Sample records for nano artificial red

  1. Long-term Effects on the Histology and Function of Livers and Spleens in Rats after 33% Toploading of PEG-PLA-nano Artificial Red Blood Cells

    PubMed Central

    Liu, Zun Chang; Chang, Thomas M.S.

    2012-01-01

    This study is to investigate the long-term effects of nanodimension PEG-PLA artificial red blood cells containing hemoglobin and red blood cell enzymes on the liver and spleen after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: Nano artificial red blood cells in Ringer lactate, Ringer lactate, stroma-free hemoglobin, polyhemoglobin, and autologous rat whole blood. Blood samples were taken before infusions and on days 1, 7, and 21 after infusions for analysis. Nano artificial red blood cells, polyhemoglobin, Ringer lactate and rat red blood cells did not have any significant adverse effects on alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatine kinase, amylase and creatine kinase. On the other hand, stroma-free hemoglobin induced significant adverse effects on liver as shown by elevation in alanine aminotransferase and aspartate aminotransferase throughout the 21 days. On day 21 after infusions rats were sacrificed and livers and spleens were excised for histological examination. Nano artificial red blood cells, polyhemoglobin, Ringer lactate and rat red blood cells did not cause any abnormalities in the microscopic histology of the livers and spleens. In the stroma-free hemoglobin group the livers showed accumulation of hemoglobin in central veins and sinusoids, and hepatic steatosis. In conclusion, injected nano artificial red blood cells can be efficiently metabolized and removed by the reticuloendothelial system, and do not have any biochemical or histological adverse effects on the livers or the spleens. PMID:19043818

  2. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  3. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  4. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano

    2014-01-06

    Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in amore » pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.« less

  5. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano

    2014-01-01

    Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in a pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.

  6. [Study on biocompatibility of hydroxyapatite/high density polyethylene (HA/HDPE) nano-composites artificial ossicle].

    PubMed

    Wang, Guohui; Zhu, Shaihong; Tan, Guolin; Zhou, Kechao; Huang, Suping; Zhao, Yanzhong; Li, Zhiyou; Huang, Boyun

    2008-06-01

    This study was aimed to evaluate the biocompatibility of Hydroxyapatite/High density polyethylene (HA/ HDPE) nano-composites artificial ossicle. The percentage of S-period cells were detected by flow cytometry after L929 cells being incubated with extraction of the HA/HDPE nano-composites; the titanium materials for clinical application served as the contrast. In addition, both materials were implanted in animals and the histopathological evaluations were conducted. There were no statistically significant differences between the two groups (P >0.05). The results demonstrated that the HA/HDPE nano-composite artificial ossicle made by our laboratory is of a good biocompatibility and clinical application outlook.

  7. Nano-bio assemblies for artificial light harvesting systems

    NASA Astrophysics Data System (ADS)

    Bain, Dipankar; Maity, Subarna; Patra, Amitava

    2018-02-01

    Ultrasmall fluorescent gold nanoclusters (Au NCs) have drawn considerable research interest owing to their molecular like properties such as d-sp and sp-sp transitions, and intense fluorescence. Fluorescent Au NCs have especial attraction in biological system owing to their biocompatibility and high photostability. Recently, several strategies have been adapted to design an artificial light-harvesting system using Au NCs for potential applications. Here, we have designed Au nanoclusters based dsDNA (double stranded deoxyribonucleic acid) nano assemblies where the Au nanocluster is covalently attached with Alexa Fluor 488 (A488) dye tagged dsDNA. Investigation reveals that the incorporation of Ag+ into dsDNA enhances the rate of energy transfer from A488 to Au NCs. In addition cadmium telluride quantum dot (CdTe QDs) based Au NCs hybrid material shows the significant enhancement of energy transfer 35% to 83% with changing the capping ligand of Au NCs from glutathione (GSH) to bovine serum albumin (BSA) protein. Another hybrid system is developed using carbon dots and dye encapsulated BSA-protein capped Au NCs for efficient light harvesting system with 83% energy transfer efficiency. Thus, Au NCs base nano bio assemblies may open up new possibilities for the construction of artificial light harvesting system.

  8. Caseoperoxidase, Mixed β-Casein-SDS-Hemin-Imidazole Complex: A Nano Artificial Enzyme

    PubMed Central

    Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S.; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A.; Sheibani, Nader; Moosavi-Movahedi, Ali A.

    2016-01-01

    A novel peroxidase-like artificial enzyme, named “caseoperoxidase”, was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and kcat performance towards the native horseradish peroxidase (HRP) demonstrated by the steady state kinetics using UV-Vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein), with a flexible structure and exalted hydrophobicity, was selected as an appropriate apo-protein for the heme active site using a homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation, and indicated that the obtained structure has a good protective role for the heme active-site. Additional further experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme. PMID:25562503

  9. Caseoperoxidase, mixed β-casein-SDS-hemin-imidazole complex: a nano artificial enzyme.

    PubMed

    Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A; Sheibani, Nader; Moosavi-Movahedi, Ali A

    2015-01-01

    A novel peroxidase-like artificial enzyme, named "caseoperoxidase", was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and k(cat) performance toward the native horseradish peroxidase demonstrated by the steady state kinetics using UV-vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein) was selected as an appropriate apo-protein for the heme active site because of its innate flexibility and exalted hydrophobicity. This selection was confirmed by homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation and provided a suitable protective role for the heme active-site. Additional experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme.

  10. Artificial Reefs as Surrogate Habitats for Red Snapper in the Northwestern Gulf of Mexico: A Fishery-Independent Comparison of Artificial and Natural Habitats

    NASA Astrophysics Data System (ADS)

    Streich, M.; Wetz, J. J.; Ajemian, M. J.; Stunz, G. W.

    2016-02-01

    The goal of our study was to evaluate the relative abundance, size and age structure of Red Snapper among three different habitat types (standing oil and gas platforms, artificial reefs [rigs-to-reefs], and natural banks) in the northwestern Gulf of Mexico. From May 2013 - January 2015, we conducted 140 vertical line sets and captured 1538 Red Snapper ranging in size from 251 to 855 mm TL. Ages determined for 801 of these fish ranged from 2-30 years. No differences were detected in Red Snapper CPUE among the three habitats. However, a comparison of TL and TW distributions suggested that natural banks supported a greater proportion of larger fish than artificial reefs or standing platforms (K-S test, p<0.001). Mean TW-at-age regressions for the most common age groups (ages 3-7) suggested that Red Snapper grew faster at artificial reefs and standing platforms than natural bank habitats (ANCOVA, p<0.05). Mean age was positively correlated with capture depth (r=0.79) suggesting spatial variation in age composition. These results have important implications for artificial reef development and Red Snapper management in the GOM. Further use of standardized, fishery-independent surveys and additional biological data will help elucidate the role artificial structures play in maintaining the Red Snapper population.

  11. Insert Modifications Improve Access to Artificial Red-Cockaded Woodpecker Next Cavities

    Treesearch

    John W. Edwards; Ernest E. Stevens; Charles A. Dachelet

    1997-01-01

    A designfor a modified, artificial Red-cockaded Woodpecker(Picoides borealis) cavity insert is presented. This modification allowed eggs and young to be inspected easily, removed, and replaced throughout the nesting period. Modifications to cavity inserts are best done before installation, but can be easily retrofitted in existing artificial cavities...

  12. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond

    PubMed Central

    Chang, Thomas M. S.

    2013-01-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymermembrane. Extensions in to oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics. PMID:22409281

  13. Is seedling grading beneficial to artificial regeneration of northern red oaks?

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; Stanley J. Zarnoch

    2005-01-01

    Effective and consistent success with artificial regeneration of northern red oak (Quercus rubra L.) has been achieved on many sites using 1-0 graded seedlings produced with the nursery protocol developed by the USDA Forest Service at the Institute of Tree Root Biology in cooperation with the Georgia Forestry Commission. Small northern red oak (NRO)...

  14. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    PubMed Central

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems. PMID:25435870

  15. A red-light running prevention system based on artificial neural network and vehicle trajectory data.

    PubMed

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.

  16. Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence

    NASA Astrophysics Data System (ADS)

    Yang, Liusai; Li, Guangshe; Zhao, Minglei; Zheng, Jing; Guan, Xiangfeng; Li, Liping

    2012-06-01

    Chemically tailoring microstructures for an optimum red luminescence is a subject at the forefront of many disciplines, which still remains a challenge due to a poor knowledge about the roles of defects in structures. In this work, GdVO4 :Eu3+ nano/microstructures of different morphologies, including tomato-like, cookie-circle-like, and ellipsoidal-like nanoparticles, and microspheroids were synthesized via a simple hydrothermal route using trisodium citrate as a capping agent. During the growth processes, the types of vanadyl ions were adjusted by varying pH value to control the morphologies and nano/microstructures with the help of trisodium citrate. The possible mechanisms for the growth processes into diverse morphologies are presented. Further, a systematic study on defect characteristics pertinent to these diverse morphologies has been explored to achieve an optimum red luminescence. The ability is clearly shown to generate different nano/microstructures of diverse morphologies and varied defect concentrations, which provides a great opportunity for morphological control in tailoring the red luminescence property for many technological applications.

  17. Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence.

    PubMed

    Yang, Liusai; Li, Guangshe; Zhao, Minglei; Zheng, Jing; Guan, Xiangfeng; Li, Liping

    2012-06-22

    Chemically tailoring microstructures for an optimum red luminescence is a subject at the forefront of many disciplines, which still remains a challenge due to a poor knowledge about the roles of defects in structures. In this work, GdVO(4) :Eu(3+) nano/microstructures of different morphologies, including tomato-like, cookie-circle-like, and ellipsoidal-like nanoparticles, and microspheroids were synthesized via a simple hydrothermal route using trisodium citrate as a capping agent. During the growth processes, the types of vanadyl ions were adjusted by varying pH value to control the morphologies and nano/microstructures with the help of trisodium citrate. The possible mechanisms for the growth processes into diverse morphologies are presented. Further, a systematic study on defect characteristics pertinent to these diverse morphologies has been explored to achieve an optimum red luminescence. The ability is clearly shown to generate different nano/microstructures of diverse morphologies and varied defect concentrations, which provides a great opportunity for morphological control in tailoring the red luminescence property for many technological applications.

  18. Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lin, Jiarui; Lan, Tonghan

    2006-01-01

    Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.

  19. A highly efficient nano-cluster artificial peroxidase and its direct electrochemistry on a nano complex modified glassy carbon electrode.

    PubMed

    Hong, Jun; Wang, Wei; Huang, Kun; Yang, Wei-Yun; Zhao, Ying-Xue; Xiao, Bao-Lin; Gao, Yun-Fei; Moosavi-Movahedi, Zainab; Ghourchian, Hedayatollah; Moosavi-Movahedi, Ali Akbar

    2012-01-01

    A nano-cluster with highly efficient peroxide activity was constructed based on nafion (NF) and cytochrome c (Cyt c). UV-Vis spectrometry and transmission electron microscopy (TEM) methods were utilized for characterization of the nano-structured enzyme or artificial peroxidase (AP). The nano-cluster was composed of a Chain-Ball structure, with an average ball size of about 40 nm. The Michaelis-Menten (K(m)) and catalytic rate (k(cat)) constants of the AP were determined to be 2.5 ± 0.4 µM and 0.069 ± 0.001 s(-1), respectively, in 50 mM PBS at pH 7.0. The catalytic efficiency of the AP was evaluated to be 0.028 ± 0.005 µM(-1) s(-1), which was 39 ± 5% as efficient as the native horseradish peroxidase (HRP). The AP was also immobilized on a functional multi-wall carbon nanotube (MWNCTs)-gold colloid nanoparticles (AuNPs) nano-complex modified glassy carbon (GC) electrode. The cyclic voltammetry of AP on the nano complex modified GC electrode showed a pair of well-defined redox peaks with a formal potential (E°') of -45 ± 2 mV (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer rate constant (k(s)) was evaluated to be 0.65 s(-1). The surface concentration of electroactive AP on GC electrode (Γ) was 7 × 10(-10) mol cm(-2). The apparent Michaelis-Menten constant (K(m)(app)) was 0.23 nM.

  20. Influence of artificial cavity age on red-cockaded woodpecker translocation success

    Treesearch

    Daniel Saenz; Richard R. Schaefer; Richard N. Conner; D. Craig Rudolph; Dawn K. Carrie; M. Stephen Best

    2004-01-01

    Red-cockaded woodpecker (Picoides borealis) translocations have been used to bolster woodpecker populations and to fill breeding vacancies. Artificial, insert cavities have been used to offset cavity shortages in woodpecker clusters and are the primary cavity type used in recruitment clusters in Texas and Arkansas, but inserts may lose their...

  1. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice.

    PubMed

    Zhang, Jinsong; Wang, Huali; Bao, Yongping; Zhang, Lide

    2004-05-28

    We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice.

  2. Selection for a nondiapausing strain of artificially reared red oak borers

    Treesearch

    Jimmy R. Galford

    1984-01-01

    The incidence of nondiapause in artificially reared red oak borers increased from 4 to 61 percent in five generations. Fecundity dropped by more than 50 percent, but fertility was unaffected. Sixty percent of the nondiapausing larvae formed prepupa by the 12th week of development in the F1 and in the F4 generations.

  3. Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis)

    PubMed Central

    Xie, Yuwei; Xia, Pu; Wang, Hui; Yu, Hongxia; Giesy, John P.; Zhang, Yimin; Mora, Miguel A.; Zhang, Xiaowei

    2016-01-01

    Reintroduction of the threatened red-crowned crane has been unsuccessful. Although gut microbiota correlates with host health, there is little information on gut microbiota of cranes under different conservation strategies. The study examined effects of captivity, artificial breeding and life stage on gut microbiota of red-crown cranes. The gut microbiotas of wild, captive adolescent, captive adult, artificially bred adolescent and artificially bred adult cranes were characterized by next-generation sequencing of 16S rRNA gene amplicons. The gut microbiotas were dominated by three phyla: Firmicutes (62.9%), Proteobacteria (29.9%) and Fusobacteria (9.6%). Bacilli dominated the ‘core’ community consisting of 198 operational taxonomic units (OTUs). Both captivity and artificial breeding influenced the structures and diversities microbiota of the gut. Especially, wild cranes had distinct compositions of gut microbiota from captive and artificially bred cranes. The greatest alpha diversity was found in captive cranes, while wild cranes had the least. According to the results of ordination analysis, influences of captivity and artificial breeding were greater than that of life stage. Overall, captivity and artificial breeding influenced the gut microbiota, potentially due to changes in diet, vaccination, antibiotics and living conditions. Metagenomics can serve as a supplementary non-invasive screening tool for disease control. PMID:27628212

  4. Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis).

    PubMed

    Xie, Yuwei; Xia, Pu; Wang, Hui; Yu, Hongxia; Giesy, John P; Zhang, Yimin; Mora, Miguel A; Zhang, Xiaowei

    2016-09-15

    Reintroduction of the threatened red-crowned crane has been unsuccessful. Although gut microbiota correlates with host health, there is little information on gut microbiota of cranes under different conservation strategies. The study examined effects of captivity, artificial breeding and life stage on gut microbiota of red-crown cranes. The gut microbiotas of wild, captive adolescent, captive adult, artificially bred adolescent and artificially bred adult cranes were characterized by next-generation sequencing of 16S rRNA gene amplicons. The gut microbiotas were dominated by three phyla: Firmicutes (62.9%), Proteobacteria (29.9%) and Fusobacteria (9.6%). Bacilli dominated the 'core' community consisting of 198 operational taxonomic units (OTUs). Both captivity and artificial breeding influenced the structures and diversities microbiota of the gut. Especially, wild cranes had distinct compositions of gut microbiota from captive and artificially bred cranes. The greatest alpha diversity was found in captive cranes, while wild cranes had the least. According to the results of ordination analysis, influences of captivity and artificial breeding were greater than that of life stage. Overall, captivity and artificial breeding influenced the gut microbiota, potentially due to changes in diet, vaccination, antibiotics and living conditions. Metagenomics can serve as a supplementary non-invasive screening tool for disease control.

  5. Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Luo, Zhenyu; Zheng, Mingbin; Zhao, Pengfei; Chen, Ze; Siu, Fungming; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2016-03-01

    Photodynamic therapy has been increasingly applied in clinical cancer treatments. However, native hypoxic tumoural microenvironment and lacking oxygen supply are the major barriers hindering photodynamic reactions. To solve this problem, we have developed biomimetic artificial red cells by loading complexes of oxygen-carrier (hemoglobin) and photosensitizer (indocyanine green) for boosted photodynamic strategy. Such nanosystem provides a coupling structure with stable self-oxygen supply and acting as an ideal fluorescent/photoacoustic imaging probe, dynamically monitoring the nanoparticle biodistribution and the treatment of PDT. Upon exposure to near-infrared laser, the remote-triggered photosensitizer generates massive cytotoxic reactive oxygen species (ROS) with sufficient oxygen supply. Importantly, hemoglobin is simultaneously oxidized into the more active and resident ferryl-hemoglobin leading to persistent cytotoxicity. ROS and ferryl-hemoglobin synergistically trigger the oxidative damage of xenograft tumour resulting in complete suppression. The artificial red cells with self-monitoring and boosted photodynamic efficacy could serve as a versatile theranostic platform.

  6. Effects of PEG-PLA-nano Artificial Cells Containing Hemoglobin on Kidney Function and Renal Histology in Rats

    PubMed Central

    Liu, Zun Chang; Chang, Thomas M.S.

    2012-01-01

    This study is to investigate the long-term effects of PEG-PLA nano artificial cells containing hemoglobin (NanoRBC) on renal function and renal histology after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: NanoRBC in Ringer lactate, Ringer lactate, stroma-free hemoglobin (SFHB), polyhemoglobin (PolyHb), autologous rat whole blood (rat RBC). Blood samples were taken before infusions and on days 1, 7 and 21 after infusions for biochemistry analysis. Rats were sacrificed on day 21 after infusions and kidneys were excised for histology examination. Infusion of SFHB induced significant decrease in renal function damage evidenced by elevated serum urea, creatinine and uric acid throughout the 21 days. Kidney histology in SFHb infusion group revealed focal tubular necrosis and intraluminal cellular debris in the proximal tubules, whereas the glomeruli were not observed damaged. In all the other groups, NanoRBC, PolyHb, Ringer lactate and rat RBC, there were no abnormalities in renal biochemistry or histology. In conclusion, injection of NanoRBC did not have adverse effects on renal function nor renal histology. PMID:18979292

  7. Southern pine beetle-induced mortality of pines with natural and artificial red-cockaded woodpecker cavities in Texas

    Treesearch

    Richard N. Conner; Daniel Saenz; D. Craig Rudolph; Robert N. Coulson

    1998-01-01

    Southern pine beetle (Dendroctonus frontalis) infestation is the major cause of mortality for red-cockaded woodpecker (Picoides borealis) cavity trees in loblolly (Pinus taeda) and shortleaf (P. echinata) pines. Recent intensive management for red-cockaded woodpeckers includes the use of artificial cavity inserts. Between 1991 and 1996 the authors examined southern...

  8. A Modification of Copeyon's Drilling Technique for Making Artificial Red-Cockaded Woodpecker Cavities

    Treesearch

    William E. Taylor; Robert G. Hooper

    1991-01-01

    A modification to Copeyon's drilling technique for making highly effective artificial cavities for red-cockaded wookpeckers is described.The changes virtually eliminate the possibility of making a mistake in constructing cavities and reduces the learning time to less than 2 weeks.The basic change is the use of a 3-inch access hole that allows the relative position...

  9. Artificial regeneration of northern red oak in the Lake States with a light shelterwood: a departure from tradition

    Treesearch

    Ronald M. Teclaw; J. G. Isebrands

    1993-01-01

    Artificial regeneration of northern red oak is difficult to achieve in the Lake States. A replicated study was established in northern Wisconsin in 1990 to determine the effect of overstory density and understory competition on the performance of bareroot and containerized northern red oak seedlings on a dry-mesic site. The relationship between seedling performance and...

  10. Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate.

    PubMed

    Li, Xiang; Wang, Chuankai; Zeng, Yu; Li, Panyu; Xie, Tonghui; Zhang, Yongkui

    2016-11-05

    Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe2O3 red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe2O3 red pigment powders contained 98.24wt.% of Fe2O3 were successfully prepared, with a morphology of spheroidal and particle size ranged from 22nm to 86nm and averaged at 45nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Does the availability of artificial cavities affect cavity excavation rates in red-cockaded woodpeckers?

    Treesearch

    Richard N. Conner; Daniel Saenz; D. Craig Rudolph; Richard R. Schaefer

    2002-01-01

    Rates of cavity excavation by Red-cockaded Woodpeckers (Picoides borealis) were examined from 1983 to 1999 on the Angelina National Forest in east Texas. We compared the rare of natural cavity excavation between 1983 and 1990 (before artificial cavities were available) with the rate of cavity excavation between 1992 and 1993, a period when...

  12. Selected papers from the 7th International Conference on Biomimetics, Artificial Muscles and Nano-bio (BAMN2013)

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen; Oh, Ilkwon

    2014-07-01

    The 7th International Congress on Biomimetics, Artificial Muscles and Nano-Bio was held on the magnificent and beautiful Jeju Island in Korea on 26-30 August 2013. In June 2007, the volcanic island and lava tube cave systems were designated as UNESCO World Natural Heritage Sites for their natural beauty and unique geographical values. The aim of the congress was to offer high-level lectures, extensive discussions and communications covering the state-of-the-art on biomimetics, artificial muscles, and nano-bio technologies providing an overview of their potential applications in the industrial, biomedical, scientific and robotic fields. This conference provided a necessary platform for an ongoing dialogue between researchers from different areas (chemistry, physics, biology, medicine, engineering, robotics, etc) within biomimetics, artificial muscle and nano-bio technologies. This special issue of Smart Materials and Structures is devoted to a selected number of research papers that were presented at BAMN2013. Of the 400 or so papers and over 220 posters presented at this international congress, 15 papers were finally received, reviewed and accepted for this special issue, following the regular peer review procedures of the journal. The special issue covers polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites, and their applications. In particular, electromechanical performance and other characteristics of ionic polymer-metal composites (IPMCs) fabricated with various commercially available ion exchange membranes are discussed. Additionally, the control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators is elaborated on. Further, the electrode effects of a cellulose-based electroactive paper energy harvester are described. Next, a flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators is discussed. A broad coverage of bio-applications of IPMC transducers is

  13. Tin doped indium oxide anodes with artificially controlled nano-scale roughness using segregated Ag nanoparticles for organic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki

    2016-09-01

    Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes.

  14. A novel cyclic squamosamide analogue compound FLZ improves memory impairment in artificial senescence mice induced by chronic injection of D-galactose and NaNO2.

    PubMed

    Fang, Fang; Liu, Gengtao

    2007-12-01

    The aim of the present study was to access the protective effect of a novel synthesized squamosamide cyclic analogue, compound FLZ, on memory impairment in artificially senescent mice induced by chronic injection of D-galactose and sodium nitrite (NaNO(2)). Artificially senescent mouse model was induced by consecutive injection of D-galactose (120 mg/kg) and NaNO(2) (90 mg/kg) once daily for 60 days. Compound FLZ (75 and 150 mg/kg) was orally administered once daily for 30 days after D-galactose and NaNO(2) injection for 30 days. The water maze test was used to evaluate the learning and memory function of mice. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum were determined using different biochemical kits. The alterations in hippocampus morphology were assessed by light and electronic microscope. Immunoreactive cells of Bcl-2 in the hippocampus were counted by immunohistochemical staining, and Bcl-2 protein expression was analysed by Western blot method. The results indicate that injection of D-galactose and NaNO(2) induces memory impairment and neuronal damage in hippocampus of mice. In addition, serum SOD and GSH-Px activities decreased, while MDA level increased. Bcl-2-positive neurons and Bcl-2 protein expression in the hippocampus decreased remarkably. Oral administration of FLZ for 30 days significantly improved the cognitive deficits and the biochemical markers mentioned above, and also reduced the pathological alterations in mouse hippocampus. The results suggest that FLZ ameliorates memory deficits and pathological injury in artificially senescent mice induced by chronic injection of D-galactose and NaNO(2), indicating that FLZ is worth further studies for fighting antisenescence and dementia.

  15. Combinatorial Nano-Bio Interfaces.

    PubMed

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  16. Earthquakes Magnitude Predication Using Artificial Neural Network in Northern Red Sea Area

    NASA Astrophysics Data System (ADS)

    Alarifi, A. S.; Alarifi, N. S.

    2009-12-01

    Earthquakes are natural hazards that do not happen very often, however they may cause huge losses in life and property. Early preparation for these hazards is a key factor to reduce their damage and consequence. Since early ages, people tried to predicate earthquakes using simple observations such as strange or a typical animal behavior. In this paper, we study data collected from existing earthquake catalogue to give better forecasting for future earthquakes. The 16000 events cover a time span of 1970 to 2009, the magnitude range from greater than 0 to less than 7.2 while the depth range from greater than 0 to less than 100km. We propose a new artificial intelligent predication system based on artificial neural network, which can be used to predicate the magnitude of future earthquakes in northern Red Sea area including the Sinai Peninsula, the Gulf of Aqaba, and the Gulf of Suez. We propose a feed forward new neural network model with multi-hidden layers to predicate earthquakes occurrences and magnitudes in northern Red Sea area. Although there are similar model that have been published before in different areas, to our best knowledge this is the first neural network model to predicate earthquake in northern Red Sea area. Furthermore, we present other forecasting methods such as moving average over different interval, normally distributed random predicator, and uniformly distributed random predicator. In addition, we present different statistical methods and data fitting such as linear, quadratic, and cubic regression. We present a details performance analyses of the proposed methods for different evaluation metrics. The results show that neural network model provides higher forecast accuracy than other proposed methods. The results show that neural network achieves an average absolute error of 2.6% while an average absolute error of 3.8%, 7.3% and 6.17% for moving average, linear regression and cubic regression, respectively. In this work, we show an analysis

  17. Thermal conductivity calculation of nano-suspensions using Green-Kubo relations with reduced artificial correlations.

    PubMed

    Muraleedharan, Murali Gopal; Sundaram, Dilip Srinivas; Henry, Asegun; Yang, Vigor

    2017-04-20

    The presence of artificial correlations associated with Green-Kubo (GK) thermal conductivity calculations is investigated. The thermal conductivity of nano-suspensions is calculated by equilibrium molecular dynamics (EMD) simulations using GK relations. Calculations are first performed for a single alumina (Al 2 O 3 ) nanoparticle dispersed in a water medium. For a particle size of 1 nm and volume fraction of 9%, results show enhancements as high as 235%, which is much higher than the Maxwell model predictions. When calculations are done with multiple suspended particles, no such anomalous enhancement is observed. This is because the vibrations in alumina crystal can act as low frequency perturbations, which can travel long distances through the surrounding water medium, characterized by higher vibration frequencies. As a result of the periodic boundaries, they re-enter the system resulting in a circular resonance of thermal fluctuations between the alumina particle and its own image, eventually leading to artificial correlations in the heat current autocorrelation function (HCACF), which when integrated yields abnormally high thermal conductivities. Adding more particles presents 'obstacles' with which the fluctuations interact and get dissipated, before they get fed back to the periodic image. A systematic study of the temporal evolution of HCACF indicates that the magnitude and oscillations of artificial correlations decrease substantially with increase in the number of suspended nanoparticles.

  18. Color stability of pigmented maxillofacial silicone elastomer: effects of nano-oxides as opacifiers.

    PubMed

    Han, Ying; Zhao, Yimin; Xie, Chao; Powers, John M; Kiat-amnuay, Sudarat

    2010-01-01

    This study evaluated the effects of nano-oxides on the color stability of pigmented silicone A-2186 maxillofacial prosthetic elastomers before and after artificial aging. Each of three widely used UV-shielding nano-sized particle oxides (TiO(2), ZnO, CeO(2)), based on recent survey of the industry at 1%, 2%, 2.5% concentrations were combined with each of five intrinsic silicone pigment types (no pigments, red, yellow, blue, and a mixture of the three pigments). Silicone A-2186 without nano-oxides or pigments served as control, for a total of 46 experimental groups of elastomers. In each group of the study, all specimens were aged in an artificial aging chamber for an energy exposure of 450kJ/m(2). CIE L*a*b* values were measured by a spectrophotometer. The 50:50% perceptibility (ΔE*=1.1) and acceptability threshold (ΔE*=3.0) were used in interpretation of recorded color differences. Color differences after aging were subjected to three-way analysis of variance. Means were compared by Fisher's PLSD intervals at the 0.05 level of significance. Yellow pigments mixed with all three nano-oxides at all intervals increased ΔE* values significantly from 3.7 up to 8.4. When mixed pigment groups were considered, TiO(2) at 2%, and 2.5% exhibited the smallest color changes, followed by ZnO and CeO(2), respectively (p<0.001). At 1%, CeO(2) exhibited the smallest color changes, followed by TiO(2) and ZnO, respectively (p<0.001). The smallest color differences, observed for nano-oxides groups, were recorded for CeO(2) at 1%, and TiO(2) at 2% and 2.5%. When the nano-oxides were tested at all concentrations, CeO(2) groups overall had the most color changes, and TiO(2) groups had the least. All ΔE* values of the mixed pigment groups were below the 50:50% acceptability threshold (ΔE*=1.2-2.3, below 3.0) except 2% CeO(2) (ΔE*=4.2). 1% nano-CeO(2) and 2% and 2.5% nano-TiO(2) used as opacifiers for silicone A-2186 maxillofacial prostheses with mixed pigments exhibited the least

  19. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia

    NASA Astrophysics Data System (ADS)

    Rahbar, Mona; Shannon, Lesley; Gray, Bonnie L.

    2014-02-01

    We present a new micromixer based on highly magnetic, flexible, high aspect-ratio, artificial cilia that are fabricated as individual micromixer elements or in arrays for improved mixing performance. These new cilia enable high efficiency, fast mixing in a microchamber, and are controlled by small electromagnetic fields. The artificial cilia are fabricated using a new micromolding process for nano-composite polymers. Cilia fibers with aspect-ratios as high as 8:0.13 demonstrate the fabrication technique's capability in creating ultra-high aspect-ratio microstructures. Cilia, which are realized in polydimethylsiloxane doped with rare-earth magnetic powder, are magnetized to produce permanent magnetic structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled by electromagnetic fields. Due to the high magnetization level of the polarized nano-composite polymer, we are able to use miniature electromagnets providing relatively small magnetic fields of 1.1 to 7 mT to actuate the cilia microstructures over a very wide motion range. Mixing performances of a single cilium, as well as different arrays of multiple cilia ranging from 2 to 8 per reaction chamber, are characterized and compared with passive diffusion mixing performance. The mixer cilia are actuated at different amplitudes and frequencies to optimize mixing performance. We demonstrate that more than 85% of the total volume of the reaction chamber is fully mixed after 3.5 min using a single cilium mixer at 7 mT compared with only 20% of the total volume mixed with passive diffusion. The time to achieve over 85% mixing is further reduced to 70 s using an array of eight cilia microstructures. The novel microfabrication technique and use of rare-earth permanently-magnetizable nano-composite polymers in mixer applications has not been reported elsewhere by other researchers. We further demonstrate improved mixing over other cilia micromixers as enabled by the high aspect

  20. Study on clinical application of nano-hydroxyapatite bone in bone defect repair.

    PubMed

    Zhu, Weimin; Wang, Daping; Xiong, Jianyi; Liu, Jianquan; You, Wei; Huang, Jianghong; Duan, Li; Chen, Jielin; Zeng, Yanjun

    2015-01-01

    To study the clinical effect of bone defect treated with nano-hydroxyapatite(Nano-HA) artificial bone. From September 2009 to June 2012, 27 cases of bone defect were analyzed retrospectively. The position of bone defect included humerus, radius, ulna, femur, tibia and calcaneus. The range of bone defect was from 0.3 × 1.0 cm to 3 × 6.5 cm. Among them, there were 22 cases with fractures and 5 cases with tumors. All patients were treated with Nano-HA artificial bone. The ability of bone defect repair was evaluated by X-ray exams performed preoperatively and postoperatively. HSS scores were adopted for final evaluation at the latest follow-up. The patients were followed up from 11 to 26 months (average of 18.5 months). No general side effects occurred. X-ray photo showed an integrity interface between Nano-HA and bone. Primary healing was obtained in all cases without any complication. The Nano-HA artificial bone had a good biocompatibility and could be an ideal artificial bone in the reconstruction of bone defect.

  1. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite.

    PubMed

    Munagapati, Venkata Subbaiah; Kim, Dong-Su

    2017-07-01

    The present study is concerned with the batch adsorption of congo red (CR) from an aqueous solution using calcium alginate beads impregnated with nano-goethite (CABI nano-goethite) as an adsorbent. The optimum conditions for CR removal were determined by studying operational variables viz. pH, adsorbent dose, contact time, initial dye ion concentration and temperature. The CABI nano-goethite was characterized by Fourier transform infrared spectroscopy (FTIR), X- ray diffraction (XRD) and Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis. The CR sorption data onto CABI nano-goethite were described using Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm model. The maximum adsorption capacity (181.1mg/g) of CR was occurred at pH 3.0. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Desorption experiments were carried out to explore the feasibility of regenerating the adsorbent and the adsorbed CR from CABI nano-goethite. The best desorbing agent was 0.1M NaOH with an efficiency of 94% recovery. The thermodynamic parameters ΔG°, ΔH°, and ΔS° for the CR adsorption were determined by using adsorption capacities at five different temperatures (293, 303, 313, 323 and 303K). Results show that the adsorption process was endothermic and favoured at high temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Comparison of the effect of resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on surface hardness and streptococcus mutans adhesion to artificial enamel lesions.

    PubMed

    Aziznezhad, Mahdiye; Alaghemand, Homayoon; Shahande, Zahra; Pasdar, Nilgoon; Bijani, Ali; Eslami, Abdolreza; Dastan, Zohre

    2017-03-01

    Dental caries is a major public health problem, and Streptococcus mutans is considered the main causal agent of dental caries. This study aimed to compare the effect of three re-mineralizing materials: resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on the surface hardness and adhesion of Streptococcus mutans as noninvasive treatments for initial enamel lesions. This experimental study was conducted from December 2015 through March 2016 in Babol, Iran. Artificial enamel lesions were created on 60 enamel surfaces, which were divided into two groups: Group A and Group B (30 subjects per group). Group A was divided into three subgroups (10 samples in each subgroup), including fluoride varnish group, nano-hydroxy apatite paste group (Nano P paste), and resin infiltrant group (Icon-resin). In Group A, the surface hardness of each sample was measured in three stages: First, on an intact enamel (baseline); second, after creating artificial enamel lesions; third, after application of re-mineralizing materials. In Group B, the samples were divided into five subgroups, including intact enamel, demineralized enamel, demineralized enamel treated with fluoride varnish, Nano P paste, and Icon-resin. In Group B, standard Streptococcus mutans bacteria adhesion (PTCC 1683) was examined and reported in terms of colony forming units (CFU/ml). Then, data were analyzed using ANOVA, Kruskal-Wallis, Mann-Whitney, and post hoc tests. In Group A, after treatment with re-mineralizing materials, the Icon-resin group had the highest surface hardness among the studied groups, then the Nano P paste group and fluoride varnish group, respectively (p = 0.035). In Group B, in terms of bacterial adhesion, fluoride varnish group had zero bacterial adhesion level, and then the Nano P paste group, Icon-resin group, intact enamel group, and the de-mineralized enamel group showed bacterial adhesion increasing in order (p < 0.001). According to the study among the examined materials

  3. Red light emitting nano-PVP fibers that hybrid with Ag@SiO2@Eu(tta)3phen-NPs by electrostatic spinning method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolin; Tang, Jianguo; Li, Haidong; Wang, Yao; Wang, Xinzhi; Wang, Yanxin; Huang, Linjun; Belfiore, Laurence A.

    2018-04-01

    This work demonstrated red light emitting nano-PVP fibers that incorporated with novel three-layer nanostructure of Ag@SiO2@Eu(tta)3phen nanoparticles (Ag@SiO2@Eu(tta)3phen-NPs), and the hybrid nano-PVP fibers were fabricated via a remarkably simple electrostatic spinning method. For Ag@SiO2@Eu(tta)3phen-NPs, the thickness of SiO2 is optimized to obtain the maximum luminescent intensity, as results, the optimized thickness of SiO2 is 20 nm. And the corresponding luminescent intensity (612 nm) of the Ag@SiO2@Eu(tta)3phen-NPs is enhanced up to 10 times compared with the pure Eu(tta)3phen complex, which indicates that with 20 nm SiO2 thickness, the localized surface plasmon resonance (LSPR) effect of Ag@SiO2 exhibits highest performance for enhancing luminescence. Moreover, the luminescent PVP fibers emit bright red light under the fluorescence microscope, which definitely confirms that the microenvironment provided by PVP polymer is absolutely suitable for the fluorescent composites.

  4. Trophic and reproductive ecology of Red Snapper, Lutjanus campechanus, on natural and artificial reefs in the western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ajemian, M. J.; Wetz, J. J.; Brewton, R. A.; Downey, C. H.; Stunz, G. W.

    2016-02-01

    Energy exploration in the Gulf of Mexico (Gulf) has resulted in the addition of numerous oil and gas production rigs that have added structurally complex habitat to an area otherwise dominated by bare bottom. The impact of these artificial structures on fish populations is largely unknown and there is ongoing debate about their functionality. Red Snapper (Lutjanus campechanus), an ecologically and economically important sportfish to the region, use natural as well as the artificial reefs created by standing and reefed (toppled or cutoff) oil and gas rigs. However, little is known about how trophic and reproductive characteristics of Red Snapper vary over these multiple habitat types. We analyzed stable isotopic composition (δ13C, δ 15N) of epaxial muscle and compared reproductive potential of Red Snapper (155-855 mm TL) from standing rigs, reefed rigs, and natural hard-bottom habitats off Texas. Red Snapper from standing rig sites were isotopically enriched in δ 15N compared to lower relief habitats, suggesting they were feeding at a higher trophic level on standing rigs. While gonadosomatic indices (GSI) and comparative histology implied a similar spawning season among structure types, GSI was highest for both sexes at standing rigs. These initial results suggest that while standing rigs appear to provide more enriched food resources leading to higher Red Snapper reproductive capacity, the productivity of this species is similar between currently permitted rig decommissioning options (i.e., cutoff and toppled rigs) and natural hard-bottom habitats in the Gulf of Mexico.

  5. MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution.

    PubMed

    Jin, Li-Na; Qian, Xin-Ye; Wang, Jian-Guo; Aslan, Hüsnü; Dong, Mingdong

    2015-09-01

    MIL-68 (In) nano-rods were prepared by a facile solvothermal synthesis using NaOAc as modulator agent at 100°C for 30 min. The BET test showed that the specific surface area and pore volume of MIL-68 (In) nanorods were 1252 m(2) g(-1) and 0.80 cm(3) g(-1), respectively. The as-prepared MIL-68 (In) nanorods showed excellent adsorption capacity and rapid adsorption rate for removal of Congo red (CR) dye from water. The maximum adsorption capacity of MIL-68 (In) nanorods toward CR reached 1204 mg g(-1), much higher than MIL-68 (In) microrods and most of the previously reported adsorbents. The adsorption process of CR by MIL-68 (In) nano-rods was investigated and found to be obeying the Langmuir adsorption model in addition to pseudo-second-order rate equation. Moreover, the MIL-68 (In) nanorods showed an acceptable reusability after regeneration with ethanol. All information gives an indication that the as-prepared MIL-68 (In) nanorods show their potential as the adsorbent for highly efficient removal of CR in wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Thermally induced magnetic relaxation in square artificial spin ice.

    PubMed

    Andersson, M S; Pappas, S D; Stopfel, H; Östman, E; Stein, A; Nordblad, P; Mathieu, R; Hjörvarsson, B; Kapaklis, V

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  7. Thermally induced magnetic relaxation in square artificial spin ice

    NASA Astrophysics Data System (ADS)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  8. Biological and Nano-Technological Applications of Artificial DNAs Made Exclusively of Nonnatural C-Nucleosides with Four Types of Nonnatural Bases

    DTIC Science & Technology

    2011-08-19

    A) CD, (B) UV, (C) Tm, and (D) titration experiments of d(iG*)8/d(C)8. d(T/A*/T)n WC WC
 d(T/A/T)n Watson – Crick (WC)
 Hoogsteen
 Symmetrical A...base Figure 7. Triplex formation of the natural T/A/T which has one Watson - Crick (WC)-type and one Hoogsteen-type hydrogen-bondings, and the...Final Report for AOARD Grant FA2386-10-1-4033 “Biological and Nano-technological Applications of Artificial DNAs Made Exclusively of Nonnatutal C

  9. Effect of filler type and polishing on the discoloration of composite resin artificial teeth.

    PubMed

    Imamura, Soichiro; Takahashi, Hidekazu; Hayakawa, Iwao; Loyaga-Rendon, Paola G; Minakuchi, Shunsuke

    2008-11-01

    In this study, the effects of filler type and polishing on the discoloration of composite resin artificial teeth were examined. Four types of experimental resins were prepared: one was a matrix resin, while the others were composite resins containing three different types of fillers (nano-sized silica filler with or without silanization, and prepolymerized filler). Specimens were immersed in distilled water, coffee, red wine, or curry. Color change after immersion was measured using a colorimeter. Color difference values (delta E) and changes in translucency parameter (delta TP) were statistically analyzed using three-way ANOVA and Tukey's comparison. On the influence of the polishing factor, statistically significant differences were neither observed in delta E nor delta TP between polished and non-polished tooth surfaces. On the contrary, the influences of filler type and discoloration medium, and their interaction thereof, were significant. With unsilanized filler, the delta E value of composite resin artificial teeth was significantly increased.

  10. Synthesis of TiO2 nano-powders prepared from purified sulphate leach liquor of red mud.

    PubMed

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Perraki, M; Agatzini-Leonardou, S

    2011-10-30

    The research work presented in this paper is focused on the development of a purification process of red mud sulphate leach liquor for the recovery of titanium oxide (TiO(2)) nano-powders in the form of anatase. Initially, titanium was extracted over iron and aluminium from the leach liquor by solvent extraction using Cyanex 272 in toluene, at pH: 0.3 and T: 25°C, with 40% extractant concentration. Stripping of the loaded, with titanium, organic phase was carried out by diluted HCl (3 mol/L) at ambient temperature. Finally, the recovery of titanium nano-powder, in the form of anatase, was performed by chemical precipitation at pH: 6 and T: 95°C, using 10 wt% MgO pulp as neutralizing agent. The produced precipitates were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric/differential thermal analysis (TGA/DTA). Their morphological characteristics and microstructure were studied by scanning electron microscopy (SEM). High grade titanium white precipitate, in the form of anatase, was obtained. Iron concentration in the precipitate did not exceed 0.3%, whereas no aluminium was detected. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Micro/nano-particles and Cells: Manipulation, Transport, and Self-assembly

    DTIC Science & Technology

    2014-10-23

    SECURITY CLASSIFICATION OF: Technologies that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered...that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered systems that can assemble, transport, and...nano-scale particles offer several advantages as building blocks of artificial materials . The relative ease of modifying their charge states

  12. Thermally induced magnetic relaxation in square artificial spin ice

    DOE PAGES

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; ...

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  13. Thermally induced magnetic relaxation in square artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  14. The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method.

    PubMed

    Habibi, Mohammad Hossein; Rahmati, Mohammad Hossein

    2015-02-25

    Photocatalytic degradation of Congo red was investigated using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method in aqueous solution under irradiation. Field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques were used for the morphological and structural characterization of ZnO-CdS core-shell nanostructures. XRD results showed diffractions of wurtzite zinc oxide core and wurtzite cadmium sulfide shell. FESEM results showed that nanoparticles are nearly hexagonal with an average diameter of about 50 nm. The effect of catalyst loading, UV-light irradiation time and solution pH on photocatalytic degradation of Congo red was studied and optimized values were obtained. Results showed that the employment of efficient photocatalyst and selection of optimal operational parameters may lead to complete decolorization of dye solutions. It was found that ZnO-CdS core-shell nano-structure is more favorable for the degradation of Congo red compare to pure ZnO or pure CdS due to lower electron hole recombination. The results showed that the photocatalytic degradation rate of Congo red is enhanced with increasing the content of ZnO up to ZnO(0.2 M)/CdS(0.075 M) which is reached 88.0% within 100 min irradiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Red, Rank, and Romance in Women Viewing Men

    ERIC Educational Resources Information Center

    Elliot, Andrew J.; Niesta Kayser, Daniela; Greitemeyer, Tobias; Lichtenfeld, Stephanie; Gramzow, Richard H.; Maier, Markus A.; Liu, Huijun

    2010-01-01

    In many nonhuman species of vertebrates, females are attracted to red on male conspecifics. Red is also a signal of male status in many nonhuman vertebrate species, and females show a mating preference for high-status males. These red-attraction and red-status links have been found even when red is displayed on males artificially. In the present…

  16. Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics tuneable up-conversion phosphor

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Rodriguez, V. D.; Tikhomirov, V. K.; Del-Castillo, J.; Yanes, A. C.

    2008-08-01

    Transparent Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics have been prepared, 32(SiO{2}) 9(AlO{1.5}) 31.5(CdF{2}) 18.5(PbF{2}) 5.5(ZnF{2}): 3.5(Yb-Er-TmF{3}) mol%, where the co-dopants partition mostly to the fluoride PbF{2}-based nano-crystals. A comparative study of the up-conversion luminescence in nano-glass-ceramics and its precursor glass indicates that these materials can be used as blue/green/red tuneable up-conversion phosphor, in particular for white light generation. A ratio between blue, green and red emission bands of the Tm3+ and Er3+ can be widely varied with nano-ceramming of the precursor glass and with changing a pump power of luminescence. The change in the ratio between the blue, green and red emission bands is explained to be due to substantial lowering phonon energy and shortening of inter-dopant distances with nano-ceramming of the precursor glass and due to change in the ratio of 2- and 3-photon up-conversion processes with pump power.

  17. Artificial Cells: Prospects for Biotechnology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Deamer, David; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A variety of techniques can now be used to alter the genome of a cell. Although these techniques are very powerful, they also have limitations related to cost and efficiency of scale. Artificial cells designed for specific applications combine properties of biological systems such as nano-scale efficiency, self-organization and adaptability at relatively low cost. Individual components needed for such structures have already been developed, and now the main challenge is to integrate them in functional microscopic compartments. It will then become possible to design and construct communities of artificial cells that can perform different tasks related to therapeutic and diagnostic applications.

  18. Effect of artificial ageing using different wood chips on the antioxidant activity, resveratrol and catechin concentration, sensory properties and colour of two Greek red wines.

    PubMed

    Gortzi, Olga; Metaxa, Xenia; Mantanis, George; Lalas, Stavros

    2013-12-01

    Two Greek red wines (Syrah and Cabernet) were artificially aged with different wood chips (white oak, red oak, Turkey oak, chestnut, Bosnian pine, cherry, common juniper, common walnut, white mulberry, black locust and apricot). The influence of each wood species was tested for up to 20 days. The optimum duration for the extraction of total polyphenols was 20 days (Syrah) or 10 days (Cabernet) when chips of white oak, chestnut, cherry, white mulberry, black locust and apricot where used. Resveratrol and catechin concentrations ranged within the limits previously reported in literature. A high antioxidant activity was established after 10 days of artificial ageing. The sensory evaluation showed that the best results were produced by the apricot chips after 5 days (Syrah) or black locust and apricot after 5 days (Cabernet). Colour was seen to increase with both time of ageing and number of wood chips added. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Role of nanotechnology in development of artificial organs.

    PubMed

    Teoh, G Z; Klanrit, P; Kasimatis, M; Seifalian, A M

    2015-02-01

    Improvements in our understanding of the interactions between implants and cells have directed attention towards nanoscale technologies. To date, nanotechnology has played a helping hand in the development of synthetic artificial organs and regenerative medicine. This includes the production of smart nanocomposite materials; fluorescent nanoparticles like Quantum Dots (QD) and magnetic nano particles (MNP) for stem cell tracking; and carbon nanotubes (CNT) and graphene for enhancement of material properties. The scope of this paper includes the role of nanoparticles in the development of nanomaterials; the chemical surface modifications possible to improve implant function and an overview of the performance of nano-engineered organs thus far. This includes implants developed for aesthetic purposes like nasal and auricular scaffolds, plastic and reconstructive surgical constructs (i.e. dermal grafts), hollow organs for cardiothoracic applications; and last but not least, orthopedic implants. The five-year outlook for nano-enhanced artificial organs is also discussed, highlighting the key research and development areas, available funds and the hurdles we face in accomplishing progression from prototypes on the laboratory bench to off-the-shelf products for the consumer market. Ultimately, this review aims to delineate the advantages of incorporating nanotechnology, as an individual entity or as a part of a construct for the development of tissue engineering scaffolds and/or artificial organs, and unravel the mechanisms of tissue cell-biomaterial interactions at the nanoscale, allowing for better progress in the development and optimization of unique nanoscale surface features for a wide range of applications.

  20. The Enhanced Red Emission and Improved Thermal Stability of CaAlSiN3:Eu2+ Phosphors by Using Nano-EuB6 as Raw Material

    PubMed Central

    Liu, Wen-Quan; Wu, Dan; Chang, Hugejile; Duan, Ru-Xia; Wu, Wen-Jie; Amu, Guleng; Bao, Fu-Quan; Tegus, Ojiyed

    2018-01-01

    Synthesizing phosphors with high performance is still a necessary work for phosphor-converted white light-emitting diodes (W-LEDs). In this paper, three series of CaAlSiN3:Eu2+ (denoted as CASN:Eu2+) phosphors using Eu2O3, EuN and EuB6 as raw materials respectively are fabricated by under the alloy precursor normal pressure nitridation synthesis condition. We demonstrate that CASN:Eu2+ using nano-EuB6 as raw material shows higher emission intensity than others, which is ascribed to the increment of Eu2+ ionic content entering into the crystal lattice. An improved thermal stability can also be obtained by using nano-EuB6 due to the structurally stable status, which is assigned to the partial substitution of Eu–O (Eu–N) bonds by more covalent Eu–B ones that leads to a higher structural rigidity. In addition, the W-LEDs lamp was fabricated to explore its possible application in W-LEDs based on blue LEDs. Our results indicate that using EuB6 as raw materials can provide an effective way of enhancing the red emission and improving the thermal stability of the CASN:Eu2+ red phosphor. PMID:29370148

  1. Remote artificial eyes using micro-optical circuit for long-distance 3D imaging perception.

    PubMed

    Thammawongsa, Nopparat; Yupapin, Preecha P

    2016-01-01

    A small-scale optical device incorporated with an optical nano-antenna is designed to operate as the remote artificial eye using a tiny conjugate mirror. A basic device known as a conjugate mirror can be formed using the artificial eye device, the partially reflected light intensities from input source are interfered and the 3D whispering gallery modes formed within the ring centers, which can be modulated and propagated to the object. The image pixel is obtained at the center ring and linked with the optic nerve in the remote area via the nano-antenna, which is useful for blind people.

