Radio Jove: Citizen Science for Jupiter Radio Astronomy
NASA Astrophysics Data System (ADS)
Higgins, C. A.; Thieman, J.; Reyes, F. J.; Typinski, D.; Flagg, R. F.; Greenman, W.; Brown, J.; Ashcraft, T.; Sky, J.; Cecconi, B.; Garcia, L. N.
2016-12-01
The Radio Jove Project (http://radiojove.gsfc.nasa.gov) has been operating as an educational activity for 18 years to introduce radio astronomy activities to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with radio observatories in real-time over the Internet. Recently some of our dedicated citizen science observers have upgraded their systems to better study radio emission from Jupiter and the Sun by adding dual-polarization spectrographs and wide-band antennas in the frequency range of 15-30 MHz. Some of these observations are being used in conjunction with professional telescopes such as the Long Wavelength Array (LWA), the Nancay Decametric Array, and the Ukrainian URAN2 Radio Telescope. In particular, there is an effort to support the Juno Mission radio waves instrument at Jupiter by using citizen science ground-based data for comparison and polarization verification. These data will be archived through a Virtual European Solar and Planetary Access (VESPA) archive (https://voparis-radiojove.obspm.fr/radiojove/welcome) for use by the amateur and professional radio science community. We overview the program and display recent observations that will be of interest to the science community.
NASA Astrophysics Data System (ADS)
Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi
2016-04-01
In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.
A New Wideband, Fully Steerable, Decametric Array at Clark Lake
NASA Technical Reports Server (NTRS)
Erickson, W. C.; Fisher, J. R.
1974-01-01
A fully steerable, decametric array for radio astronomy is under construction at the Clark Lake Radio Observatory near Borrego Springs, California. This array will be a T of 720 conical spiral antennas (teepee-shaped antennas, hence the array is called the TPT), 3.0 km by 1.8 km capable of operating between 15 and 125 MHz. Both its operating frequency and beam position will be adjustable in less than one millisecond, and the TPT will provide a 49-element picture around the central beam position for extended source observations. Considerable experience was gained in the operation of completed portions of the array, and successful operation of the final array is assured. The results are described of the tests which were conducted with the conical spirals, and the planned electronics and data processing systems are described.
Amateur Planetary Radio Data Archived for Science and Education: Radio Jove
NASA Astrophysics Data System (ADS)
Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.
2015-12-01
The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO). We believe that Radio Jove represents another fertile area for citizen science to contribute to overall scientific investigation.
Discovery of the Millisecond Pulsar PSR J2043+1711 in a Fermi Source with the Nancay Radio Telescope
NASA Technical Reports Server (NTRS)
Guillemot, L.; Freire, P. C. C.; Cognard, I.; Johnson, T. J.; Takahashi, Y.; Kataoka, J.; Desvignes, G.; Camilo, F.; Ferrara, E. C.; Harding, A. K.;
2012-01-01
We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d approx. < 2 kpc) and is in a 1.48-d orbit around a low-mass companion, probably an He-type white dwarf. Using an ephemeris based on Arecibo, Nancay and Westerbork timing measurements, pulsed gamma-ray emission was detected in the data recorded by the Fermi LAT. The gamma-ray light curve and spectral properties are typical of other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 micro s. This and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 solar Mass can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.
NASA Astrophysics Data System (ADS)
Imai, Masafumi; Lecacheux, Alain; Clarke, Tracy E.; Higgins, Charles A.; Panchenko, Mykhaylo; Dowell, Jayce; Imai, Kazumasa; Brazhenko, Anatolii I.; Frantsuzenko, Anatolii V.; Konovalenko, Alexandr A.
2016-08-01
On 2015 February 21, simultaneous observations of Jupiter's decametric radio emission between 10 and 33 MHz were carried out using three powerful low-frequency radio telescopes: the Long Wavelength Array Station One in the USA, the Nançay Decameter Array in France, and the URAN2 telescope in Ukraine. We measured the lag times of short-bursts (S-bursts) for 105 minutes of data over effective baselines of up to 8460 km by using cross-correlation analysis of the spectrograms from each instrument. Of particular interest is the measurement of the beaming thickness of S-bursts, testing if either flashlight- or beacon-like beaming is emanating from Jupiter. We find that the lag times for all pairs drift slightly as time elapses, in agreement with expectations from the flashlight-like beaming model. This leads to a new constraint of the minimum beaming thickness of 2.″66. Also, we find that most of the analyzed data abound with S-bursts, whose occurrence probability peaks at 17-18 MHz.
NASA Astrophysics Data System (ADS)
Imai, M.; Lecacheux, A.; Higgins, C. A.; Clarke, T.; Panchenko, M.; Brazhenko, A. I.; Frantsuzenko, A. V.; Konovalenko, A. A.; Imai, K.
2015-12-01
From December 2014 to March 2015, Jupiter's decametric (DAM) radio observations were carried out by using simultaneously three powerful low-frequency radio telescopes: Long Wavelength Array One (LWA1), Socorro, USA; Nançay Decameter Array (NDA), Nançay, France; and URAN2 telescope, Poltava, Ukraine. Baselines are 10000, 8600, and 2400 kilometers for LWA1-URAN2, NDA-LWA1, and URAN2-NDA, respectively. One Io-B and two Io-A emissions were simultaneously observed. Using cross-correlation analysis of obtained spectrograms, it was found that, as a function of lag time in a pair of two stations, Io-B (mainly S-bursts) and Io-A (L-bursts) show different kinds of cross-correlation coefficients, with sharp and broad peaks, respectively. By measuring lag times between LWA1-URAN2, NDA-LWA1, and URAN2-NDA pairs, it can be tested if either flashlight- or beacon-like beaming is emanated from Jupiter. Measurements of beaming width are also analyzed. Most probable beaming scenarios for Io-B and -A events are suggested.
SETI at the Nancay radiotelescope.
Biraud, F
1983-11-01
The Nancay (France) radiotelescope has been used in June, 1981, to search for artificial monochromatic signals from 102 nearby stars, without success. A different approach to SETI is also considered based on the properties of wide band signals. A detection procedure, through Karhunen-Loeve analysis, is suggested.
A decametric wavelength radio telescope for interplanetary scintillation observations
NASA Technical Reports Server (NTRS)
Cronyn, W. M.; Shawhan, S. D.
1975-01-01
A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.
Technical considerations on using the large Nancay radio telescope for SETI
NASA Technical Reports Server (NTRS)
Gulkis, S.; Biraud, F.; Heidmann, J.; Tarter, J.
1990-01-01
The Nancay decimetric Radio Telescope (NRT) in Nancay, France, is described, and its potential use for Search for Extraterrestrial Intelligence (SETI) observations is discussed. The conclusion reached is that the NRT is well suited for SETI observations because of its large collecting area, its large sky coverage, and its wideband frequency capability. However, a number of improvements are necessary in order to take full advantage of the system in carrying out an efficient SETI program. In particular, system sensitivity should be increased. This can be achieved through a series of improvements to the system, including lowering the ground pickup noise through the use of ground reflectors and more efficient feed design, and by using low-noise amplifier front ends.
Testing space weather connections in the solar system
NASA Astrophysics Data System (ADS)
Grison, B.; Souček, J.; Krupař, V.; Píša, D.; Santolík, O.; Taubenschuss, U.; Němec, F.
2017-09-01
This study aims at testing and validating tools for prediction of the impact of solar events in the vicinity of inner and outer solar system planets using in-situ spacecraft data (primarily MESSENGER, STEREO and ACE, but also VEX and Cassini), remote Jovian observations (Hubble telescope, Nançay decametric array), existing catalogues (HELCATS and Tao et al. (2005)) and the tested propagating models (the ICME radial propagation tool of the CDPP and the 1-D MHD code propagation model presented in Tao et al. (2005)).
High Sensitive Scintillation Observations At Very Low Frequencies
NASA Astrophysics Data System (ADS)
Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.
The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.
VizieR Online Data Catalog: NIBLES. I. The Nancay HI survey (van Driel+, 2016)
NASA Astrophysics Data System (ADS)
van Driel, M.; Butcher, Z.; Schneider, S.; Lehnert, M.; Minchin, R.; Blyth, S.-L.; Chemin, L.; Hallet, N.; Joseph, T.; Kotze, P.; Kraan-Korteweg, R. C.; Olofsson, H.; Ramatsoku, M.
2016-11-01
HI 21cm line spectra of the 1870 clearly or marginally detected SDSS sources obtained for NIBLES at the Nancay Radio Telescope. Please note that these include the six detections with velocities below the 900 km/s lower limit for the NIBLES statistical sample, which are listed in Table A.5 (NIBLES sources 0347, 1572, 1734, 1897, 2259, and 2326). See Sect. 3 of the paper for further details on data acquisition and reduction. Data have been smoothed in velocity to 18 km/s resolution (see exact number in the spectrum headers). A fitted polynomial baseline was substracted from the observed spectra. Velocities (first column) are heliocentric in the optical convention in units of km/s and flux densities (second column) are in Janskys. (4 data files).
Models of Jovian decametric radiation. [astronomical models of decametric waves
NASA Technical Reports Server (NTRS)
Smith, R. A.
1975-01-01
A critical review is presented of theoretical models of Jovian decametric radiation, with particular emphasis on the Io-modulated emission. The problem is divided into three broad aspects: (1) the mechanism coupling Io's orbital motion to the inner exosphere, (2) the consequent instability mechanism by which electromagnetic waves are amplified, and (3) the subsequent propagation of the waves in the source region and the Jovian plasmasphere. At present there exists no comprehensive theory that treats all of these aspects quantitatively within a single framework. Acceleration of particles by plasma sheaths near Io is proposed as an explanation for the coupling mechanism, while most of the properties of the emission may be explained in the context of cyclotron instability of a highly anisotropic distribution of streaming particles.
A theory of the Io phase asymmetry of the Jovian decametric radiation
NASA Technical Reports Server (NTRS)
Hashimoto, K.; Goldstein, M. L.
1982-01-01
An explanation of an asymmetry in the occurrence probability of the Io-dependent Jovian decametric radiation is proposed. Io generates stronger Alfven waves toward the south when it is in the northern part of the torus. This wave then generates decametric radiation in the northern ionosphere after it reflects in the southern ionosphere. The asymmetry then results from computing the propagation time of the alfven wave along this trajectory. The ray paths of the decameter radiation are calculated using a three dimensional ray tracing program in the Jovian ionosphere. Variations in the expected probability plots are computer for two models of the Jovian ionosphere and global magnetic field, as well as for several choices of the ratio of the radiated frequency to the X-mode cutoff frequency.
Relation between metric and decametric noise storm sources and microwave S-component emissions
NASA Technical Reports Server (NTRS)
Sakurai, K.
1974-01-01
Various activities are reported by taking into account the properties of the active region and its relationship to low frequency burst emissions observed by the IMP-6 satellite. The relation of metric noise continuum storms (200 MHz) with the S-component of microwave emissions (2800 MHz) are examined. Taking the results analyzed, a model on the growth of radio noise continuum sources in metric and decametric frequencies and its relation to microwave and other solar active phenomena are considered.
Updated modeling of Io and non-Io Radio Auroral Emissions of Jupiter
NASA Astrophysics Data System (ADS)
Louis, C.; Lamy, L.; Zarka, P.; Cecconi, B.; Hess, S.
2015-10-01
The radio auroral emissions produced by the Jupiter's magnetosphere between a few kHz and 40MHz, the most intense of our Solar System, are known since half a century, but they still drive many questions, and their deepened study is one of the main aim of the JUNO missions (arrival in July 2016). Jovian auroral radio emissions are thought to be produced through the Cyclotron Maser Instability (CMI), from non-maxwellian weakly relativistic electrons gyrating along high-latitude magnetic fields lines (Zarka, 1998). These emissions divide in different spectral components, driven or not by the moon Io. The origin and the relationship between kilometric, hectometric and decametric non-Io emissions in particular remains poorly understood. To investigate these emissions, we simulated numerical dynamic spectra with the most recent version of the ExPRES code - Exoplanetary and Planetary Radio Emission Simulator, available at http://maser.obspm.fr - already used to successfully model Io decametric and Saturn's kilometric arcshaped emissions (Hess et al., 2008, Lamy et al., 2008) and predict exoplanetary radio emissions (Hess et al., 2011). Such simulations bring direct constraints on the locus of active magnetic field lines and on the nature of CMI-unstable electrons (Hess et al., submitted). We validated the new theoretical calculation of the beaming angle used by ExPRES, which now includes refraction at the source. We then built updated simulations of Io and non-Io emissions which were compared to the radio observations acquired by the Cassini spacecraft (Jupiter flyby in 2000) and the Nançay decameter array (routines observations of Jupiter).
NASA Astrophysics Data System (ADS)
Imai, M.; Kurth, W. S.; Hospodarsky, G. B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Lecacheux, A.; Lamy, L.; Zarka, P.; Clarke, T. E.; Higgins, C. A.
2017-09-01
Jupiter's decametric (DAM) radiation is generated very close to the local gyrofrequency by the electron cyclotron maser instability (CMI). The first two-point common detections of Jovian DAM radiation were made using the Voyager spacecraft and ground-based radio observatories in early 1979, but, due to geometrical constraints and limited flyby duration, a full understanding of the latitudinal beaming of Jovian DAM radiation remains elusive. The stereoscopic DAM radiation viewed from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories provides a unique opportunity to analyze the CMI emission mechanism and beaming properties.
Effects of large-scale irregularities of the ionosphere in the propagation of decametric radio waves
NASA Astrophysics Data System (ADS)
Kerblai, T. S.; Kovalevskaia, E. M.
1985-12-01
A numerical experiment is used to study the simultaneous influence of regular space-time gradients and large-scale traveling ionospheric disturbances (TIDs) as manifested in the angular and Doppler characteristics of decametric-wave propagation. Conditions typical for middle latitudes are chosen as the ionospheric models: conditions under which large-scale TIDs in the F2-layer evolve on the background of winter or equinox structures of the ionosphere. Certain conclusions on the character of TID effects for various states of the background ionosphere are drawn which can be used to interpret experimental results.
VizieR Online Data Catalog: 18-cm OH lines in comets (Crovisier+, 2002)
NASA Astrophysics Data System (ADS)
Crovisier, J.; Colom, P.; Gerard, E.; Bockelee-Morvan, D.; Bourgois, G.
2002-10-01
Since the apparition of comet Kohoutek 1973 XII, the 18-cm lines of the OH radical have been systematically observed in a number of comets with the Nancay radio telescope. Between 1973 and 1999, 52 comets have been successfully detected. This allowed an evaluation of the cometary water production rates and their evolution with time, as well as a study of several physical processes such as the excitation mechanisms of the OH radio lines, the expansion of cometary atmospheres, their anisotropy in relation to non-gravitational forces, and the Zeeman effect in relation to the cometary magnetic field. Part of these observations and their analysis have already been published. The bulk of the results are now organized in a data base. The present paper is a general presentation of the Nancay cometary data base and a more specific description of the observations of 53 cometary apparitions between 1982 and 1999. Comets observed before 1982 are only partly incorporated in the data base. Observations of comets since 2000 have benefited from a major upgrade of the telescope; they will be presented in forthcoming publications. (5 data files).
Backscattering of decametric waves on magnetically oriented ionosphere inhomogeneities
NASA Astrophysics Data System (ADS)
Sivokon', V. P.
2017-05-01
The method of study of magnetically oriented ionosphere inhomogeneities based on the analysis of radar decametric emission backscattering on inhomogeneities is proposed. It is shown that certain conditions, including the orientation of the propagation route relative to the Earth's magnetic field lines and the polarization and frequency of the emitted wave, make possible resonant backscattering of radiolocation system emission on magnetically oriented ionosphere inhomogeneities. The paper presents the results of experimental observation of scattering in Kamchatka Peninsula. They demonstrated the opportunity to evaluate the extension of the scattering region, the vertical and horizontal components of the velocities of magnetically oriented inhomogeneities, and the frequency dependence of these parameters.
Assessing the potential for passive radio sounding of Europa and Ganymede with RIME and REASON
NASA Astrophysics Data System (ADS)
Schroeder, Dustin M.; Romero-Wolf, Andrew; Carrer, Leonardo; Grima, Cyril; Campbell, Bruce A.; Kofman, Wlodek; Bruzzone, Lorenzo; Blankenship, Donald D.
2016-12-01
Recent work has raised the potential for Jupiter's decametric radiation to be used as a source for passive radio sounding of its icy moons. Two radar sounding instruments, the Radar for Icy Moon Exploration (RIME) and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) have been selected for ESA and NASA missions to Ganymede and Europa. Here, we revisit the projected performance of the passive sounding concept and assess the potential for its implementation as an additional mode for RIME and REASON. We find that the Signal to Noise Ratio (SNR) of passive sounding can approach or exceed that of active sounding in a noisy sub-Jovian environment, but that active sounding achieves a greater SNR in the presence of quiescent noise and outperforms passive sounding in terms of clutter. We also compare the performance of passive sounding at the 9 MHz HF center frequency of RIME and REASON to other frequencies within the Jovian decametric band. We conclude that the addition of a passive sounding mode on RIME or REASON stands to enhance their science return by enabling sub-Jovian HF sounding in the presence of decametric noise, but that there is not a compelling case for implementation at a different frequency.
NASA Astrophysics Data System (ADS)
Melnik, V.; Konovalenko, A.; Brazhenko, A.; Briand, C.; Dorovskyy, V.; Zarka, P.; Denis, L.; Bulatzen, V.; Frantzusenko, A.; Rucker, H.; Stanislavskyy, A.
2012-09-01
From 25 June till 12 August 2011 sporadic solar radio emission was observed simultaneously by three separate radio telescopes: UTR-2 (Kharkov, Ukraine), URAN-2 (Poltava, Ukraine) and NDA (Nancay, France). During these observations some interesting phenomena were observed. Some of them are discussed in this paper.
NASA Technical Reports Server (NTRS)
Goody, R.
1978-01-01
Some unusual properties of Io are discussed, and possible explanations for these are considered. The properties discussed include Io's ability to modify radio waves emitted by Jupiter in the decametric band, the satellite's ionosphere and sodium cloud, its extraordinary brightness, and the presence of ionized sulfur just inside the satellite's orbit. Io's ability to modulate Jovian decametric radio emission is explained on the basis of the hypothesis that the satellite conducts electricity and interacts with Jupiter's magnetic field. Characteristics of the sodium cloud are reviewed, and the probable mechanism responsible for this cloud is outlined. It is concluded that the only plausible explanation for the brightness of Io is the presence of cat's-eye-type reflectors, possibly composed of crystalline deposits, on the satellite's surface.
A Jupiter Data Analysis Program (JDAP) research grant on wave accessibility and attributes
NASA Technical Reports Server (NTRS)
Calvert, Wynne
1987-01-01
For more than thirty years the intense decametric radio emissions from Jupiter (DAM) and the corresponding auroral kilometric radiation from the Earth (AKR) have remained major radio science mysteries. Part of the problem, aside from their inherent complexity, has been the difficulty of measuring their source location and emission properties from limited observations. Progress has been made on this problem by locating the source directly, i.e., by analysis of the faraday rotation observed with Voyager as the wave path crossed the Io plasma torus, and indirectly by comparing the peak frequencies of the decametric emission with that at the foot of the Io flux tube. Progress was also made on the general question of how the emissions originate by finding properties of both the AKR and DAM which would imply emission by natural radio lasing.
Magnetospheric ray tracing studies. [Jupiter's decametric radiation
NASA Technical Reports Server (NTRS)
Six, N. F.
1982-01-01
Using a model of Jupiter's magnetized plasma environment, radiation raypaths were calculated with a three-dimension ray tracing program. It is assumed that energetic particles produce the emission in the planet's auroral zone at frequencies just above the electron gyrofrequencies. This radiation is generated in narrow sheets defined by the angle of a ray with respect to the magnetic field line. By specifying the source position: latitude, longitude, and radial distance from the planet, signatures in the spectrum of frequency versus time seen by Voyager 1 and 2 were duplicated. The frequency range and the curvature of the decametric arcs in these dynamic spectra are the result of the geometry of the radiation sheets (imposed by the plasma and by the B-field) and illumination of Voyager 1 and 2 as the rotating magnetosphere mimics a pulsar.
Zebra pattern in decametric radio emission of Jupiter
NASA Astrophysics Data System (ADS)
Panchenko, M.; Rošker, S.; Rucker, H. O.; Brazhenko, A.; Zarka, P.; Litvinenko, G.; Shaposhnikov, V. E.; Konovalenko, A. A.; Melnik, V.; Franzuzenko, A. V.; Schiemel, J.
2018-03-01
We report the systematic analysis of zebra-like fine spectral structures in decametric frequency range of Jovian radio emission. Observations were performed by the large ground-based radio telescope URAN-2 during three observation campaigns between, Sep., 2012, and May, 2015. In total, 51 zebra pattern (ZP) events were detected. These rare fine radio features are observed in frequency range from 12.5 to 29.7 MHz as quasi-harmonically related bands of enhanced brightness. ZPs are strongly polarized radio emission with a duration from 20 s to 290 s and flux densities 105-106 Jy (normalized to 1 AU), that is, 1-2 orders lower than for Io-decametric radio emission (DAM). Occurrence of the events does not depend on the position of Io satellite but is strongly controlled by the Jovian central meridian longitude (CML). ZPs are mainly detected in two active sectors of Jovian CMLs: 100∘ to 160∘ for Northern sources (right-handed polarized) and 300∘ and 60∘ (via 360∘) for the Southern sources (left-handed). The frequency interval between neighboring stripes is from 0.26 to 1.5 MHz and in most cases this interval increases with frequency. We discussed the double plasma resonance with electrons or ions as a possible source of the ZPs. The performed analysis of the observations allows us to conclude that the observed ZPs are a new type of narrow band spectral structures in the Jovian DAM.
Periodic Bursts of Jovian Non-Io Decametric Radio Emission
NASA Technical Reports Server (NTRS)
Panchenko, M.; Rucker, H O.; Farrell, W. M.
2013-01-01
During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have Recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period approx. = 1:5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300 deg. and 60 deg. (via 360 deg.). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every approx. 25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.
Periodic bursts of Jovian non-Io decametric radio emission
Panchenko, M.; Rucker, H.O.; Farrell, W.M.
2013-01-01
During the years 2000–2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696
NASA Astrophysics Data System (ADS)
Blaes, X.; Lambert, M.-J.; Chome, G.; Traore, P. S.; de By, R. A.; Defourny, P.
2016-08-01
Efficient yield mapping in Sudano-Sahelian Africa, characterized by a very heterogeneous landscape, is crucial to help ensure food security and decrease smallholder farmers' vulnerability. Thanks to an unprecedented in-situ data and HR and VHR remote sensing time series collected in the Koutiala district (in south-eastern Mali), the yield and some key factors of yield estimation were estimated. A crop-specific biomass map was derived with a mean absolute error of 20% using metric WorldView and 25% using decametric SPOT-5 TAKE5 image time series. The very high intra- and inter-field heterogeneity was captured efficiently. The presence of trees in the fields led to a general overestimation of yields, while the mixed pixels at the field borders introduced noise in the biomass predictions.
RADIO DETECTION OF THE FERMI-LAT BLIND SEARCH MILLISECOND PULSAR J1311-3430
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, P. S.; Wood, K. S.; Ransom, S. M.
2013-01-20
We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of {approx}4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Largemore » Array. These detections demonstrate that PSR J1311-3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm{sup -3} provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.« less
The solar radio corona: Manifestations of energetic electrons
NASA Technical Reports Server (NTRS)
Pick, M.
1986-01-01
Radio observations are powerful tools which are complementary to the space missions devoted to the physics of the flares, of the corona, or of the interplanetary medium. To undertake this task two multifrequency radioheliographs presently exist: the Nancay instrument (the multifrequency facility will be in operation by the end of 1985) observes the middle corona at decimeter-meter wavelengths, and the Clark Lake radioheliograph, operating at decameter wavelengths, is the only one in the world to have the ability of observing the outer corona above the disk.
VizieR Online Data Catalog: Gravitational waves search from known PSR with LIGO (Abbott+, 2017)
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnho Ltz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Del Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; de, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; Desalvo, R.; Devenson, J.; Devine R. C, .; Dhurandhar, S.; Diaz, M. C.; di Fiore, L.; di Giovanni M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Alvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernandez Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, A.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J. C.; Kim, W.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kramer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Luck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magana-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGra, Th C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Purrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero E. A.; QuitzoW-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosinska, D.; Rowan, S.; Rudiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schonbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Buchner, S.; Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot, L.; Hobbs, G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon, R. M.; Stappers, B. W.; Weltevrede, P.; (The Ligo Scientific Collaboration)
2017-11-01
We have obtained timings for 200 known pulsars. Timing was performed using the 42ft telescope and Lovell telescope at Jodrell Bank (UK), the 26m telescope at Hartebeesthoek (South Africa), the Parkes radio telescope (Australia), the Nancay Decimetric Radio Telescope (France), the Arecibo Observatory (Puerto Rico) and the Fermi Large Area Telescope (LAT). Of these, 122 have been targeted in previous campaigns (Aasi+ 2014, J/ApJ/785/119), while 78 are new to this search. (1 data file).
Three dimensional ray tracing Jovian magnetosphere in the low frequency range
NASA Technical Reports Server (NTRS)
Menietti, J. D.
1982-01-01
Ray tracing of the Jovian magnetosphere in the low frequency range (1+40 MHz) has resulted in a new understanding of the source mechanism for Io dependent decametric radiation (DAM). Our three dimensional ray tracing computer code has provided model DAM arcs at 10 deg. intervals of Io longitude source positions for the full 360 deg of Jovian system III longitude. In addition, particularly interesting arcs were singled out for detailed study and modelling. Dependent decametric radiation arcs are categorized according to curvature--the higher curvature arcs are apparently due to wave stimulation at a nonconstant wave normal angle, psi. The psi(f) relationship has a signature that is common to most of the higher curvature arcs. The low curvature arcs, on the other hand, are adequately modelled with a constant wave normal angle of close to 90 deg. These results imply that for higher curvature arcs observed for from Jupiter (to diminish spacecraft motion effects) the electrons providing the gyroemission are relativistically beamed.
Measurement of Jovian decametric Io-related source location and beam shape
NASA Technical Reports Server (NTRS)
Maeda, K.; Carr, T. D.
1992-01-01
The paper presents new information on the locations of the Io-related sources A and C (i.e., Io-A and Io-C) and on the shapes of their emission beams on the basis of measurements of the Jovian decametric activity that was recorded by Voyager 1 and 2. In two instances, the same dynamic spectral arc event in the recorded data of the two spacecraft was recorded, providing in each case an opportunity to observe the same emission beam over a wide range of frequencies from two considerably different directions. The propagation-corrected centroid times of each of the Voyager-1 arcs are found to be coincident with those of the corresponding Voyager-2 arc in a particular frequency range, but not at other frequencies. The hypothesis that emission beams are in the form of thin, almost conical sheets, the cone opening angle decreasing with increasing frequency, is confirmed. It is demonstrated that both the Io-A and Io-C sources were located near the northern foot of the magnetic flux tube that was connected to Io.
NASA Technical Reports Server (NTRS)
Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.
1980-01-01
Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.
Multifrequency analysis of a decametric storm observed at Voyager 1 and ground-based observatories
NASA Technical Reports Server (NTRS)
Maeda, K.; Carr, T. D.
1989-01-01
Observations of a Jovian decametric non-Io-A noise storm made from Voyager 1, the University of Florida Radio Observatory, the University of Texas Radio Astronomy Observatory, and the Jupiter station at Goddard Space Flight Center at frequencies of 26.3, 22.2, 20.0, and 18.0 MHz were found to be correlated. The activity observed at the ground stations occurred 68 min after the corresponding activity at Voyager 1. After correction is made for propagation time differences, this delay is reduced to 34 min. It is demonstrated that at each frequency the envelope of the individual-event beams occurring during the storm (some or all of which are associated with dynamic spectral arcs) is a quasi-constant structure that corotates with the inner Jovian magnetosphere, and that the width of this envelope beam is frequency dependent. The width increases as frequency is decreased, mainly because of the change in position of the trailing-edge beam boundary. Evidence for a relatively slow temporal change in beam geometry is also presented.
VizieR Online Data Catalog: 42 millisecond pulsars high-precision timing (Desvignes+, 2016)
NASA Astrophysics Data System (ADS)
Desvignes, G.; Caballero, R. N.; Lentati, L.; Verbiest, J. P. W.; Champion, D. J.; Stappers, B. W.; Janssen, G. H.; Lazarus, P.; Oslowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Mingarelli, C. M. F.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.
2017-02-01
This paper presents the EPTA data set, up to mid-2014, that was gathered from the 'historical' pulsar instrumentations at EFF, JBO, NRT and WSRT with, respectively, the EBPP (Effelsberg-Berkeley Pulsar Processor), DFB (Digital FilterBank), BON (Berkeley-Orleans-Nancay) and PuMa (Pulsar Machine) backends. The data recorded with the newest generation of instrumentations, e.g. PSRIX at EFF (Lazarus et al., 2016MNRAS.458..868L) and PuMaII at WSRT (Karuppusamy, Stappers & van Straten 2008PASP..120..191K), will be part of a future EPTA data release. (8 data files).
Decameter-wave radio observations of Jupiter during the 1977 apparition
NASA Technical Reports Server (NTRS)
Alexander, J. K.; Kaiser, M. L.; Thieman, J. R.; Vaughan, S. S.
1978-01-01
A catalog of observations of Jupiter's sporadic decameter wavelength radio emissions obtained with the Goddard Space Flight Center Jupiter Monitor Network between June 1977 and May 1978 is presented. Data were collected using the Goddard Space Flight Center station in Greenbelt, MD. and at facilities installed at Orroral Valley (Canberra), Australia and the Nancay Radio Observatory in France. Observations were obtained daily at frequencies of 16.7 and 22.2 MHz using five-element Yagi antennas at each end of a two-element interferometer. Plots of the two dimensional emission occurrence probability distribution are given.
Three dimensional ray tracing of the Jovian magnetosphere in the low frequency range
NASA Technical Reports Server (NTRS)
Menietti, J. D.
1984-01-01
Ray tracing studies of Jovian low frequency emissions were studied. A comprehensive three-dimensional ray tracing computer code for examination of model Jovian decametric (DAM) emission was developed. The improvements to the computer code are outlined and described. The results of the ray tracings of Jovian emissions will be presented in summary form.
Multi-Wavelength Monitoring of GRS 1915+105
NASA Technical Reports Server (NTRS)
Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.
1997-01-01
Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here preliminary results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8m Perkins telescope at Lowell Observatory. The K-band data presented herein provide the first long-term well-sampled IR light curve of GRS 1915+105. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.
Radio Recombination Lines at Decametre Wavelengths. Prospects for the Future
2010-09-15
dark matter decay) can produce either an absorption or emission H signal relative to the cosmic microwave background (CMB). At least three distinct...and 2). Most observations have focussed on sightlines towards known bright background sources or pass- ing through gas-rich regions along the inner...combina- tion of the Galactic synchrotron emission and the extragalactic background but is likely to be dominated by the former (Bridle, 1967). The
47 CFR 2.101 - Frequency and wavelength bands.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Myriametric waves B.Mam 5 LF 30 to 300 kHz Kilometric waves B.km 6 MF 300 to 3 000 kHz Hectometric waves B.hm 7 HF 3 to 30 MHz Decametric waves B.dam 8 VHF 30 to 300 MHz Metric waves B.m 9 UHF 300 to 3 000 MHz Decimetric waves B.dm 10 SHF 3 to 30 GHz Centimetric waves B.cm 11 EHF 30 to 300 GHz Millimetric waves B.mm...
47 CFR 2.101 - Frequency and wavelength bands.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Metric abbreviations for the bands 4 VLF 3 to 30 kHz Myriametric waves B.Mam 5 LF 30 to 300 kHz Kilometric waves B.km 6 MF 300 to 3 000 kHz Hectometric waves B.hm 7 HF 3 to 30 MHz Decametric waves B.dam 8 VHF 30 to 300 MHz Metric waves B.m 9 UHF 300 to 3 000 MHz Decimetric waves B.dm 10 SHF 3 to 30 GHz...
47 CFR 2.101 - Frequency and wavelength bands.
Code of Federal Regulations, 2011 CFR
2011-10-01
... kHz Myriametric waves B.Mam 5 LF 30 to 300 kHz Kilometric waves B.km 6 MF 300 to 3 000 kHz Hectometric waves B.hm 7 HF 3 to 30 MHz Decametric waves B.dam 8 VHF 30 to 300 MHz Metric waves B.m 9 UHF 300 to 3 000 MHz Decimetric waves B.dm 10 SHF 3 to 30 GHz Centimetric waves B.cm 11 EHF 30 to 300 GHz...
47 CFR 2.101 - Frequency and wavelength bands.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Myriametric waves B.Mam 5 LF 30 to 300 kHz Kilometric waves B.km 6 MF 300 to 3 000 kHz Hectometric waves B.hm 7 HF 3 to 30 MHz Decametric waves B.dam 8 VHF 30 to 300 MHz Metric waves B.m 9 UHF 300 to 3 000 MHz Decimetric waves B.dm 10 SHF 3 to 30 GHz Centimetric waves B.cm 11 EHF 30 to 300 GHz Millimetric waves B.mm...
47 CFR 2.101 - Frequency and wavelength bands.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Myriametric waves B.Mam 5 LF 30 to 300 kHz Kilometric waves B.km 6 MF 300 to 3 000 kHz Hectometric waves B.hm 7 HF 3 to 30 MHz Decametric waves B.dam 8 VHF 30 to 300 MHz Metric waves B.m 9 UHF 300 to 3 000 MHz Decimetric waves B.dm 10 SHF 3 to 30 GHz Centimetric waves B.cm 11 EHF 30 to 300 GHz Millimetric waves B.mm...
NASA Astrophysics Data System (ADS)
James, Tomin; Subramanian, Prasad
2018-05-01
Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry 1021 to 1024 erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from 1020 to 1023 ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.
NASA Technical Reports Server (NTRS)
Coffey, H. E.
1986-01-01
Solar-Geophysical Data Number 498, February 1986, Part 1 (Prompt Reports), Data for January 1986, December 1985 and Late Data contains the following:detailed index for 1985-86; data for January 1986--(IUWDS alert periods (advanced and worldwide), Solar activity indices, Solar flares, Solar radio emission, Vostok inferred interplanetary magnetic field polarity, Stanford mean solar magnetic field); data for December 1985--(Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices, Radio propagation indices); late data--(Solar radio emission Nancay interferometric chart December 1985, Solar radio spectral observations Culgoora May 1985, Geomagnetic indices sudden commencements November 1985, Calcium plage data).
Multi-Wavelength Monitoring of GRS 1915+105
NASA Technical Reports Server (NTRS)
Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.
1997-01-01
Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here first results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8 m Perkins telescope at Lowell Observatory. The first long-term well-sampled IR light curve of GRS 1915+105 is presented herein and is consistent with the interpretation of this source as a long-period binary. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.
On the modulation of the Jovian decametric radiation by Io. I - Acceleration of charged particles
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goertz, C. K.
