Sample records for nano biosensor alarm

  1. Recent development of nano-materials used in DNA biosensors.

    PubMed

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  2. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  3. Advances in nano-scaled biosensors for biomedical applications.

    PubMed

    Wang, Jianling; Chen, Guihua; Jiang, Hui; Li, Zhiyong; Wang, Xuemei

    2013-08-21

    Recently, a growing amount of attention has been focused on the utility of biosensors for biomedical applications. Combined with nanomaterials and nanostructures, nano-scaled biosensors are installed for biomedical applications, such as pathogenic bacteria monitoring, virus recognition, disease biomarker detection, among others. These nano-biosensors offer a number of advantages and in many respects are ideally suited to biomedical applications, which could be made as extremely flexible devices, allowing biomedical analysis with speediness, excellent selectivity and high sensitivity. This minireview discusses the literature published in the latest years on the advances in biomedical applications of nano-scaled biosensors for disease bio-marking and detection, especially in bio-imaging and the diagnosis of pathological cells and viruses, monitoring pathogenic bacteria, thus providing insight into the future prospects of biosensors in relevant clinical applications.

  4. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    NASA Astrophysics Data System (ADS)

    Yoo, Haneul; Lee, Dong Jun; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Tak Cho, Young; Park, Jae Yeol; Chen, Xing; Hong, Seunghun

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species.

  5. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  6. A novel nano-photonics biosensor concept for rapid molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Klunder, Dion J. W.; van Herpen, Maarten M. J. W.; Kolesnychenko, Aleksey; Hornix, Eefje; Kahya, Nicoletta; de Boer, Ruth; Stapert, Henk

    2008-04-01

    We present a novel nano-photonics biosensor concept that offers an ultra-high surface specificity and excellent suppression of background signals due to the sample fluid on top of the biosensor. In our contribution, we will briefly discuss the operation principle and fabrication of the biosensor, followed by a more detailed discussion on the experimentally determined performance parameters. Recent results on detection of fluorescently labeled molecules in a highly fluorescent background will be shown, and we will give an outlook on real-time detection of bio-molecules such as proteins and nucleic acids.

  7. Detection of triglyceride using an iridium nano-particle catalyst based amperometric biosensor.

    PubMed

    Liao, Wei-Yin; Liu, Chung-Chiun; Chou, Tse-Chuan

    2008-12-01

    The detection and quantification of triglyceride (TG) using an iridium nano-particle modified carbon based biosensor was successfully carried out in this study. The detection procedures were based on the electrochemical detection of enzymatically produced NADH. TG was hydrolyzed by lipase and the glycerol produced was catalytically oxidized by NAD-dependent glycerol dehydrogenase producing NADH in a solution containing NAD(+). Glyceryl tributyrate, a short chain triglyceride, was chosen as the substrate for the evaluation of this TG biosensor in bovine serum and human serum. A linear response to glyceryl tributyrate in the concentration range of 0 to 10 mM and a sensitivity of 7.5 nA mM(-1) in bovine serum and 7.0 nA mM(-1) in human serum were observed experimentally. The potential interference of species such as uric acid (UA) and ascorbic acid (AA) was assessed. The incorporation of a selected surfactant and an increase in the incubation temperature appeared to enhance the performance of this biosensor. The conditions for the determination of TG levels in bovine serum using this biosensor were optimized, with sunflower seed oil being used as an analyte to simulate the detection of TG in blood. The experimental results demonstrated that this iridium nano-particle modified working electrode based biosensor provided a relatively simple means for the accurate determination of TG in serum.

  8. Nano-biosensors in cellular and molecular biology.

    PubMed

    Moradi, Sajad; Khaledian, Salar; Abdoli, Mohadese; Shahlaei, Mohsen; Kahrizi, Danial

    2018-04-30

    Detection and quantification of various biological and non-biological species today is one of the most important pillars of all experimental sciences, especially sciences related to human health. This may apply to a chemical in the factory wastewater or to identify a cancer cell in a person's body, it may be apply to trace a useful industrial microorganism or human or plant pathogenic microorganisms. In this regard, scientists from various sciences have always striven to design and provide tools and techniques for identifying and quantifying as accurately as possible to trace various analyte types with greater precision and specificity. Nano science, which has flourished in recent years and is nowadays widely used in all fields of science, also has a unique place in the design and manufacture of sensors and this, in addition to the new and special characteristics of nanoparticles, is due to the ability of nano-devices to penetrate into very tiny places to track the species. On the other hand, due to the high specificity of biological molecules in identifying and connecting to their receptors that have evolved over millions of years, Scientists are now trying to design hybrid devices using nano science and biology, called Nano-biosensors So that they can trace and quantify target molecules in very small amounts and in inaccessible places, such as within the organs and even the cells.

  9. Regeneration of titanium oxide nano-coated long-period grating biosensor

    NASA Astrophysics Data System (ADS)

    Dominik, M.; Niedziółka-Jönsson, J.; Roźniecka, E.; Wachnicki, Ł.; Godlewski, M.; Mikulic, P.; Bock, Wojtek J.; Śmietana, M.

    2016-05-01

    This work presents an application of sodium hydroxide (NaOH) as an effective method for regeneration of titanium oxide (TiOx) nano-coated long-period grating (LPG) biosensor. Below 100 nm in thickness TiOx coating was deposited with atomic layer deposition (ALD) method on LPGs for enhancing their refractive index sensitivity up to 2912 nm/RIU in RI range 1.33-1.36 RIU. Next, the sensors were biofunctionalized in order to immobilize receptor (biotin) on their surface and used for selective avidin detection. After successful biofunctionalization process and avidin detection the sensors were washed in NaOH and biofunctionalized again. The proposed method for recovering the sensor does not cause decrease in its functional properties. As a result of the applied procedure the biosensor was fully regenerated.

  10. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor.

    PubMed

    Jomma, Ezzaldeen Younes; Ding, Shou-Nian

    2016-02-18

    In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe₃O₄-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe₃O₄-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe₃O₄-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM(-1)∙cm(-2) and good long-term stability.

  11. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

    PubMed Central

    Jomma, Ezzaldeen Younes; Ding, Shou-Nian

    2016-01-01

    In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability. PMID:26901204

  12. Zinc oxide nano-rods based glucose biosensor devices fabrication

    NASA Astrophysics Data System (ADS)

    Wahab, H. A.; Salama, A. A.; El Saeid, A. A.; Willander, M.; Nur, O.; Battisha, I. K.

    2018-06-01

    ZnO is distinguished multifunctional material that has wide applications in biochemical sensor devices. For extracellular measurements, Zinc oxide nano-rods will be deposited on conducting plastic substrate with annealing temperature 150 °C (ZNRP150) and silver wire with annealing temperature 250 °C (ZNRW250), for the extracellular glucose concentration determination with functionalized ZNR-coated biosensors. It was performed in phosphate buffer saline (PBS) over the range from 1 μM to 10 mM and on human blood plasma. The prepared samples crystal structure and surface morphologies were characterized by XRD and field emission scanning electron microscope FESEM respectively.

  13. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite.

    PubMed

    Zhybak, M; Beni, V; Vagin, M Y; Dempsey, E; Turner, A P F; Korpan, Y

    2016-03-15

    The use of a novel ammonium ion-specific copper-polyaniline nano-composite as transducer for hydrolase-based biosensors is proposed. In this work, a combination of creatinine deaminase and urease has been chosen as a model system to demonstrate the construction of urea and creatinine biosensors to illustrate the principle. Immobilisation of enzymes was shown to be a crucial step in the development of the biosensors; the use of glycerol and lactitol as stabilisers resulted in a significant improvement, especially in the case of the creatinine, of the operational stability of the biosensors (from few hours to at least 3 days). The developed biosensors exhibited high selectivity towards creatinine and urea. The sensitivity was found to be 85 ± 3.4 mAM(-1)cm(-2) for the creatinine biosensor and 112 ± 3.36 mAM(-1)cm(-2) for the urea biosensor, with apparent Michaelis-Menten constants (KM,app), obtained from the creatinine and urea calibration curves, of 0.163 mM for creatinine deaminase and 0.139 mM for urease, respectively. The biosensors responded linearly over the concentration range 1-125 µM, with a limit of detection of 0.5 µM and a response time of 15s. The performance of the biosensors in a real sample matrix, serum, was evaluated and a good correlation with standard spectrophotometric clinical laboratory techniques was found. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nano interfaced biosensor for detection of choline in triple negative breast cancer cells.

    PubMed

    Thiagarajan, Vignesh; Madhurantakam, Sasya; Sethuraman, Swaminathan; Balaguru Rayappan, John Bosco; Maheswari Krishnan, Uma

    2016-01-15

    Choline, a type of Vitamin B, is an important nutrient in the human body and is involved in key metabolic pathways. Abnormal levels of choline leads to diseased conditions. The levels of choline and its associated compounds are found to be elevated in triple negative breast cancer (TNBC) patients. The choline level ranges from 0.4 to 4.9mmol/kg in TNBC. Thus the detection of choline levels in cells can aid in diagnosing breast cancer. The present work aims to develop a nano-interfaced electrochemical biosensor for the rapid detection of choline in cancer cells. For electrochemical detection, glassy carbon electrode coated with a zinc oxide nano-interface was used as the working electrode. Zinc oxide synthesized by hydrothermal method was characterized using SEM and XRD. The choline oxidase (ChOx) enzyme was immobilized on the nano-interface by drop-casting. Choline oxidase (ChOx) converts choline to betaine and H2O2 in the presence of oxygen. The H2O2 produced was determined amperometrically. The amount of H2O2 produced is directly proportional to concentration of choline present. The sensitivity, selectivity, stability and concentration studies were carried out and quantification of choline in TNBC was also carried out. The results demonstrate that this biosensor has the potential to be developed as a clinical tool for breast cancer detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Thermoresponsive magnetic nano-biosensors for rapid measurements of inorganic arsenic and cadmium.

    PubMed

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-10-18

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 µg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water.

  16. Thermoresponsive Magnetic Nano-Biosensors for Rapid Measurements of Inorganic Arsenic and Cadmium

    PubMed Central

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-01-01

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 μg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water. PMID:23202034

  17. Dependence of seed layer thickness on sensitivity of nano-ZnO cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Lu, Yang-Ming; Wang, Po-Chin; Tang, Jian-Fu; Chu, Sheng-Yuan

    2017-01-01

    The anemone-like ZnO nanostructures have been synthesized by hydrothermal method and were further adsorbed immobilized cholesterol oxidase (ChOx) as a nano-biosensor. In this study, the sensitivity of biosensor were improved by varying the thickness of the ZnO seed layer. The SEM analysis showed changes in thickness of seed layer will not affect the morphologies of anemone-like ZnO nanostructures. The X-ray Diffraction patterns showed that the (002) plane of anemone-like ZnO grown on various thickness of the seed layer was more prouded than other crystal plane. Abioelectrode (ChOx/ZnO/ITO/glass) grown on the 30nm of ZnO seed layer with high sensitivity of 57.533μAmM-1cm-2 (1.488 μA (mg/dl) -1cm-2), a wide sensitive range from 25 to 500 mg/dl. It is concluded that the thinner sputtered ZnO seed layer for growing anemone-like ZnO nanostructure can effectively improve the sensitivity of the ZnO biosensor.

  18. Nano-Calorimetry based point of care biosensor for metabolic disease management.

    PubMed

    Kazura, Evan; Lubbers, Brad R; Dawson, Elliott; Phillips, John A; Baudenbacher, Franz

    2017-09-01

    Point of care (POC) diagnostics represents one of the fastest growing health care technology segments. Developments in microfabrication have led to the development of highly-sensitive nanocalorimeters ideal for directly measuring heat generated in POC biosensors. Here we present a novel nano-calorimeter-based biosensor design with differential sensing to eliminate common mode noise and capillary microfluidic channels for sample delivery to the thermoelectric sensor. The calorimeter has a resolution of 1.4 ± 0.2 nJ/(Hz) 1/2 utilizing a 27 junction bismuth/titanium thermopile, with a total Seebeck coefficient of 2160 μV/K. Sample is wicked to the calorimeter through a capillary channel making it suitable for monitoring blood obtained through a finger prick (<1 μL sample required). We demonstrate device performance in a model assay using catalase, achieving a threshold for hydrogen peroxide quantification of 50 μM. The potential for our device as a POC blood test for metabolic diseases is shown through the quantification of phenylalanine (Phe) in serum, an unmet necessary service in the management of Phenylketonuria (PKU). Pegylated phenylalanine ammonia-lyase (PEG-PAL) was utilized to react with Phe, but reliable detection was limited to <5 mM due to low enzymatic activity. The POC biosensor concept can be multiplexed and adapted to a large number of metabolic diseases utilizing different immobilized enzymes.

  19. Simulation of a broadband nano-biosensor based on an onion-like quantum dot-quantum well structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Absalan, H; SalmanOgli, A; Rostami, R

    The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot-quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event ormore » a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 - 760 nm). (laser applications in biology and medicine)« less

  20. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  1. Fabrication of mediator-free hybrid nano-interfaced electrochemical biosensor for monitoring cancer cell proliferation.

    PubMed

    Madhurantakam, Sasya; Jayanth Babu, K; Balaguru Rayappan, John Bosco; Krishnan, Uma Maheswari

    2017-01-15

    Glucose, a chief energy source in cellular metabolism, has a significant role in cell proliferation. Cancer cells utilize more glucose than normal cells to meet the energy demand arising due to their uncontrolled proliferation. The present work reports the development of a nano-interfaced amperometric biosensor for rapid and accurate monitoring of glucose utilization by cancer cells. A hybrid nano-interface comprising a blend of carbon nanotubes (CNTs) and graphene (GR) was employed to enhance the surface area of the working electrode and favour direct electron transfer. Glucose oxidase (GOx) immobilized on the interface serves as the sensing element due to its high selectivity and sensitivity towards glucose. Utilization of glucose was monitored at pre-determined time intervals in MiaPaCa-2 cancer cells. The results obtained from the amperometric technique were compared with the values obtained from a commercial glucometer. Alamar blue assay was performed to check the proliferation rate of the cells. A good correlation was obtained between the proliferation rate and glucose utilization. The designed biosensor was found to be unaffected by the presence of potential interferents and hence may serve as a novel in vitro tool to rapidly quantify the proliferation rates of cancer cells in response to different treatment strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Synthesis and cytotoxicity of azo nano-materials as new biosensors for L-Arginine determination.

    PubMed

    Shang, Xuefang; Luo, Leiming; Ren, Kui; Wei, Xiaofang; Feng, Yaqian; Li, Xin; Xu, Xiufang

    2015-06-01

    Inspired from biological counterparts, chemical modification of azo derivatives with function groups may provide a highly efficient method to detect amino acid. Herein, we have designed and prepared a series of azo nano-materials involving -NO2, -COOH, -SO3H and naphthyl group, which showed high response for Arginine (Arg) among normal twenty kinds of (Alanine, Valine, Leucine, Isoleucine, Methionine, Aspartic acid, Glutamic acid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, nano-material 3 exhibited high binding ability for Arg and low cytotoxicity to KYSE450 cells over a concentration range of 5-50μmol·L(-1) which may be used a biosensor for the Arg detection in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  4. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity.

    PubMed

    Cevenini, Luca; Calabretta, Maria Maddalena; Lopreside, Antonia; Tarantino, Giuseppe; Tassoni, Annalisa; Ferri, Maura; Roda, Aldo; Michelini, Elisa

    2016-12-01

    The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.

  5. A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

    PubMed Central

    Gan, Ning; Yang, Xin; Xie, Donghua; Wu, Yuanzhao; Wen, Weigang

    2010-01-01

    A disposable organophosphorus pesticides (OPs) enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE) has been developed. Firstly, an acetylcholinesterase (AChE)-coated Fe3O4/Au (GMP) magnetic nanoparticulate (GMP-AChE) was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs)/nano-ZrO2/prussian blue (PB)/Nafion (Nf) composite membrane by an external magnetic field. Thus, the biosensor (SPCE│CNTs/ZrO2/PB/Nf│GMP-AChE) for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM) and X-ray fluorescence spectrometery (XRFS) and its electrochemical properties were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The degree of inhibition (A%) of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh). In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10−3–10 ng·mL−1 with a detection limit of 5.6 × 10−4 ng·mL−1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC) method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis. PMID:22315558

  6. Experimental demonstration and theoretical explanation of the efficiency of the nano-structured silicon as the transducer for optical immune biosensors

    NASA Astrophysics Data System (ADS)

    Starodub, Nickolaj F.; Slyshyk, Nelya F.; Shavanova, Kateryna E.; Karpyuk, Andrij; Mel'nichenko, Mykola M.; Zherdev, Anatolij V.; Dzantiev, Boris B.

    2014-10-01

    It is presented the experimental results about the investigations of the efficiency of the structured nano-pourous silicon (sNPS) application as transducer in the immune biosensors designed for the control of retroviral bovine leucosis (RBL) and the determination of the level such mycotoxins as T2 and patulin among environmental objects. Today, there is an arsenal of the traditional immunological methods that allow for the biochemical diagnostics of the above diseases and control of toxins but they are deeply routine and can not provide the requirements of practice for express analysis, its low cost and simplicity. Early to provide practical demands we developed immune biosensors based on SPR, TIRE and thermistors. To find more simple variant of the assay we studied the efficiency sNPS as trasducer in immune biosensor. The registration of the specific signals was made by measuremets of level of chemiluminescence (ChL) or photocurrent. The sensitivity of biosensor for both variants of the specific signal registration at the determination of T2 and patulin was about 10-20 ng/ml. Sensitivity analysis of RBL by this immune biosensors exceeds traditionally used approaches including the ELISA-method too. The optimal serum dilution of blood at the screening leukemia should be no less than 1:100, or even 1:500. The immune biosensor may be applied too for express screening leucosis through analysis of milk. In this case the optimal serum dilution of milk should be about 1:20. The total time of analysis including all steps (immobilization of specific Ab or antigens on the transducer surface and measurements) was about 40 min and it may be a sharp decline if the above mentione sensitive elements will be immobilized preliminary measurements. It is concluded that the proposed type of transducer for immune biosensor is effective for analysis of mycotoxins in screening regime.

  7. Nano-biosensor for highly sensitive detection of HER2 positive breast cancer.

    PubMed

    Salahandish, Razieh; Ghaffarinejad, Ali; Naghib, Seyed Morteza; Majidzadeh-A, Keivan; Zargartalebi, Hossein; Sanati-Nezhad, Amir

    2018-05-25

    Nanocomposite materials have provided a wide range of conductivity, sensitivity, selectivity and linear response for electrochemical biosensors. However, the detection of rare cells at single cell level requires a new class of nanocomposite-coated electrodes with exceptional sensitivity and specificity. We recently developed a construct of gold nanoparticle-grafted functionalized graphene and nanostructured polyaniline (PANI) for high-performance biosensing within a very wide linear response and selective performance. Further, replacing the expensive gold nanoparticles with low-cost silver nanoparticles as well as optimizing the nanocomposite synthesis and functionalization protocols on the electrode surface in this work enabled us to develop ultrasensitive nanocomposites for label-free detection of breast cancer cells. The sensor presented a fast response time of 30 min within a dynamic range of 10 - 5 × 10 6 cells mL -1 and with a detection limit of 2 cells mL -1 for the detection of SK-BR3 breast cancer cell. The nano-biosensor, for the first time, demonstrated a high efficiency of > 90% for the label-free detection of cancer cells in whole blood sample without any need for sample preparation and cell staining. The results demonstrated that the optimized nanocomposite developed in this work is a promising nanomaterial for electrochemical biosensing and with the potential applications in electro-catalysis and super-capacitances. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Oxygen sensing glucose biosensors based on alginate nano-micro systems

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit

    2014-04-01

    Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.

  9. Nano-particle enhanced impedimetric biosensor for detedtion of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Kim, G.; Om, A. S.; Mun, J. H.

    2007-03-01

    Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency

  10. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication.

    PubMed

    Dey, D; Goswami, T

    2011-01-01

    The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  11. NaNO3/NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors.

    PubMed

    López-Marzo, Adaris M; Hoyos-de-la-Torre, Raquel; Baldrich, Eva

    2018-03-20

    Gold nanoparticles (AuNPs) have been exploited as signal-producing tags in electrochemical biosensors. However, the electrochemical detection of AuNPs is currently performed using corrosive acid solutions, which may raise health and environmental concerns. Here, oxidant salts, and specifically the environmentally friendly and occupational safe NaNO 3 /NaCl mixture, have been evaluated for the first time as potential alternatives to the acid solutions traditionally used for AuNPs electrooxidation. In addition, a new strategy to improve the sensitivity of the biosensor through PEG-based ligand exchange to produce less compact and easier to oxidize AuNPs immunoconjugates is presented too. As we show, the electrochemical immunosensor using NaNO 3 /NaCl measurement solution for AuNPs electrooxidation and detection, coupled to the employment of PEG-capped nanoimmunoconjugates, produced results comparable to classical HCl detection. The procedure developed was next tested for human matrix metallopeptidase-9 (hMMP9) analysis, exhibiting a 0.18-23 ng/mL linear range, a detection limit of 0.06 ng/mL, and recoveries between 95 and 105% in spiked human plasma. These results show that the procedure developed is applicable to the analysis of protein biomarkers in blood plasma and could contribute to the development of more environmentally friendly AuNP-based electrochemical biosensors.