  2. Synthesis of Black and Red Mercury Sulfide Nano-Powder by Traditional Indian Method for Biomedical Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padhi, Payodhar; Sahoo, G.; Das, K.

    The use of metals and minerals in the traditional Indian system of medicine known as aired is very common and is practiced since seventh century B.C. Metals were reduced to calcined powder form for medicinal purpose. For detoxification, a further step of purification of the metals and minerals with different vegetable extracts was practiced. The people of East India were using mercury and its sulfide as medicine. Gradually this secret was leaked to Arabic physicians who used mercury in skin ointment. Subsequently Italian Physicians adopted Arabic prescriptions of mercurial ointments for skin diseases. In the olden days, metals and mineralsmore » were impregnated with decoction and juice of vegetables and animal products like milk and fat for purification. These were then reduced to fine particles by milling with a pestle and mortar. It was known by then that the fineness of the powder had a significant influence on the color, texture, and medicinal properties as is cited by Charak. Nagarjun studied in detail the processing of metals and minerals, particularly mercury and the influence of the processing parameters on the medicinal values. Mercury is unique in many aspects. Indian alchemy developed a wide variety a chemical processes for the ostensible transmutation of metals and preparation of elixir of life, in which mercury occupied a prime position .The present investigation attempts to use the traditional methods as prescribed in the ancient texts to prepare mercury sulfide in both red and black form for medicinal use. XRD, SEM and HRTEM investigations of the sulfides obtained shows that the ancient Indians were able to produce nano-sized powders. Possibly this may be taken as the earliest application of the production and use of nano powder. The study proves that even in ancient time the knowledge of nano particle synthesis was prevalent and used to enhance effectiveness of medicines. Further mercury in the free form is not acceptable in medicines. The

  3. Synthesis of Black and Red Mercury Sulfide Nano-Powder by Traditional Indian Method for Biomedical Application

    NASA Astrophysics Data System (ADS)

    Padhi, Payodhar; Sahoo, G.; Das, K.; Ghosh, Sudipto; Panigrahi, S. C.

    2008-10-01

    The use of metals and minerals in the traditional Indian system of medicine known as aired is very common and is practiced since seventh century B.C. Metals were reduced to calcined powder form for medicinal purpose. For detoxification, a further step of purification of the metals and minerals with different vegetable extracts was practiced. The people of East India were using mercury and its sulfide as medicine. Gradually this secret was leaked to Arabic physicians who used mercury in skin ointment. Subsequently Italian Physicians adopted Arabic prescriptions of mercurial ointments for skin diseases. In the olden days, metals and minerals were impregnated with decoction and juice of vegetables and animal products like milk and fat for purification. These were then reduced to fine particles by milling with a pestle and mortar. It was known by then that the fineness of the powder had a significant influence on the color, texture, and medicinal properties as is cited by Charak. Nagarjun studied in detail the processing of metals and minerals, particularly mercury and the influence of the processing parameters on the medicinal values. Mercury is unique in many aspects. Indian alchemy developed a wide variety a chemical processes for the ostensible transmutation of metals and preparation of elixir of life, in which mercury occupied a prime position .The present investigation attempts to use the traditional methods as prescribed in the ancient texts to prepare mercury sulfide in both red and black form for medicinal use. XRD, SEM and HRTEM investigations of the sulfides obtained shows that the ancient Indians were able to produce nano-sized powders. Possibly this may be taken as the earliest application of the production and use of nano powder. The study proves that even in ancient time the knowledge of nano particle synthesis was prevalent and used to enhance effectiveness of medicines. Further mercury in the free form is not acceptable in medicines. The ancient

  4. Enhancement in biological response of Ag-nano composite polymer membranes using plasma treatment for fabrication of efficient bio materials

    NASA Astrophysics Data System (ADS)

    Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.

    2016-05-01

    Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.

  5. Inclusion of Cu nano-cluster 1D arrays inside a C3-symmetric artificial oligopeptide via co-assembly

    NASA Astrophysics Data System (ADS)

    Gong, Ruiying; Li, Fei; Yang, Chunpeng; Wan, Xiaobo

    2015-12-01

    A peptide sequence N3-GVGV-OMe (G: glycine; V: valine) was attached to a benzene 1,3,5-tricarboxamide (BTA) derivative via ``click chemistry'' to afford a C3-symmetric artificial oligopeptide. The key feature of this oligopeptide is that the binding sites (triazole groups formed by click reaction) are located at the center, while the three oligopeptide arms with a strong tendency to assemble are located around it, which provides inner space to accommodate nanoparticles via self-assembly. The inclusion of Cu nanoclusters and the formation of one-dimensional (1D) arrays inside the nanofibers of the C3-symmetric artificial oligopeptide assembly were observed, which is quite different from the commonly observed nanoparticle growth on the surface of the pre-assembled oligopeptide nanofibers via the coordination sites located outside. Our finding provides an instructive concept for the design of other stable organic-inorganic hybrid 1D arrays with the inorganic nanoparticles inside.A peptide sequence N3-GVGV-OMe (G: glycine; V: valine) was attached to a benzene 1,3,5-tricarboxamide (BTA) derivative via ``click chemistry'' to afford a C3-symmetric artificial oligopeptide. The key feature of this oligopeptide is that the binding sites (triazole groups formed by click reaction) are located at the center, while the three oligopeptide arms with a strong tendency to assemble are located around it, which provides inner space to accommodate nanoparticles via self-assembly. The inclusion of Cu nanoclusters and the formation of one-dimensional (1D) arrays inside the nanofibers of the C3-symmetric artificial oligopeptide assembly were observed, which is quite different from the commonly observed nanoparticle growth on the surface of the pre-assembled oligopeptide nanofibers via the coordination sites located outside. Our finding provides an instructive concept for the design of other stable organic-inorganic hybrid 1D arrays with the inorganic nanoparticles inside. Electronic

  6. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui; Liao, Liang-Sheng

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO2 film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  7. Humidity Sensor Based on PEDOT:PSS and Zinc Stannate Nano-composite

    NASA Astrophysics Data System (ADS)

    Aziz, Shahid; Chang, Dong Eui; Doh, Yang Hoi; Kang, Chul Ung; Choi, Kyung Hyun

    2015-10-01

    A composite of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and zinc stannate (ZnSnO3) has been introduced for impedance-based humidity sensing, owing to its high sensitivity, good stability, very fast response (˜0.2 s) and recovery time (˜0.2 s), small hysteresis, repeatability, low-cost fabrication and wide range of sensitivity. Both materials were mixed in three different weight percentage ratios, to optimize the performance of the sensors. Best response was observed for 5 wt.% PEDOT:PSS and 5 wt.% ZnSnO3. The impedance of the sensor was dropped immensely from 1.5 MΩ to 50 kΩ by changing relative humidity from 0% to 90%. The reason for this improvement in sensitivity was analyzed by virtue of sensing mechanisms and different characterizations (three dimensional (3D) nano-profiler, optical microscope, and fourier transform infra-red (FTIR) spectroscopy) revealing the surface morphology and chemical structure of the film. Due to its response and ability to sense human breath and skin humidity, it is suitable for environmental, artificial skin and food industry applications.

  8. Evaluation of nano-ZnOs as a novel Zn source for marine fish: importance of digestive physiology.

    PubMed

    Wang, Jian; Wang, Aili; Wang, Wen-Xiong

    2017-10-01

    Waterborne nanotoxicology of zinc oxide nanoparticles (nano-ZnOs) has been extensively studied over the past decade, whereas their potential dietary toxicity and applications were seldom investigated. In the present study, we systematically investigated both short-term bioavailability and chronic effects of nano-ZnOs to two marine fish (marine medaka Oryzias melastigma and red drum Sciaenops ocellatus). At normal supplementary level (80 mg Zn/kg), red drum (with a stomach) had similar assimilation efficiencies of nano-ZnOs and ZnCl 2 . Correspondingly, in vitro digestion experiments showed the continuous dissolution of nano-ZnOs in acid environment. In contrast, nano-ZnOs were more bioavailable than ZnCl 2 to medaka (stomach-less) at 80 mg Zn/kg supplementary level. There results were further validated by using bulk-ZnOs. Chronic dietary exposure to nano-ZnOs (80 mg/kg) significantly enhanced the antioxidative defenses in medaka, with no negative effect on fish growth. Beneficial effects disappeared in the high dietary nano-ZnOs (300 mg/kg) treatment. For the first time, we provided direct evidence that nano-ZnOs was more bioavailable than ZnCl 2 and bulk-ZnOs to stomach-less fish at normal dietary Zn inclusion level (<80 mg/kg), with potential benefits on antioxidative defenses. It is also necessary to pay attention to the dietary nano-ZnOs toxicity on stomach-less fish due to the presence of real 'nano-effects.'

  9. Computed Flow Through An Artificial Heart Valve

    NASA Technical Reports Server (NTRS)

    Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).

  10. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    PubMed

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Tuning into single-band red upconversion luminescence in Yb(3+)/Ho(3+) activated nano-glass-ceramics through Ce(3+) doping.

    PubMed

    Chen, Daqin; Zhou, Yang; Wan, Zhongyi; Ji, Zhenguo; Huang, Ping

    2015-03-28

    Yb(3+)/Ho(3+) activated glass ceramics containing β-YF3 nanocrystals were successfully fabricated. The green ((5)S2/(5)F4→(5)I8) upconversion emission is dominant in the glass ceramics and is about 160 times stronger than that of the precursor glass, resulting from the partition of lanthanide activators into a low-phonon-energy crystalline lattice and the subsequent low probability of multi-phonon nonradiative relaxation from the (5)S2/(5)F4 and (5)I6 states to the lower ones. Upon the introduction of Ce(3+) ions into nano-glass-ceramics, two efficient cross-relaxation processes between Ho(3+) and Ce(3+), i.e., Ho(3+):(5)S2/(5)F4 + Ce(3+):(2)F5/2→Ho(3+):(5)F5 + Ce(3+):(2)F7/2 and Ho(3+):(5)I6 + Ce(3+):(2)F5/2→Ho(3+):(5)I7 + Ce(3+):(2)F7/2, are demonstrated to greatly suppress the population of the green-emitting (5)S2/(5)F4 state and to enhance the population of the red-emitting (5)F5 one, leading to the intense single-band red UC radiation of Ho(3+).

  12. Colour and label evaluation of commercial pasteurised red juices and related drinks.

    PubMed

    Fallico, B; Arena, E; Chiappara, E; Ballistreri, G

    2010-01-01

    Despite growing demand by consumers for healthy beverages, artificial colours are still widely used. Levels of anthocyanins and artificial colours were determined by HPLC with UV-Vis detection in red orange juices and other red beverages (nectar, juice-based, health, carbonated and sports drinks). The contribution of pigments to the visible colour of the beverage was calculated. Red orange juice samples contained about 34 mg l(-1) of anthocyanins, which were responsible for about 92% of the visible colour. Red juice-based drinks, containing from 0% to 30% of red orange, berry, grape or pomegranate juices, had low levels of anthocyanins (about 7 mg l(-1)) and high levels of E129 (about 32 mg l(-1)), which were responsible for about 90.7% of the colour of these beverages. Red health drinks, enriched with vitamins and polyphenols, contained from 3% to 50% of red fruit juices. Also in this case the E129 levels were higher (about 22 mg l(-1)) than anthocyanins (about 9 mg l(-1)), and were responsible for the colour of the beverages (76.1%). High levels of artificial colours were found in red orange carbonated drinks, but in comparable amounts with those found in the other beverage samples, while anthocyanins were only present in trace amounts. Although all of the beverages claimed to contain red fruits on the labels, no correlation was found between the level of anthocyanins and the declared percentage of red fruits. These labels generally conformed with the requirements of the law, but food product labels can often be misleading to consumers about the real characteristics of the product.

  13. Artificial multilayers and nanomagnetic materials

    PubMed Central

    SHINJO, Teruya

    2013-01-01

    The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author’s studies are described. (1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism. (2) Preparation and characterization of metallic multilayers with artificial superstructures. (3) Giant magnetoresistance (GMR) effect in magnetic multilayers. (4) Novel properties of nanostructured ferromagnetic thin films (dots and wires). A subject of particular interest in the author’s research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author’s research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint. PMID:23391605

  14. Artificial multilayers and nanomagnetic materials.

    PubMed

    Shinjo, Teruya

    2013-01-01

    The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author's studies are described.(1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism.(2) Preparation and characterization of metallic multilayers with artificial superstructures.(3) Giant magnetoresistance (GMR) effect in magnetic multilayers.(4) Novel properties of nanostructured ferromagnetic thin films (dots and wires).A subject of particular interest in the author's research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author's research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint.

  15. Avian nestling predation by endangered Mount Graham red squirrel

    Treesearch

    Claire A. Zugmeyer; John L. Koprowski

    2007-01-01

    Studies using artificial nests or remote cameras have documented avian predation by red squirrels (Tamiasciurus hudsonicus). Although several direct observations of avian predation events are known in the northern range of the red squirrel distribution, no accounts have been reported in the southern portion. We observed predation upon a hermit thrush...

  16. CCD centroiding analysis for Nano-JASMINE observation data

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Tazawa, Seiichi; Hanada, Hideo

    2010-07-01

    Nano-JASMINE is a very small satellite mission for global space astrometry with milli-arcsecond accuracy, which will be launched in 2011. In this mission, centroids of stars in CCD image frames are estimated with sub-pixel accuracy. In order to realize such a high precision centroiding an algorithm utilizing a least square method is employed. One of the advantages is that centroids can be calculated without explicit assumption of the point spread functions of stars. CCD centroiding experiment has been performed to investigate whether this data analysis is available, and centroids of artificial star images on a CCD are determined with a precision of less than 0.001 pixel. This result indicates parallaxes of stars within 300 pc from Sun can be observed in Nano-JASMINE.

  17. Photometry of the Variable Bright Red Supergiant Betelgeuse from the Ground and from Space with the BRITE Nano-satellites

    NASA Astrophysics Data System (ADS)

    Minor, Robert; Guinan, Edward F.

    2016-01-01

    Robert B. Minor, Edward Guinan, Richard Wasatonic Betelgeuse (Alpha Orionis) is a large, luminous semi-regular red supergiant of spectral class M1.5-2Iab. It is the 8th brightest star in the night sky. Betelgeuse is 30,000 times more luminous than the Sun and 700 times larger. It has an estimated age of ~8 +/- 2 Myr. Betelgeuse explode in a Type II supernova (anytime within the next million years). When it explodes, it will shine with about the intensity of a full moon and may be visible during the day. However, it is too far away to cause any major damage to Earth. Photometry of this pre-supernova star has been ongoing at Villanova for nearly 45 years. These observations are being used to define the complex brightness variations of this star. Semi-regular periodic light variations have been found with periods of 385 days up to many years. These light variations are used to study its unstable atmosphere and resulting complex pulsations. Over the last 15 years, it has been observed by Wasatonic who has accumulated a large photometric database. The ground-based observations are limited to precisions of 1.5%, and due to poor weather, limit observations to about 1-2 times per week. However, with the recent successful launch of the BRITE Nano-satellites (http://www.brite-constellation.at) during 2013-14, it is possible to secure high precision photometry of bright stars, including Betelgeuse, continuously for up to 3 months. Villanova has participated in the BRITE guest investigators program and has been awarded observing time and data rights many bright stars, including Betelgeuse. BRITE blue and red observations of Betelgeuse were carried out during the Nov-Feb 2013-14 season and the 2014-15. These datasets were given to Villanova and have been combined with coexistent photometry from Wasatonic. Although BRITE's red data is saturated, the blue data is useable. The BRITE datasets were combined with our ground-based V, red, and near-IR photometry. Problems were

  18. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    NASA Astrophysics Data System (ADS)

    Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-07-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The

  19. Magnetically-actuated artificial cilia for microfluidic propulsion.

    PubMed

    Khaderi, S N; Craus, C B; Hussong, J; Schorr, N; Belardi, J; Westerweel, J; Prucker, O; Rühe, J; den Toonder, J M J; Onck, P R

    2011-06-21

    In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for lab-on-a-chip applications. The artificial cilia are fabricated using thin polymer films with embedded magnetic nano-particles and their deformation is studied under different external magnetic fields and flows. A coupled magneto-mechanical solid-fluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.

  20. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide.

    PubMed

    Cui, Wei; Li, Mingzhu; Liu, Jiyang; Wang, Ben; Zhang, Chuck; Jiang, Lei; Cheng, Qunfeng

    2014-09-23

    Demands of the strong integrated materials have substantially increased across various industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, we have developed a strategy for fabricating the strong integrated artificial nacre based on graphene oxide (GO) sheets by dopamine cross-linking via evaporation-induced assembly process. The tensile strength and toughness simultaneously show 1.5 and 2 times higher than that of natural nacre. Meanwhile, the artificial nacre shows high electrical conductivity. This type of strong integrated artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering.

  1. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  2. PREFACE: Biomimetics, Artificial Muscles & Nano-Bio 2007: Scientists Meet Doctors

    NASA Astrophysics Data System (ADS)

    Fernández Otero, Toribio

    2008-02-01

    invaded by a new virus. A very expensive trial and error (still pseudo-alchemic) procedure has to be initiated to try to enable ill people to get better. Nowadays models from chemical kinetics do not include any quantification of either changes to the molecular interactions inside the system during reaction or structural information about the conformational changes brought about by enzymes or reactive proteins. From our point of view this is one the most important scientific challenges for the 21st century, involving responses to questions related to life, health and illness. Those responses, due to the magnitude of the challenge, can only be obtained by cooperative work involving chemists, physicist, engineers, biologists and clinicians. Figure Figure showing the full distance inside the universe. Small and large systems are submitted as `constant physical' interactions affording quite predictive models. Life is based on chemistry giving rise to simultaneous changes on all the molecular interactions included in the system: their interpretation is outside current chemical or physical models. Most technological advances developed by human beings are inspired by biological systems, organs, or mechanisms present in living creatures. The main difference between human technology and natural organs is the changes in chemical composition occurring inside the wet natural organ during actuation: they are reactive, soft and wet materials. Our artificial machines are constructed of dry materials that maintain a constant composition under actuation. This is the context proposed for the consecutive World Congresses on Biomimetics, Artificial Muscles & Nano-Bio and more specifically for the IVth Congress held in Torre Pacheco, Spain, 6-9 November 2007. The papers selected for this volume of Journal of Physics: Conference Series includes: dry and wet materials, chemically reactive or physically reactive materials, organic and inorganic materials, macroscopic films and nanoparticles

  3. Spectrophotometric Evaluation of Colour Stability of Nano Hybrid Composite Resin in Commonly Used Food Colourants in Asian Countries.

    PubMed

    Chittem, Jyothi; Sajjan, Girija S; Varma Kanumuri, Madhu

    2017-01-01

    There is growing interest in colour stability of aesthetic restorations. So far few studies have been reported. This study was designed to investigate the effects of different common food colourants i.e., Turmeric and Carmoisine (orange red dye) consumed by patients in Asian countries on a recent nano hybrid composite resin. A total of sixty disk shaped specimens measuring 10 mm in diameter and 2 mm in thickness were prepared. The samples were divided into two groups {Z 100 (Dental restorative composite) Filtek Z 250 XT (Nano hybrid universal restorative)}. Baseline colour measurement of all specimens were made using reflectance spectrophotometer with CIE L*a*b* system. Specimens were immersed in artificial saliva and different experimental solutions containing food colourants (carmoisine solution and turmeric solution) for three hours per day at 37°C. Colour measurements were made after 15 days. Colour difference (ΔE*) was calculated. Mean values were compared by one-way analysis of variance (ANOVA). Multiple range test by Tukey Post-hoc test procedure was employed to identify the significant groups at 5% level. Z 100 showed minimum staining capacity when compared to Z 250 XT in both the colourant solutions. The nanohybrid composite resin containing TEGDMA showed significant colour change when compared to that of microhybrid composite resin as a result of staining in turmeric and carmoisine solution.

  4. Response surface analysis of nano-ureases from Canavalia ensiformis and Cajanus cajan.

    PubMed

    Dwevedi, Alka; Routh, Satya Brata; Yadav, Amit Singh; Singh, Ashwani Kumar; Srivastava, Onkar Nath; Kayastha, Arvind M

    2011-11-01

    Ureases isolated from leguminous sources, Canavalia ensiformis and Cajanus cajan were immobilized onto gold nanoparticles (nano-ureases). Optimization of the urease immobilization was carried using response surface methodology based on Central Composite Design. Immobilization efficiency of nano-urease from C. ensiformis and C. cajan were found to be 215.10% and 255.92%, respectively. The methodology adopted has deviation of 2.56% and 3.01% with respect to experimental values in case of C. ensiformis and C. cajan, respectively. Nano-urease from C. cajan has broad physico-chemical parameters with pH optimum from 7.1 to 7.3 and temperature optimum from 50 to 70°C. Nano-urease from C. ensiformis has sharp pH and temperature optima at 7.3 and 70°C, respectively. Fourier transform infra-red spectroscopy has revealed involvement of groups viz. amino, glycosyl moiety, etc. in urease immobilization onto gold nano-particles. Transmission and scanning electron micrographs revealed that arrangement of urease onto gold nano-particles from C. ensiformis was uniform while it was localized in case of C. cajan. Nano-urease from C. ensiformis has higher specificity and catalysis toward urea as compared to nano-urease from C. cajan. Nano-ureases from both sources are equally stable for 6 months under dried conditions and can be used for 10 washes. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Mussel-inspired nano-building block assemblies for mimicking extracellular matrix microenvironments with multiple functions.

    PubMed

    Wang, Zhenming; Jia, Zhanrong; Jiang, Yanan; Li, Pengfei; Han, Lu; Lu, Xiong; Ren, Fuzeng; Wang, Kefeng; Yuan, Huiping

    2017-08-03

    The assembly of nano-building blocks is an effective way to produce artificial extracellular matrix microenvironments with hierarchical micro/nano structures. However, it is hard to assemble different types of nano-building blocks, to form composite coatings with multiple functions, by traditional layer-by-layer (LbL) self-assembly methods. Inspired by the mussel adhesion mechanism, we developed polydopamine (PDA)-decorated bovine serum albumin microspheres (BSA-MS) and nano-hydroxyapatite (nano-HA), and assembled them to form bioactive coatings with micro/nano structures encapsulating bone morphogenetic protein-2 (BMP-2). First, PDA-decorated nano-HA (nano-pHA) was obtained by oxidative polymerization of dopamine on nano-HA. Second, BMP-2-encapsulated BSA microspheres were prepared through desolvation, and then were also decorated by PDA (pBSA-MS). Finally, the nano-pHA and pBSA-MS were assembled using the adhesive properties of PDA. Bone marrow stromal cell cultures and in vivo implantation, showed that the pHA/pBSA (BMP-2) coatings can promote cell adhesion, proliferation, and benefited for osteoinductivity. PDA decoration was also applied to assemble various functional nanoparticles, such as nano-HA, polystyrene, and Fe 3 O 4 nanoparticles. In summary, this study provides a novel strategy for the assembly of biofunctional nano-building blocks, which surpasses traditional LbL self-assembly of polyelectrolytes, and can find broad applications in bioactive agents delivery or multi-functional coatings.

  6. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion.

    PubMed

    Brassard, J D; Sarkar, D K; Perron, J; Audibert-Hayet, A; Melot, D

    2015-06-01

    Thin films of zinc have been deposited on steel substrates by electrodeposition process and further functionalized with ultra-thin films of commercial silicone rubber, in order to obtain superhydrophobic properties. Morphological feature, by scanning electron microscope (SEM), shows that the electrodeposited zinc films are composed of micro-nano rough patterns. Furthermore, chemical compositions of these films have been analyzed by X-ray diffraction (XRD) and infra-red (IRRAS). An optimum electrodeposition condition, based on electrical potential and deposition time, has been obtained which provides superhydrophobic properties with a water contact angle of 155±1°. The corrosion resistance properties, in artificial seawater, of the superhydrophobic zinc coated steel are found to be superior to bare steel. Similarly, the measured ice adhesion strength on superhydrophobic surfaces, using the centrifugal adhesion test (CAT), is found to be 6.3 times lower as compared to bare steel. This coating has promising applications in offshore environment, to mitigate corrosion and reduce ice adhesion. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Yilmazoglu, O.; Yadav, S.; Cicek, D.; Schneider, J. J.

    2016-09-01

    A design for a unique artificial-hair-cell-type sensor (AHCTS) based entirely on 3D-structured, vertically aligned carbon nanotube (CNT) bundles is introduced. Standard microfabrication techniques were used for the straightforward micro-nano integration of vertically aligned carbon nanotube arrays composed of low-layer multi-walled CNTs (two to six layers). The mechanical properties of the carbon nanotube bundles were intensively characterized with regard to various substrates and CNT morphology, e.g. bundle height. The CNT bundles display excellent flexibility and mechanical stability for lateral bending, showing high tear resistance. The integrated 3D CNT sensor can detect three-dimensional forces using the deflection or compression of a central CNT bundle which changes the contact resistance to the shorter neighboring bundles. The complete sensor system can be fabricated using a single chemical vapor deposition (CVD) process step. Moreover, sophisticated external contacts to the surroundings are not necessary for signal detection. No additional sensors or external bias for signal detection are required. This simplifies the miniaturization and the integration of these nanostructures for future microsystem set-ups. The new nanostructured sensor system exhibits an average sensitivity of 2100 ppm in the linear regime with the relative resistance change per micron (ppm μm-1) of the individual CNT bundle tip deflection. Furthermore, experiments have shown highly sensitive piezoresistive behavior with an electrical resistance decrease of up to ˜11% at 50 μm mechanical deflection. The detection sensitivity is as low as 1 μm of deflection, and thus highly comparable with the tactile hair sensors of insects, having typical thresholds on the order of 30-50 μm. The AHCTS can easily be adapted and applied as a flow, tactile or acceleration sensor as well as a vibration sensor. Potential applications of the latter might come up in artificial cochlear systems. In

  8. NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products

    NASA Astrophysics Data System (ADS)

    Hansen, Steffen Foss; Jensen, Keld Alstrup; Baun, Anders

    2014-01-01

    The literature on nano(eco)toxicology is growing rapidly and has become increasingly difficult to interpret. We have developed a systematic tool called NanoRiskCat that can support companies and regulators in their first-tier assessment and communication on what they know about the hazard and exposure potential of consumer products containing engineered nanomaterials. The final outcome of NanoRiskCat is communicated in the form of a short-title describing the intended use and five colored dots. The first three dots refer to the qualitative exposure potential for professional end-users, consumers and the environment, whereas the last two refers to the hazard potential for humans and the environment. Each dot can be assigned one of four different colors, i.e. red, yellow, green, and gray indicating high, medium, low, and unknown, respectively. In this paper, we first introduce the criteria used to evaluate the exposure potential and the human and environmental hazards of specific uses of the nanoproduct. We then apply NanoRiskCat to eight different nanoproducts. The human and environmental exposure potential was found to be high (i.e., red) for many of the products due to direct application on skin and subsequent environmental release. In the NanoRiskCat evaluation, many of the nanomaterials achieve a red human and environmental hazard profile as there is compelling in vivo evidence to associate them with irreversible effects, e.g., carcinogenicity, respiratory, and cardiovascular effects, etc., in laboratory animals. A significant strength of NanoRiskCat is that it can be used even in cases where lack of data is prominent.

  9. Role of Predators on an Artificially Planted Red Oak Borer Population

    Treesearch

    Jimmy R. Galford; Jimmy R. Galford

    1985-01-01

    Adult survival of first-instar red oak borer larvae, Enaphalodes rufulus (Haldeman), implanted into red oak trees, Quercus rubra L., was 4 times greater when the larvae were protected from predators. Nitidulids, ants, and woodpeckers accounted for 40 to 60 percent of the mortality in unprotected larvae. Most mortality in protected larvae occurred from unknown causes...

  10. Nano-technology and nano-toxicology.

    PubMed

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  11. Nano-technology and nano-toxicology

    PubMed Central

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021

  12. Green tea, red wine and lemon extracts reduce experimental tumor growth and cancer drug toxicity.

    PubMed

    Zaletok, S P; Gulua, L; Wicker, L; Shlyakhovenko, V A; Gogol, S; Orlovsky, O; Karnaushenko, O V; Verbinenko, A; Milinevska, V; Samoylenko, O; Todor, I; Turmanidze, T

    2015-12-01

    To evaluate antitumor effect of plant polyphenol extracts from green tea, red wine lees and/or lemon peel alone and in combination with antitumor drugs on the growth of different transplanted tumors in experimental animals. Green tea extract (GTE) was prepared from green tea infusion. GTE-based composites of red wine (GTRW), lemon peel (GTRWL) and/or NanoGTE as well as corresponding nanocomposites were prepared. The total polyphenolics of the different GTE-based extracts ranged from 18.0% to 21.3%. The effects of GTE-based extracts were studied in sarcoma 180, Ehrlich carcinoma, B16 melanoma, Ca755 mammary carcinoma, P388 leukemia, L1210 leukemia, and Guerin carcinoma (original, cisplatin-resistant and doxorubicin-resistant variants). The extracts were administered as 0.1% solution in drinking water (0.6-1.0 mg by total polyphenolics per mouse per day and 4.0-6.3 mg per rat per day). Tumor growth inhibition (TGI) in mice treated with NanoGTE, cisplatin or cisplatin + NanoGTE was 27%, 55% and 78%, respectively, in Sarcoma 180%, 21%, 45% and 59%, respectively, in Ehrlich carcinoma; and 8%, 13% and 38%, respectively in B16 melanoma. Composites of NanoGTE, red wine, and lemon peel (NanoGTRWL) enhanced the antitumor effects of cyclophosphamide in mice with Ca755 mammary carcinoma. The treatment with combination of NanoGTE and inhibitors of polyamines (PA) synthesis (DFMO + MGBG) resulted in significant TGI of P388 leukemia (up to 71%) and L1210 leukemia. In rats transplanted with Guerin carcinoma (parental strain), treatment with GTRW or GTE alone resulted in 25-28% TGI vs. 55-68% TGI in cisplatin-treated animals. The inhibition observed in the case of combination of GTE or GTRW with cisplatin was additive giving 81-88% TGI. Similar effects were observed when combinations of the cytostatics with GTE (or NanoGTE) were tested against cisplatin- or doxorubicin-resistant Guerin carcinoma. Moreover, the plant extracts lowered side toxicity of the drugs. Treatment with GTE

  13. Psychology: red enhances human performance in contests.

    PubMed

    Hill, Russell A; Barton, Robert A

    2005-05-19

    Red coloration is a sexually selected, testosterone-dependent signal of male quality in a variety of animals, and in some non-human species a male's dominance can be experimentally increased by attaching artificial red stimuli. Here we show that a similar effect can influence the outcome of physical contests in humans--across a range of sports, we find that wearing red is consistently associated with a higher probability of winning. These results indicate not only that sexual selection may have influenced the evolution of human response to colours, but also that the colour of sportswear needs to be taken into account to ensure a level playing field in sport.

  14. Recent development of antifouling polymers: structure, evaluation, and biomedical applications in nano/micro-structures.

    PubMed

    Liu, Lingyun; Li, Wenchen; Liu, Qingsheng

    2014-01-01

    Antifouling polymers have been proven to be vital to many biomedical applications such as medical implants, drug delivery, and biosensing. This review covers the major development of antifouling polymers in the last 2 decades, including the material chemistry, structural factors important to antifouling properties, and how to challenge or evaluate the antifouling performances. We then discuss the applications of antifouling polymers in nano/micro-biomedical applications in the form of nanoparticles, thin coatings for medical devices (e.g., artificial joint, catheter, wound dressing), and nano/microscale fibers. © 2014 Wiley Periodicals, Inc.

  15. Huyghens Engines--a new concept and its embodiment for nano-micro interlevel information processing.

    PubMed

    Santoli, Salvatore

    2009-02-01

    Current criteria in Bionanotechnology based on software and sensor/actuator hardware of Artificial Intelligence for bioinspired nanostructured systems lack the nanophysical background and key mathematics to describe and mimick the biological hierarchies of nano-to-micro-integrated informational/energetic levels. It is argued that bionanoscale hardware/software undividable solidarity can be mimicked by artificial nanostructured systems featuring intra/interlevel information processing through the emerging organization principle of quantum holography, described by the Heisenberg group G and by harmonic analysis on G. From a property of G as a Lie group, quantum holography is shown to merge the quantum/classical dynamic-symbolic ongoings into the structure-function unity of biological sensing-information processing-actuating, while by Ch. Huyghens' principles about wave motion and coupled oscillators synchronization it applies to environmental waves of any kind, so embodying a universal information processing engine, dubbed Huyghens Engine, that mimicks the holistic nanobiological structure-function solidarity and the kinetics/thermodynamics of nano/micro interface information transfer.

  16. EDITORIAL: Artificial Muscles: Selected papers from the 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio (Osaka, Japan, 25-27 November 2009) Artificial Muscles: Selected papers from the 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio (Osaka, Japan, 25-27 November 2009)

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen

    2011-12-01

    The 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio and the 4th International Conference on Artificial Muscles were held in Osaka, Japan, 23-27 November 2009. This special section of Smart Materials and Structures is devoted to a selected number of research papers presented at this international conference and congress. Of the 76 or so papers presented at the conference, only 10 papers were finally selected, reviewed and accepted for this special section, following the regular reviewing procedures of the journal. This special section is focused on polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites and their applications. In particular, an electromechanical model for self-sensing ionic polymer-metal composite actuating devices with patterned surface electrodes is presented which discusses the concept of creating self-sensing ionic polymer-metal composite (IPMC) actuating devices with patterned surface electrodes where actuator and sensor elements are separated by a grounded shielding electrode. Eventually, an electromechanical model of the device is also proposed and validated. Following that, there is broad coverage of polytetrahydrofurane-polyethylene oxide-PEDOT conducting interpenetrating polymer networks (IPNs) for high speed actuators. The conducting polymer (poly(3,4-ethylenedioxythiophene)) is incorporated within the IPNs, which are synthesized from polyethylene oxide (PEO)/polytetrahydrofurane (PTHF) networks. PEO/PTHF IPNs are prepared using poly(ethylene glycol) methacrylate and dimethacrylate and hydroxythelechelic PTHF as starting materials. The conducting IPN actuators are prepared by oxidative polymerization of 3,4-ethylenedioxithiophene (EDOT) using FeCl3 as an oxidizing agent within the PEO/PTHF IPN host matrix. Subsequently, giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels are discussed and the effect of magnetic fields on the viscoelastic properties

  17. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates.

    PubMed

    Ocakoglu, Kasim; Joya, Khurram S; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T

    2014-08-21

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.

  18. CO oxidation on Alsbnd Au nano-composite systems

    NASA Astrophysics Data System (ADS)

    Rajesh, C.; Majumder, C.

    2018-03-01

    Using first principles method we report the CO oxidation behaviour of Alsbnd Au nano-composites in three different size ranges: Al6Au8, Al13Au42 and a periodic slab of Alsbnd Au(1 1 1) surface. The clusters prefer enclosed structures with alternating arrangement of Al and Au atoms, maximising Auδ-sbnd Alδ+ bonds. Charge distribution analysis suggests the charge transfer from Al to Au atoms, corroborated by the red shift in the density of states spectrum. Further, CO oxidation on these nano-composite systems was investigated through both Eley - Rideal and Langmuir Hinshelwood mechanism. While, these clusters interact with O2 non-dissociatively with an elongation of the Osbnd O bond, further interaction with CO led to formation of CO2 spontaneously. On contrary, the CO2 evolution by co-adsorption of O2 and CO molecules has a transition state barrier. On the basis of the results it is inferred that nano-composite material of Alsbnd Au shows significant promise toward effective oxidative catalysis.

  19. Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress.

    PubMed

    Rhouati, Amina; Bulbul, Gonca; Latif, Usman; Hayat, Akhtar; Li, Zhan-Hong; Marty, Jean Louis

    2017-10-28

    Recent years have witnessed an overwhelming integration of nanomaterials in the fabrication of biosensors. Nanomaterials have been incorporated with the objective to achieve better analytical figures of merit in terms of limit of detection, linear range, assays stability, low production cost, etc. Nanomaterials can act as immobilization support, signal amplifier, mediator and artificial enzyme label in the construction of aptasensors. We aim in this work to review the recent progress in mycotoxin analysis. This review emphasizes on the function of the different nanomaterials in aptasensors architecture. We subsequently relate their features to the analytical performance of the given aptasensor towards mycotoxins monitoring. In the same context, a critically analysis and level of success for each nano-aptasensing design will be discussed. Finally, current challenges in nano-aptasensing design for mycotoxin analysis will be highlighted.

  20. Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core-shell Fe3O4-SiO2 nanoparticles.

    PubMed

    Li, Zhuo; Wang, Yong; Ni, Yongnian; Kokot, Serge

    2015-08-15

    A magnetic and fluorescent nano-composite was prepared. It comprised of a core of Fe3O4 nanoparticles (NPs), a silica shell and satellitic Au nano-clusters (AuNCs) capped with bovine serum albumin (BSA). This nano-composite has many desirable properties, e.g. magnetism, red emission, high water solubility, and high resistance to photo-bleaching. On addition of the analyte, 6-mercaptopurine (6-MP) or indeed other similar thiols, AuNCs formed aggregates because the existing cross-links within the Fe3O4 NPs@SiO2 and AuNC structure were broken in favor of the gold-thiol bonds. On suitable irradiation of such aggregates, red fluorescence was emitted at 613 nm. It decreased significantly as a function of the added 6-MP concentration, and the quenching ratio (F0 - F) / F0 was related linearly to the concentration of 6-MP in the range of 0.01 to 0.5 μmol L(-1). The detection limit was 0.004 μmol L(-1) (S/N=3). The method was strongly selective for 6-MP in the presence of oxidants, phenols, heavy-metal ions, and especially bio-thiols. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. [Characteristics of soil moisture in artificial impermeable layers].

    PubMed

    Suo, Gai-Di; Xie, Yong-Sheng; Tian, Fei; Chuai, Jun-Feng; Jing, Min-Xiao

    2014-09-01

    For the problem of low water and fertilizer use efficiency caused by nitrate nitrogen lea- ching into deep soil layer and soil desiccation in dryland apple orchard, characteristics of soil moisture were investigated by means of hand tamping in order to find a new approach in improving the water and fertilizer use efficiency in the apple orchard. Two artificial impermeable layers of red clay and dark loessial soil were built in soil, with a thickness of 3 or 5 cm. Results showed that artificial impermeable layers with the two different thicknesses were effective in reducing or blocking water infiltration into soil and had higher seepage controlling efficiency. Seepage controlling efficiency for the red clay impermeable layer was better than that for the dark loessial soil impermeable layer. Among all the treatments, the red clay impermeable layer of 5 cm thickness had the highest bulk density, the lowest initial infiltration rate (0.033 mm · min(-1)) and stable infiltration rate (0.018 mm · min(-1)) among all treatments. After dry-wet alternation in summer and freezing-thawing cycle in winter, its physiochemical properties changed little. Increase in years did not affect stable infiltration rate of soil water. The red clay impermeable layer of 5 cm thickness could effectively increase soil moisture content in upper soil layer which was conducive to raise the water and nutrient use efficiency. The approach could be applied to the apple production of dryland orchard.

  2. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Red clothing increases perceived dominance, aggression and anger

    PubMed Central

    Wiedemann, Diana; Burt, D. Michael; Hill, Russell A.; Barton, Robert A.

    2015-01-01

    The presence and intensity of red coloration correlate with male dominance and testosterone in a variety of animal species, and even artificial red stimuli can influence dominance interactions. In humans, red stimuli are perceived as more threatening and dominant than other colours, and wearing red increases the probability of winning sporting contests. We investigated whether red clothing biases the perception of aggression and dominance outside of competitive settings, and whether red influences decoding of emotional expressions. Participants rated digitally manipulated images of men for aggression and dominance and categorized the emotional state of these stimuli. Men were rated as more aggressive and more dominant when presented in red than when presented in either blue or grey. The effect on perceived aggression was found for male and female raters, but only male raters were sensitive to red as a signal of dominance. In a categorization test, images were significantly more often categorized as ‘angry’ when presented in the red condition, demonstrating that colour stimuli affect perceptions of emotions. This suggests that the colour red may be a cue used to predict propensity for dominance and aggression in human males. PMID:25972401

  4. Long-term efficacy of artificial cavities for red-cockaded woodpeckers: Lessons learned from hurricane Hugo

    Treesearch

    Robert G. Hooper; William E. Taylor; Susan C. Loeb

    2004-01-01

    Between 1990 and 1992 an extensive artificial cavity installation program was conducted on the Francis Marion National Forest (FMNF) in coastal South Carolina where Hurricane Hugo had caused vast devastation. Four artificial cavity types were installed: drilled starts, drilled cavities, modified drilled cavities, and inserts. In 1998, we examined 443 of the artificial...

  5. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review

    PubMed Central

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.

    2012-01-01

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849

  6. Red Blood Cell Susceptibility to Pneumolysin

    PubMed Central

    Bokori-Brown, Monika; Petrov, Peter G.; Khafaji, Mawya A.; Mughal, Muhammad K.; Naylor, Claire E.; Shore, Angela C.; Gooding, Kim M.; Casanova, Francesco; Mitchell, Tim J.; Titball, Richard W.; Winlove, C. Peter

    2016-01-01

    This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell. PMID:26984406

  7. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.

    PubMed

    Etzl, Stefan; Lindner, Robert; Nelson, Matthew D; Winkler, Andreas

    2018-06-08

    Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light-sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the Deinococcus radiodurans bacteriophytochrome linked to a Synechocystis guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light-regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools in vitro and expands our in vivo toolkit, as demonstrated by manipulation of Caenorhabditis elegans locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor-effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen-deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor-effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties. © 2018 Etzl et al.

  8. Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress

    PubMed Central

    Rhouati, Amina; Bulbul, Gonca; Hayat, Akhtar; Marty, Jean Louis

    2017-01-01

    Recent years have witnessed an overwhelming integration of nanomaterials in the fabrication of biosensors. Nanomaterials have been incorporated with the objective to achieve better analytical figures of merit in terms of limit of detection, linear range, assays stability, low production cost, etc. Nanomaterials can act as immobilization support, signal amplifier, mediator and artificial enzyme label in the construction of aptasensors. We aim in this work to review the recent progress in mycotoxin analysis. This review emphasizes on the function of the different nanomaterials in aptasensors architecture. We subsequently relate their features to the analytical performance of the given aptasensor towards mycotoxins monitoring. In the same context, a critically analysis and level of success for each nano-aptasensing design will be discussed. Finally, current challenges in nano-aptasensing design for mycotoxin analysis will be highlighted. PMID:29143760

  9. Fabrication of micro/nano hierarchical structures with analysis on the surface mechanics

    NASA Astrophysics Data System (ADS)

    Jheng, Yu-Sheng; Lee, Yeeu-Chang

    2016-10-01

    Biomimicry refers to the imitation of mechanisms and features found in living creatures using artificial methods. This study used optical lithography, colloidal lithography, and dry etching to mimic the micro/nano hierarchical structures covering the soles of gecko feet. We measured the static contact angle and contact angle hysteresis to reveal the behavior of liquid drops on the hierarchical structures. Pulling tests were also performed to measure the resistance of movement between the hierarchical structures and a testing plate. Our results reveal that hierarchical structures at the micro-/nano-scale are considerably hydrophobic, they provide good flow characteristics, and they generate more contact force than do surfaces with micro-scale cylindrical structures.

  10. Natural and artificial spectral edges in exoplanets

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  11. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    PubMed

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Hydrophobic-Sheath Segregated Macromolecular Fluorophores: Colloidal Nanoparticles of Polycaprolactone-Grafted Conjugated Polymers with Bright Far-Red/Near-Infrared Emission for Biological Imaging.

    PubMed

    Yang, Cangjie; Liu, Hui; Zhang, Yingdan; Xu, Zhigang; Wang, Xiaochen; Cao, Bin; Wang, Mingfeng

    2016-05-09

    This article describes molecular design, synthesis and characterization of colloidal nanoparticles containing polycaprolactone-grafted conjugated polymers that exhibit strong far red/near-infrared (FR/NIR) fluorescence for bioimaging. Specifically, we synthesized two kinds of conjugated polymer bottle brushes (PFTB(out)-g-PCL and PFTB(in)-g-PCL) with different positions of the hexyl groups on the thiophene rings. A synthetic amphiphilic block copolymer PCL-b-POEGMA was employed as surfactants to encapsulate PFTB-g-PCL polymers into colloidal nanoparticles (denoted as "nanoREDs") in aqueous media. The chain length of the PCL side chains in PFTB-g-PCL played a critical role in determining the fluorescence properties in both bulk solid states and the colloidal nanoparticles. Compared to semiconducting polymer dots (Pdots) composed of PFTB(out) without grafted PCL, nanoRED(out) showed at least four times higher fluorescence quantum yield (∼20%) and a broader emission band centered at 635 nm. We further demonstrated the application of this new class of nanoREDs for effective labeling of L929 cells and HeLa cancer cells with good biocompatibility. This strategy of hydrophobic-sheath segregated macromolecular fluorophores is expected to be applicable to a broad range of conjugated polymers with tunable optical properties for applications such as bioimaging.

  13. Interaction modifiers in artificial spin ices

    DOE PAGES

    Ostman, Erik; Stopfel, Henry; Chioar, Ioan -Augustin; ...

    2018-02-12

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics and emergent magnetic properties in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane1. We show that by placing these on the vertices of square artificial spin-ice arrays andmore » varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. In conclusion, the work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.« less

  14. Interaction modifiers in artificial spin ices

    NASA Astrophysics Data System (ADS)

    Ã-stman, Erik; Stopfel, Henry; Chioar, Ioan-Augustin; Arnalds, Unnar B.; Stein, Aaron; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2018-04-01

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order1-6, collective low-energy dynamics7,8 and emergent magnetic properties5, 9,10 in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane11. We show that by placing these on the vertices of square artificial spin-ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.

  15. Interaction modifiers in artificial spin ices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostman, Erik; Stopfel, Henry; Chioar, Ioan -Augustin

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics and emergent magnetic properties in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane1. We show that by placing these on the vertices of square artificial spin-ice arrays andmore » varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. In conclusion, the work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.« less

  16. Structural, mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates

    NASA Astrophysics Data System (ADS)

    Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin

    2018-01-01

    The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.

  17. Biofluid lubrication for artificial joints

    NASA Astrophysics Data System (ADS)

    Pendleton, Alice Mae

    This research investigated biofluid lubrication related to artificial joints using tribological and rheological approaches. Biofluids studied here represent two categories of fluids, base fluids and nanostructured biofluids. Base fluids were studied through comparison of synthetic fluids (simulated body fluid and hyaluronic acid) as well as natural biofluids (from dogs, horses, and humans) in terms of viscosity and fluid shear stress. The nano-structured biofluids were formed using molecules having well-defined shapes. Understanding nano-structured biofluids leads to new ways of design and synthesis of biofluids that are beneficial for artificial joint performance. Experimental approaches were utilized in the present research. This includes basic analysis of biofluids' property, such as viscosity, fluid shear stress, and shear rate using rheological experiments. Tribological investigation and surface characterization were conducted in order to understand effects of molecular and nanostructures on fluid lubrication. Workpiece surface structure and wear mechanisms were investigated using a scanning electron microscope and a transmission electron microscope. The surface topography was examined using a profilometer. The results demonstrated that with the adding of solid additives, such as crown ether or fullerene acted as rough as the other solids in the 3-body wear systems. In addition, the fullerene supplied low friction and low wear, which designates the lubrication purpose of this particular particle system. This dissertation is constructed of six chapters. The first chapter is an introduction to body fluids, as mentioned earlier. After Chapter II, it examines the motivation and approach of the present research, Chapter III discusses the experimental approaches, including materials, experimental setup, and conditions. In Chapter IV, lubrication properties of various fluids are discussed. The tribological properties and performance nanostructured biofluids are

  18. Artificial organs versus regenerative medicine: is it true?

    PubMed

    Nosé, Yukihiko; Okubo, Hisashi

    2003-09-01

    Individuals engaged in the fields of artificial kidney and artificial heart have often mistakenly stated that "the era of artificial organs is over; regenerative medicine is the future." Contrarily, we do not believe artificial organs and regenerative medicine are different medical technologies. As a matter of fact, artificial organs developed during the last 50 years have been used as a bridge to regeneration. The only difference between regenerative medicine and artificial organs is that artificial organs for the bridge to regeneration promote tissue regeneration in situ, instead of outside the body (for example, vascular prostheses, neuroprostheses, bladder substitutes, skin prostheses, bone prostheses, cartilage prostheses, ligament prostheses, etc.). All of these artificial organs are successful because tissue regeneration over a man-made prosthesis is established inside the patient's body (artificial organs to support regeneration). Another usage of the group of artificial organs for the bridge to regeneration is to sustain the functions of the patient's diseased organs during the regeneration process of the body's healthy tissues and/or organs. This particular group includes artificial kidney, hepatic assist, respiratory assist, and circulatory assist. Proof of regeneration of these healthy tissues and/or organs is demonstrated in the short-term recovery of end-stage organ failure patients (artificial organs for bridge to regeneration). A third group of artificial organs for the bridge to regeneration accelerates the regenerating process of the patient's healthy tissues and organs. This group includes neurostimulators, artificial blood (red cells) blood oxygenators, and plasmapheresis devices, including hemodiafiltrators. So-called "therapeutic artificial organs" fall into this category (artificial organs to accelerate regeneration). Thus, almost all of today's artificial organs are useful in the bridge to regeneration of healthy natural tissues and organs

  19. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering.

