual ColE1-type replicon plasmid in Aeromonas salmonicida.

    PubMed

    Vincent, Antony T; Emond-Rheault, Jean-Guillaume; Barbeau, Xavier; Attéré, Sabrina A; Frenette, Michel; Lagüe, Patrick; Charette, Steve J

    2016-06-01

    Aeromonas salmonicida subsp. salmonicida is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (cat-pAsa7) previously unknown in A. salmonicida and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in A. salmonicida subsp. salmonicida, revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the cat-pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than cat-pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of A. salmonicida, this study reinforces the hypothesis that A. salmonicida subsp. salmonicida is a considerable reservoir for mobile genetic elements such as plasmids.

  9. The "Frankenplasmid" lab: an investigative exercise for teaching recombinant DNA methods.

    PubMed

    Dean, Derek M; Wilder, Jason A

    2011-01-01

    We describe an investigative laboratory module designed to give college undergraduates strong practical and theoretical experience with recombinant DNA methods within 3 weeks. After deducing restriction enzyme maps for two different plasmids, students ligate the plasmids together in the same reaction, transform E. coli with this mixture of ligated DNA, and plate the cells on media that specifically select for hybrid plasmids. The main goal of the assignment is for students to deduce the gene map of one hybrid "Frankenplasmid" using the LacZ phenotype of its transformants, PCR, and restriction mapping. Our protocol results in a number of possible outcomes, meaning that students are mapping truly unknown plasmids. The open-ended nature of this assignment results in an effective module that teaches recombinant DNA procedures while engaging students with its investigative approach, increasing complexity, and puzzle-like quality. Moreover, the modular design of the activity allows it to be adapted to a more limited schedule, introductory courses, or more advanced courses. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  10. Enhancing magnetic nanoparticle-based DNA transfection: Intracellular-active cassette features

    NASA Astrophysics Data System (ADS)

    Vernon, Matthew Martin

    Efficient plasmid DNA transfection of embryonic stem cells, mesenchymal stem cells, neural cell lines and the majority of primary cell lines is a current challenge in gene therapy research. Magnetic nanoparticle-based DNA transfection is a gene vectoring technique that is promising because it is capable of outperforming most other non-viral transfection methods in terms of both transfection efficiency and cell viability. The nature of the DNA vector implemented depends on the target cell phenotype, where the particle surface chemistry and DNA binding/unbinding kinetics of the DNA carrier molecule play a critical role in the many steps required for successful gene transfection. Accordingly, Neuromag, an iron oxide/polymer nanoparticle optimized for transfection of neural phenotypes, outperforms many other nanoparticles and lipidbased DNA carriers. Up to now, improvements to nanomagnetic transfection techniques have focused mostly on particle functionalization and transfection parameter optimization (cell confluence, growth media, serum starvation, magnet oscillation parameters, etc.). None of these parameters are capable of assisting the nuclear translocation of delivered plasmid DNA once the particle-DNA complex is released from the endosome and dissociates in the cell's cytoplasm. In this study, incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid DNA confers improved nuclear translocation, demonstrating significant improvement in nanomagnetic transfection efficiency in differentiated SH-SY5Y neuroblastoma cells. Other parameters, such as days in vitro, are also found to play a role and represent potential targets for further optimization.

  11. Activation of a yeast replication origin near a double-stranded DNA break.

    PubMed

    Raghuraman, M K; Brewer, B J; Fangman, W L

    1994-03-01

    Irradiation in the G1 phase of the cell cycle delays the onset of DNA synthesis and transiently inhibits the activation of replication origins in mammalian cells. It has been suggested that this inhibition is the result of the loss of torsional tension in the DNA after it has been damaged. Because irradiation causes DNA damage at an undefined number of nonspecific sites in the genome, it is not known how cells respond to limited DNA damage, and how replication origins in the immediate vicinity of a damage site would behave. Using the sequence-specific HO endonuclease, we have created a defined double-stranded DNA break in a centromeric plasmid in G1-arrested cells of the yeast Saccharomyces cerevisiae. We show that replication does initiate at the origin on the cut plasmid, and that the plasmid replicates early in the S phase after linearization in vivo. These observations suggest that relaxation of a supercoiled DNA domain in yeast need not inactivate replication origins within that domain. Furthermore, these observations rule out the possibility that the late replication context associated with chromosomal termini is a consequence of DNA ends.