1978-01-01
A steady-state analysis of the current circuit between Io and the Jovian ionosphere is performed, assuming that the current is carried by electrons accelerated through potential double layers in the Io flux tube. The circuit analysis indicates that electrons may be accelerated up to energies of several hundred keV. Several problems associated with the formation of double layers are also discussed. The parallel potential drops decouple the flux tube from the satellite's orbital motion.
NASA Technical Reports Server (NTRS)
Hernandez, A. M.; Machado, M. E.; Vilmer, N.; Trottet, G.
1986-01-01
Using the Hard X-ray Imaging Spectrometer (HXIS) from the Solar Maximum Mission Satellite, the morphological aspects and temporal evolution of three major flares which occurred on June 29, 1980 are studied. One of these events, observed at 10:40 UT, is analyzed in particular detail, including Hard X-ray Burst Spectrometer (HXRBS) data and metric wavelength data from the Nancay radioheliograph. The flares occurred during the interaction of two distinct magnetic structures. There is an early onset phase during which there is a weak level of particle acceleration, perhaps accompanied by strong heating within the magnetic interaction region. The impulsive phase of high power energy release is associated with a major interaction between the two structures and accompanied by strong acceleration and heating.
The Influence of The Galilean Satellites on Radio Emissions From The Jovian System
NASA Technical Reports Server (NTRS)
Kurth, W. S.; Gurnett, D. A.; Menietti, J. D.
2000-01-01
The Galilean satellites influence radio emissions from the Jovian system in a variety of ways. The best and most familiar example of these is the Io control of decametric radiation discovered in 1964 by Bigg. Voyager observations of broadband kilometric radiation revealed a low-latitude shadow zone cast by the Io torus at frequencies between a few tens of kHz and about 1 MHz. Voyager also discovered narrowband kilometric radio emissions emanating from the outer edge of the torus. In this paper we will discuss expansions in the suite of satellite influences based on new observations by Galileo. These include the discovery of Ganymede's magnetosphere and evidence of radio emissions generated via mode conversion from upper hybrid waves in the frequency range of about 20 - 100 kHz. There is evidence that Ganymede may control some of the hectometric or low-frequency decametric radio emissions based on occultation measurements and statistical studies of radio emission occurrence as a function of Ganymede phase. Direction-finding measurements in the vicinity of Io suggest that a portion of the hectometric emissions may be generated near the lo L-shell. A rotationally modulated attenuation band in the hectometric emission appears to be the result of scattering at or near the Io L-shell where the waves propagate nearly parallel to the magnetic field. There is even a tantalizing hint of a Europa connection to the source of narrowband kilometric radiation.
A Blind Search for Magnetospheric Emissions from Planetary Companions to Nearby Solar-type Stars
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Carmichael, S.; Clark, J.; Elkins, E.; Gudmundsen, P.; Mott, Z.; Szwajkowski, M.; Hennig, L. A.
2010-01-01
This paper reports a blind search for planetary magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (< 30 pc) with relatively young age estimates (< 3 Gyr), finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey, obtaining 3\\sigma limits on planetary emission of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 1023erg/s. Using models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic (magnetic) energy carried by the stellar winds in our samples is 15--50 (5--10) times larger than that of the solar wind. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 300 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100. Basic research in radio astronomy at NRL is supported by 6.1 Base funding. The LUNAR consortium, is funded by the NASA Lunar Science Institute (Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon.
Io's Interaction with the Jovian Magnetosphere: Models of Particle Acceleration and Scattering
NASA Astrophysics Data System (ADS)
Crary, Frank Judson
1998-09-01
I develop models of electron acceleration and ion scattering which result from Io's interaction with the jovian magnetosphere. According to my models, Io initially generates transient currents and an Alfvenic disturbance when it first encounters a jovian magnetic field line, and the interaction would eventually settle into a system of steady Birkeland currents as the field line is advected downstream past Io and into Io's wake. I derive a model of wave propagation and electron acceleration by the Alfvenic transient, due to electron inertial effects. My numerical calculations show that the power and particle energy of the resulting electron beam are consistent with observations of the Io-related auroral spot and of Jupiter's S-burst decametric emissions. In the case of the steady currents and Io's wake. I show that these currents would drive instabilities and argue that electrostatic double layers would form in the high latitudes of the Io/Io wake flux tubes. I examine the role of these double layers in producing energetic electrons and estimate the likely electron energies and power. This model agrees with observations of a long arc in the jovian aurora, extending away from the Io-related spot, the L-burst decametric radio emissions and electron beams observed by the Galileo spacecraft in Io's wake. Finally, I consider the Galileo observations of ion cyclotron waves near Io. I use the absence of waves near the S and O gyrofrequencies to place limits on the source rate of heavy ions near Io. For a sufficiently low source rate, the thermal core population prevents ion cyclotron instabilities and wave growth. I use these limits to constrain the neutral column density of Io's exosphere and amount of plasma produced within 2 to 10 body radii of Io.
NASA Astrophysics Data System (ADS)
Matsuda, K.; Misawa, H.; Terada, N.; Katoh, Y.
2010-12-01
Part of the Io-related Jovian decametric radiation (Io-DAM) has been thought to be excited in the auroral cavity formed on field lines downstream of Io. Since source regions of Io-DAM called Io-A and Io-B are located in dusk and dawn local times despite having nearly equal magnetic longitudes, some of the observed asymmetries between Io-A and Io-B events are expected to be due to the difference in the local times. We developed a static Vlasov code, applied it to the Io-Jupiter system, and investigated source structure in order to clarify the ways in which the characteristics of Io-DAM are affected by the plasma in the Jovian ionosphere. Generally there are various solutions which satisfy the quasi-neutrality condition for almost identical boundary conditions. With regard to the solutions with two transition layers, if the altitude of a low-altitude transition layer (LATL) is higher, the voltage at the LATL and the ionospheric proton current density is smaller. Similarly, if the altitude of a high-altitude transition layer (HATL) is higher, the voltage at the HATL and the magnetospheric electron current density is larger. A solution with a smaller ionospheric density for Io-B than for Io-A indicates lower altitude of the LATL for Io-B, which is consistent with the observed high-frequency limit higher for Io-B than for Io-A. This suggests that the high-frequency limit is affected by the local time. It is also expected that the difference in ionospheric proton current densities would be associated with the observed asymmetry of emission intensity.
Radio Astronomers Get Their First Glimpse of Powerful Solar Storm
NASA Astrophysics Data System (ADS)
2001-08-01
Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an expanding set of loops similar to the loops seen at visible wavelengths. The radio loops, astronomers believe, indicate regions where electrons are being accelerated to nearly the speed of light at about the time the ejection process is getting started. The same ejection observed by the radio telescope also was observed by orbiting solar telescopes. Depending on what later radio observations show, the solar studies may reveal new insights into the physics of other astronomical phenomena. For example, shocks in the corona and the interplanetary medium accelerate electrons and ions, a process believed to occur in supernova remnants - the expanding debris from stellar explosions. The electrons also may be accelerated by processes associated with magnetic reconnection, a process that occurs in the Earth's magnetosphere. "The Sun is an excellent physics laboratory, and what it teaches us can then help us understand other astrophysical phenomena in the universe," Bastian said. The radio detection of a coronal mass ejection also means that warning of the potentially dangerous effects of these events could come from ground-based radio telescopes, rather than more-expensive orbiting observatories. "With solar radio telescopes strategically placed at three or four locations around the world, coronal mass ejections could be detected 24 hours a day to provide advance warning," Bastian said. The Nancay station for radio astronomy is a facility of the Paris Observatory. The Nancay Radioheliograph is funded by the French Ministry of Education, the Centre National de la Recherche Scientifique, and by the Region Centre. This research has also been supported by the Centre National d'Etudes Spatiales. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Radio Emmision during the interaction of two Interplanetary Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Lara, Alejandro; Niembro, Tatiana; González, Ricardo
2016-07-01
We show that some sporadic radio emission observed by the WIND/WAVES experiment in the decametric/kilometric bands are due to the interaction of two interplanetary Coronal Mass Ejections. We have performed hydrodynamic simulations of the evolution of two consecutive Coronal Mass ejections in the interplanetary medium. With these simulations it is possible to follow the density evolution of the merged structure, and therefore, compute the frequency limits of the possible plasma emission. We study four well documented ICME interaction events, and found radio emission at the time and frequencies predicted by the simulations. This emission may help to anticipate the complexity of the merged region before it reaches one AU.
Main magnetic field of Jupiter and its implications for future orbiter missions
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1975-01-01
A very strong planetary magnetic field and an enormous magnetosphere with extremely intense radiation belts exist at Jupiter. Pioneer 10 and 11 fly-bys confirmed and extended the earlier ground based estimates of many of these characteristics but left unanswered or added to the list of several important and poorly understood features: the source mechanism and location of decametric emissions, and the absorption effects by the natural satellites Amalthea, Io, Europa and Ganymede. High inclination orbits (exceeding 60 deg) with low periapses (less than 2 Jupiter radii) are required to map the radiation belts and main magnetic field of Jupiter accurately so as to permit full investigation of these and associated phenomena.
NASA Astrophysics Data System (ADS)
Soare, Richard; Conway, Susan; Gallagher, Colman; Dohm, James; Clifford, Stephen M.; Williams, Jean-pierre
2016-10-01
We report the spatial and possible genetic-relationship at the mid-latitudes of Utopia Planitia (45-500N 115-1200E), Mars, of: (a) metre to decametre deep, rimless, tiered depressions; terrain that exhibits (b) (clastically) sorted and (c) unsorted (small-sized) polygons; and, (d) a very youthful, ice-rich mantle. We show that these individual landscape features are separated stratigraphically, this being presented to the Mars community for the first time, and suggest that the stratigraphical separation of these features could be the result of boundary conditions and formation processes that have varied much more widely than has been thought hitherto. In cold-climate and non-glacial regions such as the Yamal Peninsula of eastern Russia and the Tuktoyaktuk Coastlands of northern Canada, landscape assemblages comprised of similar features are referenced as "ice complexes" and are indicative of periglacialism on two fronts: first, the presence of "ice-rich" permafrost or permafrost comprised of "excess ice", i.e. "permafrost" whose pore space is exceeded by the "water ice" within that body of sediment; and, second, antecedently or currently active freeze-thaw cycling, minimally, to the full depth of the "ice-complex" depressions. In the Dry Valleys of the Antarctic, where the atmospheric aridity and cold-temperatures approach those of Mars, ice-vapour diffusion and adsorption cycles are cited as the means by which the near-surface, permafrost, i.e. ≤1m deep, has become ice-cemented. However, the metre to decametre depths of the "ice-complex" depressions on Earth and the morphologically-similar ones on Mars lie beyond the vertical reach of the Antarctic diffusion and adsorption cycles, both empirically and theoretically. By deduction, this points to the freeze-thaw cycling of water to depth, fostered either by exogenic or endogenic means, perhaps playing a more important role in the formation of the possible Martian "ice complexes" than might be expected were expectations based solely on the current cold-climate "Antarctic-like" paradigm.
Does Io's ionosphere influence Jupiter's radio bursts.
NASA Technical Reports Server (NTRS)
Webster, D. L.; Alksne, A. Y.; Whitten, R. C.
1972-01-01
Goldreich and Lynden-Bell's theory of Jupiter's Io-correlated decametric radiation sets a lower limit to Io's conductivity, high enough to carry the current associated with the radiated power. Dermott's analysis of conductivities of rocks and ice shows no such conductivity at Io's temperature. However, we show that if Io has even a small atmosphere, say of methane as suggested by Binder and Cruikshank, or of argon or nitrogen, it will have an ionosphere with adequate conductivity to meet the above criterion. A requirement for higher conductivity was found by Goldreich and Lynden-Bell on the basis of motion of magnetic lines past Io. This requirement appears to us unnecessary in view of experiments which prove that motion of the lines is not the source of the electromotance.
Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots
NASA Technical Reports Server (NTRS)
Dessler, A. J.; Chamberlain, J. W.
1979-01-01
Auroral emissions generated by the Jovian moons Io and Europa, originating at the foot of the magnetic flux tubes of the satellites, may be largely limited to longitudes where the planet's ionospheric conductivity is enhanced. The enhanced conductivity is produced by trapped energetic electrons that drift into the Jovian atmosphere in regions where the planet's magnetic field is anomalously weak. The most active auroral hot-spot emissions lie in a sector of the northern hemisphere defined by decametric radio emission. Weaker auroral hot spots are found in the southern hemisphere along a magnetic conjugate trace. The brightness and the longitude of the Jovian hot spots predicted in this paper are in agreement with observations reported by Atreya et al. (1977).
Modeling and investigative studies of Jovian low frequency emissions
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Green, James L.; Six, N. Frank; Gulkis, S.
1986-01-01
Jovian decametric (DAM) and hectometric (HOM) emissions were first observed over the entire spectrum by the Voyager 1 and 2 flybys of the planet. They display unusual arc-like structures on frequency-versus-time spectrograms. Software for the modeling of the Jovian plasma and magnetic field environment was performed. In addition, an extensive library of programs was developed for the retrieval of Voyager Planetary Radio Astronomy (PRA) data in both the high and low frequency bands from new noise-free, recalibrated data tapes. This software allows the option of retrieving data sorted with respect to particular sub-Io longitudes. This has proven to be invaluable in the analyses of the data. Graphics routines were also developed to display the data on color spectrograms.
Modeling and investigative studies of Jovian low frequency emissions
NASA Astrophysics Data System (ADS)
Menietti, J. D.; Green, James L.; Six, N. Frank; Gulkis, S.
1986-08-01
Jovian decametric (DAM) and hectometric (HOM) emissions were first observed over the entire spectrum by the Voyager 1 and 2 flybys of the planet. They display unusual arc-like structures on frequency-versus-time spectrograms. Software for the modeling of the Jovian plasma and magnetic field environment was performed. In addition, an extensive library of programs was developed for the retrieval of Voyager Planetary Radio Astronomy (PRA) data in both the high and low frequency bands from new noise-free, recalibrated data tapes. This software allows the option of retrieving data sorted with respect to particular sub-Io longitudes. This has proven to be invaluable in the analyses of the data. Graphics routines were also developed to display the data on color spectrograms.
"De Cassini à l'an 2000": The Paris Observatory Library
NASA Astrophysics Data System (ADS)
Vallet, M.; Reymonet, N.
Paris Observatory founded in 1667 by Louis XIV is one of the so called "Grand Etablissement" under of the aegis of the Ministry of higher education and research, and includes two other centres: Meudon Observatory and the Radioastronomy centre in Nancay, created respectively in 1876 and 1955. The decree which gave birth to the library itself was signed in 1785 by Louis XVI. In 1926 Meudon is joined to Paris. The total number of bound volumes, including journals, is 100.000. This comprises 2000 periodical titles (of which 1200 are current titles), monographs, photographs, incunabula and manuscripts from the 16th to the 20th century, microfilm versions of historical material. The collections of two libraries are complementary. Starting in 1981, the library became part of a national "Centre d'Acquisition et de Diffusion de l'Information Scientifique et Technique" (CADIST) for astronomy and astrophysics documents. The catalogue is available on national networks such as the Pancatalogue or CCN. It may also be accessed on the international OCLC network. Finally the library may be accessed on internet via WWW.
Correlated variations of UV and radio emissions during an outstanding Jovian auroral event
NASA Technical Reports Server (NTRS)
Prange, R.; Zarka, P.; Ballester, G. E.; Livengood, T. A.; Denis, L.; Carr, T.; Reyes, F.; Bame, S. J.; Moos, H. W.
1993-01-01
An exceptional Jovian aurora was detected in the FUV on December 21, 1990, by means of Vilspa and Goddard Space Flight Center (GFSC) International Ultraviolet Explorer (IUE) observations. This event included intensification by a factor of three between December 20 and 21, leading to the brightest aurora identified in the IUE data analyzed, and, in the north, to a shift of the emission peak towards larger longitudes. The Jovian radio emission simultaneously recorded at decameter wavelengths in Nancay also exhibits significant changes, from a weak and short-duration emission on December 20 to a very intense one, lasting several hours, on December 21. Confirmation of this intense radio event is also found in the observations at the University of Florida on December 21. The emissions are identified as right-handed Io-independent 'A' (or 'non Io-A') components from the northern hemisphere. The radio source region deduced from the Nancay observations lies, for both days, close to the UV peak emission, exhibiting in particular a similar shift of the source region toward larger longitudes from one day to the next. A significant broadening of the radio source was also observed and it is shown that on both days, the extent of the radio source closely followed the longitude range for which the UV brightness exceeds a given threshold. The correlated variations, both in intensity and longitude, strongly suggest that a common cause triggered the variation of the UV and radio emissions during this exceptional event. On one hand, the variation of the UV aurora could possibly be interpreted according to the Prange and Elkhamsi (1991) model of diffuse multicomponent auroral precipitation (electron and ion): it would arise from an increase in the precipitation rate of ions together with an inward shift of their precipitation locus from L approximately equal 10 to L approximately equal 6. On the other hand, the analysis of Ulysses observations in the upstream solar wind suggests that a significant disturbance in the solar wind, involving the generation of an interplanetary shock and the presence of a CME have interacted with the Jovian magnetosphere at about the time of the auroral event. Both arguments suggest that we may have observed for the first time a magnetic storm-type interaction in an outer planet magnetosphere, affecting simultaneously several auroral processes. Conversely, the observed relationship between the level of UV auroral activity and the detection of decameter emission (DAM), if it were a typical feature, might argue in favour of a more direct and permanent association between the auroral processes leading to UV and radio aurorae, possibly related to 'discrete-arc'-like activity and electron precipitation.
NASA Technical Reports Server (NTRS)
1974-01-01
Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.
Prospects of passive radio detection of a subsurface ocean on Europa with a lander
NASA Astrophysics Data System (ADS)
Romero-Wolf, Andrew; Schroeder, Dustin M.; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve
2016-09-01
We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km and 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides a point measurement with significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).
`Fingerprint' Fine Structure in the Solar Decametric Radio Spectrum Solar Physics
NASA Astrophysics Data System (ADS)
Zlotnik, E. Y.; Zaitsev, V. V.; Melnik, V. N.; Konovalenko, A. A.; Dorovskyy, V. V.
2015-07-01
We study a unique fine structure in the dynamic spectrum of the solar radio emission discovered by the UTR-2 radio telescope (Kharkiv, Ukraine) in the frequency band of 20 - 30 MHz. The structure was observed against the background of a broadband type IV radio burst and consisted of parallel drifting narrow bands of enhanced emission and absorption on the background emission. The observed structure differs from the widely known zebra pattern at meter and decimeter wavelengths by the opposite directions of the frequency drift within a single stripe at a given time. We show that the observed properties can be understood in the framework of the radiation mechanism by virtue of the double plasma resonance effect in a nonuniform coronal magnetic trap. We propose a source model providing the observed frequency drift of the stripes.
Search for X rays from the planet Jupiter.
NASA Technical Reports Server (NTRS)
Hurley, K. C.
1972-01-01
Actively collimated balloon-borne scintillation counters employing a special phoswich anticoincidence technique were flown a total of 5 times from Palestine, Texas. Jupiter was observed for a total of 133 min, and an upper limit to the flux of X rays present at the observation time is .016 X rays/sq cm sec in the energy range 30-100 keV. Three separate calculations are made to estimate the flux of Jovian X rays at the earth. These estimates range from .000000001 to .1 X rays/sq cm sec in the energy range 30-100 keV. It is concluded that, since there was no decametric emission at the time of the flight and there had been no significant solar activity for several days prior to the flight, no X rays were being generated at the time of the observation.
Guillemot, L.; Johnson, T. J.; Venter, C.; ...
2011-12-12
We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, con rming the X-ray emission properties of PSR B1937+21 and nding evidence (~ 4σ) for pulsed emission from PSR B1957+20 for the rst time. In both cases the gamma-ray emission pro le is characterized bymore » two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillemot, L.; Kramer, M.; Freire, P. C. C.
2012-01-01
We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ({approx}4{sigma}) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by twomore » peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.« less
NASA Astrophysics Data System (ADS)
Melnik, V. N.; Konovalenko, A. A.; Rucker, H. O.; Brazhenko, A. I.; Briand, C.; Dorovskyy, V. V.; Zarka, P.; Denis, L.; Bulatzen, V. G.; Frantzusenko, A. V.; Stanislavskyy, A. A.
2012-04-01
From 25 June till 12 August 2011 sporadic solar radio emission was observed simultaneously by three separate radio telescopes: UTR-2 (Kharkov, Ukraine), URAN-2 (Poltava, Ukraine) and NDA (Nancay, France). During these observations several type II bursts with double and triple harmonics were registered, as well as type II bursts with complex herringbone structure. The events of particular interest were type II bursts registered on 9 and 11 August 2011. These bursts had opposite sign of circular polarization at different parts of their dynamic spectra. In our opinion we registered the emissions, which came from the different parts of the shock propagating through the solar corona. We have observed also groups of type III bursts merged into one burst, type III bursts with triple harmonics and type III bursts with "split" polarization. In addition some unusual solar bursts were registered: storms of strange narrow-band (up to 500kHz) bursts with high polarization degree (about 80%), decameter spikes of extremely short durations (200-300ms), "tadpole-like" bursts with durations of 1-2s and polarization degree up to 60%.
NASA Technical Reports Server (NTRS)
Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.;
2011-01-01
We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.
Second Harmonic Hectometric Radio Emission at Jupiter
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Gurnett, D. A.; Groene, J. B.
1998-01-01
Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io-L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.
Second Harmonic Hectometric Radio Emission at Jupiter
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Gurnett, D. A.; Groene, J. B.
1998-01-01
Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.
Solar radio continuum storms and a breathing magnetic field model
NASA Technical Reports Server (NTRS)
1975-01-01
Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.
Sun Radio Interferometer Space Experiment (SunRISE)
NASA Astrophysics Data System (ADS)
Kasper, Justin C.; SunRISE Team
2018-06-01
The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 < f < 15 MHz) radio bursts that always are detected from space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.
NASA Astrophysics Data System (ADS)
Brandt, Pontus
2017-05-01
The understanding of the engines and mechanisms behind kilometric and decametric radio emissions from the planets in our own solar system have taken great leaps with missions such as the NASA/Cassini, IMAGE and Galileo missions. The periodic Saturn Kilometric Radiation (SKR), the Auroral Kilometric Radiation (AKR) at Earth and the periodic decametric radio emissions from Jupiter all point to the same generation mechanisms: very large-scale explosive plasma heating events in the magnetotail of each of the planets. The character and periodicity of the associated radio emissions not only tells us about the presence of a magnetic field but also about the plasma content and size of the planetary magnetosphere, and the nature of the interaction with the solar wind.The presence of a planetary magnetic field, as could be established for exoplanets by the positive detection of low-frequency exoplanetary radio emissions, has been thought to shield a planet from atmospheric loss to space. However, recent data from Mars Express, MAVEN, and Venus Express, together with the wealth of terrestrial measurements of atmospheric escape to space has brought a surprising question in to light: Does a planetary magnetic field suppress or enhance atmospheric loss? While at the non-magnetized planets such as Mars and Venus, the solar wind has a more direct access to the ionized upper atmosphere, these planets do set up self shielding currents that do limit escape. Furthermore, it is not clear if Mars have lost the majority of its atmosphere by condensation in to surface and sub-surface frost, or through atmospheric escape. At Earth, the geomagnetic field sets up a relatively large cross section to the solar wind, that allows the induced solar-wind electric field to transfer substantial energy to the upper ionosphere and atmosphere resulting in substantial loss. It is therefore not clear how a planetary magnetic field correlates to the atmospheric loss, or if it does at all.In this presentation we will summarize the recent findings in these two areas and what that implies for our understanding of stellar-wind interactions with exoplanetary magnetized and non-magnetized systems, and its possible constraints on habitability.
Discovery of two millisecond pulsars in Fermi sources with the Nancay Radio Telescope
Cognard, I.; Guillemot, L.; Johnson, Tyrel J.; ...
2011-04-14
Here, we report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of Fermi-Large Area Telescope sources with no previously known counterparts, using the Nançay Radio Telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days, respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated Fermi sources in which they were found. The gamma-ray light curves and spectral properties aremore » similar to those of previously detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR J2302+4442, consistent with thermal emission from a neutron star. These discoveries along with the numerous detections of radio-loud millisecond pulsars in gamma rays suggest that many Fermi sources with no known counterpart could be unknown millisecond pulsars.« less
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg
2017-05-01
The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Heavy mineral analyses as a powerful tool in fluvial geomorphology
NASA Astrophysics Data System (ADS)
von Suchodoletz, Hans; Gärtner, Andreas; Faust, Dominik
2014-05-01
The Marneuli depression is a tectonic sub-basin of the Transcaucasian depression in eastern Georgia, filled with several decametres of fluvial, lacustrine and aeolian Quaternary sediments. In order to reconstruct past landscape evolution of the region we studied Late Quaternary fluvial sediments found along several rivers that flow through that depression. Whereas Holocene river sediments could generally easily be assigned to corresponding rivers, this was not always the case for older fluvial sediments. For this reason, we studied the heavy mineral contents of five recent rivers and of four sedimentary deposits of potential precursors. A total of 4088 analysed heavy mineral grains enabled us to set up the characteristic heavy mineral distribution pattern for each sample. Using these data, we were able to reconstruct the most likely source areas of the Late Pleistocene fluvial sediments and to link them with the catchment areas of recent rivers. This allowed us to identify and to substantiate significant Late Quaternary river diversions that could at least partly be assigned to ongoing tectonic processes.
Plasma effects on the interaction of a comet with Jupiter
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.
1994-01-01
I consider some plasma effects to be expected when the fragments of Comet Shoemaker-Levy 9 crash into Jupiter. Emphasis is put on pre-impact effects, and on the possibility of significant radio emission. It is shown than an ionizing shock will develop at altitudes below about 600 km, and that significant ionization will exist above that altitude. The incoming comet and its surroundings will then represent a rapidly moving conductor in a strong magnetic field and will induce large currents in Jupiter's magnetosphere, similar both qualitatively and quantitatively to a way in which Io interacts with Jupiter's magnetic field and with the plasma of the torus. This process is thought to be involved in the generation of decametric radiation, so that the impact of the comet may also produce such radiation. The power involved in this interaction is estimated to be at least 1/15th of the power due to Io, and its duration to be for 10-20 s before the comet's impact with the surface of Jupiter.
A theory of Jovian decameter radiation
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Sharma, R. R.; Papadopoulos, K.; Ben-Ari, M.; Eviatar, A.
1983-01-01
A theory of the Jovian decameter radiation is presented based on the assumed existence of beams of energetic electrons in the inner Jovian magnetosphere. Beam-like electron distributions are shown to be unstable to the growth of both upper hybrid and lower hybrid electrostatic waves. The upconversion of these waves to fast extraordinary mode electromagnetic radiation is calculated by using a fluid model. Two possibilities are considered. First, a random phase approximation is made which leads to a very conservative estimate of intensity that can be expected in decameter radiation. The alternative possibility is also considered, viz, that the upconversion process is coherent. A comparison of both processes suggests that an incoherent interaction may be adequate to account for the observed intensity of decametric radiation, except perhaps near the peak of the spectrum (8 MHz). The coherent process is intrinsically more efficient and can easily produce the observed intensity near 8 MHz if only 0.01% of the energy in the beam is converted to electrostatic energy.
Jupiter's magnetosphere and radiation belts
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Coroniti, F. V.
1979-01-01
Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.
Towards Removing the Southern Ocean Short Wave Bias in HadGEM3: Mixed-phase Cloud Improvements.
NASA Astrophysics Data System (ADS)
Field, P.; Furtado, K.
2014-12-01
Many IPCC models suffer from significant Sea Surface Temperature (SST) biases in the Southern Ocean that adversely affects the representation of the cryosphere and global circulation in these models. Evidence suggests that much of this error is linked to Short Wave (SW) radiation, sensible and latent heat biases. Flaws in the representation of clouds and a deficit of supercooled liquid water in mixed-phase clouds are suspected as a likely source of the SW error. A physically based method that uses subgrid turbulence to control a new liquid production term has been developed. Comparisons between theory, based on a stochastic differential equation used to represent supersaturation fluctuations, and decametre resolution Large Eddy Simulations will be presented. An implementation of this approach in a GCM shows an increased prevalance of supercooled liquid water and a reduction in the magnitude of the Southern Ocean SW bias. To conclude, we will summarize the complete package of changes that have been made to tackle the Southern Ocean SST bias in a physically meaningful way.
NASA Astrophysics Data System (ADS)
Wolter, Andrea; Stead, Doug; Clague, John J.
2014-02-01
The 1963 Vajont Slide in northeast Italy is an important engineering and geological event. Although the landslide has been extensively studied, new insights can be derived by applying modern techniques such as remote sensing and numerical modelling. This paper presents the first digital terrestrial photogrammetric analyses of the failure scar, landslide deposits, and the area surrounding the failure, with a focus on the scar. We processed photogrammetric models to produce discontinuity stereonets, residual maps and profiles, and slope and aspect maps, all of which provide information on the failure scar morphology. Our analyses enabled the creation of a preliminary semi-quantitative morphologic classification of the Vajont failure scar based on the large-scale tectonic folds and step-paths that define it. The analyses and morphologic classification have implications for the kinematics, dynamics, and mechanism of the slide. Metre- and decametre-scale features affected the initiation, direction, and displacement rate of sliding. The most complexly folded and stepped areas occur close to the intersection of orthogonal synclinal features related to the Dinaric and Neoalpine deformation events. Our analyses also highlight, for the first time, the evolution of the Vajont failure scar from 1963 to the present.
NASA Astrophysics Data System (ADS)
Ferrari, Sabrina; Penasa, L.; La Forgia, F.; Massironi, M.; Naletto, G.; Lazzarin, M.; Fornasier, S.; Hasselmann, P. H.; Lucchetti, A.; Pajola, M.; Ferri, F.; Cambianica, P.; Oklay, N.; Tubiana, C.; Sierks, H.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Davidsson, B.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Deller, J.; Franceschi, M.; Frattin, E.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Küppers, M.; Lara, L. M.; López-Moreno, J. J.; Marzari, F.; Shi, X.; Simioni, E.; Thomas, N.; Vincent, J.-B.
2018-06-01
Between 2014 and 2016, ESA's Rosetta OSIRIS cameras acquired multiple-filters images of the layered nucleus of comet 67P/Churyumov-Gerasimenko, ranging from ultraviolet to near-infrared wavelengths. No correlation between layers disposition and surface spectral variegation has been observed so far. This paper investigates possible spectral differences among decametre-thickness outcropping layers of the biggest lobe of the comet by means of OSIRIS image dataset. A two-classes Maximum Likelihood classification was applied on consolidated outcrops and relative deposits identified on post-perihelion multispectral images of the big lobe. We distinguished multispectral data on the basis of the structural elevation of the onion-shell Ellipsoidal Model of 67P. The spatial distribution of the two classes displays a clear dependence on the structural elevation, with the innermost class resulting over 50% brighter that the outermost one. Consolidated cometary materials located at different structural levels are characterized by different brightness and revealed due to the selective removal of large volumes. This variegation can be attributed to a different texture of the outcrop surface and/or to a different content of refractory materials.
Solute transport in crystalline rocks at Aspö--I: geological basis and model calibration.
Mazurek, Martin; Jakob, Andreas; Bossart, Paul
2003-03-01
Water-conducting faults and fractures were studied in the granite-hosted Aspö Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours-days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption K(d)s are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced. Copyright 2002 Elsevier Science B.V.
NASA-SETI microwave observing project: Targeted Search Element (TSE)
NASA Technical Reports Server (NTRS)
Webster, L. D.
1991-01-01
The Targeted Search Element (TSE) performs one of two complimentary search strategies of the NASA-SETI Microwave Observing Project (MOP): the targeted search. The principle objective of the targeted search strategy is to scan the microwave window between the frequencies of one and three gigahertz for narrowband microwave emissions eminating from the direction of 773 specifically targeted stars. The scanning process is accomplished at a minimum resolution of one or two Hertz at very high sensitivity. Detectable signals will be of a continuous wave or pulsed form and may also drift in frequency. The TSE will possess extensive radio frequency interference (RFI) mitigation and verification capability as the majority of signals detected by the TSE will be of local origin. Any signal passing through RFI classification and classifiable as an extraterrestrial intelligence (ETI) candidate will be further validated at non-MOP observatories using established protocol. The targeted search will be conducted using the capability provided by the TSE. The TSE provides six Targeted Search Systems (TSS) which independently or cooperatively perform automated collection, analysis, storage, and archive of signal data. Data is collected in 10 megahertz chunks and signal processing is performed at a rate of 160 megabits per second. Signal data is obtained utilizing the largest radio telescopes available for the Targeted Search such as those at Arecibo and Nancay or at the dedicated NASA-SETI facility. This latter facility will allow continuous collection of data. The TSE also provides for TSS utilization planning, logistics, remote operation, and for off-line data analysis and permanent archive of both the Targeted Search and Sky Survey data.
Multi Timescale Multispectral Observation of the Jovian Aurora CYCLE3 High
NASA Astrophysics Data System (ADS)
Gerard, Jean-Claude
1992-06-01
Previous HST observations made with the FOC have demonstrated the ability of the HST to provide high spatial resolution images of the ultraviolet jovian aurora. They and other IUE and Voyager UVS observations suggest that wavelength dependence and time variations occur with different characteristic times. We propose to image the ultraviolet jovian aurora in several passbands to investigate its temporal variation on timescales ranging from ~10 min to hours. Exposures will be made when the 180 deg (Lambda III) longitude sector, where the aurora is best visible from Earth orbit, faces the Earth. Due to the expected loss of sensitivity in the far UV, this program should be preformed before the COSTAR correction. Coordinated IR measurements of emission connected to the UV aurora but originating from different altitude regions will be obtained in parallel with HST observations. Simultaneous radio observations of decametric jovian emissions and IUE UV spectra will also provide complementary data on energetic particle precipitation. The observed morphology, color ratio and characteristic time of the temporal variations will provide key information to discriminate between the various origins , identity and acceleration mechanisms of the precipitating particles. Theoretical models of particle interaction with the jovian magnetic field and atmosphere available from the proposing team will be used to derive quantitative information on these processes.
Thermokarst, mantling and Late Amazonian Epoch periglacial-revisions in the Argyre region, Mars
NASA Astrophysics Data System (ADS)
Soare, R. J.; Baoini, D.; Conway, S. J.; Dohm, J. M.; Kargel, J. S.
2015-10-01
Thermokarst, mantling and Late Amazonian Epoch periglacial-revisions in the Argyre region, Mars R.J. Soare(1), D. Baioni(2), S.J. Conway (3), J.M. Dohm(4)and J.S. Kargel (5)(1) Geography Department, Dawson College, Montreal, Canada H3Z 1A4 rsoare@dawsoncollege.qc.ca.(2) Dipartimento di Scienze della Terra,della Vita e Ambiente, Università di Urbino "Carlo Bo", Campus SOGESTA, 61029 Urbino (PU) Italy. (3) Department of Physical Sciences, Open University, Milton Keynes, United Kingdom, MK7 6AA. (4) The University Museum, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-, Japan.(5) Department of Hydrology & Water Resources, University of Arizona, Tucson, Arizona, USA 85719.1.Introduction Metre to decametre-deep depressions that are rimless, relatively flat-floored, polygonised and scallop-shaped have been widely observed in Utopia Planitia (UP) [e.g. 1-5] and Malea Planum (MP) [6-8]. Although there is some debate about whether the depressions formed by means of sublimation or evaporation, it is commonly believed that the terrain in which the depressions occur is ice-rich.Moreover, most workers assume that this "ice-richness" is derived of a bi-hemispheric, latitudinally-dependent and atmospherically-precipitated mantle that is metres thick [2,4,6-10].