    PubMed

    Shen, Renze; Xu, Weihong; Xue, Yanxiang; Chen, Luyuan; Ye, Haicheng; Zhong, Enyi; Ye, Zhanchao; Gao, Jie; Yan, Yurong

    2018-04-16

    In this study, nanofibrous scaffolds base on pure polylactic acid (PLA) and chitosan/PLA blends were fabricated by emulsion eletrospinning. By modulating their mechanical and biological properties, cell-compatible and biodegradable scaffolds were developed for periodontal bone regeneration. Pure PLA and different weight ratios of chitosan nano-particle/PLA nano-fibers were fabricated by emulsion eletrospinning. Scanning electron microscope (SEM) was performed to observe the morphology of nano-fibers. Mechanical properties of nano-fibers were tested by single fiber strength tester. Hydrophilic/hydrophobic nature of the nano-fibers was observed by stereomicroscope. In vitro degradation was also tested. Cells were seeded on nano-fibers scaffolds. Changes in cell adhesion, proliferation and osteogenic differentiation were tested by MTT assay and Alizarin Red S staining. Reverse transcription-polymerase chain reaction (RT-PCR) assay was used to evaluate the expression of (Toll-like receptor 4) TLR4, IL-6, IL-8, IL-1β, OPG, RUNX2 mRNA. It is shown that the mean diameter of nano-fibers is about 200 nm. The mean diameter of chitosan nano-particles is about 50 nm. The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers. By adding a certain amount of chitosan nano-particles, it promoted cell adhesion. It also promoted the osteogenic differentiation of bone marrow stem cells (BMSCs) by elevating the expression of osteogenic marker genes such as BSP, Ocn, collagen I, and OPN and enhanced ECM mineralization. Nonetheless, it caused higher expression of inflammatory mediators and TLR4 of human periodontal ligament cells (hPDLCs). The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers and increased its hydrophilicity. Pure PLA nano-fibers scaffold facilitated BMSCs proliferation. Adding an appropriate amount of chitosan nano-particles may promote its properties of cell proliferation

  20. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  1. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes

    PubMed Central

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    Background The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. Methods 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Results Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Conclusion Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents. PMID:24741305

  2. Red trap colour of the carnivorous plant Drosera rotundifolia does not serve a prey attraction or camouflage function.

    PubMed

    Foot, G; Rice, S P; Millett, J

    2014-01-01

    The traps of many carnivorous plants are red in colour. This has been widely hypothesized to serve a prey attraction function; colour has also been hypothesized to function as camouflage, preventing prey avoidance. We tested these two hypotheses in situ for the carnivorous plant Drosera rotundifolia. We conducted three separate studies: (i) prey attraction to artificial traps to isolate the influence of colour; (ii) prey attraction to artificial traps on artificial backgrounds to control the degree of contrast and (iii) observation of prey capture by D. rotundifolia to determine the effects of colour on prey capture. Prey were not attracted to green traps and were deterred from red traps. There was no evidence that camouflaged traps caught more prey. For D. rotundifolia, there was a relationship between trap colour and prey capture. However, trap colour may be confounded with other leaf traits. Thus, we conclude that for D. rotundifolia, red trap colour does not serve a prey attraction or camouflage function.

  3. Red trap colour of the carnivorous plant Drosera rotundifolia does not serve a prey attraction or camouflage function

    PubMed Central

    Foot, G.; Rice, S. P.; Millett, J.

    2014-01-01

    The traps of many carnivorous plants are red in colour. This has been widely hypothesized to serve a prey attraction function; colour has also been hypothesized to function as camouflage, preventing prey avoidance. We tested these two hypotheses in situ for the carnivorous plant Drosera rotundifolia. We conducted three separate studies: (i) prey attraction to artificial traps to isolate the influence of colour; (ii) prey attraction to artificial traps on artificial backgrounds to control the degree of contrast and (iii) observation of prey capture by D. rotundifolia to determine the effects of colour on prey capture. Prey were not attracted to green traps and were deterred from red traps. There was no evidence that camouflaged traps caught more prey. For D. rotundifolia, there was a relationship between trap colour and prey capture. However, trap colour may be confounded with other leaf traits. Thus, we conclude that for D. rotundifolia, red trap colour does not serve a prey attraction or camouflage function. PMID:24740904

  4. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  5. Efficient and rapid degradation of Congo red dye with TiO2 based nano-photocatalysts

    NASA Astrophysics Data System (ADS)

    Narayan, Himanshu; Alemu, Hailemichael

    2017-04-01

    Degradation of Congo red (CR) dye with TiO2 based nano-photocatalyst (NPC) loaded with Nd3+ and Er3+ ions is reported. The chemical route of synthesis through co-precipitation/hydrolysis (CPH) was employed to produce NPCs with general composition TiO2[R2O3]x, {x = 0.1, 0.2; R □ Nd, Er} and particle size within 12 - 16 nm. Photocatalytic degradation under visible light was measured in terms of the percent degradation of CR in 180 min ({C}180\\prime), time taken to degrade to half of the initial CR concentration (t1/2) and apparent rate constant (kobs). For both doping types, values of {C}180\\prime close to 100% were obtained with x = 0.2 NPCs, indicating complete removal of the dye. For the same NPCs, very high values of kobs were found; 2.91 × 10-2 min-1 and 2.36 × 10-2 min-1, for Nd3+ and Er3+ loaded NPCs, respectively, suggesting very rapid degradation. Other NPCs with x = 0.1, also showed reasonably good and fast degradation of CR. The observations may be attributed to the small particle size of the NPCs. Moreover, from the DRS results it is observed that the addition of Nd3+ and Er3+ ions apparently introduces intermediate energy levels within the band gap of TiO2. Such new levels seem to support photocatalysis because they act as electron traps leading to effective suppression of the undesired e-/h+ recombination. To some meaningful extent they also facilitate the absorption of visible irradiations required in the process.

  6. Trend analysis of Trichinella in a red fox population from a low endemic area using a validated artificial digestion and sequential sieving technique.

    PubMed

    Franssen, Frits; Deksne, Gunita; Esíte, Zanda; Havelaar, Arie; Swart, Arno; van der Giessen, Joke

    2014-11-28

    Freezing of fox carcasses to minimize professional hazard of infection with Echinococcus multilocularis is recommended in endemic areas, but this could influence the detection of Trichinella larvae in the same host species. A method based on artificial digestion of frozen fox muscle, combined with larva isolation by a sequential sieving method (SSM), was validated using naturally infected foxes from Latvia. The validated SSM was used to detect dead Trichinella muscle larvae (ML) in frozen muscle samples of 369 red foxes from the Netherlands, of which one fox was positive (0.067 larvae per gram). This result was compared with historical Trichinella findings in Dutch red foxes. Molecular analysis using 5S PCR showed that both T. britovi and T. nativa were present in the Latvian foxes, without mixed infections. Of 96 non-frozen T. britovi ML, 94% was successfully sequenced, whereas this was the case for only 8.3% of 72 frozen T. britovi ML. The single Trichinella sp. larva that was recovered from the positive Dutch fox did not yield PCR product, probably due to severe freeze-damage. In conclusion, the SSM presented in this study is a fast and effective method to detect dead Trichinella larvae in frozen meat. We showed that the Trichinella prevalence in Dutch red fox was 0.27% (95% CI 0.065-1.5%), in contrast to 3.9% in the same study area fifteen years ago. Moreover, this study demonstrated that the efficacy of 5S PCR for identification of Trichinella britovi single larvae from frozen meat is not more than 8.3%.

  7. A comparison of performance of several artificial intelligence methods for predicting the dynamic viscosity of TiO2/SAE 50 nano-lubricant

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Tatar, Afshin; Ahangar, Mohammad Reza Hassani; Rostamian, Hossein

    2018-02-01

    Since the conventional thermal fluids such as water, oil, and ethylene glycol have poor thermal properties, the tiny solid particles are added to these fluids to increase their heat transfer improvement. As viscosity determines the rheological behavior of a fluid, studying the parameters affecting the viscosity is crucial. Since the experimental measurement of viscosity is expensive and time consuming, predicting this parameter is the apt method. In this work, three artificial intelligence methods containing Genetic Algorithm-Radial Basis Function Neural Networks (GA-RBF), Least Square Support Vector Machine (LS-SVM) and Gene Expression Programming (GEP) were applied to predict the viscosity of TiO2/SAE 50 nano-lubricant with Non-Newtonian power-law behavior using experimental data. The correlation factor (R2), Average Absolute Relative Deviation (AARD), Root Mean Square Error (RMSE), and Margin of Deviation were employed to investigate the accuracy of the proposed models. RMSE values of 0.58, 1.28, and 6.59 and R2 values of 0.99998, 0.99991, and 0.99777 reveal the accuracy of the proposed models for respective GA-RBF, CSA-LSSVM, and GEP methods. Among the developed models, the GA-RBF shows the best accuracy.

  8. The recognition of ocean red tide with hyper-spectral-image based on EMD

    NASA Astrophysics Data System (ADS)

    Zhao, Wencang; Wei, Hongli; Shi, Changjiang; Ji, Guangrong

    2008-05-01

    A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East China Sea in 2002. A set of characteristic parameters that describe absorbing crest and reflecting crest of the red tide and its recognition methods are put forward based on general picture data, with which the spectral information of certain non-dominant alga species of a red tide occurrence is analyzed for establishing the foundation to estimate the species. Comparative experiments have proved that the method is effective. Meanwhile, the transitional area between red-tide zone and non-red-tide zone can be detected with the information of thickness of algae influence, with which a red tide can be forecast.

  9. Comparison between Fluoride and Nano-hydroxyapatite in Remineralizing Initial Enamel Lesion: An in vitro Study.

    PubMed

    Daas, Issa; Badr, Sherine; Osman, Essam

    2018-03-01

    The aim of this study was to compare the effectiveness of nano-hydroxyapatite (nano-HAP) paste and fluoride varnish in remineralizing initial enamel lesion in young permanent teeth and their ability to resist secondary caries under dynamic pH cycling quantitatively and qualitatively. Initial caries-like lesions were artificially developed on 45 specimens. Specimens were divided into three groups: (1) Control (without treatment), (2) fluoride varnish (3M ESPE), and (3) nano-HAP paste (Desensibilize Nano P). The nano-HAP paste was applied twice separated by one pH cycle, and the varnish was applied only once followed by 7 days of pH cycling. All specimens were examined using DIAGNOdent® pen (KaVo, Germany), and a representative specimen was randomly selected from each group for qualitative evaluation using scanning electron microscope (SEM) at four stages: Baseline, after lesion formation, immediately after remineralization, and after pH cycling. Data were statistically analyzed with Statistical Package for the Social Sciences (SPSS), version 20. The degree of demineralization was significantly elevated in control group; however, no significant difference was found between fluoride varnish group and nano-HAP paste group (p < 0.001). Nano-HAP paste showed promising long-term protective effect in terms of surface depositions and maintaining a smooth surface compared with fluoride varnish. Based on the findings of this study, nano-HAP paste might be recommended as alternative remineralizing agent with lower fluoride concentration than fluoride varnish that could be beneficial for children, pregnant females, and those who are at high risk of dental fluorosis.

  10. Nano-hydroxyapatite could Compensate the Adverse Effect of soft carbonated Drinks on Enamel.

    PubMed

    Rezvani, Mohammad B; Rouhollahi, Mohammad R; Andalib, Fahimeh; Hamze, Faeze

    2016-08-01

    Since one of the most important disadvantages of soft drinks includes their adverse effect on mineral content of enamel because of their low pH, this study examined the microhardness of enamel before and after exposure to a soft drink containing different concentrations of nano-hydroxyapatite (nano-HA) as an additive. Sixty caries free human premolars were mounted in epoxy resin. After polishing, the baseline micro-hardness was recorded three times for each specimen using a Vickers indenter at 50 gm load. Subsequently, the samples were divided into six groups, which were treated for 5 minutes at 9°C by a cola-based drink contacting 0, 0.5, 1, 5, and 10 wt.% of nano-HA while the control group was immersed in artificial saliva. Ultimately, the final microhardness was assessed three times again for each specimen. Paired t-test showed that in groups containing 0 and 0.5 wt.% of nano-HA, the microhardness was significantly reduced after treatment protocol (p = 0.00 and 0.01 respectively). Whereas in the other groups the microhardness was not significantly changed after treatment (p > 0.05). Pure cola-based drink has a pronounced adverse effect on enamel microhardness, while admixing it with nano-HA could act as a protective factor. Although soft beverages are hazardous to tooth structure, some additives could compensate their adverse effect.

  11. Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Prakash, Anitha; Pathrose, Bini P.; Mathew, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2018-05-01

    We have investigated the thermal and optical properties of neutral red dye incorporated with different weight percentage of gold nanoparticles prepared by laser ablation method. Optical absorption studies confirmed the production of spherical nanoparticles and also the interactions of the dye molecules with gold nanoparticles. The quenching of fluorescence and the reduction in the lifetime of gold incorporated samples were observed and was due to the non-radiative energy transfer between the dye molecules and gold nanoparticles. Dual beam thermal lens technique has been employed to measure the heat diffusion in neutral red with various weight percentage of gold nano sol dispersed in ethanol. The significant outcome of the experiment is that, the overall heat diffusion is slower in the presence of gold nano sol compared to that of dye alone sample. Brownian motion is suggested to be the main mechanism of heat transfer under the present conditions. The thermal diffusivity variations of samples with respect to different excitation power of laser were also studied.

  12. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    PubMed

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  13. Injectable nano-network for glucose-mediated insulin delivery.

    PubMed

    Gu, Zhen; Aimetti, Alex A; Wang, Qun; Dang, Tram T; Zhang, Yunlong; Veiseh, Omid; Cheng, Hao; Langer, Robert S; Anderson, Daniel G

    2013-05-28

    Diabetes mellitus, a disorder of glucose regulation, is a global burden affecting 366 million people across the world. An artificial "closed-loop" system able to mimic pancreas activity and release insulin in response to glucose level changes has the potential to improve patient compliance and health. Herein we develop a glucose-mediated release strategy for the self-regulated delivery of insulin using an injectable and acid-degradable polymeric network. Formed by electrostatic interaction between oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, the nanocomposite-based porous architecture can be dissociated and subsequently release insulin in a hyperglycemic state through the catalytic conversion of glucose into gluconic acid. In vitro insulin release can be modulated in a pulsatile profile in response to glucose concentrations. In vivo studies validated that these formulations provided improved glucose control in type 1 diabetic mice subcutaneously administered with a degradable nano-network. A single injection of the developed nano-network facilitated stabilization of the blood glucose levels in the normoglycemic state (<200 mg/dL) for up to 10 days.

  14. Spiral swimming of an artificial micro-swimmer

    NASA Astrophysics Data System (ADS)

    Keaveny, Eric E.; Maxey, Martin R.

    A device constructed from a filament of paramagnetic beads connected to a human red blood cell will swim when subject to an oscillating magnetic field. Bending waves propagate from the tip of the tail toward the red blood cell in a fashion analogous to flagellum beating, making the artificial swimmer a candidate for studying what has been referred to as micro-swimming. In this study, we demonstrate that under the influence of a rotating field the artificial swimmer will perform -type swimming. We conduct numerical simulations of the swimmer where the paramagnetic tail is represented as a series of rigid spheres connected by flexible but inextensible links. An optimal range of parameters governing the relative strength of viscous, elastic and magnetic forces is identified for swimming speed. A parameterization of the motion is extracted and examined as a function of the driving frequency. With a continuous elastica/resistive force model, we obtain an expression for the swimming speed in the low-frequency limit. Using this expression we explore further the effects of the applied field, the ratio of the transverse field to the constant field, and the ratio of the radius of the sphere to the length of the filament tail on the resulting dynamics.

  15. X-mode artificial optical emissions and attendant phenomena at EISCAT/Heating

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, Nataly; Sergienko, Tima; Rietveld, Michael; Brandstrom, Urban; Senior, Andrew; Haggstrom, Ingemar; Kosch, Michael; Borisova, Tatiana; Yeoman, Tim

    We present the experimental evidence for the formation of the artificial optical emissions induced by the X-mode powerful HF radio waves injected towards the magnetic zenith (MZ) into the high latitude F region of the ionosphere. The experiments were conducted in the course of Russian EISCAT heating campaigns in October 2012 and October 2013 at the Heating facility at Tromsø, Norway. The HF pump wave with the X-mode polarization was radiated at 7.1 or 6.2 MHz. The phased array 1, resulting in an ERP = 430 - 600 MW was used. Optical emissions at red (630 nm) and green (557 nm) lines were imaged from Tromsø site by the digital All-Sky Imager mark 2 (DASI - 2) and from a remote site at Abisco by the Auroral Large Imaging System (ALIS) in Scandinavia. The intensities of X-mode emissions at red and green lines varied between about of 150 - 1000 R and 50 - 300 R above the background respectively in different experiments. The artificial optical emissions were accompanied by very strong HF-enhanced ion lines and HF induced plasma lines from the EISCAT UHF incoherent scatter radar measurements and artificial small-scale field-aligned irregularities from CUTLASS (SuperDARN) HF coherent radar in Finland. The results obtained are discussed.

  16. Microscopic artificial swimmers

    NASA Astrophysics Data System (ADS)

    Dreyfus, Rémi; Baudry, Jean; Roper, Marcus L.; Fermigier, Marc; Stone, Howard A.; Bibette, Jérôme

    2005-10-01

    Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.

  17. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  18. Artificial Blood Substitutes: First Steps on the Long Route to Clinical Utility

    PubMed Central

    Moradi, Samira; Jahanian-Najafabadi, Ali; Roudkenar, Mehryar Habibi

    2016-01-01

    The 21st century is challenging for human beings. Increased population growth, population aging, generation of new infectious agents, and natural disasters are some threatening factors for the current state of blood transfusion. However, it seems that science and technology not only could overcome these challenges but also would turn many human dreams to reality in this regard. Scientists believe that one of the future evolutionary innovations could be artificial blood substitutes that might pave the way to a new era in transfusion medicine. In this review, recent status and progresses in artificial blood substitutes, focusing on red blood cells substitutes, are summarized. In addition, steps taken toward the development of artificial blood technology and some of their promises and hurdles will be highlighted. However, it must be noted that artificial blood is still at the preliminary stages of development, and to fulfill this dream, ie, to routinely transfuse artificial blood into human vessels, we still have to strengthen our knowledge and be patient. PMID:27812292

  19. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  20. FTIR spectroscopy as a tool for nano-material characterization

    NASA Astrophysics Data System (ADS)

    Baudot, Charles; Tan, Cher Ming; Kong, Jeng Chien

    2010-11-01

    Covalently grafting functional molecules to carbon nanotubes (CNTs) is an important step to leverage the excellent properties of that nano-fiber in order to exploit its potential in improving the mechanical and thermal properties of a composite material. While Fourier Transform Infra Red (FTIR) spectroscopy can display the various chemical bonding in a material, we found that the existing database in FTIR library does not cover all the bonding information present in functionalized CNTs because the bond between the grafted molecule and the CNT is new in the FTIR study. In order to extend the applicability of FTIR to nano-material, we present a theoretical method to derive FTIR spectroscopy and compare it with our experimental results. In particular, we illustrate a method for the identification of functional molecules grafted on CNTs, and we are able to confirm that the functional molecules are indeed covalently grafted on the CNTs without any alterations to its functional groups.

  1. Influence of red jersey color on physical parameters in combat sports.

    PubMed

    Dreiskaemper, Dennis; Strauss, Bernd; Hagemann, Norbert; Büsch, Dirk

    2013-02-01

    Hill and Barton (2005) showed that fighters in tae kwon do, boxing, and wrestling who wore red jerseys during the 2004 Olympic Games won more often than those wearing blue jerseys. Regarding these results, this study investigated the effects of jersey color during a combat situation on fighters' physical parameters of strength and heart rate. An artificial, experimental combat situation was created in which the color of sport attire was assigned randomly. Fourteen pairs of male athletes matched for weight, height, and age had to fight each other: once in a red jersey and once in a blue. Heart rate (before, during, and after the fight) and strength (before the fight) were tested wearing the blue and the red jerseys. Participants wearing red jerseys had significantly higher heart rates and significantly higher pre-contest values on the strength test. Results showed that participants' body functions are influenced by wearing red equipment.

  2. Toward a systematic exploration of nano-bio interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue; Liu, Fang; Liu, Yin

    Many studies of nanomaterials make non-systematic alterations of nanoparticle physicochemical properties. Given the immense size of the property space for nanomaterials, such approaches are not very useful in elucidating fundamental relationships between inherent physicochemical properties of these materials and their interactions with, and effects on, biological systems. Data driven artificial intelligence methods such as machine learning algorithms have proven highly effective in generating models with good predictivity and some degree of interpretability. They can provide a viable method of reducing or eliminating animal testing. However, careful experimental design with the modelling of the results in mind is a proven andmore » efficient way of exploring large materials spaces. This approach, coupled with high speed automated experimental synthesis and characterization technologies now appearing, is the fastest route to developing models that regulatory bodies may find useful. We advocate greatly increased focus on systematic modification of physicochemical properties of nanoparticles combined with comprehensive biological evaluation and computational analysis. This is essential to obtain better mechanistic understanding of nano-bio interactions, and to derive quantitatively predictive and robust models for the properties of nanomaterials that have useful domains of applicability. - Highlights: • Nanomaterials studies make non-systematic alterations to nanoparticle properties. • Vast nanomaterials property spaces require systematic studies of nano-bio interactions. • Experimental design and modelling are efficient ways of exploring materials spaces. • We advocate systematic modification and computational analysis to probe nano-bio interactions.« less

  3. Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes.

    PubMed

    Lin, Shi-Tsung; Thirumavalavan, Munusamy; Jiang, Ting-Yan; Lee, Jiunn-Fwu

    2014-05-25

    A complete set of experiments in two aspects of studies combining the various factors affecting both the preparation and photocatalytic activity of ZnO/Zn nanocomposite obtained using corn starch and cellulose (native and modified) as chelating agents for the photodegradation of methylene blue, and congo red was carried out and discussed. The resulting ZnO/Zn nanoparticles obtained using modified polysaccharides exhibited super catalytic capability. The ZnO/Zn nanoparticles possessed favored surface area (11.8443-15.7100m(2)/g) and pore size (12.3473-13.7453nm). The photocatalytic degradation of nano ZnO/Zn was directly proportional to the surface area of nano ZnO/Zn. Regardless of the dye pollutants, nano ZnO/Zn obtained using modified corn starch showed enhanced catalytic activity than that of cellulose and methylene blue had comparatively faster degradation rate. Our findings shed light on the optimization of both preparation conditions of photocatalysts and their photocatalytic experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO 2  < nano iron oxides < nano-Al 2 O 3  < nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  5. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nonlinear electro-optic tuning of plasmonic nano-filter

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.

    2015-03-01

    Efficient, easy and accurate tuning techniques to a plasmonic nano-filter are investigated. The proposed filter supports both blue and red shift in the resonance wavelength. By varying the refractive index with a very small change (in the order of 10-3), the resonance wavelength can be controlled efficiently. Using Pockels material, an electrical tuning to the response of the filter is demonstrated. In addition, the behavior of the proposed filter can be controlled optically using Kerr material. A new approach of multi-stage electro-optic controlling is introduced. By cascading two stages and filling the first stage with pockels material and the second stage with kerr material, the output response of the second stage can be controlled by controlling the output response of the first stage electrically. Due to the sharp response of the proposed filter, 60nm shift in the resonance wavelength per 10 voltages is achieved. This nano-filter has compact size, low loss, sharp response and wide range of tunabilty which is highly demandable in many biological and sensing applications.

  7. Shape matters: the effect of red blood cell shape on perfusion of an artificial microvascular network.

    PubMed

    Piety, Nathaniel Z; Reinhart, Walter H; Pourreau, Patrick H; Abidi, Rajaa; Shevkoplyas, Sergey S

    2016-04-01

    The shape of human red blood cells (RBCs) deteriorates progressively throughout hypothermic storage, with echinocytosis being the most prevalent pathway of this morphologic lesion. As a result, each unit of stored blood contains a heterogeneous mixture of cells in various stages of echinocytosis and normal discocytes. Here we studied how the change in shape of RBCs following along the path of the echinocytic transformation affects perfusion of an artificial microvascular network (AMVN). Blood samples were obtained from healthy consenting volunteers. RBCs were leukoreduced, resuspended in saline, and treated with various concentrations of sodium salicylate to induce shape changes approximating the stages of echinocytosis experienced by RBCs during hypothermic storage (e.g., discocyte, echinocyte I, echinocyte II, echinocyte III, spheroechinocyte, and spherocyte). The AMVN perfusion rate was measured for 40% hematocrit suspensions of RBCs with different shapes. The AMVN perfusion rates for RBCs with discocyte and echinocyte I shapes were similar, but there was a significant decline in the AMVN perfusion rate between RBCs with shapes approximating each subsequent stage of echinocytosis. The difference in AMVN perfusion between discocytes and spherocytes (the last stage of the echinocytic transformation) was 34%. The change in shape of RBCs from normal discocytes progressively through various stages of echinocytosis to spherocytes produced a substantial decline in the ability of these cells to perfuse an AMVN. Echinocytosis induced by hypothermic storage could therefore be responsible for a similarly substantial impairment of deformability previously observed for stored RBCs. © 2015 AABB.

  8. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    PubMed Central

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  9. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOEpatents

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  10. Color tunable emission through energy transfer from Yb3+ co-doped SrSnO3: Ho3+ perovskite nano-phosphor

    NASA Astrophysics Data System (ADS)

    Jain, Neha; Singh, Rajan Kr.; Sinha, Shriya; Singh, R. A.; Singh, Jai

    2018-04-01

    First time color tunable lighting observed from Ho3+ and Yb3+ co-doped SrSnO3 perovskite. Down-conversion and up-conversion (UC) photoluminescence emission spectra were recorded to understand the whole mechanism of energy migration between Ho3+ and Yb3+ ions. The intensity of green and red emission varies with Yb3+ doping which causes multicolour emissions from nano-phosphor. The intensity of UC red emission (654 nm) obtained from 1 at.% Ho3+ and 3 at.% Yb3+ co-doped nano-phosphor is nine times higher than from 1 at.% Ho3+ doped SrSnO3 nano-phosphor. Enhanced brightness of 654 nm in UC process belongs in biological transparency window so that it might be a promising phosphor in the bio-medical field. Moreover, for the other Yb3+ co-doped nano-phosphor, Commission Internationale de l'Éclairage chromaticity co-ordinates were found near the white region and their CCT values lie in the range 4900-5100 K indicating cool white. Decay time was measured for 545 nm emission of Ho3+ ion found in 7.652 and 8.734 µs at 355 nm excitation. The variation in lifetime was observed in ascending order with increasing Yb3+ concentration which supports PL emission spectra observation that with increasing Yb3+ concentration, rate of transition has changed. These studies reveal that Ho3+ and Yb3+ co-doped phosphor is useful for fabrication of white LEDs.

  11. Evaluating the attractiveness and effectiveness of artificial coral reefs as a recreational ecosystem service.

    PubMed

    Belhassen, Yaniv; Rousseau, Meghan; Tynyakov, Jenny; Shashar, Nadav

    2017-12-01

    Artificial reefs are increasingly being used around the globe to attract recreational divers, for both environmental and commercial reasons. This paper examines artificial coral reefs as recreational ecosystem services (RES) by evaluating their attractiveness and effectiveness and by examining divers' attitudes toward them. An online survey targeted at divers in Israel (n = 263) indicated that 35% of the dives in Eilat (a resort city on the shore of the Red Sea) take place at artificial reefs. A second study monitored divers' behavior around the Tamar artificial reef, one of the most popular submerged artificial reefs in Eilat, and juxtaposed it with divers' activities around two adjacent natural reefs. Findings show that the average diver density at the artificial reef was higher than at the two nearby natural knolls and that the artificial reef effectively diverts divers from natural knolls. A third study that examined the attitudes towards natural vs. artificial reefs found that the artificial reefs are considered more appropriate for training, but that divers feel less relaxed around them. By utilizing the RES approach as a framework, the study offers a comprehensive methodology that brings together the aesthetic, behavioral, and attitudinal aspects in terms of which artificial reefs can be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize].

    PubMed

    Wang, Wei-Zhong; Wang, Fa-Yuan; Li, Shuai; Liu, Xue-Qin

    2014-08-01

    Engineered nanoparticles (ENPs) can be taken up and accumulated in plants, then enter human bodies via food chain, and thus cause potential health risk. Arbuscular mycorrhizal fungi form mutualistic symbioses with the majority of higher plants in terrestrial ecosystems, and potentially influence the biological effects of ENPs. The present greenhouse pot culture experiment studied the effects of inoculation with or without arbuscular mycorrhizal fungus Acaulospora mellea on growth and nutritional status of maize under different nano-ZnO levels (0, 500, 1 000, 2000 and 3 000 mg x kg(-1)) artificially added into soil. Results showed that with the increasing nano-ZnO levels in soil, mycorrhizal colonization rate and biomass of maize plants showed a decreasing trend, total root length, total surface area and total volume reduced, while Zn concentration and uptake in plants gradually increased, and P, N, K, Fe, and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  13. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    NASA Astrophysics Data System (ADS)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  14. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite

    NASA Astrophysics Data System (ADS)

    Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo

    2018-03-01

    A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.

  15. [The establishment of a novel method of nano-immunomagnetic separation and Real-time PCR for detecting Vibrio cholerae from seafood].

    PubMed

    Cheng, Jinxia; Zeng, Jing; Liu, Li; Wei, Haiyan; Zhao, Xiaojuan; Zhang, Ximeng; Zhang, Lei; Zhang, Haiyu

    2014-02-01

    A novel method of Nano-Immunomagnetic Separation (Nano-IMS) plus Real-time PCR was established for detecting Vibrio cholerae. The Nano-Immunomagnetic Beads were created by using the monoclonal antibody of Vibrio cholerae, which was named Nano-IMB-Vc. Nano-IMB-Vc has specific adsorption of Vibrio cholerae, combined with Real-time PCR technology, a method for rapid detection of Vibrio cholerae was established. The capture specificity of Nano-IMB-Vc was tested by using 15 bacteria strains. The specificity of Real-time PCR method was tested by using 102 targets and 101 non-targets bacteria strains. The sensitivity of Nano-IMS plus Real-time PCR were tested in pure culture and in artificial samples and compared with NMKL No.156. The capture ratio of Nano-IMB-Vc was reached 70.2% at the level of 10(3) CFU/ml. In pure culture, the sensitivity of Nano-IMS plus Real-time PCR was reached at 5.4×10(2) CFU/ml. The specific of Real-time PCR method was tested by using 102 targets and 101 non-targets bacteria. The results showed that 102 strains of Vibrio cholerae test results were all positive, and the rest of the 101 strains of non-target bacteria test results were negative. No cross-reaction was founded. Add 1 CFU vibrio cholerae per 25 g sample, it could be detect with Nano-IMS plus Real-time PCR method after 8 hours enrichment. The Nano-IMS plus Real-time PCR method of Vibrio cholerae established in this study has good specificity and sensitivity, which could be applied to the rapid detection of Vibrio cholerae.

  16. Establishment of northern red oak genetic tests with nursery-graded seedlings

    Treesearch

    S. A. Lay; M. A. Remaley; S. E. Schlarbaum; P. P. Kormanik; T. Tibbs; R. A. Cox; T. LaFarge; A. M. Saxton

    1997-01-01

    Artificial regeneration of northern red oak (Quercus rubra L.) has had variable success over time. Current nursery practices generally involve the growth of seedlings to a standardized height and form with little regard to seed source, seedling quality, or subsequent field performance. Additionally, there is not an accepted culling criteria for...

  17. Effect of different pH solvents on micro-hardness and surface topography of dental nano-composite: An in vitro analysis

    PubMed Central

    Khan, Aftab Ahmed; Siddiqui, Adel Zia; Al-Kheraif, Abdulaziz A; Zahid, Ambreen; Divakar, Darshan Devang

    2015-01-01

    Objective: Erosion of tooth surface is attributed to recent shift in diet pattern and frequent use of beverages. The aim of this research was to evaluate the effects of different beverages on surface topography and hardness of nano-filled composite material. Methods: Sixty flat disc shaped resin composite samples were fabricated and placed in distilled water for 24 hours. After 24 hours test samples were dried and divided into 4 groups. Group A (n=15) specimens were placed in tight amber bottle comprising 25 ml of artificial saliva. Similarly Group B, C and D were stored in equal amounts of orange juice, milk and coca cola drink respectively. Samples were checked for hardness and surface changes were evaluated with scanning electron microscopy. Results: There were strong significant difference observed in samples immersed in orange juice and artificial saliva. A strong significant difference was seen between Group D and Group A. Group A and Group C showed no significant difference. The micro-hardness test showed reduced values among all samples. Conclusion: Beverages consumed daily have a negative influence on hardness and surface degradation of nano-filled dental composite. Comparatively, nano-filled composites possess higher surface area to volume ratio of their fillers particle size may lead to higher surface roughness than other resin based dental biomaterials. PMID:26430417

  18. Fabrication of Artificial Leaf to Develop Fluid Pump Driven by Surface Tension and Evaporation

    NASA Astrophysics Data System (ADS)

    Lee, Minki; Lim, Hosub; Lee, Jinkee

    2017-11-01

    Plants transport water from roots to leaves via xylem through transpiration, which is an evaporation process that occurs at the leaves. During transpiration, negative pressure can be generated by the porous structure of mesophyll cells in the leaves. Here, an artificial leaf mimicking structure using hydrogel, which has a nanoporous structure is fabricated. The cryogel method is used to develop a hierarchy structure on the nano- and microscale in the hydrogel media that is similar to the mesophyll cells and veins of a leaf, respectively. The theoretical model is analyzed to calculate the flow resistance in the artificial leaf, and compare the model with the experimental results. The experiment involves connecting a glass capillary tube at the bottom of the artificial leaf to observe the fluid velocity in the glass capillary tube generated by the negative pressure. The use of silicone oil as fluid instead of water to increase the flow resistance enables the measurement of negative pressure. The negative pressure of the artificial leaf is affected by several variables (e.g., pore size, wettability of the structure). Finally, by decreasing the pore size and increasing the wettability, the maximum negative pressure of the artificial leaf, -7.9 kPa is obtained.

  19. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications

    PubMed Central

    Xia, Yan; Zhou, Panyu; Cheng, Xiaosong; Xie, Yang; Liang, Chong; Li, Chao; Xu, Shuogui

    2013-01-01

    The regeneration of functional tissue in osseous defects is a formidable challenge in orthopedic surgery. In the present study, a novel biomimetic composite scaffold, here called nano-hydroxyapatite (HA)/poly-ε-caprolactone (PCL) was fabricated using a selective laser sintering technique. The macrostructure, morphology, and mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the nano-HA/PCL scaffolds exhibited predesigned, well-ordered macropores and interconnected micropores. The scaffolds have a range of porosity from 78.54% to 70.31%, and a corresponding compressive strength of 1.38 MPa to 3.17 MPa. Human bone marrow stromal cells were seeded onto the nano-HA/PCL or PCL scaffolds and cultured for 28 days in vitro. As indicated by the level of cell attachment and proliferation, the nano-HA/PCL showed excellent biocompatibility, comparable to that of PCL scaffolds. The hydrophilicity, mineralization, alkaline phosphatase activity, and Alizarin Red S staining indicated that the nano-HA/PCL scaffolds are more bioactive than the PCL scaffolds in vitro. Measurements of recombinant human bone morphogenetic protein-2 (rhBMP-2) release kinetics showed that after nano-HA was added, the material increased the rate of rhBMP-2 release. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both nano-HA/PCL scaffolds and PCL scaffolds were implanted in rabbit femur defects for 3, 6, and 9 weeks. The wounds were studied radiographically and histologically. The in vivo results showed that both nano-HA/PCL composite scaffolds and PCL scaffolds exhibited good biocompatibility. However, the nano-HA/PCL scaffolds enhanced the efficiency of new bone formation more than PCL scaffolds and fulfilled all the basic requirements of bone tissue engineering scaffolds. Thus, they show large potential for use in orthopedic and reconstructive surgery. PMID:24204147

  20. Rheologic and hemodynamic characteristics of red cells of mouse, rat and human.

    PubMed

    Chen, D; Kaul, D K

    1994-01-01

    The present study compares hematologic, rheologic and hemodynamic characteristics of red cells from mouse, rat and human. Red cells in these species are biconcave discs that show significant differences in diameter and mean corpuscular volume (MCV). However, differences in mean corpuscular hemoglobin concentration (MCHC) are not significant. Viscosity measurement of washed red cell suspensions (in each case the medium osmolarity adjusted to match plasma osmolarity) showed significant interspecies differences at shear rates of 37.5 and 750 sec-1 as follows: Human > rat > mouse. Hemodynamic and microcirculatory behavior of these red cells was investigated in the artificially perfused ex vivo mesocecum vasculature of the rat. Hemodynamic measurements in the whole ex vivo mesocecum preparation revealed maximal increase in the peripheral resistance unit (PRU) for the human red cells followed by the rat and mouse red cells, respectively at a hematocrit (Hct) of 40%. Further, measurements of red cell velocities (Vrbc) in single arterioles of the mesocecum vasculature, during sustained perfusion with washed red cell suspensions, showed that at any given perfusion pressure (Pa), Vrbc for both mouse and rat red cells was higher than that for human red cells, while Vrbc for mouse red cells was higher than that for the rat. These results demonstrate that the microvascular flow behavior of these red cells is likely to be influenced by both physical and rheologic characteristics.

  1. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  2. Mass production of polymer nano-wires filled with metal nano-particles.

    PubMed

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  3. PEGylated Self-Assembled Nano-Bacitracin A: Probing the Antibacterial Mechanism and Real-Time Tracing of Target Delivery in Vivo.

    PubMed

    Hong, Wei; Zhao, Yining; Guo, Yuru; Huang, Chengcheng; Qiu, Peng; Zhu, Jia; Chu, Chun; Shi, Hong; Liu, Mingchun

    2018-04-04

    Although nano-self-assemblies of hydrophobic-modified bacitracin A with poly(d,l-lactic- co-glycolic acid) (PLGA) (nano-BA PLGA ) have demonstrated promising antibacterial activities, the application of nano-BA PLGA was severely compromised by low water solubility. In this study, a series of PEGylated PLGA copolymers were selected to conjugate with the N-terminus of bacitracin A to construct PEGylated self-assembled nano-BAs and to further develop nano-self-assemblies of bacitracin A with strong antibacterial potency and high solubility. Compared with nano-BA PLGA , all PEGylated nano-BAs, except nano-BA 5k , exhibited strong antibacterial efficiency against both Gram-positive and Gram-negative bacteria by inducing loss of cytoplasmic membrane potential, membrane permeabilization, and leakage of calcein from artificial cell membranes. Studies elucidating the underlying mechanism of PEGylated nano-BAs against Gram-negative bacteria indicated that the strong hydrophobic and van der Waals interactions between PLGA and lipopolysaccharide (LPS) could bind, neutralize, and disassociate LPS, facilitating cellular uptake of the nanoparticles, which could destabilize the membrane, resulting in cell death. Moreover, PEGylated nano-BAs (nano-BA 12k ) with a longer PLGA block were expected to occupy a higher local density of BA mass on the surface and result in stronger hydrophobic and van der Waals interactions with LPS, which were responsible for the enhanced antibacterial activity against Gram-positive and emerging antibacterial activity against Gram-negative bacteria, respectively. In vivo imaging verified that PEGylated nano-BAs exhibited higher inflammatory tissue distribution and longer circulation time than nano-BA PLGA . Therefore, although PEGylation did not affect antibacterial activity, it is necessary for target delivery and resistance to clearance of the observed PEGylated nano-BAs. In vivo, nano-BA 12k also showed the highest therapeutic index against infection

  4. Characterization of Nano Bamboo Charcoal Drug Delivery System for Eucommia ulmoides Extract and Its Anticancer Effect In vitro.

    PubMed

    Zeng, Zhaoyan; Li, Xiangzhou; Zhang, Sheng; Huang, Dan

    2017-01-01

    charcoal under ultrosonic condition was 462. 96 mg/gThe cumulative release rate of E. ulmoides extract from the nano bamboo charcoal delivery system in artificial intestinal juice was 70.67%The inhibition ratio of HCT116 cancer cells by sustained release liquid was 23.07%. Abbreviation used: EUE: Eucommia ulmoides extract.

  5. Plasmonic graded nano-disks as nano-optical conveyor belt.

    PubMed

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

  6. Ectomycorrhizal Colonization of Container-Grown Northern Red Oak as Affected by Fertility

    Treesearch

    John L. Ruehle

    1980-01-01

    Abstract - The effects of different fertility regimes on Pisolithus tinctorius ectomycorrhizal development on northern red oak grown in containers was tested in the greenhouse. Artificial infestation of a milled pine bark-sewage sludge growing medium produced the best ectomycorrhizal development (63 percent) when a nutrient solution with 100pg/ml N...

  7. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    NASA Astrophysics Data System (ADS)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  8. Environmental impacts of tourism in the Gulf and the Red Sea.

    PubMed

    Gladstone, William; Curley, Belinda; Shokri, Mohammad Reza

    2013-07-30

    The Gulf and Red Sea possess diverse coastal and marine environments that support rapidly expanding mass tourism. Despite the associated environmental risks, there is no analysis of the tourism-related literature or recent analysis of impacts. Environmental issues reported in 101 publications (25 from the Gulf, 76 from the Red Sea) include 61 purported impacts (27 from the Gulf, 45 from the Red Sea). Gulf literature includes quantitative studies (68% publications) and reviews (32%), and addresses mostly land reclamation and artificial habitats. Most Gulf studies come from Iran and UAE (64%). Red Sea literature includes quantitative studies (81%) and reviews (11%), with most studies occurring in Egypt (70%). The most published topics relate to coral breakage and its management. A full account of tourism's environmental impacts is constrained by limited tourism data, confounding of impacts with other coastal developments, lack of baseline information, shifting baselines, and fragmentation of research across disciplines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network

    PubMed Central

    Sosa, Jose M.; Nielsen, Nathan D.; Vignes, Seth M.; Chen, Tanya G.; Shevkoplyas, Sergey S.

    2013-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0% – 0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks

  10. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.

    PubMed

    Sosa, Jose M; Nielsen, Nathan D; Vignes, Seth M; Chen, Tanya G; Shevkoplyas, Sergey S

    2014-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0-0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further

  11. Initial and long-term use of inserts by red-cockaded woodpeckers

    Treesearch

    Daniel Saenz; Richard N. Conner; Christopher S. Collins; D. Craig Rudolph

    2001-01-01

    Artificial cavities have become a standard management technique for red-cockaded woodpeckers (Picoides borealis). Seventy cavity inserts were installed in our study sites on the Angelina National Forest in eastern Texas from 1990 to 1995. Eighty-two percent of the inserts were used for at least one year. It is still too early to make a direct...

  12. Effectiveness of flying squirrel excluder devices on red-cockaded woodpecker cavities

    Treesearch

    Susan C. Loeb

    1996-01-01

    The author tested the effectiveness of squirrel excluder devices (SQED?s) in deterring southern flying squirrels (Glaucomys volans) from using artificial red-cockaded woodpecker (Picoides borealis) cavities by placing them on approximately one-half of the cavities in 14 inactive recruitment clusters on the Savannah River Site, SC. SQED?s consisted of 2 pieces of 35.5-...

  13. Cryopreservation of Indian red jungle fowl (Gallus gallus murghi) semen.

    PubMed

    Rakha, B A; Ansari, M S; Akhter, S; Hussain, I; Blesbois, E

    2016-11-01

    The population of red jungle fowl is declining and needs special attention for its conservation with suitable approaches. For ex situ in vitro conservation of Indian red jungle fowl, establishment of semen cryobank is an appropriate option, for which an extender with adequate retrieval capacity for functional spermatozoa is required. Therefore, studies were designed to evaluate a wide range of extenders for cryopreservation of Indian red jungle fowl (Gallus gallus murghi) sperm to achieve maximal post-thawed semen quality and fertility. For this purpose, semen from eight mature cocks were collected, initially evaluated (percent sperm motility, volume and concentration), pooled, assessed for motility, plasma membrane integrity, viability and acrosome integrity, and divided into six aliquots for dilution (1:5; 37°C) in Beltsville poultry, red fowl extender, Lake, EK, Tselutin poultry and chicken semen extenders. Diluted semen was cooled from 37°C to 4°C @ -0.275°C/min. Glycerol (20%) was added to chilled semen, equilibrated for 10min, filled in 0.5mL French straws, kept over LN 2 vapours for 10min and plunged into LN 2 and stored at -196°C. Percentages of motility, plasma membrane integrity, viability and acrosome integrity were higher (P<0.05) in red fowl extender at 0, 2 and 4h of incubation post-thaw. After cryopreservation and post-thawing at 37°C the highest (P<0.05) recovery rates and absolute livability index was also recorded in red fowl extender that was thus used for further artificial insemination of cooled-diluted (Liquid) and cryopreserved sperm. The no. of fertilized eggs (Liquid, 20.6±0.4; Cryopreserved, 12.6±0.5), percent fertility (86.7±2.2; 57.2±3.9), no. of hatched chicks (18.2±0.8; 10.0±0.3), percent hatch (76.5±2.7; 45.3±2.2) and hatchability of fertilized eggs (88.3±3.4; 79.6±3.4) were higher with sperm respectively freshly cooled-diluted or cryopreserved in red fowl extender. However, the rates obtained with frozen-thawed sperm

  14. Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations.

    PubMed

    Baumgartner, Ramona; Eitzlmayr, Andreas; Matsko, Nadejda; Tetyczka, Carolin; Khinast, Johannes; Roblegg, Eva

    2014-12-30

    Since more than 40% of today's drugs have low stability, poor solubility and/or limited ability to cross certain biological barriers, new platform technologies are required to address these challenges. This paper describes a novel continuous process that converts a stabilized aqueous nano-suspension into a solid oral formulation in a single step (i.e., the NANEX process) in order to improve the solubility of a model drug (phenytoin). Phenytoin nano-suspensions were prepared via media milling using different stabilizers. A stable nano-suspension was obtained using Tween(®) 80 as a stabilizer. The matrix material (Soluplus(®)) was gravimetrically fed into the hot melt extruder. The suspension was introduced through a side feeding device and mixed with the molten polymer to immediately devolatilize the water in the nano-suspension. Phenytoin nano-crystals were dispersed and embedded in the molten polymer. Investigation of the nano-extrudates via transmission electron microscopy and atomic force microscopy showed that the nano-crystals were embedded de-aggregated in the extrudates. Furthermore, no changes in the crystallinity (due to the mechanical and thermal stress) occurred. The dissolution studies confirmed that the prepared nano-extrudates increased the solubility of nano-crystalline phenytoin, regardless of the polymer. Our work demonstrates that NANEX represents a promising new platform technology in the design of novel drug delivery systems to improve drug performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Artificially Structured Semiconductors to Model Novel Quantum Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinczuk, Aron; Wind, Shalom J.

    . These small periods are about three times smaller than previously reported in GaAs quantum wells. This milestone establishes a new state-of-the-art in fields of research and nanofabrication. In experiments using optical scattering methods we uncovered evidence that free electrons in the small period AG lattices display novel features that arise from the symmetry of the honeycomb lattice. These achievements create semiconductor platforms for explorations of novel states and effects that offer opportunities to create quasiparticles with tunable character. The quest for the discovery of novel quantum physics by nanofabrication of ‘artificial structures’ in semiconductor quantum structures overlaps with the development of quantum simulators. Nanopatterns were created at Columbia University by the group of co-PI Shalom Wind using a 100keV e-beam nanolithography instrument (along with associated processing) that is part of the Columbia Nano Initiative. Optical experiments were carried out in the group of PI Aron Pinczuk. GaAs/AlGaAs quantum wells(QWs) of world-class perfection that serve as electron hosts are the starting material grown by molecular beam epitaxy (MBE) by our partners Dr. Loren Pfeiffer (Princeton Univ.) and Prof. Michael Manfra (Purdue Univ.). The inductively coupled plasma reactive ion etching (ICP-RIE) was carried out at the PRISM Micro/Nano Fabrication Laboratory of Princeton University. Dr. Vittorio Pellegrini (Istituto Italiano di Tecnologia, Genoa, Italy) has contributed critical insight on this research. Two graduate students in this project Sheng Wang and Diego Scarabelli, graduated in the summer/fall of 2016. Dr. Yuliya Kuznetsova has been a postdoc in the group. The current work is led by Dr. Lingjie Du, a postdoctoral scientist that joined the group of the PI on October 15th, 2016. Since the start of this project we have focused primarily on developing protocols towards the fabrication of the artificial lattices and in the implementation of

  16. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    PubMed

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  17. Does ozone enhance the remineralizing potential of nanohydroxyapatite on artificially demineralized enamel? A laser induced fluorescence study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Samuelraj; Prabhu, Vijendra; Chandra, Subhash; Koshy, Shalini; Acharya, Shashidhar; Mahato, Krishna K.

    2014-02-01

    The present era of minimal invasive dentistry emphasizes the early detection and remineralization of initial enamel caries. Ozone has been shown to reverse the initial demineralization before the integrity of the enamel surface is lost. Nano-hydroxyapatite is a proven remineralizing agent for early enamel caries. In the present study, the effect of ozone in enhancing the remineralizing potential of nano-hydroxyapatite on artificially demineralized enamel was investigated using laser induced fluorescence. Thirty five sound human premolars were collected from healthy subjects undergoing orthodontic treatment. Fluorescence was recorded by exciting the mesial surfaces using 325 nm He-Cd laser with 2 mW power. Tooth specimens were subjected to demineralization to create initial enamel caries. Following which the specimens were divided into three groups, i.e ozone (ozonated water for 2 min), without ozone and artificial saliva. Remineralization regimen was followed for 3 weeks. The fluorescence spectra of the specimens were recorded from all the three experimental groups at baseline, after demineralization and remineralization. The average spectrum for each experimental group was used for statistical analysis. Fluorescence intensities of Ozone treated specimens following remineralization were higher than that of artificial saliva, and this difference was found to be statistically significant (P<0.0001). In a nutshell, ozone enhanced the remineralizing potential of nanohydroxyapatite, and laser induced fluorescence was found to be effective in assessing the surface mineral changes in enamel. Ozone can be considered an effective agent in reversing the initial enamel caries there by preventing the tooth from entering into the repetitive restorative cycle.