  12. Significant Suppression of CT Radiation-Induced DNA Damage in Normal Human Cells by the PrC-210 Radioprotector.

    PubMed

    Jermusek, Frank; Benedict, Chelsea; Dreischmeier, Emma; Brand, Michael; Uder, Michael; Jeffery, Justin J; Ranallo, Frank N; Fahl, William E

    2018-05-21

    While computed tomography (CT) is now commonly used and considered to be clinically valuable, significant DNA double-strand breaks (γ-H2AX foci) in white blood cells from adult and pediatric CT patients have been frequently reported. In this study to determine whether γ-H2AX foci and X-ray-induced naked DNA damage are suppressed by administration of the PrC-210 radioprotector, human blood samples were irradiated in a CT scanner at 50-150 mGy with or without PrC-210, and γ-H2AX foci were scored. X-ray-induced naked DNA damage was also studied, and the DNA protective efficacy of PrC-210 was compared against 12 other common "antioxidants." PrC-210 reduced CT radiation-induced γ-H2AX foci in white blood cells to near background ( P < 0.0001) at radiation doses of 50-150 mGy. PrC-210 was most effective among the 13 "antioxidants" in reducing naked DNA X-ray damage, and its addition at 30 s before an • OH pulse reduced to background the • OH insult that otherwise induced >95% DNA damage. A systemic PrC-210 dose known to confer 100% survival in irradiated mice had no discernible effect on micro-CT image signal-to-noise ratio and CT image integrity. PrC-210 suppressed DNA damage to background or near background in each of these assay systems, thus supporting its development as a radioprotector for humans in multiple radiation exposure settings.

  13. Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules

    PubMed Central

    Bardaji, Leire; Añorga, Maite; Ruiz-Masó, José A.; del Solar, Gloria; Murillo, Jesús

    2017-01-01

    Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities. PMID:28243228

  14. Reproducible and efficient murine CNS gene delivery using a microprocessor-controlled injector.

    PubMed

    Brooks, A I; Halterman, M W; Chadwick, C A; Davidson, B L; Haak-Frendscho, M; Radel, C; Porter, C; Federoff, H J

    1998-04-30

    To develop a reproducible gene transfer method for the murine CNS we evaluated delivery of various gene vehicles using mechanical or manual stereotaxic intracranial inoculation. A microprocessor controlled microsyringe pump (The World Precision Instruments/UltraMicroPump) programmable for volume, rate and syringe size and designed to dispense nanoliter and picoliter volumes was compared to a standard manual deliver method. Gene transfer efficiency of two viral vectors, two synthetic cationic lipid molecules, and naked DNA were evaluated in mice injected unilaterally in two brain regions. Animals received 1 microl over 10 min. of either HSVlac (1 x 10(5) b.f.u), AdLac (1 x 10(5) p.f.u), Tfx-10 or Tfx-20 (2.6 microg DNA in 2.0 microl Tfx; 1:1 charge ratio of DNA to liposome), or naked DNA (HSVlac plasmid, 10 microg/microl). After 4 days, animals from each group were perfused and tissue prepared for X-gal histochemical detection of beta-galactosidase expression. Blue cells were observed in the HSV, Adenovirus, and Tfx-20 groups only at the injection site in animals injected using the UMP. Animals injected manually exhibited fewer blue cells and positive cells were not restricted to the injection site. To quantify expression, tissue punches harvested from the injection sites as well as other brain regions were analyzed using a chemiluminescent reporter assay to detect beta-galactosidase (Galacto-Light). These data indicated increased activity in all animals injected with a lacZ containing vector via the UMP as compared to manual delivery: A 41% increase in the expression levels of beta-gal in HSVlac infected animals (p = 0.0029); a 29% increase in Adlac infected animals (p = 0.01); a 56% increase in Tfx-10 transduced animals (p = 0.04); a 24% increase in Tfx-20 transduced animals (p = 0.01); and a 69% increase in naked DNA gene transfer (p = 0.05). Total beta-galactosidase activity was greatest in HSVlac infected mice followed by Adlac > Tfx-20 > Tfx-10 = naked DNA.

  15. DR-78, a novel Drosophila melanogaster genomic DNA fragment highly homologous to the DNA-binding domain of thyroid hormone-retinoic acid-vitamin D receptor subfamily.

    PubMed

    Martín-Blanco, E; Kornberg, T B

    1993-11-16

    Degenerate oligodeoxyribonucleotides were designed for both ends of the DNA-binding domain of members of the nuclear receptor superfamily. PCR amplified Drosophila melanogaster DNA was purified and cloned (DR plasmids). Genomic lambda DASH clones were identified at high stringency with an amplified DR-78 plasmid DNA and isolated. The partial sequence shows a very probable open reading frame which would encode a peptide highly homologous to members of the thyroid hormone-retinoic acid-vitamin D receptor subfamily. The fragment corresponds to a single copy gene and was mapped at position 78D of chromosome three by in situ hybridization.

  16. Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus.