What can we learn from the auroral footprints of the Jovian moons? (Invited)
NASA Astrophysics Data System (ADS)
Bonfond, B.
2010-12-01
The signature of electromagnetic interaction between the moons Io, Europa and Ganymede and the Jovian magnetosphere can be observed on Jupiter’s polar ionosphere in the form of auroral footprints. The observation campaigns carried out during the past few years by the Hubble Space Telescope in the Far UV domain provided not only a high spatial and temporal resolution but also an unprecedented System III longitude coverage. Consequently, these recent observations of the morphology and the dynamics of the footprints proved to be very powerful tools to probe these interactions. For example, the locations of the satellite footprints have been used as a valuable constraint for building Jovian magnetic field models. Moreover, analysis of the multiplicity of the Io footprint spots as well as their relative motion lead to new conclusions on the electron acceleration processes. The altitude of the Io footprint has also been used to infer the typical energy of the impinging electrons. Finally, the study of the three-dimensional shape and of the brightness of the different sub-structures of the footprints provides important clues on the processes at play between Io and the Jovian ionosphere. On the theoretical side, considerable efforts have also been recently carried out in order to model the propagation of the Alfvén waves generated at Io and the subsequent acceleration of auroral electrons. Coupled with HST images, radio decametric measurements and in situ data from the Galileo spacecraft, these advances provide a brand new understanding of the satellite footprints.
CO observations of southern mergers
NASA Technical Reports Server (NTRS)
Casoli, F.; Dupraz, C.; Combes, F.
1990-01-01
There are good reasons to believe that the formation of some elliptical galaxies result from the merging of two disk galaxies, as Toomre and Toomre first suggested (1972, Ap. J. 178, 623). Such a process strongly enhances the star-formation activity of the system, thus consuming its molecular gas. This might account for the low cold-gas content of elliptical galaxies compared to that of spirals. Researchers present here CO(1-0) and CO(2-1) observations of a sequence of three objects, NGC 1614, NGC 3256, and NGC 7252, that present characteristic features of merger remnants: single body and extended tidal tails. NGC 3256 and 7252 even exhibit the r(exp 1/4) radial light distribution that is the signature of elliptical galaxies, which indicates that their stellar bodies are in late stages of relaxation. Both NGC 1614 and NGC 3256 undergo extended bursts of star formation revealed by their large far-infrared luminosities, and by the presence in the near-infrared spectrum of the 3.28 microns feature (Morwood: 1986, A. A. 166, 4) attributed to polycyclic aromatic hydrocarbons. On the other hand, NGC 7252 has a milder activity of star formation, as suggested by a lower infrared luminosity, and thus seems to have gone past the starburst phase. The CO data were collected with the Swedish-ESO 15 m Submillimeter Telescope (SEST) (beamsize = 43 seconds at 115 GHz, 23 seconds at 230 GHz). For NGC 7252, researchers have only observed the central position in CO-12(1-0). The spectrum is displayed together with an HI spectrum obtained with the Nancay radiotelescope. Researchers mapped NGC 1614 and NGC 3256 in CO-12(1-0) and CO-12(2-1), and also observed the nucleus of NGC 3256 in CO-13(1-0). The various CO spectra obtained towards the nuclei of both galaxies are presented. Characteristics of the galaxies are gathered, with luminosities and masses in solar units and temperatures in Kelvins.
Leaf Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region.
Wei, Xiangqin; Gu, Xingfa; Meng, Qingyan; Yu, Tao; Zhou, Xiang; Wei, Zheng; Jia, Kun; Wang, Chunmei
2017-07-08
Leaf area index (LAI) is an important vegetation parameter that characterizes leaf density and canopy structure, and plays an important role in global change study, land surface process simulation and agriculture monitoring. The wide field view (WFV) sensor on board the Chinese GF-1 satellite can acquire multi-spectral data with decametric spatial resolution, high temporal resolution and wide coverage, which are valuable data sources for dynamic monitoring of LAI. Therefore, an automatic LAI estimation algorithm for GF-1 WFV data was developed based on the radiative transfer model and LAI estimation accuracy of the developed algorithm was assessed in an agriculture region with maize as the dominated crop type. The radiative transfer model was firstly used to simulate the physical relationship between canopy reflectance and LAI under different soil and vegetation conditions, and then the training sample dataset was formed. Then, neural networks (NNs) were used to develop the LAI estimation algorithm using the training sample dataset. Green, red and near-infrared band reflectances of GF-1 WFV data were used as the input variables of the NNs, as well as the corresponding LAI was the output variable. The validation results using field LAI measurements in the agriculture region indicated that the LAI estimation algorithm could achieve satisfactory results (such as R² = 0.818, RMSE = 0.50). In addition, the developed LAI estimation algorithm had potential to operationally generate LAI datasets using GF-1 WFV land surface reflectance data, which could provide high spatial and temporal resolution LAI data for agriculture, ecosystem and environmental management researches.
NASA Astrophysics Data System (ADS)
Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J. L.; Bruzzone, L.; Kofman, W.
2011-10-01
Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5MHz and 50MHz. Part of this frequency range overlaps with that of the natural Jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emission are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.
NASA Astrophysics Data System (ADS)
Papeschi, Samuele; Musumeci, Giovanni; Mazzarini, Francesco
2017-10-01
We present an example of interaction between magmatism and tectonics at shallow crustal levels. In the Late Miocene the metamorphic units of the eastern Elba Island (northern Apennines) were intruded at very shallow crustal levels by a large pluton (> 60 km2) with the development of an hectometre-sized contact aureole defined by growth of low-pressure/high-temperature mineral assemblages (Pmax < 0.2 GPa, Tmax 650 °C). Structural data show that the contact aureole is associated with a km-sized antiform of the foliation and by several metre- to decametre-thick high-strain domains consisting of strongly foliated rocks containing synkinematic HT/LP mineral assemblages and ductile shear zones of variable thickness. These shear zones are characterized by a mylonitic foliation variably overprinted by cataclasis. Quartz microfabrics indicate that the dynamic crystallization processes progressively changed from grain boundary migration, associated with the thermal peak of contact metamorphism, to subgrain rotation and bulging recrystallization, the latter mostly associated with the cataclastic overprint. These transitions of recrystallization mechanisms in quartz are related to a progressive decrease of temperature during deformation. Deformation accompanied the development and cooling of the contact aureole, which recorded the switch from high temperature ductile to low temperature brittle conditions. The geometry of the studied deformation structures is consistent with the constraints of the regional tectonic evolution and its local interaction with the localized and transient thermal anomaly related to the coeval emplacement of igneous rocks.
NASA Astrophysics Data System (ADS)
Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.-L.; Bruzzone, L.; Kofman, W.
2012-02-01
Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5 and 50 MHz. Part of this frequency range overlaps with that of the natural jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emissions are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.
Palaeogeography of Late Triassic red-beds in Singapore and the Indosinian Orogeny
NASA Astrophysics Data System (ADS)
Oliver, Grahame; Prave, Anthony
2013-10-01
A red-bed facies of the Upper Triassic Jurong Formation has been logged on Sentosa Island, Singapore. An overall coarsening and thickening-upward pattern is well developed. The lower part of the section is dominated by purple-red, massive to finely laminated illite-smectite-kaolin-rich mudstones containing thin, discontinuous lenses of fine sandstone marked by low-angle lamination and small ripples. One dinosaur-like foot print has been discovered in a loose block of red mudstone. It is concluded that this is a lacustrine sequence and it is proposed to name the lake, Lake Sentosa. The upper part of the sequence consists of flat-laminated to trough cross-bedded medium-grained sandstone and granule to cobble conglomerates alternating with purple-red mudstone. The mudstone-sandstone packages are arranged in decametre-scale coarsening-upward cycles. The channelling and decimetre-scale cross-bedding characterising the sandstone and conglomeratic beds is evidence for deposition by flashy fluvial flood processes, possibly feeding into the lake as a fresh water delta. One possible dinosaur trackway in granule size conglomerate has been located. Detrital zircon U-Pb ages vary from 2.7 Ba to 209 Ma with significant populations at ˜245 Ma and 220 Ma. These ages throw light on the timing of the Indosinian Orogeny. The molasse red-beds of the Jurong Formation were deposited in a half graben formed in the hangingwall of the Bukit Timah Fault when central Peninsular Malaysia went into extension following the climax of the Indosinian Orogeny in the Late Triassic.
Detecting fast radio bursts at decametric wavelengths
NASA Astrophysics Data System (ADS)
Rajwade, K. M.; Lorimer, D. R.
2017-02-01
Fast radio bursts (FRBs) are highly dispersed, sporadic radio pulses which are likely extragalactic in nature. Here, we investigate the constraints on the source population from surveys carried out at frequencies <1 GHz. All but one FRB has so far been discovered in the 1-2 GHz band, but new and emerging instruments look set to become valuable probes of the FRB population at sub-GHz frequencies in the near future. In this paper, we consider the impacts of free-free absorption and multipath scattering in our analysis via a number of different assumptions about the intervening medium. We consider previous low-frequency surveys along with an ongoing survey with University of Technology digital backend for the Molonglo Observatory Synthesis Telescope (UTMOST) as well as future observations with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX). We predict that CHIME and HIRAX will be able to observe ˜30 or more FRBs per day, even in the most extreme scenarios where free-free absorption and scattering can significantly impact the fluxes below 1 GHz. We also show that UTMOST will detect 1-2 FRBs per month of observations. For CHIME and HIRAX, the detection rates also depend greatly on the assumed FRB distance scale. Some of the models we investigated predict an increase in the FRB flux as a function of redshift at low frequencies. If FRBs are truly cosmological sources, this effect may impact future surveys in this band, particularly if the FRB population traces the cosmic star formation rate.
Deformation of ``Villafranchian'' lacustrine sediments in the Chisone Valley (Western Alps, Italy)
NASA Astrophysics Data System (ADS)
Collo, Giovanni; Giardino, Marco
1997-09-01
The Chisone Valley is located in the internal NW Alps, in the Pinerolese District, an area characterized by present low to medium seismicity. Fine-grained sediments (sand, silt and clay with interbedded gravel) crop out in the lower Chisone Valley: they were first interpreted as glaciolacustrine deposits, and then as a lacustrine infilling of the valley floor probably due to differential uplifting of the valley mouth. Review of this data, together with new field and palynological observations, lead us to refer the lacustrine deposits to approximately the Lower Pleistocene (Villafranchian). In many outcrops, the lacustrine deposits show strong soft-sediment deformation such as convolute laminations, water-escape structures and disrupted beds, some of them associated with folds and faults (cm to dm in size); only two sites show metric to decametric folds and faults trending E-W and N-S. Detailed structural analysis conducted along a recently exposed section (Rio Gran Dubbione site) shows several soft-sediment deformation features on the limbs of mesoscale folds. Because of their intimate structural association, the origin of these minor structures seems to be connected to synsedimentary activity on reverse and normal faults (m to dm in size) affecting the lacustrine deposits in the same locality. Soft-sediment deformation features can be interpreted as possible paleoseismites. If so, the present seismicity of the Pinerolese District, which is the major area of such activity in NW Italy, cannot be considered an isolated episode in the geological evolution of the region; even if there is no supporting evidence for continuous seismicity, the deformations in the lacustrine sediments of the Chisone Valley testify to Early Pleistocene seismic activity, probably related to the recent tectonic evolution of the internal side of the NW Alps.
NASA Astrophysics Data System (ADS)
Peters, S. T.; Schroeder, D. M.; Romero-Wolf, A.; Haynes, M.
2017-12-01
The Radar for Icy Moon Exploration (RIME) and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) have been identified as potential candidates for the implementation of passive sounding as additional observing modes for the ESA and NASA missions to Ganymede and Europa. Recent work has shown the theoretical potential for Jupiter's decametric radiation to be used as a source for passive radio sounding of its icy moons. We are further developing and adapting this geophysical approach for use in terrestrial glaciology. Here, we present results from preliminary field testing of a prototype passive radio sounder from cliffs along the California coast. This includes both using a Lloyd's mirror to measure the Sun's direct path and its reflection off the ocean's surface and exploiting autocorrelation to detect the delay time of the echo. This is the first in-situ demonstration of the autocorrelation-based passive-sounding approach using an astronomical white noise signal. We also discuss preliminary field tests on rougher terrestrial and subglacial surfaces, including at Store Glacier in Greenland. Additionally, we present modeling and experimental results that demonstrate the feasibility of applying presumming approaches to the autocorrelations to achieve coherent gain from an inherently random signal. We note that while recording with wider bandwidths and greater delays places fundamental limits on the Lloyd's mirror approach, our new autocorrelation method has no such limitation. Furthermore, we show how achieving wide bandwidths via spectral-stitching methods allows us to obtain a finer range resolution than given by the receiver's instantaneous bandwidth. Finally, we discuss the potential for this technique to eliminate the need for active transmitters in certain types of ice sounding experiments, thereby reducing the complexity, power consumption, and cost of systems and observations.
Proterozoic evolution of part of the Embu Complex, eastern São Paulo state, SE Brazil
NASA Astrophysics Data System (ADS)
Vinagre da Costa, Rodrigo; Trouw, Rudolph Allard Johannes; Mendes, Julio Cezar; Geraldes, Mauro; Távora, Arthur; Nepomuceno, Felipe; de Araújo Junior, Edson Barros
2017-11-01
This paper presents detrital zircon ages obtained in rocks of the Embu Complex, southeastern São Paulo State, Brazil. The Embu Complex encompasses a Paleoproterozoic basement represented by migmatitic hornblende and biotite orthogneisses covered by (kyanite)-(sillimanite)-(garnet) bearing biotite-muscovite schists and paragneisses with decametric intercalations of quartzites and calcsilicate rocks. In the studied area this metasedimentary sequence is intruded by the porphyritic Serra do Quebra Cangalhagranite. Through field and microstructural studies, four ductile deformational phases wereidentified. Metamorphic events related to the Brasiliano Orogeny that affected the studied rocks were dominantly under medium temperature and pressure conditions, from greenschist to middle amphibolite facies. Detrital zircon crystals from a ∼10 m thick quartzite layer were analyzed by LA-ICP-MS resulting in a wide range of ages between 2100 and 600 Ma that fall mainly in four groups: the first group between 2.1 and 1.6 Ga, with apex at 1.7 Ga; two less expressive Mesoproterozoic groups with values between 1.6 and 1.2 Ga; and a fourth group with values between 1.2 and 0.6 Ga. Considering the geochronological data, the sedimentation of the basin began after 852 ± 40 Ma (the youngest igneous grain) and finished before ∼786 Ma (metamorphic rim). The age of the intrusive Serra do Quebra Cangalha granite (∼680 Ma) is consistent with this minimum age. The opening of the basin could be related to the break-up of Rodinia, which resulted in several small continents, among them the Paranapanema and São Francisco paleocontinents. Comparing these data with similar provenance data from the Apiaí terrane, itseems probable that the Embu Complex was physically connected with it during most of their evolution.
NASA Astrophysics Data System (ADS)
Closson, Damien; Abou Karaki, Najib; Pasquali, Paolo; Riccardi, Paolo
2013-04-01
Since the 1980s, the Dead Sea coastal zone is affected by sinkholes. The dynamic of the salt karst system is attested by a drastic increase of collapse events. The energy available for sub-surface erosion (or cavities genesis) is related to the head difference between the water table and the lake level which drop down at an accelerating rate of more than 1 m/yr. In the region of Ghor Al Haditha, Jordan, the size of the craters increased significantly during the last decade. Up to now, the greatest compound structure observed (association of metric subsidence, decametric sinkholes, and landslides) was about 150-200 m in diameter. End of December 2012, a single circular structure having 250-300 m in diameter was identified within a 10 km x 1.5 km saltpan of the Arab Potash Company. This finding raises questions regarding the origin of the underlying cavity and the capability of prediction of all models developed up to now in Israel and Jordan regarding the Dead Sea sinkholes. The analysis of satellite images of the past shows that the appearance of this unique depression is very recent (probably less than 5 years). Cosmo-SkyMed radar images have been processed to map the associated deformation field. Ground motions attest that the overall diameter could be around 600 m. Currently, this sinkhole is threatening the stability of more than one kilometer of a 12 km long dike holding 90 million m3 of Dead Sea brine. This case study underlines the great fragility of the Dead Sea salt karst and demonstrates the need for the setting up of an early warning system.
Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion.
Aitken, A R A; Roberts, J L; van Ommen, T D; Young, D A; Golledge, N R; Greenbaum, J S; Blankenship, D D; Siegert, M J
2016-05-19
Climate variations cause ice sheets to retreat and advance, raising or lowering sea level by metres to decametres. The basic relationship is unambiguous, but the timing, magnitude and sources of sea-level change remain unclear; in particular, the contribution of the East Antarctic Ice Sheet (EAIS) is ill defined, restricting our appreciation of potential future change. Several lines of evidence suggest possible collapse of the Totten Glacier into interior basins during past warm periods, most notably the Pliocene epoch, causing several metres of sea-level rise. However, the structure and long-term evolution of the ice sheet in this region have been understood insufficiently to constrain past ice-sheet extents. Here we show that deep ice-sheet erosion-enough to expose basement rocks-has occurred in two regions: the head of the Totten Glacier, within 150 kilometres of today's grounding line; and deep within the Sabrina Subglacial Basin, 350-550 kilometres from this grounding line. Our results, based on ICECAP aerogeophysical data, demarcate the marginal zones of two distinct quasi-stable EAIS configurations, corresponding to the 'modern-scale' ice sheet (with a marginal zone near the present ice-sheet margin) and the retreated ice sheet (with the marginal zone located far inland). The transitional region of 200-250 kilometres in width is less eroded, suggesting shorter-lived exposure to eroding conditions during repeated retreat-advance events, which are probably driven by ocean-forced instabilities. Representative ice-sheet models indicate that the global sea-level increase resulting from retreat in this sector can be up to 0.9 metres in the modern-scale configuration, and exceeds 2 metres in the retreated configuration.
Methods for validating the presence of and characterizing proteins deposited onto an array
Schabacker, Daniel S.
2010-09-21
A method of determining if proteins have been transferred from liquid-phase protein fractions to an array comprising staining the array with a total protein stain and imaging the array, optionally comparing the staining with a standard curve generated by staining known amounts of a known protein on the same or a similar array; a method of characterizing proteins transferred from liquid-phase protein fractions to an array including staining the array with a post-translational modification-specific (PTM-specific) stain and imaging the array and, optionally, after staining the array with a PTM-specific stain and imaging the array, washing the array, re-staining the array with a total protein stain, imaging the array, and comparing the imaging with the PTM-specific stain with the imaging with the total protein stain; stained arrays; and images of stained arrays.
Replica amplification of nucleic acid arrays
Church, George M.; Mitra, Robi D.
2010-08-31
Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.
Passive microfluidic array card and reader
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugan, Lawrence Christopher; Coleman, Matthew A
A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.
NASA Astrophysics Data System (ADS)
Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.
2017-08-01
We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.
Study of Plasma Flow Modes in Imploding Nested Arrays
NASA Astrophysics Data System (ADS)
Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Branitsky, A. V.; Frolov, I. N.; Grabovski, E. V.; Sasorov, P. V.; Ol'khovskaya, O. G.; Zaitsev, V. I.
2018-02-01
Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 MA at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic ( V r < V A ) and super-Alfvénic ( V r > V A ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ṁ in / ṁ out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh-Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.
JPRS Report, Science & Technology, China, High-Performance Computer Systems
1992-10-28
microprocessor array The microprocessor array in the AP85 system is com- posed of 16 completely identical array element micro - processors . Each array element...microprocessors and capable of host machine reading and writing. The memory capacity of the array element micro - processors as a whole can be expanded...transmission functions to carry out data transmission from array element micro - processor to array element microprocessor, from array element
Wind loads on flat plate photovoltaic array fields
NASA Technical Reports Server (NTRS)
Miller, R. D.; Zimmerman, D. K.
1981-01-01
The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.
Conformal array design on arbitrary polygon surface with transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng
2016-06-15
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
A Study of Phased Array Antennas for NASA's Deep Space Network
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Huang, John; Cesarone, Robert J.
2001-01-01
In this paper we briefly discuss various options but focus on the feasibility of the phased arrays as a viable option for this application. Of particular concern and consideration will be the cost, reliability, and performance compared to the present 70-meter antenna system, particularly the gain/noise temperature levels in the receive mode. Many alternative phased arrays including planar horizontal arrays, hybrid mechanically/electronically steered arrays, phased array of mechanically steered reflectors, multi-faceted planar arrays, phased array-fed lens antennas, and planar reflect-arrays are compared and their viability is assessed. Although they have many advantages including higher reliability, near-instantaneous beam switching or steering capability, the cost of such arrays is presently prohibitive and it is concluded that the only viable array options at the present are the arrays of a few or many small reflectors. The active planar phased arrays, however, may become feasible options in the next decade and can be considered for deployment in smaller configurations as supplementary options.
Orthogonally referenced integrated ensemble for navigation and timing
Smith, Stephen Fulton; Moore, James Anthony
2013-02-26
An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.
Orthogonally referenced integrated ensemble for navigation and timing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen Fulton; Moore, James Anthony
2014-04-01
An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clockmore » oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.« less
Uniform and nonuniform V-shaped planar arrays for 2-D direction-of-arrival estimation
NASA Astrophysics Data System (ADS)
Filik, T.; Tuncer, T. E.
2009-10-01
In this paper, isotropic and directional uniform and nonuniform V-shaped arrays are considered for azimuth and elevation direction-of-arrival (DOA) angle estimation simultaneously. It is shown that the uniform isotropic V-shaped arrays (UI V arrays) have no angle coupling between the azimuth and elevation DOA. The design of the UI V arrays is investigated, and closed form expressions are presented for the parameters of the UI V arrays and nonuniform V arrays. These expressions allow one to find the isotropic V angle for different array types. The DOA performance of the UI V array is compared with the uniform circular array (UCA) for correlated signals and in case of mutual coupling between array elements. The modeling error for the sensor positions is also investigated. It is shown that V array and circular array have similar robustness for the position errors while the performance of UI V array is better than the UCA for correlated source signals and when there is mutual coupling. Nonuniform V-shaped isotropic arrays are investigated which allow good DOA performance with limited number of sensors. Furthermore, a new design method for the directional V-shaped arrays is proposed. This method is based on the Cramer-Rao Bound for joint estimation where the angle coupling effect between the azimuth and elevation DOA angles is taken into account. The design method finds an optimum angle between the linear subarrays of the V array. The proposed method can be used to obtain directional arrays with significantly better DOA performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierhuizen, Serge J.; Wang, Nanze Patrick; Eng, Gregory W.
An array of housings with housing bodies and lenses is molded, or an array of housing bodies is molded and bonded with lenses to form an array of housings with housing bodies and lenses. Light-emitting diodes (LEDs) are attached to the housings in the array. An array of metal pads may be bonded to the back of the array or insert molded with the housing array to form bond pads on the back of the housings. The array is singulated to form individual LED modules.
From Vision to Reality: 50 Years of Phased Array Development
2016-09-30
This paper cites the most prominent U.S.-deployed phased array radars as viewed by one phased-array radar advocate. Key words: radar, antenna array...phased array, phased array radar, radar antennas , array I. INTRODUCTION I welcome the opportunity to talk with today’s phased array engineers and...their test site in Fullerton, CA in the mid-1960s and was impressed by the size of the antennas . Eight apertures were deployed on each ship to
Multistatic Array Sampling Scheme for Fast Near-Field Image Reconstruction
2016-01-01
reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of Boundary Arrays (BAs). Following a simple correction...hardware. Fig. 1 depicts the multistatic array topology. As seen, the topology is a tiled arrangement of Boundary Arrays (BAs). The BA is a well-known...sparse array layout comprised of two linear transmit arrays, and two linear receive arrays [6]. A slightly different tiled arrangement of BAs was used
ArrayBridge: Interweaving declarative array processing with high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros
Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less
LED module with high index lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierhuizen, Serge J.; Wang, Nanze Patrick; Eng, Gregory W.
2016-07-05
An array of housings with housing bodies and lenses is molded, or an array of housing bodies is molded and bonded with lenses to form an array of housings with housing bodies and lenses. Light-emitting diodes (LEDs) are attached to the housings in the array. An array of metal pads may be bonded to the back of the array or insert molded with the housing array to form bond pads on the back of the housings. The array is singulated to form individual LED modules.
On analytic design of loudspeaker arrays with uniform radiation characteristics
Aarts; Janssen
2000-01-01
Some notes on analytical derived loudspeaker arrays with uniform radiation characteristics are presented. The array coefficients are derived via analytical means and compared with so-called maximal flat sequences known from telecommunications and information theory. It appears that the newly derived array, i.e., the quadratic phase array, has a higher efficiency than the Bessel array and a flatter response than the Barker array. The method discussed admits generalization to the design of arrays with desired nonuniform radiating characteristics.
Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere
NASA Astrophysics Data System (ADS)
Wen, Wei; Jin, Ying; Hu, Mingjun; Liu, Xianlong; Cai, Yangjian; Zou, Chenjuan; Luo, Mi; Zhou, Liwang; Chu, Xiuxiang
2018-05-01
The beam wander properties of coherent and partially coherent Airy beam arrays in a turbulent atmosphere are investigated. Based on the analytical results, we find that the beam wander of partially coherent Airy beam arrays is significantly reduced compared with the wander of a partially coherent Airy beam by numerical simulation. Moreover, the beam wander of a 2 × 2 partially coherent Airy beam arrays is significantly reduced compared with the wander of a 2 × 2 partially coherent Gaussian beam arrays. By using the definition of beam wander arrays factor which is used to characterize the capability of beam arrays for reducing the beam wander effect compared with a single beam, we find that the arrays factor of partially coherent Airy beam arrays is significantly less than that of partially coherent Gaussian beam arrays with the same arrays order. We also find that an artificial reduction of the initial coherence of laser arrays can be used to decrease the beam wander effect. These results indicate that the partially coherent Airy beam arrays have potential applications in long-distance free-space optical communications.
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
Measuring the order in ordered porous arrays: can bees outperform humans?
NASA Astrophysics Data System (ADS)
Kaatz, F. H.
2006-08-01
A method that explains how to quantify the amount of order in “ordered” and “highly ordered” porous arrays is derived. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete radial distribution function (RDF). Nanoporous anodized aluminum oxide (AAO), hexagonal arrays from functional materials, hexagonal arrays from nanosphere lithography, and square arrays defined by interference lithography (all taken from the literature) are compared to two-dimensional model systems. These arrays have a range of pore diameters from ˜60 to 180 nm. An order parameter, OP 3 , is defined to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare RDFs of man-made arrays with that of our honeycomb (pore diameter ˜5.89 mm), a locally grown version made by Apis mellifera without the use of foundation comb, we find OP 3 =0.399 for the honeycomb and OP 3 =0.572 for man’s best hexagonal array. The nearest neighbor peaks range from 4.65 for the honeycomb to 5.77 for man’s best hexagonal array, while the ideal hexagonal array has an average of 5.93 nearest neighbors. Ordered arrays are now becoming quite common in nanostructured science, while bee honeycombs were studied for millennia. This paper describes the first method to quantify the order found in these arrays with a simple yet elegant procedure that provides a precise measurement of the order in one array compared to other arrays.
Degree-of-Freedom Strengthened Cascade Array for DOD-DOA Estimation in MIMO Array Systems.
Yao, Bobin; Dong, Zhi; Zhang, Weile; Wang, Wei; Wu, Qisheng
2018-05-14
In spatial spectrum estimation, difference co-array can provide extra degrees-of-freedom (DOFs) for promoting parameter identifiability and parameter estimation accuracy. For the sake of acquiring as more DOFs as possible with a given number of physical sensors, we herein design a novel sensor array geometry named cascade array. This structure is generated by systematically connecting a uniform linear array (ULA) and a non-uniform linear array, and can provide more DOFs than some exist array structures but less than the upper-bound indicated by minimum redundant array (MRA). We further apply this cascade array into multiple input multiple output (MIMO) array systems, and propose a novel joint direction of departure (DOD) and direction of arrival (DOA) estimation algorithm, which is based on a reduced-dimensional weighted subspace fitting technique. The algorithm is angle auto-paired and computationally efficient. Theoretical analysis and numerical simulations prove the advantages and effectiveness of the proposed array structure and the related algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, Randolph R; Campbell, David V; Shinde, Subhash L
A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitchmore » is preserved across the enlarged pixel array.« less
Feasibility Study of Solar Dome Encapsulation of Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
1978-01-01
The technical and economic advantages of using air-supported plastic enclosures to protect flat plate photovoltaic arrays are described. Conceptual designs for a fixed, latitude-tilt array and a fully tracking array were defined. Detailed wind loads and strength analyses were performed for the fixed array. Detailed thermal and power output analyses provided array performance for typical seasonal and extreme temperature conditions. Costs of each design as used in a 200 MWe central power station were defined from manufacturing and material cost estimates. The capital cost and cost of energy for the enclosed fixed-tilt array were lower than for the enclosed tracking array. The enclosed fixed-tilt array capital investment was 38% less, and the levelized bus bar energy cost was 26% less than costs for a conventional, glass-encapsulated array design. The predicted energy cost for the enclosed fixed array was 79 mills/kW-h for direct current delivered to the power conditioning units.
Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.
2007-01-01
The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.
Simm, Andrew O; Banks, Craig E; Ward-Jones, Sarah; Davies, Trevor J; Lawrence, Nathan S; Jones, Timothy G J; Jiang, Li; Compton, Richard G
2005-09-01
A novel boron-doped diamond (BDD) microelectrode array is characterised with electrochemical and atomic force microscopic techniques. The array consists of 40 micron-diameter sized BDD discs which are separated by 250 microns from their nearest neighbour in a hexagonal arrangement. The conducting discs can be electroplated to produce arrays of copper, silver or gold for analytical purposes in addition to operating as an array of BDD-microelectrodes. Proof-of-concept is shown for four separate examples; a gold plated array for arsenic detection, a copper plated array for nitrate analysis, a silver plated array for hydrogen peroxide monitoring and last, cathodic stripping voltammetry for lead at the bare BDD-array.
Deployment Methods for an Origami-Inspired Rigid-Foldable Array
NASA Technical Reports Server (NTRS)
Zirbel, Shannon A.; Trease, Brian P.; Magleby, Spencer P.; Howell, Larry L.
2014-01-01
The purpose of this work is to evaluate several deployment methods for an origami-inspired solar array at two size scales: 25-meter array and CubeSat array. The array enables rigid panel deployment and introduces new concepts for actuating CubeSat deployables. The design for the array was inspired by the origami flasher model (Lang, 1997; Shafer, 2001). Figure 1 shows the array prototyped from Garolite and Kapton film at the CubeSat scale. Prior work demonstrated that rigid panels like solar cells could successfully be folded into the final stowed configuration without requiring the panels to flex (Zirbel, Lang, Thomson, & al., 2013). The design of the array is novel and enables efficient use of space. The array can be wrapped around the central bus of the spacecraft in the case of the large array, or can accommodate storage of a small instrument payload in the case of the CubeSat array. The radial symmetry of this array around the spacecraft is ideally suited for spacecraft that need to spin. This work focuses on several actuation methods for a one-time deployment of the array. The array is launched in its stowed configuration and it will be deployed when it is in space. Concepts for both passive and active actuation were considered.
NASA Astrophysics Data System (ADS)
Bolarinwa, O. J.; Langston, C. A.; Sweet, J. R.; Anderson, K. R.; Woodward, R.
2017-12-01
A 6 km aperture regional array in the Golay 3x6 configuration was fielded as part of the IRIS Community Wavefields Experiment near Enid, Oklahoma from June 26 through November 12, 2016. The array consisted of 18 broadband CMG-3T seismometers deployed using a PASSCAL insulated vault design and RT130 data recorders. The Golay geometry is unusual in that it features 6 tripartite arrays in an open arrangement. Spacing and orientation of each tripartite array is such that the array uniformly samples the wavefield in space as determined from the co-array diagram even though the interior of the array configuration contains no seismic stations. The short wavelength performance of this array requires a high degree of phase correlation across its entire aperture, a characteristic that has been difficult to achieve for other regional array designs because of velocity heterogeneity in the earth. Located within an area of high regional seismicity, the IRIS experiment offered an opportunity to examine the slowness-frequency performance of a real-world Golay 3x6 array that was subject to constraints on land usage during deployment. Individual tripartite arrays fit well within a land survey quarter section but it proved difficult to match the ideal spacing between each subarray because of permitting problems. Nevertheless, these unavoidable geometry perturbations caused only minor changes to the theoretical array response. More surprisingly, observations of high frequency regional P and S phases show very high correlation over the array aperture that gives rise to precise array responses that are close to theoretical. Both the array geometry and relatively homogeneous structure under the array produces an exceptional facility that can be used for high-resolution studies of regional seismic waves.
Scaria, Joy; Sreedharan, Aswathy; Chang, Yung-Fu
2008-01-01
Background Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Methods Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. Conclusion MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays. PMID:18811969
Scaria, Joy; Sreedharan, Aswathy; Chang, Yung-Fu
2008-09-23
Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays.
Heidelberger, Philip; Steinmacher-Burow, Burkhard
2015-01-06
According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.
Study of array plasma antenna parameters
NASA Astrophysics Data System (ADS)
Kumar, Rajneesh; Kumar, Prince
2018-04-01
This paper is aimed to investigate the array plasma antenna parameters to help the optimization of an array plasma antenna. Single plasma antenna is transformed into array plasma antenna by changing the operating parameters. The re-configurability arises in the form of striations, due to transverse bifurcation of plasma column by changing the operating parameters. Each striation can be treated as an antenna element and system performs like an array plasma antenna. In order to achieve the goal of this paper, three different configurations of array plasma antenna (namely Array 1, Array 2 and Array 3) are simulated. The observations are made on variation in antenna parameters like resonance frequency, radiation pattern, directivity and gain with variation in length and number of antenna elements for each array plasma antenna. Moreover experiments are also performed and results are compared with simulation. Further array plasma antenna parameters are also compared with monopole plasma antenna parameters. The study of present paper invoke the array plasma antenna can be applied for steering and controlling the strength of Wi-Fi signals as per requirement.
Planar waveguide integrated spatial filter array
NASA Astrophysics Data System (ADS)
Ai, Jun; Dimov, Fedor; Lyon, Richard; Rakuljic, Neven; Griffo, Chris; Xia, Xiaowei; Arik, Engin
2013-09-01
An innovative integrated spatial filter array (iSFA) was developed for the nulling interferometer for the detection of earth-like planets and life beyond our solar system. The coherent iSFA comprised a 2D planar lightwave circuit (PLC) array coupled with a pair of 2D lenslet arrays in a hexagonal grid to achieve the optimum fill factor and throughput. The silica-on-silicon waveguide mode field diameter and numerical aperture (NA) were designed to match with the Airy disc and NA of the microlens for optimum coupling. The lenslet array was coated with a chromium pinhole array at the focal plane to pass the single-mode waveguide but attenuate the higher modes. We assembled a 32 by 30 array by stacking 32 chips that were produced by photolithography from a 6-in. silicon wafer. Each chip has 30 planar waveguides. The PLC array is inherently polarization-maintaining (PM) and requires much less alignment in contrast to a fiber array, where each PM fiber must be placed individually and oriented correctly. The PLC array offers better scalability than the fiber bundle array for large arrays of over 1,000 waveguides.
Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S
2015-12-28
Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.
Liu, Changgeng; Djuth, Frank T.; Zhou, Qifa; Shung, K. Kirk
2014-01-01
Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-μm kerf between elements. The active piezoelectric material is (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT)/epoxy 1–3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse–echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the −6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about −33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027
Effects of laser source parameters on the generation of narrow band and directed laser ultrasound
NASA Technical Reports Server (NTRS)
Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.
1992-01-01
Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.
1978-01-01
Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.
Highly Directive Array Aperture
2013-02-13
generally to sonar arrays with acoustic discontinuities, and, more particularly, to increasing the directivity gain of a sonar array aperture by...sought by sonar designers. [0005] The following patents and publication show various types of acoustic arrays with coatings and discontinuities that...discloses a sonar array uses multiple acoustically transparent layers. One layer is a linear array of acoustic sensors that is substantially
Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?
NASA Astrophysics Data System (ADS)
J, Gibbons, Steven; Kværna, Tormod; Mykkeltveit, Svein
2015-04-01
The infrasound stations of the International Monitoring System are arrays consisting of up to 15 sites and with apertures of up to 3 km. The arrays are distributed remarkably uniformly over the globe and provide excellent coverage of South America, Africa, and Antarctica. This is to say that there are many infrasound arrays in regions many thousands of kilometers from the closest seismic array. Several infrasound arrays are in the immediate vicinity of existing 3-component seismic stations and these provide us with examples of how typical seismic signals look at these locations. We can make idealized estimates of the predicted performance of seismic arrays, consisting of seismometers at each site of the infrasound arrays, by duplicating the signals from the 3-C stations at all sites of the array. However, the true performance of seismic arrays at these sites will depend both upon Signal-to-Noise Ratios of seismic signals and the coherence of both signal and noise between sensors. These properties can only be determined experimentally. Recording seismic data of sufficient quality at many of these arrays may require borehole deployments since the microbarometers in the infrasound arrays are often situated in vaults placed in soft sediments. The geometries of all the current IMS infrasound arrays are examined and compared and we demonstrate that, from a purely geometrical perspective, essentially all the array configurations would provide seismic arrays with acceptable slowness resolution for both regional and teleseismic phase arrivals. Seismic arrays co-located with the infrasound arrays in many regions would likely enhance significantly the seismic monitoring capability in parts of the world where only 3-component stations are currently available. Co-locating seismic and infrasound sensors would facilitate the development of seismic arrays that share the infrastructure of the infrasound arrays, reducing the development and operational costs. Hosting countries might find such added capabilities valuable from a national perspective. In addition, the seismic recordings may also help to identify the sources of infrasound signals with consequences for improved event screening and evaluating models of infrasound propagation and atmospheric properties.
Nguyen, Yann; Bernardeschi, Daniele; Kazmitcheff, Guillaume; Miroir, Mathieu; Vauchel, Thomas; Ferrary, Evelyne; Sterkers, Olivier
2015-02-01
Loading otoprotective drug into cochlear implant might change its mechanical properties, thus compromising atraumatic insertion. This study evaluated the effect of incorporation of dexamethasone (DXM) in the silicone of cochlear implant arrays on insertion forces. Local administration of DXM with embedded array can potentially reduce inflammation and fibrosis after cochlear implantation procedure to improve hearing preservation and reduce long-term impedances. Four models of arrays have been tested: 0.5-mm distal diameter array (n = 5) used as a control, drug-free 0.4-mm distal diameter array (n = 5), 0.4-mm distal diameter array with 1% eluded DXM silicone (n = 5), and 0.4-mm distal diameter array with 10% eluded DXM silicone (n = 5). Via a motorized insertion bench, each array has been inserted into an artificial scala tympani model. The forces were recorded by a 6-axis force sensor. Each array was tested seven times for a total number of 140 insertions. During the first 10-mm insertion, no difference between the four models was observed. From 10- to 24-mm insertion, the 0.5-mm distal diameter array presented higher insertion forces than the drug-free 0.4-mm distal diameter arrays, with or without DXM. Friction forces for drug-free 0.4-mm distal diameter array and 0.4-mm distal diameter DXM eluded arrays were similar on all insertion lengths. Incorporation of DXM in silicone for cochlear implant design does not change electrode array insertion forces. It does not raise the risk of trauma during array insertion, making it suitable for long-term in situ administration to the cochlea.
Standard, Random, and Optimum Array conversions from Two-Pole resistance data
Rucker, D. F.; Glaser, Danney R.
2014-09-01
We present an array evaluation of standard and nonstandard arrays over a hydrogeological target. We develop the arrays by linearly combining data from the pole-pole (or 2-pole) array. The first test shows that reconstructed resistances for the standard Schlumberger and dipoledipole arrays are equivalent or superior to the measured arrays in terms of noise, especially at large geometric factors. The inverse models for the standard arrays also confirm what others have presented in terms of target resolvability, namely the dipole-dipole array has the highest resolution. In the second test, we reconstruct random electrode combinations from the 2-pole data segregated intomore » inner, outer, and overlapping dipoles. The resistance data and inverse models from these randomized arrays show those with inner dipoles to be superior in terms of noise and resolution and that overlapping dipoles can cause model instability and low resolution. Finally, we use the 2-pole data to create an optimized array that maximizes the model resolution matrix for a given electrode geometry. The optimized array produces the highest resolution and target detail. Thus, the tests demonstrate that high quality data and high model resolution can be achieved by acquiring field data from the pole-pole array.« less
The SCARLET{trademark} array for high power GEO satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, B.R.; Jones, P.A.; Eskenazi, M.I.
1997-12-31
The GEO satellite market is demanding increasingly capable spacecraft which, in turn, drives commercial spacecraft manufacturers to require significantly higher power solar arrays. As satellite capability increases the demand for high power array systems which are both cost and performance competitive becomes more crucial. Conventional rigid panel planar arrays, although suitable in the past, negatively impact spacecraft competitiveness for these new applications. The Solar Concentrator Array with Refractive Linear Element Technology (SCARLET{trademark}) represents an economically attractive solution for meeting these new high power requirements. When compared to conventional planar arrays, SCARLET provides substantially lower cost and higher deployed stiffness, competitivemore » mass, better producibility, and affordable use of high efficiency multijunction cells. This paper compares cost/performance characteristics of the SCARLET array to conventional planar arrays for high power GEO spacecraft applications. High power SCARLET array configurations are described, and inherent spacecraft and array level cost/performance benefits are presented.« less
Resolution of Port/Starboard Ambiguity Using a Linear Array of Triplets and a Twin-Line Planar Array
2016-06-01
STARBOARD AMBIGUITY USING A LINEAR ARRAY OF TRIPLETS AND A TWIN- LINE PLANAR ARRAY by Stilson Veras Cardoso June 2016 Thesis Advisor...OF TRIPLETS AND A TWIN-LINE PLANAR ARRAY 5. FUNDING NUMBERS 6. AUTHOR(S) Stilson Veras Cardoso 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...A LINEAR ARRAY OF TRIPLETS AND A TWIN-LINE PLANAR ARRAY Stilson Veras Cardoso Civilian, Brazilian Navy B.S., University of Brasília, 1993
Spacecraft level impacts of integrating concentrator solar arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.M.; Piszczor, M.F. Jr.
1994-12-31
The paper describes the results of a study to determine the impacts of integrating concentrator solar arrays on spacecraft design and performance. First, concentrator array performance is summarized for the AEC-Able/Entech SCARLET array, the Ioffe refractive and reflective concepts being developed in Russia, the Martin Marietta SLATS system, and other concentrator concepts that have been designed or developed. Concentrator array performance is compared to rigid and flex blanket planar array technologies at the array level. Then other impacts on the spacecraft are quantified. Conclusions highlight the most important results as they relate to recommended approaches in developing concentrator arrays formore » satellites.« less
Complementary periodic diffracting metallic nanohole and nanodipole arrays in the mid-infrared range
NASA Astrophysics Data System (ADS)
Ye, Yong-Hong; Zhang, Jia-Yu; Feng Ma, Hui; Yao, Jie; Wang, Xudong
2012-10-01
Metallic nanohole arrays and metallic nanodipole arrays are fabricated and experimentally characterized. A complementary response is observed in both transmission and reflection. For the metallic nanohole arrays, a peak (dip) in transmission (reflection) is observed at resonance whereas the metallic nanodipole arrays display a dip (peak) in transmission (reflection). The resonant frequency of both the metallic nanohole arrays and the nanodipole arrays depends on the dipole arm length, the incident angle, and the period. The resonant position of the nanohole arrays matches that of its complement, which means that Babinet's principle nearly holds for these structures in the mid-infrared region.
ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs
2011-01-01
Background Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications. Results ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms. Conclusions ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the custom array specifications are easily exported to the manufacturer's standard format, researchers can analyze these customized microarray experiments using established software tools, such as those available in Bioconductor. PMID:21548938
Improved Modeling of Open Waveguide Aperture Radiators for use in Conformal Antenna Arrays
NASA Astrophysics Data System (ADS)
Nelson, Gregory James
Open waveguide apertures have been used as radiating elements in conformal arrays. Individual radiating element model patterns are used in constructing overall array models. The existing models for these aperture radiating elements may not accurately predict the array pattern for TEM waves which are not on boresight for each radiating element. In particular, surrounding structures can affect the far field patterns of these apertures, which ultimately affects the overall array pattern. New models of open waveguide apertures are developed here with the goal of accounting for the surrounding structure effects on the aperture far field patterns such that the new models make accurate pattern predictions. These aperture patterns (both E plane and H plane) are measured in an anechoic chamber and the manner in which they deviate from existing model patterns are studied. Using these measurements as a basis, existing models for both E and H planes are updated with new factors and terms which allow the prediction of far field open waveguide aperture patterns with improved accuracy. These new and improved individual radiator models are then used to predict overall conformal array patterns. Arrays of open waveguide apertures are constructed and measured in a similar fashion to the individual aperture measurements. These measured array patterns are compared with the newly modeled array patterns to verify the improved accuracy of the new models as compared with the performance of existing models in making array far field pattern predictions. The array pattern lobe characteristics are then studied for predicting fully circularly conformal arrays of varying radii. The lobe metrics that are tracked are angular location and magnitude as the radii of the conformal arrays are varied. A constructed, measured array that is close to conforming to a circular surface is compared with a fully circularly conformal modeled array pattern prediction, with the predicted lobe angular locations and magnitudes tracked, plotted and tabulated. The close match between the patterns of the measured array and the modeled circularly conformal array verifies the validity of the modeled circularly conformal array pattern predictions.
(abstract) Scaling Nominal Solar Cell Impedances for Array Design
NASA Technical Reports Server (NTRS)
Mueller, Robert L; Wallace, Matthew T.; Iles, Peter
1994-01-01
This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.
NASA Astrophysics Data System (ADS)
Il’ina, M. V.; Konshin, A. A.; Il’in, O. I.; Rudyk, N. N.; Fedotov, A. A.; Ageev, O. A.
2018-03-01
The results of experimental studies of adhesion of carbon nanotube (CNT) arrays with different geometric parameters and orientations using atomic-force microscopy are presented. The adhesion values of CNT arrays were determined, which were from 82 to 1315 nN depending on the parameters of the array. As a result, it was established that the adhesion of a CNT array increases with an increase in branching and disorientation of the array, as well as with the growth of the aspect ratio of CNTs in the array.
Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI
NASA Astrophysics Data System (ADS)
Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.
2017-06-01
Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.
Boutte, Ronald W; Blair, Steve
2016-12-01
Borrowing from the wafer-level fabrication techniques of the Utah Electrode Array, an optical array capable of delivering light for neural optogenetic studies is presented in this paper: the Utah Optrode Array. Utah Optrode Arrays are micromachined out of sheet soda-lime-silica glass using standard backend processes of the semiconductor and microelectronics packaging industries such as precision diamond grinding and wet etching. 9 × 9 arrays with 1100μ m × 100μ m optrodes and a 500μ m back-plane are repeatably reproduced on 2i n wafers 169 arrays at a time. This paper describes the steps and some of the common errors of optrode fabrication.
A Phased Array Coil for Human Cardiac Imaging
Constantinides, Chris D.; Westgate, Charles R.; O'Dell, Walter G.; Zerhouni, Elias A.; McVeigh, Elliot R.
2007-01-01
A prototype cardiac phased array receiver coil was constructed that comprised a cylindrical array and a separate planar array. Both arrays had two coil loops with the same coil dimensions. Data acquisition with the cylindrical array placed on the human chest, and the planar array placed under the back, yielded an overall enhancement of the signal-to-noise ratio (SNR) over the entire heart by a factor of 1.1–2.85 over a commercially available flexible coil and a commercially available four-loop planar phased array coil. This improvement in SNR can be exploited in cardiac imaging to increase the spatial resolution and reduce the image acquisition time. PMID:7674903
Deng, Wenjuan; Peng, Xincun; Zou, Jijun; Wang, Weilu; Liu, Yun; Zhang, Tao; Zhang, Yijun; Zhang, Daoli
2017-11-10
Two types of negative electron affinity gallium arsenide (GaAs) wire array photocathodes were fabricated by reactive ion etching and inductively coupled plasma etching of bulk GaAs material. High density GaAs wire arrays with high periodicity and good morphology were verified using scanning electron microscopy, and photoluminescence spectra confirmed the wire arrays had good crystalline quality. Reflection spectra showed that circular GaAs wire arrays had superior light trapping compared with square ones. However, after Cs/O activation, the square GaAs wire array photocathodes showed enhanced spectral response. The integral sensitivity of the square wire array photocathodes was approximately 2.8 times that of the circular arrays.
Two-dimensional radiant energy array computers and computing devices
NASA Technical Reports Server (NTRS)
Schaefer, D. H.; Strong, J. P., III (Inventor)
1976-01-01
Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.
Pulsars Probe the Low-Frequency Gravitational Sky: Pulsar Timing Arrays Basics and Recent Results
NASA Astrophysics Data System (ADS)
Tiburzi, Caterina
2018-03-01
Pulsar Timing Array experiments exploit the clock-like behaviour of an array of millisecond pulsars, with the goal of detecting low-frequency gravitational waves. Pulsar Timing Array experiments have been in operation over the last decade, led by groups in Europe, Australia, and North America. These experiments use the most sensitive radio telescopes in the world, extremely precise pulsar timing models and sophisticated detection algorithms to increase the sensitivity of Pulsar Timing Arrays. No detection of gravitational waves has been made to date with this technique, but Pulsar Timing Array upper limits already contributed to rule out some models of galaxy formation. Moreover, a new generation of radio telescopes, such as the Five hundred metre Aperture Spherical Telescope and, in particular, the Square Kilometre Array, will offer a significant improvement to the Pulsar Timing Array sensitivity. In this article, we review the basic concepts of Pulsar Timing Array experiments, and discuss the latest results from the established Pulsar Timing Array collaborations.
Array signal recovery algorithm for a single-RF-channel DBF array
NASA Astrophysics Data System (ADS)
Zhang, Duo; Wu, Wen; Fang, Da Gang
2016-12-01
An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.
Evaluation of solar cells and arrays for potential solar power satellite applications
NASA Technical Reports Server (NTRS)
Almgren, D. W.; Csigi, K.; Gaudet, A. D.
1978-01-01
Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.
Assessment study of infrared detector arrays for low-background astronomical research
NASA Technical Reports Server (NTRS)
Ando, K. J.
1978-01-01
The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.
Divett, T; Vennell, R; Stevens, C
2013-02-28
At tidal energy sites, large arrays of hundreds of turbines will be required to generate economically significant amounts of energy. Owing to wake effects within the array, the placement of turbines within will be vital to capturing the maximum energy from the resource. This study presents preliminary results using Gerris, an adaptive mesh flow solver, to investigate the flow through four different arrays of 15 turbines each. The goal is to optimize the position of turbines within an array in an idealized channel. The turbines are represented as areas of increased bottom friction in an adaptive mesh model so that the flow and power capture in tidally reversing flow through large arrays can be studied. The effect of oscillating tides is studied, with interesting dynamics generated as the tidal current reverses direction, forcing turbulent flow through the array. The energy removed from the flow by each of the four arrays is compared over a tidal cycle. A staggered array is found to extract 54 per cent more energy than a non-staggered array. Furthermore, an array positioned to one side of the channel is found to remove a similar amount of energy compared with an array in the centre of the channel.
Novel fabrication technique of hybrid structure lens array for 3D images
NASA Astrophysics Data System (ADS)
Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Won, Yong Hyub
2016-03-01
Tunable liquid lens arrays can produce three dimensional images by using electrowetting principle that alters surface tensions by applying voltage. This method has advantages of fast response time and low power consumption. However, it is challenging to fabricate a high fill factor liquid lens array and operate three dimensional images which demand high diopter. This study describes a hybrid structure lens array which has not only a liquid lens array but a solid lens array. A concave-shape lens array is unavoidable when using only the liquid lens array and some voltages are needed to make the lens flat. By placing the solid lens array on the liquid lens array, initial diopter can be positive. To fabricate the hybrid structure lens array, a conventional lithographic process in semiconductor manufacturing is needed. A negative photoresist SU-8 was used as chamber master molds. PDMS and UV adhesive replica molding are done sequentially. Two immiscible liquids, DI water and dodecane, are injected in the fabricated chamber, followed by sealing. The fabricated structure has a 20 by 20 pattern of cylindrical shaped circle array and the aperture size of each lens is 1mm. The thickness of the overall hybrid structure is about 2.8mm. Hybrid structure lens array has many advantages. Solid lens array has almost 100% fill factor and allow high efficiency. Diopter can be increased by more than 200 and negative diopter can be shifted to the positive region. This experiment showed several properties of the hybrid structure and demonstrated its superiority.
Trumper, David L.; Kim, Won-jong; Williams, Mark E.
1997-05-20
Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.
Waterproof stretchable optoelectronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, John A.; Kim, Rak-Hwan; Kim, Dae-Hyeong
Described herein are flexible and stretchable LED arrays and methods utilizing flexible and stretchable LED arrays. Assembly of flexible LED arrays alongside flexible plasmonic crystals is useful for construction of fluid monitors, permitting sensitive detection of fluid refractive index and composition. Co-integration of flexible LED arrays with flexible photodetector arrays is useful for construction of flexible proximity sensors. Application of stretchable LED arrays onto flexible threads as light emitting sutures provides novel means for performing radiation therapy on wounds.
Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays
2010-02-28
Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam
Integrated infrared detector arrays for low-background applications
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Goebel, J. H.
1982-01-01
Advanced infrared detector and detector array technology is being developed and characterized for future NASA space astronomy applications. Si:Bi charge-injection-device arrays have been obtained, and low-background sensitivities comparable to that of good discrete detectors have been measured. Intrinsic arrays are being assessed, and laboratory and telescope data have been collected on a monolithic InSb CCD array. For wavelengths longer than 30 microns, improved Ge:Ga detectors have been produced, and steps have been taken to prove the feasibility of an integrated extrinsic germanium array. Other integrated arrays and cryogenic components are also under investigation.
1990-09-01
array. LTHPER Length of the MPPERS array. LTHQPA Length of the QPA array. LTHXRT Length of the XROOT array. MAXACN Maximum number of aircraft that can...3 Time remaining until the ready-to-fly time at time of report Number of XROOT Array Entries (GENERATED) NROOT (MAXT) The total number of entries in...the XROOT array for each aircraft type. AIS Station Status NSTAT (NOSTAT, I, MAXB) I = 1 Total number of stations of each type on base = 2 Number in
On-Orbit Reconfigurable Solar Array
NASA Technical Reports Server (NTRS)
Levy, Robert K. (Inventor)
2017-01-01
In one or more embodiments, the present disclosure teaches a method for reconfiguring a solar array. The method involves providing, for the solar array, at least one string of solar cells. The method further involves deactivating at least a portion of at least one of the strings of solar cells of the solar array when power produced by the solar array reaches a maximum power allowance threshold. In addition, the method involves activating at least a portion of at least one of the strings of the solar cells in the solar array when the power produced by the solar array reaches a minimum power allowance threshold.
NASA Astrophysics Data System (ADS)
Ahn, Chang-Geun; Ah, Chil Seong; Kim, Tae-Youb; Park, Chan Woo; Yang, Jong-Heon; Kim, Ansoon; Sung, Gun Yong
2010-09-01
This paper introduces a photosensitive biosensor array system with a simple photodiode array that detects photocurrent changes caused by reactions between probe and target molecules. Using optical addressing, the addressing circuit on the array chip is removed for low-cost application, and real cell addressing is achieved using an externally located computer-controllable light-emitting diode array module. The fabricated biosensor array chip shows a good dynamic range of 1-100 ng/mL under prostate-specific antigen detection, with an on-chip resolution of roughly 1 ng/mL.
Design and fabrication of microstrip antenna arrays
NASA Technical Reports Server (NTRS)
1978-01-01
A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.
Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.
International ultraviolet explorer solar array power degradation
NASA Technical Reports Server (NTRS)
Day, J. H., Jr.
1983-01-01
The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.
Passive magnetic bearing for a horizontal shaft
Post, Richard F.
2003-12-02
A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.
Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen
2015-11-01
Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.
Photovoltaic array: Power conditioner interface characteristics
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.
1982-01-01
The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.
Zhao, Xiaoyu; Wen, Jiahong; Zhang, Mengning; Wang, Dunhui; Wang, Yaxin; Chen, Lei; Zhang, Yongjun; Yang, Jinghai; Du, Youwei
2017-03-01
An easy-handling and low-cost method is utilized to controllably fabricate nanopattern arrays as the surface-enhanced Raman scattering (SERS) active substrates with high density of SERS-active areas (hot spots). A hybrid silver array of nanocaps and nanotriangles are prepared by combining magnetron sputtering and plasma etching. By adjusting the etching time of polystyrene (PS) colloid spheres array in silver nanobowls, the morphology of the arrays can be easily manipulated to control the formation and distribution of hot spots. The experimental results show that the hybrid nanostructural arrays have large enhancement factor, which is estimated to be seven times larger than that in the array of nanocaps and three times larger than that in the array of nanorings and nanoparticles. According to the results of finite-difference time-domain simulation, the excellent SERS performance of this array is ascribed to the high density of hot spots and enhanced electromagnetic field.
Optimal Configuration of PV System with Different Solar Cell Arrays
NASA Astrophysics Data System (ADS)
Machida, Sadayuki; Tani, Tatsuo
Photovoltaic (PV) power generation is spreading steadily, and the dispersed PV array system is increasing from the architectural restrictions. In the case of dispersed array system, if the arrays are installed in a different azimuth or if the module that constitutes array is different, mismatching loss will be generated when a single inverter is used to convert the output of arrays, because of the difference of optimal operating voltage. The loss is related to the array configuration. However the relation between array configuration and power generation output is not clear. In order to avoid generation of mismatching loss, introducing a distributed inverter system such as string inverter system or AC modules system is considered. However it is not clear which is more advantageous between a distributed system and a concentrated system. In this paper, we verified the output characteristics of two different solar cell arrays with various strings, azimuths and tilt angles, and clarified the relation between array configuration and power generation output by the computer simulations. We also compared the distributed inverter system with the concentrated inverter system, and clarified the optimal configuration of PV system with different solar cell arrays.
Implementation of a Virtual Microphone Array to Obtain High Resolution Acoustic Images
Izquierdo, Alberto; Suárez, Luis; Suárez, David
2017-01-01
Using arrays with digital MEMS (Micro-Electro-Mechanical System) microphones and FPGA-based (Field Programmable Gate Array) acquisition/processing systems allows building systems with hundreds of sensors at a reduced cost. The problem arises when systems with thousands of sensors are needed. This work analyzes the implementation and performance of a virtual array with 6400 (80 × 80) MEMS microphones. This virtual array is implemented by changing the position of a physical array of 64 (8 × 8) microphones in a grid with 10 × 10 positions, using a 2D positioning system. This virtual array obtains an array spatial aperture of 1 × 1 m2. Based on the SODAR (SOund Detection And Ranging) principle, the measured beampattern and the focusing capacity of the virtual array have been analyzed, since beamforming algorithms assume to be working with spherical waves, due to the large dimensions of the array in comparison with the distance between the target (a mannequin) and the array. Finally, the acoustic images of the mannequin, obtained for different frequency and range values, have been obtained, showing high angular resolutions and the possibility to identify different parts of the body of the mannequin. PMID:29295485
NASA Astrophysics Data System (ADS)
Kang, Joo H.; Driscoll, Harry; Super, Michael; Ingber, Donald E.
2016-05-01
Here, we describe a versatile application of a planar Halbach permanent magnet array for an efficient long-range magnetic separation of living cells and microparticles over distances up to 30 mm. A Halbach array was constructed from rectangular bar magnets using 3D-printed holders and compared to a conventional alternating array of identical magnets. We theoretically predicted the superiority of the Halbach array for a long-range magnetic separation and then experimentally validated that the Halbach configuration outperforms the alternating array for isolating magnetic microparticles or microparticle-bound bacterial cells at longer distances. Magnetophoretic velocities (ymag) of magnetic particles (7.9 μm diameter) induced by the Halbach array in a microfluidic device were significantly higher and extended over a larger area than those induced by the alternating magnet array (ymag = 178 versus 0 μm/s at 10 mm, respectively). When applied to 50 ml tubes (˜30 mm diameter), the Halbach array removed >95% of Staphylococcus aureus bacterial cells bound with 1 μm magnetic particles compared to ˜70% removed using the alternating array. In addition, the Halbach array enabled manipulation of 1 μm magnetic beads in a deep 96-well plate for ELISA applications, which was not possible with the conventional magnet arrays. Our analysis demonstrates the utility of the Halbach array for the future design of devices for high-throughput magnetic separations of cells, molecules, and toxins.
A comparison of two mobile electrode arrays for increasing mortality of Lake Trout embryos
Brown, Peter J.; Guy, Christopher S.; Meeuwig, Michael H.
2017-01-01
Conservation of sport fisheries and populations of several native fishes in the western United States is dependent on sustained success of removal programs targeting invasive Lake Trout Salvelinus namaycush. Gill-netting of spawning adults is one strategy used to decrease spawning success; however, additional complementary methods are needed to disrupt Lake Trout reproduction where bycatch in gill nets is unacceptable. We developed and tested two portable electrode arrays designed to increase Lake Trout embryo mortality in known spawning areas. Both arrays were powered by existing commercial electrofishing equipment. However, one array was moved across the substrate to simulate being towed behind a boat (i.e., towed array), while the other array was lowered from a boat and energized when sedentary (i.e., sedentary array). The arrays were tested on embryos placed within substrates of known spawning areas. Both arrays increased mortality of embryos (>90%) at the surface of substrates, but only the sedentary array was able to increase mortality to >90% at deeper burial depths. In contrast, embryos at increasingly deeper depths exhibited progressively lower mortality when exposed to the towed array. Mortality of embryos placed under 20 cm of substrate and exposed to the towed array was not significantly different from that of unexposed embryos in a control group. We suggest that the sedentary array could be used as a viable approach for increasing mortality of Lake Trout embryos buried to 20 cm and that it could be modified to be effective at deeper depths.
Consortium Developed Arrays Infinium Human Drug Core Array The Illumina nfinium DrugDev Consortium array drug target discovery, validation and treatment response. Detailed Information on Array Infinium Human
Accurate traveltime computation in complex anisotropic media with discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Le Bouteiller, P.; Benjemaa, M.; Métivier, L.; Virieux, J.
2017-12-01
Travel time computation is of major interest for a large range of geophysical applications, among which source localization and characterization, phase identification, data windowing and tomography, from decametric scale up to global Earth scale.Ray-tracing tools, being essentially 1D Lagrangian integration along a path, have been used for their efficiency but present some drawbacks, such as a rather difficult control of the medium sampling. Moreover, they do not provide answers in shadow zones. Eikonal solvers, based on an Eulerian approach, have attracted attention in seismology with the pioneering work of Vidale (1988), while such approach has been proposed earlier by Riznichenko (1946). They have been used now for first-arrival travel-time tomography at various scales (Podvin & Lecomte (1991). The framework for solving this non-linear partial differential equation is now well understood and various finite-difference approaches have been proposed, essentially for smooth media. We propose a novel finite element approach which builds a precise solution for strongly heterogeneous anisotropic medium (still in the limit of Eikonal validity). The discontinuous Galerkin method we have developed allows local refinement of the mesh and local high orders of interpolation inside elements. High precision of the travel times and its spatial derivatives is obtained through this formulation. This finite element method also honors boundary conditions, such as complex topographies and absorbing boundaries for mimicking an infinite medium. Applications from travel-time tomography, slope tomography are expected, but also for migration and take-off angles estimation, thanks to the accuracy obtained when computing first-arrival times.References:Podvin, P. and Lecomte, I., 1991. Finite difference computation of traveltimes in very contrasted velocity model: a massively parallel approach and its associated tools, Geophys. J. Int., 105, 271-284.Riznichenko, Y., 1946. Geometrical seismics of layered media, Trudy Inst. Theor. Geophysics, Vol II, Moscow (in Russian).Vidale, J., 1988. Finite-difference calculation of travel times, Bull. seism. Soc. Am., 78, 2062-2076.
NASA Astrophysics Data System (ADS)
Van Vliet-Lanoë, B.; Bonnet, S.; Hallegouët, B.; Laurent, M.
1997-09-01
In Brittany and SW England, evidence for low magnitude Quaternary seismicity can be found in sand pit exposures and beach sections. Deformation is especially well seen in alluvial and estuarine complexes resting on Late Pliocene sands or thick saprolite. The deformations are shallow, dominantly hydroplastic (high water-table) and led to overconsolidated sands, silts or clays. They reveal normal loading at micro (millimetric) and macro (decametric) scales as controlled by the local rheological properties of the sediments, by strikeslip faults associated with positive flower structures, folding, and intraformational water expulsion or hill slope sliding with reverse microfaulting. All the sites where these features occur, are in the vicinity of presumed active faults or steep slopes in highly fractured Proterozoic basement rocks indicating a possible shear zone. In most cases, these features are not associated with synsedimentary deformation, as strong superficial red soils are generally reworked by them. All these features are reworked by microfaulting after overconsolidation. Additional periglacial phenomena are superimposed on them and are often confused with them. Deformation occurred after the development of Holstenian peats (isotopic stage 11,400 ka BP) at Crozon (Brittany), after 317 ka BP (beginning of isotopic stage 9) in the Vilaine estuary, and in most other sites before the last rubified pedogenesis in the Middle Pleistocene (presumed isotopic stage 9). These dates correspond to the same episode that gave rise to the last main reactivation of the fossil cliff around 300 ka BP and to local uplift. One or several seismic clusters have taken place, probably due to delayed crustal rebound after a major glacial event (stage 10) and to rapid loading resulting from younger ice sheet growth (stage 8). Similar events occurred in late stage 7 and late stage 5. These events might have locally amplified the crustal deformation of the old Brittany and Cornubian Hercynian massifs resulting from a regional stress field especially from 400 ka to 200 ka BP. Stratigraphical, geodynamical and paleoclimatological implications are discussed.
The impact of an ICME on the Jovian X-ray aurora.
Dunn, William R; Branduardi-Raymont, Graziella; Elsner, Ronald F; Vogt, Marissa F; Lamy, Laurent; Ford, Peter G; Coates, Andrew J; Gladstone, G Randall; Jackman, Caitriona M; Nichols, Jonathan D; Rae, I Jonathan; Varsani, Ali; Kimura, Tomoki; Hansen, Kenneth C; Jasinski, Jamie M
2016-03-01
We report the first Jupiter X-ray observations planned to coincide with an interplanetary coronal mass ejection (ICME). At the predicted ICME arrival time, we observed a factor of ∼8 enhancement in Jupiter's X-ray aurora. Within 1.5 h of this enhancement, intense bursts of non-Io decametric radio emission occurred. Spatial, spectral, and temporal characteristics also varied between ICME arrival and another X-ray observation two days later. Gladstone et al. (2002) discovered the polar X-ray hot spot and found it pulsed with 45 min quasiperiodicity. During the ICME arrival, the hot spot expanded and exhibited two periods: 26 min periodicity from sulfur ions and 12 min periodicity from a mixture of carbon/sulfur and oxygen ions. After the ICME, the dominant period became 42 min. By comparing Vogt et al. (2011) Jovian mapping models with spectral analysis, we found that during ICME arrival at least two distinct ion populations, from Jupiter's dayside, produced the X-ray aurora. Auroras mapping to magnetospheric field lines between 50 and 70 R J were dominated by emission from precipitating sulfur ions (S 7+,…,14+ ). Emissions mapping to closed field lines between 70 and 120 R J and to open field lines were generated by a mixture of precipitating oxygen (O 7+,8+ ) and sulfur/carbon ions, possibly implying some solar wind precipitation. We suggest that the best explanation for the X-ray hot spot is pulsed dayside reconnection perturbing magnetospheric downward currents, as proposed by Bunce et al. (2004). The auroral enhancement has different spectral, spatial, and temporal characteristics to the hot spot. By analyzing these characteristics and coincident radio emissions, we propose that the enhancement is driven directly by the ICME through Jovian magnetosphere compression and/or a large-scale dayside reconnection event.
High-voltage space-plasma interactions measured on the PASP Plus test arrays
NASA Astrophysics Data System (ADS)
Guidice, Donald A.
1995-10-01
The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).
High-voltage space-plasma interactions measured on the PASP Plus test arrays
NASA Technical Reports Server (NTRS)
Guidice, Donald A.
1995-01-01
The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).
Space Plasma Shown to Make Satellite Solar Arrays Fail
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
1999-01-01
In 1997, scientists and engineers of the Photovoltaic and Space Environments Branch of the NASA Lewis Research Center, Maxwell Technologies, and Space Systems/Loral discovered a new failure mechanism for solar arrays on communications satellites in orbit. Sustained electrical arcs, initiated by the space plasma and powered by the solar arrays themselves, were found to have destroyed solar array substrates on some Space Systems/Loral satellites, leading to array failure. The mechanism was tested at Lewis, and mitigation strategies were developed to prevent such disastrous occurrences on-orbit in the future. Deep Space 1 is a solar-electric-powered space mission to a comet, launched on October 24, 1998. Early in 1998, scientists at Lewis and Ballistic Missile Defense Organization (BMDO) realized that some aspects of the Deep Space 1 solar arrays were nearly identical to those that had led to the failure of solar arrays on Space Systems/Loral satellites. They decided to modify the Deep Space 1 arrays to prevent catastrophic failure in space. The arrays were suitably modified and are now performing optimally in outer space. Finally, the Earth Observing System (EOS) AM1, scheduled for launch in mid-1999, is a NASA mission managed by the Goddard Space Flight Center. Realizing the importance of Lewis testing on the Loral arrays, EOS-AM1 management asked Lewis scientists to test their solar arrays to show that they would not fail in the same way. The first phase of plasma testing showed that sustained arcing would occur on the unmodified EOS-AM1 arrays, so the arrays were removed from the spacecraft and fixed. Now, Lewis scientists have finished plasma testing of the modified array configuration to ensure that EOS-AM1 will have no sustained arcing problems on-orbit.