  18. Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells.

    PubMed

    Gong, Weiyu; Huang, Zhiwei; Dong, Yanmei; Gan, Yehua; Li, Shenglin; Gao, Xuejun; Chen, Xiaofeng

    2014-01-01

    This study aimed to investigate the effects of a novel nano-sized 58S bioactive glass (nano-58S BG) on the odontogenic differentiation and mineralization of human dental pulp cells (hDPCs) in vitro. Extractions were prepared by incubating nano-58S BG, 45S5 BG, or 58S BG particulates in Dulbecco modified Eagle medium at 1% w/v for 24 hours and were filtrated through 0.22-μm filters. The supernatants were used as BG extractions. The hDPCs were cultured in nano-58S BG, 45S5 BG, and 58S BG extractions. The proliferation of hDPCs was evaluated using the methylthiazol tetrazolium assay. Odontogenic differentiation was evaluated based on the real-time polymerase chain reaction of differentiation- and mineralization-related genes, namely, alkaline phosphatase (ALP), collagen type I, dentin sialophosphoprotein (DSPP), and dentin matrix protein 1. The gene expressions were verified using ALP activity assessment, immunocytochemistry staining of osteocalcin and DSPP, and mineralization assay using alizarin red S stain. All BG extractions up-regulated the expression of odontogenic genes, and the most significant enhancement was in the nano-58S BG group. All BG extractions, especially nano-58S, increased ALP activity, osteocalcin and DSPP protein production, and mineralized nodules formation. Compared with regular BG, the novel nano-58S BG can induce the differentiation and mineralization of hDPCs more efficiently and might be a better potential candidate for dentin-pulp complex regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Shade improves survival rate of outplanted 2-0 red fir seedlings

    Treesearch

    Donald T. Gordon

    1970-01-01

    Effect of shade on 2-0 red fir seedlings outplanted on the Tahoe National Forest, central California, was studied by comparing five treatments: no shade, low shade for 1 year and for 2 years, and high shade for 1 year and for 2 years. Seedlings benefited from shading-even under apparently excellent survival conditions in the first season. The extra cost of artificial...

  20. Nanoengineering approaches to the design of artificial antigen-presenting cells

    PubMed Central

    Sunshine, Joel C; Green, Jordan J

    2014-01-01

    Artificial antigen-presenting cells (aAPCs) have shown great initial promise for ex vivo activation of cytotoxic T cells. The development of aAPCs has focused mainly on the choice of proteins to use for surface presentation to T cells when conjugated to various spherical, microscale particles. We review here biomimetic nanoengineering approaches that have been applied to the development of aAPCs that move beyond initial concepts about aAPC development. This article also discusses key technologies that may be enabling for the development of nano- and micro-scale aAPCs with nanoscale features, and suggests several future directions for the field. PMID:23837856

  1. Estimates of dietary exposure of children to artificial food colours in Kuwait.

    PubMed

    Husain, A; Sawaya, W; Al-Omair, A; Al-Zenki, S; Al-Amiri, H; Ahmed, N; Al-Sinan, M

    2006-03-01

    To assess the intake of artificial food colour additives by 5-14-year-old children in the State of Kuwait, a 24-h dietary recall was conducted twice on 3141 male and female Kuwaiti and non-Kuwaiti children from 58 schools. The determination of colour additives in 344 foods items consumed was performed using high-performance liquid chromatography with diode array detector. A comparison with the Food and Agriculture Organization and World Health Organization acceptable daily intakes (ADIs) was undertaken to evaluate the potential risk associated with the consumption of artificial colour additives by children in Kuwait. The results indicated that out of nine permitted colours, four exceeded their ADIs by factors of 2-8: tartrazine, sunset yellow, carmoisine and allura red. Further, follow-up studies to provide insight into potential adverse health effects associated with the high intakes of these artificial colour additives on the test population are warranted.

  2. Artificial selection for food colour preferences

    PubMed Central

    Cole, Gemma L.; Endler, John A.

    2015-01-01

    Colour is an important factor in food detection and acquisition by animals using visually based foraging. Colour can be used to identify the suitability of a food source or improve the efficiency of food detection, and can even be linked to mate choice. Food colour preferences are known to exist, but whether these preferences are heritable and how these preferences evolve is unknown. Using the freshwater fish Poecilia reticulata, we artificially selected for chase behaviour towards two different-coloured moving stimuli: red and blue spots. A response to selection was only seen for chase behaviours towards the red, with realized heritabilities ranging from 0.25 to 0.30. Despite intense selection, no significant chase response was recorded for the blue-selected lines. This lack of response may be due to the motion-detection mechanism in the guppy visual system and may have novel implications for the evolvability of responses to colour-related signals. The behavioural response to several colours after five generations of selection suggests that the colour opponency system of the fish may regulate the response to selection. PMID:25740894

  3. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?

    PubMed

    Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen

    2010-02-01

    The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P < 0.05) and group 3 (nano-ionomer, mean: 6.14 +/- 2.12 MPa; P < 0.001). No significant differences in debond locations were found among the three groups. Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.

  4. Habitat relationships of eastern red-backed salamanders (Plethodon cinereus) in Appalachian agroforestry and grazing systems

    Treesearch

    Breanna L. Riedel; Kevin R. Russell; W. Mark Ford; Katherine P. O' Neill; Harry W. Godwin

    2008-01-01

    Woodland salamander responses to either traditional grazing or silvopasture systems are virtually unknown. An information-theoretic modelling approach was used to evaluate responses of red-backed salamanders (Plethodon cinereus) to silvopasture and meadow conversions in southern West Virginia. Searches of area-constrained plots and artificial...

  5. Magnetic Nano-Materials: Truly Sustainable Green Chemistry Nano Catalysis

    EPA Science Inventory

    We envisioned a novel nano-catalyst system, which can bridge the homogenous and heterogeneous system, and simultaneously be cheaper, easily accessible (sustainable) and possibly does not require elaborate work-up. Because of its nano-size, i.e. high surface area, the contact betw...

  6. Investigation of Surface Enhanced Coherent Raman Scattering on Nano-patterned Insect Wings

    NASA Astrophysics Data System (ADS)

    Ujj, Laszlo; Lawhead, Carlos

    2015-03-01

    Many insect wings (cicadas, butterflies, mosquitos) poses nano-patterned surface structure. Characterization of surface morphology and chemical composition of insect wings is important to understand the extreme mechanical properties and the biophysical functionalities of the wings. We have measured the image of the membrane of a cicada's wing with the help of Scanning Electron Microscopy (SEM). The results confirm the existing periodic structure of the wing measured previously. In order to identify the chemical composition of the wing, we have deposited silver nanoparticles on it and applied Coherent anti-Stokes Raman Spectroscopy to measure the vibrational spectra of the molecules comprising the wing for the first time. The measured spectra are consistent with the original assumption that the wing membrane is composed of protein, wax, and chitin. The results of these studies can be used to measure other nano-patterned surfaces and to make artificial materials in the future. Authors grateful for financial support from the Department of Physics of the College of Sciences Engineering and Health of UWF and the Pall Corporation for SEM imaging.

  7. Trichinella britovi in a red fox (Vulpes vulpes) from Portugal.

    PubMed

    Lopes, Ana Patrícia; Vila-Viçosa, Maria João; Coutinho, Teresa; Cardoso, Luís; Gottstein, Bruno; Müller, Norbert; Cortes, Helder C E

    2015-06-15

    Trichinellosis is one of the most important foodborne parasitic zoonoses, caused by nematodes of the genus Trichinella. Pigs and other domestic and wild animals, including red foxes (Vulpes vulpes), are sources of Trichinella infection for human beings. Trichinella britovi is the major agent of infection in sylvatic animals and the most important species circulating in the European wildlife. The present study aimed at assessing Trichinella spp. infection in red foxes from the North of Portugal. Forty-seven carcasses of wild red foxes shot during the official hunting season or killed in road accidents were obtained between November 2008 and March 2010. In order to identify the presence of Trichinella spp. larvae in red foxes, an individual artificial digestion was performed using approximately 30 g of muscle samples. Larvae of Trichinella spp. were detected in one (2.1%) out of the 47 assessed foxes. After a multiplex polymerase chain reaction analysis, T. britovi was molecularly identified as the infecting species. The recognition of T. britovi in a red fox confirms that a sylvatic cycle is present in the North of Portugal and that the local prevalence of Trichinella infection in wildlife must not be ignored due to its underlying zoonotic risks. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Attempt at concentrating red oak borer eggs by providing artificial oviposition sites

    Treesearch

    Jimmy R. Galford

    1977-01-01

    Thirty-eight scarlet and 14 black oaks were spirally wrapped to a height of about 2 m with black or white cotton tape 2.5 cm wide in an attempt to increase oviposition of the red oak borer, Enaphalodes rufulus (Haldeman), on selected trap trees. However only 57 eggs were laid under tape on 17 of the trees, all scarlet oaks. Attacks but no eggs were...

  9. Study on Locally Confined Deposition of Si Nanocrystals in High-Aspect-Ratio Si Nano-Pillar Arrays for Nano-Electronic and Nano-Photonic Applications II

    DTIC Science & Technology

    2010-12-03

    photoluminescence characteristics of equivalent-size controlled silicon quantum dots by employing a nano-porous aluminum oxide membrane as the template for growing...synthesis of Si quantum dots (Si-QDs) embedded in low-temperature (500oC) annealed Si-rich SiOx nano-rod deposited in nano-porous anodic aluminum oxide ...characteristics of the equivalent-size controlled Si-QDs by employing the nano-porous AAO membrane as the template for growing Si-rich SiOx nano-rods

  10. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production

    Treesearch

    Richard N. Conner; Daniel Saenz; D. Craig Rudolph; William G. Ross; David L. Kulhavy

    1998-01-01

    The authors evaluated selection of nest sites by male red-cockaded woodpeckers (Picoides borealis) in Texas relative to the age of the cavity when only cavities excavated by the woodpeckers were available and when both naturally excavated cavities and artificial cavities were available. They also evaluated nest-cavity selection relative to the ability of naturally...

  11. Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2015-02-01

    "Back to Nature" is a promising way to solve the problems that we face today, such as air pollution and shortage of energy supply based on conventional fossil fuels. A Mn cluster inside photosystem II catalyzes light-induced water-splitting leading to the generation of protons, electrons and oxygen in photosynthetic organisms, and has been considered as a good model for the synthesis of new artificial water-oxidizing catalysts. Herein, we surveyed the structural and functional details of this cluster and its surrounding environment. Then, we review the mechanistic findings concerning the cluster and compare this biological catalyst with nano-sized Mn oxides, which are among the best artificial Mn-based water-oxidizing catalysts. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. To be nano or not to be nano?

    NASA Astrophysics Data System (ADS)

    Joachim, Christian

    2005-02-01

    Nanomaterials, nanostructures, nanostructured materials, nanoimprint, nanobiotechnology, nanophysics, nanochemistry, radical nanotechnology, nanosciences, nanooptics, nanoelectronics, nanorobotics, nanosoldiers, nanomedecine, nanoeconomy, nanobusiness, nanolawyer, nanoethics to name a few of the nanos. We need a clear definition of all these burgeoning fields for the sake of the grant attribution, for the sake of research program definition, and to avoid everyone being lost in so many nanos.

  13. Computational nano-material design of exotic luminescent materials based upon europium doped gallium nitrides

    NASA Astrophysics Data System (ADS)

    Masago, Akira; Fukushima, Tetsuya; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2015-03-01

    Eu-doped GaN has attracted much attention, because the red light luminescence ability provides us with expectations to realize monolithic full-color LEDs, which work on seamless conditions such as substrates, electrodes, and operating bias voltages. Toward implementation of multifunctional activity into the luminescent materials using the spinodal nano-structures, we investigate atomic configurations and magnetic structures of the GaN crystal codoped with Eu, Mg, Si, O, and/or the vacancies using the density functional method (DFT) calculations. Our calculations show that the impurity clusterized distributions are energetically favorable more than the homogeneous distribution. Moreover, analyses of the formation energy and binding energy suggest that the clusterized distributions are spontaneously formed by the nano-spinodal decomposition. Though the host matrix has no magnetic moments, the cluster has finite magnetic moments, where Zener's p-f exchange interaction works between the Eu f-state and the nearby N p-states.

  14. A new technique to detect antibody-antigen reaction (biological interactions) on a localized surface plasmon resonance (LSPR) based nano ripple gold chip

    NASA Astrophysics Data System (ADS)

    Saleem, Iram; Widger, William; Chu, Wei-Kan

    2017-07-01

    We demonstrate that the gold nano-ripple localized surface plasmon resonance (LSPR) chip is a low cost and a label-free method for detecting the presence of an antigen. A uniform stable layer of an antibody was coated on the surface of a nano-ripple gold pattern chip followed by the addition of different concentrations of the antigen. A red shift was observed in the LSPR spectral peak caused by the change in the local refractive index in the vicinity of the nanostructure. The LSPR chip was fabricated using oblique gas cluster ion beam (GCIB) irradiation. The plasmon-resonance intensity of the scattered light was measured by a simple optical spectroscope. The gold nano ripple chip shows monolayer scale sensitivity and high selectivity. The LSPR substrate was used to detect antibody-antigen reaction of rabbit X-DENTT antibody and DENTT blocking peptide (antigen).

  15. Antimicrobial properties of nest volatiles in red imported fire ants, Solenopsis invicta (hymenoptera: formicidae)

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Elliott, Brad; Jin, Xixuan; Zeng, Ling; Chen, Jian

    2015-12-01

    The antimicrobial property of volatiles produced by red imported fire ants, Solenopsis invicta, against Beauveria bassiana, a common entomopathogenic fungus, was demonstrated. The germination rate of B. bassiana spores was significantly reduced after they were exposed to volatiles within an artificial ant nest. Since the air that contained the same level of O2 and CO2 as that in artificial fire ant nests did not suppress the germination rate of B. bassiana, the observed reduction of germination rate must be caused by the toxicity of nest volatiles. Nest fumigation may be an important component of the social immune system in S. invicta.

  16. Antimicrobial properties of nest volatiles in red imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae).

    PubMed

    Wang, Lei; Elliott, Brad; Jin, Xixuan; Zeng, Ling; Chen, Jian

    2015-12-01

    The antimicrobial property of volatiles produced by red imported fire ants, Solenopsis invicta, against Beauveria bassiana, a common entomopathogenic fungus, was demonstrated. The germination rate of B. bassiana spores was significantly reduced after they were exposed to volatiles within an artificial ant nest. Since the air that contained the same level of O2 and CO2 as that in artificial fire ant nests did not suppress the germination rate of B. bassiana, the observed reduction of germination rate must be caused by the toxicity of nest volatiles. Nest fumigation may be an important component of the social immune system in S. invicta.

  17. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    NASA Astrophysics Data System (ADS)

    Khodabandeh, M.; Koohi, M. K.; Roshani, A.; Shahroziyan, E.; Badri, B.; Pourfallah, A.; Shams, Gh; Hobbenaghi, R.; Sadeghi-Hashjin, G.

    2011-07-01

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3×10-3 - 24×10-3 ml/cm2 and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6×10-3, 23×10-3, 24×10-3 and 16×10-3 ml/cm2 respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most contact with environment and subsequently

  18. Artificial Stroke Clots: How Wide is the Gap to the Real World?

    PubMed

    Berndt, Maria; Prothmann, Sascha; Maegerlein, Christian; Oberdieck, Paul; Zimmer, Claus; Hegge, Barbara; Pelisek, Jaroslav; Schirmer, Lucas; Poppert, Holger; Boeckh-Behrens, Tobias

    2018-02-01

    Especially since the establishment of mechanical thrombectomy as part of standard stroke therapy, artificial thrombi have become important in the training of interventionalists as well as for the development and testing of devices. So far, these in vitro clots have lacked direct comparisons with ex vivo thrombi. We therefore compared the histologic appearance of dynamically produced clots with that of stroke thrombi acquired during mechanical recanalization. Thrombi of 145 consecutive patients with stroke with large-vessel occlusions were histologically compared with 10 artificial clots, dynamically created from human blood and pig's blood using a Chandler loop system. Quantified FP/RBC ratios (fibrin/platelets divided by red blood cell fraction) and white blood cell (WBC) fractions were identified and compared between artificial (human and pig) and ex vivo thrombi obtained from patients with various stroke causes. There were no significant differences in the analysis of FP/RBC ratios between artificial thrombi and ex vivo thrombi (P = 0.42) or in the more precise analyses considering etiologic subgroups. Distinct differences were observed for the WBC fraction, with lower values in artificial thrombi (median, 1.34%) than in ex vivo thrombi (median, 5%) (P < 0.001). The main clot components, FP and RBC, are presumably the most influential factors for clot stability and mechanical resistance. Similarities between artificially generated and ex vivo stroke clots (and when considering different stroke subgroups) support the usefulness of these artificial thrombi in the pre-evaluation of thrombus extraction devices and as appropriate training material. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    PubMed

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry.

    PubMed

    Chen, Yuanyuan; Li, Donghai; Li, Yongjian; Wan, Jiandi; Li, Jiang; Chen, Haosheng

    2017-11-10

    Margination of stiffened red blood cells has been implicated in many vascular diseases. Here, we report the margination of stiffened RBCs in vivo, and reveal the crucial role of the vessel geometry in the margination by calculations when the blood is seen as viscoelastic fluid. The vessel-geometry-regulated margination is then confirmed by in vitro experiments in microfluidic devices, and it establishes new insights to cell sorting technology and artificial blood vessel fabrication.

  1. Response of outplanted northern red oak seedlings under two silvicultural prescriptions in north Alabama

    Treesearch

    Callie Jo Schweitzer; Emile Gardiner; Stephanie Love; Tom Green

    2005-01-01

    The decision to artificially regenerate oak must be predicated on some basis. After completing an assessment of the potential to regenerate oak naturally, we decided our stands might benefit from supplemental oak plantings. The primary objective of this study was to couple outplanting of northern red oak (Quercus rubra L.) with applied silviculture...

  2. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE PAGES

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    2018-05-09

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  3. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  4. Fabrication and transport property of artificial structure of CNTs using SPM nano-manipulation

    NASA Astrophysics Data System (ADS)

    Maejima, K.; Kida, M.; Yaguchi, Y.; Sudo, K.; Kawamura, T.; Morimoto, T.; Aoki, N.; Ochiai, Y.

    2007-04-01

    We have established a novel manipulation technique using a glass-micro capillary under a high-resolution CCD microscope so far. Two isolated multi-wall carbon nanotubes (MWNTs) are settled to form a well-aligned cross structure. Recently, we have tried to develop a fine manipulation system using a scanning probe microscope with a silicon cantilever. Therefore, thinner high-quality MWNTs (˜10 nm in diameter) can be utilized in this system. At the junction, we have observed weak localization and Fano-like-effect, zero bias anomaly whose traces were visible even at room temperature with thick MWNTs (˜100 nm in diameter). On the other hand, with thinner high-quality MWNTs (˜10 nm in diameter), we have observed also anomalous I-V characteristic and Altshuler-Aronov-Spivak-like magneto-oscillations at low temperature in the nano-space transport.

  5. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    PubMed

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  6. Molecular design of TiO2 for gigantic red shift via sublattice substitution.

    PubMed

    Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun

    2010-11-01

    The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.

  7. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water

    PubMed Central

    Giovannetti, R.; Amato, C. A. D’; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A.

    2015-01-01

    The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Force Microscopy and X-Ray Diffraction analysis were used in order to obtain morphological and structural information of as-prepared TiO2 on support material. Equilibrium and kinetics aspects in the adsorption and successive photodegradation of Alizarin Red S, as reference dye, are described using polypropylene-TiO2 films in the Visible/TiO2/water reactor showing efficient dyes degradation. PMID:26627118

  8. A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System

    PubMed Central

    Li, Fei; Liu, Weiting; Stefanini, Cesare; Fu, Xin; Dario, Paolo

    2010-01-01

    This paper describes the concept and design of a novel artificial hair receptor for the sensing system of micro intelligent robots such as a cricket-like jumping mini robot. The concept is inspired from the natural hair receptor of animals, also called cilium or filiform hair by different research groups, which is usually used as a vibration receptor or a flow detector by insects, mammals and fishes. The suspended fiber model is firstly built and the influence of scaling down is analyzed theoretically. The design of this artificial hair receptor is based on aligned suspended PVDF (polyvinylidene fluoride) fibers, manufactures with a novel method called thermo-direct drawing technique, and aligned suspended submicron diameter fibers are thus successfully fabricated on a flexible Kapton. In the post process step, some key problems such as separated electrodes deposition along with the fiber drawing direction and poling of micro/nano fibers to impart them with good piezoeffective activity have been presented. The preliminary validation experiments show that the artificial hair receptor has a reliable response with good sensibility to external pressure variation and, medium flow as well as its prospects in the application on sensing system of mini/micro bio-robots. PMID:22315581

  9. Is a "hands-off" approach appropriate for red-cockaded woodpecker conservation in twenty-first-century landscapes?

    Treesearch

    Daniel Saenz; Richard N. Conner; D. Craig Rudolph; R. Todd Engstrom

    2001-01-01

    The endangered red-cockaded woodpecker (Picoides borealis) is well adapted to fire-maintained pine ecosystems of the Southeastern United States. Management practices vary greatly among land ownerships. In some wilderness areas and state parks, a "no management" policy has eliminated use of prescribed fire, artificial cavities, and...

  10. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration.

    PubMed

    Bai, Long; Liu, Yanlian; Du, Zhibin; Weng, Zeming; Yao, Wei; Zhang, Xiangyu; Huang, Xiaobo; Yao, Xiaohong; Crawford, Ross; Hang, Ruiqiang; Huang, Di; Tang, Bin; Xiao, Yin

    2018-06-15

    Coating materials applied for intraosseous implants must be optimized to stimulate osseointegration. Osseointegration is a temporal and spatial physiological process that not only requires interactions between osteogenesis and angiogenesis but also necessitates a favorable immune microenvironment. It is now well-documented that hierarchical nano-micro surface structures promote the long-term stability of implants, the interactions between nano-micro structure and the immune response are largely unknown. Here, we report the effects of microporous titanium (Ti) surfaces coated with nano-hydroxyapatite (HA) produced by micro-arc oxidation and steam-hydrothermal treatment (SHT) on multiple cell behavior and osseointegration. By altering the processing time of SHT it was possible to shift HA structures from nano-particles to nano-rods on the microporous Ti surfaces. Ti surfaces coated with HA nano-particles were found to modulate the inflammatory response resulting in an osteoimmune microenvironment more favorable for osteo-/angio-genesis, most likely via the activation of certain key signaling pathways (TGF-β, OPG/RANKL, and VEGF). By contrast, Ti surfaces coated with nano-rod shaped HA particles had a negative impact on osteo-/angio-genesis and osteoimmunomodulation. In vivo results further demonstrated that Ti implant surfaces decorated with HA nano-particles can stimulate new bone formation and osseointegration with enhanced interaction between osteocytes and implant surfaces. This study demonstrated that Ti implants with micro-surfaces coated with nano-particle shaped HA have a positive impact on osseointegration. Osteo-/angio-genesis are of importance during osteointegration of the implants. Recent advances unravel that immune response of macrophages and its manipulated osteoimmunomodulation also exerts a pivotal role to determine the fate of the implant. Surface nano-micro modification has evidenced to be efficient to influence osteogenesis, however, little is

  11. Reflectance confocal microscopy of red blood cells: simulation and experiment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir

    2016-03-01

    The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells' morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells' three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.

  12. Artificial selection for food colour preferences.

    PubMed

    Cole, Gemma L; Endler, John A

    2015-04-07

    Colour is an important factor in food detection and acquisition by animals using visually based foraging. Colour can be used to identify the suitability of a food source or improve the efficiency of food detection, and can even be linked to mate choice. Food colour preferences are known to exist, but whether these preferences are heritable and how these preferences evolve is unknown. Using the freshwater fish Poecilia reticulata, we artificially selected for chase behaviour towards two different-coloured moving stimuli: red and blue spots. A response to selection was only seen for chase behaviours towards the red, with realized heritabilities ranging from 0.25 to 0.30. Despite intense selection, no significant chase response was recorded for the blue-selected lines. This lack of response may be due to the motion-detection mechanism in the guppy visual system and may have novel implications for the evolvability of responses to colour-related signals. The behavioural response to several colours after five generations of selection suggests that the colour opponency system of the fish may regulate the response to selection. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Order of magnitude improvement of nano-contact spin torque nano-oscillator performance.

    PubMed

    Banuazizi, Seyed Amir Hossein; Sani, Sohrab R; Eklund, Anders; Naiini, Maziar M; Mohseni, Seyed Majid; Chung, Sunjae; Dürrenfeld, Philipp; Malm, B Gunnar; Åkerman, Johan

    2017-02-02

    Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (t Cu ) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing t Cu from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.

  14. Rare-earth doped transparent nano-glass-ceramics: a new generation of photonic integrated devices

    NASA Astrophysics Data System (ADS)

    Rodríguez-Armas, Vicente Daniel; Tikhomirov, Victor K.; Méndez-Ramos, Jorge; Yanes, Angel C.; Del-Castillo, Javier; Furniss, David; Seddon, Angela B.

    2007-05-01

    We report on optical properties and prospect applications on rare-earth doped oxyfluoride precursor glass and ensuing nano-glass-ceramics. We find out the spectral optical gain of the nano-glass-ceramics and show that its flatness and breadth are advantageous as compared to contemporary used erbium doped optical amplifiers. We present the possibility of flat gain cross-section erbium doped waveguide amplifiers as short 'chip', all-optical, devices capable of dense wavelength division multiplexing, including the potential for direct writing of these devices inside bulk glasses for three-dimensional photonic integration. We carried out a comparative study of the up-conversion luminescence in Er 3+-doped and Yb 3+-Er 3+-Tm 3+ co-doped samples, which indicates that these materials can be used as green/red tuneable up-conversion phosphors and white light simulation respectively. Observed changes in the spectra of the up-conversion luminescence provide a tool for tuning the colour opening the way for producing 3-dimensional optical recording.

  15. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  16. NanoStringNormCNV: pre-processing of NanoString CNV data.

    PubMed

    Sendorek, Dorota H; Lalonde, Emilie; Yao, Cindy Q; Sabelnykova, Veronica Y; Bristow, Robert G; Boutros, Paul C

    2018-03-15

    The NanoString System is a well-established technology for measuring RNA and DNA abundance. Although it can estimate copy number variation, relatively few tools support analysis of these data. To address this gap, we created NanoStringNormCNV, an R package for pre-processing and copy number variant calling from NanoString data. This package implements algorithms for pre-processing, quality-control, normalization and copy number variation detection. A series of reporting and data visualization methods support exploratory analyses. To demonstrate its utility, we apply it to a new dataset of 96 genes profiled on 41 prostate tumour and 24 matched normal samples. NanoStringNormCNV is implemented in R and is freely available at http://labs.oicr.on.ca/boutros-lab/software/nanostringnormcnv. paul.boutros@oicr.on.ca. Supplementary data are available at Bioinformatics online.

  17. Dimethyleacetamide improves the cryosurvivability of Indian red jungle fowl (Gallus gallus murghi) sperm.

    PubMed

    Rakha, B A; Ansari, M S; Akhter, S; Zafar, Z; Naseer, A; Hussain, I; Santiago-Moreno, J; Blesbois, E

    2017-11-01

    It was hypothesized that dimethyleacetamide (DMA) can be used as an alternate to glycerol for cryopreservation of Indian red jungle fowl semen. Four concentrations of DMA (4%, 6%, 8% and 10%) in extender were compared with previously optimized cryopreservation protocol based on 20% glycerol (control) for Indian red jungle fowl. Sperm motility, plasma membrane integrity, viability, and acrosome integrity were assessed at the stage of post-dilution, cooling, equilibration, and freeze-thawing. The whole experiment was repeated/replicated for five times independently. Sperm motility, plasma membrane integrity, viability and acrosome integrity were recorded highest (P < 0.05) at post-dilution, cooling, equilibration, and freeze-thawing in extender having 6% DMA compared to control and other experimental extenders. The highest (P < 0.05) recovery rates of all aforementioned parameters were also recorded in extender having 6% DMA; thus, 6% DMA was further compared with control (20% glycerol) for fertility after artificial insemination. Eggs were collected for five days after artificial insemination with semen cryopreserved in extender containing 6% DMA and control. The higher no. of fertilized eggs, fertility, no. of hatched eggs, hatch (%) and hatchability were recorded with semen cryopreserved in extender having 6% DMA compared to control. It is concluded that 6% DMA maintained higher post-thaw quality and fertility of Indian red jungle fowl semen and is a better replacement of glycerol. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effect of toothpaste with nano-sized trimetaphosphate on dental caries: In situ study.

    PubMed

    Danelon, Marcelle; Pessan, Juliano Pelim; Neto, Francisco Nunes Souza; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo

    2015-07-01

    This in situ study was to evaluate the remineralizing effect of a fluoride toothpaste supplemented with nano-sized sodium trimetaphosphate (TMP). This blind and cross-over study was performed in 4 phases of 3 days each. Twelve subjects used palatal appliances containing four bovine enamel blocks with artificial caries lesions. Volunteers were randomly assigned into the following treatment groups: Placebo (without F and TMP); 1100 ppm F (1100), 1100 supplemented with 3% micrometric TMP (1100 TMP) and with nano-sized TMP (1100 TMPnano). Volunteers were instructed to brush their natural teeth with the palatal appliances in the mouth during 1min (3 times/day), so that blocks were treated with natural slurries of toothpastes. After each phase, the percentage of surface hardness recovery (%SHR), integrated mineral recovery (IMR) and integrated differential mineral area profile (ΔIMR) in enamel lesions were calculated. F in enamel was also determined. Data were analyzed by ANOVA and Student-Newman-Keuls test. Enamel surface became 20% harder when treated with 1100 TMPnano in comparison with 1100 (p<0.001). 1100 TMPnano showed remineralizing capacity (IMR; ΔIMR) 66% higher when compared with 1100 TMP (p<0.001). Enamel F uptake in the 1100 TMPnano group was 2-fold higher when compared to its counterpart without TMP (p<0.001). The addition of 3% TMPnano to a conventional toothpaste was able to promote an additional remineralizing effect of artificial caries lesions. Toothpaste containing 1100 ppm F associated with TMPnano showed a potential of higher remineralization to 1100 ppm F and 1100 ppm F micrometric TMP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cellular-level surgery using nano robots.

    PubMed

    Song, Bo; Yang, Ruiguo; Xi, Ning; Patterson, Kevin Charles; Qu, Chengeng; Lai, King Wai Chiu

    2012-12-01

    The atomic force microscope (AFM) is a popular instrument for studying the nano world. AFM is naturally suitable for imaging living samples and measuring mechanical properties. In this article, we propose a new concept of an AFM-based nano robot that can be applied for cellular-level surgery on living samples. The nano robot has multiple functions of imaging, manipulation, characterizing mechanical properties, and tracking. In addition, the technique of tip functionalization allows the nano robot the ability for precisely delivering a drug locally. Therefore, the nano robot can be used for conducting complicated nano surgery on living samples, such as cells and bacteria. Moreover, to provide a user-friendly interface, the software in this nano robot provides a "videolized" visual feedback for monitoring the dynamic changes on the sample surface. Both the operation of nano surgery and observation of the surgery results can be simultaneously achieved. This nano robot can be easily integrated with extra modules that have the potential applications of characterizing other properties of samples such as local conductance and capacitance.

  20. Chemical energy powered nano/micro/macromotors and the environment.

    PubMed

    Moo, James Guo Sheng; Pumera, Martin

    2015-01-02

    The rise of miniaturized artificial self-powered devices, demonstrating autonomous motion, has brought in new considerations from the environmental perspective. This review addresses the interplay between these nano/micro/macromotors and the environment, recent advances, and their applications in pollution management. Such self-propelled devices are able to actuate chemical energy into mechanical motion in situ, adding another powerful dimension towards solving environmental problems. Use of synthetic nano/micro/macromotors has demonstrated potential in environmental remediation, both in pollutant removal and contaminant degradation, owing to motion-induced mixing. At the same time, the chemical environment exerts influence on the locomotion of the motors. These sensitized self-powered devices demonstrate capabilities for being deployed as sensors and their chemotactic behaviors show efficacy to act as first responders towards a chemical leakage. Thus, the notion of a self-propelling entity also entails further investigation into its inherent toxicity and possible implications as a pollutant. Future challenges and outlook of the use of these miniaturized devices are discussed, with specific regard to the fields of environmental remediation and monitoring, as we move towards their wider acceptance. We believe that these tiny machines will stand up to the task as solutions for environmental sustainability in the 21st century. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A thin polymer membrane, nano-suit, enhancing survival across the continuum between air and high vacuum

    PubMed Central

    Takaku, Yasuharu; Suzuki, Hiroshi; Ohta, Isao; Ishii, Daisuke; Muranaka, Yoshinori; Shimomura, Masatsugu; Hariyama, Takahiko

    2013-01-01

    Most multicellular organisms can only survive under atmospheric pressure. The reduced pressure of a high vacuum usually leads to rapid dehydration and death. Here we show that a simple surface modification can render multicellular organisms strongly tolerant to high vacuum. Animals that collapsed under high vacuum continued to move following exposure of their natural extracellular surface layer (or that of an artificial coat-like polysorbitan monolaurate) to an electron beam or plasma ionization (i.e., conditions known to enhance polymer formation). Transmission electron microscopic observations revealed the existence of a thin polymerized extra layer on the surface of the animal. The layer acts as a flexible “nano-suit” barrier to the passage of gases and liquids and thus protects the organism. Furthermore, the biocompatible molecule, the component of the nano-suit, was fabricated into a “biomimetic” free-standing membrane. This concept will allow biology-related fields especially to use these membranes for several applications. PMID:23589878

  2. Fabrication of high aspect ratio nanopillars and micro/nano combined structures with hydrophobic surface characteristics by injection molding

    NASA Astrophysics Data System (ADS)

    Zhou, Mingyong; Xiong, Xiang; Jiang, Bingyan; Weng, Can

    2018-01-01

    Polymer products with micro/nano-structures have excellent mechanical and optical properties, chemical resistance, and other advantages. Injection molding is one of the most potential techniques to fabricate polymer products with micro/nano-structures artificially in large numbers. In this study, a surface approach to fabricate high aspect ratio nanopillars and micro/nano combined structures was presented. Mold insert with micropillar arrays and nanopillars on its surface was prepared by combing anodic aluminum oxide (AAO) template and etched plate. Anti-sticking modification was done on the template to realize a better demolding quality. The influences of mold temperature and polymer material on the final replication quality were investigated. The results showed that the final replication quality of high aspect ratio nanopillars was greatly improved as compared with the unprocessed template. Polymer with low elongation at break was not suitable to fabricate structures with high aspect ratio via injection molding. For polypropylene surface, the experimental results of static contact angles were almost consistent with Cassie-Baxter equation. When the mold temperature reached 178 °C, hair-like polycarbonate nanopillars were observed, resulting in an excellent hydrophobic characteristic.

  3. 3D nano-structures for laser nano-manipulation

    PubMed Central

    Seniutinas, Gediminas; Gervinskas, Gediminas; Brasselet, Etienne; Juodkazis, Saulius

    2013-01-01

    Summary The resputtering of gold films from nano-holes defined in a sacrificial PMMA mask, which was made by electron beam lithography, was carried out with a dry plasma etching tool in order to form well-like structures with a high aspect ratio (height/width ≈ 3–4) at the rims of the nano-holes. The extraordinary transmission through the patterns of such nano-wells was investigated experimentally and numerically. By doing numerical simulations of 50-nm and 100-nm diameter polystyrene beads in water and air, we show the potential of such patterns for self-induced back-action (SIBA) trapping. The best trapping conditions were found to be a trapping force of 2 pN/W/μm2 (numerical result) exerted on a 50-nm diameter bead in water. The simulations were based on the analytical Lorentz force model. PMID:24062979

  4. Sol-hydrothermal synthesis and optical properties of Eu3+, Tb(3+)-codoped one-dimensional strontium germanate full color nano-phosphors.

    PubMed

    Lin, Liangwu; Sun, Xinyuan; Jiang, Yao; He, Yuehui

    2013-12-21

    Novel near-UV and blue excited Eu(3+), Tb(3+)-codoped one dimensional strontium germanate full-color nano-phosphors have been successfully synthesized by a simple sol-hydrothermal method. The morphologies, internal structures, chemical constitution and optical properties of the resulting samples were characterized using FE-SEM, TEM, HRTEM, EDS, XRD, FTIR, XPS, PL and PLE spectroscopy and luminescence decay curves. The results suggested that the obtained Eu(3+), Tb(3+)-codoped strontium germanate nanowires are single crystal nanowires with a diameter ranging from 10 to 80 nm, average diameter of around 30 nm and the length ranging from tens to hundreds micrometers. The results of PL and PLE spectra indicated that the Eu(3+), Tb(3+)-codoped single crystal strontium germanate nanowires showed an intensive blue, blue-green, green, orange and red or green, orange and red light emission under excitation at 350-380 nm and 485 nm, respectively, which may attributed to the coexistent Eu(3+), Eu(2+) and Tb(3+) ions, and the defects located in the strontium germanate nanowires. A possible mechanism of energy transfer among the host, Eu(3+) and Tb(3+) ions was proposed. White-emission can be realized in a single-phase strontium germanate nanowire host by codoping with Tb(3+) and Eu(3+) ions. The Eu(3+), Tb(3+)-codoped one-dimensional strontium germanate full-color nano-phosphors have superior stability under electron bombardment. Because of their strong PL intensity, good CIE chromaticity and stability, the novel 1D strontium germanate full-color nano-phosphors have potential applications in W-LEDs.

  5. Sustainable nano-catalysis

    EPA Science Inventory

    A novel nano-catalyst system which bridges the homogenous and heterogeneous system is described that is cheaper, easily accessible (sustainable) and requires no need of catalyst filtration during the work-up. Because of its nano-size, i.e. high surface area, the contact between r...

  6. Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research

    DTIC Science & Technology

    2008-11-04

    and their composites . This grant was used to procure equipment to synthesize and characterize the nano- and meso-porous geopolymers , and study their...and meso-porosity and microstructure of geopolymers and their composites is part of an ongoing research project in the PIs research group, which has...the synthesis and processing of geopolymers and geopolymer composites . The attritor mill enables synthesis Technical Report of nano-sized high

  7. Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research

    DTIC Science & Technology

    2008-11-04

    working on tailoring the nano- and meso-porosity, and the microstructure of geopolymers and their composites . This grant was used to procure equipment...and tailor the nano and meso-porosity and microstructure of geopolymers and their composites is part of an ongoing research project in the Pis...purchased to improve the synthesis and processing of geopolymers and geopolymer composites . The attritor mill enables synthesis Technical Report of

  8. Synthesis, construction, and evaluation of self-assembled nano-bacitracin A as an efficient antibacterial agent in vitro and in vivo.

    PubMed

    Hong, Wei; Gao, Xiang; Qiu, Peng; Yang, Jie; Qiao, Mingxi; Shi, Hong; Zhang, Dexian; Tian, Chunlian; Niu, Shengli; Liu, Mingchun

    2017-01-01

    Bacitracin A (BA) is an excellent polypeptide antibiotic that is active against gram-positive bacteria without triggering multidrug resistance. However, BA is inactive against gram-negative bacteria because of its inability to cross the outer membrane of these cells, and it has strong nephrotoxicity, thus limiting its clinical applications. Nanoantibiotics can effectively localize antibiotics to the periplasmic space of bacteria while decreasing the adverse effects of antibiotics. In this study, biodegradable hydrophobic copolymers of poly (d,l-lactide-co-glycolide) (PLGA) were attached to the N-termini of BA to design a novel class of self-assembled nano-bacitracin A (nano-BAs), and their potential as antibacterial agents was evaluated in vitro and in vivo. Nano-BAs had a core-shell structure with a mean diameter <150 nm. Impressively, nano-BAs had strong antibacterial properties against both gram-positive and gram-negative bacteria, and the distribution of antibacterial activity as a function of PLGA block length was skewed toward longer PLGA chains. No cytotoxicity against HK-2 cells or human red blood cells (hRBCs) was observed in vitro, suggesting good biocompatibility. A high local density of BA mass on the surface promoted endocytotic cellular uptake, and hydrophobic interactions between the PLGA block and lipopolysaccharide (LPS) facilitated the uptake of nano-BAs, thereby leading to greater antibacterial activities. In addition, Nano-BA 5K was found to be effective in vivo, and it served as an anti-infective agent for wound healing. Collectively, this study provides a cost-effective means of developing self-assembling nano-polypeptide antibiotic candidates with a broader antibacterial spectrum and a lower toxicity than commercially available peptide antibiotics, owing to their modification with biodegradable copolymers.

  9. Erythrocyte deformability and aggregation responses to intermittent and continuous artificial gravity exposure

    NASA Astrophysics Data System (ADS)

    Marijke, Grau; Vera, Abeln; Tobias, Vogt; Wilhelm, Bloch; Stefan, Schneider

    2017-02-01

    Artificial gravity protocols are used to improve g-tolerance of aviators and discussed as countermeasure during prolonged space flight. Little is known about the impact of artificial gravity on the red blood cells (RBC). The purpose of the study was to test how artificial gravity affects RBC deformability and aggregation, which are important determinants of microcirculation. Nine male subjects were exposed to two hypergravity protocols using a short arm human centrifuge: a continuous (CONT) protocol with constant +2 Gz for 30 min and an intermittent (INTER) protocol with repeated intervals of +2 Gz and rest. Blood was sampled pre and post interventions to measure basal blood parameters, RBC nitrite, RBC deformability, aggregation, and to determine the shear rate balancing aggregation and disaggregation (γ at dIsc min). To test for orthostasis effects, five male subjects were asked to stay for 46 min, corresponding to the length of the centrifuge protocols, with blood sampling pre and post intervention. Artificial gravity programs did not affect basal blood parameters or RBC nitrite levels; a marker for RBC deformability influencing nitric oxide. The INTER program did not affect any of the tested parameters. The CONT program did not remarkably affect RBC deformability or γ at dIsc min but significantly aggravated aggregation. Orthostasis effects were thus excluded. The results indicate that continuous artificial gravity, especially with higher g-forces applied, may negatively affect the RBC system and that for a prolonged space flight intermittent but not continuous artificial gravity might represent an appropriate countermeasure.

  10. Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: kinetic study, equilibrium isotherm and artificial neural network modeling.

    PubMed

    Yang, Yuyi; Wang, Guan; Wang, Bing; Li, Zeli; Jia, Xiaoming; Zhou, Qifa; Zhao, Yuhua

    2011-01-01

    The main objective of this work was to investigate the biosorption performance of nonviable Penicillium YW 01 biomass for removal of Acid Black 172 metal-complex dye (AB) and Congo Red (CR) in solutions. Maximum biosorption capacities of 225.38 and 411.53 mg g(-1) under initial dye concentration of 800 mg L(-1), pH 3.0 and 40 °C conditions were observed for AB and CR, respectively. Biosorption data were successfully described with Langmuir isotherm and the pseudo-second-order kinetic model. The Weber-Morris model analysis indicated that intraparticle diffusion was the limiting step for biosorption of AB and CR onto biosorbent. Analysis based on the artificial neural network and genetic algorithms hybrid model indicated that initial dye concentration and temperature appeared to be the most influential parameters for biosorption process of AB and CR onto biosorbent, respectively. Characterization of the biosorbent and possible dye-biosorbent interaction were confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. DNA-Mediated Self-Organization of Polymeric Nanocompartments Leads to Interconnected Artificial Organelles.

    PubMed

    Liu, Juan; Postupalenko, Viktoriia; Lörcher, Samuel; Wu, Dalin; Chami, Mohamed; Meier, Wolfgang; Palivan, Cornelia G

    2016-11-09

    Self-organization of nanocomponents was mainly focused on solid nanoparticles, quantum dots, or liposomes to generate complex architectures with specific properties, but intrinsically limited or not developed enough, to mimic sophisticated structures with biological functions in cells. Here, we present a biomimetic strategy to self-organize synthetic nanocompartments (polymersomes) into clusters with controlled properties and topology by exploiting DNA hybridization to interconnect polymersomes. Molecular and external factors affecting the self-organization served to design clusters mimicking the connection of natural organelles: fine-tune of the distance between tethered polymersomes, different topologies, no fusion of clustered polymersomes, and no aggregation. Unexpected, extended DNA bridges that result from migration of the DNA strands inside the thick polymer membrane (about 12 nm) represent a key stability and control factor, not yet exploited for other synthetic nano-object networks. The replacement of the empty polymersomes with artificial organelles, already reported for single polymersome architecture, will provide an excellent platform for the development of artificial systems mimicking natural organelles or cells and represents a fundamental step in the engineering of molecular factories.

  12. Nano-sized layered Mn oxides as promising and biomimetic water oxidizing catalysts for water splitting in artificial photosynthetic systems.

    PubMed

    Najafpour, Mohammad Mahdi; Heidari, Sima; Amini, Emad; Khatamian, Masoumeh; Carpentier, Robert; Allakhverdiev, Suleyman I

    2014-04-05

    One challenge in artificial photosynthetic systems is the development of artificial model compounds to oxidize water. The water-oxidizing complex of Photosystem II which is responsible for biological water oxidation contains a cluster of four Mn ions bridged by five oxygen atoms. Layered Mn oxides as efficient, stable, low cost, environmentally friendly and easy to use, synthesize, and manufacture compounds could be considered as functional and structural models for the site. Because of the related structure of these Mn oxides and the catalytic centre of the active site of the water oxidizing complex of Photosystem II, the study of layered Mn oxides may also help to understand more about the mechanism of water oxidation by the natural site. This review provides an overview of the current status of layered Mn oxides in artificial photosynthesis and discuss the sophisticated design strategies for Mn oxides as water oxidizing catalysts. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Multifunctional carbon nano-paper composite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Chu, Hetao; Wang, Kuiwen; Liu, Yanjv; Leng, Jinsong

    2013-08-01

    Carbon Nanotube (CNT), for its excellent mechanical, electrical properties and nano size, large special surface physical property, become the most promising material. But carbon nanotube can still fabricated in micro dimension, and can't be made into macro size, so to the carbon nanotube filled composite can't explore the properties of the CNT. Carbon nano-paper is made of pure CNT, with micro pore, and it turn micro sized CNT into macro shaped membrane. Based on the piezo-resistivity and electrical conductivity of the carbon nano-paper, we used the carbon nano-paper as functional layers fabricate functional composite, and studies its strain sensing, composite material deicing and shape memory polymer (SMP) material electric actuation performance. The results shown that the resin can pregnant the nano paper, and there was good bond for nano paper and composite. The functional composite can monitoring the strain with high sensitivity comparing to foil strain gauge. The functional composite can be heated via the carbon nano paper with low power supply and high heating rate. The composite has good deicing and heat actuation performance to composite material. For the good strain sensing, electric conductivity and self-heating character of the carbon nano-paper composite, it can be used for self sensing, anti lightning strike and deicing of composite materials in aircrafts and wind turbine blades.

  14. Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Saedodin, Seyfolah; Rejvani, Mousa; Shahram, Jalal

    2017-06-01

    In the present study, rheological behavior of ZnO/10W40 nano-lubricant is investigated by an experimental approach. Firstly, ZnO nanoparticles of 10-30 nm were dispersed in 10W40 engine oil with solid volume fractions of 0.25-2%, then the viscosity of the composed nano-lubricant was measured in temperature ranges of 5-55 °C and in various shear rates. From analyzing the results, it was revealed that both of the base oil and nano-lubricants are non-Newtonian fluids which exhibit shear thinning behavior. Sensitivity of viscosity to the solid volume fraction enhancement was calculated by a new correlation which was proposed in terms of solid volume fraction and temperature. In order to attain an accurate model by which experimental data are predicted, an artificial neural network (ANN) with a hidden layer and 5 neurons was designed. This model was considerably accurate in predicting experimental data of dynamic viscosity as R-squared and average absolute relative deviation (AARD %) were respectively 0.9999 and 0.0502.

  15. Adsorption experiment of toxic micro-pollutants derived from automobiles using red soil.

    PubMed

    Kawai, Takahiro; Ichiki, Atsushi; Sawada, Yasunori

    2015-01-01

    In some countries, non-point source pollution derived from a city's economic activities tends to be a barrier to the improvement of water quality. Roadway runoff is known to contain toxic micro-pollutants such as polycyclic aromatic hydrocarbons (PAHs). Conversely, red soil is known to adsorb some organic matter. In this study, artificial roadway runoff water containing toxic micro-pollutants was made using roadway dust collected from a highway, and used for both batch-type tests and soil column tests with red soil in order to understand adsorption ability of the red soil on such toxic micro-pollutants, especially PAHs. In the batch-type tests, PAHs could be removed by approximately 40% when the contact time was 90 minutes. In the soil column tests, PAHs were removed by more than 80% while suspended solids were removed by more than 90%. Notably, PAHs with a high molecular weight were removed more readily in the tests than PAHs with a low molecular weight.

  16. Synthesis of Magnesium Ferrites for the Adsorption of Congo Red from Aqueous Solution Using Batch Studies

    NASA Astrophysics Data System (ADS)

    Erdawati, E.; Darsef, D.

    2018-04-01

    A sol gel method with citric acid as an anionic surfactant was used to fabricate nano magnesium ferrites (MgFe2O4) under different calcination temperatures for 2h, respectively. The microstructure and surface morphology of magnesium ferrite powder were characterized by FTIR, XRD, SEM, and BET. The results of this study are useful for adsorption Congo red. The results showed that increasing solution pH and extending contact time are favorable for improving adsorption efficiency. with initial Congo red concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and0.00189 g/mg/min for solutions with initial congo red of 50 and 100 mg/L, respectively

  17. Photovoltaic cell with nano-patterned substrate

    DOEpatents

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2016-10-18

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  18. Aligned Layers of Silver Nano-Fibers.

    PubMed

    Golovin, Andrii B; Stromer, Jeremy; Kreminska, Liubov

    2012-02-01

    We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  19. Short-term effect of red wine (consumed during meals) on insulin requirement and glucose tolerance in diabetic patients.