    PubMed Central

    Leiser, R M; Ziegler-Graff, V; Reutenauer, A; Herrbach, E; Lemaire, O; Guilley, H; Richards, K; Jonard, G

    1992-01-01

    Beet western yellows luteovirus, like other luteoviruses, cannot be transmitted to host plants by mechanical inoculation but requires an aphid vector, a feature that has heretofore presented a serious obstacle to the study of such viruses. In this paper we describe use of agroinfection to infect hosts with beet western yellows virus without recourse to aphids. Agroinfection is a procedure for introducing a plant virus into a host via Agrobacterium tumefaciens harboring a Ti plasmid, which can efficiently transfer a portion of the plasmid (T-DNA) to plant cells near a wound. The viral genome must be inserted into the T-DNA in such a way that it can escape and begin autonomous replication, a requirement that has, so far, limited agroinfection to pathogens with a circular genome. We have cloned cDNA corresponding to the complete beet western yellows virus RNA genome between the cauliflower mosaic virus 35S promoter and the nopaline synthase transcription termination signal. In one construct, a self-cleaving (ribozyme) sequence was included so as to produce a transcript in planta with a 3' extremity almost identical to natural viral RNA. When inoculated mechanically to host plants, the naked plasmid DNA was not infectious but, when introduced into T-DNA and agroinfected to plants, both the construct with and without the ribozyme produced an infection. This approach should be applicable to virtually any plant virus with a linear plus-strand RNA genome. Images PMID:1409615

  17. Defining the Role of ATP Hydrolysis in Mitotic Segregation of Bacterial Plasmids

    PubMed Central

    Ah-Seng, Yoan; Rech, Jérôme; Lane, David; Bouet, Jean-Yves

    2013-01-01

    Hydrolysis of ATP by partition ATPases, although considered a key step in the segregation mechanism that assures stable inheritance of plasmids, is intrinsically very weak. The cognate centromere-binding protein (CBP), together with DNA, stimulates the ATPase to hydrolyse ATP and to undertake the relocation that incites plasmid movement, apparently confirming the need for hydrolysis in partition. However, ATP-binding alone changes ATPase conformation and properties, making it difficult to rigorously distinguish the substrate and cofactor roles of ATP in vivo. We had shown that mutation of arginines R36 and R42 in the F plasmid CBP, SopB, reduces stimulation of SopA-catalyzed ATP hydrolysis without changing SopA-SopB affinity, suggesting the role of hydrolysis could be analyzed using SopA with normal conformational responses to ATP. Here, we report that strongly reducing SopB-mediated stimulation of ATP hydrolysis results in only slight destabilization of mini-F, although the instability, as well as an increase in mini-F clustering, is proportional to the ATPase deficit. Unexpectedly, the reduced stimulation also increased the frequency of SopA relocation over the nucleoid. The increase was due to drastic shortening of the period spent by SopA at nucleoid ends; average speed of migration per se was unchanged. Reduced ATP hydrolysis was also associated with pronounced deviations in positioning of mini-F, though time-averaged positions changed only modestly. Thus, by specifically targeting SopB-stimulated ATP hydrolysis our study reveals that even at levels of ATPase which reduce the efficiency of splitting clusters and the constancy of plasmid positioning, SopB still activates SopA mobility and plasmid positioning, and sustains near wild type levels of plasmid stability. PMID:24367270

  18. The fields of a naked singularity and a black hole in mutual equilibrium

    NASA Astrophysics Data System (ADS)

    Paolino, Armando; Pizzi, Marco

    2008-01-01

    Recently Alekseev and Belinski have presented a new exact solution of the Einstein-Maxwell equation which describes two Reissner-Nordstrom (RN) sources in reciprocal equilibrium (no struts nor strings) one source is a naked singularity, the other is a black hole. In this paper we use the Alekseev-Belinki solution in the special case in which the charge of the black hole is zero-therefore we have a naked singularity near a neutral black hole. We give the plots of the electric force lines in both the cases in which the naked singularity has a mass comparable with the black hole and in which it is much smaller. The analysis of this latter case confirm the goodness of the Hanni-Ruffini approximation.

  19. Orbiting naked singularities in large-ω Brans-Dicke gravity

    NASA Astrophysics Data System (ADS)

    Chauvineau, Bertrand

    2017-11-01

    Brans-Dicke gravity admits spherical solutions describing naked singularities rather than black holes. Depending on some parameters entering such a solution, stable circular orbits exist for all radii. One shows that, despite the fact a naked singularity is an infinite redshift location, the far observed orbital motion frequency is unbounded for an adiabatically decreasing radius. We then argue that this feature remains true in a wide set of scalar(s)-tensor theories if gravity. This is a salient difference with general relativity, and the repercussion on the gravitational radiation by EMRI systems is stressed. Since this behaviour survives the ω \\longrightarrow ∞ limit, the possibility of such solutions is of utmost interest in the new gravitational wave astronomy context, despite the current constraints on scalar-tensor gravity.

  20. Effects of APC De-targeting and GAr modification on the duration of luciferase expression from plasmid DNA delivered to skeletal muscle.