Shielding in ungated field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. R.; Jensen, K. L.; Shiffler, D. A.
Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can bemore » used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.« less
Zhu, Yuerong; Zhu, Yuelin; Xu, Wei
2008-01-01
Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103
Optimal shortening of uniform covering arrays
Rangel-Valdez, Nelson; Avila-George, Himer; Carrizalez-Turrubiates, Oscar
2017-01-01
Software test suites based on the concept of interaction testing are very useful for testing software components in an economical way. Test suites of this kind may be created using mathematical objects called covering arrays. A covering array, denoted by CA(N; t, k, v), is an N × k array over Zv={0,…,v-1} with the property that every N × t sub-array covers all t-tuples of Zvt at least once. Covering arrays can be used to test systems in which failures occur as a result of interactions among components or subsystems. They are often used in areas such as hardware Trojan detection, software testing, and network design. Because system testing is expensive, it is critical to reduce the amount of testing required. This paper addresses the Optimal Shortening of Covering ARrays (OSCAR) problem, an optimization problem whose objective is to construct, from an existing covering array matrix of uniform level, an array with dimensions of (N − δ) × (k − Δ) such that the number of missing t-tuples is minimized. Two applications of the OSCAR problem are (a) to produce smaller covering arrays from larger ones and (b) to obtain quasi-covering arrays (covering arrays in which the number of missing t-tuples is small) to be used as input to a meta-heuristic algorithm that produces covering arrays. In addition, it is proven that the OSCAR problem is NP-complete, and twelve different algorithms are proposed to solve it. An experiment was performed on 62 problem instances, and the results demonstrate the effectiveness of solving the OSCAR problem to facilitate the construction of new covering arrays. PMID:29267343
Effect of central obscuration on the LDR point spread function
NASA Technical Reports Server (NTRS)
Vanzyl, Jakob J.
1988-01-01
It is well known that Gaussian apodization of an aperture reduces the sidelobe levels of its point spread function (PSF). In the limit where the standard deviation of the Gaussian function is much smaller than the diameter of the aperture, the sidelobes completely disappear. However, when Gaussian apodization is applied to the Large Deployable Reflector (LDR) array consisting of 84 hexagonal panels, it is found that the sidelobe level only decreases by about 2.5 dB. The reason for this is explained. The PSF is shown for an array consisting of 91 uniformly illuminated hexagonal apertures; this array is identical to the LDR array, except that the central hole in the LDR array is filled with seven additional panels. For comparison, the PSF of the uniformly illuminated LDR array is shown. Notice that it is already evident that the sidelobe structure of the LDR array is different from that of the full array of 91 panels. The PSF's of the same two arrays are shown, but with the illumination apodized with a Gaussian function to have 20 dB tapering at the edges of the arrays. While the sidelobes of the full array have decreased dramatically, those of the LDR array changed in structure, but stayed at almost the same level. This result is not completely surprising, since the Gaussian apodization tends to emphasize the contributions from the central portion of the array; exactly where the hole in the LDR array is located. The two most important conclusions are: the size of the central hole should be minimized, and a simple Gaussian apodization scheme to suppress the sidelobes in the PSF should not be used. A more suitable apodization scheme would be a Gaussian annular ring.
NASA Astrophysics Data System (ADS)
Bader, Rolf
This chapter deals with microphone arrays. It is arranged according to the different methods available to proceed through the different problems and through the different mathematical methods. After discussing general properties of different array types, such as plane arrays, spherical arrays, or scanning arrays, it proceeds to the signal processing tools that are most used in speech processing. In the third section, backpropagating methods based on the Helmholtz-Kirchhoff integral are discussed, which result in spatial radiation patterns of vibrating bodies or air.
Ballistic Impact Resistance of Multi-Layer Textile Fabrics
1981-10-01
REBOT (NNOLA, NVAR). the first array contains the vector of forces externally applied to the ’ top surface of the layer under consideration, while the...array REBOT (NNOLA, NVAR) contains the forces externally applied to the lower surface of the array. Initially all the elements of each of the two arrays...Qodes in a layer, the contents of array REBOT are now replaced with those of array RETOP in preparation for the repetition of the same calculations for
The hyperion particle-γ detector array
Hughes, R. O.; Burke, J. T.; Casperson, R. J.; ...
2017-03-08
Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. In conclusion, this article discusses the features of the array and presents data collected with the array in the commissioning experiment.
Fu, Chi-Yung; Petrich, Loren I.
1997-01-01
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.
Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M
2015-11-17
The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.
Fu, C.Y.; Petrich, L.I.
1997-03-25
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.
A Fourier Method for Sidelobe Reduction in Equally Spaced Linear Arrays
NASA Astrophysics Data System (ADS)
Safaai-Jazi, Ahmad; Stutzman, Warren L.
2018-04-01
Uniformly excited, equally spaced linear arrays have a sidelobe level larger than -13.3 dB, which is too high for many applications. This limitation can be remedied by nonuniform excitation of array elements. We present an efficient method for sidelobe reduction in equally spaced linear arrays with low penalty on the directivity. The method involves the following steps: construction of a periodic function containing only the sidelobes of the uniformly excited array, calculation of the Fourier series of this periodic function, subtracting the series from the array factor of the original uniformly excited array after it is truncated, and finally mitigating the truncation effects which yields significant increase in sidelobe level reduction. A sidelobe reduction factor is incorporated into element currents that makes much larger sidelobe reductions possible and also allows varying the sidelobe level incrementally. It is shown that such newly formed arrays can provide sidelobe levels that are at least 22.7 dB below those of the uniformly excited arrays with the same size and number of elements. Analytical expressions for element currents are presented. Radiation characteristics of the sidelobe-reduced arrays introduced here are examined, and numerical results for directivity, sidelobe level, and half-power beam width are presented for example cases. Performance improvements over popular conventional array synthesis methods, such as Chebyshev and linear current tapered arrays, are obtained with the new method.
A Flexible Base Electrode Array for Intraspinal Microstimulation
Khaled, I.; Elmallah, S.; Cheng, C.; Moussa, W.A.; Mushahwar, V.K.; Elias, A.L.
2013-01-01
In this paper, we report the development of a flexible base array of penetrating electrodes which can be used to interface with the spinal cord. A customizable and feasible fabrication protocol is described. The flexible base arrays were fabricated and implanted into surrogate cords which were elongated by 12%. The resulting strains were optically measured across the cord and compared to those associated with two types of electrodes arrays (one without a base and one with a rigid base connecting the electrodes). The deformation behavior of cords implanted with the flexible base arrays resembled the behavior of cords implanted with individual microwires that were not connected through a base. The results of the strain test were used to validate a 2D finite element model. The validated model was used to assess the stresses induced by the electrodes of the 3 types of arrays on the cord, and to examine how various design parameters (thickness, base modulus, etc.) impact the mechanical behavior of the electrode array. Rigid base arrays induced higher stresses on the cord than the flexible base arrays which in turn imposed higher stresses than the individual microwire implants. The developed flexible base array showed improvement over the rigid base array; however, its stiffness needs to be further reduced to emulate the mechanical behavior of individual microwire arrays without a base. PMID:23744656
Single-element optical injection locking of diode-laser arrays
Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert
1988-01-01
By optically injecting a single end-element of a semiconductor laser array, both the spatial and spectral emission characteristics of the entire laser array is controlled. With the output of the array locked, the far-field emission angle of the array is continuously scanned over several degrees by varying the injection frequency.
Trumper, D.L.; Kim, W.; Williams, M.E.
1997-05-20
Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.
Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics
2014-01-01
Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°). PMID:25435833
Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.
Kayes, Md Imrul; Leu, Paul W
2014-01-01
Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).
Performance of an underwater acoustic volume array using time-reversal focusing.
Root, Joseph A; Rogers, Peter H
2002-11-01
Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3x3x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications.
Performance of an underwater acoustic volume array using time-reversal focusing
NASA Astrophysics Data System (ADS)
Root, Joseph A.; Rogers, Peter H.
2002-11-01
Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3 x3 x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications. copyright 2002 Acoustical Society of America.
IXO/XMS Detector Trade-Off Study
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline Anne; deKorte, P.; Smith, S.; Hoevers, H.; vdKuur, J.; Ezoe, Y.; Ullom, J.
2010-01-01
This document presents the outcome of the detector trade-off for the XMS instrument on IXO. This trade-off is part of the Cryogenic instrument Phase-A study as proposed to ESA in the Declaration of Interest SRONXMS-PL-2009-003 dated June 6, 2009. The detector consists of two components: a core array for the highest spectral resolution and an outer array to increase the field of view substantially with modest increase in the number of read-out channels. Degraded resolution of the outer array in comparison with the core array is accepted in order to make this scheme possible. The two detector components may be a single unit or separate units. These arrays comprise pixels and the components that allow them to be arrayed. Each pixel comprises a thermometer, an absorber, and the thermal links between them and to the rest of the array. These links may be interfaces or distinct components. The array infrastructure comprises the mechanical structure of the array, the arrangement of the leads, and features added to improve the integrated thermal properties of the array in the focal-plane assembly.
Ultralow-Background Large-Format Bolometer Arrays
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)
2002-01-01
In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.
NASA Technical Reports Server (NTRS)
Kolecki, J. C.; Riley, T. J.
1980-01-01
The suitability of commercial (terrestrial) solar arrays for use in low Earth orbit is examined. It is shown that commercial solar arrays degrade under thermal cycling because of material flexure, and that certain types of silicones used in the construction of these arrays outgas severely. Based on the results, modifications were made. The modified array retains the essential features of typical commercial arrays and can be easily built by commercial fabrication techniques at low cost. The modified array uses a metal tray for containment, but eliminates the high outgassing potting materials and glass cover sheets. Cells are individually mounted with an adhesive and individually covered with glass cover slips, or clear plastic tape. The modified array is found to withstand severe thermal cycling for long intervals of time.
An ANSERLIN array for mobile satellite applications
NASA Technical Reports Server (NTRS)
Colomb, F. Y.; Kunkee, D. B.; Mayes, P. E.; Smith, D. W.; Jamnejad, V.
1990-01-01
Design, analysis, construction, and test of linear arrays of ANSERLIN (annular sector, radiating line) elements are reported and discussed. Due to feeding simplicity and easy construction as well as good CP performance, a planar array composed of a number of such linear arrays each producing a shaped beam tilted in elevation, is a good candidate as a vehicle-mounted mechanically steered antenna for mobile satellite applications. A single level construction technique was developed that makes this type of array very cost competitive with other low-profile arrays. An asymmetric 19.5 inch long four-element array was fabricated and tested with reasonable performance. A smaller five-element symmetric array (16 inch long) was also designed and tested capable of operating in either sense of circular polarization. Efforts were made to successfully reduce this effect.
Methods for utilizing maximum power from a solar array
NASA Technical Reports Server (NTRS)
Decker, D. K.
1972-01-01
A preliminary study of maximum power utilization methods was performed for an outer planet spacecraft using an ion thruster propulsion system and a solar array as the primary energy source. The problems which arise from operating the array at or near the maximum power point of its 1-V characteristic are discussed. Two closed loop system configurations which use extremum regulators to track the array's maximum power point are presented. Three open loop systems are presented that either: (1) measure the maximum power of each array section and compute the total array power, (2) utilize a reference array to predict the characteristics of the solar array, or (3) utilize impedance measurements to predict the maximum power utilization. The advantages and disadvantages of each system are discussed and recommendations for further development are made.
In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.
Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko
2015-03-23
The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.
Microstrip technology and its application to phased array compensation
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.; Daniels, W. D.
1972-01-01
A systematic analysis of mutual coupling compensation using microstrip techniques is presented. A method for behind-the-array coupling of a phased antenna array is investigated as to its feasibility. The matching scheme is tried on a rectangular array of one half lambda 2 dipoles, but it is not limited to this array element or geometry. In the example cited the values of discrete components necessary were so small an L-C network is needed for realization. Such L-C tanks might limit an otherwise broadband array match, however, this is not significant for this dipole array. Other areas investigated were balun feeding and power limits of spiral antenna elements.
Multi-kW solar arrays for Earth orbit applications
NASA Technical Reports Server (NTRS)
1985-01-01
The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.
1980-07-01
WORKI, WORK2, ALOC, and FLAMB . The WORK1 array comprises a number of small arrays which have been read from input and will be utilized throughout the...of the WORK2 array at least as large as the maximum of the two. The size is the same for both the ALOC and FLAMB arrays. The ALOC array stores the...allocation matrix and the FLAMB array is used for the Lagrangian multiplier matrix. Their dimension should be set to 3 x NWPNS x NTGTS, where NTGTS is
Solid state neutron detector array
Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.
1999-01-01
A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.
Means for phase locking the outputs of a surface emitting laser diode array
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor)
1987-01-01
An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.
Array Simulation at the Bearing Stake Sites
1981-04-01
C) The array was generally towed at 300 m depth. Four depth sensors on the array gave depth and tilt. With the exception of Site 1B the array was...Site 2, weights were added to the array to overcome its apparent buoyancy. The depth sensors failed on this run and the actual *ilt is not known. Data...horizontal axis title, " Sensor Group Separation," refers to posicion along che array. It .s equivalent to our simulated receiver depth with shallower
Polarization measurements made on LFRA and OASIS emitter arrays
NASA Astrophysics Data System (ADS)
Geske, Jon; Sparkman, Kevin; Oleson, Jim; Laveigne, Joe; Sieglinger, Breck; Marlow, Steve; Lowry, Heard; Burns, James
2008-04-01
Polarization is increasingly being considered as a method of discrimination in passive sensing applications. In this paper the degree of polarization of the thermal emission from the emitter arrays of two new Santa Barbara Infrared (SBIR) micro-bolometer resistor array scene projectors was characterized at ambient temperature and at 77 K. The emitter arrays characterized were from the Large Format Resistive Array (LFRA) and the Optimized Arrays for Space-Background Infrared Simulation (OASIS) scene projectors. This paper reports the results of this testing.
Method and apparatus for control of a magnetic structure
Challenger, Michael P.; Valla, Arthur S.
1996-06-18
A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.
Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Brooks, Thomas F.; Hunter, William W., Jr.; Meadows, Kristine R.
1998-01-01
An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures.
High-performance, flexible, deployable array development for space applications
NASA Technical Reports Server (NTRS)
Gehling, Russell N.; Armstrong, Joseph H.; Misra, Mohan S.
1994-01-01
Flexible, deployable arrays are an attractive alternative to conventional solar arrays for near-term and future space power applications, particularly due to their potential for high specific power and low storage volume. Combined with low-cost flexible thin-film photovoltaics, these arrays have the potential to become an enabling or an enhancing technology for many missions. In order to expedite the acceptance of thin-film photovoltaics for space applications, however, parallel development of flexible photovoltaics and the corresponding deployable structure is essential. Many innovative technologies must be incorporated in these arrays to ensure a significant performance increase over conventional technologies. For example, innovative mechanisms which employ shape memory alloys for storage latches, deployment mechanisms, and array positioning gimbals can be incorporated into flexible array design with significant improvement in the areas of cost, weight, and reliability. This paper discusses recent activities at Martin Marietta regarding the development of flexible, deployable solar array technology. Particular emphasis is placed on the novel use of shape memory alloys for lightweight deployment elements to improve the overall specific power of the array. Array performance projections with flexible thin-film copper-indium-diselenide (CIS) are presented, and government-sponsored solar array programs recently initiated at Martin Marietta through NASA and Air Force Phillips Laboratory are discussed.
Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes
NASA Astrophysics Data System (ADS)
Tong, Hao; Li, Yong; Zhang, Long
2018-02-01
Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.
ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays
NASA Technical Reports Server (NTRS)
Vasile, Stefan; Lipson, Jerold
2012-01-01
The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.
Superconducting Bolometer Array Architectures
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)
2002-01-01
The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.
NASA Technical Reports Server (NTRS)
Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.
2002-01-01
The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.
Developing an Inflatable Solar Array
NASA Technical Reports Server (NTRS)
Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.
1992-01-01
Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.
Coded aperture imaging with uniformly redundant arrays
Fenimore, Edward E.; Cannon, Thomas M.
1980-01-01
A system utilizing uniformly redundant arrays to image non-focusable radiation. The uniformly redundant array is used in conjunction with a balanced correlation technique to provide a system with no artifacts such that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. Additionally, the array is mosaicked to reduce required detector size over conventional array detectors.
Coded aperture imaging with uniformly redundant arrays
Fenimore, Edward E.; Cannon, Thomas M.
1982-01-01
A system utilizing uniformly redundant arrays to image non-focusable radiation. The uniformly redundant array is used in conjunction with a balanced correlation technique to provide a system with no artifacts such that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. Additionally, the array is mosaicked to reduce required detector size over conventional array detectors.
Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.
Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya
2018-04-10
In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.
Optimization of the Hartmann-Shack microlens array
NASA Astrophysics Data System (ADS)
de Oliveira, Otávio Gomes; de Lima Monteiro, Davies William
2011-04-01
In this work we propose to optimize the microlens-array geometry for a Hartmann-Shack wavefront sensor. The optimization makes possible that regular microlens arrays with a larger number of microlenses are replaced by arrays with fewer microlenses located at optimal sampling positions, with no increase in the reconstruction error. The goal is to propose a straightforward and widely accessible numerical method to calculate an optimized microlens array for a known aberration statistics. The optimization comprises the minimization of the wavefront reconstruction error and/or the number of necessary microlenses in the array. We numerically generate, sample and reconstruct the wavefront, and use a genetic algorithm to discover the optimal array geometry. Within an ophthalmological context, as a case study, we demonstrate that an array with only 10 suitably located microlenses can be used to produce reconstruction errors as small as those of a 36-microlens regular array. The same optimization procedure can be employed for any application where the wavefront statistics is known.
Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays
Hong, Yan; Reinhard, Björn M.
2014-10-27
Coherent scattering of gold and silver nanoparticles (NPs) in regular arrays can generate Surface Lattice Resonances (SLRs) with characteristically sharp spectral features. Herein, we investigate collective resonances in compositionally more complex arrays comprising NP clusters and NPs with different chemical compositions at pre-defined lattice sites. We first characterize the impact of NP clustering by exchanging individual gold NPs in the array through dimers of electromagnetically strongly coupled gold NPs. Then, we analyze hybrid arrays that contain both gold metal NP dimers and high refractive index dielectric NPs as building blocks. We demonstrate that the integration of gold NP clusters andmore » dielectric NPs into one array enhances E-field intensities not only in the vicinity of the NPs but also in the ambient medium of the entire array. In addition, this work shows that the ability to integrate multiple building blocks with different resonance conditions in one array provides new degrees of freedom for engineering optical fields in the array plane with variable amplitude and phase.« less
Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays
NASA Astrophysics Data System (ADS)
Xu, Y. N.; Liu, M. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.
2015-10-01
Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load-displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed.
Similar Tensor Arrays - A Framework for Storage of Tensor Array Data
NASA Astrophysics Data System (ADS)
Brun, Anders; Martin-Fernandez, Marcos; Acar, Burak; Munoz-Moreno, Emma; Cammoun, Leila; Sigfridsson, Andreas; Sosa-Cabrera, Dario; Svensson, Björn; Herberthson, Magnus; Knutsson, Hans
This chapter describes a framework for storage of tensor array data, useful to describe regularly sampled tensor fields. The main component of the framework, called Similar Tensor Array Core (STAC), is the result of a collaboration between research groups within the SIMILAR network of excellence. It aims to capture the essence of regularly sampled tensor fields using a minimal set of attributes and can therefore be used as a “greatest common divisor” and interface between tensor array processing algorithms. This is potentially useful in applied fields like medical image analysis, in particular in Diffusion Tensor MRI, where misinterpretation of tensor array data is a common source of errors. By promoting a strictly geometric perspective on tensor arrays, with a close resemblance to the terminology used in differential geometry, (STAC) removes ambiguities and guides the user to define all necessary information. In contrast to existing tensor array file formats, it is minimalistic and based on an intrinsic and geometric interpretation of the array itself, without references to other coordinate systems.
New Voltage and Current Thresholds Determined for Sustained Space Plasma Arcing
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Galofaro, Joel T.; Vayner, Boris V.
2003-01-01
It has been known for many years, based partly on NASA Glenn Research Center testing, that high-voltage solar arrays arc into the space plasma environment. Solar arrays are composed of solar cells in series with each other (a string), and the strings may be connected in parallel to produce the entire solar array power. Arcs on solar arrays can damage or destroy solar cells, and in the extreme case of sustained arcing, entire solar array strings, in a flash. In the case of sustained arcing (discovered at Glenn and applied to the design and construction of solar arrays on Space Systems/Loral (SS/Loral, Palo Alto, CA) satellites, Deep-Space 1, and Terra), an arc on one solar array string can couple to an adjacent string and continue to be powered by the solar array output until a permanent electrical short is produced. In other words, sustained arcs produced by arcs into the plasma (so-called trigger arcs) may turn into disastrous sustained arcs by involving other array strings.
Damage imaging using Lamb waves for SHM applications
NASA Astrophysics Data System (ADS)
Stepinski, Tadeusz; Ambroziński, Łukasz; Uhl, Tadeusz
2015-03-01
2-D ultrasonic arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for the inspection of plate-like structures using Lamb waves (LW). Contrary to the classical linear phased arrays (PAs) the 2D arrays enable unequivocal defect localization and they are even capable of mode selectivity of the received LWs . Recently, it has been shown that multistatic synthetic focusing (SF) algorithms applied for 2D arrays are much more effective than the classical phase array mode commonly used in NDT. The multistatic SF assumes multiple transmissions of elements in a transmitting aperture and off-line processing of the data acquired by a receiving aperture. In the simplest implementation of the technique, only a single multiplexed input and a number of output channels are required, which results in significant hardware simplification compared with the PA systems. On the one hand implementation of the multistatic SF to 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process. On the other hand, it enables designing sparse arrays with performance similar to that of the fully populated dense arrays. In this paper we present a general systematic approach to the design and optimization of imaging systems based on the 2D array operating in the multistatic mode. We start from presenting principles of the SF schemes applied to LW imaging. Then, we outline the coarray concept and demonstrate how it can be used for reducing number of elements of the 2D arrays. Finally, efficient tools for the investigation and experimental verification of the designed 2D array prototypes are presented. The first step in the investigation is theoretical evaluation performed using frequency-dependent structure transfer function (STF), which enables approximate simulation of an array excited with a tone-burst in a dispersive medium. Finally, we show how scanning laser vibrometer, sensing waves in multiple points corresponding to the locations of the 2D receiving array elements, can be used as a tool for rapid experimental verification of the developed topologies. The presented methods are discussed in terms of the beampatterns and sparse versions of the fully populated array topologies are be presented. The effect of apodization applied to the array elements is also investigated. Both simulated and experimental results are included.
Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.
2006-04-04
An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.
Photonic Waveguide Choke Joint with Non-Absorptive Loading
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)
2016-01-01
A waveguide choke joint includes a first array of pillars positioned on a substrate, each pillar in the first array of pillars having a first size and configured to receive an input plane wave at a first end of the choke joint. The choke joint has a second end configured to transmit the input plane wave away from the choke joint. The choke joint further includes a second array of pillars positioned on the substrate between the first array of pillars and the second end of the choke joint. Each pillar in the second array of pillars has a second size. The choke joint also has a third array of pillars positioned on the substrate between the second array and the second end of the choke joint. Each pillar in the third array of pillars has a third size.
Force sensitive carbon nanotube arrays for biologically inspired airflow sensing
NASA Astrophysics Data System (ADS)
Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.
2012-09-01
The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.
Fly's eye condenser based on chirped microlens arrays
NASA Astrophysics Data System (ADS)
Wippermann, Frank C.; Zeitner, Uwe-D.; Dannberg, Peter; Bräuer, Andreas; Sinzinger, Stefan
2007-09-01
Lens array arrangements are commonly used for the beam shaping of almost arbitrary input intensity distributions into a top-hat. The setup usually consists of a Fourier lens and two identical regular microlens arrays - often referred to as tandem lens array - where the second one is placed in the focal plane of the first microlenses. Due to the periodic structure of regular arrays the output intensity distribution is modulated by equidistant sharp intensity peaks which are disturbing the homogeneity. The equidistantly located intensity peaks can be suppressed when using a chirped and therefore non-periodic microlens array. A far field speckle pattern with more densely and irregularly located intensity peaks results leading to an improved homogeneity of the intensity distribution. In contrast to stochastic arrays, chirped arrays consist of individually shaped lenses defined by a parametric description of the cells optical function which can be derived completely from analytical functions. This gives the opportunity to build up tandem array setups enabling to achieve far field intensity distribution with an envelope of a top-hat. We propose a new concept for fly's eye condensers incorporating a chirped tandem microlens array for the generation of a top-hat far field intensity distribution with improved homogenization under coherent illumination. The setup is compliant to reflow of photoresist as fabrication technique since plane substrates accommodating the arrays are used. Considerations for the design of the chirped microlens arrays, design rules, wave optical simulations and measurements of the far field intensity distributions are presented.
Array Simulations Platform (ASP) predicts NASA Data Link Module (NDLM) performance
NASA Technical Reports Server (NTRS)
Snook, Allen David
1993-01-01
Through a variety of imbedded theoretical and actual antenna patterns, the array simulation platform (ASP) enhanced analysis of the array antenna pattern effects for the KTx (Ku-Band Transmit) service of the NDLM (NASA Data Link Module). The ASP utilizes internally stored models of the NDLM antennas and can develop the overall pattern of antenna arrays through common array calculation techniques. ASP expertly assisted in the diagnosing of element phase shifter errors during KTx testing and was able to accurately predict the overall array pattern from combinations of the four internally held element patterns. This paper provides an overview of the use of the ASP software in the solving of array mis-phasing problems.
Li, Jisheng; Xin, Xiaohu; Luo, Yongfen; Ji, Haiying; Li, Yanming; Deng, Junbo
2013-11-01
A conformal combined sensor is designed and it is used in Partial Discharge (PD) location experiments in transformer oil. The sensor includes a cross-shaped ultrasonic phased array of 13 elements and an ultra-high-frequency (UHF) electromagnetic rectangle array of 2 × 2 elements. Virtual expansion with high order cumulants, the ultrasonic array can achieve the effect of array with 61 elements. This greatly improves the aperture and direction sharpness of original array and reduces the cost of follow-up hardware. With the cross-shaped ultrasonic array, the results of PD location experiments are precise and the maximum error of the direction of arrival (DOA) is less than 5°.
Solar array study for solar electric propulsion spacecraft for the Encke rendezvous mission
NASA Technical Reports Server (NTRS)
Sequeira, E. A.; Patterson, R. E.
1974-01-01
The work is described which was performed on the design, analysis and performance of a 20 kW rollup solar array capable of meeting the design requirements of a solar electric spacecraft for the 1980 Encke rendezvous mission. To meet the high power requirements of the proposed electric propulsion mission, solar arrays on the order of 186.6 sq m were defined. Because of the large weights involved with arrays of this size, consideration of array configurations is limited to lightweight, large area concepts with maximum power-to-weight ratios. Items covered include solar array requirements and constraints, array concept selection and rationale, structural and electrical design considerations, and reliability considerations.
Determining the Location of an Observer with Respect to Aerial Photographs
1988-12-01
at gradient-array (+ 1 j) (+ k I)) threshold) (mett (arot temp-array 1 k) O)M (cond (4- tarot temp-array I k) 1) Isetq sum (* sum tempt 2 (+ I (* 3 k)f...aetq num-edges (+ num-edges 1)))))) (setf taret unique-index-num-array j 1) sum) tsett tarot num-edges-array j 1) num-edges))))) 1 This function
Reproducible, high performance patch antenna array apparatus and method of fabrication
Strassner, II, Bernd H.
2007-01-23
A reproducible, high-performance patch antenna array apparatus includes a patch antenna array provided on a unitary dielectric substrate, and a feed network provided on the same unitary substrate and proximity coupled to the patch antenna array. The reproducibility is enhanced by using photolithographic patterning and etching to produce both the patch antenna array and the feed network.
Optimizing Satellite Communications With Adaptive and Phased Array Antennas
NASA Technical Reports Server (NTRS)
Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan
2004-01-01
A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.
Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.
Kang, Dongyel; Kupinski, Matthew A
2011-06-20
We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.
Far infrared through millimeter backshort-under-grid arrays
NASA Astrophysics Data System (ADS)
Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.
2006-06-01
We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.
Novel fabrication method of microlens arrays with High OLED outcoupling efficiency
NASA Astrophysics Data System (ADS)
Kim, Hyun Soo; Moon, Seong Il; Hwang, Dong Eui; Jeong, Ki Won; Kim, Chang Kyo; Moon, Dae-Gyu; Hong, Chinsoo
2016-03-01
We presented a novel fabrication method of pyramidal and hemispherical polymethylmethacrylate (PMMA) microlens arrays to improve the outcoupling efficiency. Pyramidal microlens arrays were fabricated by replica molding processes using concave-pyramidal silicon molds prepared by the wet etching method. Concave-hemispherical PMMA thin film was used as a template for fabrication of the hemispherical microlens array. The concave-hemispherical PMMA template was prepared by blowing a N2 gas stream onto the thin PMMA film suspended on a silicon pedestal. A PMMA microlens arrays with hemispherical structure were fabricated by a replica molding process. The outcoupling efficiency of the hemispherical microlens array was greater than that of the pyramidal microlens array. The outcoupling efficiency of hemispherical microlens arrays with a higher contact angle was larger than that of those with lower contact angle. This indicates that, for the hemispherical microlens with larger contact angle, more light can be extracted from the OLEDs due to the decrease in the incident angle of the light at the interface between an air and a hemispherical microlens arrays. After attaching a hemispherical microlens array with contact angle of 50.4° onto the OLEDs, the luminance was enhanced by approximately 117%.
Compression dynamics of quasi-spherical wire arrays with different linear mass profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.
Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m{sub l}(θ) ∝ sin{sup –1}θ and m{sub l}(θ) ∝ sin{sup –2}θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear massmore » profiling, m{sub l}(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m{sub l}(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.« less
NASA Astrophysics Data System (ADS)
Martel, Ralph R.; Rounseville, Matthew P.; Botros, Ihab W.; Seligmann, Bruce E.
2002-06-01
Multiplexed Molecular Profiling (MMP) assays for drug discovery are performed in ArrayPlates. ArrayPlates are 96- well microtiter plates that contain a 16-element array at the bottom of each well. Each element within an array measures one analyte in a sample. A CCD imager records the quantitative chemiluminescent readout of all 1,536 elements in a 96-well plate simultaneously. Since array elements are reagent modifiable by the end-user, ArrayPlates can be adapted to a broad range of nucleic acid- and protein-based assays. Such multiplexed assays are rapidly established, flexible, robust, automation-friendly and cost-effective. Nucleic acid assays in ArrayPlates can detect DNA and RNA, including SNPs and ESTs. A multiplexed mRNA assay to measure the expression of 16 genes is described. The assay combines a homogeneous nuclease protection assay with subsequent probe immobilization to the array by means of a sandwich hybridization followed with chemiluminescent detection. This assay was used to examine cells grown and treated in microplates and avoided cloning, transfection, RNA insolation, reverse transcription, amplification and fluorochrome labeling. Standard deviations for the measurement of 16 genes ranged from 3 percent to 13 percent in samples of 30,000 cells. Such ArrayPlates transcription assays are useful in drug discovery and development for target validation, screening, lead optimization, metabolism and toxicity profiling. Chemiluminescent detection provides ArrayPlates assays with high signal-to-noise readout and simplifies imager requirements. Imaging a 2D surface that contains arrays simplifies lens requirements relative to imaging columns of liquid in microtiter plate wells. The Omix imager for ArrayPlates is described.
Sweetwater, Texas Large N Experiment
NASA Astrophysics Data System (ADS)
Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.
2015-12-01
From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.
Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong
2015-01-01
Radio-frequency coil arrays using dipole antenna technique have been recently applied for ultrahigh field magnetic resonance (MR) imaging to obtain the better signal-noise-ratio (SNR) gain at the deep area of human tissues. However, the unique structure of dipole antennas makes it challenging to achieve sufficient electromagnetic decoupling among the dipole antenna elements. Currently, there is no decoupling methods proposed for dipole antenna arrays in MR imaging. The recently developed magnetic wall (MW) or induced current elimination decoupling technique has demonstrated its feasibility and robustness in designing microstrip transmission line arrays, L/C loop arrays and monopole arrays. In this study, we aim to investigate the possibility and performance of MW decoupling technique in dipole arrays for MR imaging at the ultrahigh field of 7T. To achieve this goal, a two-channel MW decoupled dipole array was designed, constructed and analyzed experimentally through bench test and MR imaging. Electromagnetic isolation between the two dipole elements was improved from about -3.6 dB (without any decoupling treatments) to -16.5 dB by using the MW decoupling method. MR images acquired from a water phantom using the MW decoupled dipole array and the geometry factor maps were measured, calculated and compared with those acquired using the dipole array without decoupling treatments. The MW decoupled dipole array demonstrated well-defined image profiles from each element and had better geometry factor over the array without decoupling treatments. The experimental results indicate that the MW decoupling technique might be a promising solution to reducing the electromagnetic coupling of dipole arrays in ultrahigh field MRI, consequently improving their performance in SNR and parallel imaging.
Atomic Oxygen Durability Testing of an International Space Station Solar Array Validation Coupon
NASA Technical Reports Server (NTRS)
Forkapa, Mark J.; Stidham, Curtis; Banks, Bruce A.; Rutledge, Sharon K.; Ma, David H.; Sechkar, Edward A.
1996-01-01
An International Space Station solar array validation coupon was exposed in a directed atomic oxygen beam for space environment durability testing at the NASA Lewis Research Center. Exposure to atomic oxygen and intermittent tensioning of the solar array were conducted to verify the solar array#s durability to low Earth orbital atomic oxygen and to the docking threat of plume loading both of which are anticipated over its expected mission life of fifteen years. The validation coupon was mounted on a specially designed rotisserie. The rotisserie mounting enabled the solar and anti-solar facing side of the array to be exposed to directed atomic oxygen in a sweeping arrival process replicating space exposure. The rotisserie mounting also enabled tensioning, in order to examine the durability of the array and its hinge to simulated plume loads. Flash testing to verify electrical performance of the solar array was performed with a solar simulator before and after the exposure to atomic oxygen and tensile loading. Results of the flash testing indicated little or no degradation in the solar array#s performance. Photographs were also taken of the array before and after the durability testing and are included along with comparisons and discussions in this report. The amount of atomic oxygen damage appeared minor with the exception of a very few isolated defects. There were also no indications that the simulated plume loadings had weakened or damaged the array, even though there was some erosion of Kapton due to atomic oxygen attack. Based on the results of this testing, it is apparent that the International Space Station#s solar arrays should survive the low Earth orbital atomic oxygen environment and docking threats which are anticipated over its expected mission life.