    PubMed

    Gin, H; Morlat, P; Ragnaud, J M; Aubertin, J

    1992-04-01

    To determine the effect of wine on insulin requirement or glucose tolerance. Five men with insulin-treated diabetes and 10 men with non-insulin-treated diabetes ate the same lunch with the same volume of either water or red wine (2 glasses). Insulin requirement was determined with an artificial pancreas (Biostator). Glucose tolerance was evaluated from the postprandial glycemic level. There was no significant difference in insulin requirement determined with an artificial pancreas in the insulin-treated patients after the two meals (31.5 +/- 4.21 U with water and 31.8 +/- 4.3 U with wine). Glucose tolerance in the non-insulin-treated patients was lower after the meal with wine. Moderate prandial wine consumption has no adverse effect on the glycemic control of diabetic patients. Thus, it appears unnecessary to proscribe the consumption of red wine in moderation with meals to diabetic patients. Wine contains tannins and phytates that can explain its action.

  20. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface.

  1. Growth and development of planted northern red oak on bulldozed skidroads after clearcutting in Appalachian hardwoods

    Treesearch

    James N. Kochenderfer; Mary Beth Adams; Gary W. Miller; Frederica Wood

    2006-01-01

    Artificial regeneration of northern red oak in Appalachian clearcuts on mesic sites is hindered by accessibility and competition from developing vegetation. The use of skidroads as a planting medium was evaluated on two clearcuts with contrasting aspects in north central West Virginia. Stratified acorns were planted in tree shelters at three positions (cut, middle,...

  2. Nano-JASMINE Data Analysis and Publication

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Hara, T.; Yoshioka, S.; Kobayashi, Y.; Gouda, N.; Miyashita, H.; Hatsutori, Y.; Lammers, U.; Michalik, D.

    2012-09-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). A collaboration between the Gaia AGIS and Nano-JASMINE teams on the Nano-JASMINE data reduction started in 2007. The Nano-JASMINE team writes codes to generate AGIS input, and this is called Initial Data Treament (IDT). Identification of observed stars and their observed field of view, getting color index, are different from those of Gaia because Nano-JASMINE is ultra small satellite. For converting centroiding results on detector to the celestial sphere, orbit and attitude data of the satellite are used. In Nano-JASMINE, orbit information is derived from on board GPS data and attitude is processed from on-board star sensor data and on-ground Kalman filtering. We also show the Nano-JASMINE goals, status of the data publications and utilizations, and introduce the next Japanese space astrometric mission.

  3. Applications of Nano palm oil fuel ash and Nano fly ash in concrete

    NASA Astrophysics Data System (ADS)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    This paper discusses the applications of Nano waste materials including palm oil fuel ash and fly ash in the concrete production. The implementation of nanotechnology has been instrumental in the development of significant interest among the stakeholders to improve the mechanical and chemical properties of materials involved in the production of concrete. Although many researchers have shown the potential of nanomaterials to increase strength and durability of concrete and improve its physical and chemical properties, there is still a knowledge gap regarding the preparation of Nano waste materials from agricultural waste to use as cement replacement instead of non-renewable materials. Therefore, it should be focused on to study Nano- waste materials to benefit from these characteristics during preparation of concrete mixtures. Therefore, this paper highlights the potential of waste materials in the Nano size to partially replace cement in concrete and achieve the same or better result than the traditional concrete. This paper recommends to conduct further experimental works to improve the concrete material properties by investigating the properties of waste materials in Nano size.

  4. Towards biocompatible nano/microscale machines: self-propelled catalytic nanomotors not exhibiting acute toxicity

    NASA Astrophysics Data System (ADS)

    Khim Chng, Elaine Lay; Zhao, Guanjia; Pumera, Martin

    2014-01-01

    Recent advances in nanotechnology have led to the evolution of self-propelled, artificial nano/microjet motors. These intelligent devices are considered to be the next generation self-powered drug delivery system in the field of biomedical applications. While many studies have strived to further improve the various properties of these devices such as their efficiency, performance and power, little attention has been paid to the actual biocompatibility of nanojets in vivo. In this paper, we will present for the first time the investigation of the toxicity effects of nanojets on the viability of human lung epithelial cells (A549 cells). From the 24 h and 48 h post-exposure studies, it is clearly shown that the nanojets we used in our work has negligible influence on the cell viability across all the concentrations tested. As such, the toxicity profile of our nanojets have been shown to be neither dose- nor time-dependent. This is strongly indicative of the benign nature of our nanojets, which is of paramount significance as it is the first step towards the applications of nano/micromotors in real-world practical medical devices.

  5. Synthesis, construction, and evaluation of self-assembled nano-bacitracin A as an efficient antibacterial agent in vitro and in vivo

    PubMed Central

    Hong, Wei; Gao, Xiang; Qiu, Peng; Yang, Jie; Qiao, Mingxi; Shi, Hong; Zhang, Dexian; Tian, Chunlian; Niu, Shengli; Liu, Mingchun

    2017-01-01

    Bacitracin A (BA) is an excellent polypeptide antibiotic that is active against gram-positive bacteria without triggering multidrug resistance. However, BA is inactive against gram-negative bacteria because of its inability to cross the outer membrane of these cells, and it has strong nephrotoxicity, thus limiting its clinical applications. Nanoantibiotics can effectively localize antibiotics to the periplasmic space of bacteria while decreasing the adverse effects of antibiotics. In this study, biodegradable hydrophobic copolymers of poly (d,l-lactide-co-glycolide) (PLGA) were attached to the N-termini of BA to design a novel class of self-assembled nano-bacitracin A (nano-BAs), and their potential as antibacterial agents was evaluated in vitro and in vivo. Nano-BAs had a core-shell structure with a mean diameter <150 nm. Impressively, nano-BAs had strong antibacterial properties against both gram-positive and gram-negative bacteria, and the distribution of antibacterial activity as a function of PLGA block length was skewed toward longer PLGA chains. No cytotoxicity against HK-2 cells or human red blood cells (hRBCs) was observed in vitro, suggesting good biocompatibility. A high local density of BA mass on the surface promoted endocytotic cellular uptake, and hydrophobic interactions between the PLGA block and lipopolysaccharide (LPS) facilitated the uptake of nano-BAs, thereby leading to greater antibacterial activities. In addition, Nano-BA5K was found to be effective in vivo, and it served as an anti-infective agent for wound healing. Collectively, this study provides a cost-effective means of developing self-assembling nano-polypeptide antibiotic candidates with a broader antibacterial spectrum and a lower toxicity than commercially available peptide antibiotics, owing to their modification with biodegradable copolymers. PMID:28721045

  6. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer

    NASA Astrophysics Data System (ADS)

    Anisja, D. H.; Indrani, D. J.; Herda, E.

    2017-08-01

    Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.

  7. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    PubMed

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.

  8. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.

    PubMed

    Chen, You Wei; Lee, Hwei Voon; Juan, Joon Ching; Phang, Siew-Moi

    2016-10-20

    Nanocellulose was successfully isolated from Gelidium elegans red algae marine biomass. The red algae fiber was treated in three stages namely alkalization, bleaching treatment and acid hydrolysis treatment. Morphological analysis was performed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM results revealed that the isolated nanocellulose had the average diameter and length of 21.8±11.1nm and of 547.3±23.7nm, respectively. Fourier transform infrared (FTIR) spectroscopy proved that the non-cellulosic polysaccharides components were progressively removed during the chemically treatment, and the final derived materials composed of cellulose parent molecular structure. X-ray diffraction (XRD) study showed that the crystallinity of yielded product had been improved after each successive treatments subjected to the treated fiber. The prepared nano-dimensional cellulose demonstrated a network-like structure with higher crystallinity (73%) than that of untreated fiber (33%), and possessed of good thermal stability which is suitable for nanocomposite material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Nonlinear tuning techniques of plasmonic nano-filters

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.

    2015-02-01

    In this paper, a fitting model to the propagation constant and the losses of Metal-Insulator-Metal (MIM) plasmonic waveguide is proposed. Using this model, the modal characteristics of MIM plasmonic waveguide can be solved directly without solving Maxwell's equations from scratch. As a consequence, the simulation time and the computational cost that are needed to predict the response of different plasmonic structures can be reduced significantly. This fitting model is used to develop a closed form model that describes the behavior of a plasmonic nano-filter. Easy and accurate mechanisms to tune the filter are investigated and analyzed. The filter tunability is based on using a nonlinear dielectric material with Pockels or Kerr effect. The tunability is achieved by applying an external voltage or through controlling the input light intensity. The proposed nano-filter supports both red and blue shift in the resonance response depending on the type of the used non-linear material. A new approach to control the input light intensity by applying an external voltage to a previous stage is investigated. Therefore, the filter tunability to a stage that has Kerr material can be achieved by applying voltage to a previous stage that has Pockels material. Using this method, the Kerr effect can be achieved electrically instead of varying the intensity of the input source. This technique enhances the ability of the device integration for on-chip applications. Tuning the resonance wavelength with high accuracy, minimum insertion loss and high quality factor is obtained using these approaches.

  10. Applications of Nano-optics.

    PubMed

    Zhou, Changhe; Fainman, Yeshaiahu; Sheng, Yunlong

    2011-11-01

    As nanoscale fabrication techniques advance, nano-optics continues to offer enabling solutions to numerous practical applications for information optics. This Applied Optics feature issue focuses on the Application of Nano-optics. © 2011 Optical Society of America

  11. Research on surface modification of nano-zirconia

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhang, Cun-Lin; Yang, Xiao-Yi

    2005-02-01

    The mechanisms about the aggregation and dispersibility of nano-zirconia were analyzed in detail. And nano-zirconia powders which were surface-modified with silane coupling reagent WD70 were prepared in order to disperse homogeneously in ethanol in this investigation. The grain size and grain phase of nano-zirconia were obtained by XRD. Research and characterization on the structure and surface characteristic of surface-modified nano-zirconia were achieved by XPS, TG-DSC, TEM and FT-IR. The results given by FT-IR and XPS showed WD70 was jointed on the surface of nano-zirconia through both physical adsorption and chemical binding after the de-methanol reaction between the methoxyl groups of WD70 and the hydroxy groups on the surface of nano-zirconia. And the corresponding model of surface-modified nano-zirconia was given. The images provided by TEM presented intuitionistic effect of surface modification on the dispersibility of nano-zirconia in ethanol. And TG-DSC analysis ascertained the amount of WD70 that was jointed on the surface of nano-zirconia and the amount was about 6.21 percent.

  12. Red Oak (Quercus rubra, L.) acron collection, nursery culture and direct seeding: A literature review

    Treesearch

    Daniel C. Dey

    1995-01-01

    The artificial regeneration of red oak by planting or direct seeding is an important method for restoring oak in ecosystems where it has been lost as a result of past management practices. Planting and direct seeding can also be used to supplement natural oak regeneration and to ensure that sufficient oak reproduction is in place when overstories are removed through...

  13. In situ microscopy of rapidly heated nano-Al and nano-Al/WO{sub 3} thermites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kyle T.; Zachariah, Michael R.; Chiou, Wen-An

    2010-09-27

    The initiation and reaction mechanism of nano-Al and nano-Al thermites in rapid heating environments is investigated in this work. A semiconductor-based grid/stage was used, capable of in situ heating of a sample from room temperature to 1473 K, and at a rate of 10{sup 6} K/s, inside an electron microscope. Nano-Al was rapidly heated in a transmission electron microscope, and before and after images indicate that the aluminum migrates through the shell, consistent with a diffusion-based mechanism. A nano-Al/WO{sub 3} composite was then heated in a scanning electron microscope. The results indicate that a reactive sintering mechanism is occurring formore » the nano-Al/WO{sub 3} thermite, as the products are found to be in surface contact and significantly deformed after the heating pulse.« less

  14. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  15. Yellow and the Novel Aposematic Signal, Red, Protect Delias Butterflies from Predators.

    PubMed

    Wee, Jocelyn Liang Qi; Monteiro, Antónia

    2017-01-01

    Butterflies of the South Asian and Australian genus Delias possess striking colours on the ventral wings that are presumed to serve as warning signals to predators. However, this has not been shown empirically. Here we experimentally tested whether the colours of one member of this diverse genus, Delias hyparete, function as aposematic signals. We constructed artificial paper models with either a faithful colour representation of D. hyparete, or with all of its colours converted to grey scale. We also produced models where single colours were left intact, while others were converted to grey-scale or removed entirely. We placed all model types simultaneously in the field, attached to a live mealworm, and measured relative attack rates at three separate field sites. Faithful models of D. hyparete, suffered the least amount of attacks, followed by grey-scale models with unaltered red patches, and by grey-scale models with unaltered yellow patches. We conclude that red and yellow colours function as warning signals. By mapping dorsal and ventral colouration onto a phylogeny of Delias, we observed that yellow and red colours appear almost exclusively on the ventral wing surfaces, and that basal lineages have mostly yellow, white, and black wings, whereas derived lineages contain red colour in addition to the other colours. Red appears to be, thus, a novel adaptive trait in this lineage of butterflies.

  16. Yellow and the Novel Aposematic Signal, Red, Protect Delias Butterflies from Predators

    PubMed Central

    Wee, Jocelyn Liang Qi

    2017-01-01

    Butterflies of the South Asian and Australian genus Delias possess striking colours on the ventral wings that are presumed to serve as warning signals to predators. However, this has not been shown empirically. Here we experimentally tested whether the colours of one member of this diverse genus, Delias hyparete, function as aposematic signals. We constructed artificial paper models with either a faithful colour representation of D. hyparete, or with all of its colours converted to grey scale. We also produced models where single colours were left intact, while others were converted to grey-scale or removed entirely. We placed all model types simultaneously in the field, attached to a live mealworm, and measured relative attack rates at three separate field sites. Faithful models of D. hyparete, suffered the least amount of attacks, followed by grey-scale models with unaltered red patches, and by grey-scale models with unaltered yellow patches. We conclude that red and yellow colours function as warning signals. By mapping dorsal and ventral colouration onto a phylogeny of Delias, we observed that yellow and red colours appear almost exclusively on the ventral wing surfaces, and that basal lineages have mostly yellow, white, and black wings, whereas derived lineages contain red colour in addition to the other colours. Red appears to be, thus, a novel adaptive trait in this lineage of butterflies. PMID:28060944

  17. Label it or ban it? Public perceptions of nano-food labels and propositions for banning nano-food applications

    NASA Astrophysics Data System (ADS)

    Chuah, Agnes S. F.; Leong, Alisius D.; Cummings, Christopher L.; Ho, Shirley S.

    2018-02-01

    The future of nano-food largely hinges on public perceptions and willingness to accept this novel technology. The present study utilizes the scientific literacy model and psychometric paradigm as the key theoretical frameworks to examine the factors influencing public support for labeling and banning of nano-food in Singapore. Using data collected from a nationally representative survey of 1001 respondents, the findings demonstrated that attitudes toward technology, preference for natural product, science knowledge, and risk perception were found to substantially affect public support for both labeling and banning of nano-food. Conversely, attention to food safety news on traditional media and attention to nano-news on new media were only associated with public support for labeling of nano-food. Similarly, benefit perception was only significantly associated with public support for banning of nano-food. Theoretically, these findings support the growing body of literature that argues for the significant role played by predispositions, media use, science knowledge, and risk and benefit perceptions on attitude formation toward nano-food. It serves as the pioneering piece to address the aspect of banning in the field of nano-food. Practically, insights drawn from this study could aid relevant stakeholders in enlisting effecting strategies to convey the benefits of nano-food while mitigating the risk perceptions among the public.

  18. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  19. History of Red Lakes fishery, 1917-38, with observations on population status

    USGS Publications Warehouse

    Van Oosten, John; Deason, Hilary J.

    1957-01-01

    A historical account traces the development of the commercial fisheries of the Red Lakes, Minnesota, from its inception in 1917 as a war measure through 1938. The trends of production and catch per unit of effort were followed for the principal species with notes on statistics of the minor fishes. Life history data were recorded for the walleye and yellow perch. A historical account was presented of the artificial propagation of the walleye and whitefish from 1918 through 1938.

  20. Effect of simulated insect damage on growth and survival of northern red oak (Quercus rubra L.) seedlings

    Treesearch

    Susan L. Wright; Richard W. Hall; John W. Peacock

    1989-01-01

    Effects of simulated insect damage—artificial defoliation and root damage in combination with two levels of watering—were studied to determine the potential effect on northern red oak seedlings (Quercus rubra L.). Treatments and treatment combinations caused significant differences in stem diameter, percentage of stem dieback, and mortality....

  1. Molecular modeling in structural nano-toxicology: interactions of nano-particles with nano-machinery of cells.

    PubMed

    Yanamala, Naveena; Kagan, Valerian E; Shvedova, Anna A

    2013-12-01

    Over the past two decades, nanotechnology has emerged as a key player in various disciplines of science and technology. Some of the most exciting applications are in the field of biomedicine - for theranostics (for combined diagnostic and therapeutic purposes) as well as for exploration of biological systems. A detailed understanding of the molecular interactions between nanoparticles and biological nano-machinery - macromolecules, membranes, and intracellular organelles - is crucial for obtaining adequate information on mechanisms of action of nanomaterials as well as a perspective on the long term effects of these materials and their possible toxicological outcomes. This review focuses on the use of structure-based computational molecular modeling as a tool to understand and to predict the interactions between nanomaterials and nano-biosystems. We review major approaches and provide examples of computational analysis of the structural principles behind such interactions. A rationale on how nanoparticles of different sizes, shape, structure and chemical properties can affect the organization and functions of nano-machinery of cells is also presented. Published by Elsevier B.V.

  2. [Effects of different forest restoration approaches on the soil quality in red soil region of Southern China].

    PubMed

    Wang, Yun; Ouyang, Zhi-Yun; Zheng, Hua; Zeng, Jing; Chen, Fa-Lin; Zhang, Kai

    2013-05-01

    In 2008-2009, an investigation was conducted on the effects of three typical forest restoration approaches, i. e., naturally restored secondary forest, artificially restored native species Pinus massoniana plantation (Masson pine plantation), and introduced species Pinus elliottii plantation (slash pine plantation), on the soil quality in red soil region of Southern China. The results showed that the soil moisture content, bulk density, particle composition, and the contents of total carbon (C), total nitrogen (N), total phosphorus (P), organic C, available N, available P, and available potassium (K) in natural secondary forest were all superior to those in artificial plantations. The soil physical, chemical, and microbial properties were integrated into a soil quality index, which was significantly higher (1.20 +/- 0.10) in natural secondary forest than in Masson pine plantation (0.59 +/- 0.03) and slash pine plantation (0.59 +/- 0.06). Our results suggested as compared with the restoration with native species P. massoniana and with introduced P. elliottii, natural restoration could be a better forest restoration approach to improve the soil quality in red soil region of Southern China.

  3. Polyelectrolyte mediated nano hybrid particle as a nano-sensor with outstandingly amplified specificity and sensitivity for enzyme free estimation of cholesterol.

    PubMed

    Chebl, Mazhar; Moussa, Zeinab; Peurla, Markus; Patra, Digambara

    2017-07-01

    As a proof of concept, here it is established that curcumin integrated chitosan oligosaccharide lactate (COL) self-assembles on silica nanoparticle surface to form nano hybrid particles (NHPs). These NHPs have size in the ranges of 25-35nm with silica nanoparticle as its core and curcumin-COL as outer layer having thickness of 4-8nm. The fluorescence intensity of these NHPs are found to be quenched and emission maximum is ~50nm red shifted compared to free curcumin implying inner filter effect and/or homo-FRET between curcumin molecules present on the surface of individual nano hybrid particle. Although fluorescence of free curcumin is remarkably quenched by Hg 2+ /Cu 2+ ions due to chelation through keto-enol form, the fluorescence of NHPs is unaffected by Hg 2+ /Cu 2+ ion that boosts analytical selectivity. The fluorescence intensity is outstandingly enhanced in the presence of cholesterol but is not influenced by ascorbic acid, uric acid, glucose, albumin, lipid and other potential interfering substances that either obstruct during enzymatic reaction or affect fluorescence of free curcumin. Thus, NHPs outstandingly improve analytical specificity, selectivity and sensitivity during cholesterol estimation compared to free curcumin. The interaction between cholesterol and NHPs is found to be a combination of ground state electrostatic interaction through the free hydroxyl group of cholesterol along with hydrophobic interaction between NHPs and cholesterol and excited state interaction. The proposed cholesterol biosensor illustrates a wider linear dynamic range, 0.002-10mmolL -1 , (upper limit is due to lack of solubility of cholesterol) needed for biomedical application and better than reported values during enzymatic reaction. In addition, the NHPs are found to be photo-stable potentially making it suitable for simple, quick and cost-effective cholesterol estimation and opening an alternative approach other than enzymatic reaction using nano hybrid structure to

  4. Red urine from red deer grazed on pure red clover swards.

    PubMed

    Niezen, J H; Barry, T N; Wilson, P R; Lane, G

    1992-12-01

    Twenty-four red deer hinds with their calves were released on to a newly established pure red clover sward and, 2 days later, red staining of the tail, perineum and hocks was observed. This was presumed to be of urinary origin. Observation of micturition showed that when urine was passed, it was a normal straw colour but it turned scarlet-red about 1 hour after exposure to air. Midstream urine remained the normal colour when held under a pure nitrogen atmosphere immediately after micturition, but it turned red when held in air in the dark, suggesting that the colour change was due to an oxidative rather than a photosensitive reaction. All deer grazing red clover were affected but this did not occur in deer grazing ryegrass/white clover swards. No adverse effects were observed in the deer grazing the red clover, and calf growth was significantly higher than on ryegrass/white clover, suggesting that the red urine had no effect on health or productivity. Blood and urine analyses showed no signs of haemolysis, haematuria or haemoglobinuria. Preliminary chemical analyses suggest that the compounds involved are not those found in the urine of sheep grazing oestrogenic clover. The nature of the compounds have yet to be determined.

  5. Fine-tunable plasma nano-machining for fabrication of 3D hollow nanostructures: SERS application

    NASA Astrophysics Data System (ADS)

    Mehrvar, L.; Hajihoseini, H.; Mahmoodi, H.; Tavassoli, S. H.; Fathipour, M.; Mohseni, S. M.

    2017-08-01

    Novel processing sequences for the fabrication of artificial nanostructures are in high demand for various applications. In this paper, we report on a fine-tunable nano-machining technique for the fabrication of 3D hollow nanostructures. This technique originates from redeposition effects occurring during Ar dry etching of nano-patterns. Different geometries of honeycomb, double ring, nanotube, cone and crescent arrays have been successfully fabricated from various metals such as Au, Ag, Pt and Ti. The geometrical parameters of the 3D hollow nanostructures can be straightforwardly controlled by tuning the discharge plasma pressure and power. The structure and morphology of nanostructures are probed using atomic force microscopy (AFM), scanning electron microscopy (SEM), optical emission spectroscopy (OES) and energy dispersive x-ray spectroscopy (EDS). Finally, a Ag nanotube array was assayed for application in surface enhanced Raman spectroscopy (SERS), resulting in an enhancement factor (EF) of 5.5 × 105, as an experimental validity proof consistent with the presented simulation framework. Furthermore, it was found that the theoretical EF value for the honeycomb array is in the order of 107, a hundred times greater than that found in nanotube array.

  6. Defect-free fabrication of nano-disk and nano-wire by fusion of bio-template and neutral beam etching

    NASA Astrophysics Data System (ADS)

    Samukawa, S.; Noda, Shuichi; Higo, Akio; Yasuda, Manabu; Wada, Kazumi

    2016-11-01

    We have developed an innovated fabrication technology of Si, GaAs, and Ge nano-structures, i.e., we called defect-free neutral beam etching. The technology has been successfully applied to prototype the quantum nano-disks and nano-wires with ferritin based bio-templates. SEM observation verifies that the designed structures are prototyped. Photoluminescence measurements demonstrates high optical quality of nano-structures based on the technology.

  7. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  8. A Modeling Study of Deep Water Renewal in the Red Sea

    NASA Astrophysics Data System (ADS)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  9. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt.

    PubMed

    Ghorbanzade, Tahere; Jafari, Seid Mahdi; Akhavan, Sahar; Hadavi, Roxana

    2017-02-01

    Fish oils have many dietary benefits, but due to their strong odors and rapid deterioration, their application in food formulations is limited. For these reasons, nano-liposome was used to nano-encapsulate fish oil in this study and encapsulated fish oil was utilized in fortifying yogurt. Physicochemical properties of produced yogurt including pH, acidity, syneresis, fatty acid composition, peroxide value as well as sensory tests were investigated during three weeks storage at 4°C. Nano-liposome encapsulation resulted in a significant reduction in acidity, syneresis and peroxide value. The results of gas chromatography analyses revealed that after 21days storage, yogurt fortified with nano-encapsulated fish oil had a higher DHA and EPA contents than yogurt containing free fish oil. Overall, the results of this study indicates that adding nano-encapsulated fish oil into yogurt gave closer characteristics to control sample in terms of sensory characteristics than yogurt fortified with free fish oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Artificial organs: recent progress in artificial hearing and vision.

    PubMed

    Ifukube, Tohru

    2009-01-01

    Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas.

  11. Superconducting properties of Nb-Cu nano-composites and nano-alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Pradnya, E-mail: pradnyaprb@gmail.com; Kumar, Sanjeev; Bhui, Prabhjyot

    The evolution of the superconducting transition temperature (T{sub c}) in nano-composite and nano-alloys of Nb-Cu, grown by DC magnetron co-sputtering are investigated. Microstructure of these films depends less strongly on the ratio of Nb:Cu but more on the growth temperature. At higher growth temperature, phase separated granular films of Nb and Cu were formed which showed superconducting transition temperatures (T{sub c}) of ~ 7.2±0.5 K, irrespective of the composition. Our results show that this is primarily influenced by the microstructure of the films determined during growth which rules out the superconducting proximity effect expected in these systems. At room temperaturemore » growth, films with nano-scale alloying were obtained at the optimal compositional range of 45-70 atomic% (At%) of Nb. These were also superconducting with a T{sub c} of 3.2 K.« less

  12. Mechano-micro/nano systems

    NASA Astrophysics Data System (ADS)

    Horie, Mikio

    2004-10-01

    In recent years, the researches about Micro/Nano Systems are down actively in the bio-medical research fields, DNA research fields, chemical analysis systems fields, etc. In the results, a new materials and new functions in the systems are developed. In this invited paper, Mechano-Micro/Nano Systems, especially, motion systems are introduced. First, the research activities concerning the Mechano-Micro/Nano Systems in the world(MST2003, MEMS2003 and MEMS2004) and in Japan(Researech Projects on Nanotechnology and Materials in Ministry of Education, Culture, Sports, Science and Technology) are shown. Secondary, my research activities are introduced. As my research activities, (1) a comb-drive static actuator for the motion convert mechanisms, (2) a micro-nano fabrication method by use of FAB(Fast Atom Beam) machines, (3) a micro optical mirror manipulator for inputs-outputs optical switches, (4) a miniature pantograph mechanism with large-deflective hinges and links made of plastics are discussed and their performances are explained.

  13. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  14. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  15. Nanos genes and their role in development and beyond.

    PubMed

    De Keuckelaere, Evi; Hulpiau, Paco; Saeys, Yvan; Berx, Geert; van Roy, Frans

    2018-06-01

    The hallmark of Nanos proteins is their typical (CCHC) 2 zinc finger motif (zf-nanos). Animals have one to four nanos genes. For example, the fruit fly and demosponge have only one nanos gene, zebrafish and humans have three, and Fugu rubripes has four. Nanos genes are mainly known for their evolutionarily preserved role in germ cell survival and pluripotency. Nanos proteins have been reported to bind the C-terminal RNA-binding domain of Pumilio to form a post-transcriptional repressor complex. Several observations point to a link between the miRNA-mediated repression complex and the Nanos/Pumilio complex. Repression of the E2F3 oncogene product is, indeed, mediated by cooperation between the Nanos/Pumilio complex and miRNAs. Another important interaction partner of Nanos is the CCR4-NOT deadenylase complex. Besides the tissue-specific contribution of Nanos proteins to normal development, their ectopic expression has been observed in several cancer cell lines and various human cancers. An inverse correlation between the expression levels of human Nanos1 and Nanos3 and E-cadherin was observed in several cancer cell lines. Loss of E-cadherin, an important cell-cell adhesion protein, contributes to tumor invasion and metastasis. Overexpression of Nanos3 induces epithelial-mesenchymal transition in lung cancer cell lines partly by repressing E-cadherin. Other than some most interesting data from Nanos knockout mice, little is known about mammalian Nanos proteins, and further research is needed. In this review, we summarize the main roles of Nanos proteins and discuss the emerging concept of Nanos proteins as oncofetal antigens.

  16. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    NASA Astrophysics Data System (ADS)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  17. Demographic, socioeconomic and nutritional determinants of daily versus non-daily sugar-sweetened and artificially sweetened beverage consumption.

    PubMed

    Mullie, P; Aerenhouts, D; Clarys, P

    2012-02-01

    The aim of this study was to determine the impact of demographic, socioeconomic and nutritional determinants on daily versus non-daily sugar-sweetened and artificially sweetened beverage consumption. Cross-sectional design in 1852 military men. Using mailed questionnaires, sugar-sweetened and artificially sweetened beverage consumption was recorded. Principal component analysis was used for dietary pattern analysis. Sugar-sweetened and artificially sweetened beverages were consumed daily by 36.3% and 33.2% of the participants, respectively. Age, body mass index (BMI), non-smoking and income were negatively related to sugar-sweetened beverage consumption. High BMI and trying to lose weight were related to artificially sweetened beverages consumption. Three major patterns were obtained from principal component analysis: first, the 'meat pattern', was loaded for red meats and processed meats; second, the 'healthy pattern', was loaded for tomatoes, fruit, whole grain, vegetables, fruit, fish, tea and nuts; finally, the 'sweet pattern' was loaded for sweets, desserts, snacks, high-energy drinks, high-fat dairy products and refined grains. The sugar-sweetened beverage consumption was strongly related with both the meat and sweet dietary patterns and inversely related to the healthy dietary pattern. The artificially sweetened beverage consumption was strongly related with the sweet and healthy dietary pattern. Daily consumption of sugar-sweetened beverages was inversely associated with a healthy dietary pattern. Daily consumption of artificially sweetened beverages was clearly associated with weight-loss intention.

  18. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Bone char surface modification by nano-gold coating for elemental mercury vapor removal

    NASA Astrophysics Data System (ADS)

    Assari, Mohamad javad; Rezaee, Abbas; Rangkooy, Hossinali

    2015-07-01

    The present work was done to develop a novel nanocomposite using bone char coated with nano-gold for capture of elemental mercury (Hg0) from air. The morphologies, structures, and chemical constitute of the prepared nanocomposite were evaluated by UV-VIS-NIR, dynamic light-scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). The capture performance of nanocomposite was evaluated in a needle trap for mercury vapor. An on-line setup based on cold vapor atomic absorption spectrometry (CVAAS) was designed for Hg0 determination. Dynamic capacity of nanocomposite for Hg0 was shown high efficient operating capacity of 586.7 μg/g. As temperature increases, the dynamic adsorption capacity of the nanocomposite was decreased, which are characteristics of physicosorption processes. It was found that the surface modification of bone char with nano-gold has various advantages such as high operating dynamic adsorption capacity and low cost preparation. It was also demonstrated that the developed nanocomposite is suitable for on-line monitoring of Hg0. It could be applied for the laboratory and field studies.

  20. Factors influencing IUCN threat levels to orchids across Europe on the basis of national red lists.

    PubMed

    Kull, Tiiu; Selgis, Ulvi; Peciña, Miguel Villoslada; Metsare, Mirjam; Ilves, Aigi; Tali, Kadri; Sepp, Kalev; Kull, Kalevi; Shefferson, Richard P

    2016-09-01

    The red list has become a ubiquitous tool in the conservation of species. We analyzed contemporary trends in the threat levels of European orchids, in total 166 species characterized in 27 national red lists, in relation to their reproductive biology and growth form, distribution area, and land cover where they occur. We found that species in central Europe are more threatened than those in the northern, southern, or Atlantic parts of Europe, while species were least threatened in southern Europe. Nectarless and tuberous species are significantly more threatened than nectariferous and rhizomatous taxa. Land cover (ratios of artificial land cover, area of pastures and grasslands, forests and inland wetlands) also significantly impacted the threat level. A bigger share of artificial land cover increases threat, and a bigger share of pasture and grassland lowers it. Unexpectedly, a bigger share of inland wetland area in a country increased threat level, which we believe may be due to the threatened nature of wetlands themselves relative to other natural land cover types. Finally, species occurring in multiple countries are on average less threatened. We believe that large-scale analysis of current IUCN national red lists as based on their specific categories and criteria may particularly inform the development of coordinated regional or larger-scale management strategies. In this case, we advocate for a coordinated EU protection and restoration strategy particularly aimed at central European orchids and those occurring in wetland area.

  1. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    PubMed

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  3. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  4. Nano-based PCMs for building energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which themore » PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.« less

  5. Replication of surface nano-structure of the wing of dragonfly ( Pantala Flavescens) using nano-molding and UV nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Cho, Joong-Yeon; Kim, Gyutae; Kim, Sungwook; Lee, Heon

    2013-07-01

    The hydrophobicity of a dragonfly's wing originates from the naturally occurring nano-structure on its surface. The nano-structure on a dragonfly's wing consists of an array of nano-sized pillars, 100 nm in diameter. We re-create this hydrophobicity on various substrates, such as Si, glass, curved acrylic polymer, and flexible PET film, by replicating the nano-structure using UV curable nano-imprint lithography (NIL) and PDMS molding. The success of the nano-structure duplication was confirmed using scanning electron microscopy (SEM). The hydrophobicity was measured by water-based contact angle measurements. The water contact angle of the replica made of UV cured polymer was 135° ± 2°, which was slightly lower than that of the original dragonfly's wing (145° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (80°). The hydrophobicity was further improved by applying a coating of Teflon-like material.

  6. [Photophysical properties of poly (2-methoxy-5-octyloxy)-p-phenylene vinylene/TiO2 nano-composites].

    PubMed

    Sun, Jian-ping; Weng, Jia-bao; Cheng, Yun-tao; Lin, Ting; Huang, Xiao-zhu

    2008-12-01

    The photoelectric composites of poly (2-methoxy-5-octyloxy)-p-phenylene vinylene/nanometer TiO2 (PMOCOPV/ TiO2) with different nanometer TiOz amount were synthesized through dehydrochlorination in-situ polymerization. The results of Fourier transform infrared spectroscopy and Raman spectroscopy indicated that the surface of nanometer TiO2 was coated with PMOCOPV. UV-Vis spectrum showed that the absorption of PMOCOPV/TiO2 nano-composites was strengthened in the range of violet and visible light with the contents of TiO2 increasing. The composite dimensions were observed by highly resolution transmission electron microscope, PMOCOPV/TiO2 nano-composites dispersed uniformly and possessed core-shell structure, the diameter of PMOCOPV/TiO2 was measured to be about 30 nm, and the thickness of the PMOCOPV coating was about 8-10 nm. Photoluminescence spectroscopy indicated that the maximum emission wavelength of the PMOCOPV/TiO2 was red-shifted with increasing TiO2 concentration. The fluorescence lifetime of PMOCOPV/TiO2 was about 1 ns. The intensity and lifetime of fluorescence was increased remarkably with the contents of TiO2 increasing. The mechanism of the strengthened fluorescence quantum efficiency and fluorescence intensity of PMOCOPV/TiO2 was investigated through the charge transfer, exciton dissociation and potential energy in PMOCOPV/TiO2 nano-composites.

  7. Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view.

    PubMed

    Masone, Diego; Chanforan, Céline

    2015-06-01

    Due to the high amount of artificial food colorants present in infants' diets, their adverse effects have been of major concern among the literature. Artificial food colorants have been suggested to affect children's behavior, being hyperactivity the most common disorder. In this study we compare binding affinities of a group of artificial colorants (sunset yellow, quinoline yellow, carmoisine, allura red and tartrazine) and their natural industrial equivalents (carminic acid, curcumin, peonidin-3-glucoside, cyanidin-3-glucoside) to human serum albumin (HSA) by a docking approach and further refinement through atomistic molecular dynamics simulations. Due to the protein-ligand conformational interface complexity, we used collective variable driven molecular dynamics to refine docking predictions and to score them according to a hydrogen-bond criterion. With this protocol, we were able to rank ligand affinities to HSA and to compare between the studied natural and artificial food additives. Our results show that the five artificial colorants studied bind better to HSA than their equivalent natural options, in terms of their H-bonding network, supporting the hypothesis of their potential risk to human health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  9. Quantum properties of light emitted by dipole nano-laser

    NASA Astrophysics Data System (ADS)

    Ghannam, Talal

    Recent technological advances allow entire optical systems to be lithographically implanted on small silicon chips. These systems include tiny semiconductor lasers that function as light sources for digital optical signals. Future advances will rely on even smaller components. At the theoretical limit of this process, the smallest lasers will have an active medium consisting of a single atom (natural or artificial). Several suggestions for how this can be accomplished have already been published, such as nano-lasers based on photonic crystals and nano wires. In particular, the "dipole nanolaser" consists of a single quantum dot functioning as the active medium. It is optically coupled to a metal nanoparticles that form a resonant cavity. Laser light is generated from the near-field optical signal. The proposed work is a theoretical exploration of the nature of the resulting laser light. The dynamics of the system will be studied and relevant time scales described. These will form the basis for a set of operator equations describing the quantum properties of the emitted light. The dynamics will be studied in both density matrix and quantum Langevin formulations, with attention directed to noise sources. The equations will be linearized and solved using standard techniques. The result of the study will be a set of predicted noise spectra describing the statistics of the emitted light. The goal will be to identify the major noise contributions and suggest methods for suppressing them. This will be done by studying the probability of getting squeezed light from the nanoparticle for the certain scheme of parameters.

  10. Proteomic analysis of tears following acupuncture treatment for menopausal dry eye disease by two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Liu, Qingyu; Liu, Junling; Ren, Chengda; Cai, Wenting; Wei, Qingquan; Song, Yi; Yu, Jing

    2017-01-01

    The purpose of this study was to investigate whether acupuncture is effective at treating dry eye disease among postmenopausal women and to identify the possible mechanisms. Twenty-eight postmenopausal women with dry eye disease were randomly divided into two groups: an acupuncture plus artificial tears (AC + AT) group and an artificial tears (AT) only group. After baseline examination of clinical parameters and tear sample collection, each patient received the designated modality of topical therapy for 2 months. Post-treatment documentation of clinical parameters was recorded, and tear samples were collected. Tear samples from the AC + AT group were subjected to two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry (2D nano-LC-MS/MS). Western blot analysis was also performed on tear samples from both groups. After treatment, the Ocular Surface Disease Index scores, symptom assessment scores, scores of sign assessment, and tear break-up time were significantly improved in both groups ( P =0.000). Symptom assessment scores were significantly improved in the AC + AT group ( P =0.000) compared with the AT group. 2D nano-LC-MS/MS identified 2,411 proteins, among which 142 were downregulated and 169 were upregulated. After combined AC + AT treatment, the abundance of secreted proteins was increased, whereas that of cytoplasmic proteins decreased (Pearson's χ 2 test, P =0.000, P =0.000, respectively). Proteins involved in immunity and regulation were also more abundant (Pearson's χ 2 test, P =0.040, P =0.016, respectively), while components and proliferation-related proteins were downregulated (Pearson's χ 2 test, P =0.003, P =0.011, respectively). AC + AT treatment increased protein synthesis and secretion, and improved clinical symptoms. These results indicate that acupuncture may be a complimentary therapy for treating postmenopausal dry eye disease.

  11. Nano-Satellite Avionics

    NASA Technical Reports Server (NTRS)

    Culver, Harry

    1999-01-01

    Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)

  12. Spatial capture-recapture: a promising method for analyzing data collected using artificial cover objects

    USGS Publications Warehouse

    Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell

    2016-01-01

    Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.

  13. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes.

    PubMed

    Shen, Yue-Xiao; Song, Woochul C; Barden, D Ryan; Ren, Tingwei; Lang, Chao; Feroz, Hasin; Henderson, Codey B; Saboe, Patrick O; Tsai, Daniel; Yan, Hengjing; Butler, Peter J; Bazan, Guillermo C; Phillip, William A; Hickey, Robert J; Cremer, Paul S; Vashisth, Harish; Kumar, Manish

    2018-06-12

    Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m -2  h -1  bar -1  compared with 4-7 L m -2  h -1  bar -1 ) over similarly rated commercial membranes.

  14. Effect of Photon Radiations in Semi-Rigid Artificial Tissue Sensitized by Protoporphyrin IX Encapsulated with Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Makhadmeh, Ghaseb N.; Aziz, Azlan Abdul; Razak, Khairunisak Abdul; Al-Akhras, M.-Ali H.

    2018-02-01

    This study involves the synthesis of Protoporphyrin IX (PpIX) encapsulated with Silica Nanoparticles (SiNPs) as an application for Photodynamic therapy. Semi-rigid artificial tissues with optical features similar to human tissue were used as sample materials to ascertain the efficacy of PpIX encapsulated with SiNPs. The disparity in optical characteristics (transmittance, reflectance, scattering, and absorption) of tissues treated with encapsulated PpIX and naked PpIX under light exposure (Intensity at 408 nm ~1.19 mW/cm2) was explored. The optimal exposure times required for naked PpIX and SiNPs encapsulated PpIX to engulf Red Blood Cells (RBCs) in the artificial tissue were subsequently measured. Comparative analysis showed that the encapsulated PpIX has a 91.5 % higher efficacy than naked PpIX. The results prove the applicability of PpIX encapsulated with SiNP on artificial tissue and possible use on human tissue.

  15. Micro/nano moire methods

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Shang, Haixia; Xie, Huimin; Li, Biao

    2003-10-01

    Two novel micro/nano moire method, SEM scanning moiré and AFM scanning moire techniques are discussed in this paper. The principle and applications of two scanning moire methods are described in detail. The residual deformation in a polysilicon MEMS cantilever structure with a 5000 lines/mm grating after removing the SiO2 sacrificial layer is accurately measured by SEM scanning moire method. While AFM scanning moire method is used to detect thermal deformation of electronic package components, and formation of nano-moire on a freshly cleaved mica crystal. Experimental results demonstrate the feasibility of these two moire methods, and also show they are effective methods to measure the deformation from micron to nano-scales.

  16. [Artificial organs].

    PubMed

    Raguin, Thibaut; Dupret-Bories, Agnès; Debry, Christian

    2017-01-01

    Research has been fighting against organ failure and shortage of donations by supplying artificial organs for many years. With the raise of new technologies, tissue engineering and regenerative medicine, many organs can benefit of an artificial equivalent: thanks to retinal implants some blind people can visualize stimuli, an artificial heart can be proposed in case of cardiac failure while awaiting for a heart transplant, artificial larynx enables laryngectomy patients to an almost normal life, while the diabetic can get a glycemic self-regulation controlled by smartphones with an artificial device. Dialysis devices become portable, as well as the oxygenation systems for terminal respiratory failure. Bright prospects are being explored or might emerge in a near future. However, the retrospective assessment of putative side effects is not yet sufficient. Finally, the cost of these new devices is significant even if the advent of three dimensional printers may reduce it. © 2017 médecine/sciences – Inserm.

  17. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence.

    PubMed

    Zucker, R M; Daniel, K M; Massaro, E J; Karafas, S J; Degn, L L; Boyes, W K

    2013-10-01

    The cellular uptake of different sized silver nanoparticles (AgNP) (10, 50, and 75 nm) coated with polyvinylpyrrolidone (PVP) or citrate on a human derived retinal pigment epithelial cell line (ARPE-19) was detected by flow cytometry following 24-h incubation of the cells with AgNP. A dose dependent increase of side scatter and far red fluorescence was observed with both PVP and citrate-coated 50 nm or 75 nm silver particles. Using five different flow cytometers, a far red fluorescence signal in the 700-800 nm range increased as much as 100 times background as a ratio comparing the intensity measurements of treated sample and controls. The citrate-coated silver nanoparticles (AgNP) revealed slightly more side scatter and far red fluorescence than did the PVP coated silver nanoparticles. This increased far red fluorescence signal was observed with 50 and 75 nm particles, but not with 10 nm particles. Morphological evaluation by dark field microscopy showed silver particles (50 and 75 nm) clumped and concentrated around the nucleus. One possible hypothesis to explain the emission of far red fluorescence from cells incubated with silver nanoparticles is that the silver nanoparticles inside cells agglomerate into small nano clusters that form surface plasmon resonance which interacts with laser light to emit a strong far red fluorescence signal. The results demonstrate that two different parameters (side scatter and far red fluorescence) on standard flow cytometers can be used to detect and observe metallic nanoparticles inside cells. The strength of the far red fluorescence suggests that it may be particularly useful for applications that require high sensitivity. © Published 2013 Wiley-Periodicals, Inc. Published 2013 Wiley‐Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.

  18. Sub-toxic concentrations of nano-ZnO and nano-TiO2 suppress neurite outgrowth in differentiated PC12 cells.

    PubMed

    Irie, Tomohiko; Kawakami, Tsuyoshi; Sato, Kaoru; Usami, Makoto

    2017-01-01

    Nanomaterials have been extensively used in our daily life, and may also induce health effects and toxicity. Nanomaterials can translocate from the outside to internal organs, including the brain. For example, both nano-ZnO and nano-TiO 2 translocate into the brain via the olfactory pathway in rodents, possibly leading to toxic effects on the brain. Although the effects of nano-ZnO and nano-TiO 2 on neuronal viability or neuronal excitability have been studied, no work has focused on how these nanomaterials affect neuronal differentiation and development. In this study, we investigated the effects of nano-ZnO and nano-TiO 2 on neurite outgrowth of PC12 cells, a useful model system for neuronal differentiation. Surprisingly, the number, length, and branching of differentiated PC12 neurites were significantly suppressed by the 7-day exposure to nano-ZnO (in the range of 1.0 × 10 -4 to 1.0 × 10 -1 µg/mL), at which the cell viability was not affected. The number and length were also significantly inhibited by the 7-day exposure to nano-TiO 2 (1.0 × 10 -3 to 1.0 µg/mL), which did not have cytotoxic effects. These results demonstrate that the neurite outgrowth in differentiated PC12 cells was suppressed by sub-cytotoxic concentrations of nano-ZnO or nano-TiO 2 .

  19. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    PubMed

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Self assembly of nano metric metallic particles for realization of photonic and electronic nano transistors.

    PubMed

    Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev

    2010-05-25

    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles.

  1. [Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].

    PubMed

    Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping

    2012-05-01

    Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.

  2. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties.

    PubMed

    Zeng, Xiaoliang; Ye, Lei; Yu, Shuhui; Li, Hao; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-04-21

    Inspired by the nano/microscale hierarchical structure and the precise inorganic/organic interface of natural nacre, we fabricated artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets (NF-BNNSs) and poly(vinyl alcohol) (PVA) via a vacuum-assisted self-assembly technique. The artificial nacre-like papers exhibit excellent tensile strength (125.2 MPa), on a par with that of the natural nacre, and moreover display a 30% higher toughness (2.37 MJ m(-3)) than that of the natural nacre. These excellent mechanical properties result from an ordered 'brick-and-mortar' arrangement of NF-BNNSs and PVA, in which the long-chain PVA molecules act as the bridge to link NF-BNNSs via hydrogen bonds. The resulting papers also render high thermal conductivity (6.9 W m(-1) K(-1)), and reveal their superiority as flexible substrates to support light-emitting-diode chips. The combined mechanical and thermal properties make the materials highly desirable as flexible substrates for next-generation commercial portable electronics.

  4. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Záruba, K.; Král, V.; Bláhová, O.; Macková, A.; Hnatowicz, V.

    2009-08-01

    Polyethylene (PE) was treated in Ar plasma discharge and then grafted from methanol solution of 1,2-ethanedithiol to enhance adhesion of gold nano-particles or sputtered gold layers. The modified PE samples were either immersed into freshly prepared colloid solution of Au nano-particles or covered by sputtered, 50 nm thick gold nano-layer. Properties of the plasma modified, dithiol grafted and gold coated PE were studied using XPS, UV-VIS, AFM, EPR, RBS methods and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain, creation of excessive free radicals and conjugated double bonds. After grafting with 1,2-ethanedithiol the concentration of free radicals declined but the concentration of double bonds remained unchanged. Plasma treatment changes PE surface morphology and increases surface roughness too. Another significant change in the surface morphology and roughness was observed after deposition of Au nano-particles. The presence of Au on the sample surface after the coating with Au nano-particles was proved by XPS and RBS methods. Nanoindentation measurements shown that the grafting of plasma activated PE surface with dithiol increases significantly adhesion of sputtered Au nano-layer.

  6. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    PubMed

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  7. Self Assembly of Nano Metric Metallic Particles for Realization of Photonic and Electronic Nano Transistors

    PubMed Central

    Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev

    2010-01-01

    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles. PMID:20559513

  8. Efficient artificial mineralization route to decontaminate Arsenic(III) polluted water - the Tooeleite Way

    NASA Astrophysics Data System (ADS)

    Malakar, Arindam; Das, Bidisa; Islam, Samirul; Meneghini, Carlo; de Giudici, Giovanni; Merlini, Marco; Kolen'Ko, Yury V.; Iadecola, Antonella; Aquilanti, Giuliana; Acharya, Somobrata; Ray, Sugata

    2016-05-01

    Increasing exposure to arsenic (As) contaminated ground water is a great threat to humanity. Suitable technology for As immobilization and removal from water, especially for As(III) than As(V), is not available yet. However, it is known that As(III) is more toxic than As(V) and most groundwater aquifers, particularly the Gangetic basin in India, is alarmingly contaminated with it. In search of a viable solution here, we took a cue from the natural mineralization of Tooeleite, a mineral containing Fe(III) and As(III)ions, grown under acidic condition, in presence of SO42- ions. Complying to this natural process, we could grow and separate Tooeleite-like templates from Fe(III) and As(III) containing water at overall circumneutral pH and in absence of SO42- ions by using highly polar Zn-only ends of wurtzite ZnS nanorods as insoluble nano-acidic-surfaces. The central idea here is to exploit these insoluble nano-acidic-surfaces (called as INAS in the manuscript) as nucleation centres for Tooeleite growth while keeping the overall pH of the aqueous media neutral. Therefore, we propose a novel method of artificial mineralization of As(III) by mimicking a natural process at nanoscale.