    PubMed

    Subang, Maria C; Fatah, Rewas; Wu, Ying; Hannaman, Drew; Rice, Jason; Evans, Claire F; Chernajovsky, Yuti; Gould, David

    2015-01-01

    Immune responses to expressed foreign transgenes continue to hamper progress of gene therapy development. Translated foreign proteins with intracellular location are generally less accessible to the immune system, nevertheless they can be presented to the immune system through both MHC Class I and Class II pathways. When the foreign protein luciferase was expressed following intramuscular delivery of plasmid DNA in outbred mice, expression rapidly declined over 4 weeks. Through modifications to the expression plasmid and the luciferase transgene we examined the effect of detargeting expression away from antigen-presenting cells (APCs), targeting expression to skeletal muscle and fusion with glycine-alanine repeats (GAr) that block MHC-Class I presentation on the duration of luciferase expression. De-targeting expression from APCs with miR142-3p target sequences incorporated into the luciferase 3'UTR reduced the humoral immune response to both native and luciferase modified with a short GAr sequence but did not prolong the duration of expression. When a skeletal muscle specific promoter was combined with the miR target sequences the humoral immune response was dampened and luciferase expression persisted at higher levels for longer. Interestingly, fusion of luciferase with a longer GAr sequence promoted the decline in luciferase expression and increased the humoral immune response to luciferase. These studies demonstrate that expression elements and transgene modifications can alter the duration of transgene expression but other factors will need to overcome before foreign transgenes expressed in skeletal muscle are immunologically silent.

  1. Loss of plasmid-mediated resistance after conversion of a group B streptococcus strain to a stable cell wall deficient variant.

    PubMed

    Schmitt-Slomska, J; Caravano, R; El-Solh, N

    1979-01-01

    A group B streptococcus strain carrying plasmid DNA determining resistance to several drugs was converted by penicillin to cell wall (CW) defective and then to CW deficient variants (L-forms). The stable CW deficient variants became susceptible to antibiotics in study. Dye-buoyant density analysis of the DNA of CW deficient variants showed that the loss of antibiotic resistance was associated with the loss of extrachromosomal DNA.

  2. Nucleotide Sequences and Comparison of Two Large Conjugative Plasmids from Different Campylobacter species

    DTIC Science & Technology

    2004-01-01

    alleles have different predicted lengths, e.g. in pCC31, cpp46 starts with ATGATG whereas in pTet this gene starts with only one ATG; in ssb1 , cmgB7 and...homologues in plasmid pVT745 from Actinobacillus actinomycetemcomitans, and a single-stranded DNA-binding protein ssb1 that may coat the single-stranded

  3. Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model.

    PubMed

    Li, Jie; Wei, Yuquan; Liu, Kang; Yuan, Chuang; Tang, Yajuan; Quan, Qingli; Chen, Ping; Wang, Wei; Hu, Huozhen; Yang, Li

    2010-07-01

    Combinatorial strategy has been used in therapeutic angiogenesis in animal models of peripheral arterial disease (PAD) and coronary artery disease for decades. Previous studies have shown that basic fibroblast growth factor (FGF-2) and platelet-derived growth factor BB (PDGF-BB) proteins together establish functional and stable vascular networks on mouse corneal and also in animal model of hindlimb ischemia. However, the short half life of protein by single injection is not sufficient to achieve effective dosage, repeated and prolonged injection causes systemic toxicity. Here we study the synergistic effects of FGF-2 and PDGF-BB by intramuscular injection of naked plasmid DNA on therapeutic angiogenesis in rabbit model of hindlimb ischemia. We found that transient delivery of FGF-2 and PDGF-BB naked DNA together resulted in greater increases in capillary growth, collateral formation and popliteal blood flow compared with control and single gene delivery. Our data provided novel evidence of beneficial effects of DNA-based FGF-2 and PDFG-BB on muscle repair after ischemic injury. These findings reveal an alternative therapeutic approach in the treatment of ischemic diseases and even in muscular disorders. Copyright 2010. Published by Elsevier Inc.

  4. Atomic Force Microscopy Analysis of the Role of Major DNA-Binding Proteins in Organization of the Nucleoid in Escherichia coli

    PubMed Central

    Ohniwa, Ryosuke L.; Muchaku, Hiroki; Saito, Shinji; Wada, Chieko; Morikawa, Kazuya

    2013-01-01

    Bacterial genomic DNA is packed within the nucleoid of the cell along with various proteins and RNAs. We previously showed that the nucleoid in log phase cells consist of fibrous structures with diameters ranging from 30 to 80 nm, and that these structures, upon RNase A treatment, are converted into homogeneous thinner fibers with diameter of 10 nm. In this study, we investigated the role of major DNA-binding proteins in nucleoid organization by analyzing the nucleoid of mutant Escherichia coli strains lacking HU, IHF, H–NS, StpA, Fis, or Hfq using atomic force microscopy. Deletion of particular DNA-binding protein genes altered the nucleoid structure in different ways, but did not release the naked DNA even after the treatment with RNase A. This suggests that major DNA-binding proteins are involved in the formation of higher order structure once 10-nm fiber structure is built up from naked DNA. PMID:23951337

  5. Systemically administered gp100 encoding DNA vaccine for melanoma using water-in-oil-in-water multiple emulsion delivery systems.