IkeNet: Social Network Analysis of E-mail Traffic in the Eisenhower Leadership Development Program
2007-11-01
8217Create the recipients TO TempArray = Sphit(strTo,") For Each varArrayltem In TemnpArray hextGuy = Chr(34) & CStr (Trim(varArrayltem)) & Chr(34) MsgBox...34next guy = " & nextGuy ’Set oRecipient = Recipients.Add(nextGuy) Set oRecipient = Recipients.Add( CStr (Trim(varArrayItem))) oRecipient.Type = olTo...TempArray = Split(strAttachments, "" For Each varArrayltern In TempArray .Attachments.Add CStr (Trim(varArrayItem)) Next varArrayltern .Send No return value
Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites
Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN
2010-07-27
Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.
Solid state neutron detector array
Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.
1999-08-17
A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.
MILSTAR's flexible substrate solar array: Lessons learned, addendum
NASA Technical Reports Server (NTRS)
Gibb, John
1990-01-01
MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.
Effects of additional interfering signals on adaptive array performance
NASA Technical Reports Server (NTRS)
Moses, Randolph L.
1989-01-01
The effects of additional interference signals on the performance of a fully adaptive array are considered. The case where the number of interference signals exceeds the number of array degrees of freedom is addressed. It is shown how performance is affected as a function of the number of array elements, the number of interference signals, and the directivity of the array antennas. By using directive auxiliary elements, the performance of the array can be as good as the performance when the additional interference signals are not present.
Stressed detector arrays for airborne astronomy
NASA Technical Reports Server (NTRS)
Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.
1989-01-01
The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.
Khuri-Yakub, B T; Oralkan, Omer; Nikoozadeh, Amin; Wygant, Ira O; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O'Donnell, Matthew; Truong, Uyen; Sahn, David J
2010-01-01
Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics.
Ultrasound therapy transducers with space-filling non-periodic arrays.
Raju, Balasundar I; Hall, Christopher S; Seip, Ralf
2011-05-01
Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.
Torsional Buckling Tests of a Simulated Solar Array
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1996-01-01
Spacecraft solar arrays are typically large structures supported by long, thin deployable booms. As such, they may be particularly susceptible to abnormal structural behavior induced by mechanical and thermal loading. One example is the Hubble Space Telescope solar arrays which consist of two split tubes fit one inside the other called BiSTEMs. The original solar arrays on the Hubble Space Telescope were found to be severely twisted following deployment and later telemetry data showed the arrays were vibrating during daylight to night and night to daylight transition. The solar array twist however can force the BiSTEM booms to change in cross-section and cause tile solar arrays to react unpredictably to future loading. The solar arrays were redesigned to correct for tile vibration, however, upon redeployment they again twisted. To assess the influence of boom cross-sectional configuration, experiments were conducted on two types of booms, (1)booms with closed cross-sections, and (2) booms with open cross-sections. Both models were subjected to compressive loading and imposed tip deflections. An existing analytical model by Chung and Thornton was used to define the individual load ranges for each model solar array configuration. The load range for the model solar array using closed cross-section booms was 0-120 Newtons and 0-160 Newtons for the model solar array using open cross-section booms. The results indicate the model solar array with closed cross-section booms buckled only in flexure. However, the results of the experiment with open cross-section booms indicate the model solar array buckled only in torsion and with imposed tip deflections the cross section can degrade by rotation of the inner relative to the outer STEM. For tile Hubble Space Telescope solar arrays the results of these experiments indicate the twisting resulted from the initial mechanical loading of the open cross-section booms.
Fabrication of plasmonic cavity arrays for SERS analysis
NASA Astrophysics Data System (ADS)
Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan
2017-05-01
The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 105 and 9.97 × 105 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.
Fabrication of plasmonic cavity arrays for SERS analysis.
Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan
2017-05-05
The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 10 5 and 9.97 × 10 5 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.
A Parametric Assessment of the Mission Applicability of Thin-film Solar Arrays
NASA Technical Reports Server (NTRS)
Hoffman, David J.
2002-01-01
Results are presented from a parametric assessment of the applicability and spacecraft-level impacts of very lightweight thin-film solar arrays with relatively large deployed areas for representative space missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. The presentation concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin film cells on flexible substrates may become the best array option for a subset of Earth orbiting and deep space missions.
Wind Loads on Flat Plate Photovoltaic Array Fields
NASA Technical Reports Server (NTRS)
Miller, R.; Zimmerman, D.
1979-01-01
The aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays were investigated. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20 deg to 60 deg, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. A wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices is outlined.
Read margin analysis of crossbar arrays using the cell-variability-aware simulation method
NASA Astrophysics Data System (ADS)
Sun, Wookyung; Choi, Sujin; Shin, Hyungsoon
2018-02-01
This paper proposes a new concept of read margin analysis of crossbar arrays using cell-variability-aware simulation. The size of the crossbar array should be considered to predict the read margin characteristic of the crossbar array because the read margin depends on the number of word lines and bit lines. However, an excessively high-CPU time is required to simulate large arrays using a commercial circuit simulator. A variability-aware MATLAB simulator that considers independent variability sources is developed to analyze the characteristics of the read margin according to the array size. The developed MATLAB simulator provides an effective method for reducing the simulation time while maintaining the accuracy of the read margin estimation in the crossbar array. The simulation is also highly efficient in analyzing the characteristic of the crossbar memory array considering the statistical variations in the cell characteristics.
Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu
2016-01-01
This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.
2000-08-30
Workers rise to the occasion on accordion lifts as they oversee the movement of solar array in front of them. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
An overhead crane in the Space Station Processing Facility lifts a solar array as workers stand by to help guide it. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
The overhead crane carrying a solar array turns on its axis to move the array to the Integrated Equipment Assembly (IEA) for installation. A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
Breadboard linear array scan imager using LSI solid-state technology
NASA Technical Reports Server (NTRS)
Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.
1976-01-01
The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.
Design of 4x1 microstrip patch antenna array for 5.8 GHz ISM band applications
NASA Astrophysics Data System (ADS)
Valjibhai, Gohil Jayesh; Bhatia, Deepak
2013-01-01
This paper describes the new design of four element antenna array using corporate feed technique. The proposed antenna array is developed on the Rogers 5880 dielectric material. The antenna array works on 5.8 GHz ISM band. The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than communications. The array antennas have VSWR < 1.6 from 5.725 - 5.875 GHz. The simulated return loss characteristic of the antenna array is - 39.3 dB at 5.8 GHz. The gain of the antenna array is 12.3 dB achieved. The directivity of the broadside radiation pattern is 12.7 dBi at the 5.8 GHz operating frequency. The antenna array is simulated using High frequency structure simulation software.
CMOS imager for pointing and tracking applications
NASA Technical Reports Server (NTRS)
Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)
2006-01-01
Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.
High-density percutaneous chronic connector for neural prosthetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.
2015-09-22
A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnetsmore » are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.« less
Three-dimensional cross point readout detector design for including depth information
NASA Astrophysics Data System (ADS)
Lee, Seung-Jae; Baek, Cheol-Ha
2018-04-01
We designed a depth-encoding positron emission tomography (PET) detector using a cross point readout method with wavelength-shifting (WLS) fibers. To evaluate the characteristics of the novel detector module and the PET system, we used the DETECT2000 to perform optical photon transport in the crystal array. The GATE was also used. The detector module is made up of four layers of scintillator arrays, the five layers of WLS fiber arrays, and two sensor arrays. The WLS fiber arrays in each layer cross each other to transport light to each sensor array. The two sensor arrays are coupled to the forward and left sides of the WLS fiber array, respectively. The identification of three-dimensional pixels was determined using a digital positioning algorithm. All pixels were well decoded, with the system resolution ranging from 2.11 mm to 2.29 mm at full width at half maximum (FWHM).
Integrating Scientific Array Processing into Standard SQL
NASA Astrophysics Data System (ADS)
Misev, Dimitar; Bachhuber, Johannes; Baumann, Peter
2014-05-01
We live in a time that is dominated by data. Data storage is cheap and more applications than ever accrue vast amounts of data. Storing the emerging multidimensional data sets efficiently, however, and allowing them to be queried by their inherent structure, is a challenge many databases have to face today. Despite the fact that multidimensional array data is almost always linked to additional, non-array information, array databases have mostly developed separately from relational systems, resulting in a disparity between the two database categories. The current SQL standard and SQL DBMS supports arrays - and in an extension also multidimensional arrays - but does so in a very rudimentary and inefficient way. This poster demonstrates the practicality of an SQL extension for array processing, implemented in a proof-of-concept multi-faceted system that manages a federation of array and relational database systems, providing transparent, efficient and scalable access to the heterogeneous data in them.
System and method for 100% moisture and basis weight measurement of moving paper
Hernandez, Jose E.; Koo, Jackson C.
2002-01-01
A system for characterizing a set of properties for a moving substance are disclosed. The system includes: a first near-infrared linear array; a second near-infrared linear array; a first filter transparent to a first absorption wavelength emitted by the moving substance and juxtaposed between the substance and the first array; a second filter blocking the first absorption wavelength emitted by the moving substance and juxtaposed between the substance and the second array; and a computational device for characterizing data from the arrays into information on a property of the substance. The method includes the steps of: filtering out a first absorption wavelength emitted by a substance; monitoring the first absorption wavelength with a first near-infrared linear array; blocking the first wavelength from reaching a second near-infrared linear array; and characterizing data from the arrays into information on a property of the substance.
Britton, Charles L; D& #x27; Urso, Brian R; Chaum, Edward; Simpson, John T; Baba, Justin S; Ericson, M. Nance; Warmack, Robert J
2013-04-23
In one embodiment, the present invention provides a method of removing scar tissue from an eye that includes inserting a device including an array of micro-rods into an eye, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature; contacting a scar tissue with the array of micro-rods; and removing the array of micro-rods and the scar tissue from the eye. In another embodiment, the present invention provides a medical device for engaging a tissue including and an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods that is connected to the cannula, wherein the sharp feature of the at least one micro-rod is angled from a plane that is normal to a face of the base of the array of glass micro-rods.
Delamination Detection Using Guided Wave Phased Arrays
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Yu, Lingyu; Leckey, Cara
2016-01-01
This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.
Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.
2007-03-13
Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.
Phased Antenna Array for Global Navigation Satellite System Signals
NASA Technical Reports Server (NTRS)
Turbiner, Dmitry (Inventor)
2015-01-01
Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.
Tuominen, Mark [Shutesbury, MA; Schotter, Joerg [Bielefeld, DE; Thurn-Albrecht, Thomas [Freiburg, DE; Russell, Thomas P [Amherst, MA
2009-08-11
Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.
Phased Array Theory and Technology
1981-07-01
Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays
Operational considerations to reduce solar array loads
NASA Technical Reports Server (NTRS)
Gerstenmaier, W.
1992-01-01
The key parameters associated with solar array plume loads are examined, and operational considerations aimed at minimizing the effect of the Shuttle plumes on the Space Station solar arrays are discussed. These include solar array pointing to reduce loads and restrictions on Shuttle piloting. Particular attention is given to the method used to obtain the forcing functions (thruster time firing histories) for solar array plume calculation.
Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang
2011-01-01
Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B1 coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B1 field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T. PMID:22408747
Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima
2014-01-01
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.
Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima
2014-01-01
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307
Verberne, Juul; Risi, Frank; Campbell, Luke; Chambers, Scott; O'Leary, Stephen
2017-01-01
Scala tympani morphology influences the insertion dynamics and intra-scalar position of straight electrode arrays. Hearing preservation is the goal of cochlear implantation with current thin straight electrode arrays. These hug the lateral wall, facilitating full, atraumatic insertions. However, most studies still report some postoperative hearing loss. This study explores the influence of scala tympani morphology on array position relative to the basilar membrane and its possible contribution to postoperative hearing loss. Twenty-six fresh-frozen human temporal bones implanted with a straight electrode array were three-dimensionally reconstructed from micro-photographic histological sections. Insertion depth and the proximity between the array and basilar membrane were recorded. Lateral wall shape was quantified as a curvature ratio. Insertion depths ranged from 233 to 470 degrees. The mean first point of contact between the array and basilar membrane was 185 degrees; arrays tended to remain in contact with the membrane after first contacting it. Eighty-nine and 93% of arrays that reached the upper basal (>240-360 degrees) and second (>360-720 degrees) turns respectively contacted the basilar membrane in these regions. Scalar wall curvature ratio decreased significantly (the wall became steeper) from the basal to second turns. This shift correlated with a reduced distance between the array and basilar membrane. Scala tympani morphology influences the insertion dynamics and intra-scalar position of a straight electrode array. In addition to gross trauma of cochlear structures, contact between the array and basilar membrane and how this impacts membrane function should be considered in hearing preservation cases.
Characteristics of arc currents on a negatively biased solar cell array in a plasma
NASA Technical Reports Server (NTRS)
Snyder, D. B.
1984-01-01
The time dependence of the emitted currents during arcing on solar cell arrays is being studied. The arcs are characterized using three parameters: the voltage change of the array during the arc (i.e., the charge lost), the peak current during the arc, and the time constant describing the arc current. This paper reports the dependence of these characteristics on two array parameters, the interconnect bias voltage and the array capacitance to ground. It was found that the voltage change of the array during an arc is nearly equal to the bias voltage. The array capacitance, on the other hand, influences both the peak current and the decay time constant of the arc. Both of these characteristics increase with increasing capacitance.
Apparatus and method for maximizing power delivered by a photovoltaic array
Muljadi, Eduard; Taylor, Roger W.
1998-01-01
A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load.
In situ synthesis of protein arrays.
He, Mingyue; Stoevesandt, Oda; Taussig, Michael J
2008-02-01
In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.
Apparatus and method for maximizing power delivered by a photovoltaic array
Muljadi, E.; Taylor, R.W.
1998-05-05
A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load. 20 figs.
Replica amplification of nucleic acid arrays
Church, George M.
2002-01-01
A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.
Wei, Xile; Li, Yao; Lu, Meili; Wang, Jiang; Yi, Guosheng
2017-11-14
Multi-coil arrays applied in transcranial magnetic stimulation (TMS) are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF). Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulating focality, we need to fully understand the variation properties of induced EFs and the quantitative control method of the spatial arrangement of activating coils, both of which unfortunately are still unclear. In this paper, a comprehensive analysis of EF properties was performed based on multi-coil arrays. Four types of planar multi-coil arrays were used to study the relationship between the spatial distribution of EFs and the structure of stimuli coils. By changing coil-driven strategies in a basic 16-coil array, we find that an EF induced by compactly distributed coils decays faster than that induced by dispersedly distributed coils, but the former has an advantage over the latter in terms of the activated brain volume. Simulation results also indicate that the attenuation rate of an EF induced by the 36-coil dense array is 3 times and 1.5 times greater than those induced by the 9-coil array and the 16-coil array, respectively. The EF evoked by the 36-coil dispense array has the slowest decay rate. This result demonstrates that larger multi-coil arrays, compared to smaller ones, activate deeper brain tissues at the expense of decreased focality. A further study on activating a specific field of a prescribed shape and size was conducted based on EF variation. Accurate target location was achieved with a 64-coil array 18 mm in diameter. A comparison between the figure-8 coil, the planar array, and the cap-formed array was made and demonstrates an improvement of multi-coil configurations in the penetration depth and the focality. These findings suggest that there is a tradeoff between attenuation rate and focality in the application of multi-coil arrays. Coil-energizing strategies and array dimensions should be based on an adequate evaluation of these two important demands and the topological structure of target tissues.
Closed-form analysis of fiber-matrix interface stresses under thermo-mechanical loadings
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1992-01-01
Closed form techniques for calculating fiber matrix (FM) interface stresses, using repeating square and diamond regular arrays, were presented for a unidirectional composite under thermo-mechanical loadings. An Airy's stress function micromechanics approach from the literature, developed for calculating overall composite moduli, was extended in the present study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6) composite under thermal, longitudinal, transverse, transverse shear, and longitudinal shear loadings. Comparison with finite element results indicate excellent agreement of the FM interface stresses for the square array. Under thermal and longitudinal loading, the square array has the same FM peak stresses as the diamond array. The square array predicted higher stress concentrations under transverse normal and longitudinal shear loadings than the diamond array. Under transverse shear loading, the square array had a higher stress concentration while the diamond array had a higher radial stress concentration. Stress concentration factors under transverse shear and longitudinal shear loadings were very sensitive to fiber volume fraction. The present analysis provides a simple way to calculate accurate FM interface stresses for both the square and diamond array configurations.
NASA Astrophysics Data System (ADS)
Huang, Xiaoping; Zhang, Peifeng; Lin, En; Wang, Peng; Mei, Mingwei; Huang, Qiuying; Jiao, Jiao; Zhao, Qing
2017-09-01
We present the design and fabrication of a novel regularly arrayed plasmonic nanolasers. This main microstructure of the device is composed of a hexagonal array of n-ZnO/p-GaN nanoheterojunctions fabricated using the micro-fabrication method. Furthermore, the optically pumped lasing in the device is demonstrated. The spectroscopy characterization results of the device show that the surface plasmon excited around the NWs surface can be used to stimulate and strongly compress the optical modes in the NW cavity. This electromagnetic confinement effect is employed to optimize the beam quality and increase the light intensity compared to the laser fabricated with the bare NWs array. The impact of the array arrangement on the coherent combining efficiency of the arrayed nanolasers has been numerically studied. The results show that the arrayed hexagonal nanolasers could improve the combining efficiency compared to the nanolaser with the randomly positioned array. Qualitatively, these calculated results agree well with the experimental results of the laser beam spot mapping. This demonstrates the scope for using such architectures to improve the combination efficiency of the arrayed nanolasers.
Synchronization of Large Josephson-Junction Arrays by Traveling Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Galin, M. A.; Borodianskyi, E. A.; Kurin, V. V.; Shereshevskiy, I. A.; Vdovicheva, N. K.; Krasnov, V. M.; Klushin, A. M.
2018-05-01
Mutual synchronization of many Josephson junctions is required for superradiant enhancement of the emission power. However, the larger the junction array is, the more difficult is the synchronization, especially when the array size becomes much larger than the emitted wavelength. Here, we study experimentally Josephson emission from such larger-than-the-wavelength Nb /NbSi /Nb junction arrays. For one of the arrays we observe a clear superradiant enhancement of emission above a threshold number of active junctions. The arrays exhibit strong geometrical resonances, seen as steps in current-voltage characteristics. However, radiation patterns of the arrays have forward-backward asymmetry, which is inconsistent with the solely geometrical resonance (standing-wave) mechanism of synchronization. We argue that the asymmetry provides evidence for an alternative mechanism of synchronization mediated by unidirectional traveling-wave propagation along the array (such as a surface plasmon). In this case, emission occurs predominantly in the direction of propagation of the traveling wave. Our conclusions are supported by numerical modeling of Josephson traveling-wave antenna. We argue that such a nonresonant mechanism of synchronization opens a possibility for phase locking of very large arrays of oscillators.
The impact of solar cell technology on planar solar array performance
NASA Technical Reports Server (NTRS)
Mills, Michael W.; Kurland, Richard M.
1989-01-01
The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media
Chen, Zhen; Dorfman, Kevin D.
2013-01-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such “tilted” post arrays is superior to the standard “un-tilted” approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the “free path”, i.e., the average distance of ballistic trajectories of point sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. PMID:23868490
Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian
2012-01-01
A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly steer the beam. The array of phased ring radiators is unique in that it provides improved gain for a small rocket or missile that uses spin stabilization for stability. The antenna pattern created is symmetric about the roll axis (like an omnidirectional wraparound), and is thus capable of providing continuous coverage that is compatible with very fast spinning rockets. For larger ELVs with roll control, a linear array of elements can be used for the 1D scanned beamformer and phased array, or a 2D scanned beamformer can be used with an NxN element array.
NASA Astrophysics Data System (ADS)
Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.
2013-12-01
Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with 28-electrode arrays with electrodes 2-5 meters apart, and the deep arrays buried at 4-8 meters depth. Ground penetrating radar surveys, SPT borings and coring data provide selected 'ground truthing'. The case studies show that inclusion of the deep electrode array permits karst features such as undulations at the top of limestone and raveling zones within surficial sediments to be imaged. These features are not accessible from surface arrays with equivalent surface footprints. The method also has better resolution at depth at the ends of the lines, where surface arrays are typically plotted with a trapezoidal truncation due to poor resolution at the lower corners of the profile.
NASA Technical Reports Server (NTRS)
Kuhlman, Kimberly (Inventor); Buehler, Martin G. (Inventor)
2004-01-01
An ion selective electrode (ISE) array is described, as well as methods for producing the same. The array can contain multiple ISE which are individually electronically addressed. The addressing allows simplified preparation of the array. The array can be used for water quality monitoring, for example.
Parametric study of two planar high power flexible solar array concepts
NASA Technical Reports Server (NTRS)
Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.
1978-01-01
The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.
Method to fabricate hollow microneedle arrays
Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM
2006-11-07
An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.
Multi-channel infrared thermometer
Ulrickson, Michael A.
1986-01-01
A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.
S-band antenna phased array communications system
NASA Technical Reports Server (NTRS)
Delzer, D. R.; Chapman, J. E.; Griffin, R. A.
1975-01-01
The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.
Non-Hermitian engineering of single mode two dimensional laser arrays
Teimourpour, Mohammad H.; Ge, Li; Christodoulides, Demetrios N.; El-Ganainy, Ramy
2016-01-01
A new scheme for building two dimensional laser arrays that operate in the single supermode regime is proposed. This is done by introducing an optical coupling between the laser array and lossy pseudo-isospectral chains of photonic resonators. The spectrum of this discrete reservoir is tailored to suppress all the supermodes of the main array except the fundamental one. This spectral engineering is facilitated by employing the Householder transformation in conjunction with discrete supersymmetry. The proposed scheme is general and can in principle be used in different platforms such as VCSEL arrays and photonic crystal laser arrays. PMID:27698355
Microstrip antenna developments at JPL
NASA Technical Reports Server (NTRS)
Huang, John
1991-01-01
The in-house development of microstrip antennas, initiated in 1981, when a spaceborne lightweight and low-profile planar array was needed for a satellite communication system, is described. The work described covers the prediction of finite-ground-plane effects by the geometric theory of diffraction, higher-order-mode circularly polarized circular patch antennas, circularly polarized microstrip arrays with linearly polarized elements, an impedance-matching teardrop-shaped probe feed, a dual-polarized microstrip array with high isolation and low cross-polarization, a planar microstrip Yagi array, a microstrip reflectarray, a Ka-band MMIC array, and a series-fed linear arrays.
Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.
2010-01-01
Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106
a Study of Ultrasonic Wave Propagation Through Parallel Arrays of Immersed Tubes
NASA Astrophysics Data System (ADS)
Cocker, R. P.; Challis, R. E.
1996-06-01
Tubular array structures are a very common component in industrial heat exchanging plant and the non-destructive testing of these arrays is essential. Acoustic methods using microphones or ultrasound are attractive but require a thorough understanding of the acoustic properties of tube arrays. This paper details the development and testing of a small-scale physical model of a tube array to verify the predictions of a theoretical model for acoustic propagation through tube arrays developed by Heckl, Mulholland, and Huang [1-5] as a basis for the consideration of small-scale physical models in the development of non-destructive testing procedures for tube arrays. Their model predicts transmission spectra for plane waves incident on an array of tubes arranged in straight rows. Relative transmission is frequency dependent with bands of high and low attenuation caused by resonances within individual tubes and between tubes in the array. As the number of rows in the array increases the relative transmission spectrum becomes more complex, with increasingly well-defined bands of high and low attenuation. Diffraction of acoustic waves with wavelengths less than the tube spacing is predicted and appears as step reductions in the transmission spectrum at frequencies corresponding to integer multiples of the tube spacing. Experiments with the physical model confirm the principle features of the theoretical treatment.
NASA Technical Reports Server (NTRS)
Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty;
2016-01-01
The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.
A 3T Sodium and Proton Composite Array Breast Coil
Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.
2013-01-01
Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740
NASA Astrophysics Data System (ADS)
Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.
2016-07-01
The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.
arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays
Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo
2005-01-01
Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681
Poletti, Mark A; Betlehem, Terence; Abhayapala, Thushara D
2014-07-01
Higher order sound sources of Nth order can radiate sound with 2N + 1 orthogonal radiation patterns, which can be represented as phase modes or, equivalently, amplitude modes. This paper shows that each phase mode response produces a spiral wave front with a different spiral rate, and therefore a different direction of arrival of sound. Hence, for a given receiver position a higher order source is equivalent to a linear array of 2N + 1 monopole sources. This interpretation suggests performance similar to a circular array of higher order sources can be produced by an array of sources, each of which consists of a line array having monopoles at the apparent source locations of the corresponding phase modes. Simulations of higher order arrays and arrays of equivalent line sources are presented. It is shown that the interior fields produced by the two arrays are essentially the same, but that the exterior fields differ because the higher order sources produces different equivalent source locations for field positions outside the array. This work provides an explanation of the fact that an array of L Nth order sources can reproduce sound fields whose accuracy approaches the performance of (2N + 1)L monopoles.
Modeling Array Stations in SIG-VISA
NASA Astrophysics Data System (ADS)
Ding, N.; Moore, D.; Russell, S.
2013-12-01
We add support for array stations to SIG-VISA, a system for nuclear monitoring using probabilistic inference on seismic signals. Array stations comprise a large portion of the IMS network; they can provide increased sensitivity and more accurate directional information compared to single-component stations. Our existing model assumed that signals were independent at each station, which is false when lots of stations are close together, as in an array. The new model removes that assumption by jointly modeling signals across array elements. This is done by extending our existing Gaussian process (GP) regression models, also known as kriging, from a 3-dimensional single-component space of events to a 6-dimensional space of station-event pairs. For each array and each event attribute (including coda decay, coda height, amplitude transfer and travel time), we model the joint distribution across array elements using a Gaussian process that learns the correlation lengthscale across the array, thereby incorporating information of array stations into the probabilistic inference framework. To evaluate the effectiveness of our model, we perform ';probabilistic beamforming' on new events using our GP model, i.e., we compute the event azimuth having highest posterior probability under the model, conditioned on the signals at array elements. We compare the results from our probabilistic inference model to the beamforming currently performed by IMS station processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Robert
Under this grant, three significant software packages were developed or improved, all with the goal of improving the ease-of-use of HPC libraries. The first component is a Python package, named DistArray (originally named Odin), that provides a high-level interface to distributed array computing. This interface is based on the popular and widely used NumPy package and is integrated with the IPython project for enhanced interactive parallel distributed computing. The second Python package is the Distributed Array Protocol (DAP) that enables separate distributed array libraries to share arrays efficiently without copying or sending messages. If a distributed array library supports themore » DAP, it is then automatically able to communicate with any other library that also supports the protocol. This protocol allows DistArray to communicate with the Trilinos library via PyTrilinos, which was also enhanced during this project. A third package, PyTrilinos, was extended to support distributed structured arrays (in addition to the unstructured arrays of its original design), allow more flexible distributed arrays (i.e., the restriction to double precision data was lifted), and implement the DAP. DAP support includes both exporting the protocol so that external packages can use distributed Trilinos data structures, and importing the protocol so that PyTrilinos can work with distributed data from external packages.« less
Novel Photon-Counting Detectors for Free-Space Communication
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff
2016-01-01
We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.
Field ion source development for neutron generators
NASA Astrophysics Data System (ADS)
Bargsten Johnson, B.; Schwoebel, P. R.; Holland, C. E.; Resnick, P. J.; Hertz, K. L.; Chichester, D. L.
2012-01-01
An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption (˜20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with ˜10,000 tip arrays have achieved deuterium ion currents of ˜50 nA. Neutron production by field ionization has yielded ˜10 2 n/s from ˜1 mm 2 of array area using the deuterium-deuterium fusion reaction at 90 kV.
The Effects of Linear Microphone Array Changes on Computed Sound Exposure Level Footprints
NASA Technical Reports Server (NTRS)
Mueller, Arnold W.; Wilson, Mark R.
1997-01-01
Airport land planning commissions often are faced with determining how much area around an airport is affected by the sound exposure levels (SELS) associated with helicopter operations. This paper presents a study of the effects changing the size and composition of a microphone array has on the computed SEL contour (ground footprint) areas used by such commissions. Descent flight acoustic data measured by a fifteen microphone array were reprocessed for five different combinations of microphones within this array. This resulted in data for six different arrays for which SEL contours were computed. The fifteen microphone array was defined as the 'baseline' array since it contained the greatest amount of data. The computations used a newly developed technique, the Acoustic Re-propagation Technique (ART), which uses parts of the NASA noise prediction program ROTONET. After the areas of the SEL contours were calculated the differences between the areas were determined. The area differences for the six arrays are presented that show a five and a three microphone array (with spacing typical of that required by the FAA FAR Part 36 noise certification procedure) compare well with the fifteen microphone array. All data were obtained from a database resulting from a joint project conducted by NASA and U.S. Army researchers at Langley and Ames Research Centers. A brief description of the joint project test design, microphone array set-up, and data reduction methodology associated with the database are discussed.
NASA Technical Reports Server (NTRS)
Nessel, James A.; Acosta, Robert J.
2010-01-01
Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.
NASA Astrophysics Data System (ADS)
Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.
2015-06-01
One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.
SERS based immuno-microwell arrays for multiplexed detection of foodborne pathogenic bacteria
NASA Astrophysics Data System (ADS)
Sun, Jian; Hankus, Mikella E.; Cullum, Brian M.
2009-05-01
A novel surface enhanced Raman scattering (SERS)-based immuno-microwell array has been developed for multiplexed detection of foodborne pathogenic bacteria. The immuno-microwell array was prepared by immobilizing the optical addressable immunomagnetic beads (IMB) into the microwell array on one end of a fiber optic bundle. The IMBs, magnetic beads coated with specific antibody to specific bacteria, were used for immunomagnetic separation (IMS) of corresponding bacteria. The magnetic separation by the homemade magnetic separation system was evaluated in terms of the influences of several important parameters including the beads concentration, the sample volume and the separation time. IMS separation efficiency of the model bacteria E.coli O157:H7 was 63% in 3 minutes. The microwell array was fabricated on hydrofluoric acid etched end of a fiber optic bundle containing 30,000 fiber elements. After being coated with silver, the microwell array was used as a uniform SERS substrate with the relative standard deviation of the SERS enhancement across the microwell array < 2% and the enhancement factor as high as 2.18 x 107. The antibody modified microwell array was prepared for bacteria immobilization into the microwell array, which was characterized by a sandwich immunoassay. To demonstrate the potential of multiplexed SERS detection with the immuno-microwell array, the SERS spectra of different Raman dye labeled magnetic beads as well as mixtures were measured on the mircrowell array. In bead mixture, different beads were identified by the characteristic SERS bands of the corresponding Raman label.
USDA-ARS?s Scientific Manuscript database
The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...
Layout and cabling considerations for a large communications antenna array
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.
1993-01-01
Layout considerations for a large deep space communications antenna array are discussed. A fractal geometry for the antenna layout is described that provides optimal packing of antenna elements, efficient cable routing, and logical division of the array into identical sub-arrays.
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.
1972-01-01
A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.
An All Silicon Feedhorn-Coupled Focal Plane for Cosmic Microwave Background Polarimetry
NASA Technical Reports Server (NTRS)
Hubmayr, J.; Appel, J. W.; Austermann, J. E.; Beall, J. A.; Becker, D.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.;
2011-01-01
Upcoming experiments aim to produce high fidelity polarization maps of the cosmic microwave background. To achieve the required sensitivity, we are developing monolithic, feedhorn-coupled transition edge sensor polarimeter arrays operating at 150 GHz. We describe this focal plane architecture and the current status of this technology, focusing on single-pixel polarimeters being deployed on the Atacama B-mode Search (ABS) and an 84-pixel demonstration feedhorn array backed by four 10-pixel polarimeter arrays. The feedhorn array exhibits symmetric beams, cross-polar response less than -23 dB and excellent uniformity across the array. Monolithic polarimeter arrays, including arrays of silicon feedhorns, will be used in the Atacama Cosmology Telescope Polarimeter (ACTPol) and the South Pole Telescope Polarimeter (SPTpol) and have been proposed for upcoming balloon-borne instruments.
Electrode array for neural stimulation
Wessendorf, Kurt O [Albuquerque, NM; Okandan, Murat [Edgewood, NM; Stein, David J [Albuquerque, NM; Yang, Pin [Albuquerque, NM; Cesarano, III, Joseph; Dellinger, Jennifer [Albuquerque, NM
2011-08-16
An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.
2000-08-30
A solar array is nearly in place on the Integrated Equipment Assembly, next to Solar Array Wing-3, which is already installed. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over themore » array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.« less
Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property
NASA Astrophysics Data System (ADS)
Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong
Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.
Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure
NASA Technical Reports Server (NTRS)
Oeftering, Richard C. (Inventor)
2000-01-01
A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.
Effects of wind waves on horizontal array performance in shallow-water conditions
NASA Astrophysics Data System (ADS)
Zavol'skii, N. A.; Malekhanov, A. I.; Raevskii, M. A.; Smirnov, A. V.
2017-09-01
We analyze the influence of statistical effects of the propagation of an acoustic signal excited by a tone source in a shallow-water channel with a rough sea surface on the efficiency of a horizontal phased array. As the array characteristics, we consider the angular function of the array response for a given direction to the source and the coefficient of amplification of the signal-to-noise ratio (array gain). Numerical simulation was conducted in to the winter hydrological conditions of the Barents Sea in a wide range of parameters determining the spatial signal coherence. The results show the main physical effects of the influence of wind waves on the array characteristics and make it possible to quantitatively predict the efficiency of a large horizontal array in realistic shallow-water channels.
Thin-Film Photovoltaic Solar Array Parametric Assessment
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva
2000-01-01
This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.
Comparison of X-ray Radiation Process in Single and Nested Wire Array Implosions
NASA Astrophysics Data System (ADS)
Li, Z. H.; Xu, Z. P.; Yang, J. L.; Xu, R. K.; Guo, C.; Grabovsky, E. V.; Oleynic, G. M.; Smirnov, V. P.
2006-01-01
In order to understanding the difference between tungsten single-wire-array and tungsten nested-wire-array Z-pinches, we have measured the x-ray power, the temporal-spatial distributions of x-ray radiation from each of the two loads. The measurements were performed with 0.1mm spatial and 1 ns temporal resolutions at 2.5- and 3.5-MA currents. The experimental conditions, including wire material, number of wires, wire-array length, electrode design, and implosion time, remained unchanged from shot to shot. Analysis of the radiation power profiles suggests that the nested-wire-array radiate slightly less x-ray energy in relatively shorter time interval than the single wire-array, leading to a much greater x-ray power in nested-wire-array implosion. The temporal-spatial distributions of x-ray power show that in both cases, plasmas formed by wire-array ablation radiate not simultaneously along load axis. For nested-wire-array Z-pinch, plasmas near the anode begin to radiate in 2ns later than that near the cathode. As a contrast, the temporal divergence of radiation among different plasma zones of single-wire-array Z-pinch along Z-axis is more than 6ns. Measurements of the x-ray emissions from small segments of pinch (2mm length along axis) indicate that local radiation power profiles almost do not vary for the two loads. Photographs taken by X-ray framing camera give a same description about the radiation process of pinch. One may expect that, as a result of this study, if the single-wire-array can be redesigned so ingeniously that the x-rays are emitted at the same time all over the pinch zone, the radiation power of single wire array Z-pinch may be much greater than what have been achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pajek, Daniel, E-mail: dpajek@sri.utoronto.ca; Hynynen, Kullervo
2013-12-15
Purpose: Transcranial focused ultrasound is an emerging therapeutic modality that can be used to perform noninvasive neurosurgical procedures. The current clinical transcranial phased array operates at 650 kHz, however the development of a higher frequency array would enable more precision, while reducing the risk of standing waves. However, the smaller wavelength and the skull's increased distortion at this frequency are problematic. It would require an order of magnitude more elements to create such an array. Random sparse arrays enable steering of a therapeutic array with fewer elements. However, the tradeoffs inherent in the use of sparsity in a transcranial phasedmore » array have not been systematically investigated and so the objective of this simulation study is to investigate the effect of sparsity on transcranial arrays at a frequency of 1.5 MHz that provides small focal spots for precise exposure control. Methods: Transcranial sonication simulations were conducted using a multilayer Rayleigh-Sommerfeld propagation model. Element size and element population were varied and the phased array's ability to steer was assessed. Results: The focal pressures decreased proportionally as elements were removed. However, off-focus hotspots were generated if a high degree of steering was attempted with very sparse arrays. A phased array consisting of 1588 elements 3 mm in size, a 10% population, was appropriate for steering up to 4 cm in all directions. However, a higher element population would be required if near-skull sonication is desired. Conclusions: This study demonstrated that the development of a sparse, hemispherical array at 1.5 MHz could enable more precision in therapies that utilize lower intensity sonications.« less
LC-lens array with light field algorithm for 3D biomedical applications
NASA Astrophysics Data System (ADS)
Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun
2016-03-01
In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.