  12. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles

    PubMed Central

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-01-01

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005–10 mM) and high sensitivity (~993.91 µA mM−1 cm−2; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection. PMID:28914766

  13. Nanoscale Biosensors Based on Self-Propelled Objects.

    PubMed

    Jurado-Sánchez, Beatriz

    2018-06-25

    This review provides a comprehensive overview of the latest developments (2016⁻2018 period) in the nano and micromotors field for biosensing applications. Nano and micromotor designs, functionalization, propulsion modes and transduction mechanism are described. A second important part of the review is devoted to novel in vitro and in vivo biosensing schemes. The potential and future prospect of such moving nanoscale biosensors are given in the conclusions.

  14. Study of zeolite influence on analytical characteristics of urea biosensor based on ion-selective field-effect transistors

    PubMed Central

    2014-01-01

    A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors. PMID:24636423

  15. A new nanostructured Silicon biosensor for diagnostics of bovine leucosis

    NASA Astrophysics Data System (ADS)

    Luchenko, A. I.; Melnichenko, M. M.; Starodub, N. F.; Shmyryeva, O. M.

    2010-08-01

    In this report we propose a new instrumental method for the biochemical diagnostics of the bovine leucosis through the registration of the formation of the specific immune complex (antigen-antibody) with the help of biosensor based on the nano-structured silicon. The principle of the measurements is based on the determination of the photosensitivity of the surface. In spite of the existed traditional methods of the biochemical diagnostics of the bovine leucosis the proposed approach may provide the express control of the milk quality as direct on the farm and during the process raw materials. The proposed variant of the biosensor based on the nano-structured silicon may be applied for the determination of the concentration of different substances which may form the specific complex in the result of the bioaffine reactions. A new immune technique based on the nanostructured silicon and intended for the quantitative determination of some toxic substances is offered. The sensitivity of such biosensor allows determining T-2 mycotoxin at the concentration of 10 ng/ml during several minutes.

  16. Nanoplasmonic Biosensor Using Localized Surface Plasmon Resonance Spectroscopy for Biochemical Detection.

    PubMed

    Zhang, Diming; Zhang, Qian; Lu, Yanli; Yao, Yao; Li, Shuang; Liu, Qingjun

    2017-01-01

    Localized surface plasmon resonance (LSPR) associated with metal nanostructures has developed into a highly useful sensor technique. Optical LSPR spectroscopy of nanostructures often shows sharp absorption and scattering peaks, which can be used to probe several bio-molecular interactions. Here, we report nanoplasmonic biosensors using LSPR on nanocup arrays (nanoCA) to recognize bio-molecular binding for biochemical detection. These sensors can be modified to quantify binding of small molecules to proteins for odorant and explosive detections. Electrochemical LSPR biosensors can also be designed by coupling electrochemistry and LSPR spectroscopy measurements. Multiple sensing information can be obtained and electrochemical LSPR property can be investigated for biosensors. In some applications, the electrochemical LSPR biosensor can be used to quantify immunoreactions and enzymatic activity. The biosensors exhibit better performance than those of conventional optical LSPR measurements. With multi-transducers, the nanoplasmonic biosensor can provide a promising approach for bio-detection in environmental monitoring, healthcare diagnostics, and food quality control.

  17. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms

    PubMed Central

    Pilehvar, Sanaz; De Wael, Karolien

    2015-01-01

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing. PMID:26610583

  18. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    PubMed

    Pilehvar, Sanaz; De Wael, Karolien

    2015-11-23

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

  19. Towards the Development of Electrical Biosensors Based on Nanostructured Porous Silicon

    PubMed Central

    Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso, Miguel; Gallach, Darío; López-García, Juan; Martín-Palma, Raúl J.

    2010-01-01

    The typical large specific surface area and high reactivity of nanostructured porous silicon (nanoPS) make this material very suitable for the development of sensors. Moreover, its biocompatibility and biodegradability opens the way to the development of biosensors. As such, in this work the use of nanoPS in the field of electrical biosensing is explored. More specifically, nanoPS-based devices with Al/nanoPS/Al and Au-NiCr/nanoPS/Au-NiCr structures were fabricated for the electrical detection of glucose and Escherichia Coli bacteria at different concentrations. The experimental results show that the current-voltage characteristics of these symmetric metal/nanoPS/metal structures strongly depend on the presence/absence and concentration of species immobilized on the surface.

  20. Aptamer-functionalized nano-biosensors.

    PubMed

    Chiu, Tai-Chia; Huang, Chih-Ching

    2009-01-01

    Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  1. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection.

    PubMed

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce

    2013-10-07

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.

  2. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection

    PubMed Central

    Zuo, Peng; Dominguez, Delfina C.; Ye, Bang-Ce

    2014-01-01

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL−1. We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step ‘turn on’ pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens. PMID:23929394

  3. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'.

    PubMed

    Rich, Rebecca L; Myszka, David G

    2010-01-01

    Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind. (c) 2009 John Wiley & Sons, Ltd.

  4. Portable guided-mode resonance biosensor platform for point-of-care testing

    NASA Astrophysics Data System (ADS)

    Sung, Gun Yong; Kim, Wan-Joong; Ko, Hyunsung; Kim, Bong K.; Kim, Kyung-Hyun; Huh, Chul; Hong, Jongcheol

    2012-10-01

    It represents a viable solution for the realization of a portable biosensor platform that could screen/diagnose acute myocardial infarction by measuring cardiac marker concentrations such as cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and myoglobin (MYO) for application to u-health monitoring system. The portable biosensor platform introduced in this presentation has a more compact structure and a much higher measuring resolution than a conventional spectrometer system. Portable guided-mode resonance (GMR) biosensor platform was composed of a biosensor chip stage, an optical pick-up module, and a data display panel. Disposable plastic GMR biosensor chips with nano-grating patterns were fabricated by injection-molding. Whole blood filtration and label-free immunoassay were performed on these single chips, automatically. Optical pick-up module was fabricated by using the miniaturized bulk optics and the interconnecting optical fibers and a tunable VCSEL (vertical cavity surface emitting laser). The reflectance spectrum from the GMR biosensor was measured by the optical pick-up module. Cardiac markers in human serum with concentrations less than 0.1ng/mL were analyzed using a GMR biosensor. Analysis time was 30min, which is short enough to meet clinical requirements. Our results show that the GMR biosensor will be very useful in developing lowcost portable biosensors that can screen for cardiac diseases.

  5. Nano-machining of biosensor electrodes through gold nanoparticles deposition produced by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Della Ventura, B.; Funari, R.; Anoop, K. K.; Amoruso, S.; Ausanio, G.; Gesuele, F.; Velotta, R.; Altucci, C.

    2015-06-01

    We report an application of femtosecond laser ablation to improve the sensitivity of biosensors based on a quartz crystal microbalance device. The nanoparticles produced by irradiating a gold target with 527-nm, 300-fs laser pulses, in high vacuum, are directly deposited on the quartz crystal microbalance electrode. Different gold electrodes are fabricated by varying the deposition time, thus addressing how the nanoparticles surface coverage influences the sensor response. The modified biosensor is tested by weighting immobilized IgG antibody from goat and its analyte (IgG from mouse), and the results are compared with a standard electrode. A substantial increase of biosensor sensitivity is achieved, thus demonstrating that femtosecond laser ablation and deposition is a viable physical method to improve the biosensor sensitivity by means of nanostructured electrodes.

  6. Label-free nano-biosensing on the road to tuberculosis detection.

    PubMed

    Golichenari, Behrouz; Velonia, Kelly; Nosrati, Rahim; Nezami, Alireza; Farokhi-Fard, Aref; Abnous, Khalil; Behravan, Javad; Tsatsakis, Aristidis M

    2018-08-15

    Tuberculosis, an ailment caused by the bacterium Mycobacterium tuberculosis (Mtb) complex, is one of the catastrophic transmittable diseases that affect human. Reports published by WHO indicate that in 2017 about 6.3 million people progressed to TB and 53 million TB patients died from 2000 to 2016. Therefore, early diagnosis of the disease is of great importance for global health care programs. Common diagnostics like the traditional PPD test and antibody-assisted assays suffer the lack of sensitivity, long processing time and cumbersome post-test proceedings. These shortcomings restrict their use and encourage innovations in TB diagnostics. In recent years, the biosensor concept opened up new horizons in sensitive and fast detection of the disease, reducing the interval time between sampling and diagnostic result. Among new diagnostics, label-free nano-biosensors are highly promising for sensitive and accessible detection of tuberculosis. Various specific label-free nano-biosensors have been recently reported detecting the whole cell of M. tuberculosis, mycobacterial proteins and IFN-γ as crucial markers in early diagnosis of TB. This article provides a focused overview on nanomaterial-based label-free biosensors for tuberculosis detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Diabetes mellitus: biosensors for research and management.

    PubMed

    Turner, A P; Pickup, J C

    1985-01-01

    The condition of diabetes mellitus is described with particular reference to the parameters that it would be desirable to monitor in order to improve management and understanding of the disease. Previous attention has largely focused on analysis of glucose, but many other intermediates of carbohydrate, fat and protein metabolism are deranged in diabetes and may be alternative measures of control. The need for laboratory analysers, self-monitoring, closed-loop devices and alarms are detailed and the problems associated with implantable sensors discussed. Progress in the development of biosensors is reviewed using glucose sensors as the main example. Electrochemical, optoelectronic and calorimetric approaches to sensing are considered and it is concluded that configurations based either on hydrogen peroxide detection or on mediated electron transfer are most likely to provide a raid route to in vivo monitoring. The extension of biosensor technology to tackle other important substrates is discussed, the principal hurdle to success being seen as the lack of long-term stability of the biological component.

  8. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  9. Recent Advances in Exosomal Protein Detection Via Liquid Biopsy Biosensors for Cancer Screening, Diagnosis, and Prognosis.

    PubMed

    Liu, Chang; Yang, Yunchen; Wu, Yun

    2018-03-08

    Current cancer diagnostic methods are challenged by low sensitivity, high false positive rate, limited tumor information, uncomfortable or invasive procedures, and high cost. Liquid biopsy that analyzes circulating biomarkers in body fluids represents a promising solution to these challenges. Exosomes are one of the promising cancer biomarkers for liquid biopsy because they are cell-secreted, nano-sized, extracellular vesicles that stably exist in all types of body fluids. Exosomes transfer DNAs, RNAs, proteins, and lipids from parent cells to recipient cells for intercellular communication and play important roles in cancer initiation, progression, and metastasis. Many liquid biopsy biosensors have been developed to offer non- or minimally-invasive, highly sensitive, simple, rapid, and cost-effective cancer diagnostics. This review summarized recent advances of liquid biopsy biosensors with a focus on the detection of exosomal proteins as biomarkers for cancer screening, diagnosis, and prognosis. We reviewed six major types of liquid biopsy biosensors including immunofluorescence biosensor, colorimetric biosensor, surface plasmon resonance (SPR) biosensor, surface-enhanced Raman scattering (SERS) biosensor, electrochemical biosensor, and nuclear magnetic resonance (NMR) biosensor. We shared our perspectives on future improvement of exosome-based liquid biopsy biosensors to accelerate their clinical translation.

  10. Smoke alarm tests may not adequately indicate smoke alarm function.

    PubMed

    Peek-Asa, Corinne; Yang, Jingzhen; Hamann, Cara; Young, Tracy

    2011-01-01

    Smoke alarms are one of the most promoted prevention strategies to reduce residential fire deaths, and they can reduce residential fire deaths by half. Smoke alarm function can be measured by two tests: the smoke alarm button test and the chemical smoke test. Using results from a randomized trial of smoke alarms, we compared smoke alarm response to the button test and the smoke test. The smoke alarms found in the study homes at baseline were tested, as well as study alarms placed into homes as part of the randomized trial. Study alarms were tested at 12 and 42 months postinstallation. The proportion of alarms that passed the button test but not the smoke test ranged from 0.5 to 5.8% of alarms; this result was found most frequently among ionization alarms with zinc or alkaline batteries. These alarms would indicate to the owner (through the button test) that the smoke alarm was working, but the alarm would not actually respond in the case of a fire (as demonstrated by failing the smoke test). The proportion of alarms that passed the smoke test but not the button test ranged from 1.0 to 3.0%. These alarms would appear nonfunctional to the owner (because the button test failed), even though the alarm would operate in response to a fire (as demonstrated by passing the smoke test). The general public is not aware of the potential for inaccuracy in smoke alarm tests, and burn professionals can advocate for enhanced testing methods. The optimal test to determine smoke alarm function is the chemical smoke test.

  11. Noble metal nanostructures in optical biosensors: Basics, and their introduction to anti-doping detection.

    PubMed

    Malekzad, Hedieh; Zangabad, Parham Sahandi; Mohammadi, Hadi; Sadroddini, Mohsen; Jafari, Zahra; Mahlooji, Niloofar; Abbaspour, Somaye; Gholami, Somaye; Ghanbarpoor, Mana; Pashazadeh, Rahim; Beyzavi, Ali; Karimi, Mahdi; Hamblin, Michael R

    2018-03-01

    Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination and quantification of illicit drugs in anti-doping applications. The important classes of illicit drugs include anabolic steroids, opioids, stimulants, and peptide hormones. The main emphasis is on the advantages that noble metal nano-particles bring to optical biosensors for signal enhancement and the development of highly sensitive (label-free) biosensors. In the near future, such optical biosensors may be an invaluable substitute for conventional anti-doping detection methods such as chromatography-based approaches, and may even be commercialized for routine anti-doping tests.

  12. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.

    PubMed

    Kumar, Suveen; Kumar, Saurabh; Ali, Md Azahar; Anand, Pinki; Agrawal, Ved Varun; John, Renu; Maji, Sagar; Malhotra, Bansi D

    2013-11-01

    There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Alarm rationalization: practical experience rationalizing alarm configuration for an accelerator subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasemir, Kay; Hartman, Steven M

    2009-01-01

    A new alarm system toolkit has been implemented at SNS. The toolkit handles the Central Control Room (CCR) 'annunciator', or audio alarms. For the new alarm system to be effective, the alarms must be meaningful and properly configured. Along with the implementation of the new alarm toolkit, a thorough documentation and rationalization of the alarm configuration is taking place. Requirements and maintenance of a robust alarm configuration have been gathered from system and operations experts. In this paper we present our practical experience with the vacuum system alarm handling configuration of the alarm toolkit.

  14. Comparison of the efficiency control of mycotoxins by some optical immune biosensors

    NASA Astrophysics Data System (ADS)

    Slyshyk, N. F.; Starodub, N. F.

    2013-11-01

    It was compared the efficiency of patulin control at the application of such optical biosensors which were based on the surface plasmon resonance (SPR) and nano-porous silicon (sNPS). In last case the intensity of the immune reaction was registered by measuring level of chemiluminescence (ChL) or photocurrent of nPS. The sensitivity of this mycotoxin determination by first type of immune biosensor was 0.05-10 mg/L Approximately the same sensitivity as well as the overall time analysis were demonstrated by the immune biosensor based on the nPS too. Nevertheless, the last type of biosensor was simpler in technical aspect and the cost of analysis was cheapest. That is why, it was recommend the nPS based immune biosensor for wide screening application and SPR one for some additional control or verification of preliminary obtained results. In this article a special attention was given to condition of sample preparation for analysis, in particular, micotoxin extraction from potao and some juices. Moreover, it was compared the efficiency of the above mentioned immune biosensors with such traditional approach of mycotoxin determination as the ELISA-method. In the result of investigation and discussion of obtained data it was concluded that both type of the immune biosensors are able to fulfill modern practice demand in respect sensitivity, rapidity, simplicity and cheapness of analysis.

  15. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference.

    PubMed

    Yeom, Se-Hyuk; Kim, Ok-Geun; Kang, Byoung-Ho; Kim, Kyu-Jin; Yuan, Heng; Kwon, Dae-Hyuk; Kim, Hak-Rin; Kang, Shin-Won

    2011-11-07

    We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.

  16. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence.

    PubMed

    Zhang, Meihe; Yuan, Ruo; Chai, Yaqin; Chen, Shihong; Zhong, Huaan; Wang, Cun; Cheng, Yinfeng

    2012-02-15

    A novel cholesterol biosensor was prepared based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence (ECL). Firstly, l-cysteine-reduced graphene oxide composites were modified on the surface of a glassy carbon electrode. Then, gold nanoparticles (AuNPs) were self-assembled on it. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the surface of AuNPs to construct a cholesterol biosensor. The stepwise fabrication processes were characterized with cyclic voltammetry and atomic force microscopy. The ECL behaviors of the biosensor were also investigated. It was found that AuNPs not only provided larger surface area for higher ChOx loading but also formed the nano-structured interface on the electrode surface to improve the analytical performance of the ECL biosensor for cholesterol. Besides, based on the efficient catalytic ability of AuNPs to luminol ECL, the response of the biosensor to cholesterol was linear range from 3.3 μM to 1.0 mM with a detection limit of 1.1 μM (S/N=3). In addition, the prepared ECL biosensor exhibited satisfying reproducibility, stability and selectivity. Taking into account the advantages of ECL, we confidently expect that ECL would have potential applications in biotechnology and clinical diagnosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Alarms Philosophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Karen S; Kasemir, Kay

    2009-01-01

    An effective alarm system consists of a mechanism to monitor control points and generate alarm notifications, tools for operators to view, hear, acknowledge and handle alarms and a good configuration. Despite the availability of numerous fully featured tools, accelerator alarm systems continue to be disappointing to operations, frequently to the point of alarms being permanently silenced or totally ignored. This is often due to configurations that produce an excessive number of alarms or fail to communicate the required operator response. Most accelerator controls systems do a good job of monitoring specified points and generating notifications when parameters exceed predefined limits.more » In some cases, improved tools can help, but more often, poor configuration is the root cause of ineffective alarm systems. A SNS, we have invested considerable effort in generating appropriate configurations using a rigorous set of rules based on best practices in the industrial process controls community. This paper will discuss our alarm configuration philosophy and operator response to our new system.« less

  18. Functional design of electrolytic biosensor

    NASA Astrophysics Data System (ADS)

    Gamage Preethichandra, D. M.; Mala Ekanayake, E. M. I.; Onoda, M.

    2017-11-01

    A novel amperometric biosensbased on conjugated polypyrrole (PPy) deposited on a Pt modified ITO (indium tin oxide) conductive glass substrate and their performances are described. We have presented a method of developing a highly sensitive and low-cost nano-biosensor for blood glucose measurements. The fabrication method proposed decreases the cost of production significantly as the amount of noble metals used is minimized. A nano-corrugated PPy substrate was developed through pulsed electrochemical deposition. The sensitivity achieved was 325 mA/(Mcm2) and the linear range of the developed sensor was 50-60 mmol/l. Then the application of the electrophoresis helps the glucose oxidase (GOx) on the PPy substrate. The main reason behind this high enzyme loading is the high electric field applied across the sensor surface (working electrode) and the counter electrode where that pushes the nano-scale enzyme particles floating in the phosphate buffer solution towards the substrate. The novel technique used has provided an extremely high sensitivities and very high linear ranges for enzyme (GOx) and therefore can be concluded that this is a very good technique to load enzyme onto the conducting polymer substrates.

  19. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A.

    PubMed

    Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju

    2015-01-01

    In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Construction of DNA sandwich electrochemical biosensor with nanoPbS and nanoAu tags on magnetic microbeads.

    PubMed

    Du, Ping; Li, Hongxia; Cao, Wei

    2009-07-15

    A novel and sensitive sandwich electrochemical biosensor based on the amplification of magnetic microbeads and Au nanoparticles (NPs) modified with bio bar code and PbS nanoparticles was constructed in the present work. In this method, the magnetic microspheres were coated with 4 layers polyelectrolytes in order to increase carboxyl groups on the surface of the magnetic microbeads, which enhanced the amount of the capture DNA. The amino-functionalized capture DNA on the surface of magnetic microbeads hybridized with one end of target DNA, the other end of which was hybridized with signal DNA probe labelled with Au NPs on the terminus. The Au NPs were modified with bio bar code and the PbS NPs were used as a marker for identifying the target oligoncleotide. The modification of magnetic microbeads could immobilize more amino-group terminal capture DNA, and the bio bar code could increase the amount of Au NPs that combined with the target DNA. The detection of lead ions performed by anodic stripping voltammetry (ASV) technology further improved the sensitivity of the biosensor. As a result, the present DNA biosensor showed good selectivity and sensitivity by the combined amplification. Under the optimum conditions, the linear relationship with the concentration of the target DNA was ranging from 2.0 x 10(-14) M to 1.0 x 10(-12)M and a detection limit as low as 5.0 x 10(-15)M was obtained.

  1. Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies.

    PubMed

    Skotadis, Evangelos; Voutyras, Konstantinos; Chatzipetrou, Marianneza; Tsekenis, Georgios; Patsiouras, Lampros; Madianos, Leonidas; Chatzandroulis, Stavros; Zergioti, Ioanna; Tsoukalas, Dimitris

    2016-07-15

    A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA. By modifying the nanoparticle surface coverage, which can be controlled experimentally being a function of deposition time, and the structural properties of the electrodes, an optimized biosensor for the in situ detection of DNA hybridization events is ultimately fabricated. The fabricated biosensor exhibits a wide response range, covering four orders of magnitude, a limit of detection of 1nM and can detect a single base pair mismatch between probe and complementary DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Carbon nanotube-based biosensors

    NASA Astrophysics Data System (ADS)

    Ramoni, Roberto; Staiano, Maria; Bellucci, Stefano; Grycznyski, Ignacy; Grycznyski, Zygmunt; Crescenzo, Roberta; Iozzino, Luisa; Bharill, Shashank; Conti, Virna; Grolli, Stefano; D'Auria, Sabato

    2008-11-01

    An easy and rapid detection of hazardous compounds is crucial for making on-the-spot irreversible decisions at airport security gates, luggage storage rooms, and other crowded public places, such as stadia, concert halls, etc. In the present study we carried out a preliminary investigation into the possibility of utilizing as advanced nano-biosensors a mutant form of the bovine odorant-binding protein (bOBP) immobilized onto carbon nanotubes. In particular, after immobilization of the protein on the carbon nanotubes we developed a competitive resonance energy transfer (RET) assay between the protein tryptophan residues located at the positions 17 and 133 (W17 and W133) and the 1-amino-anthracene (AMA), a molecule that fits in the binding site of bOBP. The bOBP-AMA complex emitted light in the visible region upon excitation of the Trp donors. However, the addition of an odorant molecule to the bOBP-AMA complex displaced AMA from the binding site making the carbon nanotubes colorless. The results presented in this work are very promising for the realization of a color on/ color off b-OBP-based biosensor for the initial indication of hazardous compounds in the environment.