    PubMed

    Kalariya, Mayurkumar; Amiji, Mansoor M

    2013-09-10

    The purpose of this study was to develop a water-in-oil-in-water (W/O/W) multiple emulsions-based vaccine delivery system for plasmid DNA encoding the gp100 peptide antigen for melanoma immunotherapy. The gp100 encoding plasmid DNA was encapsulated in the inner-most aqueous phase of squalane oil containing W/O/W multiple emulsions using a two-step emulsification method. In vitro transfection ability of the encapsulated plasmid DNA was investigated in murine dendritic cells by transgene expression analysis using fluorescence microscopy and ELISA methods. Prophylactic immunization using the W/O/W multiple emulsions encapsulated the gp100 encoding plasmid DNA vaccine significantly reduced tumor volume in C57BL/6 mice during subsequent B16-F10 tumor challenge. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation of cytotoxic T-lymphocytes mediated anti-tumor immunity causing tumor growth suppression. The W/O/W multiple emulsions-based vaccine delivery system efficiently delivers the gp100 plasmid DNA to induce cell-mediated anti-tumor immunity. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death.

    PubMed

    Schuenemann, Verena J; Bos, Kirsten; DeWitte, Sharon; Schmedes, Sarah; Jamieson, Joslyn; Mittnik, Alissa; Forrest, Stephen; Coombes, Brian K; Wood, James W; Earn, David J D; White, William; Krause, Johannes; Poinar, Hendrik N

    2011-09-20

    Although investigations of medieval plague victims have identified Yersinia pestis as the putative etiologic agent of the pandemic, methodological limitations have prevented large-scale genomic investigations to evaluate changes in the pathogen's virulence over time. We screened over 100 skeletal remains from Black Death victims of the East Smithfield mass burial site (1348-1350, London, England). Recent methods of DNA enrichment coupled with high-throughput DNA sequencing subsequently permitted reconstruction of ten full human mitochondrial genomes (16 kb each) and the full pPCP1 (9.6 kb) virulence-associated plasmid at high coverage. Comparisons of molecular damage profiles between endogenous human and Y. pestis DNA confirmed its authenticity as an ancient pathogen, thus representing the longest contiguous genomic sequence for an ancient pathogen to date. Comparison of our reconstructed plasmid against modern Y. pestis shows identity with several isolates matching the Medievalis biovar; however, our chromosomal sequences indicate the victims were infected with a Y. pestis variant that has not been previously reported. Our data reveal that the Black Death in medieval Europe was caused by a variant of Y. pestis that may no longer exist, and genetic data carried on its pPCP1 plasmid were not responsible for the purported epidemiological differences between ancient and modern forms of Y. pestis infections.

  7. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria.

    PubMed

    Coutinho, Eduarda; Batista, Cátia; Sousa, Fani; Queiroz, João; Costa, Diana

    2017-03-06

    Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.

  8. Naked Black Hole Firewalls.

    PubMed

    Chen, Pisin; Ong, Yen Chin; Page, Don N; Sasaki, Misao; Yeom, Dong-Han

    2016-04-22

    In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the "teleological" event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that firewalls are the "most conservative" solution to the information loss paradox.

  9. Naked Black Hole Firewalls

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Ong, Yen Chin; Page, Don N.; Sasaki, Misao; Yeom, Dong-han

    2016-04-01

    In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the "teleological" event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that firewalls are the "most conservative" solution to the information loss paradox.

  10. Assessment of the role of DNA repair in damaged forensic samples.

    PubMed

    Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; King, Jonathan; Budowle, Bruce

    2014-11-01

    Previous studies on DNA damage and repair have involved in vitro laboratory procedures that induce a single type of lesion in naked templates. Although repair of singular, sequestered types of DNA damage has shown some success, forensic and ancient specimens likely contain a number of different types of lesions. This study sought to (1) develop protocols to damage DNA in its native state, (2) generate a pool of candidate samples for repair that more likely emulate authentic forensic samples, and (3) assess the ability of the PreCR(TM) Repair Mix to repair the resultant lesions. Complexed, native DNA is more difficult to damage than naked DNA. Modified procedures included the use of higher concentrations and longer exposure times. Three types of samples, those that demonstrated damage based on short tandem repeat (STR) profile signals, were selected for repair experiments: environmentally damaged bloodstains, bleach-damaged whole blood, and human skeletal remains. Results showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR(TM) assay. The data suggest that the use of PreCR in casework should be considered with caution due to the assay's varied results.

  11. Simultaneous In Vitro Characterisation of DNA Deaminase Function and Associated DNA Repair Pathways

    PubMed Central

    Franchini, Don-Marc; Incorvaia, Elisabetta; Rangam, Gopinath; Coker, Heather A.; Petersen-Mahrt, Svend K.