Shepherd, Robert K; Xu, Jin
2002-10-01
We have developed a novel scala tympani electrode array suitable for use in experimental animals. A unique feature of this array is its ability to chronically deliver pharmacological agents to the scala tympani. The design of the electrode array is described in detail. Experimental studies performed in guinea pigs confirm that this array can successfully deliver various drugs to the cochlea while chronically stimulating the auditory nerve.
Carbon nanotube array based sensor
Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.
2005-09-20
A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.
Switched Antenna Array Tile for Real-Time Microwave Imaging Aperture
2016-06-26
Switched Antenna Array Tile for Real -Time Microwave Imaging Aperture William F. Moulder, Janusz J. Majewski, Charles M. Coldwell, James D. Krieger...Fast Imaging Algorithm 10mm 250mm Switched Array Tile Fig. 1. Diagram of real -time imaging array, with fabricated antenna tile. except for antenna...formed. IV. CONCLUSIONS A switched array tile to be used in a real time imaging aperture has been presented. Design and realization of the tile were
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R. O.; Burke, J. T.; Casperson, R. J.
Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. In conclusion, this article discusses the features of the array and presents data collected with the array in the commissioning experiment.
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Vilnrotter, V.
1996-01-01
A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Vilnrotter, V.
1996-01-01
A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.
IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies
NASA Astrophysics Data System (ADS)
Sumy, D. F.; Woodward, R.; Frassetto, A.
2014-12-01
The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We will review existing IRIS projects that explore new array capabilities and highlight future directions for IRIS instrumentation facilities.
Tutorial: Performance and reliability in redundant disk arrays
NASA Technical Reports Server (NTRS)
Gibson, Garth A.
1993-01-01
A disk array is a collection of physically small magnetic disks that is packaged as a single unit but operates in parallel. Disk arrays capitalize on the availability of small-diameter disks from a price-competitive market to provide the cost, volume, and capacity of current disk systems but many times their performance. Unfortunately, relative to current disk systems, the larger number of components in disk arrays leads to higher rates of failure. To tolerate failures, redundant disk arrays devote a fraction of their capacity to an encoding of their information. This redundant information enables the contents of a failed disk to be recovered from the contents of non-failed disks. The simplest and least expensive encoding for this redundancy, known as N+1 parity is highlighted. In addition to compensating for the higher failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be built much more cost-effectively than is now achieved in conventional duplicated disks. Disk arrays that combine redundancy with the parallelism of many small-diameter disks are often called Redundant Arrays of Inexpensive Disks (RAID). This combination promises improvements to both the performance and the reliability of secondary storage. For example, IBM's premier disk product, the IBM 3390, is compared to a redundant disk array constructed of 84 IBM 0661 3 1/2-inch disks. The redundant disk array has comparable or superior values for each of the metrics given and appears likely to cost less. In the first section of this tutorial, I explain how disk arrays exploit the emergence of high performance, small magnetic disks to provide cost-effective disk parallelism that combats the access and transfer gap problems. The flexibility of disk-array configurations benefits manufacturer and consumer alike. In contrast, I describe in this tutorial's second half how parallelism, achieved through increasing numbers of components, causes overall failure rates to rise. Redundant disk arrays overcome this threat to data reliability by ensuring that data remains available during and after component failures.
Challenging aspects of contemporary cochlear implant electrode array design.
Mistrík, Pavel; Jolly, Claude; Sieber, Daniel; Hochmair, Ingeborg
2017-12-01
A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Review of up-to-date literature. Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the advantages of both types: perimodiolar location in the basal turn extended to lateral wall location for higher turn locations.
Development of an Infrared Lamp Array for the Smap Spacecraft Thermal Balance Test
NASA Technical Reports Server (NTRS)
Miller, Jennifer R.; Emis, Nickolas; Forgette, Daniel
2015-01-01
NASA launched the SMAP observatory in January 2015 aboard a Delta II into a sun-synchronous orbit around Earth. The science payload of a radar and a radiometer utilizes a shared rotating six-meter antenna to provide a global map of the Earth's soil moisture content and its freeze/thaw state on a global, high-resolution scale in this three-year mission. An observatory-level thermal balance test conducted in May/June 2014 validated the thermal design and demonstrated launch readiness as part of the planned environmental test campaign. An infrared lamp array was designed and used in the thermal balance test to replicate solar heating on the solar array and sunlit side of the spacecraft that would normally be seen in orbit. The design, implementation, and operation of an infrared lamp array used for this nineteen-day system thermal test are described in this paper. Instrumental to the smooth operation of this lamp array was a characterization test performed in the same chamber two months prior to the observatory test to provide insight into its array operation and flux uniformity. This knowledge was used to identify the lamp array power settings that would provide the worst case predicted on-orbit fluxes during eclipse, cold, and hot cases. It also showed the lamp array variation when adjustments in flux were needed. Calorimeters calibrated prior to testing determined a relationship between calorimeter temperature and lamp array flux. This allowed the team to adjust the lamp output for the desired absorbed flux on the solar array. Flux levels were within 10% of the desired value at the center of the solar array with an ability to maintain these levels within 5% during steady state cases. All tests demonstrated the infrared lamp array functionality and furthered lamp array understanding for modeling purposes. This method contributed to a high-fidelity environmental simulation, which was required to replicate the extreme on-orbit thermal environments.
Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan
2014-07-22
Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.
Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan
2015-07-14
Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.
Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan
2015-11-03
Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.
On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control
NASA Technical Reports Server (NTRS)
Pogorzelski, R.; Acorn, J.; Zawadzki, M.
2000-01-01
It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.
Efficient processing of two-dimensional arrays with C or C++
Donato, David I.
2017-07-20
Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency
A 7T Spine Array Based on Electric Dipole Transmitters
Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S.; Duyn, Jeff H.; Merkle, Hellmut
2015-01-01
Purpose In this work the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high field is explored. Method A 2-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining 8 loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared to a design using quadrature loop pairs. The radio-frequency (RF) energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. Results The results indicate dramatically improved transmit efficiency for the dipole design as compared to the loop excitation. Up to 76% gain was achieved within the spinal region. Conclusion For imaging of the spine, electric-dipole based transmitters provided an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high field. PMID:26190585
NASA Astrophysics Data System (ADS)
Li, Wen Tao; Hei, Yong Qiang; Shi, Xiao Wei
2018-04-01
By virtue of the excellent aerodynamic performances, conformal phased arrays have been attracting considerable attention. However, for the synthesis of patterns with low/ultra-low sidelobes of the conventional conformal arrays, the obtained dynamic range ratios of amplitude excitations could be quite high, which results in stringent requirements on various error tolerances for practical implementation. Time-modulated array (TMA) has the advantages of low sidelobe and reduced dynamic range ratio requirement of amplitude excitations. This paper takes full advantages of conformal antenna arrays and time-modulated arrays. The active-element-pattern, including element mutual coupling and platform effects, is employed in the whole design process. To optimize the pulse durations and the switch-on instants of the time-modulated elements, multiobjective invasive weed optimization (MOIWO) algorithm based on the nondominated sorting of the solutions is proposed. A S-band 8-element cylindrical conformal array is designed and a S-band 16-element cylindrical-parabolic conformal array is constructed and tested at two different steering angles.
NASA Technical Reports Server (NTRS)
Fisher, Edward M., Jr.
1991-01-01
Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.
Advanced photovoltaic solar array - Design and performance
NASA Technical Reports Server (NTRS)
Kurland, Richard; Stella, Paul
1992-01-01
This paper reports on the development of an ultralightweight flexible blanket, flatpack, foldout solar array design that can provide 3- to 4-fold improvement on specific power performance of current rigid panel arrays and a factor of two improvement over a first-generation flexible blanket array developed as a forerunner to the Space Station Freedom array. To date a prototype wing has been built with a projected specific power performance of about 138 W/kg at beginning-of-life (BOL) and 93 W/kg end-of-life (EOL) at 12 kW (BOL) for a 10-year geosynchronous (GEO) mission. The prototype wing hardware has been subjected to a series of system-level tests to demonstrate design feasibility. The design of the array is summarized. The major trade studies that led to the selection of the baseline design are discussed. Key system-level and component-level testing are described. Array-level performance projections are presented as a function of existing and advanced solar array component technology for various mission applications.
Size dependence in tunneling spectra of PbSe quantum-dot arrays.
Ou, Y C; Cheng, S F; Jian, W B
2009-07-15
Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation
Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.
Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.
Excitation of high density surface plasmon polariton vortex array
NASA Astrophysics Data System (ADS)
Kuo, Chun-Fu; Chu, Shu-Chun
2018-06-01
This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.
Arcing in LEO: Does the Whole Array Discharge?
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry
2005-01-01
The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.
The Advanced Gamma-ray Imaging System (AGIS): Real Time Stereoscopic Array Trigger
NASA Astrophysics Data System (ADS)
Byrum, K.; Anderson, J.; Buckley, J.; Cundiff, T.; Dawson, J.; Drake, G.; Duke, C.; Haberichter, B.; Krawzcynski, H.; Krennrich, F.; Madhavan, A.; Schroedter, M.; Smith, A.
2009-05-01
Future large arrays of Imaging Atmospheric Cherenkov telescopes (IACTs) such as AGIS and CTA are conceived to comprise of 50 - 100 individual telescopes each having a camera with 10**3 to 10**4 pixels. To maximize the capabilities of such IACT arrays with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We describe the design of a stereoscopic array trigger that calculates image parameters and then correlates them across a subset of telescopes. Fast Field Programmable Gate Array technology allows to use lookup tables at the array trigger level to form a real-time pattern recognition trigger tht capitalizes on the multiple view points of the shower at different shower core distances. A proof of principle system is currently under construction. It is based on 400 MHz FPGAs and the goal is for camera trigger rates of up to 10 MHz and a tunable cosmic-ray background suppression at the array level.
Equivalent circuit-based analysis of CMUT cell dynamics in arrays.
Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin
2013-05-01
Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.
Large Ka-Band Slot Array for Digital Beam-Forming Applications
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam; Zawadzki, Mark S.; Hodges, Richard E.
2011-01-01
This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurement data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beamformed antenna. For technology demonstration purpose a receive array of size 1x1 m, consisting of 160x160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 160x10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliott's design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts. Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall the 1x1 m array was found to be successful in meeting the objectives of the GLISTIN demonstration antenna, especially with respect to the 0.042deg, 1/10th of the beamwidth of each stick, relative beam alignment between sticks.
Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart
2017-04-24
High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
Efficient generation and transportation of energetic electrons in a carbon nanotube array target
NASA Astrophysics Data System (ADS)
Ji, Yanling; Jiang, Gang; Wu, Weidong; Wang, Chaoyang; Gu, Yuqiu; Tang, Yongjian
2010-01-01
Laser-driven energetic electron propagation in a carbon nanotube-array target is investigated using two-dimensional particle-in-cell simulations. Energetic electrons are efficiently generated when the array is irradiated by a short intense laser pulse. Confined and guided transportation of energetic electrons in the array is achieved by exploiting strong transient electromagnetic fields created at the wall surfaces of nanotubes. The underlying mechanisms are discussed in detail. Our investigation shows that the laser energy can be transferred more effectively to the target electrons in the array than that of in the flat foil due to the hole structures in the array.
Dinwoodie, Thomas L.
2002-12-17
A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.
NASA Technical Reports Server (NTRS)
ONeill, Mark; Piszczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.; Lyons, Valerie J. (Technical Monitor)
2002-01-01
At IECEC 2001, our team presented a paper on the new stretched lens array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Since that conference, the SLA team has made significant advances in the SLA technology, including component-level improvements, array-level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper describes the evolved version of the SLA, highlighting recent improvements in the lens, solar cell, photovoltaic receiver, rigid panel structure, and complete solar array wing.
Security enhancement of optical encryption based on biometric array keys
NASA Astrophysics Data System (ADS)
Yan, Aimin; Wei, Yang; Zhang, Jingtao
2018-07-01
A novel optical image encryption method is proposed by using Dammann grating and biometric array keys. Dammann grating is utilized to create a 2D finite uniform-intensity spot array. In encryption, a fingerprint array is used as private encryption keys. An original image can be encrypted by a scanning Fresnel zone plate array. Encrypted signals are processed by an optical coherent heterodyne detection system. Biometric array keys and optical scanning cryptography are integrated with each other to enhance information security greatly. Numerical simulations are performed to demonstrate the feasibility and validity of this method. Analyses on key sensitivity and the resistance against to possible attacks are provided.
Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays.
Schuster, Jonathan; Bellotti, Enrico
2013-06-17
We have investigated crosstalk in HgCdTe photovoltaic pixel arrays employing a photon trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. We have found that, compared to non-PT pixel arrays with similar geometry, the array employing the PT structure has a slightly higher optical crosstalk. However, when the total crosstalk is evaluated, the presence of the PT region drastically reduces the total crosstalk; making the use of the PT structure not only useful to obtain broadband operation, but also desirable for reducing crosstalk in small pitch detector arrays.
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor)
1992-01-01
A relatively small and low-cost system is provided for projecting a large and bright television image onto a screen. A miniature liquid crystal array is driven by video circuitry to produce a pattern of transparencies in the array corresponding to a television image. Light is directed against the rear surface of the array to illuminate it, while a projection lens lies in front of the array to project the image of the array onto a large screen. Grid lines in the liquid crystal array are eliminated by a spacial filter which comprises a negative of the Fourier transform of the grid.
MnO 2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors
NASA Astrophysics Data System (ADS)
Xia, Hui; Feng, Jinkui; Wang, Hailong; Lai, Man On; Lu, Li
Highly ordered MnO 2 nanotube and nanowire arrays are successfully synthesized via a electrochemical deposition technique using porous alumina templates. The morphologies and microstructures of the MnO 2 nanotube and nanowire arrays are investigated by field emission scanning electron microscopy and transmission electron microscopy. Electrochemical characterization demonstrates that the MnO 2 nanotube array electrode has superior capacitive behaviour to that of the MnO 2 nanowire array electrode. In addition to high specific capacitance, the MnO 2 nanotube array electrode also exhibits good rate capability and good cycling stability, which makes it promising candidate for supercapacitors.
Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays.
Choi, Heejin; Min, Sung-Wook; Jung, Sungyong; Park, Jae-Hyeung; Lee, Byoungho
2003-04-21
In spite of many advantages of integral imaging, the viewing zone in which an observer can see three-dimensional images is limited within a narrow range. Here, we propose a novel method to increase the number of viewing zones by using a dynamic barrier array. We prove our idea by fabricating and locating the dynamic barrier array between a lens array and a display panel. By tilting the barrier array, it is possible to distribute images for each viewing zone. Thus, the number of viewing zones can be increased with an increment of the states of the barrier array tilt.
Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays
Li, Zheng; Chen, Wei
2016-07-05
A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.
Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.;
2012-01-01
We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.
Low dark current InGaAs detector arrays for night vision and astronomy
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Geske, Jon; Wang, Chad; Liao, Shirong; Getty, Jonathan; Holmes, Alan
2009-05-01
Aerius Photonics has developed large InGaAs arrays (1K x 1K and greater) with low dark currents for use in night vision applications in the SWIR regime. Aerius will present results of experiments to reduce the dark current density of their InGaAs detector arrays. By varying device designs and passivations, Aerius has achieved a dark current density below 1.0 nA/cm2 at 280K on small-pixel, detector arrays. Data is shown for both test structures and focal plane arrays. In addition, data from cryogenically cooled InGaAs arrays will be shown for astronomy applications.
Test plane uniformity analysis for the MSFC solar simulator lamp array
NASA Technical Reports Server (NTRS)
Griner, D. B.
1976-01-01
A preliminary analysis was made on the solar simulator lamp array. It is an array of 405 tungsten halogen lamps with Fresnel lenses to achieve the required spectral distribution and collimation. A computer program was developed to analyze lamp array performance at the test plane. Measurements were made on individual lamp lens combinations to obtain data for the computer analysis. The analysis indicated that the performance of the lamp array was about as expected, except for a need to position the test plane within 2.7 m of the lamp array to achieve the desired 7 percent uniformity of illumination tolerance.
Application of Adaptive Beamforming to Signal Observations at the Mt. Meron Array, Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, D. B.
2010-06-07
The Mt. Meron array consists of 16 stations spanning an aperture of 3-4 kilometers in northern Israel. The array is situated in a region of substantial topographic relief, and is surrounded by settlements at close range (Figure 1). Consequently the level of noise at the array is high, which requires efforts at mitigation if distant regional events of moderate magnitude are to be observed. This note describes an initial application of two classic adaptive beamforming algorithms to data from the array to observe P waves from 5 events east of the array ranging in distance from 1100- 2150 kilometers.
Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays
Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; ...
2015-01-15
Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less
Coherent acoustic communication in a tidal estuary with busy shipping traffic.
van Walree, Paul A; Neasham, Jeffrey A; Schrijver, Marco C
2007-12-01
High-rate acoustic communication experiments were conducted in a dynamic estuarine environment. Two current profilers deployed in a shipping lane were interfaced with acoustic modems, which modulated and transmitted the sensor readings every 200 s over a period of four days. QPSK modulation was employed at a raw data rate of 8 kbits on a 12-kHz carrier. Two 16-element hydrophone arrays, one horizontal and one vertical, were deployed near the shore. A multichannel decision-feedback equalizer was used to demodulate the modem signals received on both arrays. Long-term statistical analysis reveals the effects of the tidal cycle, subsea unit location, attenuation by the wake of passing vessels, and high levels of ship-generated noise on the fidelity of the communication links. The use of receiver arrays enables vast improvement in the overall reliability of data delivery compared with a single-receiver system, with performance depending strongly on array orientation. The vertical array offers the best performance overall, although the horizontal array proves more robust against shipping noise. Spatial coherence estimates, variation of array aperture, and inspection of array angular responses point to adaptive beamforming and coherent combining as the chief mechanisms of array gain.
Novel applications of array comparative genomic hybridization in molecular diagnostics.
Cheung, Sau W; Bi, Weimin
2018-05-31
In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.
Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.
Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe
2017-03-01
Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Color filter array design based on a human visual model
NASA Astrophysics Data System (ADS)
Parmar, Manu; Reeves, Stanley J.
2004-05-01
To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.
Comparative Performance and Model Agreement of Three Common Photovoltaic Array Configurations.
Boyd, Matthew T
2018-02-01
Three grid-connected monocrystalline silicon arrays on the National Institute of Standards and Technology (NIST) campus in Gaithersburg, MD have been instrumented and monitored for 1 yr, with only minimal gaps in the data sets. These arrays range from 73 kW to 271 kW, and all use the same module, but have different tilts, orientations, and configurations. One array is installed facing east and west over a parking lot, one in an open field, and one on a flat roof. Various measured relationships and calculated standard metrics have been used to compare the relative performance of these arrays in their different configurations. Comprehensive performance models have also been created in the modeling software pvsyst for each array, and its predictions using measured on-site weather data are compared to the arrays' measured outputs. The comparisons show that all three arrays typically have monthly performance ratios (PRs) above 0.75, but differ significantly in their relative output, strongly correlating to their operating temperature and to a lesser extent their orientation. The model predictions are within 5% of the monthly delivered energy values except during the winter months, when there was intermittent snow on the arrays, and during maintenance and other outages.
NASA Technical Reports Server (NTRS)
Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel
2010-01-01
The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.
Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas
NASA Technical Reports Server (NTRS)
Galofaro, J.; Vayner, B.; Ferguson, D.
2003-01-01
The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.
Vineyard, Laura; Elliott, Andrew; Dhingra, Sonia; Lucas, Jessica R.; Shaw, Sidney L.
2013-01-01
The acentriolar cortical microtubule arrays in dark-grown hypocotyl cells organize into a transverse coaligned pattern that is critical for axial plant growth. In light-grown Arabidopsis thaliana seedlings, the cortical array on the outer (periclinal) cell face creates a variety of array patterns with a significant bias (>3:1) for microtubules polymerizing edge-ward and into the side (anticlinal) faces of the cell. To study the mechanisms required for creating the transverse coalignment, we developed a dual-hormone protocol that synchronously induces ∼80% of the light-grown hypocotyl cells to form transverse arrays over a 2-h period. Repatterning occurred in two phases, beginning with an initial 30 to 40% decrease in polymerizing plus ends prior to visible changes in the array pattern. Transverse organization initiated at the cell’s midzone by 45 min after induction and progressed bidirectionally toward the apical and basal ends of the cell. Reorganization corrected the edge-ward bias in polymerization and proceeded without transiting through an obligate intermediate pattern. Quantitative comparisons of uninduced and induced microtubule arrays showed a limited deconstruction of the initial periclinal array followed by a progressive array reorganization to transverse coordinated between the anticlinal and periclinal cell faces. PMID:23444330
A new strategy for array optimization applied to Brazilian Decimetric Array
NASA Astrophysics Data System (ADS)
Faria, C.; Stephany, S.; Sawant, H. S.
Radio interferometric arrays measure the Fourier transform of the sky brightness distribution in a finite set of points that are determined by the cross-correlation of different pairs of antennas of the array The sky brightness distribution is reconstructed by the inverse Fourier transform of the sampled visibilities The quality of the reconstructed images strongly depends on the array configuration since it determines the sampling function and therefore the points in the Fourier Plane This work proposes a new optimization strategy for the array configuration that is based on the entropy of the distribution of the samples points in the Fourier plane A stochastic optimizer the Ant Colony Optimization employs entropy of the point distribution in the Fourier plane to iteratively refine the candidate solutions The proposed strategy was developed for the Brazilian Decimetric Array BDA a radio interferometric array that is currently being developed for solar observations at the Brazilian Institute for Space Research Configurations results corresponding to the Fourier plane coverage synthesized beam and side lobes levels are shown for an optimized BDA configuration obtained with the proposed strategy and compared to the results for a standard T array configuration that was originally proposed
Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays
Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.
2015-01-01
Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process. PMID:25589290
Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, X.H., E-mail: drhuangxh@hotmail.com; Zhang, P.; Wu, J.B.
Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as themore » core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.« less
NASA Technical Reports Server (NTRS)
Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.
1998-01-01
This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.
Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays
NASA Technical Reports Server (NTRS)
Chervenak, James A.; Adams, James S.; Bandler, Simon R.; Busch, Sara E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, Jan-Patrick;
2012-01-01
We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk.
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.
Chen, Zhen; Dorfman, Kevin D
2014-02-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Infrared-Bolometer Arrays with Reflective Backshorts
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Abrahams, John; Allen, Christine A.
2011-01-01
Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to interlock with the support beams on the backshort-array structure to provide structural support and precise relative positioning. The backshort-array structure is inserted in the silicon support frame behind the bolometer array, and the notches in the frame serve to receive the support beams of the backshort-array structure and thus determine the distance between the backshort and bolometer planes. The depth of the notches and, thus, the distance between the backshort and bolometer planes, can be tailored to a value between 25 to 300 m adjusting only a few process steps. The backshort array is designed so as not to interfere with the placement of indium bumps for subsequent indium bump-bonding to the multiplexing readout circuitry
Imaging spectroscopy using embedded diffractive optical arrays
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford
2017-09-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame. This system spans the SWIR and MWIR bands with a single optical array and focal plane array.
Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator
1992-12-01
Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the
Combinatorial fabrication and screening of organic light-emitting device arrays
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth; Zhou, Zhaoqun
2007-11-01
The combinatorial fabrication and screening of 2-dimensional (2-d) small molecular UV-violet organic light-emitting device (OLED) arrays, 1-d blue-to-red arrays, 1-d intense white OLED libraries, 1-d arrays to study Förster energy transfer in guest-host OLEDs, and 2-d arrays to study exciplex emission from OLEDs is described. The results demonstrate the power of combinatorial approaches for screening OLED materials and configurations, and for studying their basic properties.
Seed-mediated growth of patterned graphene nanoribbon arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Michael Scott; Way, Austin James; Jacobberger, Robert Michael
Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays, and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a seed-mediated, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of a semiconductor substrate and the orientation of the seed particles on the substrate are used to orient the graphene nanoribbon crystals preferentially along a single [110] direction of the substrate.
Engineering study of the module/array interface for large terrestrial photovoltaic arrays
NASA Technical Reports Server (NTRS)
1977-01-01
Three major areas--structural, electrical, and maintenance--were evaluated. Efforts in the structural area included establishing acceptance criteria for materials and members, determining loading criteria, and analyzing glass modules in various framing system configurations. Array support structure design was addressed briefly. Electrical considerations included evaluation of module characteristics, intermodule connectors, array wiring, converters and lightning protection. Plant maintenance features such as array cleaning, failure detection, and module installation and replacement were addressed.
Operational considerations of the Advanced Photovoltaic Solar Array
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Kurland, Richard M.
1992-01-01
Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.
Plasma chamber testing of advanced photovoltaic solar array coupons
NASA Technical Reports Server (NTRS)
Hillard, G. Barry
1994-01-01
The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.
Operational considerations of the Advanced Photovoltaic Solar Array
NASA Astrophysics Data System (ADS)
Stella, Paul M.; Kurland, Richard M.
Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.
An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays
2006-03-01
Department of Defense, or the United States Government . AFIT-GE-ENG-06-58 An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays THESIS Presented...different circular arrays, one containing 24 elements and one containing 15 elements. The circular array per- formance is compared to that of a 6 × 6...model and compared to the radar model of [5, 6, 13]. The two models are mathematically equivalent when the uniformly spaced array is linear. The two
Analysis of MMIC arrays for use in the ACTS Aero Experiment
NASA Technical Reports Server (NTRS)
Zimmerman, M.; Lee, R.; Rho, E.; Zaman, Z.
1993-01-01
The Aero Experiment is designed to demonstrate communication from an aircraft to an Earth terminal via the ACTS. This paper describes the link budget and antenna requirements for a 4.8 kbps full-duplex voice link at Ka-Band frequencies. Three arrays, one transmit array developed by TI and two receive arrays developed by GE and Boeing, were analyzed. The predicted performance characteristics of these arrays are presented and discussed in the paper.
Airborne electronically steerable phased array. [steerable antennas - systems analysis
NASA Technical Reports Server (NTRS)
Coats, R.
1975-01-01
Results of a study directed to the design of a lightweight high-gain, spaceborne communications array are presented. The array includes simultaneous transmission and receiving, automatic acquisition and tracking of a signal within a 60-degree cone from the array normal, and provides for independent forming of the transmit and receive beams. Application for this array is the space shuttle, space station, or any of the advanced manned (or unmanned) orbital vehicles. Performance specifications are also given.
Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.
2015-01-01
Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310
Configuration Considerations for Low Frequency Arrays
NASA Astrophysics Data System (ADS)
Lonsdale, C. J.
2005-12-01
The advance of digital signal processing capabilities has spurred a new effort to exploit the lowest radio frequencies observable from the ground, from ˜10 MHz to a few hundred MHz. Multiple scientifically and technically complementary instruments are planned, including the Mileura Widefield Array (MWA) in the 80-300 MHz range, and the Long Wavelength Array (LWA) in the 20-80 MHz range. The latter instrument will target relatively high angular resolution, and baselines up to a few hundred km. An important practical question for the design of such an array is how to distribute the collecting area on the ground. The answer to this question profoundly affects both cost and performance. In this contribution, the factors which determine the anticipated performance of any such array are examined, paying particular attention to the viability and accuracy of array calibration. It is argued that due to the severity of ionospheric effects in particular, it will be difficult or impossible to achieve routine, high dynamic range imaging with a geographically large low frequency array, unless a large number of physically separate array stations is built. This conclusion is general, is based on the need for adequate sampling of ionospheric irregularities, and is independent of the calibration algorithms and techniques that might be employed. It is further argued that array configuration figures of merit that are traditionally used for higher frequency arrays are inappropriate, and a different set of criteria are proposed.
Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays
Olson Reichhardt, C. J.; Wang, Y. L.; Xiao, Z. L.; ...
2016-05-31
A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction ofmore » the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.« less
Development of a 1K x 1K GaAs QWIP Far IR Imaging Array
NASA Technical Reports Server (NTRS)
Jhabvala, M.; Choi, K.; Goldberg, A.; La, A.; Gunapala, S.
2003-01-01
In the on-going evolution of GaAs Quantum Well Infrared Photodetectors (QWIPs) we have developed a 1,024 x 1,024 (1K x1K), 8.4-9 microns infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using the Rockwell TCM 8050 silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). The finished hybrid is thinned at the Jet Propulsion Lab. Prior to this development the largest format array was a 512 x 640 FPA. We have integrated the 1K x 1K array into an imaging camera system and performed tests over the 40K-90K temperature range achieving BLIP performance at an operating temperature of 76K (f/2 camera system). The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. In this paper we will present the first results of our 1K x 1K QWIP array development including fabrication methodology, test data and our imaging results.
Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui
2017-03-15
Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target's point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment.
Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui
2017-01-01
Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target’s point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment. PMID:28294996
Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda
2013-08-02
We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling and simulation for the field emission of carbon nanotubes array
NASA Astrophysics Data System (ADS)
Wang, X. Q.; Wang, M.; Ge, H. L.; Chen, Q.; Xu, Y. B.
2005-12-01
To optimize the field emission of the infinite carbon nanotubes (CNTs) array on a planar cathode surface, the numerical simulation for the behavior of field emission with finite difference method was proposed. By solving the Laplace equation with computer, the influence of the intertube distance, the anode-cathode distance and the opened/capped CNT on the field emission of CNTs array were taken into account, and the results could accord well with the experiments. The simulated results proved that the field enhancement factor of individual CNT is largest, but the emission current density is little. Due to the enhanced screening of the electric field, the enhancement factor of CNTs array decreases with decreasing the intertube distance. From the simulation the field emission can be optimized when the intertube distance is close to the tube height. The anode-cathode distance hardly influences the field enhancement factor of CNTs array, but can low the threshold voltage by decreasing the anode-cathode distance. Finally, the distribution of potential of the capped CNTs array and the opened CNTs array was simulated, which the results showed that the distribution of potential can be influenced to some extent by the anode-cathode distance, especially at the apex of the capped CNTs array and the brim of the opened CNTs array. The opened CNTs array has larger field enhancement factor and can emit more current than the capped one.
Downsampling Photodetector Array with Windowing
NASA Technical Reports Server (NTRS)
Patawaran, Ferze D.; Farr, William H.; Nguyen, Danh H.; Quirk, Kevin J.; Sahasrabudhe, Adit
2012-01-01
In a photon counting detector array, each pixel in the array produces an electrical pulse when an incident photon on that pixel is detected. Detection and demodulation of an optical communication signal that modulated the intensity of the optical signal requires counting the number of photon arrivals over a given interval. As the size of photon counting photodetector arrays increases, parallel processing of all the pixels exceeds the resources available in current application-specific integrated circuit (ASIC) and gate array (GA) technology; the desire for a high fill factor in avalanche photodiode (APD) detector arrays also precludes this. Through the use of downsampling and windowing portions of the detector array, the processing is distributed between the ASIC and GA. This allows demodulation of the optical communication signal incident on a large photon counting detector array, as well as providing architecture amenable to algorithmic changes. The detector array readout ASIC functions as a parallel-to-serial converter, serializing the photodetector array output for subsequent processing. Additional downsampling functionality for each pixel is added to this ASIC. Due to the large number of pixels in the array, the readout time of the entire photodetector is greater than the time between photon arrivals; therefore, a downsampling pre-processing step is done in order to increase the time allowed for the readout to occur. Each pixel drives a small counter that is incremented at every detected photon arrival or, equivalently, the charge in a storage capacitor is incremented. At the end of a user-configurable counting period (calculated independently from the ASIC), the counters are sampled and cleared. This downsampled photon count information is then sent one counter word at a time to the GA. For a large array, processing even the downsampled pixel counts exceeds the capabilities of the GA. Windowing of the array, whereby several subsets of pixels are designated for processing, is used to further reduce the computational requirements. The grouping of the designated pixel frame as the photon count information is sent one word at a time to the GA, the aggregation of the pixels in a window can be achieved by selecting only the designated pixel counts from the serial stream of photon counts, thereby obviating the need to store the entire frame of pixel count in the gate array. The pixel count se quence from each window can then be processed, forming lower-rate pixel statistics for each window. By having this processing occur in the GA rather than in the ASIC, future changes to the processing algorithm can be readily implemented. The high-bandwidth requirements of a photon counting array combined with the properties of the optical modulation being detected by the array present a unique problem that has not been addressed by current CCD or CMOS sensor array solutions.
Goddard Space Flight Center solar array missions, requirements and directions
NASA Technical Reports Server (NTRS)
Gaddy, Edward; Day, John
1994-01-01
The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.
NASA Technical Reports Server (NTRS)
1983-01-01
The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.
Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.
Zhou, Guoquan
2011-11-21
A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America
2000-08-30
In the Space Station Processing Facility, workers help guide a solar array into position for installation on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
In the Space Station Processing Facility, the overhead crane carrying a solar array arrives at the Integrated Equipment Assembly (IEA) on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
Workers in the Space Station Processing Facility give close attention to the placement of a solar array on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
Advanced photovoltaic solar array design assessment
NASA Technical Reports Server (NTRS)
Stella, Paul; Scott-Monck, John
1987-01-01
The Advanced Photovoltaic Solar Array (APSA) program seeks to bring to flight readiness a solar array that effectively doubles the specific power of the Solar Array Flight Experiment/Solar Electric Propulsion (SAFE/SEP) design that was successfully demonstrated during the Shuttle 41-D mission. APSA is a critical intermediate milestone in the effort to demonstrate solar array technologies capable of 300 W/kg and 300 W/square m at beginning of life (BOL). It is not unreasonable to anticipate the development of solar array designs capable of 300 W/kg at BOL for operational power levels approx. greater than 25 kW sub e. It is also quite reasonable to expect that high performance solar arrays capable of providing at least 200 W/kg at end of life for most orbits now being considered by mission planners will be realized in the next decade.
Measuring the electromagnetic chirality of 2D arrays under normal illumination.