  3. Investigation on uric acid biosensor model for enzyme layer thickness for the application of arthritis disease diagnosis.

    PubMed

    Parthasarathy, P; Vivekanandan, S

    2018-12-01

    Uric acid biosensors for arthritis disease has been developed for the specific selection of uricase enzyme film thickness coated over the TiO 2 -CeO 2 nano-composite matrix is modelled mathematically. This model is purely based on R-diffusion conditions with irreversible first-order catalytic reactions. By arithmetical method, the impact of the thickness of enzyme layer on the current response of the biosensor was explored. This article displays a structure for choice of the enzyme layer thickness, guaranteeing the adequately stable sensitivity of a biosensor in a required extent of the maximal enzymatic rate. The numerical outcomes showed subjective and sensible quantitative information for oxidation current due to uric acid also shows the maximum change in the biosensor current response due to the change in membrane thickness, which will be more suitable for uric acid biosensor for the application of arthritis disease diagnosis.

  4. False Alarms and Overmonitoring: Major Factors in Alarm Fatigue Among Labor Nurses.

    PubMed

    Simpson, Kathleen Rice; Lyndon, Audrey

    2018-06-08

    Nurses can be exposed to hundreds of alarms during their shift, contributing to alarm fatigue. The purposes were to explore similarities and differences in perceptions of clinical alarms by labor nurses caring for generally healthy women compared with perceptions of adult intensive care unit (ICU) and neonatal ICU nurses caring for critically ill patients and to seek nurses' suggestions for potential improvements. Nurses were asked via focus groups about the utility of clinical alarms from medical devices. There was consensus that false alarms and too many devices generating alarms contributed to alarm fatigue, and most alarms lacked clinical relevance. Nurses identified certain types of alarms that they responded to immediately, but the vast majority of the alarms did not contribute to their clinical assessment or planned nursing care. Monitoring only those patients who need it and only those physiologic values that are warranted, based on patient condition, may decrease alarm burden.

  5. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Open Loop Structure Low Cost Integrated Differential Inductive Micro Magnetic Volumetric Bio-Sensors

    NASA Astrophysics Data System (ADS)

    Khodadadi, Mohammad; Chang, Long; Litvinov, Dimitri

    This investigation proposes a study, model, simulate and experiment innovative very low cost Magnetic induction biosensor for point of care diagnostics. The biosensor consists of 2 ``semi-loops'' in a micro fluidic channel, one as a sensor and one as a reference, the design takes advantage of microfabrication processes to produce more precise structures to improve sensitivity. Besides the attractively low cost, this biosensor has many advantages. Since the detector is basically a shaped wire, it is inherently robust and reliable. Typical errors in fabricating the wires will not affect its performance and it is sensing volumetric, unlike GMR-based sensors used in biosensor systems that boast single particle detection. Due to small dimensions the sensors do not need to be calibrated. This sensor also has a large range of detection since its sensitivity is proportional to the excitation frequency. Being able to sense Magnetic nano particles in the volume is an advantage in term of trapping MNPs and sensitivity and functionality. Basically, this new brilliant design, fill the gap between the fabricated sensors and hand wounded sensors.

  7. Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: Exploring pH based biosensors.

    PubMed

    Ahmed, Saami; Kaushik, Mahima; Chaudhary, Swati; Kukreti, Shrikant

    2018-05-01

    Sequence recognition and conformational polymorphism enable DNA to emerge out as a substantial tool in fabricating the devices within nano-dimensions. These DNA associated nano devices work on the principle of conformational switches, which can be facilitated by many factors like sequence of DNA/RNA strand, change in pH or temperature, enzyme or ligand interactions etc. Thus, controlling these DNA conformational changes to acquire the desired function is significant for evolving DNA hybridization biosensor, used in genetic screening and molecular diagnosis. For exploring this conformational switching ability of cytosine-rich DNA oligonucleotides as a function of pH for their potential usage as biosensors, this study has been designed. A C-rich stretch of DNA sequence (5'-TCCCCCAATTAATTCCCCCA-3'; SG20c) has been investigated using UV-Thermal denaturation, poly-acrylamide gel electrophoresis and CD spectroscopy. The SG20c sequence is shown to adopt various topologies of i-motif structure at low pH. This pH dependent transition of SG20c from unstructured single strand to unimolecular and bimolecular i-motif structures can further be exploited for its utilization as switching on/off pH-based biosensors. Copyright © 2018. Published by Elsevier B.V.

  8. Composing alarms: considering the musical aspects of auditory alarm design.

    PubMed

    Gillard, Jessica; Schutz, Michael

    2016-12-01

    Short melodies are commonly linked to referents in jingles, ringtones, movie themes, and even auditory displays (i.e., sounds used in human-computer interactions). While melody associations can be quite effective, auditory alarms in medical devices are generally poorly learned and highly confused. Here, we draw on approaches and stimuli from both music cognition (melody recognition) and human factors (alarm design) to analyze the patterns of confusions in a paired-associate alarm-learning task involving both a standardized melodic alarm set (Experiment 1) and a set of novel melodies (Experiment 2). Although contour played a role in confusions (consistent with previous research), we observed several cases where melodies with similar contours were rarely confused - melodies holding musically distinctive features. This exploratory work suggests that salient features formed by an alarm's melodic structure (such as repeated notes, distinct contours, and easily recognizable intervals) can increase the likelihood of correct alarm identification. We conclude that the use of musical principles and features may help future efforts to improve the design of auditory alarms.

  9. Alarm Fatigue: Use of an Evidence-Based Alarm Management Strategy.

    PubMed

    Turmell, Jacob W; Coke, Lola; Catinella, Rachel; Hosford, Tracy; Majeski, Amy

    The purpose of this article is to describe the impact of an evidence-based alarm management strategy on patient safety. An alarm management program reduced alarms up to 30%. Evaluation of patients on continuous cardiac monitoring showed a 3.5% decrease in census. This alarm management strategy has the potential to save $136 500 and 841 hours of registered nurses' time per year. No patient harm occurred during the 2-year project.

  10. Single Nanochannel-Aptamer-Based Biosensor for Ultrasensitive and Selective Cocaine Detection.

    PubMed

    Wang, Jian; Hou, Jue; Zhang, Huacheng; Tian, Ye; Jiang, Lei

    2018-01-17

    Ultrasensitive and selective detection of molecules at nano or sub-nanomolar level is very important for many areas such as early diagnosis and drug testing. Herein, we report a high-sensitive cocaine sensor based on a single nanochannel coupled with DNA aptamers. The single nanochannel-aptamer-based biosensor can recognize cocaine molecules with an excellent sensitivity and good selectivity. A linear relationship between target cocaine concentration and output ionic current is obtained in a wide concentration range of cocaine from 1 nM to 10 μM. The cocaine sensor also shows a detection limit down to 1 nM. This study provides a new avenue to develop new nanochannel-aptamer-based biosensors for rapid and ultratrace detection of a variety of illicit drugs.

  11. Macro-/Nano- Materials Based Ultrasensitive Lateral Flow Nucleic Acid Biosensors

    NASA Astrophysics Data System (ADS)

    Takalkar, Sunitha

    Ultrasensitive detection of nucleic acids plays a very important role in the field of molecular diagnosis for the detection of various diseases. Lateral flow biosensors (LFB) are convenient, easy-to-use, patient friendly forms of detection methods offering rapid and convenient clinical testing in close proximity to the patients thus drawing a lot of attention in different areas of research over the years. In comparison with the traditional immunoassays, the nucleic acid based lateral flow biosensors (NABLFB) has several advantages in terms of stability and interference capabilities. NABLFB utilizes nucleic acid probes as the bio-recognition element. The target analyte typically is the oligonucleotide like the DNA, mRNA, miRNA which are among the nucleic acid secretions by the tumor cells when it comes to detection of cancer. Traditionally gold nanoparticles (GNPs) have been used as labels for conjugating with the detection probes for the qualitative and semi quantitative analysis, the application of GNP-based LFB is limited by its low sensitivity. This dissertation describes the use of different nanomaterials and advanced detection technologies to enhance the sensitivities of the LFB based methods. Silica Nanorods decorated with GNP were synthesized and employed as labels for ultrasensitive detection of miRNA on the LFB. Owing to the biocompatibility and convenience in surface modification of SiNRs, they acted as good carriers to load numerous GNPs. The sensitivity of the GNP-SiNR-based LFSB was enhanced six times compared to the previous GNP-based LFSB. A fluorescent carbon nanoparticle (FCN) was first used as a tag to develop a lateral flow nucleic acid biosensor for ultrasensitive and quantitative detection of nucleic acid samples. Under optimal conditions, the FCN-based LFNAB was capable of detecting minimum 0.4 fM target DNA without complex operations and additional signal amplification. The carbon nanotube was used as a label and carrier of numerous enzyme

  12. Nano/biosensors based on large-area graphene

    NASA Astrophysics Data System (ADS)

    Ducos, Pedro Jose

    Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an easily scalable fabrication process. A large-area graphene growth, transfer and photolithography process was developed that allowed the scaling of production of devices from a few devices per single transfer in a chip, to over a thousand devices per transfer in a full wafer of fabrication. Two approaches to biomolecules sensing were then investigated, through nanoparticles and through chemical linkers. Gold and platinum Nanoparticles were used as intermediary agents to immobilize a biomolecule. First, gold nanoparticles were monodispersed and functionalized with thiolated probe DNA to yield DNA biosensors with a detection limit of 1 nM and high specificity against noncomplementary DNA. Second, devices are modified with platinum nanoparticles and functionalized with thiolated genetically engineered scFv HER3 antibodies to realize a HER3 biosensor. Sensors retain the high affinity from the scFv fragment and show a detection limit of 300 pM. We then show covalent and non-covalent chemical linkers between graphene and antibodies. The chemical linker 1-pyrenebutanoic acid succinimidyl ester (pyrene) stacks to the graphene by Van der Waals interaction, being a completely non-covalent interaction. The linker 4-Azide-2,3,5,6-tetrafluorobenzoic acid, succinimidyl ester (azide

  13. Applying graphene oxide nano-film over a polycarbonate nanoporous membrane to monitor E. coli by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Krishna Pal; Dhek, Neeraj Singh; Nehra, Anuj; Ahlawat, Sweeti; Puri, Anu

    2017-01-01

    Nano-biosensors are excellent monitoring tools for rapid, specific, sensitive, inexpensive, in-field, on-line, and/or real-time detection of pathogens in foods, soil, air, and water samples. A variety of nano-materials (metallic, polymeric, and/or carbon-based) were employed to enhance the efficacy, efficiency, and sensitivity of these nano-biosensors, including graphene-based materials, especially graphene oxide (GO)-based materials. GO bears many oxygen-bearing groups, enabling ligand conjugation at the high density critical for sensitive detection. We have fabricated GO-modified nano-porous polycarbonate track-etched (PCTE) membranes that were conjugated to an Escherichia coli-specific antibody (Ab) and used to detect E. coli. The random distribution of nanopores on the PCTE membrane surface and the bright coating of the GO onto the membrane were confirmed by scanning electron microscope. Anti-E. coli β-gal Abs were conjugated to the GO surface via 1-ethyl-3,3-dimethylaminopropyl carbodiimide hydrochloride-N-hydroxysuccinimide chemistry; antibody coating was confirmed by the presence of a characteristic IR peak near 1600 cm- 1. A non-corresponding Ab (anti-Pseudomonas) was used as a negative control under identical conditions. When E. coli interacted anti-E.coli β-gal with Ab-coated GO-nano-biosensor units, we observed a clear shift in the IR peak from 3373.14 to 3315 cm- 1; in contrast, we did not observe any shift in IR peaks when the GO unit was coated with the non-corresponding Ab (anti-Pseudomonas). Therefore, the detection of E. coli using the described GO-nano-sensor unit is highly specific, is highly selective and can be applied for real-time monitoring of E. coli with a detection limit between 100 μg/mL and 10 μg/mL, similar to existing detection systems.

  14. Applying graphene oxide nano-film over a polycarbonate nanoporous membrane to monitor E. coli by infrared spectroscopy.

    PubMed

    Singh, Krishna Pal; Dhek, Neeraj Singh; Nehra, Anuj; Ahlawat, Sweeti; Puri, Anu

    2017-01-05

    Nano-biosensors are excellent monitoring tools for rapid, specific, sensitive, inexpensive, in-field, on-line, and/or real-time detection of pathogens in foods, soil, air, and water samples. A variety of nano-materials (metallic, polymeric, and/or carbon-based) were employed to enhance the efficacy, efficiency, and sensitivity of these nano-biosensors, including graphene-based materials, especially graphene oxide (GO)-based materials. GO bears many oxygen-bearing groups, enabling ligand conjugation at the high density critical for sensitive detection. We have fabricated GO-modified nano-porous polycarbonate track-etched (PCTE) membranes that were conjugated to an Escherichia coli-specific antibody (Ab) and used to detect E. coli. The random distribution of nanopores on the PCTE membrane surface and the bright coating of the GO onto the membrane were confirmed by scanning electron microscope. Anti-E. coli β-gal Abs were conjugated to the GO surface via 1-ethyl-3,3-dimethylaminopropyl carbodiimide hydrochloride-N-hydroxysuccinimide chemistry; antibody coating was confirmed by the presence of a characteristic IR peak near 1600cm(-1). A non-corresponding Ab (anti-Pseudomonas) was used as a negative control under identical conditions. When E. coli interacted anti-E.coli β-gal with Ab-coated GO-nano-biosensor units, we observed a clear shift in the IR peak from 3373.14 to 3315cm(-1); in contrast, we did not observe any shift in IR peaks when the GO unit was coated with the non-corresponding Ab (anti-Pseudomonas). Therefore, the detection of E. coli using the described GO-nano-sensor unit is highly specific, is highly selective and can be applied for real-time monitoring of E. coli with a detection limit between 100μg/mL and 10μg/mL, similar to existing detection systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A sensitive glucose biosensor based on Ag@C core-shell matrix.

    PubMed

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2015-04-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core-shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as -OH and -COOH. The as-prepared Ag@C core-shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05-2.5mM, with a detection limit of 0.02mM (S/N=3). The apparent Michaelis-Menten constant (KM(app)) of the biosensor is calculated to be 1.7mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core-shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Functional relationship-based alarm processing

    DOEpatents

    Corsberg, D.R.

    1987-04-13

    A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated. Thus, each alarm's importance is continuously updated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on causal factors between two alarms); (3) required action (system response or action expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). 11 figs.

  17. Functional relationship-based alarm processing

    DOEpatents

    Corsberg, Daniel R.

    1988-01-01

    A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated. Thus, each alarm's importance is continuously oupdated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on caussal factors between two alarms); (3) required action (system response or action) expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). The alarm processing system and method is sensitive to the dynamic nature of the process being monitored and is capable of changing the relative importance of each alarm as necessary.

  18. The "Let's Get Alarmed!" initiative: a smoke alarm giveaway programme.

    PubMed

    DiGuiseppi, C; Slater, S; Roberts, I; Adams, L; Sculpher, M; Wade, A; McCarthy, M

    1999-09-01

    To reduce fires and fire related injuries by increasing the prevalence of functioning smoke alarms in high risk households. The programme was delivered in an inner London area with above average material deprivation and below average smoke alarm ownership. The target population included low income and rental households and households with elderly persons or young children. Forty wards, averaging 4000 households each, were randomised to intervention or control status. Free smoke alarms and fire safety information were distributed in intervention wards by community groups and workers as part of routine activities and by paid workers who visited target neighbourhoods. Recipients provided data on household age distribution and housing tenure. Programme costs were documented from a societal perspective. Data are being collected on smoke alarm ownership and function, and on fires and related injuries and their costs. Community and paid workers distributed 20,050 smoke alarms, potentially sufficient to increase smoke alarm ownership by 50% in intervention wards. Compared with the total study population, recipients included greater proportions of low income and rental households and households including children under 5 years or adults aged 65 and older. Total programme costs were 145,087 Pounds. It is possible to implement a large scale smoke alarm giveaway programme targeted to high risk households in a densely populated, multicultural, materially deprived community. The programme's effects on the prevalence of installed and functioning alarms and the incidence of fires and fire related injuries, and its cost effectiveness, are being evaluated as a randomized controlled trial.

  19. Controlled trial of standard pad and bell alarm against mini alarm for nocturnal enuresis.

    PubMed Central

    Fordham, K E; Meadow, S R

    1989-01-01

    Fifty six children aged from 6-16 years who wet their beds at night were entered into a controlled trial of two alarm devices: a traditional alarm using a wet sensor mat on the bed attached to an alarm bell out of reach of the child, and a mini alarm system incorporating a tiny perineal wet sensor attached to a small alarm worn on the child's clothing. A quota allocation system ensured comparability between the two treatment groups. The children were encouraged to use the alarm for four months. Both alarms were equally effective in helping children to become dry. There was no significant difference between the number of children unable to comply with treatment or to be helped by each alarm. The rate of acquisition of dryness was similar for the two groups. The traditional standard alarm was sturdier, more dependable, and easier to maintain, but the mini alarm had some advantages, particularly for girls. Both types of alarm are recommended for general use. Images Fig 1 Fig 2 PMID:2658853

  20. Remote Monitor Alarm System

    NASA Technical Reports Server (NTRS)

    Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)

    1996-01-01

    A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.

  1. Quantum ballistic analysis of transition metal dichalcogenides based double gate junctionless field effect transistor and its application in nano-biosensor

    NASA Astrophysics Data System (ADS)

    Shadman, Abir; Rahman, Ehsanur; Khosru, Quazi D. M.

    2017-11-01

    To reduce the thermal budget and the short channel effects in state of the art CMOS technology, Junctionless field effect transistor (JLFET) has been proposed in the literature. Numerous experimental, modeling, and simulation based works have been done on this new FET with bulk materials for various geometries until now. On the other hand, the two-dimensional layered material is considered as an alternative to current Si technology because of its ultra-thin body and high mobility. Very recently few simulation based works have been done on monolayer molybdenum disulfide based JLFET mainly to show the advantage of JLFET over conventional FET. However, no comprehensive simulation-based work has been done for double gate JLFET keeping in mind the prominent transition metal dichalcogenides (TMDC) to the authors' best knowledge. In this work, we have studied quantum ballistic drain current-gate voltage characteristics of such FETs within non-equilibrium Green's function (NEGF) framework. Our simulation results reveal that all these TMDC materials are viable options for implementing state of the art Junctionless MOSFET with emphasis on their performance at short gate lengths. Besides evaluating the prospect of TMDC materials in the digital logic application, the performance of Junctionless Double Gate trilayer TMDC heterostructure FET for the label-free electrical detection of biomolecules in dry environment has been investigated for the first time to the authors' best knowledge. The impact of charge neutral biomolecules on the electrical characteristics of the biosensor has been analyzed under dry environment situation. Our study shows that these materials could provide high sensitivity in the sub-threshold region as a channel material in nano-biosensor, a trend demonstrated by silicon on insulator FET sensor in the literature. Thus, going by the trend of replacing silicon with these novel materials in device level, TMDC heterostructure could be a viable alternative to

  2. Comprehensive smoke alarm coverage in lower economic status homes: alarm presence, functionality, and placement.

    PubMed

    Sidman, Elanor A; Grossman, David C; Mueller, Beth A

    2011-08-01

    The objectives of this study are to estimate smoke alarm coverage and adherence with national guidelines in low- to mid-value owner-occupied residences, and to identify resident demographic, behavioral, and building characteristics and other fire and burn safety practices associated with smoke alarm utilization. Baseline visits were conducted with 779 households in King County, Washington, for a randomized trial of smoke alarm functionality. Presence, functionality, features, and location of pre-existing smoke alarms were ascertained by staff observation and testing. Household and building descriptors were collected using questionnaires. Households were classified by presence of smoke alarms, functional alarms, and functional and properly mounted alarms placed in hallways and on each floor but not in recommended avoidance locations. Smoke alarms were present in 89%, and functional units in 78%, of households. Only 6-38% met all assessed functionality and placement recommendations. Homes frequently lacked alarms in any bedrooms or on each floor. Building age, but not renovation status, was associated with all dimensions of smoke alarm coverage; post-1980 constructions were 1.7 times more likely to comply with placement recommendations than were pre-1941 homes (95% CI: 1.1-2.6). Respondent education and race/ethnicity, children <5 years, residency duration, number of floors, wood stoves and fireplaces, number of smoke alarms, recency of smoke alarm testing, carbon monoxide monitors, and fire ladders displayed varying relationships with alarm presence, functionality, and placement. Strategies for maintaining smoke alarms in functional condition and improving compliance with placement recommendations are necessary to achieve universal coverage, and will benefit the majority of households.

  3. New ways to develop biosensors towards addressing practical problems

    NASA Astrophysics Data System (ADS)

    Starodub, N. F.