    2013-01-01

    During immunoglobulin (Ig) diversification, activation-induced deaminase (AID) initiates somatic hypermutation and class switch recombination by catalysing the conversion of cytosine to uracil. The synergy between AID and DNA repair pathways is fundamental for the introduction of mutations, however the molecular and biochemical mechanisms underlying this process are not fully elucidated. We describe a novel method to efficiently decipher the composition and activity of DNA repair pathways that are activated by AID-induced lesions. The in vitro resolution (IVR) assay combines AID based deamination and DNA repair activities from a cellular milieu in a single assay, thus avoiding synthetically created DNA-lesions or genetic-based readouts. Recombinant GAL4-AID fusion protein is targeted to a plasmid containing GAL4 binding sites, allowing for controlled cytosine deamination within a substrate plasmid. Subsequently, the Xenopus laevis egg extract provides a source of DNA repair proteins and functional repair pathways. Our results demonstrated that DNA repair pathways which are in vitro activated by AID-induced lesions are reminiscent of those found during AID-induced in vivo Ig diversification. The comparative ease of manipulation of this in vitro systems provides a new approach to dissect the complex DNA repair pathways acting on defined physiologically lesions, can be adapted to use with other DNA damaging proteins (e.g. APOBECs), and provide a means to develop and characterise pharmacological agents to inhibit these potentially oncogenic processes. PMID:24349193

  12. In vivo monitoring of transfected DNA, gene expression kinetics, and cellular immune responses in mice immunized with a human NIS gene-expressing plasmid.

    PubMed

    Son, Hye-Youn; Jeon, Yong-Hyun; Chung, June-Key; Kim, Chul-Woo

    2016-12-01

    In assessing the effectiveness of DNA vaccines, it is important to monitor: (1) the kinetics of target gene expression in vivo; and (2) the movement of cells that become transfected with the plasmid DNA used in the immunization of a subject. In this study, we used, as a visual imaging marker, expression of the transfected human sodium/iodide symporter (hNIS) gene, which enhances intracellular radio-pertechnetate (TcO4-) accumulation. After intradermal (i.d.) and systemic injection of mice with pcDNA-hNIS and radioactive Technetium-99m (Tc-99m), respectively, whole-body images were obtained by nuclear scintigraphy. The migration of mice cells transfected with the hNIS gene was monitored over a 2-week period by gamma-radioactivity counting of isolated cell populations and was demonstrated in peripheral lymphoid tissues, especially in the draining lymph nodes (dLNs). Beginning at 24 h after DNA inoculation and continuing for the 2-week monitoring period, hNIS-expressing cells were observed specifically in the T-cell-rich zones of the paracortical area of the dLNs. Over the same time period, high levels of INF-γ-secreting CD8 T-cells were found in the dLNs of the pcDNA-hNIS immunized mice. Tumor growth was also significantly retarded in the mice that received hNIS DNA immunization followed by inoculation with CT26 colorectal adenocarcinoma cells that had been transfected with the rat NIS gene (rNIS), which is 93% homologous to the hNIS gene. In conclusion, mouse cells transfected with hNIS DNA after i.d. immunization were found to traffic to the dLNs, and hNIS gene expression in these cells continued for at least 2 weeks post immunization. Furthermore, sequential presentation of NIS DNA to T-cells by migratory antigen presenting cells could induce NIS DNA-specific Th1 immune responses and thus retard the growth of NIS-expressing tumors. © The Author(s) 2016.

  13. Tumor microenvironment dual-responsive core-shell nanoparticles with hyaluronic acid-shield for efficient co-delivery of doxorubicin and plasmid DNA.

    PubMed

    Wang, Tianqi; Yu, Xiaoyue; Han, Leiqiang; Liu, Tingxian; Liu, Yongjun; Zhang, Na

    2017-01-01

    As the tumor microenvironment (TME) develops, it is critical to take the alterations of pH value, reduction and various enzymes of the TME into consideration when constructing the desirable co-delivery systems. Herein, TME pH and enzyme dual-responsive core-shell nanoparticles were prepared for the efficient co-delivery of chemotherapy drug and plasmid DNA (pDNA). A novel pH-responsive, positively charged drug loading material, doxorubicin (DOX)-4-hydrazinobenzoic acid (HBA)-polyethyleneimine (PEI) conjugate (DOX-HBA-PEI, DHP), was synthesized to fabricate positively charged polyion complex inner core DHP/DNA nanoparticles (DDN). Hyaluronic acid (HA) was an enzyme-responsive shell which could protect the core and enhance the co-delivery efficiency through CD44-mediated endocytosis. The HA-shielded pH and enzyme dual-responsive nanoparticles (HDDN) were spherical with narrow distribution. The particle size of HDDN was 148.3±3.88 nm and the zeta potential was changed to negative (-18.1±2.03 mV), which led to decreased cytotoxicity. The cumulative release of DOX from DHP at pH 5.0 (66.4%) was higher than that at pH 7.4 (30.1%), which indicated the pH sensitivity of DHP. The transfection efficiency of HDDN in 10% serum was equal to that in the absence of serum, while the transfection of DDN was significantly decreased in the presence of 10% serum. Furthermore, cellular uptake studies and co-localization assay showed that HDDN were internalized effectively through CD44-mediated endocytosis in the tumor cells. The efficient co-delivery of DOX and pEGFP was confirmed by fluorescent image taken by laser confocal microscope. It can be concluded that TME dual-responsive HA-shielded core-shell nanoparticles could be considered as a promising platform for the co-delivery of chemotherapy drug and pDNA.