  9. Nano-composites for water remediation: a review.

    PubMed

    Tesh, Sarah J; Scott, Thomas B

    2014-09-17

    As global populations continue to increase, the pressure on water supplies will inevitably intensify. Consequently the international need for more efficient and cost effective water remediation technologies will also rise. The introduction of nano-technology into the industry may represent a significant advancement and zero-valent iron nano-particles (INPs) have been thoroughly studied for potential remediation applications. However, the application of water dispersed INP suspensions is limited and somewhat contentious on the grounds of safety, whilst INP reaction mechanisms, transport properties and ecotoxicity are areas still under investigation. Theoretically, the development of nano-composites containing INPs to overcome these issues provides the logical next step for developing nano-materials that are better suited to wide application across the water industry. This review provides an overview of the range of static, bulk nano-composites containing INPs being developed, whilst highlighting the limitations of individual solutions, overall classes of technology, and lack of comparative testing for nano-composites. The review discusses what further developments are needed to optimize nano-composite water remediation systems to subsequently achieve commercial maturity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Observation of radio-wave-induced red hydroxyl emission at low altitude in the ionosphere.

    PubMed

    Kagan, L M; Nicolls, M J; Kelley, M C; Carlson, H C; Belikovich, V V; Bakhmet'eva, N V; Komrakov, G P; Trondsen, T S; Donovan, E

    2005-03-11

    We report the discovery of radio-wave-induced red emission of OH Meinel rotation-vibrational bands at 629.79 nm. These are the first measurements of artificial aurora below 100 km. We believe that the 629.79-nm OH emission was due to radio-wave focusing by sporadic ionization clouds near 80-85 km altitude, thus giving a technique to visualize the low-altitude sporadic ionization and providing insight into ionospheric interactions at these low altitudes.

  11. Nano-funnels as electro-osmotic ``tweezers and pistons''

    NASA Astrophysics Data System (ADS)

    Wang, Yanqian; Panyukov, Sergey; Zhou, Jinsheng; Menard, Laurent D.; Ramsey, J. Michael; Rubinstien, Michael

    2014-03-01

    An electric field is used to force a DNA molecule into a nano-channel by compensating the free energy penalty that results from the reduced conformational entropy of the confined macromolecule. Narrow nano-channels require high critical electric fields to achieve DNA translocation, leading to short dwell times of DNA in these channels. We demonstrate that nano-funnels integrated with nano-channels reduce the free energy barrier and lower the critical electric field required for DNA translocation. A focused electric field within the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic pressure at the nano-channel entrance. This ``electro-osmotic piston'' forces the molecule into the nano-channel at lower electric fields than those observed without the funnel. Appropirately designed nano-funnels can also function as tweezers that allow manipulation of the position of the DNA molecule. The predictions of our theory describing double-stranded DNA behavior in nano-funnel - nano-channel devices are consistent with experimental results. Thanks for the financial support from NSF (DMR-1309892, DMR-1121107, DMR-1122483), NIH (1-P50-HL107168, 1-P01-HL108808-01A1, R01HG02647), NHGRI and CF Foundation.

  12. Micro/nano-fabrication technologies for cell biology.

    PubMed

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  13. Micro/nano-fabrication technologies for cell biology

    PubMed Central

    Qian, Tongcheng

    2012-01-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities. PMID:20490938

  14. Comparative evaluation of hydroxyapatite and nano-bioglass in two forms of conventional micro- and nano-particles in repairing bone defects (an animal study).

    PubMed

    Nosouhian, Saied; Razavi, Mohammad; Jafari-Pozve, Nasim; Rismanchian, Mansour

    2015-01-01

    Many synthetic bone materials have been introduced for repairing bone defects. The aim of this study is to comparatively evaluate the efficacy of nano-hydroxyapatite (HA) and nano-bioglass bone materials with their traditional micro counterparts in repairing bone defects. In this prospective animal study, four healthy dogs were included. First to fourth premolars were extracted in each quadrant and five cavities in each quadrant were created using trephine. Sixteen cavities in each dog were filled by HA, nano-HA, bioglass, and nano-bioglass and four defects were left as the control group. All defects were covered by a nonrestorable membrane. Dogs were sacrificed after 15, 30, 45, and 60 days sequentially. All 20 samples were extracted by trephine #8 with a sufficient amount of surrounding bone. All specimens were investigated under an optical microscope and the percentage of total regenerated bone, lamellar, and woven bone were evaluated. Data analysis was carried out by SPSS Software ver. 15 and Mann-Whitney U-test (α =0.05). After 15 days, the bone formation percentage showed a significant difference between HA and nano-HA and between HA and bioglass (P < 0.001). The nano-HA group showed the highest rate of bone formation after 15 days. Nano-bioglass and bioglass and nano-HA and nano-bioglass groups represented a significant difference and nano-bioglass showed the highest rate of bone formation after 30 days (P = 0.01). After 45 days, the bone formation percentage showed a significant difference between nano-bioglass and bioglass and between nano-HA and nano-bioglass groups (P = 0.01). Nano-HA and nano-bioglass biomaterials showed promising results when compared to conventional micro-particles in the repair of bone defects.

  15. Questions raised about benefits of artificial reefs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Twenty-seven subway cars lined on a barge awaited their fate off the coast of Delaware, about 26 kilometers east of the Indian River Inlet, on August 22.A priest blessed the dark-red cars donated by the New York City Transit Authority, and prayed for the safety of all creatures using them. The song, “Sidewalks of New York” filled the festivities: “East side, west side, all around the town…” A woman tossed tokens from those subway lines into the sea. Then, down went the cars, having first been scrubbed clean, with windows removed for better circulation. Shoved by a bulldozer, the cars were deployed in 35 minutes to join a heap of military vehicles, old tires, and other used materials already accumulated at Reef Site 11, a 1.3-square-nautical-mile artificial reef.

  16. Spatial characterization of red and white skin potatoes using nano-second laser induced breakdown in air

    NASA Astrophysics Data System (ADS)

    Rehan, Imran; Rehan, Kamran; Sultana, S.; Haq, M. Oun ul; Niazi, Muhammad Zubair Khan; Muhammad, Riaz

    2016-01-01

    We presents spectroscopic study of the plasma generated by a Q-switched Nd:YAG (1064 nm) laser irradiation of the flesh of red and white skin potatoes. From the spectra recorded with spectrometer (LIBS2500+, Ocean Optics, USA) 11 elements were identified in red skin potato, whereas, the white skin potato was found to have nine elements. Their relative concentrations were estimated using CF-LIBS method for the plasma in local thermodynamic equilibrium. The target was placed in ambient air at atmospheric pressure. The electron temperature and number density were calculated from Boltzmann plot and stark broadened line profile methods, respectively using Fe I spectral lines. The spatial distribution of plasma parameters were also studied which show a decreasing trend of 6770 K-4266 K and (3-2.0) × 1016 cm-3. Concentrations of the detected elements were monitored as a function of depth of the potatoes. Our study reveals a decreasing tendency in concentration of iron from top to the centre of potato's flesh, whereas, the concentrations of other elements vary randomly.

  17. Active control of nano dimers response using piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  18. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder.

    PubMed

    Yuan, Chunmiao; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-30

    Minimum ignition temperature (MIT) of micro Ti powder increased gradually with increases in nano-sized TiO2 employed as an inertant. Solid TiO2 inertant significantly reduced ignition hazard of micro Ti powder in contact with hot surfaces. The MIT of nano Ti powder remained low (583 K), however, even with 90% TiO2. The MIT of micro Ti powder, when mixed with nano Ti powder at concentrations as low as 10%, decreased so dramatically that its application as a solid fuel may be possible. A simple MIT model was proposed for aggregate particle size estimation and better understanding of the inerting effect of nano TiO2 on MIT. Estimated particle size was 1.46-1.51 μm larger than that in the 20-L sphere due to poor dispersion in the BAM oven. Calculated MITs were lower than corresponding empirically determined values for micro Ti powder because nano-sized TiO2 coated the micro Ti powder, thereby decreasing its reaction kinetics. In the case of nano Ti powder, nano-sized TiO2 facilitated dispersion of nano Ti powder which resulted in a calculated MIT that was greater than the experimentally determined value. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Preparation and application of functionalized nano drug carriers.

    PubMed

    Gong, Rudong; Chen, Gaimin

    2016-05-01

    Targeting at category memory characteristics and preparation methods of functionalized nano drugs, preparation technology of functionalized nano drug carriers is studied, and then important role of functionalized nano drug carrier in preparation of medicine is studied. Carry out the relevant literature search with computer, change limited language in the paper to Chinese and necessarily remove repetitive studies. After first review of 1260 retrieved literature, it can be found that nano drug is with accurate quantity, relatively good targeting, specificity and absorbency. Necessary research of nano drug carriers can prevent and treat disease to a certain extent. Preparation of functionalized nanocarrier is simple and convenient, which can improve frequency of use of nano preparation technology and provide better development space for medical use. Therefore, nanocarriers should be combined with drugs with relatively strong specificity in clinics, in order to be able to conduct effective research on nanometer intelligent drug, effectively promote long-term development of nano biotechnology, and then provide favorable, reliable basis for clinical diagnosis and treatment.

  20. Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.

    2005-01-01

    Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.

  1. Optimization Study of Hydrogen Gas Adsorption on Zig-zag Single-walled Carbon Nanotubes: The Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Nasruddin; Lestari, M.; Supriyadi; Sholahudin

    2018-03-01

    The use of hydrogen gas in fuel cell technology has a huge opportunity to be applied in upcoming vehicle technology. One of the most important problems in fuel cell technology is the hydrogen storage. The adsorption of hydrogen in carbon-based materials attracts a lot of attention because of its reliability. This study investigated the adsorption of hydrogen gas in Single-walled Carbon Nano Tubes (SWCNT) with chilarity of (0, 12), (0, 15), and (0, 18) to find the optimum chilarity. Artificial Neural Networks (ANN) can be used to predict the hydrogen storage capacity at different pressure and temperature conditions appropriately, using simulated series of data. The Artificial Neural Network is modeled as a predictor of the hydrogen adsorption capacity which provides solutions to some deficiencies in molecular dynamics (MD) simulations. In a previous study, ANN configurations have been developed for 77k, 233k, and 298k temperatures in hydrogen gas storage. To prepare this prediction, ANN is modeled to find out the configurations that exist in the set of training and validation of specified data selection, the distance between data, and the number of neurons that produce the smallest error. This configuration is needed to make an accurate artificial neural network. The configuration of neural network was then applied to this research. The neural network analysis results show that the best configuration of artificial neural network in hydrogen storage is at 233K temperature i.e. on SWCNT with chilarity of (0.12).

  2. Laser fabrication of perfect absorbers

    NASA Astrophysics Data System (ADS)

    Mizeikis, V.; Faniayeu, I.

    2018-01-01

    We describe design and characterization of electromagnetic metasurfaces consisting of sub-wavelength layers of artificially structured 3D metallic elements arranged into two-dimensional arrays. Such metasurfaces allow novel ways to control propagation, absorption, emission, and polarization state of electromagnetic waves, but their practical realization using traditional planar micro-/nano-fabrication techniques is extremely difficult at infra- red frequencies, where unit cell size must be reduced to few micrometers. We have addressed this challenge by using femtosecond direct laser write (DLW) technique as a high-resolution patterning tool for the fabrication of dielectric templates, followed by a simple metallization process. Functional metasurfaces consisting of metallic helices and vertical split-ring resonators that can be used as perfect absorbers and polarization converters at infra- red frequencies were obtained and characterized experimentally and theoretically. In the future they may find applications in narrow-band infra-red detectors and emitters, spectral filters, and combined into multi-functional, multi-layered structures.

  3. Fibronectin-tethered graphene oxide as an artificial matrix for osteogenesis.

    PubMed

    Subbiah, Ramesh; Du, Ping; Van, Se Young; Suhaeri, Muhammad; Hwang, Mintai P; Lee, Kangwon; Park, Kwideok

    2014-10-20

    An artificial matrix (Fn-Tigra), consisting of graphene oxide (GO) and fibronectin (Fn), is developed on pure titanium (Ti) substrates via an electrodropping technique assisted with a custom-made coaxial needle. The morphology and topography of the resulting artificial matrix is orderly aligned and composed of porous microcavities. In addition, Fn is homogenously distributed and firmly bound onto GO as determined via immunofluorescence and elemental mapping, respectively. The artificial matrix is moderately hydrophobic (63.7°), and exhibits an average roughness of 546 nm and a Young's modulus (E) of approximately 4.8 GPa. The biocompatibility, cellular behavior, and osteogenic potential of preosteoblasts on Fn-Tigra are compared to those of cells cultured on Ti and Ti-GO (Tigra). Cell proliferation and viability are significantly higher on Fn-Tigra and Tigra than that of cells grown on Ti. Focal adhesion molecule (vinculin) expression is highly activated at the central and peripheral area of preosteoblasts when cultured on Fn-Tigra. Furthermore, we demonstrate enhanced in vitro osteogenic differentiation of preosteoblasts cultured on Fn-Tigra over those cultured on bare Ti, as determined via Alizarin red and von Kossa staining, and the analysis of osteocalcin, type I collagen, alkaline phosphatase activity, and calcium contents. Finally, we investigate the biophysical and biomechanical properties of the cells using AFM. While the height and roughness of preosteoblasts increased with time, cell surface area decreased during in vitro osteogenesis over 2 weeks. In addition, the E of cells cultured on Tigra and Fn-Tigra increase in a statistically significant and time-dependent manner by 30%, while those cultured on bare Ti retain a relatively consistent E. In summary, we engineer a biocompatible artificial matrix (Fn-Tigra) capable of osteogenic induction and consequently demonstrate its potential in bone tissue engineering applications.

  4. Photodegradation of methyl red under visible light by mesoporous carbon nitride

    NASA Astrophysics Data System (ADS)

    Hu, Yueyue; Zhang, Min; Xiao, Zaozao; Jiang, Tao; Yan, Bing; Li, Jian

    2018-02-01

    Mesoporous carbon nitride (mpg-C3N4) with tunable microstructure has been successfully prepared through a simple polymerization reaction of cyanamide by a nano hard-templating approach. The obtained materials have been characterized using X-ray diffraction (XRD), N2 adsorption, and Fourier transform infrared (FT-IR) spectroscopy. The results show that the pore diameter of the mpg-C3N4 materials can be easily tuned from 3.8 to 10.5 nm. The mpg-C3N4 materials are demonstrated to exhibit much higher visible light photocatalytic activity than that of g-C3N4 for the degradation of aqueous methyl red (MR). The high surface areas and large pore volume contributed to the efficient visible light photocatalytic activity.

  5. A preliminary study for identification of candidate AFLP markers under artificial selection for shell color in pearl oyster Pinctada fucata.

    PubMed

    Zou, Keshu; Zhang, Dianchang; Guo, Huayang; Zhu, Caiyan; Li, Min; Jiang, Shigui

    2014-05-25

    Pearl oyster Pinctada fucata is widely cultured to produce seawater pearl in South China, and the quality of pearl is significantly affected by its shell color. Thus the Pearl Oyster Selective Breeding Program (POSBP) was carried out for the shell color and growth traits. The black (B), gold (G), red (R) and white (W) shell strains with fast growth trait were achieved after five successive generation selection. In this study, AFLP technique was used to scan genome of four strains with different shell colors to identify the candidate markers under artificial selection. Eight AFLP primer combinations were screened and yielded 688 loci, 676 (98.26%) of which were polymorphic. In black, gold, red and white strains, the percentage of polymorphic loci was 90.41%, 87.79%, 93.60% and 93.31%, respectively, Nei's gene diversity was 0.3225, 0.2829, 0.3221 and 0.3292, Shannon's information index was 0.4801, 0.4271, 0.4825 and 0.4923, and the value of FST was 0.1805. These results suggested that the four different shell color strains had high genetic diversity and great genetic differentiation among strains, which had been subjected to the continuous selective pressures during the artificial selective breeding. Furthermore, six outlier loci were considered as the candidate markers under artificial selection for shell color. This study provides a molecular evidence for the inheritance of shell color of P. fucata. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. NanoRacks CubeSat

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047232 (14 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. International Space Station solar array panels provide the backdrop for the scene.

  7. Nano-plastics in the aquatic environment.

    PubMed

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  8. Antibacterial performance of nano polypropylene filter media containing nano-TiO2 and clay particles

    NASA Astrophysics Data System (ADS)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham; Semnani, Dariush

    2015-10-01

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO2 were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO2 nanoparticles.

  9. Species composition and stand structure of a large red spruce planting 67 years after its establishment in western North Carolina

    Treesearch

    W. Henry McNab; James H. Holbrook; Ted M. Oprean

    2010-01-01

    Red spruce (Picea rubens Michx.) is a large and long-lived species that dominated high-elevation forests of the southern Appalachians before most stands were heavily logged in the early 1900s. Restoration of spruce forests by artificial methods has been studied since the 1920s, but little information is available on characteristics of older planted...

  10. Coarse and nano emulsions for effective delivery of the natural pest control agent pulegone for stored grain protection.

    PubMed

    Golden, Gilad; Quinn, Elazar; Shaaya, Eli; Kostyukovsky, Moshe; Poverenov, Elena

    2018-04-01

    One of the most significant contributors to the global food crisis is grain loss during storage, mainly caused by pest insects. Currently, there are two main methods used for insect pest control: fumigation and grain protection using contact insecticides. As some chemical insecticides can harm humans and the environment, there is a global tendency to reduce their use by finding alternative eco-friendly approaches. In this study, the natural pest-managing agent pulegone was encapsulated into coarse and nano emulsions. The emulsions were characterized using spectroscopic and microscopic methods and their stability and pulegone release ability were examined. The insecticidal activity of the prepared formulations against two stored product insects, rice weevil (Sitophilus oryzae L.) and red flour beetle (Tribolium castaneum Herbst), was demonstrated. The nano emulsion-based formulation offered significant advantages and provided powerful bioactivity, with high (> 90%) mortality rates for as long as 5 weeks for both insects, whereas coarse emulsions showed high efficacy for only 1 week. The developed pulegone-based nano emulsions could serve as a model for an effective alternative method for pest control. Although pulegone is from a natural source, toxicological studies should be performed before the widespread application of pulegone or pulegone-containing essential oils to dry food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Nano Step

    NASA Image and Video Library

    2012-09-25

    ISS033-E-007358 (25 Sept. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, services the Nano Step payload in the Kibo laboratory of the International Space Station.

  12. Every which way--nanos gene regulation in echinoderms.

    PubMed

    Oulhen, Nathalie; Wessel, Gary M

    2014-03-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. Copyright © 2013 Wiley Periodicals, Inc.

  13. Naming it 'nano': Expert views on 'nano' terminology in informed consent forms of first-in-human nanomedicine trials.

    PubMed

    Satalkar, Priya; Elger, Bernice Simone; Shaw, David

    2016-04-01

    Obtaining valid informed consent (IC) can be challenging in first-in-human (FIH) trials in nanomedicine due to the complex interventions, the hype and hope concerning potential benefits, and fear of harms attributed to 'nano' particles. We describe and analyze the opinions of expert stakeholders involved in translational nanomedicine regarding explicit use of 'nano' terminology in IC documents. We draw on content analysis of 46 in-depth interviews with European and North American stakeholders. We received a spectrum of responses (reluctance, ambivalence, absolute insistence) on explicit mention of 'nano' in IC forms with underlying reasons. We conclude that consistent, clear and honest communication regarding the 'nano' dimension of investigational product is critical in IC forms of FIH trials.

  14. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  15. Artificial selection for structural color on butterfly wings and comparison with natural evolution

    PubMed Central

    Wasik, Bethany R.; Liew, Seng Fatt; Lilien, David A.; Dinwiddie, April J.; Noh, Heeso; Cao, Hui; Monteiro, Antónia

    2014-01-01

    Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales’ structural color via slight modifications to the scales’ physical dimensions. PMID:25092295

  16. Artificial selection for structural color on butterfly wings and comparison with natural evolution.

    PubMed

    Wasik, Bethany R; Liew, Seng Fatt; Lilien, David A; Dinwiddie, April J; Noh, Heeso; Cao, Hui; Monteiro, Antónia

    2014-08-19

    Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales' structural color via slight modifications to the scales' physical dimensions.

  17. Electrochemical method of producing nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  18. Effects of artificial illumination on turkey sperm viability.

    PubMed

    Williams, C J; Siopes, T D

    1985-12-01

    The effects of direct exposure of turkey semen to artificial lighting on the quality of the spermatozoa were investigated. Undiluted (neat) and diluted semen were exposed to light or dark treatments for 4 or 6 hr while held at 5, 15, or 25 C. The percentage of normal, abnormal and dead sperm, and the percent fertility was determined after various light and dark treatments. Neat semen held in light at 5, 15, and 25 C, and dilute semen held at 5 and 25 C, contained significantly greater numbers of normal spermatozoa than semen exposed to the dark. A significant rise in the number of abnormal and dead spermatozoa was seen in treated samples held in the dark. Both neat and extended semen exposed to blue light (peak 450 nm) contained significantly greater numbers of normal spermatozoa and fewer abnormal spermatozoa than semen treated with red light (peak 650 nm) after both 4 and 6 hr of treatment. The fertilizing capacity of spermatozoa exposed to light was greater than that of spermatozoa exposed to dark. Artificial insemination of hens with semen exposed to light or darkness for 6 hr resulted in an initial percentage of fertile eggs of about 40% and 24% from the light and dark treated semen, respectively. It was concluded that light resulted in improved quality of turkey semen during a short-term holding period.

  19. Instrument platforms for nano liquid chromatography.

    PubMed

    Šesták, Jozef; Moravcová, Dana; Kahle, Vladislav

    2015-11-20

    The history of liquid chromatography started more than a century ago and miniaturization and automation are two leading trends in this field. Nanocolumn liquid chromatography (nano LC) and largely synonymous capillary liquid chromatography (capillary LC) are the most recent results of this process where miniaturization of column dimensions and sorbent particle size play crucial role. Very interesting results achieved in the research of extremely miniaturized LC columns at the end of the last century lacked distinctive raison d'être and only advances in mass spectrometry brought a real breakthrough. Configuration of nano LC-electrospray ionization mass spectrometry (LC-ESI-MS) has become a basic tool in bioanalytical chemistry, especially in proteomics. This review discusses and summarizes past and current trends in the realization of nano liquid chromatography (nano LC) platforms. Special attention is given to the mobile phase delivery under nanoflow rates (isocratic, gradient) and sample injection to the nanocolumn. Available detection techniques applied in nano LC separations are also briefly discussed. We followed up the key themes from the original scientific reports over gradual improvements up to the contemporary commercial solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are…

  1. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-13

    ISS038-E-046586 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  2. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-13

    ISS038-E-046579 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  3. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  4. Seeing red to being red: conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles.

    PubMed

    Twyman, Hanlu; Valenzuela, Nicole; Literman, Robert; Andersson, Staffan; Mundy, Nicholas I

    2016-08-17

    Avian ketocarotenoid pigments occur in both the red retinal oil droplets that contribute to colour vision and bright red coloration used in signalling. Turtles are the only other tetrapods with red retinal oil droplets, and some also display red carotenoid-based coloration. Recently, the CYP2J19 gene was strongly implicated in ketocarotenoid synthesis in birds. Here, we investigate CYP2J19 evolution in relation to colour vision and red coloration in reptiles using genomic and expression data. We show that turtles, but not crocodiles or lepidosaurs, possess a CYP2J19 orthologue, which arose via gene duplication before turtles and archosaurs split, and which is strongly and specifically expressed in the ketocarotenoid-containing retina and red integument. We infer that CYP2J19 initially functioned in colour vision in archelosaurs and conclude that red ketocarotenoid-based coloration evolved independently in birds and turtles via gene regulatory changes of CYP2J19 Our results suggest that red oil droplets contributed to colour vision in dinosaurs and pterosaurs. © 2016 The Author(s).

  5. Application of Nano-SiO₂ and Nano-Fe₂O₃ for Protection of Steel Rebar in Chloride Contaminated Concrete: Epoxy Nanocomposite Coatings and Nano-Modified Mortars.

    PubMed

    Nguyen, Tuan Anh; Nguyen, The Huyen; Pham, Thi Lua; Dinh, Thi Mai Thanh Dinh; Thai, Hoang; Shi, Xianming

    2017-01-01

    The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel in salt contaminated mortars was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy. Researchers conducted electrochemical monitoring of the coated steel embedded in mortar over 100 days of immersion in 0.1 M NaOH solutions. The chloride permeability and microstructure of Portland cement mortar with admixed nano-materials (at 1% by weight of cement) were examined using an electromigration test and field emission scanning electron microscopy (FESEM). Electrochemical monitoring showed that nano Fe₂O₃ improved the corrosion resistance of the coated rebar. The incorporation of a small amount of nano Fe₂O₃ (1% by total weight of resin and hardener) into the epoxy coating reduced the corrosion current of the epoxy-coated steel in chloride-contaminated mortar (0.3% chloride by weight of cement). After 100 days of immersion, the nanoparticles reduced the corrosion current of epoxy-coated steel by a factor of 6. The FESEM test revealed that admixing of nano-materials not only led to denser cement mortar but also changed the morphology of cement hydration products. The test results of compressive strength showed that nanoparticles increased the strength of cement mortar. The electromigration test showed that the incorporation of nanoparticles improved the chloride penetration resistance of the mortar, as indicated by the reduced apparent diffusion coefficients of the chloride anion. When nano-SiO₂ and nano-Fe₂O₃ were admixed into fresh cement mortar at 1% by weight of cement, the value of D(Cl−) was decreased by 83%, from 7.35×10(−11) m²/s (control specimen) to 1.21×10(−11) m²/s and 1.36×10(−11) m²/s, respectively.

  6. Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE.

    PubMed

    Skibitzki, Oliver; Prieto, Ivan; Kozak, Roksolana; Capellini, Giovanni; Zaumseil, Peter; Arroyo Rojas Dasilva, Yadira; Rossell, Marta D; Erni, Rolf; von Känel, Hans; Schroeder, Thomas

    2017-03-01

    We present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy. The results show single-crystalline, nearly relaxed GaAs NCs on top of slightly, by the SiO 2 -mask compressively strained Si nano-tips (NTs). Given the limited contact area, GaAs/Si nanostructures benefit from limited intermixing in contrast to planar GaAs films on Si. Even though a few growth defects (e.g. stacking faults, micro/nano-twins, etc) especially located at the GaAs/Si interface region were detected, the nanoheterostructures show intensive light emission, as investigated by μ-PL spectroscopy. Achieving well-ordered high quality GaAs NCs on Si NTs may provide opportunities for superior electronic, photonic, or photovoltaic device performances integrated on the silicon technology platform.

  7. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography

    PubMed Central

    Wang, Sheng-Wen; Hong, Kuo-Bin; Tsai, Yu-Lin; Teng, Chu-Hsiang; Tzou, An-Jye; Chu, You-Chen; Lee, Po-Tsung; Ku, Pei-Cheng; Lin, Chien-Chung; Kuo, Hao-Chung

    2017-01-01

    In this research, nano-ring light-emitting diodes (NRLEDs) with different wall width (120 nm, 80 nm and 40 nm) were fabricated by specialized nano-sphere lithography technology. Through the thinned wall, the effective bandgaps of nano-ring LEDs can be precisely tuned by reducing the strain inside the active region. Photoluminescence (PL) and time-resolved PL measurements indicated the lattice-mismatch induced strain inside the active region was relaxed when the wall width is reduced. Through the simulation, we can understand the strain distribution of active region inside NRLEDs. The simulation results not only revealed the exact distribution of strain but also predicted the trend of wavelength-shifted behavior of NRLEDs. Finally, the NRLEDs devices with four-color emission on the same wafer were demonstrated. PMID:28256529

  8. Nano-liquid chromatography applied to enantiomers separation.

    PubMed

    Fanali, Salvatore

    2017-02-24

    This paper presents the state of the art concerning the separation of chiral compounds by means of nano-liquid chromatography (nano-LC). The enantiomers' separation and determination are a subject of fundamental importance in various application fields such as pharmaceutical industry, biomedicine, food, agrochemical etc. Nano-LC is a miniaturized chromatographic technique offering some advantages over conventional ones such as low consumption of mobile phase, sample volume and amount of chiral stationary phase, reduced costs etc. This is reported in the first part of the paper illustrating the features of the nano-LC. In addition, chiral resolution methods are briefly illustrated. Some chiral selectors, used in high-performance liquid chromatography have also been applied in nano-LC including cyclodextrins, glycopeptide antibiotics, modified polysaccharides etc. This is discussed in the second part of the review. Finally some examples of the applications available in literature are reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hydrothermal synthesis of red phosphorus @reduced graphene oxide nanohybrid with enhanced electrochemical performance as anode material of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zhu, Xing; Yuan, Zewei; Wang, Xiaobo; Jiang, Guodong; Xiong, Jian; Yuan, Songdong

    2018-03-01

    Red phosphorus @reduced graphene oxide (P @rGO) nanohybrid was synthesized via a two-step hydrothermal process. The obtained P @rGO nanohybrid was characterized by TEM, SEM, Raman, XRD and XPS. It was found that the nano-scale red phosphorus encapsulated in the reduced graphene oxide and the existence of phosphorus promote the reduction of graphene oxide. The electrochemical performance of P @rGO nanohybrid as an anode material was investigated by galvanostatic charge/discharge, rate performance, cyclic voltammetry and AC impedance test. With increasing the mass of rGO, the electrochemical performance of P @rGO nanohybrid was significantly enhanced. The first discharge/charge specific capacity of the nanohybrid prepared at optimum condition (P:GO = 7:3) could achieve approximately 2400 mAh/g and 1600 mAh/g respectively and still retained ∼1000 mAh/g after 80 cycles and the coulombic efficiency maintained almost 100%. The enhancement in P @rGO nanohybrid was attributed to the introduction of graphene, which led to the elimination of volume effect and the enhancement of conductively of pure red phosphorus.

  10. Artificial Intelligence Project

    DTIC Science & Technology

    1990-01-01

    Artifcial Intelligence Project at The University of Texas at Austin, University of Texas at Austin, Artificial Intelligence Laboratory AITR84-01. Novak...Texas at Austin, Artificial Intelligence Laboratory A187-52, April 1987. Novak, G. "GLISP: A Lisp-Based Programming System with Data Abstraction...of Texas at Austin, Artificial Intelligence Laboratory AITR85-14.) Rim, Hae-Chang, and Simmons, R. F. "Extracting Data Base Knowledge from Medical

  11. Photo-nano immunotherapy for metastatic cancers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan

    2016-03-01

    We constructed a multifunction nano system SWNT-GC and investigated the synergize photothermal and immunological effects. Here, we improve the SWNT-GC nano system and design a new synergistic nano-particle, both have the photothermal effects and immunological effects. We investigate the therapeutic effects and detect the immune response with metastatic mouse tumor models. We also study the therapeutic mechanism after treatment in vitro and in vivo. With the enhancement of nano-materials on photothermal effects, laser treatment could destroy primary tumor and protect normal tissue with low dose laser irradiation. With the immunological effects of nano-materials, the treatment could trigger specific antitumor immune response, to eliminate the metastasis tumor. It is providing a promising treatment modality for the metastatic cancers.

  12. Polyculture Engineering technology of larasati red tilapia (Oreochromis niloticus) and white shrimp (Litopenaeus vannamei) based for protease enzyme

    NASA Astrophysics Data System (ADS)

    Samidjan, I.; Rachmawati, D.

    2018-04-01

    The objective is polyculture technology of red tilapia larasati fish and white shrimp with different combinations density. The material is saline red tilapia larasati 3.29 ± 0.018 g and white shrimp with initial weight 1.39 ± 0.025 g. Seeds are density of red tilapia larasati larvae 5 and 10 larvae / m2 fish. And white shrimp 5 larvae / m2 and 10 larvae / m2. An artificial feed used enzyme dose of 2.25 g / kg. The experimental using complete randomized design 4 treatments and 3 replications that is given seeds 5 larvae / m2 larvae red tilapia larasati and given 5 larvae / m2 white shrimp (A), 5 larvae / m2 red tilapia) and 10 m2 / m2 of white shrimp (B), 10 m2 larvae and 5 m2 white shrimp (C), 10 m2 larvae and 10 m2 white shrimp (D)). The data were growth of absolute weight, survival rate, FCR, and water quality data (temperature, salinity, pH, O2, NO2, NH3). Data were analyzed of variance (F test). The results showed significantly effect (P <0.01) on the growth. The highest absolute growth in D treatment were red tilapia larasati (185.75 ± 0.50g) and white shrimp (25.25 ± 0.95 g).

  13. Artificial intelligence in medicine.

    PubMed Central

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  14. Artificial intelligence in medicine.

    PubMed

    Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J

    2004-09-01

    Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.

  15. 1-dimension nano-material-based flexible device

    NASA Astrophysics Data System (ADS)

    Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong

    2009-11-01

    1D nano-material-based flexible devices has attracted considerable attention owing to the growing need of the high-sensitivity flexible sensor, portable consumer electronics etc.. In this paper, the 1D nano-materials-based flexible device on polyimide substrate was proposed. The bottom-up and top-down combined process were used for constructing the ZnO nanowire and the CNT-based flexible devices. Their electrical characteristics were also investigated. The measurement results demonstrate that the flexible device covered with a layer of Al2O3 has good ohm electrical contact behavior between the nano-material and micro-electrodes. The proposed 1D nano-material-based flexible device shows the application potential in the sensing fields.

  16. Nano-JASMINE: current status and data output

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Yano, Taihei; Gouda, Naoteru; Niwa, Yoshito; Murooka, Jyunpei; Yamada, Yoshiyuki; Sako, Nobutada; Nakasuka, Shin'ichi

    2010-07-01

    The current status of the Nano-JASMINE project is reported. Nano-JASMINE is a very small-sized (50 cm cubic form) satellite that is expected to carry out astrometric observations of nearby bright stars. The satellite will determine distances of more than 8000 stars by performing annual parallax measurements, which is the only direct method to measure the distance of an astronomical object. The mission is required to continue for more than two years to obtain reliable annual parallax measurements. In addition, Nano-JASMINE will serve as a preliminary to the main JASMINE mission. We expect that Nano-JASMINE will be launched in August 2011 from the Alcantara Space Center in Brazil using the Cyclone-4 rocket.

  17. Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces.

    PubMed

    Lay, Alice; Wang, Derek S; Wisser, Michael D; Mehlenbacher, Randy D; Lin, Yu; Goodman, Miriam B; Mao, Wendy L; Dionne, Jennifer A

    2017-07-12

    Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF 4 nanoparticles (NPs) doped with Yb 3+ , Er 3+ , and Mn 2+ . The lanthanides Yb 3+ and Er 3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn 2+ adds force tunability through its crystal field sensitivity. Using a diamond anvil cell to exert up to 3.5 GPa pressure or ∼10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF 4 and from yellow-green to green for d-metal optimized β-NaYF 4 when illuminated in the near infrared. Consistent readouts are recorded over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.

  18. Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Alice; Wang, Derek S.; Wisser, Michael D.

    Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF4 nanoparticles (NPs) doped with Yb3+, Er3+, and Mn2+. The lanthanides Yb3+ and Er3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn2+ adds force tunability through its crystal field sensitivity. Using a diamond anvil cell to exert up to 3.5 GPa pressuremore » or ~10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF4 and from yellow–green to green for d-metal optimized β-NaYF4 when illuminated in the near infrared. Consistent readouts are recorded over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.« less

  19. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaoliang; Ye, Lei; Yu, Shuhui; Li, Hao; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-04-01

    Inspired by the nano/microscale hierarchical structure and the precise inorganic/organic interface of natural nacre, we fabricated artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets (NF-BNNSs) and poly(vinyl alcohol) (PVA) via a vacuum-assisted self-assembly technique. The artificial nacre-like papers exhibit excellent tensile strength (125.2 MPa), on a par with that of the natural nacre, and moreover display a 30% higher toughness (2.37 MJ m-3) than that of the natural nacre. These excellent mechanical properties result from an ordered `brick-and-mortar' arrangement of NF-BNNSs and PVA, in which the long-chain PVA molecules act as the bridge to link NF-BNNSs via hydrogen bonds. The resulting papers also render high thermal conductivity (6.9 W m-1 K-1), and reveal their superiority as flexible substrates to support light-emitting-diode chips. The combined mechanical and thermal properties make the materials highly desirable as flexible substrates for next-generation commercial portable electronics.Inspired by the nano/microscale hierarchical structure and the precise inorganic/organic interface of natural nacre, we fabricated artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets (NF-BNNSs) and poly(vinyl alcohol) (PVA) via a vacuum-assisted self-assembly technique. The artificial nacre-like papers exhibit excellent tensile strength (125.2 MPa), on a par with that of the natural nacre, and moreover display a 30% higher toughness (2.37 MJ m-3) than that of the natural nacre. These excellent mechanical properties result from an ordered `brick-and-mortar' arrangement of NF-BNNSs and PVA, in which the long-chain PVA molecules act as the bridge to link NF-BNNSs via hydrogen bonds. The resulting papers also render high thermal conductivity (6.9 W m-1 K-1), and reveal their superiority as flexible substrates to support light-emitting-diode chips. The combined mechanical and thermal properties make

  20. Nano-formulations of drugs: Recent developments, impact and challenges.

    PubMed

    Jeevanandam, Jaison; Chan, Yen San; Danquah, Michael K

    2016-01-01

    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Artificial life and Piaget.

    PubMed

    Mueller, Ulrich; Grobman, K H.

    2003-04-01

    Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.

  2. Current safety practices in nano-research laboratories in China.

    PubMed

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  3. Nano Traditional Chinese Medicine: Current Progresses and Future Challenges.

    PubMed

    Huang, Yi; Zhao, Yinglan; Liu, Fang; Liu, Songqing

    2015-01-01

    Nano traditional Chinese medicine (nano TCM) refers to bioactive ingredients, bioactive parts, medicinal materials or complex prescription, being approximately 100 nm in size, which are processed by nanotechnology. Nano TCM is a product of the TCM modernization, and is an application of nanotechnology in the field of TCM. This article reviews literatures on researches of nano TCM, which were published in the past 15 years. Different nanotechnologies have been used in preparation of Nano TCM in view of the varying aims of the study. The mechanical crushing technology is the main approach for nanolization of TCM material and complex prescription, and nanoparticulate drug delivery systems is the main approach for nanolization of bioactive ingredients or bioactive parts in TCM. Nano TCM has a number of advantages, for example, enhancing the bioavailability of TCM, reducing the adverse effects of TCM, achieving sustained release, attaining targeted delivery, enhancing pharmacological effects and improving the administration route of TCM. However, there are still many problems that must be resolved in nano TCM research. The main challenges to nano TCM include the theory system of TCM modernization, preparation technology, safety and stability, etc.

  4. Red Sky with Red Mesa

    ScienceCinema

    None

    2018-01-16

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  5. Traversing the Skin Barrier with Nano-emulsions.

    PubMed

    Burger, Cornel; Shahzad, Yasser; Brummer, Alicia; Gerber, Minja; du Plessis, Jeanetta

    2017-01-01

    In recent years, colloidal delivery systems based on nano-emulsion are gaining popularity; being used for encapsulation and delivery of many drugs. This review therefore aims at summarizing various methods of nano-emulsion formulation and their use as a topical and transdermal delivery vehicle for a number of active pharmaceutical ingredients from different pharmacological classes. This article represents a systematic review of nano-emulsions for topical and transdermal drug delivery. A vast literature was searched and critically analysed. Nano-emulsions are thermokinetically stable dispersion systems, which have been used in topical and transdermal delivery of a number of pharmaceutically active compounds. Nano-emulsions have a narrow droplet size range with tuneable surface properties, which make them an ideal delivery vehicle. Nanoemulsions have a number of advantages over conventional emulsions, including easy preparation using various low and high energy methods, optical transparency, high solubilisation capacity, high stability to droplet aggregation and the ability to penetrate the skin; thus allowing the transdermal delivery of drugs. This review indicated that nano-emulsions are promising vehicle for entrapping various drugs and are suitable for traversing the skin barrier for systemic effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. A genome-wide scan for signatures of differential artificial selection in ten cattle breeds.

    PubMed

    Rothammer, Sophie; Seichter, Doris; Förster, Martin; Medugorac, Ivica

    2013-12-21

    Since the times of domestication, cattle have been continually shaped by the influence of humans. Relatively recent history, including breed formation and the still enduring enormous improvement of economically important traits, is expected to have left distinctive footprints of selection within the genome. The purpose of this study was to map genome-wide selection signatures in ten cattle breeds and thus improve the understanding of the genome response to strong artificial selection and support the identification of the underlying genetic variants of favoured phenotypes. We analysed 47,651 single nucleotide polymorphisms (SNP) using Cross Population Extended Haplotype Homozygosity (XP-EHH). We set the significance thresholds using the maximum XP-EHH values of two essentially artificially unselected breeds and found up to 229 selection signatures per breed. Through a confirmation process we verified selection for three distinct phenotypes typical for one breed (polledness in Galloway, double muscling in Blanc-Bleu Belge and red coat colour in Red Holstein cattle). Moreover, we detected six genes strongly associated with known QTL for beef or dairy traits (TG, ABCG2, DGAT1, GH1, GHR and the Casein Cluster) within selection signatures of at least one breed. A literature search for genes lying in outstanding signatures revealed further promising candidate genes. However, in concordance with previous genome-wide studies, we also detected a substantial number of signatures without any yet known gene content. These results show the power of XP-EHH analyses in cattle to discover promising candidate genes and raise the hope of identifying phenotypically important variants in the near future. The finding of plausible functional candidates in some short signatures supports this hope. For instance, MAP2K6 is the only annotated gene of two signatures detected in Galloway and Gelbvieh cattle and is already known to be associated with carcass weight, back fat thickness and

  7. In Planta Synthesis of Designer-Length Tobacco Mosaic Virus-Based Nano-Rods That Can Be Used to Fabricate Nano-Wires.

    PubMed

    Saunders, Keith; Lomonossoff, George P

    2017-01-01

    We have utilized plant-based transient expression to produce tobacco mosaic virus (TMV)-based nano-rods of predetermined lengths. This is achieved by expressing RNAs containing the TMV origin of assembly sequence (OAS) and the sequence of the TMV coat protein either on the same RNA molecule or on two separate constructs. We show that the length of the resulting nano-rods is dependent upon the length of the RNA that possesses the OAS element. By expressing a version of the TMV coat protein that incorporates a metal-binding peptide at its C-terminus in the presence of RNA containing the OAS we have been able to produce nano-rods of predetermined length that are coated with cobalt-platinum. These nano-rods have the properties of defined-length nano-wires that make them ideal for many developing bionanotechnological processes.

  8. In Planta Synthesis of Designer-Length Tobacco Mosaic Virus-Based Nano-Rods That Can Be Used to Fabricate Nano-Wires

    PubMed Central

    Saunders, Keith; Lomonossoff, George P.

    2017-01-01

    We have utilized plant-based transient expression to produce tobacco mosaic virus (TMV)-based nano-rods of predetermined lengths. This is achieved by expressing RNAs containing the TMV origin of assembly sequence (OAS) and the sequence of the TMV coat protein either on the same RNA molecule or on two separate constructs. We show that the length of the resulting nano-rods is dependent upon the length of the RNA that possesses the OAS element. By expressing a version of the TMV coat protein that incorporates a metal-binding peptide at its C-terminus in the presence of RNA containing the OAS we have been able to produce nano-rods of predetermined length that are coated with cobalt-platinum. These nano-rods have the properties of defined-length nano-wires that make them ideal for many developing bionanotechnological processes. PMID:28878782

  9. Nano-Computed Tomography: Technique and Applications.

    PubMed

    Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A

    2016-02-01

    Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.

  10. Performance of concrete incorporating colloidal nano-silica

    NASA Astrophysics Data System (ADS)

    Zeidan, Mohamed Sabry

    Nanotechnology, as one of the most modern fields of science, has great market potential and economic impact. The need for research in the field of nanotechnology is continuously on the rise. During the last few decades, nanotechnology was developing rapidly into many fields of applied sciences, engineering and industrial applications, especially through studies of physics, chemistry, medicine and fundamental material science. These new developments may be attributed to the fact that material properties and performance can be significantly improved and controlled through nano-scale processes and nano-structures. This research program aims at 1) further understanding the behavior of cementitious materials when amended on the nano-scale level and 2) exploring the effect of this enhancement on the microstructure of cement matrix. This study may be considered as an important step towards better understanding the use of nano-silica in concrete. The main goal of the study is to investigate the effect of using colloidal nano-silica on properties of concrete, including mechanical properties, durability, transport properties, and microstructure. The experimental program that was conducted included a laboratory investigation of concrete mixtures in which nano-silica was added to cement or to a combination of cement and Class F fly ash. Various ratios of nano-silica were used in concrete mixtures to examine the extent and types of improvements that could be imparted to concrete. The conducted experimental program assessed these improvements in terms of reactivity, mechanical properties, and durability of the mixtures under investigation. Advanced testing techniques---including mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM)---were used to investigate the effect of nano-silica on the microstructure of the tested mixtures. In addition, the effect of nano-silica on the alkali-silica reaction (ASR) was examined using various techniques, including testing

  11. Measuring Understanding of Nanoscience and Nanotechnology: Development and Validation of the Nano-Knowledge Instrument (NanoKI)

    ERIC Educational Resources Information Center

    Schönborn, K. J.; Höst, G. E.; Lundin Palmerius, K. E.

    2015-01-01

    As the application of nanotechnology in everyday life impacts society, it becomes critical for citizens to have a scientific basis upon which to judge their perceived hopes and fears of 'nano'. Although multiple instruments have been designed for assessing attitudinal and affective aspects of nano, surprisingly little work has focused on…

  12. Pronounced effects of the nominal concentrations of WO3 and Ag: WO3 nano-plates (obtained by a co-precipitation method) on their structural, morphological and optical properties

    NASA Astrophysics Data System (ADS)

    Rajendran, V.; Deepa, B.

    2018-03-01

    Tungsten oxide and different concentration of silver (Ag)-doped tungsten oxide nano material were synthesized by co-precipitation technique. The functional vibrations, structure, and morphology of as-prepared nano material were studied by Fourier transmission infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM) and High-resolution transmission electron microscopy (HR-TEM) techniques. The SEM and HR-TEM analysis revealed the formation of nano-plate/nano rods with an average diameter of 40-80 nm diameter and 1-1.5 mm length. Fluorescence (PL) and UV-visible absorption techniques have been used to study the optical properties of the prepared nanoparticles. The observed red shift in the visible absorption spectra confirmed the promoted electron-phonon interaction in WO3 and Ag: WO3 nanoparticles compared to bulk structures. The photoluminescence of nanocrystalline Ag2+ doped WO3 exhibited a strong violet-blue, blue-green emission. Concentration dependence of the emission intensity of Ag2+ in WO3 was studied, and the significant concentration was found to be 0.5% of Ag: WO3. The effluent dye degradation executed for the 0.5% of Ag: WO3 sample under the visible light which reveals the highest degradation efficiency in appropriate time.

  13. In vitro assembly of semi-artificial molecular machine and its use for detection of DNA damage.

    PubMed

    Minchew, Candace L; Didenko, Vladimir V

    2012-01-11

    Naturally occurring bio-molecular machines work in every living cell and display a variety of designs. Yet the development of artificial molecular machines centers on devices capable of directional motion, i.e. molecular motors, and on their scaled-down mechanical parts (wheels, axels, pendants etc). This imitates the macro-machines, even though the physical properties essential for these devices, such as inertia and momentum conservation, are not usable in the nanoworld environments. Alternative designs, which do not follow the mechanical macromachines schemes and use mechanisms developed in the evolution of biological molecules, can take advantage of the specific conditions of the nanoworld. Besides, adapting actual biological molecules for the purposes of nano-design reduces potential dangers the nanotechnology products may pose. Here we demonstrate the assembly and application of one such bio-enabled construct, a semi-artificial molecular device which combines a naturally-occurring molecular machine with artificial components. From the enzymology point of view, our construct is a designer fluorescent enzyme-substrate complex put together to perform a specific useful function. This assembly is by definition a molecular machine, as it contains one. Yet, its integration with the engineered part - fluorescent dual hairpin - re-directs it to a new task of labeling DNA damage. Our construct assembles out of a 32-mer DNA and an enzyme vaccinia topoisomerase I (VACC TOPO). The machine then uses its own material to fabricate two fluorescently labeled detector units (Figure 1). One of the units (green fluorescence) carries VACC TOPO covalently attached to its 3'end and another unit (red fluorescence) is a free hairpin with a terminal 3'OH. The units are short-lived and quickly reassemble back into the original construct, which subsequently recleaves. In the absence of DNA breaks these two units continuously separate and religate in a cyclic manner. In tissue sections

  14. Bio-Based Artificial Nacre with Excellent Mechanical and Barrier Properties Realized by a Facile In Situ Reduction and Cross-Linking Reaction.

    PubMed

    Shahzadi, Kiran; Mohsin, Imran; Wu, Lin; Ge, Xuesong; Jiang, Yijun; Li, Hui; Mu, Xindong

    2017-01-24

    Demands for high strength integrated materials have substantially increased across various kinds of industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, a simple and facile method to fabricate high strength integrated artificial nacre based on sodium carboxymethylcellulose (CMC) and borate cross-linked graphene oxide (GO) sheets has been developed. The tensile strength and toughness of cellulose-based hybrid material reached 480.5 ± 13.1 MPa and 11.8 ± 0.4 MJm -3 by a facile in situ reduction and cross-linking reaction between CMC and GO (0.7%), which are 3.55 and 6.55 times that of natural nacre. This hybrid film exhibits better thermal stability and flame retardancy. More interestingly, the hybrid material showed good water stability compared to that in the original water-soluble CMC. This type of hybrid has great potential applications in aerospace, artificial muscle, and tissue engineering.

  15. Rotation motion of designed nano-turbine.

    PubMed

    Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong

    2014-07-28

    Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called "dragging effect". Moreover, counterintuitively, the ratio of "effective" driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors.

  16. Rotation Motion of Designed Nano-Turbine

    PubMed Central

    Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong

    2014-01-01

    Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called “dragging effect”. Moreover, counterintuitively, the ratio of “effective” driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors. PMID:25068725

  17. [Influence on mechanical properties and microstructure of nano-zirconia toughened alumina ceramics with nano-zirconia content].