    2013-11-01

    The main modern approaches which were realized at the development of new generation of biosensors intended for application in field of diagnostics, food quality control and environmental monitoring are presented. The main attention was paid to creation of the multi-parametrical and multi-functional enzymatic and immune biosensors which were realized for the complex diagnostics of diabetes, autoimmune state and for the control of process of sugar production. The label-free bioaffine devices based on the nano-porouse silicon (NPS) with the registration of specific formed signal by chemiluminescence (ChL) and photoresistivity and intended for the determination mycotoxins and diagnostics of retroviral bovine leukemia (RBL) are analyzed too. Improving of ion sensitive field effect transistors (ISFETs) through changing silicon nitride on the cerium oxide is discussed as perspective approach in case of micotoxins and Salmonella control. In the conclusion the possibility to replace biological sensitive elements by artificial ones is considered.

  4. A Highly Sensitive Electrochemical DNA Biosensor from Acrylic-Gold Nano-composite for the Determination of Arowana Fish Gender

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh; Rashid, Zulkafli A.; Ling, Tan Ling

    2017-08-01

    The present research describes a simple method for the identification of the gender of arowana fish ( Scleropages formosus). The DNA biosensor was able to detect specific DNA sequence at extremely low level down to atto M regimes. An electrochemical DNA biosensor based on acrylic microsphere-gold nanoparticle (AcMP-AuNP) hybrid composite was fabricated. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesised with a facile and well-established one-step photopolymerization procedure and physically adsorbed on the AuNPs at the surface of a carbon screen printed electrode (SPE). The DNA biosensor was constructed simply by grafting an aminated DNA probe on the succinimide functionalised AcMPs via a strong covalent attachment. DNA hybridisation response was determined by differential pulse voltammetry (DPV) technique using anthraquinone monosulphonic acid redox probe as an electroactive oligonucleotide label (Table 1). A low detection limit at 1.0 × 10-18 M with a wide linear calibration range of 1.0 × 10-18 to 1.0 × 10-8 M ( R 2 = 0.99) can be achieved by the proposed DNA biosensor under optimal conditions. Electrochemical detection of arowana DNA can be completed within 1 hour. Due to its small size and light weight, the developed DNA biosensor holds high promise for the development of functional kit for fish culture usage.

  5. Functional relationship-based alarm processing system

    DOEpatents

    Corsberg, D.R.

    1988-04-22

    A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the functional relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated or deactivated. Thus, each alarm's importance is continuously updated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on causal factors between two alarms); (3) required action (system response or action expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). The alarm processing system and method is sensitive to the dynamic nature of the process being monitored and is capable of changing the relative importance of each alarm as necessary. 12 figs.

  6. Functional relationship-based alarm processing system

    DOEpatents

    Corsberg, Daniel R.

    1989-01-01

    A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the functional relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated or deactivated. Thus, each alarm's importance is continuously updated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on causal factors between two alarms); (3) required action (system response or action expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). The alarm processing system and method is sensitive to the dynamic nature of the process being monitored and is capable of changing the relative importance of each alarm as necessary.

  7. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine.

    PubMed

    Yang, Guohai; Zhu, Chengzhou; Du, Dan; Zhu, Junjie; Lin, Yuehe

    2015-09-14

    The development of nanotechnology provides promising opportunities for various important applications. The recent discovery of atomically-thick two-dimensional (2D) nanomaterials can offer manifold perspectives to construct versatile devices with high-performance to satisfy multiple requirements. Many studies directed at graphene have stimulated renewed interest on graphene-like 2D layered nanomaterials (GLNs). GLNs including boron nitride nanosheets, graphitic-carbon nitride nanosheets and transition metal dichalcogenides (e.g. MoS2 and WS2) have attracted significant interest in numerous research fields from physics and chemistry to biology and engineering, which has led to numerous interdisciplinary advances in nano science. Benefiting from the unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), these 2D layered nanomaterials have shown great potential in biochemistry and biomedicine. This review summarizes recent advances of GLNs in applications of biosensors and nanomedicine, including electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy. Current challenges and future perspectives in these rapidly developing areas are also outlined. It is expected that they will have great practical foundation in biomedical applications with future efforts.

  8. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine

    NASA Astrophysics Data System (ADS)

    Yang, Guohai; Zhu, Chengzhou; Du, Dan; Zhu, Junjie; Lin, Yuehe

    2015-08-01

    The development of nanotechnology provides promising opportunities for various important applications. The recent discovery of atomically-thick two-dimensional (2D) nanomaterials can offer manifold perspectives to construct versatile devices with high-performance to satisfy multiple requirements. Many studies directed at graphene have stimulated renewed interest on graphene-like 2D layered nanomaterials (GLNs). GLNs including boron nitride nanosheets, graphitic-carbon nitride nanosheets and transition metal dichalcogenides (e.g. MoS2 and WS2) have attracted significant interest in numerous research fields from physics and chemistry to biology and engineering, which has led to numerous interdisciplinary advances in nano science. Benefiting from the unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), these 2D layered nanomaterials have shown great potential in biochemistry and biomedicine. This review summarizes recent advances of GLNs in applications of biosensors and nanomedicine, including electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy. Current challenges and future perspectives in these rapidly developing areas are also outlined. It is expected that they will have great practical foundation in biomedical applications with future efforts.

  9. 21 CFR 870.1025 - Arrhythmia detector and alarm (including ST-segment measurement and alarm).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Arrhythmia detector and alarm (including ST... Diagnostic Devices § 870.1025 Arrhythmia detector and alarm (including ST-segment measurement and alarm). (a) Identification. The arrhythmia detector and alarm device monitors an electrocardiogram and is designed to produce...

  10. 21 CFR 870.1025 - Arrhythmia detector and alarm (including ST-segment measurement and alarm).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Arrhythmia detector and alarm (including ST... Diagnostic Devices § 870.1025 Arrhythmia detector and alarm (including ST-segment measurement and alarm). (a) Identification. The arrhythmia detector and alarm device monitors an electrocardiogram and is designed to produce...

  11. 21 CFR 870.1025 - Arrhythmia detector and alarm (including ST-segment measurement and alarm).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Arrhythmia detector and alarm (including ST... Diagnostic Devices § 870.1025 Arrhythmia detector and alarm (including ST-segment measurement and alarm). (a) Identification. The arrhythmia detector and alarm device monitors an electrocardiogram and is designed to produce...

  12. Ultra-low current biosensor output detection using portable electronic reader

    NASA Astrophysics Data System (ADS)

    Yahaya, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. Afnan; Hashim, U.

    2017-09-01

    Generally, the electrical biosensor usually shows extremely low current signal output around pico ampere to microampere range. In this research, electronic reader with amplifier has been demonstrated to detect ultra low current via the biosensor. The operational amplifier Burr-Brown OPA 128 and Arduino Uno board were used to construct the portable electronic reader. There are two cascaded inverting amplifier were used to detect ultra low current through the biosensor from pico amperes (pA) to nano amperes ranges (nA). A small known input current was form by applying variable voltage between 0.1V to 5.0V across a 5GΩ high resistor to check the amplifier circuit. The amplifier operation was measured with the high impedance current source and has been compared with the theoretical measurement. The Arduino Uno was used to convert the analog signal to digital signal and process the data to display on reader screen. In this project, Proteus software was used to design and test the circuit. Then it was implemented together with Arduino Uno board. Arduino board was programmed using C programming language to make whole circuit communicate each order. The current was measured then it shows a small difference values compared to theoretical values, which is approximately 14pA.

  13. Carbon Monoxide Alarm and Smoke Alarm Use Among Parents Recruited From a Pediatric Emergency Department.

    PubMed

    Roberts, Kristin J; Fowler, Erica; Comstock, R Dawn; Fernandez, Soledad; Abdel-Rasoul, Mahmoud; Mihalov, Leslie; Casavant, Marcel J; McKenzie, Lara B

    2018-02-01

    Although the proper installation and maintenance of carbon monoxide (CO) and smoke alarms can protect individuals from residential CO-related and fire-related injuries, these devices are underutilized. We describe characteristics associated with self-reported CO and smoke alarm use of parents recruited from a pediatric emergency department to improve CO alarm use. Parents of children ≤ 18 years (N = 299) reported socio-demographic characteristics and CO and smoke alarm ownership and practices. We assigned participants to a behavioral profile and a Precaution Adoption Process Model stage based on their self-reported CO and smoke alarm use. Most participants (71%) did not have CO alarms in their homes, but reported owning at least one working smoke alarm (98%). Participants who reported "perfect" CO alarm behavior (defined as having a working CO alarm, one near a sleeping area, with batteries replaced every 6 months; 9%) were more likely to earn a higher income, own their home, and have lived at their current residence for at least 2 years. Participants who reported "perfect" smoke alarm behavior (defined as having a working smoke alarm on every level, with batteries replaced every 6 months; 49%) were more likely to rent their home, receive federal assistance, and have lived at their current residence for at least 2 years. Interventions to increase correct CO alarm use are necessary.

  14. Biosensors.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  15. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.

    PubMed

    Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei

    2015-01-14

    An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes.

  16. Do nuisance alarms decrease functionality of smoke alarms near the kitchen? Findings from a randomised controlled trial.

    PubMed

    Yang, Jingzhen; Jones, Michael P; Cheng, Gang; Ramirez, Marizen; Taylor, Craig; Peek-Asa, Corinne

    2011-06-01

    Many home fires begin in the kitchen. Kitchen smoke alarms are more likely to produce nuisance alarms, but few previous studies have examined the role of alarm sensor and battery types on the functionality of smoke alarms located nearest to the kitchen. Data were analysed from a 2×2 factorial randomised controlled trial conducted in rural Iowa homes (n=628). Enrolled households were randomly assigned into one of four smoke alarm/battery combinations: ionisation/zinc, ionisation/lithium, photoelectric/zinc and photoelectric/lithium. Alarm functionality was determined using a smoke test. Alarm type and battery type were compared using an intent-to-treat analysis. Logistic regression was used to identify factors that might impact the functionality of smoke alarms located nearest to the kitchen 42 months after installation. Photoelectric alarms with lithium batteries had the highest rate of functionality (90.2%), whereas ionisation alarms with carbon/zinc batteries had the lowest (76.5%). Forty-two months following installation, 6.4% more of photoelectric alarms were functional than ionisation alarms, and 7.9% more of alarms with lithium batteries were functional than those with carbon/zinc batteries. Logistic regression revealed that when the indicator of nuisance alarms was included, the effect of alarm type became statistically insignificant and ionisation alarms were less likely to be functional at 42 months, partly due to increased nuisance alarms. Alarm type is an important consideration for certain locations. Photoelectric alarms may be more appropriate for installation nearest to the kitchen despite their increased cost. These findings can help guide consumer choices to increase protection against home fire-related injuries and deaths.

  17. VISUAL ALARM SYSTEM

    DOEpatents

    Morris, J.M.

    1958-11-01

    A vlsual alarm system, particularly a system incorporating a gas-fllled diode glow bulb, for indicating a minor alarm and also a major alarm is presented. In operation, the disclosed system responds to a signal indlcative of a caution condition by applying a d-c voltage across the glow bulb to induce a glow at one electrode. If a signal indicative of a critlcal condition is received, the system applies an a-c voltage across tbe glow bulb to produce a glow discharge at each electrode.

  18. Nano-materials for use in sensing of salmonella infections: Recent advances.

    PubMed

    Pashazadeh, Paria; Mokhtarzadeh, Ahad; Hasanzadeh, Mohammad; Hejazi, Maryam; Hashemi, Maryam; de la Guardia, Miguel

    2017-01-15

    Salmonella infectious diseases spreading every day through food have become a life-threatening problem for millions of people and growing menace to society. Health expert's estimate that the yearly cost of all the food borne diseases is approximately $5-6 billion. Traditional methodologies for salmonella analysis provide high reliability and very low limits of detection. Among them immunoassays and Nucleic acid-based assays provide results within 24h, but they are expensive, tedious and time consuming. So, there is an urgent need for development of rapid, robust and cost-effective alternative technologies for real-time monitoring of salmonella. Several biosensors have been designed and commercialized for detection of this pathogen in food and water. In this overview, we have updated the literature concerning novel biosensing methods such as various optical and electrochemical biosensors and newly developed nano- and micro-scaled and aptamers based biosensors for detection of salmonella pathogen. Furthermore, attention has been focused on the principal concepts, applications, and examples that have been achieved up to diagnose salmonella. In addition, commercial biosensors and foreseeable future trends for onsite detecting salmonella have been summarized. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biosensors for Cell Analysis.

    PubMed

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  20. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    PubMed

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules. Copyright © 2014 John Wiley & Sons, Inc.

  1. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems.

    PubMed

    Nosrati, Rahim; Dehghani, Sadegh; Karimi, Bahareh; Yousefi, Meysam; Taghdisi, Seyed Mohammad; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad

    2018-05-30

    Siderophores are small organic compounds secreted by microorganisms under iron-depleted conditions which enhance the uptake of iron. Siderophores can play vital roles in ecology, agriculture, bioremediation, biosensor, and medicine. In recent years, the concept of siderophore-based biosensing devices has opened new horizons in high precision detection of various metal ions especially the iron, microorganisms, phosphopeptides, antibiotics as well pesticides. Once combined with nanomaterials, nano-scale siderophore systems provide powerful analytical platforms for detection of low concentration of metal ions and numerous pathogens. In this article, a brief overview of general aspects of siderophore is firstly discussed. In addition, a clear and concise review of recent advances of siderophore-based biosensors (siderosensor) and nanosensors are mainly discussed herein. Subsequently, future perspectives and challenges of siderophore-based sensors are discussed briefly. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Fabrication of MoS2 biosensor to detect lower-concentrated area of biological molecules(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Erika; Ryu, Byunghoon; Nam, Hongsuk; Liang, Xiaogan

    2017-03-01

    Two dimensional layered transition metal dichalcogenides (TMDC) materials have the growing potential to upstage graphene in the next generation of biosensors in detecting lower-concentrated areas of biomolecules. The current gold-standard detection method is the enzyme-linked immunosorbent assay (ELISA), an immunological assay technique that makes use of an enzyme bonded to a particular antibody or antigen. However, this technique is not only bulky, labor-intensive, and time extensive, but more importantly, the ELISA has relatively low detection limits of only 600 femtomolar (fM). In this work, for the first time, we present a novel flexible, sensitive MoS2 (molybdenum disulfide) biosensor, as shown in Figure 1, composed of few-layer of MoS2 as the channel material, and flexible polyimide as the substrate. In order to nano-fabricate this flexible biosensor, we mechanically transferred a few layers of MoS2 onto the flexible substrate polyimide and photolithography to create a patterning on the surface, and as a result, we were able to create a transistor that used MoS2 as its conductance channel. We successfully fabricated this MoS2 biosensor onto a flexible polyimide substrate. Furthermore, the fabricated flexible MoS2 biosensor can be utilized for quantifying the time-dependent reaction kinetics of streptavidin-biotin binding. Figure 2 shows the transfer characteristics of flexible MoS2 biosensors measured under different concentrations of streptavidin. The flexible MoS2 biosensor could illustrate a faster detection time in matters of minutes, and higher sensitivity with detection limits as low as 10 fM. Time versus equilibrium constants will be presented in details.

  3. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...

  4. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...

  5. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...

  6. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...

  7. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...

  8. Surface stress-based biosensors.

    PubMed

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functionalized ZnO nanorods.

    PubMed

    Wang, Chengyan; Tan, Xingrong; Chen, Shihong; Yuan, Ruo; Hu, Fangxin; Yuan, Dehua; Xiang, Yun

    2012-05-30

    A novel scheme for the fabrication of gold/platinum hybrid functionalized ZnO nanorods (Pt-Au@ZnONRs) and multiwalled carbon nanotubes (MWCNTs) modified electrode is presented and its application for cholesterol biosensor is investigated. Firstly, Pt-Au@ZnONRs was prepared by the method of chemical synthesis. Then, the Pt-Au@ZnONRs suspension was dropped on the MWCNTs modified glass carbon electrode, and followed with cholesterol oxidase (ChOx) immobilization by the adsorbing interaction between the nano-material and ChOx as well as the electrostatic interaction between ZnONRs and ChOx molecules. The combination of MWCNTs and Pt-Au@ZnONRs provided a favorable environment for ChOx and resulted in the enhanced analytical response of the biosensor. The resulted biosensor exhibited a linear response to cholesterol in the wide range of 0.1-759.3 μM with a low detection limit of 0.03 μM and a high sensitivity of 26.8 μA mM(-1). The calculated apparent Michaelis constant K(M)(app) was 1.84 mM, indicating a high affinity between ChOx and cholesterol. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The Effect of Composition of Different Ecotoxicological Test Media on Free and Bioavailable Copper from CuSO4 and CuO Nanoparticles: Comparative Evidence from a Cu-Selective Electrode and a Cu-Biosensor

    PubMed Central

    Käkinen, Aleksandr; Bondarenko, Olesja; Ivask, Angela; Kahru, Anne

    2011-01-01

    The analysis of (bio)available copper in complex environmental settings, including biological test media, is a challenging task. In this study, we demonstrated the potential of a recombinant Pseudomonas fluorescens-based biosensor for bioavailability analysis of CuSO4 and CuO nanoparticles (nano-CuO) in seventeen different ecotoxicological and microbiologial test media. In parallel, free Cu in these test media was analysed using Cu-ion selective electrode (Cu-ISE). In the case of CuSO4, both free and bioavailable Cu decreased greatly with increasing concentration of organics and phosphates in the tested media. A good correlation between free and bioavailable Cu was observed (r = 0.854, p < 0.01) indicating that the free Cu content in biological test media may be a reasonably good predictor for the toxicity of CuSO4. As a proof, it was demonstrated that when eleven EC50 values for CuSO4 from different organisms in different test media were normalized for the free Cu in these media, the difference in these EC50 values was decreased from 4 to 1.8 orders of magnitude. Thus, toxicity of CuSO4 to these organisms was attributed to the properties of the test media rather than to inherent differences in sensitivity between the test organisms. Differently from CuSO4, the amount of free and bioavailable Cu in nano-CuO spiked media was not significantly correlated with the concentration of organics in the test media. Thus, the speciation of nano-CuO in toxicological test systems was not only determined by the complexation of Cu ions but also by differential dissolution of nano-CuO in different test conditions leading to a new speciation equilibrium. In addition, a substantial fraction of nano-CuO that was not detectable by Cu-ISE (i.e., not present as free Cu-ions) was bioavailable to Cu-biosensor bacteria. Thus, in environmental hazard analysis of (nano) particulate materials, biosensor analysis may be more informative than other analytical techniques. Our results demonstrate

  11. Biosensors of bacterial cells.

    PubMed

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Personal Alarm System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-04-17

    Software that runs on smartphones and desktop web browsers and notifies border officials of radiation alarms. It displays images and data associated with an alarm and provides a variety of reports. DOE had a need for discrete notification. PAS replaces the lights and sounds of a Radiation Portal Monitor.

  13. Cholinesterase-based biosensors.

    PubMed

    Štěpánková, Šárka; Vorčáková, Katarína

    2016-01-01

    Recently, cholinesterase-based biosensors are widely used for assaying anticholinergic compounds. Primarily biosensors based on enzyme inhibition are useful analytical tools for fast screening of inhibitors, such as organophosphates and carbamates. The present review is aimed at compilation of the most important facts about cholinesterase based biosensors, types of physico-chemical transduction, immobilization strategies and practical applications.

  14. How long do smoke alarms function? A cross-sectional follow-up survey of a smoke alarm installation programme.

    PubMed

    McCoy, Mary A; Roper, Carey; Campa, Emily; Stephens-Stidham, Shelli; Carlin, Debra K; Istre, Gregory R

    2014-04-01

    To assess the functionality of lithium-powered smoke alarms that had been installed through a community-based programme called Operation Installation (OI). A random sample was chosen of homes that had received smoke alarms through OI, 2, 4, 6, 8 and 10 years previously. Sampled homes were visited, and information collected included functional status of smoke alarms. For homes in the 6-, 8- and 10-year sample, smoke alarms were removed and tested for battery and alarm function. 800 homes were included in the survey results; 1884 smoke alarms had been installed through OI. The proportion of homes that had at least one functioning OI smoke alarm ranged from 91.8% for year 2 sample to 19.8% for year 10. Of the originally installed smoke alarms in year 10 sample, 45.5% had been removed and 59% (64/108) of those that were still installed were not functioning. Multivariate analysis showed that the presence of at least one working alarm in the home was associated positively with the number of smoke alarms that were originally installed and whether the original occupant was still living in the home, and negatively with the length of time since the smoke alarm was installed, and whether there was a smoker in the home. Testing of the smoke alarms revealed that most non-functioning alarms had missing or dead batteries. Less than a quarter of the originally installed smoke alarms were still present and functioning by year 10. These findings have important implications for smoke alarm installation programmes.

  15. Comparison of a personalized parent voice smoke alarm with a conventional residential tone smoke alarm for awakening children.