  14. Improved thermal stability of oxide-supported naked gold nanoparticles by ligand-assisted pinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, C; Divins, N. J.; Gazquez, Jaume

    We report a method to improve the thermal stability, up to 900 C, of bare-metal (naked) gold nanoparticles supported on top of SiO{sub 2} and SrTiO{sub 3} substrates via ligand-assisted pinning. This approach leads to monodisperse naked gold nanoparticles without significant sintering after thermal annealing in air at 900 C. The ligand-assisted pinning mechanism is described.

  15. Sequence-based analysis of pQBR103; a representative of a unique, transfer-proficient mega plasmid resident in the microbial community of sugar beet

    PubMed Central

    Tett, Adrian; Spiers, Andrew J; Crossman, Lisa C; Ager, Duane; Ciric, Lena; Dow, J Maxwell; Fry, John C; Harris, David; Lilley, Andrew; Oliver, Anna; Parkhill, Julian; Quail, Michael A; Rainey, Paul B; Saunders, Nigel J; Seeger, Kathy; Snyder, Lori AS; Squares, Rob; Thomas, Christopher M; Turner, Sarah L; Zhang, Xue-Xian; Field, Dawn; Bailey, Mark J

    2009-01-01

    The plasmid pQBR103 was found within Pseudomonas populations colonizing the leaf and root surfaces of sugar beet plants growing at Wytham, Oxfordshire, UK. At 425 kb it is the largest self-transmissible plasmid yet sequenced from the phytosphere. It is known to enhance the competitive fitness of its host, and parts of the plasmid are known to be actively transcribed in the plant environment. Analysis of the complete sequence of this plasmid predicts a coding sequence (CDS)-rich genome containing 478 CDSs and an exceptional degree of genetic novelty; 80% of predicted coding sequences cannot be ascribed a function and 60% are orphans. Of those to which function could be assigned, 40% bore greatest similarity to sequences from Pseudomonas spp, and the majority of the remainder showed similarity to other c-proteobacterial genera and plasmids. pQBR103 has identifiable regions presumed responsible for replication and partitioning, but despite being tra+ lacks the full complement of any previously described conjugal transfer functions. The DNA sequence provided few insights into the functional significance of plant-induced transcriptional regions, but suggests that 14% of CDSs may be expressed (11 CDSs with functional annotation and 54 without), further highlighting the ecological importance of these novel CDSs. Comparative analysis indicates that pQBR103 shares significant regions of sequence with other plasmids isolated from sugar beet plants grown at the same geographic location. These plasmid sequences indicate there is more novelty in the mobile DNA pool accessible to phytosphere pseudomonas than is currently appreciated or understood. PMID:18043644

  16. Intravenous Delivery of pDNA and siRNA into Muscle with Bubble Liposomes and Ultrasound

    NASA Astrophysics Data System (ADS)

    Negishi, Yoichi; Sekine, Shohko; Endo, Yoko; Nishijima, Nobuaki; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2010-03-01

    Skeletal muscle is an attractive target tissue for numerous gene therapy strategies. Gene delivery into muscle has been extensively studied. Of the strategies, intravascular delivery of naked pDNA is desirable. Muscle has a high density of capillaries that are in close contact with myofibers. Previously, we developed polyethylene glycol (PEG)-modified liposomes entrapping echo-contrast gas, known as ultrasound (US) imaging gas. We called the liposomes "Bubble liposomes" (BLs). It has been reported that BLs improve the tissue permeability by cavitation on US exposure. Here, we modified the naked pDNA or siRNA transfer method into hind limb muscle through blood vessels using BLs and US. The intravenous delivery of pDNA into muscle can be markedly enhanced when the pDNA is delivered in combination with BLs and US. In addition, the expression of pDNA is high in the US-focused site. Moreover, efficient gene delivery can be achieved by the intravenous delivery of pDNA into muscle with BLs and US. Expression is also down-regulated by delivering siRNA with BLs and US. Thus, this US-mediated BL technique involving veins may be an effective method for gene therapy.