    PubMed

    Wang, Guang-Kui; Kang, Hong; Bao, Guang-Jie; Lv, Jin-Jun; Gao, Fei

    2006-10-01

    To investigate the mechanical properties and microstructure of nano -zirconia toughened alumina ceramics with variety of nano-zirconia content in centrifugal infiltrate casting processing of dental all-ceramic. Composite powder with different ethanol-water ratio, obtained serosity from ball milling and centrifugal infiltrate cast processing of green, then sintered at 1 450 degrees C for 8 h. The physical and mechanical properties of the sintered sample after milling and polishing were tested. Microstructures of the surface and fracture of the sintered sample were investigated by SEM. The experimental results showed that there had statistical significience (P < 0.01) on static three-point flexure strength and Vickers Hardness in three kinds of different nano-zirconia content sintered sample. Fracture toughness of 20% group was different from other two groups, while 10% group had not difference from 30% group (P < 0.05). The mechanical properties of this ceramic with 20% nano-zirconia was the best of the three, the static three-point flexure strength was (433 +/- 19) MPa and fracture toughness was (7.50 +/- 0.56) MPa x min 1/2. The intra/inter structure, fracture of intragranular and intergranular on the surface and fracture of sintered sample in microstrucre was also found. Intra/inter structure has strengthen toughness in ceramics. It has better toughness with 20% nano-zirconia, is suitable dental all-ceramic restoratives.

  18. Nano-imaging enabled via self-assembly

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2014-01-01

    SUMMARY Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles. PMID:25506387

  19. Fiber-Reinforced Reactive Nano-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  20. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility.

    PubMed

    Wrobeln, Anna; Laudien, Julia; Groß-Heitfeld, Christoph; Linders, Jürgen; Mayer, Christian; Wilde, Benjamin; Knoll, Tanja; Naglav, Dominik; Kirsch, Michael; Ferenz, Katja B

    2017-06-01

    Until today, artificial oxygen carriers have not been reached satisfactory quality for routine clinical treatments. To bridge this gap, we designed albumin-derived perfluorocarbon-based nanoparticles as novel artificial oxygen carriers and evaluated their physico-chemical and pharmacological performance. Our albumin-derived perfluorocarbon-based nanoparticles (capsules), composed of an albumin shell and a perfluorodecalin core, were synthesized using ultrasonics. Their subsequent analysis by physico-chemical methods such as scanning electron-, laser scanning- and dark field microscopy as well as dynamic light scattering revealed spherically-shaped, nano-sized particles, that were colloidally stable when dispersed in 5% human serum albumin solution. Furthermore, they provided a remarkable maximum oxygen capacity, determined with a respirometer, reflecting a higher oxygen transport capacity than the competitor Perftoran®. Intravenous administration to healthy rats was well tolerated. Undesirable effects on either mean arterial blood pressure, hepatic microcirculation (determined by in vivo microscopy) or any deposit of capsules in organs, except the spleen, were not observed. Some minor, dose-dependent effects on tissue damage (release of cellular enzymes, alterations of spleen's micro-architecture) were detected. As our promising albumin-derived perfluorocarbon-based nanoparticles fulfilled decisive physico-chemical demands of an artificial oxygen carrier while lacking severe side-effects after in vivo administration they should be advanced to functionally focused in vivo testing conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Recent development of nano-materials used in DNA biosensors.

    PubMed

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  2. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  3. [Novel artificial lamina for prevention of epidural adhesions after posterior cervical laminectomy].

    PubMed

    Lü, Chaoliang; Song, Yueming; Liu, Hao; Liu, Limin; Gong, Quan; Li, Tao; Zeng, Jiancheng; Kong, Qingquan; Pei, Fuxing; Tu, Chongqi; Duan, Hong

    2013-07-01

    To evaluate the application of artificial lamina of multi-amino-acid copolymer (MAACP)/nano-hydroxyapatite (n-HA) in prevention of epidural adhesion and compression of scar tissue after posterior cervical laminectomy. Fifteen 2-year-old male goats [weighing, (30 +/- 2) kg] were randomly divided into experimental group (n=9) and control group (n=6). In the experimental group, C4 laminectomy was performed, followed by MAACP/n-HA artificial lamina implantations; in the control group, only C4 laminectomy was performed. At 4, 12, and 24 weeks after operation, 2, 2, and 5 goats in the experimental group and 2, 2, and 2 goats in the control group were selected for observation of wound infection, artificial laminar fragmentation and displacement, and its shape; Rydell's degree of adhesion criteria was used to evaluate the adhesion degree between 2 groups. X-ray and CT images were observed; at 24 weeks after operation, CT scan was used to measure the spinal canal area and the sagittal diameter of C3, C4, and C5 vertebrea, 2 normal goats served as normal group; and MRI was used to assess adhesion and compression of scar tissue on the dura and the nerve root. Then goats were sacrificed and histological observation was carried out. After operation, the wound healed well; no toxicity or elimination reaction was observed. According to Rydell's degree of adhesion criteria, adhesion in the experimental group was significantly slighter than that in the control group (Z= -2.52, P=0.00). X-ray and CT scan showed that no dislocation of artificial lamina occurred, new cervical bone formed in the defect, and bony spinal canal was rebuilt in the experimental group. Defects of C4 vertebral plate and spinous process were observed in the control group. At 24 weeks, the spinal canal area and sagittal diameter of C4 in the experimental group and normal group were significantly larger than those in the control group (P < 0.05), but no significant difference was found between experimental group

  4. Hybrid Plasmonic Microring Nano-Ruler.

    PubMed

    Du, Jing; Wang, Jian

    2018-06-15

    Surface plasmonic polariton (SPP) has attracted increasing interest for its ability of confining light in the subwavelength scale and breaking the diffraction limit. Recently, there have appeared several important developments of SPP applied in plasmon rulers, waveguides and resonators. By combing these concepts we present a novel hybrid plasmonic microring nano-ruler relying on the sensitive hybrid mode property and the microring resonator structure. The designed nano-ruler can measure distance in nanoscale resolution and offer adjustable sensitivity, which exceeds 14.8 as the distance is less than 5 nm by recording the transmission spectra and outstrips 200 dB/nm by observing the shift of output intensity. These demonstrations suggest that hybrid plasmonic microring nano-ruler could be a promising candidate enabling high-resoluation measurement.

  5. A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum.

    PubMed

    Schmitt-Engel, Christian; Cerny, Alexander C; Schoppmeier, Michael

    2012-04-15

    Abdominal patterning in Drosophila requires the function of Nanos (nos) and Pumilio (pum) to repress posterior translation of hunchback mRNA. Here we provide the first functional analysis of nanos and pumilio genes during blastodermal patterning of a short-germ insect. We found that nos and pum in the red flour beetle Tribolium castaneum crucially contribute to posterior segmentation by preventing hunchback translation. While this function seems to be conserved among insects, we provide evidence that Nos and Pum may also act on giant expression, another gap gene. After depletion of nos and pum by parental RNAi, Hunchback and giant remain ectopically at the posterior blastoderm and the posterior Krüppel (Kr) domain is not being activated. giant may be a direct target of Nanos and Pumilio in Tribolium and presumably prevents early Kr expression. In the absence of Kr, the majority of secondary gap gene domains fail to be activated, and abdominal segmentation is terminated prematurely. Surprisingly, we found Nos and Pum also to be involved in early head patterning, as the loss of Nos and Pum results in deletions and transformations of gnathal and pre-gnathal anlagen. Since the targets of Nos and Pum in head development remain to be identified, we propose that anterior patterning in Tribolium may involve additional maternal factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Every which way – nanos gene regulation in echinoderms

    PubMed Central

    Oulhen, Nathalie; Wessel, Gary M.

    2014-01-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. PMID:24376110

  7. Single Molecule Nano-Metronome

    PubMed Central

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2008-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule sensor of minute sequence differences of a target DNA. PMID:16522050

  8. Screening and formulation of chemoattractant coatings for artificial reef structures.

    PubMed

    Lee, Han Seong; Sidharthan, M; Shim, Cheol Soo; Kim, Young Do; Lim, Chi Young; Ko, J W; Han, Man Deuk; Rang, Maeng Joo; Bim, Lee Sae; Cho, Hwan Sung; Shin, H W

    2008-07-01

    This study was carried out to augment the colonization of marine benthic communities on artificial reef structure. Increasing marine pollution along with various natural hazards cause severe damages to marine algae and associated fauna. In recent years, artificial reefs have been deployed in coastal regions of several parts of the world in order to increase the marine productivity. They are mainly built with concrete materials, however their leachates have considerable impacts on algae. Therefore to increase the algal colonization five chemoattractants such as ferrous sulfate, zinc oxide, ammonium nitrate, sodium phosphate and ferrous lactate were screened against spores of a fouling alga, Ulva pertusa. FeSO4 / ZnO (8:2) and ferrous lactate coatings showed the highest spore attachment with 52 +/- 5.2 cm2 and 79.5 +/- 10.2 cm2 spores respectively (p<0.01). Furthermore using these chemoattractants, coating formulations were made and their performances were investigated at East coast (Ayajin harbor) and South coast (Meejo harbor) of Korea. A maximum fouling coverage (with green algae 25%, red algae 11.3% and brown algae 63.7%) was estimated from ferrous lactate coatings (p<0.01). Different composition of coating formulations and their chemoattractive properties were evaluated.

  9. Preparation of hybrid nano biocomposite κ-carrageenan/cellulose nanocrystal/nanoclay

    NASA Astrophysics Data System (ADS)

    Zakuwan, Siti Zarina; Ahmad, Ishak; Ramli, Nazaruddin

    2013-11-01

    Biodegradable composites film based on κ-carrageenan and nano particles as filler was prepared to study the mechanical strength of carrageenan composites. Solution casting technique was used to prepare_this biocomposite. Preparation of composite film and nano filler involve two stages, preparation of cellulose nanocrystals (CNC) from kenaf with alkali treatment, bleaching, and hydrolysis followed by the preparation of two types of nano composite. Tensile test was carried on the composite film based on κ-carrageenan with the variation percentage of CNC and nano clay to obtain the optimum CNC and nano clay loading. After that hybrid nano-biocomposite film based on κ-carrageenan with the variation percentage of CNC/nano clay (OMMT) according to optimum value of composite carrageenan/CNC and composite carrageenan/nano clay film was prepared. The effect of nano filler on the mechanical properties of carrageenan films was examined. κ-carrageenan biocomposite increased with the optimum at 4% CNC and nano clay composition. Additional improvement of tensile strength with hybridization of CNC and nanoclay indicated better mechanical properties.

  10. Hierarchical multiscale structure–property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak

    PubMed Central

    Lee, Nayeon; Horstemeyer, M. F.; Rhee, Hongjoo; Nabors, Ben; Liao, Jun; Williams, Lakiesha N.

    2014-01-01

    We experimentally studied beaks of the red-bellied woodpecker to elucidate the hierarchical multiscale structure–property relationships. At the macroscale, the beak comprises three structural layers: an outer rhamphotheca layer (keratin sheath), a middle foam layer and an inner bony layer. The area fraction of each layer changes along the length of the beak giving rise to a varying constitutive behaviour similar to functionally graded materials. At the microscale, the rhamphotheca comprises keratin scales that are placed in an overlapping pattern; the middle foam layer has a porous structure; and the bony layer has a big centre cavity. At the nanoscale, a wavy gap between the keratin scales similar to a suture line was evidenced in the rhamphotheca; the middle foam layer joins two dissimilar materials; and mineralized collagen fibres were revealed in the inner bony layer. The nano- and micro-indentation tests revealed that the hardness (associated with the strength, modulus and stiffness) of the rhamphotheca layer (approx. 470 MPa for nano and approx. 320 MPa for micro) was two to three times less than that of the bony layer (approx. 1200 MPa for nano and approx. 630 MPa for micro). When compared to other birds (chicken, finch and toucan), the woodpecker's beak has more elongated keratin scales that can slide over each other thus admitting dissipation via shearing; has much less porosity in the bony layer thus strengthening the beak and focusing the stress wave; and has a wavy suture that admits local shearing at the nanoscale. The analysis of the woodpeckers' beaks provides some understanding of biological structural materials' mechanisms for energy absorption. PMID:24812053

  11. Evolution of phenolic compounds and astringency during aging of red wine: effect of oxygen exposure before and after bottling.

    PubMed

    Gambuti, Angelita; Rinaldi, Alessandra; Ugliano, Maurizio; Moio, Luigi

    2013-02-27

    The aim of this study was to evaluate the effect of oxygen exposure of red wine, before (micro-oxygenation) and after (nano-oxygenation) bottling, on the phenolic composition and astringency of wine. The astringency was evaluated by sensory analysis and by a method based on the SDS-PAGE of salivary proteins after reaction of saliva with wine (SPI, saliva precipitation index). Micro-oxygenation caused a stabilization of color, but this effect disappeared after long aging. For the wine with the lower pH a decrease of wine astringency and SPI was observed 42 months after micro-oxygenation. Oxygen ingress through the closure postbottling was positively correlated with the decrease of SPI. Therefore, the astringency and reactivity of wines toward salivary proteins of a bottled red wine can be modulated by controlled oxygen exposure during aging. For both experiments the effect of oxygen exposure depended on wine composition.

  12. NanoBench: An Individually Addressable Nanotube Array

    DTIC Science & Technology

    2006-03-25

    17 (1999). 5 Cai, L., H. Tabata and T. Kawai, "Probing electrical properties of oriented DNA by conducting atomic force microscopy", Nanotechnology 12...the e-beam hits the other side of the NanoBench. This allows the cells to be kept alive in a biological medium while they are being tested. The key...advantage of the NanoBench is that the e-beam never hits the sample. UHV Technologies Inc. 7 NanoBench: An Individually Addressable Nanotube Array Final

  13. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    PubMed

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Micromirror arrays to assess luminescent nano-objects.

    PubMed

    Kawakami, Yoichi; Kanai, Akinobu; Kaneta, Akio; Funato, Mitsuru; Kikuchi, Akihiko; Kishino, Katsumi

    2011-05-01

    We propose an array of submicrometer mirrors to assess luminescent nano-objects. Micromirror arrays (MMAs) are fabricated on Si (001) wafers via selectively doping Ga using the focused ion beam technique to form p-type etch stop regions, subsequent anisotropic chemical etching, and Al deposition. MMAs provide two benefits: reflection of luminescence from nano-objects within MMAs toward the Si (001) surface normal and nano-object labeling. The former increases the probability of optics collecting luminescence and is demonstrated by simulations based on the ray-tracing and finite-difference time-domain methods as well as by experiments. The latter enables different measurements to be repeatedly performed on a single nano-object located at a certain micromirror. For example, a single InGaN∕GaN nanocolumn is assessed by scanning electron microscopy and microphotoluminescence spectroscopy.

  15. Fabrication of micro/nano optical fiber by mechano-electrospinning

    NASA Astrophysics Data System (ADS)

    Chen, Qinnan; Wu, Dezhi; Yu, Zhe; Mei, Xuecui; Fang, Ke; Sun, Daoheng

    2017-10-01

    We study a novel fabrication method of micro/nano optical fiber by mechano-electrospinning (MES) direct-written technology. MES process is able to precisely manipulate the position and diameter of the electro-spun micro/nano fiber by adjusting the mechanical drawing force, which through changing the speed of motion stage (substrate). By adjusting the substrate speed, the nozzle-to-substrate distance and the applied voltage, the poly(methyl methacrylate) (PMMA) micro/nano optical fibers (MNOF) with controlled diameter are obtained and the tapered MNOF are fabricated by continuously changing the substrate speed. The transmission characteristics of PMMA micro/nano fiber is experimentally demonstrated, and a PMMA micro/nano fiber based refractive index sensor is designed. Our works shows the new fabrication method of MNOF by MES has the potential in the field of light mode conversion, optical waveguide coupling, refractive index detection and new micro/nano optical fiber components.

  16. Nano-graphene in biomedicine: theranostic applications.

    PubMed

    Yang, Kai; Feng, Liangzhu; Shi, Xiaoze; Liu, Zhuang

    2013-01-21

    Owing to their unique physical and chemical properties, graphene and its derivatives such as graphene oxide (GO), reduced graphene oxide (RGO) and GO-nanocomposites have attracted tremendous interest in many different fields including biomedicine in recent years. With every atom exposed on its surface, single-layered graphene shows ultra-high surface area available for efficient molecular loading and bioconjugation, and has been widely explored as novel nano-carriers for drug and gene delivery. Utilizing the intrinsic near-infrared (NIR) optical absorbance, in vivo graphene-based photothermal therapy has been realized, achieving excellent anti-tumor therapeutic efficacy in animal experiments. A variety of inorganic nanoparticles can be grown on the surface of nano-graphene, obtaining functional graphene-based nanocomposites with interesting optical and magnetic properties useful for multi-modal imaging and imaging-guided cancer therapy. Moreover, significant efforts have also been devoted to study the behaviors and toxicology of functionalized nano-graphene in animals. It has been uncovered that both surface chemistry and sizes play key roles in controlling the biodistribution, excretion, and toxicity of nano-graphene. Biocompatibly coated nano-graphene with ultra-small sizes can be cleared out from body after systemic administration, without rendering noticeable toxicity to the treated mice. In this review article, we will summarize the latest progress in this rapidly growing field, and discuss future prospects and challenges of using graphene-based materials for theranostic applications.

  17. Artificial production and natural breeding of the endangered frog species Odorrana ishikawae, with special reference to fauna conservation in the laboratory.

    PubMed

    Sumida, Masayuki; Satou, Naoki; Yoshikawa, Natsuhiko; Kurabayashi, Atsushi; Islam, Mohammed Mafizul; Igawa, Takeshi; Oumi, Shohei; Katsuren, Seiki; Ota, Hidetoshi; Shintani, Nozomi; Fukuniwa, Hiroko; Sano, Naomi; Fujii, Tamotsu

    2011-11-01

    Odorrana ishikawae is listed as a class IB endangered species in the IUCN Red List and is protected by law in both Okinawa and Kagoshima Prefectures, Japan. Here, in an effort to help effectively preserve the genetic diversity of this endangered species in the laboratory, we tested a farming technique involving the artificial breeding of frogs, and also promoted natural breeding in the laboratory. Field-caught male/female pairs of the Amami and Okinawa Island populations were artificially bred using an artificial insemination method in the 2004, 2006, and 2008 breeding seasons (March to April). Although fewer than 50% of the inseminated eggs achieved metamorphosis, approximately 500, 300, and 250 offspring from the three respective trials are currently being raised in the laboratory. During the 2009 and 2010 breeding seasons, second-generation offspring were produced by the natural mating activities of the first offspring derived from the two artificial matings in 2004. The findings and the methods presented here appear to be applicable to the temporary protection of genetic diversity of local populations in which the number of individuals has decreased or the environmental conditions have worsened to levels that frogs are unable to survive by themselves.

  18. Generation of red color and near infrared bandpass filters using nano-scale plasmonic structures

    NASA Astrophysics Data System (ADS)

    Sokar, Ahmed A. Z.; Hutter, Franz X.; Burghartz, Joachim N.

    2015-05-01

    Extraordinary/Enhanced optical transmission (EOT) is studied in the realization of plasmonic based filters in the visible range and near infrared spectrum for the purpose of substituting the Bayer-pattern filter with a new CMOS-compatible filter which can be easily tuned to provide different filter spectra. The filters studied in this paper are based on nano-structured 150nm thick Aluminum (Al) layer sandwiched between silicon dioxide (SiO2) layers. The resonance wavelengths achieved by the filters are at 700nm and 950 nm. Three parameters are used for tuning the two filters, i.e., aperture area, the period, and the holes arrangement (square or rhombic lattice). The filter is based on the principle of surface plasmon polaritons (SPPs), where the electromagnetic waves of the incident light couples with the free charges of the metal at the metal-dielectric interface. EOT is observed when the metal is structured with apertures such as rectangular, circular, cross, bowtie, etc. The resonance frequency in that case depends on the shape of the aperture, material used, the size of the apertures, the period of the array, and the surrounding material. The fabricated two filters show EOT at wavelengths as designed and simulated with blueshift in the peak location.

  19. Comparative randomised controlled clinical trial of a herbal eye drop with artificial tear and placebo in computer vision syndrome.

    PubMed

    Biswas, N R; Nainiwal, S K; Das, G K; Langan, U; Dadeya, S C; Mongre, P K; Ravi, A K; Baidya, P

    2003-03-01

    A comparative randomised double masked multicentric clinical trial has been conducted to find out the efficacy and safety of a herbal eye drop preparation, itone eye drops with artificial tear and placebo in 120 patients with computer vision syndrome. Patients using computer for at least 2 hours continuosly per day having symptoms of irritation, foreign body sensation, watering, redness, headache, eyeache and signs of conjunctival congestion, mucous/debris, corneal filaments, corneal staining or lacrimal lake were included in this study. Every patient was instructed to put two drops of either herbal drugs or placebo or artificial tear in the eyes regularly four times for 6 weeks. Objective and subjective findings were recorded at bi-weekly intervals up to six weeks. Side-effects, if any, were also noted. In computer vision syndrome the herbal eye drop preparation was found significantly better than artificial tear (p < 0.01). No side-effects were noted by any of the drugs. Both subjective and objective improvements were observed in itone treated cases. So, itone can be considered as a useful drug in computer vision syndrome.

  20. Artificial intelligence techniques for automatic screening of amblyogenic factors.

    PubMed

    Van Eenwyk, Jonathan; Agah, Arvin; Giangiacomo, Joseph; Cibis, Gerhard

    2008-01-01

    To develop a low-cost automated video system to effectively screen children aged 6 months to 6 years for amblyogenic factors. In 1994 one of the authors (G.C.) described video vision development assessment, a digitizable analog video-based system combining Brückner pupil red reflex imaging and eccentric photorefraction to screen young children for amblyogenic factors. The images were analyzed manually with this system. We automated the capture of digital video frames and pupil images and applied computer vision and artificial intelligence to analyze and interpret results. The artificial intelligence systems were evaluated by a tenfold testing method. The best system was the decision tree learning approach, which had an accuracy of 77%, compared to the "gold standard" specialist examination with a "refer/do not refer" decision. Criteria for referral were strabismus, including microtropia, and refractive errors and anisometropia considered to be amblyogenic. Eighty-two percent of strabismic individuals were correctly identified. High refractive errors were also correctly identified and referred 90% of the time, as well as significant anisometropia. The program was less correct in identifying more moderate refractive errors, below +5 and less than -7. Although we are pursuing a variety of avenues to improve the accuracy of the automated analysis, the program in its present form provides acceptable cost benefits for detecting ambylogenic factors in children aged 6 months to 6 years.

  1. Effects of visual grading on northern red oak (Quercus rubra L.) seedlings planted in two shelterwood stands on the Cumberland Plateau of Tennessee, USA

    Treesearch

    Stacy Clark; Scott Schlarbaum; Callie Schweitzer

    2015-01-01

    Artificial regeneration of oak has been generally unsuccessful in maintaining the oak component in productive upland forests of eastern North America. We tested visual grading effects on quality-grown northern red oak (Quercus rubra) seedlings planted in two submesic stands on the Cumberland Plateau escarpment of Tennessee, USA. Seedlings were grown for one year using...

  2. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  3. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  4. Lipid bilayers on nano-templates

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Artyukhin, Alexander B [Menlo Park, CA; Bakajin, Olgica [San Leandro, CA; Stoeve, Pieter [Davis, CA

    2009-08-04

    A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents

  5. Application of Gaia Analysis Software AGIS to Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Lammers, U.; Gouda, N.

    2011-07-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). Nano-JASMINE is an ultra small (35 kg) satellite for astrometry observations in Japan and Gaia is ESA's large (over 1000 kg) next-generation astrometry mission. The accuracy of Nano-JASMINE is about 3 mas, comparable to the Hipparcos mission, Gaia's predecessor some 20 years ago. It is challenging that such a small satellite can perform real scientific observations. The collaboration for sharing software started in 2007. In addition to similar design and operating principles of the two missions, this is possible thanks to the encapsulation of all Gaia-specific aspects of AGIS in a Parameter Database. Nano-JASMINE will be the test bench for the Gaia AGIS software. We present this idea in detail and the necessary practical steps to make AGIS work with Nano-JASMINE data. We also show the key mission parameters, goals, and status of the data reduction for the Nano-JASMINE.

  6. Stability of monacolin K and citrinin and biochemical characterization of red-koji vinegar during fermentation.

    PubMed

    Hsieh, Chia-Wen; Lu, Yi-Ru; Lin, Shu-Mei; Lai, Tzu-Yuan; Chiou, Robin Y-Y

    2013-07-31

    Red-koji vinegar is a Monascus -involved and acetic acid fermentation-derived traditional product, in which the presence of monacolin K and citrinin has attracted public attention. In this study, red-koji wine was prepared as the substrate and artificially supplemented with monacolin K and citrinin and subjected to vinegar fermentation with Acetobacter starter. After 30 days of fermentation, 43.0 and 98.1% of the initial supplements of monacolin K and citrinin were decreased, respectively. During fermentation, acetic acid contents increased, accompanied by decreases of ethanol and lactic acid contents and pH values. The contents of free amino acids increased while the contents of other organic acids, including fumaric acid, citric acid, succinic acid, and tartaric acid, changed limitedly. Besides, increased levels of total phenolics in accordance with increased antioxidative potency, α,α-diphenyl-β-picrylhydrazyl scavenging, and xanthine oxidase inhibitory (XOI) activities were detected. It is of merit that most citrinin was eliminated and >50% of the monacolin K was retained; contents of free amino acids and total phenolics along with antioxidant and XOI activities of the red-koji vinegar were increased after fermentation.

  7. Preparation of nano fluids by mechanical method

    NASA Astrophysics Data System (ADS)

    Boopathy, J.; Pari, R.; Kavitha, M.; Angelo, P. C.

    2012-07-01

    Nanofluids are conventional heat transfer fluids that contain nano particles of metals, oxides, carbides, nitrides, or nanotubes. Nanofluids exhibit enhanced thermal conductivity and heat transfer coefficients compared to the base fluids. This paper presents the procedure for preparing nanofluids consisting of Copper and Aluminium nano powders in base fluids. Copper and Aluminium nano powders were produced by planetary ball wet milling at 300rpm for 50hrs. Toluene was added to ensure wet milling. These powders were characterized in XRD and SEM for their purity, particle size and shape. The XRD results confirmed the final particle sizes of Copper and Aluminium in the nano range. Then the 0.01 gm of nano metal powders was added in 150 ml of double distilled water and magnetic stirring was done at 1500 rpm for 15 minutes. Sodium lauryl sulphate (0.05%) was added in water as surfactant to ensure the stability of the dispersion. Ultrasonication in the 3000 watts bath was done for 10 minutes to enhance the uniform dispersion of metal powders in water. The pH, dynamic viscosity, ionic conductivity and the stability of the fluids were determined for further usage of synthesized nanofluids as coolant during grinding operation.

  8. Scaling laws for nanoFET sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Fu-Shan; Wei, Qi-Huo

    2008-01-01

    The sensitive conductance change of semiconductor nanowires and carbon nanotubes in response to the binding of charged molecules provides a novel sensing modality which is generally denoted as nanoFET sensors. In this paper, we study the scaling laws of nanoplate FET sensors by simplifying nanoplates as random resistor networks with molecular receptors sitting on lattice sites. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors, while they could be eliminated by designing devices with very short source-drain distance and large width.

  9. Electrochemical micro/nano-machining: principles and practices.

    PubMed

    Zhan, Dongping; Han, Lianhuan; Zhang, Jie; He, Quanfeng; Tian, Zhao-Wu; Tian, Zhong-Qun

    2017-03-06

    Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the increasing industrial demand for supersmooth surfaces and functional three-dimensional micro/nano-structures (3D-MNS) in ultra-large scale integrated circuits, microelectromechanical systems, miniaturized total analysis systems, precision optics, and so on. Taking advantage of no tool wear, no surface stress, environmental friendliness, simple operation, and low cost, electrochemical micro/nano-machining (EC-MNM) has an irreplaceable role in MNM. This comprehensive review presents the state-of-art of EC-MNM techniques for direct writing, surface planarization and polishing, and 3D-MNS fabrications. The key point of EC-MNM is to confine electrochemical reactions at the micro/nano-meter scale. This review will bring together various solutions to "confined reaction" ranging from electrochemical principles through technical characteristics to relevant applications.

  10. Nano-optomechanics with optically levitated nanoparticles

    NASA Astrophysics Data System (ADS)

    Neukirch, Levi P.; Vamivakas, A. Nick

    2015-01-01

    Nano-optomechanics is a vibrant area of research that continues to push the boundary of quantum science and measurement technology. Recently, it has been realised that the optical forces experienced by polarisable nanoparticles can provide a novel platform for nano-optomechanics with untethered mechanical oscillators. Remarkably, these oscillators are expected to exhibit quality factors approaching ?. The pronounced quality factors are a direct result of the mechanical oscillator being freed from a supporting substrate. This review provides an overview of the basic optical physics underpinning optical trapping and optical levitation experiments, it discusses a number of experimental approaches to optical trapping and finally outlines possible applications of this nano-optomechanics modality in hybrid quantum systems and nanoscale optical metrology.

  11. Zinc and Carbonate Co-Substituted Nano-Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Girija, E. K.; Kumar, G. Suresh; Thamizhavel, A.

    2011-07-01

    Synthesis of Zn or CO32- substituted nano-hydroxyapatite (HA) and its physico-chemical properties have been well documented. However, the effects of the simultaneous substitution of Zn and CO32- in nano-HA have not been reported. In the present study, Zn and CO32- substitutions in nano HA independently and concurrently have been done by wet precipitation method and characterized by XRD and FT-IR for its phase purity and chemical homogeneity. Further modulations of the bioactivity and thermal stability of HA due to the substitutions have been studied.

  12. SWS grating for UV band filter by nano-imprint

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Shian; Liao, Ke-Hao; Chen, Chang-Tai; Lai, Chieh-Lung; Ko, Cheng-Hao

    2009-05-01

    Regarding to researches on manufacturing process, the fabrication of nano structures on SWS (subwavelength structured) grating are mainly produced by photo lithography. We find that UV light transmission efficiency of PET film significantly drops 50% when we put nano structures on the surface of material. In this paper, we add nano structures on the surface of PET film and create a UV band filter. Decent optical filtering effects can be achieved by combining the characteristics of PET materials with nano structures on their surfaces.

  13. Nano-structured surface plasmon resonance sensor for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

    2008-08-01

    A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

  14. Electron-beam induced nano-etching of suspended graphene

    PubMed Central

    Sommer, Benedikt; Sonntag, Jens; Ganczarczyk, Arkadius; Braam, Daniel; Prinz, Günther; Lorke, Axel; Geller, Martin

    2015-01-01

    Besides its interesting physical properties, graphene as a two-dimensional lattice of carbon atoms promises to realize devices with exceptional electronic properties, where freely suspended graphene without contact to any substrate is the ultimate, truly two-dimensional system. The practical realization of nano-devices from suspended graphene, however, relies heavily on finding a structuring method which is minimally invasive. Here, we report on the first electron beam-induced nano-etching of suspended graphene and demonstrate high-resolution etching down to ~7 nm for line-cuts into the monolayer graphene. We investigate the structural quality of the etched graphene layer using two-dimensional (2D) Raman maps and demonstrate its high electronic quality in a nano-device: A 25 nm-wide suspended graphene nanoribbon (GNR) that shows a transport gap with a corresponding energy of ~60 meV. This is an important step towards fast and reliable patterning of suspended graphene for future ballistic transport, nano-electronic and nano-mechanical devices. PMID:25586495

  15. Developing NanoFoil-Heated Thin-Film Thermal Battery

    DTIC Science & Technology

    2013-09-01

    buffer discs (in gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat...of the fuse strip with a Microtherm disc. Cathode Electrolyte Anode Microtherm Heat paper NanoFoil Buffer Agilent 34970A 606.5 Nichrome wire Maccor...gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat loss

  16. Nano-TiO2, ultrasound and sequential nano-TiO2/ultrasonic degradation of N-acetyl-para-aminophenol from aqueous solution.

    PubMed

    Ayanda, Olushola S; Nelana, Simphiwe M; Petrik, Leslie F; Naidoo, Eliazer B

    2017-10-01

    The application of nano-TiO 2 as adsorbent combined with ultrasound for the degradation of N-acetyl-para-aminophenol (AAP) from aqueous solution was investigated. The nano-TiO 2 was characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Experimental results revealed that the adsorption of AAP by nano-TiO 2 fitted the pseudo-second-order kinetic model, the equilibrium could be explained by the Freundlich isotherm and the treatment process is exothermic. The optimum removal efficiency of AAP (128.89 mg/g (77.33%)) was achieved at pH 4 when 0.03 g of nano-TiO 2 was mixed with 50 mL of 100 mg/L AAP aqueous solution at ambient temperature, 60 min contact time, and a stirring speed of 120 rpm. Ultrasound at 20 kHz and pH 3 was favorable and it resulted in 52.61% and 57.43% removal efficiency with and without the addition of nano-TiO 2 , respectively. The degradation of AAP by ultrasound followed by nano-TiO 2 treatment resulted in approximately 99.50% removal efficiency. This study showed that a sequential ultrasound and nano-TiO 2 treatment process could be employed for the removal of AAP or other emerging water and wastewater contaminants.

  17. Prediction Surface Morphology of Nanostructure Fabricated by Nano-Oxidation Technology.

    PubMed

    Huang, Jen-Ching; Chang, Ho; Kuo, Chin-Guo; Li, Jeen-Fong; You, Yong-Chin

    2015-12-04

    Atomic force microscopy (AFM) was used for visualization of a nano-oxidation technique performed on diamond-like carbon (DLC) thin film. Experiments of the nano-oxidation technique of the DLC thin film include those on nano-oxidation points and nano-oxidation lines. The feature sizes of the DLC thin film, including surface morphology, depth, and width, were explored after application of a nano-oxidation technique to the DLC thin film under different process parameters. A databank for process parameters and feature sizes of thin films was then established, and multiple regression analysis (MRA) and a back-propagation neural network (BPN) were used to carry out the algorithm. The algorithmic results are compared with the feature sizes acquired from experiments, thus obtaining a prediction model of the nano-oxidation technique of the DLC thin film. The comparative results show that the prediction accuracy of BPN is superior to that of MRA. When the BPN algorithm is used to predict nano-point machining, the mean absolute percentage errors (MAPE) of depth, left side, and right side are 8.02%, 9.68%, and 7.34%, respectively. When nano-line machining is being predicted, the MAPEs of depth, left side, and right side are 4.96%, 8.09%, and 6.77%, respectively. The obtained data can also be used to predict cross-sectional morphology in the DLC thin film treated with a nano-oxidation process.

  18. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes.

    PubMed

    Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso

    2015-06-01

    Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

  19. High-rate nano-crystalline Li 4Ti 5O 12 attached on carbon nano-fibers for hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Naoi, Katsuhiko; Ishimoto, Shuichi; Isobe, Yusaku; Aoyagi, Shintaro

    A lithium titanate (Li 4Ti 5O 12)-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li 4Ti 5O 12 electrode has a unique nano-structure consisting of unusually small nano-crystalline Li 4Ti 5O 12 (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li 4Ti 5O 12/CNF). This nano-structured nc-Li 4Ti 5O 12/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 °C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li 4Ti 5O 12/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L -1 and high power density of 7.5 kW L -1 comparable to conventional EDLCs.

  20. Nano-fabricated size exclusion chromatograph

    NASA Technical Reports Server (NTRS)

    Svehla, D.; Feldman, S.; Feldman, J.; Grunthaner, F.; Shakkottai, P.; Castillo, L. del; White, V.

    2002-01-01

    This paper describes the development of a nano-fabricated size exclusion chromatograph (nSEC) based on the principle that molecules traveling through amicrocolumn containing nano-fabricated features will have characteristic elution times that directly correlate to molecular weight. Compared to conventional size exclusion chromatography, the nSEC offers greater control over the size exclusion process; mass fabrication; integration of the separation column with associated valves, pumps, and detectors; and dramatic reductions in instrument mass and power requirements.

  1. Nano-cone resistive memory for ultralow power operation.

    PubMed

    Kim, Sungjun; Jung, Sunghun; Kim, Min-Hwi; Kim, Tae-Hyeon; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook

    2017-03-24

    SiN x -based nano-structure resistive memory is fabricated by fully silicon CMOS compatible process integration including particularly designed anisotropic etching for the construction of a nano-cone silicon bottom electrode (BE). Bipolar resistive switching characteristics have significantly reduced switching current and voltage and are demonstrated in a nano-cone BE structure, as compared with those in a flat BE one. We have verified by systematic device simulations that the main cause of reduction in the performance parameters is the high electric field being more effectively concentrated at the tip of the cone-shaped BE. The greatly improved nonlinearity of the nano-cone resistive memory cell will be beneficial in the ultra-high-density crossbar array.

  2. Chromosomal Mapping of Canine-Derived BAC Clones to the Red Fox and American Mink Genomes

    PubMed Central

    Vorobieva, Nadegda V.; Beklemisheva, Violetta R.; Johnson, Jennifer L.; Temnykh, Svetlana V.; Yudkin, Dmitry V.; Trut, Lyudmila N.; Andre, Catherine; Galibert, Francis; Aguirre, Gustavo D.; Acland, Gregory M.; Graphodatsky, Alexander S.

    2009-01-01

    High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene–containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations. PMID:19546120

  3. Chromosomal mapping of canine-derived BAC clones to the red fox and American mink genomes.

    PubMed

    Kukekova, Anna V; Vorobieva, Nadegda V; Beklemisheva, Violetta R; Johnson, Jennifer L; Temnykh, Svetlana V; Yudkin, Dmitry V; Trut, Lyudmila N; Andre, Catherine; Galibert, Francis; Aguirre, Gustavo D; Acland, Gregory M; Graphodatsky, Alexander S

    2009-01-01

    High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.

  4. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications.

    PubMed

    Noorbakhsh-Soltani, S M; Zerafat, M M; Sabbaghi, S

    2018-06-01

    Environmental concerns have led to extensive research for replacing polymer-based food packaging with bio-nano-composites. In this study, incorporation of nano-cellulose into gelatin and starch matrices is investigated for this purpose. Chitosan is used to improve mechanical, anti-fungal and waterproof properties. Experiments are designed and analyzed using response surface methodology. Nano-Cellulose is synthesized via acid hydrolysis and incorporated in base matrices through wet processing. Also, tensile strength test, food preservation, transparency in visible and UV and water contact angle are performed on the nano-composite films. DSC/TGA and air permeability tests are also performed on the optimal films. The results show that increasing nano-cellulose composition to 10% leads to increase the tensile strength at break to 8121 MN/m 2 and decrease the elongation at break. Also, increasing chitosan composition from 5% to 30% can enhance food preservation up to 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Endangered New Caledonian endemic mushroom coral Cantharellus noumeae in turbid, metal-rich, natural and artificial environments.

    PubMed

    Gilbert, Antoine; Heintz, Tom; Hoeksema, Bert W; Benzoni, Francesca; Fernandez, Jean Michel; Fauvelot, Cécile; Andréfouët, Serge

    2015-11-15

    Since its description in 1984, little attention has been paid to the New Caledonian endemic mushroom coral Cantharellus noumeae (Fungiidae), an IUCN Red-listed, endangered coral species. Our study presents the first ever quantitative assessment conducted on C. noumeae populations for two contrasting sites in the same turbid bay. Sites differed by their substrates of artificial or natural origins. Metal concentrations of superficial sediment were measured. C. noumeae was found in high densities in metal-rich and turbid environments at both locations, reaching up to 288 individuals per 50m(2). It was 3.5 times more abundant on natural rock than on artificial substrates. Recruitment was also higher proportionally on rock (47% vs 7-14%). The composition of the associated coral communities included 30-37 species occurring in low densities. Our findings clarify the environmental niche of this species and its colonization potential, in order to eventually better characterize its conservation status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Perylene and Perylene-Derivative Nano-Cocrystals: Preparation and Physicochemical Property

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Konta, Sayaka; Oliveira, Daniel; Sugai, Kenji; Onodera, Tsunenobu; Masuhara, Akito; Kasai, Hitoshi; Oikawa, Hidetoshi; Nakanishi, Hachiro

    2012-12-01

    Organic nano-cocrystals of functional dyes of perylene and a perylene derivative were successfully prepared by the reprecipitation method. The particle sizes, optical properties, and powder X-ray diffraction patterns of nano-cocrystals were evaluated. Typically, the size with size distribution of nano-cocrystals was 55±15 nm when the molar ratio of perylene to the perylene derivative was 50:50. The particular intermolecular electronic interaction between perylene and the perylene derivative in the nano-cocrystal state was observed by absorption and fluorescence spectra measurements. The powder X-ray diffraction pattern analysis confirmed that the structure of nano-cocrystals was different from those prepared from perylene and the perylene derivative. The nano-cocrystal having unique physicochemical properties will be potentially classified as a new type of functional nanomaterial.

  7. Peculiarities of hydration of Portland cement with synthetic nano-silica

    NASA Astrophysics Data System (ADS)

    Kotsay, Galyna

    2017-12-01

    Application of nano-materials in cement products significantly, improves their properties. Of course, the effectiveness of the materials depends on their quantity and the way they are introduced into the system. So far, amongst nano-materials used in construction, the most preferred was nano-silica. This research investigated the effect of synthetic precipitated nano-silica on the cement hydration as well as, on the physical and mechanical properties of pastes and mortars. Obtained results showed that admixture of nano-silica enhanced flexural and compressive strength of cement after 2 and 28 days, however, only when admixture made up 0.5% and 1.0%. On the other hand, the use of nano-silica in the amount 2% had some limitations, due to its ability to agglomerate, which resulted in deterioration of the rheological and mechanical properties.

  8. Nano-aggregates: emerging delivery tools for tumor therapy.

    PubMed

    Sharma, Vinod Kumar; Jain, Ankit; Soni, Vandana

    2013-01-01

    A plethora of formulation techniques have been reported in the literature for site-specific targeting of water-soluble and -insoluble anticancer drugs. Along with other vesicular and particulate carrier systems, nano-aggregates have recently emerged as a novel supramolecular colloidal carrier with promise for using poorly water-soluble drugs in molecular targeted therapies. Nano-aggregates possess some inherent properties such as size in the nanometers, high loading efficiency, and in vivo stability. Nano-aggregates can provide site-specific drug delivery via either a passive or active targeting mechanism. Nano-aggregates are formed from a polymer-drug conjugated amphiphilic block copolymer. They are suitable for encapsulation of poorly water-soluble drugs by covalent conjugation as well as physical encapsulation. Because of physical encapsulation, a maximum amount of drug can be loaded in nano-aggregates, which helps to achieve a sufficiently high drug concentration at the target site. Active transport can be achieved by conjugating a drug with vectors or ligands that bind specifically to receptors being overexpressed in the tumor cells. In this review, we explore synthesis and tumor targeting potential of nano-aggregates with active and passive mechanisms, and we discuss various characterization parameters, ex vivo studies, biodistribution studies, clinical trials, and patents.

  9. Electronic ferroelectricity in carbon-based systems: from reality of organic conductors to promises of polymers and graphene nano-ribbons

    NASA Astrophysics Data System (ADS)

    Kirova, Natasha; Brazovskii, Serguei

    2014-03-01

    Ferroelectricity is a rising demand in fundamental and applied solid state physics. Ferroelectrics are used in microelectronics as active gate materials, in capacitors, electro-optical-acoustic modulators, etc. There is a particular demand for plastic ferroelectrics, e.g. as a sensor for acoustic imaging in medicine and beyond, in shapeable capacitors, etc. Microscopic mechanisms of ferroelectric polarization in traditional materials are typically ionic. In this talk we discuss the electronic ferroelectrics - carbon-based materials: organic crystals, conducting polymers and graphene nano-ribbons. The motion of walls, separating domains with opposite electric polarisation, can be influenced and manipulated by terahertz and infra-red range optics.

  10. Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces

    DOE PAGES

    Lay, Alice; Wang, Derek S.; Wisser, Michael D.; ...

    2017-06-13

    Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF 4 nanoparticles (NPs) doped with Yb 3+, Er 3+, and Mn 2+. The lanthanides Yb 3+ and Er 3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn 2+ adds force tunability through its crystal field sensitivity. IN using a diamond anvilmore » cell to exert up to 3.5 GPa pressure or ~10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF 4 and from yellow–green to green for d-metal optimized β-NaYF 4 when illuminated in the near infrared. We record consistent readouts over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.« less

  11. Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Alice; Wang, Derek S.; Wisser, Michael D.

    Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF 4 nanoparticles (NPs) doped with Yb 3+, Er 3+, and Mn 2+. The lanthanides Yb 3+ and Er 3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn 2+ adds force tunability through its crystal field sensitivity. IN using a diamond anvilmore » cell to exert up to 3.5 GPa pressure or ~10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF 4 and from yellow–green to green for d-metal optimized β-NaYF 4 when illuminated in the near infrared. We record consistent readouts over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.« less

  12. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    PubMed

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  13. [Total artificial heart].

    PubMed

    Antretter, H; Dumfarth, J; Höfer, D

    2015-09-01

    To date the CardioWest™ total artificial heart is the only clinically available implantable biventricular mechanical replacement for irreversible cardiac failure. This article presents the indications, contraindications, implantation procedere and postoperative treatment. In addition to a overview of the applications of the total artificial heart this article gives a brief presentation of the two patients treated in our department with the CardioWest™. The clinical course, postoperative rehabilitation, device-related complications and control mechanisms are presented. The total artificial heart is a reliable implant for treating critically ill patients with irreversible cardiogenic shock. A bridge to transplantation is feasible with excellent results.

  14. [Color-tunable nano-material alpha-NaYF4 : Yb, Er, Tm prepared by microemulsion-hydrothermal method].

    PubMed

    Long, Dan-Dan; Zhang, Qing-Xia; Wang, Yu; Zhang, Fan; Wang, Yan-Fei; Zhou, Xin; Qi, Xiao-Hua; Zhang, Heng; Yan, Jing-Hui; Zou, Ming-Qiang

    2013-08-01

    NaYF4 : Yb3+, Er3+, Tm3+ nanoparticles were prepared by microemulsion-hydrothermal method. Crystal phase, morphology and structure of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The luminescence properties were studied by up-conversional fluorescence spectroscopy. The XRD patterns of as-prepared samples were in agreement with the PDF # 77-2042 of cubic NaYF4. SEM images of the particles showed that the samples were cotton-like spherical in shape and which were assembled by smaller nano-particles. The average size was 120 nm, while the shape was regular and the particle size was homogeneous. Under the excitation of 980 nm, the as-prepared particles could emit blue (438 and 486 nm), green (523 and 539 nm) and red (650 nm) light simultaneously. It can be seen from the color coordinates figure (CIE) that when doping concentration ratio of Tm3+ and E3+ increased from 0 to 2, the whole emitting light color of samples movedto green region. While the ratio was 1 : 1, pseudo white light was obtained. As the ratio changed from 2 to 7, the luminous color was moved to red region.

  15. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    NASA Astrophysics Data System (ADS)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures

  16. Artificial Intelligence in Astronomy

    NASA Astrophysics Data System (ADS)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  17. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO.

    PubMed

    Liu, Na; Wang, Yipeng; Ge, Fei; Liu, Shixiang; Xiao, Huaixian

    2018-04-01

    The interaction of nanoparticles with coexisting chemicals affects the fate and transport of nanoparticles, as well as their combined effects on aquatic organisms. Here, we evaluated the joint effect of ZnO nanoparticle (nano-ZnO) and cetyltrimethyl ammonium chloride (CTAC) on the growth of Chlorella vulgaris and explored the possible mechanism. Results showed that an antagonistic effect of nano-ZnO and CTAC (0.1, 0.2 and 0.3 mg L -1 ) was found because CTAC stop nano-ZnO being broken down into solution zinc ions (Zn 2+ ). In the presence of CTAC, the zinc (including nano-ZnO and released Zn 2+ ) showed a higher adsorption on bound extracellular polymeric substances (B-EPS) but lower accumulation in the algal cells. Moreover, we directly demonstrated that nano-ZnO was adsorbed on the algal B-EPS and entered into the algal cells by transmission electron microscope coupled with energy dispersive X-ray (TEM-EDX). Hence, these results suggested that the combined system of nano-ZnO and CTAC exhibited an antagonistic effect due to the inhibition of CTAC on dissolution of nano-ZnO and accumulation of the zinc in the algal cells. Copyright © 2017. Published by Elsevier Ltd.

  18. Comparison of Antimicrobial Properties of Nano Quinolone with its Microscale Effects

    NASA Astrophysics Data System (ADS)

    Behbahani, G. Rezaie; Sadr, M. Hossaini; Nabipour, H.; Behbahani, H. Rezaei; Vahedpour, M.; Barzegar, L.

    2013-06-01

    Nano nalidixic acid was prepared by ultrasonic method in carbon tetrachloride. Nano nalidixic acid (quinolone antibiotic) was characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscope (SEM). The antibacterial activities of nano nalidixic acid were tested against microorganisms and compared with the microscale drug. The results show that nano nalidixic acid has good inhibitory properties against two Gram-positive species, Staphylococcus aureus and Bacillus subtilis. Nano nalidixic acid also showed good antifungal activity against Candida albicans. Nano nalidixic acid can be injected into the human body as a decontaminating agent to prevent the growth of harmful microorganisms more effectively than the micro-sized drug.

  19. All-silicon-based nano-antennas for wavelength and polarization demultiplexing.

    PubMed

    Panmai, Mingcheng; Xiang, Jin; Sun, Zhibo; Peng, Yuanyuan; Liu, Hongfeng; Liu, Haiying; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2018-05-14

    We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.

  20. Method of producing nano-scaled inorganic platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  1. Transport of lipid nano-droplets through MDCK epithelial cell monolayer.

    PubMed

    Khatri, Pulkit; Shao, Jun

    2017-05-01

    This study aims to investigate the transport of lipid nano-droplets through MDCK epithelial cell monolayer. Nanoemulsions of self-nano-emulsifying drug delivery systems (SNEDDS) labeled with radioactive C18 triglyceride were developed. The effect of droplet size and lipid composition on the transport was investigated. The results showed that the lipid nano-droplet transport through MDCK cell monolayer was as high as 2.5%. The transport of lipid nano-droplets was higher for nanoemulsions of medium chain glycerides than the long chain glycerides. The transport was reduced by more than half when the average lipid nano-droplet size increased from 38nm to 261nm. The droplet size measurement verified the existence of lipid nano-droplets in the receiver chamber only when the nanoemulsions were added to the donor chamber but not when the surfactant or saline solution was added. Cryo-TEM images confirmed the presence of lipid nano-droplets in both donor and receiver chamber at the end of transport study. In conclusion, lipid nano-droplets can be transported through the cell monolayer. This finding may help to further explore the oral and other non-invasive delivery of macromolecules loaded inside SNEDDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fabrication of 3D nano-structures using reverse imprint lithography

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  3. Fabrication of 3D nano-structures using reverse imprint lithography.