    PubMed

    Smith, Gary A; Splaingard, Mark; Hayes, John R; Xiang, Huiyun

    2006-10-01

    Conventional residential tone smoke alarms fail to awaken the majority of children during slow wave sleep. With the objective of identifying a more effective smoke alarm for children, we compared a personalized parent voice smoke alarm with a conventional residential tone smoke alarm, both presented at 100 dB, with respect to their ability to awaken children 6- to 12-years-old from stage 4 sleep and prompt their performance of a simulated self-rescue escape procedure. Using a randomized, nonblinded, clinical research design, a volunteer sample of healthy children 6- to 12-years-old was enrolled in the study. Children were trained how to perform a simulated self-rescue escape procedure when they heard a smoke alarm. Each child's mother recorded a voice alarm message, "First name! First name! Wake up! Get out of bed! Leave the room!" For each child, either the voice or tone smoke alarm was randomly selected and triggered during the first cycle of stage 4 sleep, and then the other alarm was triggered during the second cycle of stage 4 sleep. Children's sleep stage was monitored by electroencephalography, electro-oculography, and chin electromyography. The 4 main outcome measures included the number of children who awakened, the number of children who escaped, the time to awakening, and the time to escape. Twenty-four children were enrolled. The median age was 9 years, and 11 (46%) were boys. One half of the children received the parent voice alarm first, and one half received the tone alarm first; however, the order that the alarm stimuli were presented was not statistically associated with awakening or escaping. Twenty-three (96%) of the 24 subjects awakened to the parent voice alarm compared with 14 (58%) to the tone alarm. One child did not awaken to either stimulus. Nine children awakened to their parent's voice but not to the tone, whereas none awakened to only the tone and not the voice. Twenty (83%) of the subjects in the parent voice alarm group successfully

  16. Technological Distractions (Part 2): A Summary of Approaches to Manage Clinical Alarms With Intent to Reduce Alarm Fatigue.

    PubMed

    Winters, Bradford D; Cvach, Maria M; Bonafide, Christopher P; Hu, Xiao; Konkani, Avinash; O'Connor, Michael F; Rothschild, Jeffrey M; Selby, Nicholas M; Pelter, Michele M; McLean, Barbara; Kane-Gill, Sandra L

    2018-01-01

    Alarm fatigue is a widely recognized safety and quality problem where exposure to high rates of clinical alarms results in desensitization leading to dismissal of or slowed response to alarms. Nonactionable alarms are thought to be especially problematic. Despite these concerns, the number of clinical alarm signals has been increasing as an everincreasing number of medical technologies are added to the clinical care environment. PubMed, SCOPUS, Embase, and CINAHL. We performed a systematic review of the literature focused on clinical alarms. We asked a primary key question; "what interventions have been attempted and resulted in the success of reducing alarm fatigue?" and 3-secondary key questions; "what are the negative effects on patients/families; what are the balancing outcomes (unintended consequences of interventions); and what human factor approaches apply to making an effective alarm?" Articles relevant to the Key Questions were selected through an iterative review process and relevant data was extracted using a standardized tool. We found 62 articles that had relevant and usable data for at least one key question. We found that no study used/developed a clear definition of "alarm fatigue." For our primary key question 1, the relevant studies focused on three main areas: quality improvement/bundled activities; intervention comparisons; and analysis of algorithm-based false and total alarm suppression. All sought to reduce the number of total alarms and/or false alarms to improve the positive predictive value. Most studies were successful to varying degrees. None measured alarm fatigue directly. There is no agreed upon valid metric(s) for alarm fatigue, and the current methods are mostly indirect. Assuming that reducing the number of alarms and/or improving positive predictive value can reduce alarm fatigue, there are promising avenues to address patient safety and quality problem. Further investment is warranted not only in interventions that may reduce

  17. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites.

    PubMed

    Labroo, Pratima; Cui, Yue

    2014-02-27

    The development of a miniaturized and low-cost platform for the highly sensitive, selective and rapid detection of multiplexed metabolites is of great interest for healthcare, pharmaceuticals, food science, and environmental monitoring. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with extraordinary electrical sensing capability. Microfluidic paper with printing technique is a low cost matrix. Here, we demonstrated the development of graphene-ink based biosensor arrays on a microfluidic paper for the multiplexed detection of different metabolites, such as glucose, lactate, xanthine and cholesterol. Our results show that the graphene biosensor arrays can detect multiple metabolites on a microfluidic paper sensitively, rapidly and simultaneously. The device exhibits a fast measuring time of less than 2 min, a low detection limit of 0.3 μM, and a dynamic detection range of 0.3-15 μM. The process is simple and inexpensive to operate and requires a low consumption of sample volume. We anticipate that these results could open exciting opportunities for a variety of applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Substation alarm multiplexing system (SAMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ElBadaly, H.; Gaughan, J.; Ward, G.

    1996-03-01

    This paper describes an on going R&D project to develop, design, install, and assess the field performance of an advanced substation alarm system. SAMS provides a highly fault-tolerant system for the reporting of equipment alarms. SAMS separates and identifies each of the multiple alarm contacts, transmits an alarm condition over existing substation two-wire system, and displays the alarm source, and its associated technical information, on a touch-screen monitor inside the substation control room, and a remote central location and on a hand held terminal which may be carried anywhere within the substation. SAMS is currently installed at the Sherman Creekmore » substation in the Bronx for the purpose of a three month field evaluation.« less

  19. Biosensor development.

    PubMed

    Ziegler, C; Göpel, W

    1998-10-01

    Current biosensor developments can be summarised by different trends. For traditional enzymatic biosensors such as glucose sensors, steady improvements of well known basic principles have been made in order to achieve better sensor stability. On the other hand, new affinity sensors such as nucleic acid sensors, transmembrane sensors, and sensors utilising whole cells or even cell networks have become of increasing interest. New ways to miniaturise biosensors and to control their interfaces down to the molecular level have been introduced (the bioelectronics approach). High-throughput screening based on various signal transduction principles has become of increasing importance.

  20. Laser induced forward transfer technique for the immobilization of biomaterials in biosensors applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Papazoglou, Symeon; Chatzipetrou, Marianeza; Massaouti, Maria; Zergioti, Ioanna

    2017-02-01

    Laser Induced Forward Transfer (LIFT) is a direct write technique, able to create micropatterns of biomaterials on sensing devices. In this conference we will present a new approach using LIFT for the printing and direct immobilization of biomaterials on a great variety of surfaces, for bio-sensor applications. The basic requirement for the fabrication of a biosensor is to stabilize a biomaterial that brings the physicochemical changes in close proximity to a transducer. In this direction, several immobilization methods such as covalent binding and crosslinking have been implemented. The presence of the additional functionalization steps in the biosensors fabrication, is among the main disadvantages of chemical immobilization methods. Our approach employs the LIFT technique for the direct immobilization of biomaterials, either by physical adsorption or by covalent bonding of the biomaterials. The physical adsorption of the biomaterials, occurs on hydrophobic or super-hydrophobic surfaces, due to the transition of the wetting properties of the surfaces upon the impact of the biomaterials with high velocity. The unique characteristic of LIFT technique to create high speed liquid jets, leads to the penetration of the biomaterial in the micro/nano roughness of the surface, resulting in their direct immobilization, without the need of any chemical functionalization layers. Moreover, we will also present the direct immobilization of biomaterials on Screen Printed Electrodes, for enzymatic biosensors, with a limit of detection (LOD) for catechol at 150 nM, and protein biosensors, used for the detection of herbicides, with an LOD of 8-10 nM.

  1. Photoelectrochemical enzymatic biosensors.

    PubMed

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Development of an alarm sound database and simulator.

    PubMed

    Takeuchi, Akihiro; Hirose, Minoru; Shinbo, Toshiro; Imai, Megumi; Mamorita, Noritaka; Ikeda, Noriaki

    2006-10-01

    The purpose of this study was to develop an interactive software package of alarm sounds to present, recognize and share problems about alarm sounds among medical staff and medical manufactures. The alarm sounds were recorded in variable alarm conditions in a WAV file. The alarm conditions were arbitrarily induced by modifying attachments of various medical devices. The software package that integrated an alarm sound database and simulator was used to assess the ability to identify the monitor that sounded the alarm for the medical staff. Eighty alarm sound files (40MB in total) were recorded from 41 medical devices made by 28 companies. There were three pairs of similar alarm sounds that could not easily be distinguished, two alarm sounds which had a different priority, either low or high. The alarm sound database was created in an Excel file (ASDB.xls 170 kB, 40 MB with photos), and included a list of file names that were hyperlinked to alarm sound files. An alarm sound simulator (AlmSS) was constructed with two modules for simultaneously playing alarm sound files and for designing new alarm sounds. The AlmSS was used in the assessing procedure to determine whether 19 clinical engineers could identify 13 alarm sounds only by their distinctive sounds. They were asked to choose from a list of devices and to rate the priority of each alarm. The overall correct identification rate of the alarm sounds was 48%, and six characteristic alarm sounds were correctly recognized by beetween 63% to 100% of the subjects. The overall recognition rate of the alarm sound priority was only 27%. We have developed an interactive software package of alarm sounds by integrating the database and the alarm sound simulator (URL: http://info.ahs.kitasato-u.ac.jp/tkweb/alarm/asdb.html ). The AlmSS was useful for replaying multiple alarm sounds simultaneously and designing new alarm sounds interactively.

  3. Biosensor commercialization strategy - a theoretical approach.

    PubMed

    Lin, Chin-Tsai; Wang, Su-Man

    2005-01-01

    Biosensors are analytical devices, which use biological interactions to provide either qualitative or quantitative results. They are extensively employed in many fields such as clinical diagnosis and biomedicine, military applications, anti-terrorism, farm, garden and veterinary analysis, process control, fermentation control and analysis, pharmaceutical and drug analysis, food and drink production and analysis, pollution control and monitoring, microbiology, bacterial and viral analysis, mining, and industrial and toxic gases. The biosensor market has significantly increased and will be mushrooming in the next decade. The total biosensor market is estimated to be 10.8 billion dollars by 2007. The emerging biosensor market presents both opportunities and obstacles to start-up biosensor entrepreneurs. The major challenge and threat for these entrepreneurs is how to predict the biosensor market and how to convert promising biosensor technology into commercialized biosensors. By adopting a simple commercialization strategy framework, we identify two key elements of biosensor commercialization strategy: excludability and complementary asset. We further divide biosensor commercialization environments into four distinct sub-environments: the Attacker's Advantage, Reputation-Based Idea Trading, Greenfield Competition and Ideas Factories. This paper explains how the interaction between these two key elements shapes biosensor commercialization strategy and biosensor industry dynamics. This paper also discusses alternative commercialization strategies for each specific commercialization environment and how to choose from these alternatives. The analysis of this study further provides a good reference for start-up biosensor entrepreneurs to formulate effective biosensor commercialization strategy.

  4. DNA nanotechnology-enabled biosensors.

    PubMed

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress.

    PubMed

    Rhouati, Amina; Bulbul, Gonca; Latif, Usman; Hayat, Akhtar; Li, Zhan-Hong; Marty, Jean Louis

    2017-10-28

    Recent years have witnessed an overwhelming integration of nanomaterials in the fabrication of biosensors. Nanomaterials have been incorporated with the objective to achieve better analytical figures of merit in terms of limit of detection, linear range, assays stability, low production cost, etc. Nanomaterials can act as immobilization support, signal amplifier, mediator and artificial enzyme label in the construction of aptasensors. We aim in this work to review the recent progress in mycotoxin analysis. This review emphasizes on the function of the different nanomaterials in aptasensors architecture. We subsequently relate their features to the analytical performance of the given aptasensor towards mycotoxins monitoring. In the same context, a critically analysis and level of success for each nano-aptasensing design will be discussed. Finally, current challenges in nano-aptasensing design for mycotoxin analysis will be highlighted.

  6. Physiologic Monitor Alarm Rates at 5 Children's Hospitals.

    PubMed

    Schondelmeyer, Amanda C; Brady, Patrick W; Goel, Veena V; Cvach, Maria; Blake, Nancy; Mangeot, Colleen; Bonafide, Christopher P

    2018-06-01

    Alarm fatigue has been linked to patient morbidity and mortality in hospitals due to delayed or absent responses to monitor alarms. We sought to describe alarm rates at 5 freestanding children's hospitals during a single day and the types of alarms and proportions of patients monitored by using a point-prevalence, cross-sectional study design. We collected audible alarms on all inpatient units and calculated overall alarm rates and rates by alarm type per monitored patient per day. We found a total of 147,213 alarms during the study period, with 3-fold variation in alarm rates across hospitals among similar unit types. Across hospitals, onequarter of monitored beds were responsible for 71%, 61%, and 63% of alarms in medical-surgical, neonatal intensive care, and pediatric intensive care units, respectively. Future work focused on addressing nonactionable alarms in patients with the highest alarm counts may decrease alarm rates. © 2018 Society of Hospital Medicine.

  7. Electrochemical biosensors for hormone analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. 46 CFR 113.43-3 - Alarm system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarm system. 113.43-3 Section 113.43-3 Shipping COAST... SYSTEMS AND EQUIPMENT Steering Failure Alarm Systems § 113.43-3 Alarm system. (a) Each vessel must have a steering failure alarm system that actuates an audible and visible alarm in the pilothouse when the actual...

  9. 46 CFR 113.43-3 - Alarm system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Alarm system. 113.43-3 Section 113.43-3 Shipping COAST... SYSTEMS AND EQUIPMENT Steering Failure Alarm Systems § 113.43-3 Alarm system. (a) Each vessel must have a steering failure alarm system that actuates an audible and visible alarm in the pilothouse when the actual...

  10. 46 CFR 113.43-3 - Alarm system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Alarm system. 113.43-3 Section 113.43-3 Shipping COAST... SYSTEMS AND EQUIPMENT Steering Failure Alarm Systems § 113.43-3 Alarm system. (a) Each vessel must have a steering failure alarm system that actuates an audible and visible alarm in the pilothouse when the actual...

  11. Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application.

    PubMed

    Grepstad, Jon Olav; Kaspar, Peter; Solgaard, Olav; Johansen, Ib-Rune; Sudbø, Aasmund S

    2012-03-26

    A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.

  12. Priority coding for control room alarms

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  13. A methodological combined framework for roadmapping biosensor research: a fault tree analysis approach within a strategic technology evaluation frame.

    PubMed

    Siontorou, Christina G; Batzias, Fragiskos A

    2014-03-01

    Biosensor technology began in the 1960s to revolutionize instrumentation and measurement. Despite the glucose sensor market success that revolutionized medical diagnostics, and artificial pancreas promise currently the approval stage, the industry is reluctant to capitalize on other relevant university-produced knowledge and innovation. On the other hand, the scientific literature is extensive and persisting, while the number of university-hosted biosensor groups is growing. Considering the limited marketability of biosensors compared to the available research output, the biosensor field has been used by the present authors as a suitable paradigm for developing a methodological combined framework for "roadmapping" university research output in this discipline. This framework adopts the basic principles of the Analytic Hierarchy Process (AHP), replacing the lower level of technology alternatives with internal barriers (drawbacks, limitations, disadvantages), modeled through fault tree analysis (FTA) relying on fuzzy reasoning to count for uncertainty. The proposed methodology is validated retrospectively using ion selective field effect transistor (ISFET) - based biosensors as a case example, and then implemented prospectively membrane biosensors, putting an emphasis on the manufacturability issues. The analysis performed the trajectory of membrane platforms differently than the available market roadmaps that, considering the vast industrial experience in tailoring and handling crystallic forms, suggest the technology path of biomimetic and synthetic materials. The results presented herein indicate that future trajectories lie along with nanotechnology, and especially nanofabrication and nano-bioinformatics, and focused, more on the science-path, that is, on controlling the natural process of self-assembly and the thermodynamics of bioelement-lipid interaction. This retained the nature-derived sensitivity of the biosensor platform, pointing out the differences

  14. Low Voltage Alarm Apprenticeship. Related Training Modules. 0.1 History of Alarms.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of one learning module on the history of alarms is one of eight such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study…

  15. Control of ELT false alarms

    NASA Technical Reports Server (NTRS)

    Toth, S.; Gershkoff, I.

    1979-01-01

    The statistics of emergency locator transmitter (ELT) alarms are presented. The primary sources of data include ELT Incident Logs, Service Difficulty Reports, and Frequency Interference Reports. The number of reported and unreported alarms is discussed, as are seasonal variations, duration of ELT transmissions, and cost of silencing. Origin, causes, and possible strategies for reducing the impact of alarms on the aviation community are considered.

  16. Hornbills can distinguish between primate alarm calls.

    PubMed Central

    Rainey, Hugo J.; Zuberbühler, Klaus; Slater, Peter J. B.

    2004-01-01

    Some mammals distinguish between and respond appropriately to the alarm calls of other mammal and bird species. However, the ability of birds to distinguish between mammal alarm calls has not been investigated. Diana monkeys (Cercopithecus diana) produce different alarm calls to two predators: crowned eagles (Stephanoaetus coronatus) and leopards (Panthera pardus). Yellow-casqued hornbills (Ceratogymna elata) are vulnerable to predation by crowned eagles but are not preyed on by leopards and might therefore be expected to respond to the Diana monkey eagle alarm call but not to the leopard alarm call. We compared responses of hornbills to playback of eagle shrieks, leopard growls, Diana monkey eagle alarm calls and Diana monkey leopard alarm calls and found that they distinguished appropriately between the two predator vocalizations as well as between the two Diana monkey alarm calls. We discuss possible mechanisms leading to these responses. PMID:15209110

  17. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management.

    PubMed

    Kaushik, Ajeet; Jayant, Rahul Dev; Tiwari, Sneham; Vashist, Arti; Nair, Madhavan

    2016-06-15

    Beta-amyloid (β-A) peptides are potential biomarkers to monitor Alzheimer's diseases (AD) for diagnostic purposes. Increased β-A level is neurotoxic and induces oxidative stress in brain resulting in neurodegeneration and causes dementia. As of now, no sensitive and inexpensive method is available for β-A detection under physiological and pathological conditions. Although, available methods such as neuroimaging, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) detect β-A, but they are not yet extended at point-of-care (POC) due to sophisticated equipments, need of high expertize, complicated operations, and challenge of low detection limit. Recently, β-A antibody based electrochemical immuno-sensing approach has been explored to detect β-A at pM levels within 30-40 min compared to 6-8h of ELISA test. The introduction of nano-enabling electrochemical sensing technology could enable rapid detection of β-A at POC and may facilitate fast personalized health care delivery. This review explores recent advancements in nano-enabling electrochemical β-A sensing technologies towards POC application to AD management. These analytical tools can serve as an analytical tool for AD management program to obtain bio-informatics needed to optimize therapeutics for neurodegenerative diseases diagnosis management. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients1

    PubMed Central

    Bridi, Adriana Carla; Louro, Thiago Quinellato; da Silva, Roberto Carlos Lyra

    2014-01-01

    OBJECTIVES: to identify the number of electro-medical pieces of equipment in a coronary care unit, characterize their types, and analyze implications for the safety of patients from the perspective of alarm fatigue. METHOD: this quantitative, observational, descriptive, non-participatory study was conducted in a coronary care unit of a cardiology hospital with 170 beds. RESULTS: a total of 426 alarms were recorded in 40 hours of observation: 227 were triggered by multi-parametric monitors and 199 were triggered by other equipment (infusion pumps, dialysis pumps, mechanical ventilators, and intra-aortic balloons); that is an average of 10.6 alarms per hour. CONCLUSION: the results reinforce the importance of properly configuring physiological variables, the volume and parameters of alarms of multi-parametric monitors within the routine of intensive care units. The alarms of equipment intended to protect patients have increased noise within the unit, the level of distraction and interruptions in the workflow, leading to a false sense of security. PMID:25591100

  19. 30 CFR 57.4360 - Underground alarm systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire alarm... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground alarm systems. 57.4360 Section 57...

  20. 30 CFR 57.4360 - Underground alarm systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire alarm... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground alarm systems. 57.4360 Section 57...

  1. 30 CFR 57.4360 - Underground alarm systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire alarm... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground alarm systems. 57.4360 Section 57...

  2. 30 CFR 57.4360 - Underground alarm systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire alarm... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground alarm systems. 57.4360 Section 57...

  3. Alarms, Chemical

    DTIC Science & Technology

    cited in applicable qualitative materiel requirements, small development requirements, technical characteristics, and other requirements and documentation that pertain to automatic chemical agent alarms.

  4. Reducing false asystole alarms in intensive care.

    PubMed

    Dekimpe, Remi; Heldt, Thomas

    2017-07-01

    High rates of false monitoring alarms in intensive care can desensitize staff and therefore pose a significant risk to patient safety. Like other critical arrhythmia alarms, asystole alarms require immediate attention by the care providers as a true asystole event can be acutely life threatening. Here, it is illustrated that most false asystole alarms can be attributed to poor signal quality, and we propose and evaluate an algorithm to identify data windows of poor signal quality and thereby help suppress false asystole alarms. The algorithm combines intuitive signal-quality features (degree of signal saturation and baseline wander) and information from other physiological signals that might be available. Algorithm training and testing was performed on the MIMIC II and 2015 PhysioNet/Computing in Cardiology Challenge databases, respectively. The algorithm achieved an alarm specificity of 81.0% and sensitivity of 95.4%, missing only one out of 22 true asystole alarms. On a separate neonatal data set, the algorithm was able to reject 89.7% (890 out of 992) of false asystole alarms while keeping all 22 true events. The results show that the false asystole alarm rate can be significantly reduced through basic signal quality evaluation.

  5. Nanochannels Photoelectrochemical Biosensor.

    PubMed

    Zhang, Nan; Ruan, Yi-Fan; Zhang, Li-Bin; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-02-06

    Nanochannels have brought new opportunities for biosensor development. Herein, we present the novel concept of a nanochannels photoelectrochemical (PEC) biosensor based on the integration of a unique Cu x O-nanopyramid-islands (NPIs) photocathode, an anodic aluminum oxide (AAO) membrane, and alkaline phosphatase (ALP) catalytic chemistry. The Cu x O-NPIs photocathode possesses good performance, and further assembly with AAO yields a designed architecture composed of vertically aligned, highly ordered nanoarrays on top of the Cu x O-NPIs film. After biocatalytic precipitation (BCP) was stimulated within the channels, the biosensor was used for the successful detection of ALP activity. This study has not only provided a novel paradigm for an unconventional nanochannels PEC biosensor, which can be used for general bioanalytical purposes, but also indicated that the new concept of nanochannel-semiconductor heterostructures is a step toward innovative biomedical applications.