  17. The Sudden Dominance of bla CTX–M Harbouring Plasmids in Shigella spp. Circulating in Southern Vietnam

    PubMed Central

    Nhu, Nguyen Thi Khanh; Vinh, Ha; Nga, Tran Vu Thieu; Stabler, Richard; Duy, Pham Thanh; Thi Minh Vien, Le; van Doorn, H. Rogier; Cerdeño-Tárraga, Ana; Thomson, Nicholas; Campbell, James; Van Minh Hoang, Nguyen; Thi Thu Nga, Tran; Minh, Pham Van; Thuy, Cao Thu; Wren, Brendan; Farrar, Jeremy; Baker, Stephen

    2010-01-01

    Background Plasmid mediated antimicrobial resistance in the Enterobacteriaceae is a global problem. The rise of CTX-M class extended spectrum beta lactamases (ESBLs) has been well documented in industrialized countries. Vietnam is representative of a typical transitional middle income country where the spectrum of infectious diseases combined with the spread of drug resistance is shifting and bringing new healthcare challenges. Methodology We collected hospital admission data from the pediatric population attending the hospital for tropical diseases in Ho Chi Minh City with Shigella infections. Organisms were cultured from all enrolled patients and subjected to antimicrobial susceptibility testing. Those that were ESBL positive were subjected to further investigation. These investigations included PCR amplification for common ESBL genes, plasmid investigation, conjugation, microarray hybridization and DNA sequencing of a bla CTX–M encoding plasmid. Principal Findings We show that two different bla CTX-M genes are circulating in this bacterial population in this location. Sequence of one of the ESBL plasmids shows that rather than the gene being integrated into a preexisting MDR plasmid, the bla CTX-M gene is located on relatively simple conjugative plasmid. The sequenced plasmid (pEG356) carried the bla CTX-M-24 gene on an ISEcp1 element and demonstrated considerable sequence homology with other IncFI plasmids. Significance The rapid dissemination, spread of antimicrobial resistance and changing population of Shigella spp. concurrent with economic growth are pertinent to many other countries undergoing similar development. Third generation cephalosporins are commonly used empiric antibiotics in Ho Chi Minh City. We recommend that these agents should not be considered for therapy of dysentery in this setting. PMID:20544028

  18. Conjugal properties of the Sinorhizobium meliloti plasmid mobilome.

    PubMed

    Pistorio, Mariano; Giusti, María A; Del Papa, María F; Draghi, Walter O; Lozano, Mauricio J; Tejerizo, Gonzalo Torres; Lagares, Antonio

    2008-09-01

    The biology and biochemistry of plasmid transfer in soil bacteria is currently under active investigation because of its central role in prokaryote adaptation and evolution. In this work, we examined the conjugal properties of the cryptic plasmids present in a collection of the N(2)-fixing legume-symbiont Sinorhizobium meliloti. The study was performed on 65 S. meliloti isolates recovered from 25 humic soils of Argentina, which were grouped into 22 plasmid-profile types [i.e. plasmid operational taxonomic units (OTUs)]. The cumulative Shannon index calculated for the observed plasmid profiles showed a clear saturation plateau, thus indicating an adequate representation of the S. meliloti plasmid-profile types in the isolates studied. The results show that isolates of nearly 14% of the plasmid OTUs hosted transmissible plasmids and that isolates of 29% of the plasmid OTUs were able to retransfer the previously characterized mobilizable-cryptic plasmid pSmeLPU88b to a third recipient strain. It is noteworthy that isolates belonging to 14% of the plasmid OTUs proved to be refractory to the entrance of the model plasmid pSmeLPU88b, suggesting either the presence of surface exclusion phenomena or the occurrence of restriction incompatibility with the incoming replicon. Incompatibility for replication between resident plasmids and plasmid pSmeLPU88b was observed in c. 20% of the OTUs. The results reported here reveal a widespread compatibility among the conjugal functions of the cryptic plasmids in S. meliloti, and this fact, together with the observed high proportion of existing donor genotypes, points to the extrachromosomal compartment of the species as being an extremely active plasmid mobilome.

  19. Optical effects related to Keplerian discs orbiting Kehagias-Sfetsos naked singularities

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan

    2014-10-01

    We demonstrate possible optical signatures of the Kehagias-Sfetsos (KS) naked singularity spacetimes representing a spherically symmetric vacuum solution of the modified Hořava gravity. In such spacetimes, accretion structures significantly different from those present in standard black hole spacetimes occur due to the ‘antigravity’ effect, which causes an internal static sphere surrounded by Keplerian discs. We focus our attention on the optical effects related to the Keplerian accretion discs, constructing the optical appearance of the Keplerian discs, the spectral continuum due to their thermal radiation, and the spectral profiled lines generated in the innermost parts of such discs. The KS naked singularity signature is strongly encoded in the characteristics of predicted optical effects, especially in cases where the spectral continuum and spectral lines are profiled by the strong gravity of the spacetimes due to the vanishing region of the angular velocity gradient influencing the effectiveness of the viscosity mechanism. We can conclude that optical signatures of KS naked singularities can be well distinguished from the signatures of standard black holes.

  20. Back to Basics: Naked-Eye Astronomical Observation

    ERIC Educational Resources Information Center

    Barclay, Charles

    2003-01-01

    For pupils of both sexes and all ages from about six upwards, the subject of Astronomy holds many fascinations--the rapid changes in knowledge, the large resource of available IT packages and above all the beautiful pictures from Hubble and the large Earth-based telescopes. This article, however, stresses the excitement and importance of naked-eye…