Garcia-Santiago, X; Burger, S; Rockstuhl, C; Fernandez-Corbaton, I
2017-10-15
We present an electromagnetic chirality measure for 2D arrays of subwavelength periodicities under normal illumination. The calculation of the measure uses only the complex reflection and transmission coefficients from the array. The measure allows the ordering of arrays according to their electromagnetic chirality, which further allows a quantitative comparison of different design strategies. The measure is upper bounded, and the extreme properties of objects with high values of electromagnetic chirality make them useful in both near- and far-field applications. We analyze the consequences that different possible symmetries of the array have on its electromagnetic chirality. We use the measure to study four different arrays. The results indicate the suitability of helices for building arrays of high electromagnetic chirality, and the low effectiveness of a substrate for breaking the transverse mirror symmetry.
The revised solar array synthesis computer program
NASA Technical Reports Server (NTRS)
1970-01-01
The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.
Synthesis of a large communications aperture using small antennas
NASA Technical Reports Server (NTRS)
Resch, George M.; Cwik, T. W.; Jamnejad, V.; Logan, R. T.; Miller, R. B.; Rogstad, Dave H.
1994-01-01
In this report we compare the cost of an array of small antennas to that of a single large antenna assuming both the array and single large antenna have equal performance and availability. The single large antenna is taken to be one of the 70-m antennas of the Deep Space Network. The cost of the array is estimated as a function of the array element diameter for three different values of system noise temperature corresponding to three different packaging schemes for the first amplifier. Array elements are taken to be fully steerable paraboloids and their cost estimates were obtained from commercial vendors. Array loss mechanisms and calibration problems are discussed. For array elements in the range 3 - 35 m there is no minimum in the cost versus diameter curve for the three system temperatures that were studied.
Thin-Film Solar Array Earth Orbit Mission Applicability Assessment
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Raffaelle, Ryne P.
2002-01-01
This is a preliminary assessment of the applicability and spacecraft-level impact of using very lightweight thin-film solar arrays with relatively large deployed areas for representative Earth orbiting missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A simple calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a proper spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. NASA Glenn's low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is also briefly discussed to provide a perspective on one approach to achieving this enabling technology. The paper concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may become the best array option for a subset of Earth orbiting missions.
Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System
NASA Technical Reports Server (NTRS)
Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.
2003-01-01
The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.
The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
2007-01-01
High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.
Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing
Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Wai Cheung, Sau; Bacino, Carlos; Patel, Ankita
2014-01-01
In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner. PMID:23695279
Characterization of Kerfless Linear Arrays Based on PZT Thick Film.
Zawada, Tomasz; Bierregaard, Louise Moller; Ringgaard, Erling; Xu, Ruichao; Guizzetti, Michele; Levassort, Franck; Certon, Dominique
2017-09-01
Multielement transducers enabling novel cost-effective fabrication of imaging arrays for medical applications have been presented earlier. Due to the favorable low lateral coupling of the screen-printed PZT, the elements can be defined by the top electrode pattern only, leading to a kerfless design with low crosstalk between the elements. The thick-film-based linear arrays have proved to be compatible with a commercial ultrasonic scanner and to support linear array beamforming as well as phased array beamforming. The main objective of the presented work is to investigate the performance of the devices at the transducer level by extensive measurements of the test structures. The arrays have been characterized by several different measurement techniques. First, electrical impedance measurements on several elements in air and liquid have been conducted in order to support material parameter identification using the Krimholtz-Leedom-Matthaei model. It has been found that electromechanical coupling is at the level of 35%. The arrays have also been characterized by a pulse-echo system. The measured sensitivity is around -60 dB, and the fractional bandwidth is close to 60%, while the center frequency is about 12 MHz over the whole array. Finally, laser interferometry measurements have been conducted indicating very good displacement level as well as pressure. The in-depth characterization of the array structure has given insight into the performance parameters for the array based on PZT thick film, and the obtained information will be used to optimize the key parameters for the next generation of cost-effective arrays based on piezoelectric thick film.
Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F
2006-09-01
This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.
Bi-sensory, striped representations: comparative insights from owl and platypus.
Pettigrew, John D
2004-01-01
Bi-sensory striped arrays are described in owl and platypus that share some similarities with the other variant of bi-sensory striped array found in primate and carnivore striate cortex: ocular dominance columns. Like ocular dominance columns, the owl and platypus striped systems each involve two different topographic arrays that are cut into parallel stripes, and interdigitated, so that higher-order neurons can integrate across both arrays. Unlike ocular dominance stripes, which have a separate array for each eye, the striped array in the middle third of the owl tectum has a separate array for each cerebral hemisphere. Binocular neurons send outputs from both hemispheres to the striped array where they are segregated into parallel stripes according to hemisphere of origin. In platypus primary somatosensory cortex (S1), the two arrays of interdigitated stripes are derived from separate sensory systems in the bill, 40,000 electroreceptors and 60,000 mechanoreceptors. The stripes in platypus S1 cortex produce bimodal electrosensory-mechanosensory neurons with specificity for the time-of-arrival difference between the two systems. This "thunder-and-lightning" system would allow the platypus to estimate the distance of the prey using time disparities generated at the bill between the earlier electrical wave and the later mechanical wave caused by the motion of benthic prey. The functional significance of parallel, striped arrays is not clear, even for the highly-studied ocular dominance system, but a general strategy is proposed here that is based on the detection of temporal disparities between the two arrays that can be used to estimate distance.
2008-09-30
new source section and by mounting nose arrays. Unicorn will have a single nose array while Caribou with the dual array. The new configurations are...Nose array Figure 1: New Configurations of the MIT BF21 AUVs Unicorn and Caribou. Both are being equipped
Method for replicating an array of nucleic acid probes
Cantor, Charles R.; Przetakiewicz, Marek; Smith, Cassandra L.; Sano, Takeshi
1998-01-01
The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.
Transport in arrays of submicron Josephson junctions over a ground plane
NASA Astrophysics Data System (ADS)
Ho, Teressa Rae
One-dimensional (1D) and two-dimensional (2D) arrays of Al islands linked by submicron Al/Alsb{x}Osb{y}/Al tunnel junctions were fabricated on an insulating layer grown on a ground plane. The arrays were cooled to temperatures as low as 20 mK where the Josephson coupling energy Esb{J} of each junction and the charging energy Esb{C} of each island were much greater than the thermal energy ksb{B}T. The capacitance Csb{g} between each island and the ground plane was much greater than the junction capacitance C. Two classes of arrays were studied. In the first class, the normal state tunneling resistance of the junctions was much larger than the resistance quantum for single electrons, Rsb{N}≫ Rsb{Qe}equiv h/esp2≈ 25.8 kOmega, and the islands were driven normal by an applied magnetic field such that Esb{J}=0 and the array was in the Coulomb blockade regime. The arrays were made on degenerately-doped Si, thermally oxidized to a thickness of approximately 100 nm. The current-voltage (I-V) characteristics of a 1D and a 2D array were measured and found to display a threshold voltage Vsb{T} below which little current flows. Above threshold the array current I scaled as (V/Vsb{T}-1)sp{zeta}; this scaling behavior was interpreted as a dynamic critical phenomenon. A 2D array with intentionally-added island area disorder was also measured and found to have a similar threshold voltage Vsb{T} but a larger scaling exponent zeta than the array with only intrinsic disorder. In the second class of arrays, the normal state tunneling resistance of the junctions was close to the resistance quantum for Cooper pairs, Rsb{N}≈ Rsb{Q}equiv h/4esp2≈ 6.45kOmega, such that Esb{J}/Esb{C}≈1. The arrays were made on GaAs/Alsb{0.3}Gasb{0.7}As heterostructures with a two-dimensional electron gas (2DEG) approximately 100 nm below the surface. The resistance per square of the 2DEG, Rsb{g}, could be varied by applying a large voltage between the 2DEG and a metallic back gate; varying Rsb{g} varied the dissipation associated with the local electrodynamic environment. For a 2D array, the I-V characteristics made a transition from superconductor-like to insulator-like as the resistance of the ground plane Rsb{g} was increased. The zero-bias resistance Rsb0 of the array increased exponentially with Rsb{g}. A small magnetic field was applied perpendicularly to the array, and the I-V characteristics of the array changed from superconductor-like to insulator-like as the magnetic field (measured in units of frustration f, the number of flux quanta per unit cell) was increased. Increasing Rsb{g} drove the magnetic field-driven superconductor-like to insulator-like transition of the I-V characteristics to lower values of f, and increasing f drove the dissipation-driven transition to lower values of Rsb{g}. Three 1D arrays were also measured. One array displayed superconducting behavior at low temperature, and the size of the supercurrent increased, reached a maximum, and then decreased, as Rsb{g} was increased. Two arrays displayed insulating behavior at low temperature, and the size of the Coulomb gap increased with increasing Rsb{g}. The zero-bias resistance of the array Rsb0 increased faster than exponentially with Rsb{g}.
2010-09-01
adds an extra dimension to both IPS and other observations. The polarization of the CME synchrotron emission observed by [3] will be of great...base funding. 8. REFERENCES 1. Kassim et al., The 74 MHz System on the Very Large Array, The Astrophysical Journal Supplement Series, Vol. 172...The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar Namir E. Kassim Naval Research
Double biprism arrays design using for stereo-photography of mobile phone camera
NASA Astrophysics Data System (ADS)
Sun, Wen-Shing; Chu, Pu-Yi; Chao, Yu-Hao; Pan, Jui-Wen; Tien, Chuen-Lin
2016-11-01
Generally, mobile phone use one camera to catch the image, and it is hard to get stereo image pair. Adding a biprism array can help that get the image pair easily. So users can use their mobile phone to catch the stereo image anywhere by adding a biprism array, and if they want to get a normal image just remove it. Using biprism arrays will induce chromatic aberration. Therefore, we design a double biprism arrays to reduce chromatic aberration.
EVA 2 - old solar array installed in payload bay
2002-03-05
STS109-326-008 (5 March 2002) --- Astronaut Michael J. Massimino, mission specialist, works at the stowage area for the Hubble Space Telescope's port side solar array. Astronauts Massimino and James H. Newman removed the old port solar array and stowed it in Columbias payload bay for a return to Earth. They then went on to install a third-generation solar array and its associated electrical components. Two crew mates had accomplished the same feat with the starboard array on the previous day.
1989-09-01
enables a study of the internal wave field simultaneously using tiltmeters , strainmeters, and oceanographic sensors . It offers the chance to determine...Williams, personal communication]. Their sensors include a bubble level tiltmeter installed near the instrument hut, as well as a triangular array of...Plan Three sensor arrays are deployed near each other, as shown in Figure 2.3: our tiltmeter array, the SPRI strainmeter array, and the array of moored
Port side of the P6 Solar Array during the first attempt to retract
2006-12-13
S116-E-05789 (13 Dec. 2006) --- This digital still image was taken by a crew member aboard the Space Shuttle Discovery of a kink that occurred in the port-side P6 solar array during the first attempt to retract that array on Dec. 13. The crew later extended the array and cleared this kink. The slow retraction of the array was then begun again with similar retraction and extension cycles repeated as the day progressed.
Demonstration of Lasercom and Spatial Tracking with a Silicon Geiger-Mode APD Array
2016-02-26
standardized pixel mask as described in the previous paragraph disabling 167 of the 1024 detectors in the array , this gives an absolute maximum rate...number of elements in an array based detector .5 In this paper, we present the results of photon-counting communication tests based on an arrayed ...semiconductor photon-counting detector .6 The array also has the ability to sense the spatial distribution of the received light giving it the potential to act
NASA Technical Reports Server (NTRS)
Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed
2004-01-01
This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.
24-71 GHz PCB Array for 5G ISM
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Volakis, John L.; Miranda, Felix A.
2017-01-01
Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.
Array architectures for iterative algorithms
NASA Technical Reports Server (NTRS)
Jagadish, Hosagrahar V.; Rao, Sailesh K.; Kailath, Thomas
1987-01-01
Regular mesh-connected arrays are shown to be isomorphic to a class of so-called regular iterative algorithms. For a wide variety of problems it is shown how to obtain appropriate iterative algorithms and then how to translate these algorithms into arrays in a systematic fashion. Several 'systolic' arrays presented in the literature are shown to be specific cases of the variety of architectures that can be derived by the techniques presented here. These include arrays for Fourier Transform, Matrix Multiplication, and Sorting.
Platform for immobilization and observation of subcellular processes
McKnight, Timothy E.; Kalluri, Udaya C.; Melechko, Anatoli V.
2014-08-26
A method of immobilizing matter for imaging that includes providing an array of nanofibers and directing matter to the array of the nanofibers. The matter is immobilized when contacting at least three nanofibers of the array of nanofibers simultaneously. Adjacent nanofibers in the array of nanofibers may be separated by a pitch as great as 100 microns. The immobilized matter on the array of nanofibers may then be imaged. In some examples, the matter may be cell matter, such as protoplasts.
NASA Technical Reports Server (NTRS)
Jones, B.
1985-01-01
This program was directed towards a better understanding of some of the important factors in the performance of infrared detector arrays at low background conditions appropriate for space astronomy. The arrays were manufactured by Aerojet Electrosystems Corporation, Azusa. Two arrays, both bismuth doped silicon, were investigated: an AMCID 32x32 Engineering mosiac Si:Bi accumulation mode charge injection device detector array and a metal oxide semiconductor/field effect transistor (MOS-FET) switched array of 16x32 pixels.
A model for the distributed storage and processing of large arrays
NASA Technical Reports Server (NTRS)
Mehrota, P.; Pratt, T. W.
1983-01-01
A conceptual model for parallel computations on large arrays is developed. The model provides a set of language concepts appropriate for processing arrays which are generally too large to fit in the primary memories of a multiprocessor system. The semantic model is used to represent arrays on a concurrent architecture in such a way that the performance realities inherent in the distributed storage and processing can be adequately represented. An implementation of the large array concept as an Ada package is also described.
Imaging antenna array at 119 microns. [for plasma diagnostics
NASA Technical Reports Server (NTRS)
Neikirk, N. P.; Tong, P. P.; Putledge, D. B.; Park, H.; Young, P. E.
1982-01-01
A focal-plane imaging antenna array has been demonstrated at 119 microns. The array is a line of evaporated silver bow-tie antennas with bismuth microbolometer detectors on a silicon substrate. Radiation is coupled into the array by a lens placed on the back of the substrate. The bolometers are thermally isolated from the silicon substrate with a half-micron layer of polyimide. The array performance is demonstrated by coherent imaging of a series of holes at half the diffraction-limited cut-off frequency.
NASA Technical Reports Server (NTRS)
Fowler, A. M.; Joyce, R. R.
1990-01-01
The Hughes 20 x 64 Si:As impurity band conduction arrays designed for ground-based and spaceborne astronomy observations is described together with experiments performed at NOAO to test these arrays. Special attention is given to the design and the characteristics of the test system and to the test methods. The initial tests on two columns of one array indicate that the array is easy to operate and performed satisfactorily.
Two-dimensional photon-counting detector arrays based on microchannel array plates
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1975-01-01
The production of simple and rugged photon-counting detector arrays has been made possible by recent improvements in the performance of the microchannel array plate (MCP) and by the parallel development of compatible electronic readout systems. The construction of proximity-focused MCP arrays of novel design in which photometric information from (n x m) picture elements is read out with a total of (n + m) amplifier and discriminator circuits is described. Results obtained with a breadboard (32 x 32)-element array employing 64 charge-sensitive amplifiers are presented, and the application of systems of this type in spectrometers and cameras for use with ground-based telescopes and on orbiting spacecraft discussed.
Uplink Array Calibration via Far-Field Power Maximization
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Mukai, R.; Lee, D.
2006-01-01
Uplink antenna arrays have the potential to greatly increase the Deep Space Network s high-data-rate uplink capabilities as well as useful range, and to provide additional uplink signal power during critical spacecraft emergencies. While techniques for calibrating an array of receive antennas have been addressed previously, proven concepts for uplink array calibration have yet to be demonstrated. This article describes a method of utilizing the Moon as a natural far-field reflector for calibrating a phased array of uplink antennas. Using this calibration technique, the radio frequency carriers transmitted by each antenna of the array are optimally phased to ensure that the uplink power received by the spacecraft is maximized.
Large Phased Array Radar Using Networked Small Parabolic Reflectors
NASA Technical Reports Server (NTRS)
Amoozegar, Farid
2006-01-01
Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.
Li, Qi; Shang, Jian Ku
2009-12-01
Self-organized nitrogen and fluorine co-doped titanium oxide (TiONF) nanotube arrays were created by anodizing titanium foil in a fluoride and ammoniate-based electrolyte, followed by calcination of the amorphous nanotube arrays under a nitrogen protective atmosphere for crystallization. TiONF nanotube arrays were found to have enhanced visible light absorption capability and photodegradation efficiency on methylene blue under visible light illumination over the TiO(2) nanotube arrays. The enhancement was dependent on both the nanotube structural architecture and the nitrogen and fluorine co-doping effect. TiONF nanotube arrays promise a wide range of technical applications, especially for environmental applications and solar cell devices.
NASA Astrophysics Data System (ADS)
Rosenberger, Tessa; Lindner, John F.
We study the dynamics of mechanical arrays of bistable elements coupled one-way by wind. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Soliton-like waves propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in even arrays where adjacent elements are attracted to opposite stable states. Solitons propagate indefinitely in odd arrays where pairing is frustrated. Large noise spontaneously creates soliton- antisoliton pairs, as predicted by prior computer simulations. Soliton annihilation times increase quadratically with initial separations, as expected for random walk models of soliton collisions.
NASA Technical Reports Server (NTRS)
Dietrich, F. J.; Koloboff, G. J.; Martel, R. J.; Johnson, C. C. (Inventor)
1974-01-01
A spin stabilized satellite has an electronically despun antenna array comprising a multiplicity of peripheral antenna elements. A high gain energy beam is established by connecting a suitable fraction or array of the elements in phase. The beam is steered or caused to scan by switching elements in sequence into one end of the array as elements at the other end of the array are switched out. The switching transients normally associated with such steering are avoided by an amplitude control system. Instead of abruptly switching from one element to the next, a fixed value of power is gradually transferred from the element at the trailing edge of the array to the element next to the leading edge.
NASA Astrophysics Data System (ADS)
Jones, Jeremy; Schaefer, Gail; ten Brummelaar, Theo; Gies, Douglas; Farrington, Christopher
2018-01-01
We are building a searchable database for the CHARA Array data archive. The Array consists of six telescopes linked together as an interferometer, providing sub-milliarcsecond resolution in the optical and near-infrared. The Array enables a variety of scientific studies, including measuring stellar angular diameters, imaging stellar shapes and surface features, mapping the orbits of close binary companions, and resolving circumstellar environments. This database is one component of an NSF/MSIP funded program to provide open access to the CHARA Array to the broader astronomical community. This archive goes back to 2004 and covers all the beam combiners on the Array. We discuss the current status of and future plans for the public database, and give directions on how to access it.
Array coding for large data memories
NASA Technical Reports Server (NTRS)
Tranter, W. H.
1982-01-01
It is pointed out that an array code is a convenient method for storing large quantities of data. In a typical application, the array consists of N data words having M symbols in each word. The probability of undetected error is considered, taking into account three symbol error probabilities which are of interest, and a formula for determining the probability of undetected error. Attention is given to the possibility of reading data into the array using a digital communication system with symbol error probability p. Two different schemes are found to be of interest. The conducted analysis of array coding shows that the probability of undetected error is very small even for relatively large arrays.
Integrated residential photovoltaic array development
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1981-01-01
Three basic module design concepts were analyzed with respect to both production and installation costs. The results of this evaluation were used to synthesize a fourth design which incorporates the best features of these initial concepts to produce a module/array design approach which offers the promise of a substantial reduction in the installed cost of a residential array. A unique waterproofing and mounting scheme was used to reduce the cost of installing an integral array while still maintaining a high probability that the installed array will be watertight for the design lifetime of the system. This recommended concept will also permit the array to be mounted as a direct or stand-off installation with no changes to the module design.
Design and economics of a photovoltaic concentrator array for off-grid applications
NASA Astrophysics Data System (ADS)
Maish, A. B.; Rios, M., Jr.
1982-09-01
The array design and expected operation of a photovoltaic concentrator are discussed. A second generation stand alone 680 W/sub p/ photovoltaic (PV) concentrating array for low power, nongrid connected applications was designed. The array consists of six passive cooled point focus Fresnel lens concentrating modules on a two axis polar mount tracking structure. The new array design incorporates several major improvements to the first generation design. These include 50% more array area and a control system which allows unattended, fully automatic operation. The life cycle energy costs are calculated and compared to the equivalent energy costs of a 3 kW diesel electric generator set and an equivalent flat panel PV system.
Germanium detectors in homeland security at PNNL
Stave, S.
2015-05-01
Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADESmore » HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.« less
Graaf, Matthew D; Marquez, Bernadette V; Yeh, Nai-Hua; Lapi, Suzanne E; Moeller, Kevin D
2016-10-21
Cu(I)-catalyzed "click" reactions cannot be performed on a borate ester derived polymer coating on a microelectrode array because the Cu(II) precursor for the catalyst triggers background reactions between both acetylene and azide groups with the polymer surface. Fortunately, the Cu(II)-background reaction can itself be used to site-selectively add the acetylene and azide nucleophiles to the surface of the array. In this way, molecules previously functionalized for use in "click" reactions can be added directly to the array. In a similar fashion, activated esters can be added site-selectively to a borate ester coated array. The new chemistry can be used to explore new biological interactions on the arrays. Specifically, the binding of a v107 derived peptide with both human and murine VEGF was probed using a functionalized microelectrode array.
NASA Astrophysics Data System (ADS)
Holland, Stephen D.; Song, Jun-Ho; Chimenti, D. E.; Roberts, Ron
2006-03-01
We demonstrate an array sensor method intended to locate leaks in manned spacecraft using leak-generated, structure-borne ultrasonic noise. We have developed and tested a method for sensing and processing leak noise to reveal the leak location involving the use of a 64-element phased-array. Cross-correlations of ultrasonic noise waveforms from a leak into vacuum have been used with a phased-array analysis to find the direction from the sensor to the leak. This method measures the propagation of guided ultrasonic Lamb waves passing under the PZT array sensor in the spacecraft skin structure. This paper will describe the custom-designed array with integrated electronics, as well as the performance of the array in prototype applications. We show that this method can be used to successfully locate leaks to within a few millimeters on a 0.6-m square aluminum plate.
Cochlear's unique electrode portfolio now and in the future.
von Wallenberg, E; Briggs, R
2014-05-01
To review Cochlear's electrode portfolio and discuss the merits of current and future straight and perimodiolar electrode arrays. To present an update on implant reliability. Performance and hearing preservation data from studies involving the Slim Straight (CI422), Hybrid L24 and Contour Advance electrode array were reviewed. While several studies in past found little difference in performance outcomes between subjects implanted with perimodiolar and straight arrays, recent studies demonstrated that proximity to the modiolus is correlated with better performance. Hearing threshold increase was lowest with the Hybrid L24, closely followed by the slim straight array and was largest with the Contour Advance array. The CI24RE receiver-stimulator used for the three arrays had a cumulative survival of 99% at eight years post implantation. Combining the hearing preservation benefits of slim straight arrays with perimodiolar proximity is the design objective of Cochlear's next generation electrodes.
A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays.
Lutton, Rebecca E M; Larrañeta, Eneko; Kearney, Mary-Carmel; Boyd, Peter; Woolfson, A David; Donnelly, Ryan F
2015-10-15
A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14×14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stave, Sean C.
Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADESmore » HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.« less
NASA Technical Reports Server (NTRS)
Schuman, H. K.
1992-01-01
An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.
Carbon nanotube nanoelectrode arrays
Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi
2008-11-18
The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.
2000-08-30
Workers in the Space Station Processing Facility help guide an overhead crane toward a workstand containing a solar array in order to move it for installation onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
In the Space Station Processing Facility, the overhead crane carrying a solar array maneuvers its cargo into position on the Integrated Equipment Assembly on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
Design and Fabrication of Aspheric Microlens Array for Optical Read-Only-Memory Card System
NASA Astrophysics Data System (ADS)
Kim, Hongmin; Jeong, Gibong; Kim, Young‑Joo; Kang, Shinill
2006-08-01
An optical head based on the Talbot effect with an aspheric microlens array for an optical read-only-memory (ROM) card system was designed and fabricated. The mathematical expression for the wavefield diffracted by a periodic microlens array showed that the amplitude distribution at the Talbot plane from the focal plane of the microlens array was identically equal to that at the focal plane. To use a reflow microlens array as a master pattern of an ultraviolet-imprinted (UV-imprinted) microlens array, the reflow microlens was defined as having an aspheric shape. To obtain optical probes with good optical qualities, a microlens array with the minimum spherical aberration was designed by ray tracing. The reflow condition was optimized to realize the master pattern of a microlens with a designed aspheric shape. The intensity distribution of the optical probes at the Talbot plane from the focal plane showed a diffraction-limited shape.
Arrayed Micro-Ring Spectrometer System and Method of Use
NASA Technical Reports Server (NTRS)
Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2012-01-01
A spectrometer system includes an array of micro-zone plates (MZP) each having coaxially-aligned ring gratings, a sample plate for supporting and illuminating a sample, and an array of photon detectors for measuring a spectral characteristic of the predetermined wavelength. The sample plate emits an evanescent wave in response to incident light, which excites molecules of the sample to thereby cause an emission of secondary photons. A method of detecting the intensity of a selected wavelength of incident light includes directing the incident light onto an array of MZP, diffracting a selected wavelength of the incident light onto a target focal point using the array of MZP, and detecting the intensity of the selected portion using an array of photon detectors. An electro-optic layer positioned adjacent to the array of MZP may be excited via an applied voltage to select the wavelength of the incident light.
A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays
Lutton, Rebecca E.M.; Larrañeta, Eneko; Kearney, Mary-Carmel; Boyd, Peter; Woolfson, A.David; Donnelly, Ryan F.
2015-01-01
A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14 × 14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%. PMID:26302858
Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof
NASA Technical Reports Server (NTRS)
Dimov, Fedor (Inventor); Ai, Jun (Inventor)
2015-01-01
A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.
Field ionization characteristics of an ion source array for neutron generators
NASA Astrophysics Data System (ADS)
Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.
2013-11-01
A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.
A simple method for the construction of small format tissue arrays
Hidalgo, A; Piña, P; Guerrero, G; Lazos, M; Salcedo, M
2003-01-01
Tissue arrays can evaluate molecular targets in high numbers of samples in parallel. Array construction presents technical difficulties and tissue arrayers are expensive, particularly for small and medium sized laboratories. This report describes a method for the construction of 36 sample arrays using widely available materials. A blunted 16 gauge needle for bone marrow aspiration was used to extract paraffin wax cylinders and manually define a 6 × 6 matrix on a blank paraffin wax block. Tissue cores from 36 paraffin wax embedded premalignant lesions and invasive cervical carcinomas were injected into the matrix using a 14 gauge needle. This tissue array was sectioned using a standard microtome and used for the immunodetection of CD44 variant 9 and interleukin 18 with satisfactory results. This method can be applied in any laboratory, without the need of specialised equipment, offering a good alternative for the wider application of tissue arrays. PMID:12560397
Design of an ultrasonic micro-array for near field sensing during retinal microsurgery.
Clarke, Clyde; Etienne-Cummings, Ralph
2006-01-01
A method for obtaining the optimal and specific sensor parameters for a tool-tip mountable ultrasonic transducer micro-array is presented. The ultrasonic transducer array sensor parameters, such as frequency of operation, element size, inter-element spacing, number of elements and transducer geometry are obtained using a quadratic programming method to obtain a maximum directivity while being constrained to a total array size of 4 mm2 and the required resolution for retinal imaging. The technique is used to design a uniformly spaced NxN transducer array that is capable of resolving structures in the retina that are as small as 2 microm from a distance of 100 microm. The resultant 37x37 array of 16 microm transducers with 26 microm spacing will be realized as a Capacitive Micromachined Ultrasonic Transducer (CMUT) array and used for imaging and robotic guidance during retinal microsurgery.
Space and power efficient hybrid counters array
Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY
2009-05-12
A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.
Space and power efficient hybrid counters array
Gara, Alan G.; Salapura, Valentina
2010-03-30
A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.
Light Trapping with Silicon Light Funnel Arrays
Nissan, Yuval; Gabay, Tamir; Shalev, Gil
2018-01-01
Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization. PMID:29562685
Ultrasound beam characteristics of a symmetric nodal origami based array
NASA Astrophysics Data System (ADS)
Bilgunde, Prathamesh N.; Bond, Leonard J.
2018-04-01
Origami-the ancient art of paper folding-is being explored in acoustics for effective focusing of sound. In this short communication, we present a numerical investigation of beam characteristics for an origami based ultrasound array. A spatial re-configuration of array elements is performed based upon the symmetric nodal origami. The effect of fold angle on the ultrasound beam is evaluated using frequency domain and transient finite element analysis. It was found that increase in the fold angle reduces near field length by 58% and also doubles the beam intensity as compared to the linear array. Transient analysis also indicated 80% reduction in the -6dB beam width, which can improve the lateral resolution of phased array. Such a spatially re-configurable array could potentially be used in the future to reduce the cost of electronics in the phased array instrumentation.
Visual short-term memory for sequential arrays.
Kumar, Arjun; Jiang, Yuhong
2005-04-01
The capacity of visual short-term memory (VSTM) for a single visual display has been investigated in past research, but VSTM for multiple sequential arrays has been explored only recently. In this study, we investigate the capacity of VSTM across two sequential arrays separated by a variable stimulus onset asynchrony (SOA). VSTM for spatial locations (Experiment 1), colors (Experiments 2-4), orientations (Experiments 3 and 4), and conjunction of color and orientation (Experiment 4) were tested, with the SOA across the two sequential arrays varying from 100 to 1,500 msec. We find that VSTM for the trailing array is much better than VSTM for the leading array, but when averaged across the two arrays VSTM has a constant capacity independent of the SOA. We suggest that multiple displays compete for retention in VSTM and that separating information into two temporally discrete groups does not enhance the overall capacity of VSTM.
High density pixel array and laser micro-milling method for fabricating array
NASA Technical Reports Server (NTRS)
McFall, James Earl (Inventor); Wiener-Avnear, Eliezer (Inventor)
2003-01-01
A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.
Self-assembled three-dimensional nanocrown array.
Hong, Soongweon; Kang, Taewook; Choi, Dukhyun; Choi, Yeonho; Lee, Luke P
2012-07-24
Although an ordered nanoplasmonic probe array will have a huge impact on light harvesting, selective frequency response (i.e., nanoantenna), and quantitative molecular/cellular imaging, the realization of such an array is still limited by conventional techniques due to the serial processing or resolution limit by light diffraction. Here, we demonstrate a thermodynamically driven, self-assembled three-dimensional nanocrown array that consists of a core and six satellite gold nanoparticles (GNPs). Our ordered nanoprobe array is fabricated over a large area by thermal dewetting of thin gold film on hexagonally ordered porous anodic alumina (PAA). During thermal dewetting, the structural order of the PAA template dictates the periodic arrangement of gold nanoparticles, rendering the array of gold nanocrown. Because of its tunable size (i.e., 50 nm core and 20 nm satellite GNPs), arrangement, and periodicity, the nanocrown array shows multiple optical resonance frequencies at visible wavelengths as well as angle-dependent optical properties.
Atkinson, Samantha; Kirik, Angela; Kirik, Viktor
2014-01-01
Aligned microtubule arrays spatially organize cell division, trafficking, and determine the direction of cell expansion in plant cells. In response to changes in environmental and developmental signals, cells reorganize their microtubule arrays into new configurations. Here, we tested the role of microtubule nucleation during hormone-induced microtubule array reorientation. We have found that in the process of microtubule array reorientation the ratios between branching, parallel, and de-novo nucleations remained constant, suggesting that the microtubule reorientation mechanism does not involve changes in nucleation modes. In the ton2/fass mutant, which has reduced microtubule branching nucleation frequency and decreased nucleation activity of the γ-tubulin complexes, microtubule arrays were able to reorient. Presented data suggest that reorientation of microtubules into transverse arrays in response to hormones does not involve changes in microtubule nucleation at the periclinal cell surface PMID:25135522
Quasi-optical antenna-mixer-array design for terahertz frequencies
NASA Technical Reports Server (NTRS)
Guo, Yong; Potter, Kent A.; Rutledge, David B.
1992-01-01
A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.
Photovoltaic array space power plus diagnostics experiment
NASA Technical Reports Server (NTRS)
Guidice, Donald A.
1990-01-01
The objective of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment is to measure the effects of the interaction of the low- to mid-altitude space environment on the performance of a diverse set of small solar-cell arrays (planar and concentrator, representative of present and future military technologies) under differing conditions of velocity-vector orientation and simulated (by biasing) high-voltage operation. Solar arrays to be tested include Si and GaAs planar arrays and several types of GaAs concentrator arrays. Diagnostics (a Langmuir probe and a pressure gauge) and a transient pulse monitor (to measure radiated and conducted EMI during arcing) will be used to determine the impact of the environment on array operation to help verify various interactions models. Results from a successful PASP Plus flight will furnish answers to important interactions questions and provide inputs for design and test standards for photovoltaic space-power subsystems.
Sonochemically Fabricated Microelectrode Arrays for Use as Sensing Platforms
Collyer, Stuart D.; Davis, Frank; Higson, Séamus P.J.
2010-01-01
The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm−2. Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric “mushroom” protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes). PMID:22399926
Multi-anode microchannel arrays
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1977-01-01
A development program is currently being undertaken to produce photon-counting detector arrays which are suitable for use in both ground-based and space-borne instruments and which utilize the full sensitivity, dynamic range and photometric stability of the microchannel array plate (MCP). The construction of the detector arrays and the status of the development program are described.
Method for replicating an array of nucleic acid probes
Cantor, C.R.; Przetakiewicz, M.; Smith, C.L.; Sano, T.
1998-08-18
The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5{prime}- and/or 3{prime}-overhangs. 16 figs.
General view looking northnorthwest at antenna array. Troposhperic scatter communications ...
General view looking north-northwest at antenna array. Troposhperic scatter communications antennas are seen at far left, transmitter building is in center, antenna array at right - Over-the-Horizon Backscatter Radar Network, Moscow Radar Site Transmit Sector One Antenna Array, At the end of Steam Road, Moscow, Somerset County, ME
Effect of wind speed on performance of a solar-pv array
USDA-ARS?s Scientific Manuscript database
Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...
Flat-plate solar array progress and plans
NASA Technical Reports Server (NTRS)
Callaghan, W. T.
1984-01-01
The results of research into the technology of flat-plate solar arrays undertaken in the Flat-Plate Solar Array Project under the sponsorship of the U.S. Department of Energy are surveyed. Topics examined include Si refinement, ribbon-sheet substrate formation, module process sequences, environmental isolation, module engineering and testing, and photovoltaic-array economics.
Measurement of high-voltage and radiation-damage limitations to advanced solar array performance
NASA Technical Reports Server (NTRS)
Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.
1991-01-01
A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.
Phased-array-fed antenna configuration study. Volume 1: Technology assessment
NASA Technical Reports Server (NTRS)
Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.
1983-01-01
The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.
Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar
2017-01-17
The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.