  6. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  7. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  8. Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress

    PubMed Central

    Rhouati, Amina; Bulbul, Gonca; Hayat, Akhtar; Marty, Jean Louis

    2017-01-01

    Recent years have witnessed an overwhelming integration of nanomaterials in the fabrication of biosensors. Nanomaterials have been incorporated with the objective to achieve better analytical figures of merit in terms of limit of detection, linear range, assays stability, low production cost, etc. Nanomaterials can act as immobilization support, signal amplifier, mediator and artificial enzyme label in the construction of aptasensors. We aim in this work to review the recent progress in mycotoxin analysis. This review emphasizes on the function of the different nanomaterials in aptasensors architecture. We subsequently relate their features to the analytical performance of the given aptasensor towards mycotoxins monitoring. In the same context, a critically analysis and level of success for each nano-aptasensing design will be discussed. Finally, current challenges in nano-aptasensing design for mycotoxin analysis will be highlighted. PMID:29143760

  9. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next to...

  10. 46 CFR 113.25-12 - Alarm signals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Alarm signals. 113.25-12 Section 113.25-12 Shipping... SYSTEMS AND EQUIPMENT General Emergency Alarm Systems § 113.25-12 Alarm signals. (a) Each general emergency alarm signal must be an electrically-operated bell, klaxon, or other warning device capable of...

  11. 46 CFR 113.25-12 - Alarm signals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarm signals. 113.25-12 Section 113.25-12 Shipping... SYSTEMS AND EQUIPMENT General Emergency Alarm Systems § 113.25-12 Alarm signals. (a) Each general emergency alarm signal must be an electrically-operated bell, klaxon, or other warning device capable of...

  12. 46 CFR 113.25-12 - Alarm signals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Alarm signals. 113.25-12 Section 113.25-12 Shipping... SYSTEMS AND EQUIPMENT General Emergency Alarm Systems § 113.25-12 Alarm signals. (a) Each general emergency alarm signal must be an electrically-operated bell, klaxon, or other warning device capable of...

  13. 46 CFR 113.25-12 - Alarm signals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Alarm signals. 113.25-12 Section 113.25-12 Shipping... SYSTEMS AND EQUIPMENT General Emergency Alarm Systems § 113.25-12 Alarm signals. (a) Each general emergency alarm signal must be an electrically-operated bell, klaxon, or other warning device capable of...

  14. 46 CFR 113.25-12 - Alarm signals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Alarm signals. 113.25-12 Section 113.25-12 Shipping... SYSTEMS AND EQUIPMENT General Emergency Alarm Systems § 113.25-12 Alarm signals. (a) Each general emergency alarm signal must be an electrically-operated bell, klaxon, or other warning device capable of...

  15. 24 CFR 3285.703 - Smoke alarms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Smoke alarms. 3285.703 Section 3285... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.703 Smoke alarms. Smoke alarms must be functionally tested in accordance with applicable requirements of the smoke...

  16. 24 CFR 3285.703 - Smoke alarms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Smoke alarms. 3285.703 Section 3285... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.703 Smoke alarms. Smoke alarms must be functionally tested in accordance with applicable requirements of the smoke...

  17. 24 CFR 3285.703 - Smoke alarms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Smoke alarms. 3285.703 Section 3285... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.703 Smoke alarms. Smoke alarms must be functionally tested in accordance with applicable requirements of the smoke...

  18. 24 CFR 3285.703 - Smoke alarms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Smoke alarms. 3285.703 Section 3285... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.703 Smoke alarms. Smoke alarms must be functionally tested in accordance with applicable requirements of the smoke...

  19. Development of a molecularly imprinted polymer tailored on disposable screen-printed electrodes for dual detection of EGFR and VEGF using nano-liposomal amplification strategy.

    PubMed

    Johari-Ahar, Mohammad; Karami, Pari; Ghanei, Mostafa; Afkhami, Abbas; Bagheri, Hasan

    2018-06-01

    This work demonstrates the development of a gold screen-printed electrode (Au-SPE)-based biosensor modified with a molecularly imprinted polymer and amplified using antibody-conjugated nano-liposomes. The developed biosensor was utilized for dual determination of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) as cancer biomarkers. To prepare this biosensor, Au-SPE was modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) via self-assembly method and then the target proteins (EGFR and VEGF) were covalently attached to the modified SPE. To synthesize the molecularly imprinted polymer, monomers of acrylamide and N,N'-methylenebis(acrylamide) were polymerized around the EGFR and VEGF templates, and to characterize the prepared biosensor, electrochemical impedance spectroscopy was used for analyses of surface changes in the engineered electrodes. To produce reliable electrochemical signals, nano-liposomes which were loaded with Cd(II) and Cu(II) cations and decorated with antibodies specific for EGFR and VEGF were used as an efficient tool for detection of target biomarkers. In the analysis step, potentiometric striping analysis (PSA), as an electrochemical technique, was utilized for sensitive determination of these cations. The limits of detection (LODs) of EGFR and VEGF analyses were found to be 0.01 and 0.005 pg mL -1 with the linear dynamic ranges (LDRs) of 0.05-50000 and 0.01-7000 pg mL -1 , respectively. Moreover, the proposed biosensor was successfully used for sensitive, reproducible, and specific detection of EGFR and VEGF in real samples. Due to the SPE nature of the developed biosensor, we envision that this sensing tool has capability of being integrated with lab-on-a-chip (LOC), microfluidics, and micro total analysis systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Hypoglycemia alarm enhancement using data fusion.

    PubMed

    Skladnev, Victor N; Tarnavskii, Stanislav; McGregor, Thomas; Ghevondian, Nejhdeh; Gourlay, Steve; Jones, Timothy W

    2010-01-01

    The acceptance of closed-loop blood glucose (BG) control using continuous glucose monitoring systems (CGMS) is likely to improve with enhanced performance of their integral hypoglycemia alarms. This article presents an in silico analysis (based on clinical data) of a modeled CGMS alarm system with trained thresholds on type 1 diabetes mellitus (T1DM) patients that is augmented by sensor fusion from a prototype hypoglycemia alarm system (HypoMon). This prototype alarm system is based on largely independent autonomic nervous system (ANS) response features. Alarm performance was modeled using overnight BG profiles recorded previously on 98 T1DM volunteers. These data included the corresponding ANS response features detected by HypoMon (AiMedics Pty. Ltd.) systems. CGMS data and alarms were simulated by applying a probabilistic model to these overnight BG profiles. The probabilistic model developed used a mean response delay of 7.1 minutes, measurement error offsets on each sample of +/- standard deviation (SD) = 4.5 mg/dl (0.25 mmol/liter), and vertical shifts (calibration offsets) of +/- SD = 19.8 mg/dl (1.1 mmol/liter). Modeling produced 90 to 100 simulated measurements per patient. Alarm systems for all analyses were optimized on a training set of 46 patients and evaluated on the test set of 56 patients. The split between the sets was based on enrollment dates. Optimization was based on detection accuracy but not time to detection for these analyses. The contribution of this form of data fusion to hypoglycemia alarm performance was evaluated by comparing the performance of the trained CGMS and fused data algorithms on the test set under the same evaluation conditions. The simulated addition of HypoMon data produced an improvement in CGMS hypoglycemia alarm performance of 10% at equal specificity. Sensitivity improved from 87% (CGMS as stand-alone measurement) to 97% for the enhanced alarm system. Specificity was maintained constant at 85%. Positive predictive

  1. Residential smoke alarms and fire escape plans.

    PubMed

    Harvey, P A; Sacks, J J; Ryan, G W; Bender, P F

    1998-01-01

    To estimate the proportion of U.S. homes with installed smoke alarms, smoke alarms on the same floor as occupants' bedrooms, and fire escape plans. The authors analyzed data on smoke alarm use and fire escape planning from a 1994 stratified random telephone survey of 5238 U.S. households. Respondents from 91% of surveyed households reported the presence of at least one installed smoke alarm, and 94% of respondents reported having an alarm on the same level of the home as their sleeping area. The prevalence of installed smoke alarms varied by highest education level in the household and income level. Sixty percent of all households had designed or discussed a fire escape plan at least once; only 17% of these households had actually practiced one. Although overall use of smoke alarms was high, certain population subgroups were less likely to have smoke alarms or to have them installed on the same floor as bedrooms. Fire escape planning, another important safety measure, was somewhat less common, and very few respondents reported having practiced a fire escape plan with the members of their household.

  2. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST... MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms. (a... must provide battery power for the alarm required by § 130.460(a)(8) of this subpart. ...

  3. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST... MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms. (a... must provide battery power for the alarm required by § 130.460(a)(8) of this subpart. ...

  4. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST... MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms. (a... must provide battery power for the alarm required by § 130.460(a)(8) of this subpart. ...

  5. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST... MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms. (a... must provide battery power for the alarm required by § 130.460(a)(8) of this subpart. ...

  6. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM...

  7. Nurses' Perceptions and Practices Toward Clinical Alarms in a Transplant Cardiac Intensive Care Unit: Exploring Key Issues Leading to Alarm Fatigue

    PubMed Central

    Tarriela, Albert Fajardo; Gomez, Tiffany Michelle; Reed, Charles Calhoun; Rapp, Kami Marie

    2015-01-01

    Background Intensive care units (ICUs) are complex work environments where false alarms occur more frequently than on non-critical care units. The Joint Commission National Patient Safety Goal .06.01.01 targeted improving the safety of clinical alarm systems and required health care facilities to establish alarm systems safety as a hospital priority by July 2014. An important initial step toward this requirement is identifying ICU nurses’ perceptions and common clinical practices toward clinical alarms, where little information is available. Objective Our aim was to determine perceptions and practices of transplant/cardiac ICU (TCICU) nurses toward clinical alarms and benchmark the results against the 2011 Healthcare Technology Foundation’s (HTF) Clinical Alarms Committee Survey. Methods A quality improvement project was conducted on a 20-bed TCICU with 39 full- and part-time nurses. Nurses were surveyed about their perceptions and attitudes toward and practices on clinical alarms using an adapted HTF clinical alarms survey. Results were compared to the 2011 HTF data. Correlations among variables were examined. Results All TCICU nurses provided usable responses (N=39, 100%). Almost all nurses (95%-98%) believed that false alarms are frequent, disrupt care, and reduce trust in alarm systems, causing nurses to inappropriately disable them. Unlike the 2011 HTF clinical alarms survey results, a significantly higher percentage of our TCICU nurses believed that existing devices are complex, questioned the ability and adequacy of the new monitoring systems to solve alarm management issues, pointed to the lack of prompt response to alarms, and indicated the lack of clinical policy on alarm management (P<.01). Major themes in the narrative data focused on nurses’ frustration related to the excessive number of alarms and poor usability of the cardiac monitors. A lack of standardized approaches exists in changing patients’ electrodes and individualizing parameters

  8. IMPEDANCE ALARM SYSTEM

    DOEpatents

    Cowen, R.G.

    1959-09-29

    A description is given of electric protective systems and burglar alarm systems of the capacitance type in which the approach of an intruder at a place to be protected varies the capacitance in an electric circuit and the change is thereafter communicated to a remote point to actuate an alarm. According to the invention, an astable transitor multi-vibrator has the amplitude at its output voltage controlled by a change in the sensing capacitance. The sensing capacitance is effectively connected between collector and base of one stage of the multivibrator circuit through the detector-to-monitor line. The output of the detector is a small d-c voltage across the detector-to-monitor line. This d- c voltage is amplified and monitored at the other end of the line, where an appropriate alarm is actuated if a sudden change in the voltage occurs. The present system has a high degree of sensitivity and is very difficult to defeat by known techniques.

  9. Plasmonic Biosensors

    PubMed Central

    Hill, Ryan T.

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594

  10. 33 CFR 127.207 - Warning alarms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Warning alarms. 127.207 Section... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.207 Warning alarms. (a) The marine... be located so that the warning alarm is not obstructed for a distance of 1.6 km (1 mile) in all...

  11. 33 CFR 127.207 - Warning alarms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Warning alarms. 127.207 Section... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.207 Warning alarms. (a) The marine... be located so that the warning alarm is not obstructed for a distance of 1.6 km (1 mile) in all...

  12. 33 CFR 127.207 - Warning alarms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Warning alarms. 127.207 Section... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.207 Warning alarms. (a) The marine... be located so that the warning alarm is not obstructed for a distance of 1.6 km (1 mile) in all...

  13. 33 CFR 127.207 - Warning alarms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Warning alarms. 127.207 Section... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.207 Warning alarms. (a) The marine... be located so that the warning alarm is not obstructed for a distance of 1.6 km (1 mile) in all...

  14. 33 CFR 127.207 - Warning alarms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Warning alarms. 127.207 Section... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.207 Warning alarms. (a) The marine... be located so that the warning alarm is not obstructed for a distance of 1.6 km (1 mile) in all...

  15. Low Voltage Alarm Apprenticeship. Related Training Modules. 7.1-26.10 Alarm Basics.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of 70 learning modules on alarm basics is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check…

  16. Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates.

    PubMed

    Hondred, John A; Breger, Joyce C; Alves, Nathan J; Trammell, Scott A; Walper, Scott A; Medintz, Igor L; Claussen, Jonathan C

    2018-04-04

    Solution phase printing of graphene-based electrodes has recently become an attractive low-cost, scalable manufacturing technique to create in-field electrochemical biosensors. Here, we report a graphene-based electrode developed via inkjet maskless lithography (IML) for the direct and rapid monitoring of triple-O linked phosphonate organophosphates (OPs); these constitute the active compounds found in chemical warfare agents and pesticides that exhibit acute toxicity as well as long-term pollution to soils and waterways. The IML-printed graphene electrode is nano/microstructured with a 1000 mW benchtop laser engraver and electrochemically deposited platinum nanoparticles (dia. ∼25 nm) to improve its electrical conductivity (sheet resistance decreased from ∼10 000 to 100 Ω/sq), surface area, and electroactive nature for subsequent enzyme functionalization and biosensing. The enzyme phosphotriesterase (PTE) was conjugated to the electrode surface via glutaraldehyde cross-linking. The resulting biosensor was able to rapidly measure (5 s response time) the insecticide paraoxon (a model OP) with a low detection limit (3 nM), and high sensitivity (370 nA/μM) with negligible interference from similar nerve agents. Moreover, the biosensor exhibited high reusability (average of 0.3% decrease in sensitivity per sensing event), stability (90% anodic current signal retention over 1000 s), longevity (70% retained sensitivity after 8 weeks), and the ability to selectively sense OP in actual soil and water samples. Hence, this work presents a scalable printed graphene manufacturing technique that can be used to create OP biosensors that are suitable for in-field applications as well as, more generally, for low-cost biosensor test strips that could be incorporated into wearable or disposable sensing paradigms.

  17. Make an Alarm! Grades 3-5.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    After reading the story "Dear Mr. Henshaw" by Beverly Cleary, students build an alarm system for something in the classroom as the main character, Leigh, does to protect his lunchbox from thieves. Students learn about alarms and use their creativity to create an alarm system to protect their lockers, desk, or classroom door. This activity uses a…

  18. 46 CFR 76.15-30 - Alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... than paint and lamp lockers and similar small spaces, shall be fitted with an approved audible alarm in... required to be fitted with a delayed discharge. Such alarms shall be so arranged as to sound during the 20 second delay period prior to the discharge of carbon dioxide into the space, and the alarm shall depend...

  19. Residential smoke alarms and fire escape plans.

    PubMed Central

    Harvey, P A; Sacks, J J; Ryan, G W; Bender, P F

    1998-01-01

    OBJECTIVE: To estimate the proportion of U.S. homes with installed smoke alarms, smoke alarms on the same floor as occupants' bedrooms, and fire escape plans. METHODS: The authors analyzed data on smoke alarm use and fire escape planning from a 1994 stratified random telephone survey of 5238 U.S. households. RESULTS: Respondents from 91% of surveyed households reported the presence of at least one installed smoke alarm, and 94% of respondents reported having an alarm on the same level of the home as their sleeping area. The prevalence of installed smoke alarms varied by highest education level in the household and income level. Sixty percent of all households had designed or discussed a fire escape plan at least once; only 17% of these households had actually practiced one. CONCLUSIONS: Although overall use of smoke alarms was high, certain population subgroups were less likely to have smoke alarms or to have them installed on the same floor as bedrooms. Fire escape planning, another important safety measure, was somewhat less common, and very few respondents reported having practiced a fire escape plan with the members of their household. PMID:9769771

  20. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  1. The evolution of telemedicine and nano-technology

    NASA Astrophysics Data System (ADS)

    Park, Dong Kyun; Young Jung, Eun; Chan Moon, Byung

    2012-10-01

    This paper will cover definition and history of telemedicine, changes in medical paradigm and roll of telemedicine and roll of nano-technology for evolution of telemedicine. Hypothetically, telemedicine is distance communication for medical purpose and modern definition explains telemedicine as `a system of health care delivery in which physicians examine distant patients through the use of telecommunications technology. Medical service will change to personalized medicine based on gene information to prevent and manage diseases due to decrease of acute diseases, population aging and increase of prevalence in chronic diseases, which means current medical services based on manualized treatment for diseases will change to personalized medicine based on individual gene information. Also, international healthcare will be activated to provide high quality medical services with low cost using developed transportation. Moreover, hospital centered medical services will change to patients centered medical service due to increase of patient's rights. Development in sensor technology is required for telemedicine to be applied as basic infrastructure for medical services. Various researches in nano-biosensor field are conducted due to introduction of new technologies. However, most researches are in fundamental levels that requires more researches for stability and clinical usefulness. Nano technology is expected to achieve innovative development and define new criteria for disease prevention and management.

  2. Specific and selective target detection of supra-genome 21 Mers Salmonella via silicon nanowires biosensor

    NASA Astrophysics Data System (ADS)

    Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.

    2017-09-01

    The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.

  3. Sensing of Salivary Glucose Using Nano-Structured Biosensors.

    PubMed

    Du, Yunqing; Zhang, Wenjun; Wang, Ming L

    2016-03-17

    The anxiety and pain associated with frequent finger pricking has always been troublesome for diabetics measuring blood glucose (BG) in their daily lives. For this reason, a reliable glucose monitoring system that allows noninvasive measurements is highly desirable. Our main objective is to develop a biosensor that can detect low-level glucose in saliva (physiological range 0.5-20 mg/dL). Salivary glucose (SG) sensors were built using a layer-by-layer self-assembly of single-walled carbon nanotubes, chitosan, gold nanoparticles, and glucose oxidase onto a screen-printed platinum electrode. An electrochemical method was utilized for the quantitative detection of glucose in both buffer solution and saliva samples. A standard spectrophotometric technique was used as a reference method to validate the glucose content of each sample. The disposable glucose sensors have a detection limit of 0.41 mg/dL, a sensitivity of 0.24 μA·s·dL·mg(-1), a linear range of 0.5-20 mg/dL in buffer solution, and a response time of 30 s. A study of 10 healthy subjects was conducted, and SG levels between 1.1 to 10.1 mg/dL were successfully detected. The results revealed that the noninvasive SG monitoring could be an alternative for diabetes self-management at home. This paper is not intended to replace regular BG tests, but to study SG itself as an indicator for the quality of diabetes care. It can potentially help patients control and monitor their health conditions, enabling them to comply with prescribed treatments for diabetes.

  4. Development of novel acoustic wave biosensor platforms based on magnetostriction and fabrication of magnetostrictive nanowires

    NASA Astrophysics Data System (ADS)

    Li, Suiqiong

    There is an urgent need for biosensors that are able to detect and quantify the presence of a small amount of biological threat agents in a real-time manner. Acoustic wave (AW) devices, whose performance is defined by mass sensitivity (Sm) and merit quality factor (Q value), have been extensively studied as high performance biosensor platforms. However, current AW devices face some challenges in practical applications. In this research, two types of AW devices---magnetostrictive microcantilever (MSMC) and completely free-standing magnetostrictive particle (MSP)---were developed. The research consists of two parts: (1) Design and the feasibility study of MSMC and MSP based sensor technology; (2) Fabrication and characterization of micro/nano MSPs made of amorphous Fe-B alloy. Both MSMC and MSP based sensors are wireless/remote and work well in liquid, which makes the sensors good candidates for in-situ detection. The performance of MSMC was simulated and compared with the state of art AW devices: microcantilevers. The MSMC exhibits the following advantages: (1) remote/wireless driving and sensing; (2) ease of fabrication; (3) works well in liquid; (4) exhibits a high Q value (> 500 in air); (5) well suited for sensor array development. MSMCs in milli/micro sizes were fabricated and their performance was characterized in air and liquid. The experimental results confirm the advantages of MSMC mentioned above. The in situ detection of the yeast cells and Bacillus anthracis spores in water were performed using MSMC biosensors. MSPs in the shape of strip and bar were investigated. Strip-shape MSPs in milli/micro sizes were fabricated. The resonance behaviors of MSPs at the even and odd vibration modes were analyzed. MSP exhibits a Sm about 100 times greater, and a Q value about 10 times greater, than MCs. A multiple-sensor and a multiple-target approach were developed to further enhance the performance of MSP-based sensors. A unique methodology was created to detect the

  5. Plasmonic biosensors.

    PubMed

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  6. Introduction to biosensors

    PubMed Central

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello

    2016-01-01

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030

  7. Electrical DNA biosensor using aluminium interdigitated electrode for E.Coli O157:H7 detection

    NASA Astrophysics Data System (ADS)

    Natasha, N. Z.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.