    PubMed

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-Woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures.UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  4. Graphene Nano-Composites for Hypervelocity Impact Applications

    NASA Astrophysics Data System (ADS)

    Manasrah, Alharith

    The Low Earth Orbit (LEO) is a harsh environment cluttered with natural meteoroids and man-made debris, which can travel at velocities approaching 15 km/s. Most space activities within the LEO will encounter this environment. Thus, the spacecraft and its hardware must be designed to survive debris impact. This research introduces new procedures to produce a nano-composite material with mortar-brick nano-structure inspired from nacre. Nacre-like composites were successfully manufactured, based on three host polymers, with a wide range of graphene concentrations. The manufactured exfoliated graphene nano-platelet, embedded in a host polymer, provided good potential for enhancement of the hypervelocity impact (HVI) shield resistance. The nano-composites are suggested for use as a coating. Moreover, explicit dynamic finite element studies were conducted for further investigation of the hypervelocity impact of the graphene-based coatings in order to understand the effect of the coating on the crater formation and the exit velocity. This dissertation presents the results of the characterization and numerical sensitivity study of the developed material parameters. The numerical simulations were performed by implementing Autodyn smooth particle hydrodynamics. This study provides innovative, low-weight shielding enhancements for spacecraft, as well as other promising applications for the manufactured nano-composites.

  5. NanoSail - D Orbital and Attitude Dynamics

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.

    2013-01-01

    NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.

  6. Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating.

    PubMed

    Park, Chang-Hyun; Yoon, Yeo-Taek; Shrestha, Vivek Raj; Park, Chul-Soon; Lee, Sang-Shin; Kim, Eun-Soo

    2013-11-18

    We have demonstrated a highly efficient electrically tunable color filter, which provides precise control of color output, taking advantage of a nano-photonic polarization-tailored dichroic resonator combined with a liquid-crystal based polarization rotator. The visible dichroic resonator based on the guided mode resonance, which incorporates a planar dielectric waveguide in Si3N4 integrated with an asymmetric two-dimensional subwavelength Al grating with unequal pitches along its principal axes, exhibited polarization specific transmission featuring high efficiency up to 75%. The proposed tunable color filters were constructed by combining three types of dichroic resonators, each of which deals with a mixture of two primary colors (i.e. blue/green, blue/red, and green/red) with a polarization rotator exploiting a twisted nematic liquid crystal cell. The output colors could be dynamically and seamlessly customized across the blend of the two corresponding primary colors, by altering the polarization via the voltage applied to the polarization rotator. For the blue/red filter, the center wavelength was particularly adjusted from 460 to 610 nm with an applied voltage variation of 2 V, leading to a tuning range of up to 150 nm. And the spectral tuning was readily confirmed via color mapping. The proposed devices may permit the tuning span to be readily extended by tailoring the grating pitches.

  7. Correlation Study Of Diffenrential Skin Temperatures (DST) For Ovulation Detection Using Infra-Red Thermography

    NASA Astrophysics Data System (ADS)

    Rao, K. H. S.; Shah, A. v.; Ruedi, B.

    1982-11-01

    The importance of ovulation time detection in the Practice of Natural Birth Control (NBC) as a contraceptive tool, and for natural/artificial insemination among women having the problem of in-fertility, is well known. The simple Basal Body Temperature (BBT) method of ovulation detection is so far unreliable. A newly proposed Differential Skin Temperature (DST) method may help minimize disturbing physiological effects and improve reliability. This paper explains preliminary results of a detailed correlative study on the DST method, using Infra-Red Thermography (IRT) imaging, and computer analysis techniques. Results obtained with five healthy, normally menstruating women volunteers will be given.

  8. A recipe to create nano-grains on dolomite

    NASA Astrophysics Data System (ADS)

    Røyne, Anja; Pluymakers, Anne

    2017-04-01

    Advances in imaging techniques in recent years have allowed for easy microstructure visualization at nano-resolution, and many studies have observed nano-grains in different materials, including rocks. An important example in geological systems is their seemingly ubiquitous occurrence on so-called mirror-like slip surfaces, produced in natural and experimental earthquakes of both carbonate and silicate rocks. It is, however, not yet clear whether these nano-grains can indeed be used as a reliable indicator of seismic slip. Since carbonates are prone to decarbonation at temperatures exceeding 550 - 600 °C, nano-grain formation may be formed due to heating rather than shear. In this study, we have investigated the effect of elevated temperatures on carbonate fault rocks. We used hand-polished mirror-like dolomite protolith, as well as natural fault mirror surfaces, obtained from the Foiana Fault Zone from the Southern Alps in Italy. The samples were heated to 200 to 800 degC in a 5 hour heating cycle, followed by slow cooling ( 12 h) to room temperature. Subsequently, we imaged the samples using SEM and AFM. Nano-grain formation on the surfaces of hand-polished samples starts around 400 ° C, and is pervasive at and above 600 ° C. Fault mirror samples are initially coated with naturally formed nano-grains and only very local patches on these surfaces display obvious morphological changes due to heating. Exposing both types of sample heated to 600 °C to DI water under the AFM shows rapid recrystallization and the formation of a more porous and blade-like crystal layer on the entire surface. This happens both in hand-polished and naturally polished surfaces. Fault mirror samples that have not been heated do not change when exposed to water. We have shown that nano-grains can form as a result of heating without shear, but that samples that have experienced high shear strain have a water- and heat-resistant coating composed of otherwise morphologically

  9. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  10. Artificial Intelligence and Information Retrieval.

    ERIC Educational Resources Information Center

    Teodorescu, Ioana

    1987-01-01

    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  11. Romantic red: red enhances men's attraction to women.

    PubMed

    Elliot, Andrew J; Niesta, Daniela

    2008-11-01

    In many nonhuman primates, the color red enhances males' attraction to females. In 5 experiments, the authors demonstrate a parallel effect in humans: Red, relative to other achromatic and chromatic colors, leads men to view women as more attractive and more sexually desirable. Men seem unaware of this red effect, and red does not influence women's perceptions of the attractiveness of other women, nor men's perceptions of women's overall likeability, kindness, or intelligence. The findings have clear practical implications for men and women in the mating game and, perhaps, for fashion consultants, product designers, and marketers. Furthermore, the findings document the value of extending research on signal coloration to humans and of considering color as something of a common language, both within and across species. (c) 2008 APA, all rights reserved.

  12. Artificial Intelligence Study (AIS).

    DTIC Science & Technology

    1987-02-01

    ARTIFICIAL INTELLIGNECE HARDWARE ....... 2-50 AI Architecture ................................... 2-49 AI Hardware ....................................... 2...ftf1 829 ARTIFICIAL INTELLIGENCE STUDY (RIS)(U) MAY CONCEPTS 1/3 A~NLYSIS AGENCY BETHESA RD R B NOJESKI FED 6? CM-RP-97-1 NCASIFIED /01/6 M |K 1.0...p/ - - ., e -- CAA- RP- 87-1 SAOFŔ)11 I ARTIFICIAL INTELLIGENCE STUDY (AIS) tNo DTICFEBRUARY 1987 LECT 00 I PREPARED BY RESEARCH AND ANALYSIS

  13. Look@NanoSIMS--a tool for the analysis of nanoSIMS data in environmental microbiology.

    PubMed

    Polerecky, Lubos; Adam, Birgit; Milucka, Jana; Musat, Niculina; Vagner, Tomas; Kuypers, Marcel M M

    2012-04-01

    We describe an open-source freeware programme for high throughput analysis of nanoSIMS (nanometre-scale secondary ion mass spectrometry) data. The programme implements basic data processing and analytical functions, including display and drift-corrected accumulation of scanned planes, interactive and semi-automated definition of regions of interest (ROIs), and export of the ROIs' elemental and isotopic composition in graphical and text-based formats. Additionally, the programme offers new functions that were custom-designed to address the needs of environmental microbiologists. Specifically, it allows manual and automated classification of ROIs based on the information that is derived either from the nanoSIMS dataset itself (e.g. from labelling achieved by halogen in situ hybridization) or is provided externally (e.g. as a fluorescence in situ hybridization image). Moreover, by implementing post-processing routines coupled to built-in statistical tools, the programme allows rapid synthesis and comparative analysis of results from many different datasets. After validation of the programme, we illustrate how these new processing and analytical functions increase flexibility, efficiency and depth of the nanoSIMS data analysis. Through its custom-made and open-source design, the programme provides an efficient, reliable and easily expandable tool that can help a growing community of environmental microbiologists and researchers from other disciplines process and analyse their nanoSIMS data. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    NASA Astrophysics Data System (ADS)

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-02-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.

  15. Flexible Micro-and Nano-Patterning Tools for Photonics

    DTIC Science & Technology

    2016-03-10

    AFRL-AFOSR-VA-TR-2016-0125 Flexible Micro- and Nano -Patterning Tools for Photonics Henry Smith LUMARRAY INC. 15 WARD ST. SOMERVILLE, MA 21434228 03...14-01-2015 4.  TITLE AND SUBTITLE Flexible Micro- and Nano -Patterning Tools for Photonics - OSD STTR Phase 2 5a.  CONTRACT NUMBER FA9550-12-C-0082 5b...2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll DISTRIBUTION A: Distribution approved for public release. FLEXIBLE MICRO- AND NANO - PATTERNING

  16. Surface properties of multilayered, acrylic resin artificial teeth after immersion in staining beverages

    PubMed Central

    NEPPELENBROEK, Karin Hermana; KUROISHI, Eduardo; HOTTA, Juliana; MARQUES, Vinicius Rizzo; MOFFA, Eduardo Buozi; SOARES, Simone; URBAN, Vanessa Migliorini

    2015-01-01

    Objective To evaluate the effect of staining beverages (coffee, orange juice, and red wine) on the Vickers hardness and surface roughness of the base (BL) and enamel (EL) layers of improved artificial teeth (Vivodent and Trilux). Material and Methods Specimens (n=8) were stored in distilled water at 37°C for 24 h and then submitted to the tests. Afterwards, specimens were immersed in one of the staining solutions or distilled water (control) at 37°C, and the tests were also performed after 15 and 30 days of immersion. Data were analyzed using 3-way ANOVA and Tukey’s test (α=0.05). Results Vivodent teeth exhibited a continuous decrease (p<0.0005) in hardness of both layers for up to 30 days of immersion in all solutions. For Trilux teeth, similar results were found for the EL (p<0.004), and the BL showed a decrease in hardness after 15 days of immersion (p<0.01). At the end of 30 days, this reduction was not observed for coffee and water (p>0.15), but red wine and orange juice continuously reduced hardness values (p<0.0004). Red wine caused the most significant hardness changes, followed by orange juice, coffee, and water (p<0.006). No significant differences in roughness were observed for both layers of the teeth during the immersion period, despite the beverage (p>0.06). Conclusions Hardness of the two brands of acrylic teeth was reduced by all staining beverages, mainly for red wine. Roughness of both layers of the teeth was not affected by long-term immersion in the beverages. PMID:26398509

  17. Scientific goals of Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Fujita, Sho; Gouda, Naoteru; Kobayashi, Yukiyasu; Hara, Takuji; Nishi, Ryoichi; Yoshioka, Satoshi; Hozumi, Shunsuke

    2013-02-01

    Nano-JASMINE is an ultrasmall Japanese satellite (with a weight of 35 kg), designed to carry out an astrometric mission. The target accuracy is 3 milliarcseconds (mas) for stars brighter than magnitude 7.5 at zw-band wavelengths of 0.6-1.0 μm. The observational strategy is the same as that of Gaia and Hipparcos. The time span of 20 years since the Hipparcos mission will enable us to update the proper motion data obtained at that time. With the help of these updated measurements, we expect that some stars will be resolved into multiple stars. In addition, taking advantage of the small primary mirror (with a diameter of 5 cm), we can measure bright stars which cannot be observed with Gaia because of saturation limits. The core data reduction for the Nano-JASMINE mission will use Gaia's Astrometric Global Iterative Solution (agis). A collaboration between the Gaia agis and Nano-JASMINE teams was initiated in 2007.

  18. Titania-polymeric powder coatings with nano-topography support enhanced human mesenchymal cell responses.

    PubMed

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2012-10-01

    Titanium implant osseointegration is dependent on the cellular response to surface modifications and coatings. Titania-enriched nanocomposite polymeric resin coatings were prepared through the application of advanced ultrafine powder coating technology. Their surfaces were readily modified to create nano-rough (<100 nm) surface nano-topographies that supported human embryonic palatal mesenchymal cell responses. Energy dispersive x-ray spectroscopy confirmed continuous and homogenous coatings with a similar composition and even distribution of titanium. Scanning electron microscopy (SEM) showed complex micro-topographies, and atomic force microscopy revealed intricate nanofeatures and surface roughness. Cell counts, mitochondrial enzyme activity reduction of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple, SEM, and inverted fluorescence microscopy showed a marked increase in cell attachment, spreading, proliferation, and metabolic activity on the nanostructured surfaces. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) analysis showed that type I collagen and Runx2 expression were induced, and Alizarin red staining showed that mineral deposits were abundant in the cell cultures grown on nanosurfaces. This enhancement in human mesenchymal cell attachment, growth, and osteogenesis were attributed to the nanosized surface topographies, roughness, and moderate wetting characteristics of the coatings. Their dimensional similarity to naturally occurring matrix proteins and crystals, coupled with their increased surface area for protein adsorption, may have facilitated the response. Therefore, this application of ultrafine powder coating technology affords highly biocompatible surfaces that can be readily modified to accentuate the cellular response. Copyright © 2012 Wiley Periodicals, Inc.

  19. Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers.

    PubMed

    Das, Raghunath; Bhaumik, Madhumita; Giri, Somnath; Maity, Arjun

    2017-07-01

    Nano-sized magnetic Fe 0 /polyaniline (Fe 0 /PANI) nanofibers were used as an effective material for sonocatalytic degradation of organic anionic Congo red (CR) dye. Fe 0 /PANI , was synthesized via reductive deposition of nano-Fe 0 onto the PANI nanofibers at room temperature. Prepared catalyst was characterized using HR-TEM, FE-SEM, XRD, FTIR instruments. The efficacy of catalyst in removing CR was assessed colorimetrically using UV-visible spectroscopy under different experimental conditions such as % of Fe 0 loading into the composite material, solution pH, initial concentration of dye, catalyst dosage, temperature and ultrasonic power. The optimum conditions for sonocatalytic degradation of CR were obtained at catalyst concentrations=500mg.L -1 , concentration of CR=200ppm, solution pH=neutral (7.0), temperature=30°C, % of Fe 0 loading=30% and 500W ultrasonic power. The experimental results showed that ultrasonic process could remove 98% of Congo red within 30min with higher Q max value (Q max =446.4 at 25°C). The rate of degradation of CR dye was much faster in this ultrasonic technique rather than conventional adsorption process. The degradation efficiency declined with the addition of common inorganic salts (NaCl, Na 2 CO 3 , Na 2 SO 4 and Na 3 PO 4 ). The rate of degradation suppressed more with increasing salt concentration. Kinetic and isotherm studies indicated that the degradation of CR provides pseudo-second order rate kinetic and Langmuir isotherm model compared to all other models tested. The excellent high degradation capacity of Fe 0 /PANI under ultrasonic irradiation can be explained on the basis of the formation of active hydroxyl radicals (OH) and subsequently a series of free radical reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mechanical and Morphological Study of Synthesized PMMA/CaCO3 Nano composites

    NASA Astrophysics Data System (ADS)

    Alam Md., Azad; Arif, Sajjad; Ansari, Akhter H.

    2017-08-01

    In this study, Nano-composites have been synthesized in which PMMA is the matrix material and calcium carbonate nanoparticles as the filler by In-situ polymerization reaction. Nano-CaCO3 added during polymerization and the quantity of nano-CaCO3 varied as 0.2, 0.4 and 0.6 wt. % of monomer quantity. The Nano-composites were prepared at three distinct stirring speeds 600, 800, 1000 rpm in order to observe the property with respect to stirring speeds. XRD gram depicts that the presence of nano-CaCO3 has given crystalline nature to Nano-composites. The effects of different concentrations of nano-CaCO3 loading on PMMA morphology were studied by using scanning electron microscope (SEM). The mechanical property is increasing with the stirring speed and concentration. Relative to neat PMMA a 62% increase in impact strength were observed in PMMA based Nano-composites using 0.6 wt.% nano-CaCO3.

  1. Optical nano artifact metrics using silicon random nanostructures

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tsutomu; Yoshida, Naoki; Nishio, Shumpei; Hoga, Morihisa; Ohyagi, Yasuyuki; Tate, Naoya; Naruse, Makoto

    2016-08-01

    Nano-artifact metrics exploit unique physical attributes of nanostructured matter for authentication and clone resistance, which is vitally important in the age of Internet-of-Things where securing identities is critical. However, expensive and huge experimental apparatuses, such as scanning electron microscopy, have been required in the former studies. Herein, we demonstrate an optical approach to characterise the nanoscale-precision signatures of silicon random structures towards realising low-cost and high-value information security technology. Unique and versatile silicon nanostructures are generated via resist collapse phenomena, which contains dimensions that are well below the diffraction limit of light. We exploit the nanoscale precision ability of confocal laser microscopy in the height dimension; our experimental results demonstrate that the vertical precision of measurement is essential in satisfying the performances required for artifact metrics. Furthermore, by using state-of-the-art nanostructuring technology, we experimentally fabricate clones from the genuine devices. We demonstrate that the statistical properties of the genuine and clone devices are successfully exploited, showing that the liveness-detection-type approach, which is widely deployed in biometrics, is valid in artificially-constructed solid-state nanostructures. These findings pave the way for reasonable and yet sufficiently secure novel principles for information security based on silicon random nanostructures and optical technologies.

  2. Shape-dependent electronic properties of blue phosphorene nano-flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Pradeep; Swaroop, Ram; Kumar, Ashok, E-mail: ashok@cup.ac.in

    In recent year’s considerable attention has been given to the first principles method for modifying and controlling electronic properties of nano-materials. We performed DFT-based calculations on the electronic properties of zigzag-edged nano-flakes of blue phosphorene with three possible shapes namely rectangular, triangular and hexagonal. We observed that HOMO-LUMO gap of zigzag phosphorene nano-flakes with different shapes is ∼2.9 eV with H-passivations and ∼0.7 – 1.2 eV in pristine cases. Electronic properties of blue phosphorene nano-flakes show the strong dependence on their shape. We observed that distributions of molecular orbitals were strongly affected by the different shapes. Zigzag edged considered nanostructuresmore » are non-magnetic and semiconducting in nature. The shape dependent electronic properties may find applications in tunable nano-electronics.« less

  3. Window-assisted nanosphere lithography for vacuum micro-nano-electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nannan; Institute of Electronic Engineering, Chinese Academy of Engineering Physics, Mianyang, 621900; Pang, Shucai

    2015-04-15

    Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided amore » new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.« less

  4. Spatial Characteristics of the 630-nm Artificial Ionospheric Airglow Generation Region During the Sura Facility Pumping

    NASA Astrophysics Data System (ADS)

    Shindin, A. V.; Klimenko, V. V.; Kogogin, D. A.; Beletsky, A. B.; Grach, S. M.; Nasyrov, I. A.; Sergeev, E. N.

    2018-05-01

    We describe the method and the results of modeling and retrieval of the spatial distribution of excited oxygen atoms in the HF-pumped ionospheric region based on two-station records of artificial airglow in the red line (λ = 630 nm). The HF ionospheric pumping was provided by the Sura facility. The red-line records of the night-sky portraits were obtained at two reception points—directly at the heating facility and 170 km east of it. The results were compared with the vertical ionospheric sounding data. It was found that in the course of the experiments the airglow region was about 250 km high and did not depend on the altitude of the pump-wave resonance. The characteristic size of the region was 35 km, and the shape of the distribution isosurfaces was well described by oblique spheroids or a drop-shaped form. The average value of the maximum concentration of excited atoms during the experiment was about 1000 cm-3.

  5. Variation and Defect Tolerance for Nano Crossbars

    NASA Astrophysics Data System (ADS)

    Tunc, Cihan

    With the extreme shrinking in CMOS technology, quantum effects and manufacturing issues are getting more crucial. Hence, additional shrinking in CMOS feature size seems becoming more challenging, difficult, and costly. On the other hand, emerging nanotechnology has attracted many researchers since additional scaling down has been demonstrated by manufacturing nanowires, Carbon nanotubes as well as molecular switches using bottom-up manufacturing techniques. In addition to the progress in manufacturing, developments in architecture show that emerging nanoelectronic devices will be promising for the future system designs. Using nano crossbars, which are composed of two sets of perpendicular nanowires with programmable intersections, it is possible to implement logic functions. In addition, nano crossbars present some important features as regularity, reprogrammability, and interchangeability. Combining these features, researchers have presented different effective architectures. Although bottom-up nanofabrication can greatly reduce manufacturing costs, due to low controllability in the manufacturing process, some critical issues occur. Bottom- up nanofabrication process results in high variation compared to conventional top- down lithography used in CMOS technology. In addition, an increased failure rate is expected. Variation and defect tolerance methods used for conventional CMOS technology seem inadequate for adapting to emerging nano technology because the variation and the defect rate for emerging nano technology is much more than current CMOS technology. Therefore, variations and defect tolerance methods for emerging nano technology are necessary for a successful transition. In this work, in order to tolerate variations for crossbars, we introduce a framework that is established based on reprogrammability and interchangeability features of nano crossbars. This framework is shown to be applicable for both FET-based and diode-based nano crossbars. We present a

  6. A NANO enhancement to Moore's law

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Shen, Yin-Lin; Reinhardt, Kitt; Szu, Harold

    2012-06-01

    In the past 46 years, Intel Moore observed an exponential doubling in the number of transistors in every 18 months through the size reduction of individual transistor components since 1965. In this paper, we are exploring the nanotechnology impact upon the Law. Since we cannot break down the atomic size barrier, the fact implies a fundamental size limit at the atomic or Nanotechnology scale. This means, no more simple 18 month doubling as in Moore's Law, but other forms of transistor doubling may happen at a different slope in new directions. We are particularly interested in the Nano enhancement area. (i) 3-D: If the progress in shrinking the in-plane dimensions (2D) is to slow down, vertical integration (3D) can help increasing the areal device transistor density and keep us on the modified Moore's Law curve including the 3rd dimension. As the devices continue to shrink further into the 20 to 30 nm range, the consideration of thermal properties and transport in such nanoscale devices becomes increasingly important. (ii) Carbon Computing: Instead of traditional Transistors, the other types of transistors material are rapidly developed in Laboratories Worldwide, e.g. IBM Spintronics bandgap material and Samsung Nano-storage material, HD display Nanotechnology, which are modifying the classical Moore's Law. We shall consider the overall limitation of phonon engineering, fundamental information unit 'Qubyte' in quantum computing, Nano/Micro Electrical Mechanical System (NEMS), Carbon NanoTubes (CNTs), single layer Graphemes, single strip Nano-Ribbons, etc., and their variable degree of fabrication maturities for the computing and information processing applications.

  7. Modeling and control for micro and nano manipulation

    NASA Astrophysics Data System (ADS)

    Wejinya, Uchechukwu C.

    Manipulation of micro and nano entities implies the movement of micro and nano entities from an initial position (location) to the desire position (location). This operation is not only necessary, but a required task with great precision. The tools needed for the manipulation needs to be chosen properly because the capabilities of the human hand are very restricted. Smart micro and nano manipulation are becoming of great interest in many applications including medicine and industry. In industry, high precision manipulation systems are especially needed for mass production of both micro and nano systems which consist of different component in respective scales. The transition from assembling and manipulating micro and nano entities manually to mass products with high quality is only attainable by automated assembly and manipulation systems. An example is the testing of integrated circuits which can be carried out by exchanging the manipulation tool by an electric probe. Furthermore, in medical research it is customary to pick up a single cell (human, plant, or animal), and carry it to another device which is used to further analyze the cell. Consequently, the cell of interest has to be separated from the other cells and picked up using the appropriate micro/nano tool. Hence it becomes absolutely necessary that the appropriate tool be used for specific micro or nano entity manipulation and assembly. In this research, we focus on developing micro tool for manipulating micro and nano entities in liquid environment using a micro fluidic end effector system with in-situ Polyvinylidene Fluoride (PVDF) sensing. The microfluidic end effector system consists of a DC micro-diaphragm pump and compressor, one region of flexible latex tube, a Polyvinylidene Fluoride (PVDF) sensor for in-situ measurement of micro drag force, and a micro pipette. The micro pipette of the novel microfluidic end effector system has an internal diameter (ID) smaller than 20mum used for microfluidic

  8. Electric Power from Cryo (Nano) Ice

    NASA Astrophysics Data System (ADS)

    Kandasamy, A.; Chandran, M.

    2017-05-01

    In this paper, the authors have studied experimentally the performance of cryocooler which is a mechanical device for producing very low temperature with significant cooling capacity. Nano particles were administrated to enhance the faster rate of cooling. Electric power (energy) was produced from cryogenic (nano) ice with help of thermoelectric effect. The governing equations for energy conversions, cooling capacity, amount of electric power was also discussed.

  9. The many faces of nano in newspaper reporting

    NASA Astrophysics Data System (ADS)

    Boholm, Max; Boholm, Åsa

    2012-02-01

    The morpheme nano in languages such as Swedish and English is a constituent of many words. This article linguistically analyses the meaning potential of nano by focusing on word use in a Swedish newspaper corpus comprising 2,564 articles (1.6 million words) covering a 22-year period (1988-2010). Close to 400 word forms having nano as a constituent have been identified and analyzed. The results suggest that nano covers a broad and heterogeneous conceptual field: (i) as a prefix of the SI system; (ii) in relation to the scientific activities of nanoscience and nanotechnology, including their sub-processes and actors; and (iii) in relation to objects. The identified meanings of nano, besides the standard definition (i.e. `billionth part' in relation to SI units), are `operating at the nanometre level' in relation to activities and their actors and `nanometre sized' and `nanotechnological' in relation to objects; in addition, the less precise and non-technical meaning `very small' is identified. We discuss the implications of the findings for a hypothesis about media influence on public understanding of technology, suggesting that repeated findings in Europe and the USA of little self-reported understanding and knowledge of nanotechnology or nanoscience among the public make sense in light of the polysemy of nano reflected in its broad variety of verbal forms and usages.

  10. Biomimetic/Bioinspired Design of Enzyme@capsule Nano/Microsystems.

    PubMed

    Shi, J; Jiang, Y; Zhang, S; Yang, D; Jiang, Z

    2016-01-01

    Enzyme@capsule nano/microsystems, which refer to the enzyme-immobilized capsules, have received tremendous interest owing to the combination of the high catalytic activities of encapsulated enzymes and the hierarchical structure of the capsule. The preparation of capsules and simultaneous encapsulation of enzymes is recognized as the core process for the rational design and construction of enzyme@capsule nano/microsystems. The strategy used has three major steps: (a) generation of the templates, (b) surface coating on the templates, and (c) removal of the templates, and it has been proven to be effective and versatile for the construction of enzyme@capsule nano/microsystems. Several conventional methods, including layer-by-layer assembly of polyelectrolytes, liquid crystalline templating method, etc., were used to design and construct enzyme@capsule nano/microsystems, but these have two major drawbacks. One is the low mechanical stability of the systems and the second is the harsh conditions used in the construction process. Learning from nature, several biomimetic/bioinspired methods such as biomineralization, biomimetic/bioinspired adhesion, and their combination have been exploited for the construction of enzyme@capsule nano/microsystems. In this chapter, we will present a general protocol for the construction of enzyme@capsule nano/microsystems using the latter approach. Some suggestions for improved design, construction, and characterization will also be presented with detailed procedures for specific examples. © 2016 Elsevier Inc. All rights reserved.

  11. Artificial evolution: a new path for artificial intelligence?

    PubMed

    Husbands, P; Harvey, I; Cliff, D; Miller, G

    1997-06-01

    Recently there have been a number of proposals for the use of artificial evolution as a radically new approach to the development of control systems for autonomous robots. This paper explains the artificial evolution approach, using work at Sussex to illustrate it. The paper revolves around a case study on the concurrent evolution of control networks and visual sensor morphologies for a mobile robot. Wider intellectual issues surrounding the work are discussed, as is the use of more abstract evolutionary simulations as a new potentially useful tool in theoretical biology.

  12. Optical Assembly and Characterization System for Nano-Photonics Research

    DTIC Science & Technology

    2016-03-01

    Unlimited Final Report: Optical Assembly and Characterization System for Nano -Photonics Research The views, opinions and/or findings contained in this...reviewed journals: Final Report: Optical Assembly and Characterization System for Nano -Photonics Research Report Title With this equipment funding support...Assembly and Characterization System for Nano -Photonics Research PI: Prof. Weidong Zhou, University of Texas at Arlington (UTA) 500 S. Cooper St

  13. Nano-Scale Fabrication Using Optical-Near-Field

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Ohtsu, Motoichi

    This paper reviews the specific nature of nanophotonics, i.e., a novel optical nano-technology, utilizing dressed photon excited in the nano-material. As examples of nanophotnic fabrication, optical near-field etching and increased spatial homogeneity of contents in compound semiconductors is demonstrated with a self-organized manner.

  14. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-05

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization

    PubMed Central

    Nayak, Tapas R.; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia

    2017-01-01

    Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods’ length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30–35 µm and diameters of 200–300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery. PMID:28617335

  16. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization.

    PubMed

    Nayak, Tapas R; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia

    2017-06-15

    Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods' length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30-35 µm and diameters of 200-300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.

  17. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry

    NASA Astrophysics Data System (ADS)

    Charlier, N.; Driesschaert, B.; Wauthoz, N.; Beghein, N.; Préat, V.; Amighi, K.; Marchand-Brynaert, J.; Gallez, B.

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected.

  18. Tunable far-infrared plasmonically induced transparency in graphene based nano-structures

    NASA Astrophysics Data System (ADS)

    Dolatabady, Alireza; Granpayeh, Nosrat

    2018-07-01

    In this paper, a structure is proposed to show the phenomenon of tunable far-infrared plasmonically induced transparency. The structure includes a nano-ribbon waveguide side-coupled to nano-stub resonators. The realized effect is due to the coupling between the consecutive nano-stub resonators spaced in properly designed distances, providing a constructive interference in the virtually created Fabry–Perot cavity. Due to the Fabry–Perot like cavity created between two consecutive nano-stubs, periodic values of nano-stubs separation can produce transparency windows. Increasing the number of nano-stubs would increase the number of transparency windows in different frequencies. The structure is theoretically investigated and numerically simulated by using the finite difference time domain method. Owing to the chemical potential dependency of graphene conductivity, the transparency windows can be actively tuned. The proposed component can be extensively utilized in nano-scale switching and slow-light systems.

  19. Process of making titanium carbide (TiC) nano-fibrous felts

    DOEpatents

    Fong, Hao; Zhang, Lifeng; Zhao, Yong; Zhu, Zhengtao

    2015-01-13

    A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J.Lm; (b) overlaying the nanofibers to produce a nanofibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.

  20. Nano-particle modified stationary phases for high-performance liquid chromatography.

    PubMed

    Nesterenko, Ekaterina P; Nesterenko, Pavel N; Connolly, Damian; He, Xiaoyun; Floris, Patrick; Duffy, Emer; Paull, Brett

    2013-08-07

    This review covers the latest developments and applications of nano-materials in stationary phase development for various modes of high-performance liquid chromatography. Specific attention is placed upon the development of new composite phases, including the synthetic and immobilisation strategies used, to produce either encapsulated nano-particles, or surface attached nano-particles, layers, coatings and other structures. The resultant chromatographic applications, where applicable, are discussed with comment upon enhanced selectivity and/or efficiency of the nano-particle modified phases, where such effects have been identified. In the main this review covers developments over the past five years and is structured according to the nature of the nano-particles themselves, including carbonaceous, metallic, inorganic, and organopolymer based materials.

  1. Virus scaffolds as enzyme nano-carriers.

    PubMed

    Cardinale, Daniela; Carette, Noëlle; Michon, Thierry

    2012-07-01

    The cooperative organization of enzymes by cells is a key feature for the efficiency of living systems. In the field of nanotechnologies, effort currently aims at mimicking this natural organization. Nanoscale resolution and high-registration alignment are necessary to control enzyme distribution in nano-containers or on the surface of solid supports. Virus capsid self-assembly is driven by precise supramolecular combinations of protein monomers, which have made them attractive building blocks to engineer enzyme nano-carriers (ENCs). We discuss some examples of what in our opinion constitute the latest advances in the use of plant viruses, bacteriophages and virus-like particles (VLPs) as nano-scaffolds for enzyme selection, enzyme confinement and patterning, phage therapy, raw material processing, and single molecule enzyme kinetics studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. De novo genome assembly of the red silk cotton tree (Bombax ceiba).

    PubMed

    Gao, Yong; Wang, Haibo; Liu, Chao; Chu, Honglong; Dai, Dongqin; Song, Shengnan; Yu, Long; Han, Lihong; Fu, Yi; Tian, Bin; Tang, Lizhou

    2018-05-01

    Bombax ceiba L. (the red silk cotton tree) is a large deciduous tree that is distributed in tropical and sub-tropical Asia as well as northern Australia. It has great economic and ecological importance, with several applications in industry and traditional medicine in many Asian countries. To facilitate further utilization of this plant resource, we present here the draft genome sequence for B. ceiba. We assembled a relatively intact genome of B. ceiba by using PacBio single-molecule sequencing and BioNano optical mapping technologies. The final draft genome is approximately 895 Mb long, with contig and scaffold N50 sizes of 1.0 Mb and 2.06 Mb, respectively. The high-quality draft genome assembly of B. ceiba will be a valuable resource enabling further genetic improvement and more effective use of this tree species.

  3. Color Stability of CAD/CAM Fabricated Inlays after Accelerated Artificial Aging.

    PubMed

    Karaokutan, Isil; Yilmaz Savas, Tuba; Aykent, Filiz; Ozdere, Eda

    2016-08-01

    To investigate the influence of accelerated artificial aging on the color stability of three different inlay restorations produced with a CAD/CAM system. Thirty non-carious human mandibular molar teeth were used. The teeth were embedded in autopolymerizing acrylic resin blocks. Standard Class I inlay cavities were prepared, and the teeth were randomly divided into three groups (n = 10) to fabricate inlay restorations: (1) a feldspathic-ceramic group, (2) a resin nano-ceramic group, and (3) a leucite glass-ceramic group. Optical impressions were made with CEREC software, and the restorations were designed and then milled. The inlays were adhesively cemented with a dual-polymerizing resin cement and left in distilled water at room temperature for 1 week. Color measurements were performed with a spectrophotometer before and after accelerated aging in a weathering machine with a total energy of 150 kJ/m(2) . Changes in color (∆E, ∆L, ∆a, ∆b, ∆C) were determined using the CIE L*a*b* system. The results were assessed using a one-way ANOVA and Tukey's HSD test (p = 0.05). The color changes of the materials ranged from 2.1 to 9.29. The highest color change was seen in the resin nano-ceramic material. This change was not clinically acceptable (∆E > 5.5). No significant differences were found in the ∆L and ∆a values of the test groups. Color changes were observed in each evaluated material after accelerated aging. All CAD/CAM inlays became darker in appearance, more saturated, a little reddish, and more yellow. © 2015 by the American College of Prosthodontists.

  4. NIR and UV-vis spectroscopy, artificial nose and tongue: comparison of four fingerprinting techniques for the characterisation of Italian red wines.

    PubMed

    Casale, M; Oliveri, P; Armanino, C; Lanteri, S; Forina, M

    2010-06-04

    Four rapid and low-cost vanguard analytical systems (NIR and UV-vis spectroscopy, a headspace-mass based artificial nose and a voltammetric artificial tongue), together with chemometric pattern recognition techniques, were applied and compared in addressing a food authentication problem: the distinction between wine samples from the same Italian oenological region, according to the grape variety. Specifically, 59 certified samples belonging to the Barbera d'Alba and Dolcetto d'Alba appellations and collected from the same vintage (2007) were analysed. The instrumental responses, after proper data pre-processing, were used as fingerprints of the characteristics of the samples: the results from principal component analysis and linear discriminant analysis were discussed, comparing the capability of the four analytical strategies in addressing the problem studied. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Lab-based x-ray nanoCT imaging

    NASA Astrophysics Data System (ADS)

    Müller, Mark; Allner, Sebastian; Ferstl, Simone; Dierolf, Martin; Tuohimaa, Tomi; Pfeiffer, Franz

    2017-03-01

    Due to the recent development of transmission X-ray tubes with very small focal spot sizes, laboratory-based CT imaging with sub-micron resolutions is nowadays possible. We recently developed a novel X-ray nanoCT setup featuring a prototype nanofocus X-ray source and a single-photon counting detector. The system is based on mere geometrical magnification and can reach resolutions of 200 nm. To demonstrate the potential of the nanoCT system for biomedical applications we show high resolution nanoCT data of a small piece of human tooth comprising coronal dentin. The reconstructed CT data clearly visualize the dentin tubules within the tooth piece.

  6. Artificial Intelligence Techniques for Automatic Screening of Amblyogenic Factors

    PubMed Central

    Van Eenwyk, Jonathan; Agah, Arvin; Giangiacomo, Joseph; Cibis, Gerhard

    2008-01-01

    Purpose To develop a low-cost automated video system to effectively screen children aged 6 months to 6 years for amblyogenic factors. Methods In 1994 one of the authors (G.C.) described video vision development assessment, a digitizable analog video-based system combining Brückner pupil red reflex imaging and eccentric photorefraction to screen young children for amblyogenic factors. The images were analyzed manually with this system. We automated the capture of digital video frames and pupil images and applied computer vision and artificial intelligence to analyze and interpret results. The artificial intelligence systems were evaluated by a tenfold testing method. Results The best system was the decision tree learning approach, which had an accuracy of 77%, compared to the “gold standard” specialist examination with a “refer/do not refer” decision. Criteria for referral were strabismus, including microtropia, and refractive errors and anisometropia considered to be amblyogenic. Eighty-two percent of strabismic individuals were correctly identified. High refractive errors were also correctly identified and referred 90% of the time, as well as significant anisometropia. The program was less correct in identifying more moderate refractive errors, below +5 and less than −7. Conclusions Although we are pursuing a variety of avenues to improve the accuracy of the automated analysis, the program in its present form provides acceptable cost benefits for detecting ambylogenic factors in children aged 6 months to 6 years. PMID:19277222

  7. Weatherability and leach resistance of wood impregnated with nano-zinc oxide

    Treesearch

    Carol A. Clausen; Frederick Green; S. Nami Kartal

    2010-01-01

    Southern pine specimens vacuum-treated with nano-zinc oxide (nano-ZnO) dispersions were evaluated for leach resistance and UV protection. Virtually, no leaching occurred in any of the nano-ZnO–treated specimens in a laboratory leach test, even at the highest retention of 13 kg/m3. However, specimens treated with high concentrations of nano-ZnO...

  8. RED-LETTER DAYS

    EPA Science Inventory

    The word "red-letter" is an adjective meaning "of special significance." It's origin is from the practice of marking Christian holy days in red letters on calendars. The "red-letter days" to which I refer occurred while I was a graduate student of ...

  9. Rearing insects on artificial diets

    USDA-ARS?s Scientific Manuscript database

    Insects are reared in the laboratory for various purposes. They may be reared either on their natural food or artificial diets. Developing artificial diets may be difficult and time consuming but once optimized, artificial diets usually are simple to prepare and easy to use. Because they are process...

  10. Calibrating abundance indices with population size estimators of red back salamanders (Plethodon cinereus) in a New England forest

    PubMed Central

    Ellison, Aaron M.; Jackson, Scott

    2015-01-01

    Herpetologists and conservation biologists frequently use convenient and cost-effective, but less accurate, abundance indices (e.g., number of individuals collected under artificial cover boards or during natural objects surveys) in lieu of more accurate, but costly and destructive, population size estimators to detect and monitor size, state, and trends of amphibian populations. Although there are advantages and disadvantages to each approach, reliable use of abundance indices requires that they be calibrated with accurate population estimators. Such calibrations, however, are rare. The red back salamander, Plethodon cinereus, is an ecologically useful indicator species of forest dynamics, and accurate calibration of indices of salamander abundance could increase the reliability of abundance indices used in monitoring programs. We calibrated abundance indices derived from surveys of P. cinereus under artificial cover boards or natural objects with a more accurate estimator of their population size in a New England forest. Average densities/m2 and capture probabilities of P. cinereus under natural objects or cover boards in independent, replicate sites at the Harvard Forest (Petersham, Massachusetts, USA) were similar in stands dominated by Tsuga canadensis (eastern hemlock) and deciduous hardwood species (predominantly Quercus rubra [red oak] and Acer rubrum [red maple]). The abundance index based on salamanders surveyed under natural objects was significantly associated with density estimates of P. cinereus derived from depletion (removal) surveys, but underestimated true density by 50%. In contrast, the abundance index based on cover-board surveys overestimated true density by a factor of 8 and the association between the cover-board index and the density estimates was not statistically significant. We conclude that when calibrated and used appropriately, some abundance indices may provide cost-effective and reliable measures of P. cinereus abundance that could

  11. NanoLaunch

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan; Harris, Lawanna

    2015-01-01

    NASA's NanoLaunch effort will provide the framework to mature both Earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low-Earth orbit for CubeSat-class payloads. The project will also serve as an early career personnel training opportunity with mentors to gain hands-on project experience.

  12. Use of red mud (bauxite residue) for the retention of aqueous inorganic mercury(II).

    PubMed

    Rubinos, David A; Barral, María Teresa

    2015-11-01

    The effectiveness of the oxide-rich residue from bauxite refining (red mud) to remove inorganic Hg(II) from aqueous solutions was assessed. The aspects studied comprised the kinetics of the process (t = 1 min-24 h), the effect of pH (3.5-11.5), the interacting effect between salt concentration (0.01-1 M NaNO3) and pH and the Hg(II) sorption isotherm. Hg leaching from spent red mud was evaluated using the toxicity characteristics leaching procedure (TCLP) method. The sorption of Hg(II) onto red mud was very fast, with most of Hg(II) (97.0-99.7%) being removed from 0.5-50 μM Hg solutions in few minutes. The kinetic process was best described by Ho's pseudo-second order equation, pointing to chemisorption as the rate controlling step. Hg(II) sorption efficiency was very high (% removal between 93.9 and 99.8%) within all the studied pH range (3.5-11.5) and added Hg concentrations (5 and 50 μM), being optimal at pH 5-8 and decreasing slightly at both lowest and highest pH. The effect of background electrolyte concentration suggests specific sorption as the main interaction mechanism between Hg(II) and red mud, but the increasing non-sorbed Hg concentrations at low and high pH for higher electrolyte concentrations also revealed the contribution of an electrostatic component to the process. The sorption isotherm showed the characteristic shape of high affinity sorbents, and it was better described by the Redlich-Peterson and Freundlich equations, which are models that assume sorbent heterogeneity and involvement of more than one mechanism. The estimated Hg(II) sorption capacity from the Langmuir equation (q m ~9 mmol/kg) was comparable to those of some inorganic commercial sorbents but lower than most bio- or specifically designed sorbents. The leachability of retained Hg(II) from spent red mud (0.02, 0.25 and 2.42 mmol Hg/kg sorbed concentration) was low (0.28, 1.15 and 2.23 μmol/kg, respectively) and accounted for 1.2, 0.5 and 0.1% of previously sorbed Hg

  13. Synthesis and characterisation of glucose-functional glycopolymers and gold nanoparticles: study of their potential interactions with ovine red blood cells.

    PubMed

    Wilkins, Laura E; Phillips, Daniel J; Deller, Robert C; Davies, Gemma-Louise; Gibson, Matthew I

    2015-03-20

    Carbohydrate-protein interactions can assist with the targeting of polymer- and nano-delivery systems. However, some potential protein targets are not specific to a single cell type, resulting in reductions in their efficacy due to undesirable non-specific cellular interactions. The glucose transporter 1 (GLUT-1) is expressed to different extents on most cells in the vasculature, including human red blood cells and on cancerous tissue. Glycosylated nanomaterials bearing glucose (or related) carbohydrates, therefore, could potentially undergo unwanted interactions with these transporters, which may compromise the nanomaterial function or lead to cell agglutination, for example. Here, RAFT polymerisation is employed to obtain well-defined glucose-functional glycopolymers as well as glycosylated gold nanoparticles. Agglutination and binding assays did not reveal any significant binding to ovine red blood cells, nor any haemolysis. These data suggest that gluco-functional nanomaterials are compatible with blood, and their lack of undesirable interactions highlights their potential for delivery and imaging applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. NanoSat Constellation Mission Design

    NASA Technical Reports Server (NTRS)

    Concha, Marco; DeFazio, Robert

    1998-01-01

    The NanoSat constellation concept mission proposes simultaneous operation of multiple swarms of as many as 22 identical 10 kg spacecraft per swarm. The various orbits in a NanoSat swarm vary from 3x12 to 3x42 R(sub e) in geometry. In this report the unique flight dynamics issues of this constellation satellite mission design are addressed. Studies include orbit design, orbit determination, and error analysis. A preliminary survey determined the orbital parameters that would limit the maximum shadow condition while providing adequate ground station access for three ground stations.

  15. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210.

    PubMed

    Cui, Yin-Hua; Li, Ling-Li; Zhou, Nan-Qing; Liu, Jing-Hua; Huang, Qing; Wang, Hui-Juan; Tian, Jie; Yu, Han-Qing

    2016-12-01

    Nano-selenium has a great potential to be used in chemical, biological, medical and environmental fields. Biological methods for nano-selenium synthesis have attracted wide interests, because they can be operated at ambient temperature and pressure without complicated equipments. In this work, a protozoa, Tetrahymena thermophila (T. thermophila) SB210, was used to in vivo synthesize nano-selenium. The biosynthesized nano-selenium was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. The synthesized amorphous spherical selenium nanoparticles had diameters of 50-500nm with the coexistence of irregular nano-selenium. The expressions of glutathione (GSH) synthesis related gene glutathione synthase, cysteine-rich protein metallothionein related gene metallothionein-1 and [2Fe-2S] cluster-binding protein related gene were up-regulated in the nano-selenium producing group. Also, the subsequent GSH detection and in vitro synthesis experimental results suggest the three proteins were likely to be involved in the nano-selenium synthesis process. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.

    PubMed

    Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun

    2016-02-17

    In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.

  17. Chlorophyll derivatives enhance invertebrate red-light and ultraviolet phototaxis.

    PubMed

    Degl'Innocenti, Andrea; Rossi, Leonardo; Salvetti, Alessandra; Marino, Attilio; Meloni, Gabriella; Mazzolai, Barbara; Ciofani, Gianni

    2017-06-13

    Chlorophyll derivatives are known to enhance vision in vertebrates. They are thought to bind visual pigments (i.e., opsins apoproteins bound to retinal chromophores) directly within the retina. Consistent with previous findings in vertebrates, here we show that chlorin e 6 - a chlorophyll derivative - enhances photophobicity in a flatworm (Dugesia japonica), specifically when exposed to UV radiation (λ = 405 nm) or red light (λ = 660 nm). This is the first report of chlorophyll derivatives acting as modulators of invertebrate phototaxis, and in general the first account demonstrating that they can artificially alter animal response to light at a behavioral level. Our findings show that the interaction between chlorophyll derivatives and opsins virtually concerns the vast majority of bilaterian animals, and also occurs in visual systems based on rhabdomeric (rather than ciliary) opsins.

  18. 76 FR 22033 - Safety Zone; Red River Safety Zone, Red River, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ...-AAOO Safety Zone; Red River Safety Zone, Red River, MN AGENCY: Coast Guard, DHS. ACTION: Temporary... a temporary safety zone on the Red River, MN. This safety zone is being established to ensure the... Red River in the State of Minnesota north of a line drawn across latitude 46[deg]20'00'' N, including...

  19. Sensitivity of BN nano-cages to caffeine and nicotine molecules

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Baei, Mohammad T.; Tazikeh Lemeski, E.; Shahini, Malihe

    2014-12-01

    Adsorption of caffeine and nicotine molecules over B12N12 and B16N16 nano-cages were investigated by using first-principles calculations to define whether BN nano-cages are applicable for filtering or sensing caffeine and nicotine molecules. The chemisorption energy of nicotine molecule on BN nano-cages is very stronger than caffeine molecule. Upon the adsorption of caffeine and nicotine molecules, the electronic properties of the BN nano-cages can be significantly changed, being too much sensitized on the caffeine and nicotine adsorptions.

  20. Inside NanoSail-D: A Tiny Satellite with Big Ideas

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Agasid, Elwood; Casas, Joseph; Adams, Charles; O'Brien, Sue; Laue, Greg; Kitts, Chris

    2011-01-01

    "Small But Mighty" certainly describes the NanoSail-D experiment and mission. Its unique goals and designs were simple, but the implications of this technology are far reaching. From a tiny 3U CubeSat, NanoSail-D deployed a 10 square meter solar sail. This was the first sail vehicle to orbit the earth and was only the second time a sail was unfurled in space. The NanoSail-D team included: two NASA centers, Marshall and Ames, the universities of Alabama in Huntsville and Santa Clara in California, the Air Force Research Laboratory and many contractors including NeXolve, Gray Research and several others. The collaborative nature was imperative to the success of this project. In addition, the Army Space and Missile Defense Command, the Von Braun Center for Science and Innovation and Dynetics Inc. jointly sponsored the NanoSail-D project. This paper presents in-depth insight into the NanoSail-D development. Its design was a combination of left over space hardware coupled with cutting edge technology. Since this NanoSail-D mission was different from the first, several modifications were necessary for the second NanoSail-D unit. Unforeseen problems arose during refurbishment of the second unit and the team had to overcome these obstacles. Simple interfaces, clear responsibilities and division of effort allowed the team members to work independently on the common goal. This endeavor formed working relationships lasting well beyond the end of this mission. NanoSail-D pushed the technology envelop with future applications for all classes of satellites. NanoSail-D is truly a small but mighty satellite, which may cast a very big shadow for years to come.