    2017-09-01

    Escherichia Coli (E.Coli) O157:H7 is the one of the most dangerous foodborne pathogens based diseases that presence in our daily life that causes illness and death increase every year. Aluminum Interdigitated Electrode (Al IDE) biosensor was introduced to detect E.Coli O157:H7 in earlier stage. In this paper we investigated ssDNA of E.Coli O157:H7 bacteria detection through electrical behavior of Al IDE sensor. The physical properties of Al IDE biosensor has been characterized using Low Power Microscope (LPM), High Power Microscope (HPM), Scanning Electron Microscope (SEM) and 3D Nano Profiler. The bare Al IDE was electrical characterized by using I-V measurement. The surface modification was accomplished by salinization using APTES and immobilization using Carboxylic Probe E.Coli which was the first step in preparing Al IDE biosensor. Geared up prepared biosensor was hybridized with complementary, non-complementary and single based mismatch ssDNA to confirmed specificity detection of E Coli O157:H7 ssDNA target. The Current - Voltage was performed for each step such as bare Al IDE, surface modification, immobilization and hybridization. Sensitivity measurement was accomplished using different concentration of complementary ssDNA target from 1 fM - 10 µM. Selectivity measurements was achieved using same concentration which was 10 µM concentration for complement, non-complement and mismatch E.Coli O157:H7 ssDNA target. It's totally proved that the Al IDE able to detect specific and small current down to Femtomolar concentration.

  8. Talking Fire Alarms Calm Kids.

    ERIC Educational Resources Information Center

    Executive Educator, 1984

    1984-01-01

    The new microprocessor-based fire alarm systems can help to control smoke movement throughout school buildings by opening vents and doors, identify the burning section, activate voice alarms, provide firefighters with telephone systems during the fire, and release fire-preventing gas. (KS)

  9. Fabrication of hydrogen peroxide biosensor based on Ni doped SnO2 nanoparticles.

    PubMed

    Lavanya, N; Radhakrishnan, S; Sekar, C

    2012-01-01

    Ni doped SnO(2) nanoparticles (0-5 wt%) have been prepared by a simple microwave irradiation (2.45 GHz) method. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirmed the formation of rutile structure with space group (P(42)/mnm) and nanocrystalline nature of the products with spherical morphology. Direct electrochemistry of horseradish peroxidase (HRP)/nano-SnO(2) composite has been studied. The immobilized enzyme retained its bioactivity, exhibited a surface confined, reversible one-proton and one-electron transfer reaction, and had good stability, activity and a fast heterogeneous electron transfer rate. A significant enzyme loading (3.374×10(-10) mol cm(-2)) has been obtained on nano-Ni doped SnO(2) as compared to the bare glassy carbon (GC) and nano-SnO(2) modified surfaces. This HRP/nano-Ni-SnO(2) film has been used for sensitive detection of H(2)O(2) by differential pulse voltammetry (DPV), which exhibited a wider linearity range from 1.0×10(-7) to 3.0×10(-4)M (R=0.9897) with a detection limit of 43 nM. The apparent Michaelis-Menten constant (K(M)(app)) of HRP on the nano-Ni-SnO(2) was estimated as 0.221 mM. This excellent performance of the fabricated biosensor is attributed to large surface-to-volume ratio and Ni doping into SnO(2) which facilitate the direct electron transfer between the redox enzyme and the surface of electrode. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Biosensors for hepatitis B virus detection.

    PubMed

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-09-21

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed.

  11. Alarm acknowledgement in a nuclear plant control room

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    Alarm acknowledgment can be made not only at the alarm tile array of a given console but via other touch sensitive alarm indications in the screen displays of the monitoring system at the same or other consoles; also, touching one tile can acknowledge multiple alarm sources.

  12. Bonneville Power Administration Communication Alarm Processor expert system:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goeltz, R.; Purucker, S.; Tonn, B.

    This report describes the Communications Alarm Processor (CAP), a prototype expert system developed for the Bonneville Power Administration by Oak Ridge National Laboratory. The system is designed to receive and diagnose alarms from Bonneville's Microwave Communications System (MCS). The prototype encompasses one of seven branches of the communications network and a subset of alarm systems and alarm types from each system. The expert system employs a backward chaining approach to diagnosing alarms. Alarms are fed into the expert system directly from the communication system via RS232 ports and sophisticated alarm filtering and mailbox software. Alarm diagnoses are presented to operatorsmore » for their review and concurrence before the diagnoses are archived. Statistical software is incorporated to allow analysis of archived data for report generation and maintenance studies. The delivered system resides on a Digital Equipment Corporation VAX 3200 workstation and utilizes Nexpert Object and SAS for the expert system and statistical analysis, respectively. 11 refs., 23 figs., 7 tabs.« less

  13. Graphene-based biosensors.

    PubMed

    Szunerits, Sabine; Boukherroub, Rabah

    2018-06-06

    Reliable data obtained from analysis of DNA, proteins, bacteria and other disease-related molecules or organisms in biological samples have become a fundamental and crucial part of human health diagnostics and therapy. The development of non-invasive tests that are rapid, sensitive, specific and simple would allow patient discomfort to be prevented, delays in diagnosis to be avoided and the status of a disease to be followed up. Bioanalysis is thus a progressive discipline for which the future holds many exciting opportunities. The use of biosensors for the early diagnosis of diseases has become widely accepted as a point-of-care diagnosis with appropriate specificity in a short time. To allow a reliable diagnosis of a disease at an early stage, highly sensitive biosensors are required as the corresponding biomarkers are generally expressed at very low concentrations. In the past 50 years, various biosensors have been researched and developed encompassing a wide range of applications. This contrasts the limited number of commercially available biosensors. When it comes to sensing of biomarkers with the required picomolar (pM) sensitivity for real-time sensing of biological samples, only a handful of sensing systems have been proposed, and these are often rather complex and costly. Lately, graphene-based materials have been considered as superior over other nanomaterials for the development of sensitive biosensors. The advantages of graphene-based sensor interfaces are numerous, including enhanced surface loading of the desired ligand due to the high surface-to-volume ratio, excellent conductivity and a small band gap that is beneficial for sensitive electrical and electrochemical read-outs, as well as tunable optical properties for optical read-outs such as fluorescence and plasmonics. In this paper, we review the advances made in recent years on graphene-based biosensors in the field of medical diagnosis.

  14. Graphene-based field-effect transistor biosensors

    DOEpatents

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  15. Design of portable valuables touch alarm circuit

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao

    2017-03-01

    In this paper, the name of the alarm is portable touch burglar alarm. It not only has the advantages of high sensitivity, small size and light weight, but it is easy on the trigger, the circuit is simple and easy to be implemented, besides, it works stably. This alarm is featured with simple design, convenient use, strong flexibility and reliable performance, thus it can be installed on the door or window and even can be carried on human's body. When the human body touches the metal valuables that need to be protected, the device will start the alarm equipment so as to make the bell keep ringing, and the alarm sound stops until the power is cut off.

  16. 30 CFR 57.4360 - Underground alarm systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....4360 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire alarm...

  17. 29 CFR 1910.165 - Employee alarm systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) All pre-discharge employee alarms installed to meet a particular OSHA standard shall meet the... telephones. The employer shall post emergency telephone numbers near telephones, or employee notice boards... operating condition as promptly as possible after each test or alarm. Spare alarm devices and components...

  18. 29 CFR 1910.165 - Employee alarm systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) All pre-discharge employee alarms installed to meet a particular OSHA standard shall meet the... telephones. The employer shall post emergency telephone numbers near telephones, or employee notice boards... operating condition as promptly as possible after each test or alarm. Spare alarm devices and components...

  19. 29 CFR 1910.165 - Employee alarm systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) All pre-discharge employee alarms installed to meet a particular OSHA standard shall meet the... telephones. The employer shall post emergency telephone numbers near telephones, or employee notice boards... operating condition as promptly as possible after each test or alarm. Spare alarm devices and components...

  20. 29 CFR 1910.165 - Employee alarm systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) All pre-discharge employee alarms installed to meet a particular OSHA standard shall meet the... telephones. The employer shall post emergency telephone numbers near telephones, or employee notice boards... operating condition as promptly as possible after each test or alarm. Spare alarm devices and components...

  1. 29 CFR 1910.165 - Employee alarm systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) All pre-discharge employee alarms installed to meet a particular OSHA standard shall meet the... telephones. The employer shall post emergency telephone numbers near telephones, or employee notice boards... operating condition as promptly as possible after each test or alarm. Spare alarm devices and components...

  2. A new method for defining and managing process alarms and for correcting process operation when an alarm occurs.

    PubMed

    Brooks, Robin; Thorpe, Richard; Wilson, John

    2004-11-11

    A new mathematical treatment of alarms that considers them as multi-variable interactions between process variables has provided the first-ever method to calculate values for alarm limits. This has resulted in substantial reductions in false alarms and hence in alarm annunciation rates in field trials. It has also unified alarm management, process control and product quality control into a single mathematical framework so that operations improvement and hence economic benefits are obtained at the same time as increased process safety. Additionally, an algorithm has been developed that advises what changes should be made to Manipulable process variables to clear an alarm. The multi-variable Best Operating Zone at the heart of the method is derived from existing historical data using equation-free methods. It does not require a first-principles process model or an expensive series of process identification experiments. Integral with the method is a new format Process Operator Display that uses only existing variables to fully describe the multi-variable operating space. This combination of features makes it an affordable and maintainable solution for small plants and single items of equipment as well as for the largest plants. In many cases, it also provides the justification for the investments about to be made or already made in process historian systems. Field Trials have been and are being conducted at IneosChlor and Mallinckrodt Chemicals, both in the UK, of the new geometric process control (GPC) method for improving the quality of both process operations and product by providing Process Alarms and Alerts of much high quality than ever before. The paper describes the methods used, including a simple visual method for Alarm Rationalisation that quickly delivers large sets of Consistent Alarm Limits, and the extension to full Alert Management with highlights from the Field Trials to indicate the overall effectiveness of the method in practice.

  3. Sensing of Salivary Glucose Using Nano-Structured Biosensors

    PubMed Central

    Du, Yunqing; Zhang, Wenjun; Wang, Ming L.

    2016-01-01

    The anxiety and pain associated with frequent finger pricking has always been troublesome for diabetics measuring blood glucose (BG) in their daily lives. For this reason, a reliable glucose monitoring system that allows noninvasive measurements is highly desirable. Our main objective is to develop a biosensor that can detect low-level glucose in saliva (physiological range 0.5–20 mg/dL). Salivary glucose (SG) sensors were built using a layer-by-layer self-assembly of single-walled carbon nanotubes, chitosan, gold nanoparticles, and glucose oxidase onto a screen-printed platinum electrode. An electrochemical method was utilized for the quantitative detection of glucose in both buffer solution and saliva samples. A standard spectrophotometric technique was used as a reference method to validate the glucose content of each sample. The disposable glucose sensors have a detection limit of 0.41 mg/dL, a sensitivity of 0.24 μA·s·dL·mg−1, a linear range of 0.5–20 mg/dL in buffer solution, and a response time of 30 s. A study of 10 healthy subjects was conducted, and SG levels between 1.1 to 10.1 mg/dL were successfully detected. The results revealed that the noninvasive SG monitoring could be an alternative for diabetes self-management at home. This paper is not intended to replace regular BG tests, but to study SG itself as an indicator for the quality of diabetes care. It can potentially help patients control and monitor their health conditions, enabling them to comply with prescribed treatments for diabetes. PMID:26999233

  4. Characterization of Textile-Insulated Capacitive Biosensors

    PubMed Central

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  5. ZnO-Based Amperometric Enzyme Biosensors

    PubMed Central

    Zhao, Zhiwei; Lei, Wei; Zhang, Xiaobing; Wang, Baoping; Jiang, Helong

    2010-01-01

    Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol), respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization) and biosensor performances. PMID:22205864

  6. Fiber optic choline biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong

    2001-10-01

    A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.

  7. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b) [Reserved] ...

  8. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  9. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  10. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  11. 47 CFR 80.318 - Use of alarm signals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Use of alarm signals. 80.318 Section 80.318... § 80.318 Use of alarm signals. (a) The radiotelegraph or radiotelephone alarm signal, as appropriate... transmission of an urgent cyclone warning. In this case the alarm signal may only be used by coast stations...

  12. 47 CFR 80.318 - Use of alarm signals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Use of alarm signals. 80.318 Section 80.318... § 80.318 Use of alarm signals. (a) The radiotelegraph or radiotelephone alarm signal, as appropriate... transmission of an urgent cyclone warning. In this case the alarm signal may only be used by coast stations...

  13. 47 CFR 80.318 - Use of alarm signals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Use of alarm signals. 80.318 Section 80.318... § 80.318 Use of alarm signals. (a) The radiotelegraph or radiotelephone alarm signal, as appropriate... transmission of an urgent cyclone warning. In this case the alarm signal may only be used by coast stations...

  14. 47 CFR 80.318 - Use of alarm signals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Use of alarm signals. 80.318 Section 80.318... § 80.318 Use of alarm signals. (a) The radiotelegraph or radiotelephone alarm signal, as appropriate... transmission of an urgent cyclone warning. In this case the alarm signal may only be used by coast stations...

  15. 47 CFR 80.318 - Use of alarm signals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Use of alarm signals. 80.318 Section 80.318... § 80.318 Use of alarm signals. (a) The radiotelegraph or radiotelephone alarm signal, as appropriate... transmission of an urgent cyclone warning. In this case the alarm signal may only be used by coast stations...

  16. Speech Alarms Pilot Study

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Moses, Haifa

    2016-01-01

    Speech alarms have been used extensively in aviation and included in International Building Codes (IBC) and National Fire Protection Association's (NFPA) Life Safety Code. However, they have not been implemented on space vehicles. Previous studies conducted at NASA JSC showed that speech alarms lead to faster identification and higher accuracy. This research evaluated updated speech and tone alerts in a laboratory environment and in the Human Exploration Research Analog (HERA) in a realistic setup.

  17. Guided-Wave Optical Biosensors

    PubMed Central

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  18. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM...

  19. 24 CFR 3280.208 - Smoke alarm requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Smoke alarm requirements. 3280.208... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.208 Smoke alarm requirements. (a) Labeling. Each smoke alarm required under paragraph (b) of this section must conform with the...

  20. 24 CFR 3280.208 - Smoke alarm requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Smoke alarm requirements. 3280.208... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.208 Smoke alarm requirements. (a) Labeling. Each smoke alarm required under paragraph (b) of this section must conform with the...

  1. 24 CFR 3280.208 - Smoke alarm requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Smoke alarm requirements. 3280.208... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.208 Smoke alarm requirements. (a) Labeling. Each smoke alarm required under paragraph (b) of this section must conform with the...

  2. 24 CFR 3280.208 - Smoke alarm requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Smoke alarm requirements. 3280.208... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.208 Smoke alarm requirements. Link to an amendment published at 78 FR 73982, Dec. 9, 2013. (a) Labeling. Each smoke alarm...

  3. 21 CFR 870.1100 - Blood pressure alarm.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood pressure alarm. 870.1100 Section 870.1100...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1100 Blood pressure alarm. (a) Identification. A blood pressure alarm is a device that accepts the signal from a blood pressure...

  4. 21 CFR 870.1100 - Blood pressure alarm.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood pressure alarm. 870.1100 Section 870.1100...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1100 Blood pressure alarm. (a) Identification. A blood pressure alarm is a device that accepts the signal from a blood pressure...

  5. 21 CFR 870.1100 - Blood pressure alarm.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood pressure alarm. 870.1100 Section 870.1100...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1100 Blood pressure alarm. (a) Identification. A blood pressure alarm is a device that accepts the signal from a blood pressure...

  6. 21 CFR 870.1100 - Blood pressure alarm.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood pressure alarm. 870.1100 Section 870.1100...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1100 Blood pressure alarm. (a) Identification. A blood pressure alarm is a device that accepts the signal from a blood pressure...

  7. Introduction to biosensors.

    PubMed

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Auditory backup alarms: distance-at-first-detection via in-situ experimentation on alarm design and hearing protection effects.

    PubMed

    Alali, Khaled; Casali, John G

    2012-01-01

    The purpose of this study was to assess normal hearing listeners' performance in detecting a stationary backup alarm signal and to quantify the linear distance at detection point. Detection distances for 12 participants with normal hearing were measured while they were fitted with 7 hearing protectors and while they were unoccluded (open ear). A standard (narrowband) backup alarm signal and a broadband (pulsed white noise) backup alarm signal from Brigade[1] were used. The method of limits, with distance as the physical measurement variable and threshold detection as the task, was employed to find at which distance the participant could first detect the backup alarms. A within-subject Analysis of Variance (ANOVA) revealed a significant main effect of the listening conditions on the detection distance in feet. Post hoc analyses indicated that the Bilsom L3HV conventional passive earmuff (at 1132.2 ft detection distance) was significantly poorer compared to all other HPDs and the open ear in detection distance achieved, and that there were no statistically-significant differences between the unoccluded ear (1652.3 ft), EB-15-Lo BlastPLGTM (1546.2 ft), EB-15-Hi BlastPLGTM (1543.4 ft), E-A-R/3M Combat ArmsTM earplug-nonlinear, level-dependent state (1507.8 ft), E-A-R/3M HiFiTM earplug (1497.7 ft), and Bilsom ImpactTM dichotic electronic earmuff (1567.2 ft). In addition, the E-A-R/3M Combat ArmsTM earplug-passive steady state resulted in significantly longer detection distances than only the open ear condition, at 1474.1 ft versus 1652.3 ft for the open ear. ANOVA also revealed a significant main effect of the backup alarm type on detection distance. The means were 1600.9 ft for the standard (narrowband) backup alarm signal, and a significantly closer 1379.4 ft was required for the Brigade broadband backup alarm signal. For on-ground workers, it is crucial to detect backup alarm signals as far away as possible rather than at close distances since this will provide them

  9. Biosensors-on-chip: a topical review

    NASA Astrophysics Data System (ADS)

    Chen, Sensen; Shamsi, Mohtashim H.

    2017-08-01

    This review will examine the integration of two fields that are currently at the forefront of science, i.e. biosensors and microfluidics. As a lab-on-a-chip (LOC) technology, microfluidics has been enriched by the integration of various detection tools for analyte detection and quantitation. The application of such microfluidic platforms is greatly increased in the area of biosensors geared towards point-of-care diagnostics. Together, the merger of microfluidics and biosensors has generated miniaturized devices for sample processing and sensitive detection with quantitation. We believe that microfluidic biosensors (biosensors-on-chip) are essential for developing robust and cost effective point-of-care diagnostics. This review is relevant to a variety of disciplines, such as medical science, clinical diagnostics, LOC technologies including MEMs/NEMs, and analytical science. Specifically, this review will appeal to scientists working in the two overlapping fields of biosensors and microfluidics, and will also help new scientists to find their directions in developing point-of-care devices.

  10. Biosensors in Clinical Practice: Focus on Oncohematology

    PubMed Central

    Fracchiolla, Nicola S.; Artuso, Silvia; Cortelezzi, Agostino

    2013-01-01

    Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice. PMID:23673681

  11. 46 CFR 153.409 - High level alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false High level alarms. 153.409 Section 153.409 Shipping... Systems § 153.409 High level alarms. When Table 1 refers to this section or requires a cargo to have a closed gauging system, the cargo's containment system must have a high level alarm: (a) That gives an...

  12. Interventions for promoting smoke alarm ownership and function.

    PubMed

    DiGuiseppi, C; Higgins, J P

    2001-01-01

    Residential fires caused at least 67 deaths and 2,500 non-fatal injuries to children aged 0-16 in the United Kingdom in 1998. Smoke alarm ownership is associated with a reduced risk of residential fire death. We evaluated interventions to promote residential smoke alarms, to assess their effect on smoke alarm ownership, smoke alarm function, fires and burns and other fire-related injuries. We searched the Cochrane Controlled Trials Register, Cochrane Injuries Group database, MEDLINE, EMBASE, PsycLIT, CINAHL, ERIC, Dissertation Abstracts, International Bibliography of Social Sciences, ISTP, FIREDOC and LRC. Conference proceedings, published case studies, and bibliographies were systematically searched, and investigators and relevant organisations were contacted, to identify trials. Randomised, quasi-randomised or nonrandomised controlled trials completed or published after 1969 evaluating an intervention to promote residential smoke alarms. Two reviewers independently extracted data and assessed trial quality. We identified 26 trials, of which 13 were randomised. Overall, counselling and educational interventions had only a modest effect on the likelihood of owning an alarm (OR=1.26; 95% CI: 0.87 to 1.82) or having a functional alarm (OR=1.19; 0.85 to 1.66). Counselling as part of primary care child health surveillance had greater effects on ownership (OR=1.96; 1.03 to 3.72) and function (OR=1.72; 0.78 to 3.80). Results were sensitive to trial quality, however, and effects on fire-related injuries were not reported. In two non randomised trials, direct provision of free alarms significantly increased functioning alarms and reduced fire-related injuries. Media and community education showed little benefit in non randomised trials. Counselling as part of child health surveillance may increase smoke alarm ownership and function, but its effects on injuries are unevaluated. Community smoke alarm give-away programmes apparently reduce fire-related injuries, but these

  13. A New Laccase Based Biosensor for Tartrazine.

    PubMed

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-12-09

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM ( R ² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  14. A New Laccase Based Biosensor for Tartrazine

    PubMed Central

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-01-01

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis. PMID:29232842

  15. Biosensor for metal analysis and speciation

    DOEpatents

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  16. Counting the cost of false alarms.

    PubMed

    2013-05-01

    While fire and rescue service personnel, the Government, those responsible for fire safety in the healthcare sector, the Health and Safety Executive, fire and rescue services, and indeed fire alarm and detection equipment manufacturers, must be pleased that the number of false fire alarms continues to fall, fire services still attended just under 585,000 fires or false alarm incidents across Great Britain in 2011/12. Of this total, 272,000 were actual fires, of which around 24,000 were in premises classified by the Department for Communities and Local Government (DCLG) as 'other buildings', i.e. not 'dwellings', a category that includes healthcare facilities (representing a 4% fall on 2010-2011). HEJ looks behind the statistics, and at the possibility that some fire services could, in future, charge healthcare providers that persistently report incidents that turn out to be false alarms.

  17. Electronic Biosensors Based on III-Nitride Semiconductors.

    PubMed

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  18. Display-And-Alarm Circuit For Accelerometer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.

  19. Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing.

    PubMed

    Buk, Vuslat; Emregul, Emel; Emregul, Kaan Cebesoy

    2017-05-01

    A novel amperometric glucose biosensor based on alginate-CuO nano-biocomposite and glucose oxidase (GOD) film was developed and characterized. The properties of the alginate-CuO-GOD film were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric measurements were employed to characterize the analytical performance of the biosensor. Several parameters including amount of alginate, concentration of GOD and cross-linkers, amount of CuO nanoparticles, and effect of pH were studied and optimized. Under optimal conditions, the developed alginate-CuO-GOD biosensor was shown to have two linear ranges; from 0.04mM to 3mM (with a correlation coefficient of 0.9996 and the sensitivity of 30.443μAmM -1 cm -2 ) and from 4mM to 35mM (with a correlation coefficient of 0.9994 and the sensitivity of 7.205μAmM -1 cm -2 ). The overall detection limit was estimated to be 1.6μM (signal-to-noise ratio of 3) and the K m value of 2.82mM. The biosensor exhibited rather good performance with long-term stability (remainder of activity is 78% after 15days) and significant specificity for glucose when compared to possible interfering molecules such as ascorbic acid, uric acid and acetaminophen. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. S-Layer Protein-Based Biosensors.

    PubMed

    Schuster, Bernhard

    2018-04-11

    The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  1. Epidermal 'alarm substance' cells of fishes maintained by non-alarm functions: possible defence against pathogens, parasites and UVB radiation.

    PubMed

    Chivers, Douglas P; Wisenden, Brian D; Hindman, Carrie J; Michalak, Tracy A; Kusch, Robin C; Kaminskyj, Susan G W; Jack, Kristin L; Ferrari, Maud C O; Pollock, Robyn J; Halbgewachs, Colin F; Pollock, Michael S; Alemadi, Shireen; James, Clayton T; Savaloja, Rachel K; Goater, Cameron P; Corwin, Amber; Mirza, Reehan S; Kiesecker, Joseph M; Brown, Grant E; Adrian, James C; Krone, Patrick H; Blaustein, Andrew R; Mathis, Alicia

    2007-10-22

    Many fishes possess specialized epidermal cells that are ruptured by the teeth of predators, thus reliably indicating the presence of an actively foraging predator. Understanding the evolution of these cells has intrigued evolutionary ecologists because the release of these alarm chemicals is not voluntary. Here, we show that predation pressure does not influence alarm cell production in fishes. Alarm cell production is stimulated by exposure to skin-penetrating pathogens (water moulds: Saprolegnia ferax and Saprolegnia parasitica), skin-penetrating parasites (larval trematodes: Teleorchis sp. and Uvulifer sp.) and correlated with exposure to UV radiation. Suppression of the immune system with environmentally relevant levels of Cd inhibits alarm cell production of fishes challenged with Saprolegnia. These data are the first evidence that alarm substance cells have an immune function against ubiquitous environmental challenges to epidermal integrity. Our results indicate that these specialized cells arose and are maintained by natural selection owing to selfish benefits unrelated to predator-prey interactions. Cell contents released when these cells are damaged in predator attacks have secondarily acquired an ecological role as alarm cues because selection favours receivers to detect and respond adaptively to public information about predation.

  2. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the control unit and terminating at manual fire alarm boxes. Power failure alarm devices may be... specifically approved. (b) Types. Manual fire alarm systems shall be one of the following types, or a... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The...

  3. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the control unit and terminating at manual fire alarm boxes. Power failure alarm devices may be... specifically approved. (b) Types. Manual fire alarm systems shall be one of the following types, or a... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The...

  4. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the control unit and terminating at manual fire alarm boxes. Power failure alarm devices may be... specifically approved. (b) Types. Manual fire alarm systems shall be one of the following types, or a... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The...

  5. Sounding the Alarm.

    ERIC Educational Resources Information Center

    Cordasco, Jerry M.

    2000-01-01

    Explains the use of alarms and other early-detection devices to effectively protect students in life-threatening fire situations. Ohio State University's multidiscipline approach to life safety is illustrated. (GR)

  6. Smart smoke alarm

    DOEpatents

    Warmack, Robert J. Bruce; Wolf, Dennis A; Frank, Steven Shane

    2015-04-28

    Methods and apparatus for smoke detection are disclosed. In one embodiment, a smoke detector uses linear discriminant analysis (LDA) to determine whether observed conditions indicate that an alarm is warranted.

  7. Detection of alprazolam with a lab on paper economical device integrated with urchin like Ag@ Pd shell nano-hybrids.

    PubMed

    Narang, Jagriti; Malhotra, Nitesh; Singhal, Chaitali; Mathur, Ashish; Pn, Anoop Krishna; Pundir, C S

    2017-11-01

    We present results of the studies relating to fabrication of a microfluidic biosensor chip based on urchin like Ag@ Pd shell nano-hybrids that is capable of sensing alprazolam through electrochemical detection. Using this chip we demonstrate, with high reliability and in a time efficient manner, the detection of alprazolam present in buffer solutions at clinically relevant concentrations. Methylene blue (MB) was also doped as redox transition substance for sensing alprazolam. Nano-hybrids modified EμPAD showed wide linear range 1-300ng/ml and low detection limit of 0.025ng/l. Low detection limit can further enhance its suitability for forensic application. Nano-hybrids modified EμPAD was also employed for determination of drug in real samples such as human urine. Reported facile lab paper approach integrated with urchin like Ag@ Pd shell nano-hybrids could be well applied for the determination of serum metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. 46 CFR 113.20-1 - Sprinkler alarm system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Sprinkler alarm system. 113.20-1 Section 113.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND... sprinkler alarm system, including annunciator, power supply, alarm switches, and bells, must meet Subpart 76...

  9. 46 CFR 113.20-1 - Sprinkler alarm system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Sprinkler alarm system. 113.20-1 Section 113.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND... sprinkler alarm system, including annunciator, power supply, alarm switches, and bells, must meet Subpart 76...

  10. 46 CFR 113.20-1 - Sprinkler alarm system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Sprinkler alarm system. 113.20-1 Section 113.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND... sprinkler alarm system, including annunciator, power supply, alarm switches, and bells, must meet Subpart 76...

  11. 46 CFR 113.20-1 - Sprinkler alarm system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Sprinkler alarm system. 113.20-1 Section 113.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND... sprinkler alarm system, including annunciator, power supply, alarm switches, and bells, must meet Subpart 76...

  12. 46 CFR 113.20-1 - Sprinkler alarm system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Sprinkler alarm system. 113.20-1 Section 113.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND... sprinkler alarm system, including annunciator, power supply, alarm switches, and bells, must meet Subpart 76...

  13. Progress of new label-free techniques for biosensors: a review.

    PubMed

    Sang, Shengbo; Wang, Yajun; Feng, Qiliang; Wei, Ye; Ji, Jianlong; Zhang, Wendong

    2016-01-01

    The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.

  14. Recent Trends in Biosensors

    NASA Astrophysics Data System (ADS)

    Karube, Isao

    The determination of organic compounds in foods is very important in food industries. A various compounds are contained in foods, selective determination methods are required for food processing and analysis. Electrochemical monitoring devices (biosensors) employing immobilized biocatalysts such as immobilized enzymes, organelles, microorganisms, and tissue have definite advantages. The enzyme Sensors consisted of immobilized enzymes and electrochemical devices. Enzyme sensors could be used for the determination of sugars, amino acids, organic acids, alcohols, lipids, nucleic acid derivatives, etc.. Furthermore, a multifunctional biosensor for the determination of several compounds has been developed for food processing. On the other hand, microbial sensors consisted of immobilized microorganisms and electrodes have been used for industrial and environmental analysis. Microbial sensors were applied for the determination of sugars, organic acids, alcohols, amino acids, mutagens, me thane, ammonia, and BOD. Furthermore, micro-biosensors using immobilized biocatalysts and ion sensitive field effect transistor or microelectrodes prepared by silicon fabrication technologies have been developed for medical ap. plication and food processing. This review summarizes the design and application of biosensors.

  15. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Placement of machinery alarms. 130.460 Section 130.460..., AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460 Placement of machinery alarms. (a) Visible and audible alarms must be installed at the pilothouse to indicate...

  16. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Placement of machinery alarms. 130.460 Section 130.460..., AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460 Placement of machinery alarms. (a) Visible and audible alarms must be installed at the pilothouse to indicate...

  17. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Placement of machinery alarms. 130.460 Section 130.460..., AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460 Placement of machinery alarms. (a) Visible and audible alarms must be installed at the pilothouse to indicate...

  18. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Placement of machinery alarms. 130.460 Section 130.460..., AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460 Placement of machinery alarms. (a) Visible and audible alarms must be installed at the pilothouse to indicate...

  19. 46 CFR 63.15-7 - Alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...

  20. 46 CFR 63.15-7 - Alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...

  1. 46 CFR 63.15-7 - Alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...

  2. 46 CFR 63.15-7 - Alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...

  3. 46 CFR 63.15-7 - Alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...

  4. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms. (a...

  5. Biosensoric potential of microbial fuel cells.

    PubMed

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.

  6. 46 CFR 108.623 - General alarm bell switch.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false General alarm bell switch. 108.623 Section 108.623... AND EQUIPMENT Equipment Markings and Instructions § 108.623 General alarm bell switch. Each general alarm bell switch must be marked “GENERAL ALARM” on a plate or other firm noncorrosive backing. ...

  7. 46 CFR 108.623 - General alarm bell switch.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false General alarm bell switch. 108.623 Section 108.623... AND EQUIPMENT Equipment Markings and Instructions § 108.623 General alarm bell switch. Each general alarm bell switch must be marked “GENERAL ALARM” on a plate or other firm noncorrosive backing. ...

  8. 46 CFR 108.623 - General alarm bell switch.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false General alarm bell switch. 108.623 Section 108.623... AND EQUIPMENT Equipment Markings and Instructions § 108.623 General alarm bell switch. Each general alarm bell switch must be marked “GENERAL ALARM” on a plate or other firm noncorrosive backing. ...

  9. 46 CFR 108.623 - General alarm bell switch.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false General alarm bell switch. 108.623 Section 108.623... AND EQUIPMENT Equipment Markings and Instructions § 108.623 General alarm bell switch. Each general alarm bell switch must be marked “GENERAL ALARM” on a plate or other firm noncorrosive backing. ...

  10. 46 CFR 108.623 - General alarm bell switch.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false General alarm bell switch. 108.623 Section 108.623... AND EQUIPMENT Equipment Markings and Instructions § 108.623 General alarm bell switch. Each general alarm bell switch must be marked “GENERAL ALARM” on a plate or other firm noncorrosive backing. ...

  11. Patient characteristics associated with false arrhythmia alarms in intensive care

    PubMed Central

    Harris, Patricia R; Zègre-Hemsey, Jessica K; Schindler, Daniel; Bai, Yong; Pelter, Michele M; Hu, Xiao

    2017-01-01

    Introduction A high rate of false arrhythmia alarms in the intensive care unit (ICU) leads to alarm fatigue, the condition of desensitization and potentially inappropriate silencing of alarms due to frequent invalid and nonactionable alarms, often referred to as false alarms. Objective The aim of this study was to identify patient characteristics, such as gender, age, body mass index, and diagnosis associated with frequent false arrhythmia alarms in the ICU. Methods This descriptive, observational study prospectively enrolled patients who were consecutively admitted to one of five adult ICUs (77 beds) at an urban medical center over a period of 31 days in 2013. All monitor alarms and continuous waveforms were stored on a secure server. Nurse scientists with expertise in cardiac monitoring used a standardized protocol to annotate six clinically important types of arrhythmia alarms (asystole, pause, ventricular fibrillation, ventricular tachycardia, accelerated ventricular rhythm, and ventricular bradycardia) as true or false. Total monitoring time for each patient was measured, and the number of false alarms per hour was calculated for these six alarm types. Medical records were examined to acquire data on patient characteristics. Results A total of 461 unique patients (mean age =60±17 years) were enrolled, generating a total of 2,558,760 alarms, including all levels of arrhythmia, parameter, and technical alarms. There were 48,404 hours of patient monitoring time, and an average overall alarm rate of 52 alarms/hour. Investigators annotated 12,671 arrhythmia alarms; 11,345 (89.5%) were determined to be false. Two hundred and fifty patients (54%) generated at least one of the six annotated alarm types. Two patients generated 6,940 arrhythmia alarms (55%). The number of false alarms per monitored hour for patients’ annotated arrhythmia alarms ranged from 0.0 to 7.7, and the duration of these false alarms per hour ranged from 0.0 to 158.8 seconds. Patient

  12. Patient characteristics associated with false arrhythmia alarms in intensive care.

    PubMed

    Harris, Patricia R; Zègre-Hemsey, Jessica K; Schindler, Daniel; Bai, Yong; Pelter, Michele M; Hu, Xiao

    2017-01-01

    A high rate of false arrhythmia alarms in the intensive care unit (ICU) leads to alarm fatigue, the condition of desensitization and potentially inappropriate silencing of alarms due to frequent invalid and nonactionable alarms, often referred to as false alarms. The aim of this study was to identify patient characteristics, such as gender, age, body mass index, and diagnosis associated with frequent false arrhythmia alarms in the ICU. This descriptive, observational study prospectively enrolled patients who were consecutively admitted to one of five adult ICUs (77 beds) at an urban medical center over a period of 31 days in 2013. All monitor alarms and continuous waveforms were stored on a secure server. Nurse scientists with expertise in cardiac monitoring used a standardized protocol to annotate six clinically important types of arrhythmia alarms (asystole, pause, ventricular fibrillation, ventricular tachycardia, accelerated ventricular rhythm, and ventricular bradycardia) as true or false. Total monitoring time for each patient was measured, and the number of false alarms per hour was calculated for these six alarm types. Medical records were examined to acquire data on patient characteristics. A total of 461 unique patients (mean age =60±17 years) were enrolled, generating a total of 2,558,760 alarms, including all levels of arrhythmia, parameter, and technical alarms. There were 48,404 hours of patient monitoring time, and an average overall alarm rate of 52 alarms/hour. Investigators annotated 12,671 arrhythmia alarms; 11,345 (89.5%) were determined to be false. Two hundred and fifty patients (54%) generated at least one of the six annotated alarm types. Two patients generated 6,940 arrhythmia alarms (55%). The number of false alarms per monitored hour for patients' annotated arrhythmia alarms ranged from 0.0 to 7.7, and the duration of these false alarms per hour ranged from 0.0 to 158.8 seconds. Patient characteristics were compared in relation to 1) the

  13. Current Trends in Nanomaterial-Based Amperometric Biosensors

    PubMed Central

    Hayat, Akhtar; Catanante, Gaëlle; Marty, Jean Louis

    2014-01-01

    The last decade has witnessed an intensive research effort in the field of electrochemical sensors, with a particular focus on the design of amperometric biosensors for diverse analytical applications. In this context, nanomaterial integration in the construction of amperometric biosensors may constitute one of the most exciting approaches. The attractive properties of nanomaterials have paved the way for the design of a wide variety of biosensors based on various electrochemical detection methods to enhance the analytical characteristics. However, most of these nanostructured materials are not explored in the design of amperometric biosensors. This review aims to provide insight into the diverse properties of nanomaterials that can be possibly explored in the construction of amperometric biosensors. PMID:25494347

  14. 21 CFR 876.2040 - Enuresis alarm.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enuresis alarm. 876.2040 Section 876.2040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Monitoring Devices § 876.2040 Enuresis alarm. (a) Identification. An enuresis...

  15. 33 CFR 127.1207 - Warning alarms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Warning alarms. 127.1207 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1207 Warning alarms. (a) Each marine... the local COTP additional or alternative warning devices that provide an equivalent level of safety...

  16. 33 CFR 127.1207 - Warning alarms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Warning alarms. 127.1207 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1207 Warning alarms. (a) Each marine... the local COTP additional or alternative warning devices that provide an equivalent level of safety...

  17. 33 CFR 127.1207 - Warning alarms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Warning alarms. 127.1207 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1207 Warning alarms. (a) Each marine... the local COTP additional or alternative warning devices that provide an equivalent level of safety...

  18. 33 CFR 127.1207 - Warning alarms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Warning alarms. 127.1207 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1207 Warning alarms. (a) Each marine... the local COTP additional or alternative warning devices that provide an equivalent level of safety...

  19. 33 CFR 127.1207 - Warning alarms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Warning alarms. 127.1207 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1207 Warning alarms. (a) Each marine... the local COTP additional or alternative warning devices that provide an equivalent level of safety...

  20. 46 CFR 193.15-30 - Alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Alarms. 193.15-30 Section 193.15-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon..., and the alarm shall depend on no source of power other than the carbon dioxide. ...

  1. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics

    PubMed Central

    Gui, Qingyuan; Lawson, Tom; Shan, Suyan; Yan, Lu; Liu, Yong

    2017-01-01

    Various whole cell-based biosensors have been reported in the literature for the last 20 years and these reports have shown great potential for their use in the areas of pollution detection in environmental and in biomedical diagnostics. Unlike other reviews of this growing field, this mini-review argues that: (1) the selection of reporter genes and their regulatory proteins are directly linked to the performance of celllular biosensors; (2) broad enhancements in microelectronics and information technologies have also led to improvements in the performance of these sensors; (3) their future potential is most apparent in their use in the areas of medical diagnostics and in environmental monitoring; and (4) currently the most promising work is focused on the better integration of cellular sensors with nano and micro scaled integrated chips. With better integration it may become practical to see these cells used as (5) real-time portable devices for diagnostics at the bedside and for remote environmental toxin detection and this in situ application will make the technology commonplace and thus as unremarkable as other ubiquitous technologies. PMID:28703749

  2. Development of electrochemical biosensors with various types of zeolites

    NASA Astrophysics Data System (ADS)

    Soldatkina, O. V.; Kucherenko, I. S.; Soldatkin, O. O.; Pyeshkova, V. M.; Dudchenko, O. Y.; Akata Kurç, B.; Dzyadevych, S. V.

    2018-03-01

    In the work, different types of zeolites were used for the development of enzyme-based electrochemical biosensors. Zeolites were added to the biorecognition elements of the biosensors and served as additional components of the biomembranes or adsorbents for enzymes. Three types of biosensors (conductometric, amperometric and potentiometric) were studied. The developed biosensors were compared with the similar biosensors without zeolites. The biosensors contained the following enzymes: urease, glucose oxidase, glutamate oxidase, and acetylcholinesterase and were intended for the detection of urea, glucose, glutamate, and acetylcholine, respectively. Construction of the biosensors using the adsorption of enzymes on zeolites has several advantages: simplicity, good reproducibility, quickness, absence of toxic compounds. These benefits are particularly important for the standardization and further mass production of the biosensors. Furthermore, a biosensor for the sucrose determination contained a three-enzyme system (invertase/mutatorase/glucose oxidase), immobilized by a combination of adsorption on silicalite and cross-linking via glutaraldehyde; such combined immobilization demonstrated better results as compared with adsorption or cross-linking separately. The analysis of urea and sucrose concentrations in the real samples was carried out. The results, obtained with biosensors, had high correlation with the results of traditional analytical methods, thus the developed biosensors are promising for practical applications.

  3. 46 CFR 169.730 - General alarm bell switch.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false General alarm bell switch. 169.730 Section 169.730... Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.730 General alarm bell switch. On vessels of 100 gross tons and over there must be a general alarm bell switch in the pilothouse, clearly...

  4. 46 CFR 169.730 - General alarm bell switch.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false General alarm bell switch. 169.730 Section 169.730... Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.730 General alarm bell switch. On vessels of 100 gross tons and over there must be a general alarm bell switch in the pilothouse, clearly...

  5. 46 CFR 169.730 - General alarm bell switch.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false General alarm bell switch. 169.730 Section 169.730... Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.730 General alarm bell switch. On vessels of 100 gross tons and over there must be a general alarm bell switch in the pilothouse, clearly...

  6. 46 CFR 169.730 - General alarm bell switch.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false General alarm bell switch. 169.730 Section 169.730... Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.730 General alarm bell switch. On vessels of 100 gross tons and over there must be a general alarm bell switch in the pilothouse, clearly...

  7. 46 CFR 169.730 - General alarm bell switch.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false General alarm bell switch. 169.730 Section 169.730... Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.730 General alarm bell switch. On vessels of 100 gross tons and over there must be a general alarm bell switch in the pilothouse, clearly...

  8. Stand-alone tsunami alarm equipment

    NASA Astrophysics Data System (ADS)

    Katsumata, Akio; Hayashi, Yutaka; Miyaoka, Kazuki; Tsushima, Hiroaki; Baba, Toshitaka; Catalán, Patricio A.; Zelaya, Cecilia; Riquelme Vasquez, Felipe; Sanchez-Olavarria, Rodrigo; Barrientos, Sergio

    2017-05-01

    One of the quickest means of tsunami evacuation is transfer to higher ground soon after strong and long ground shaking. Ground shaking itself is a good initiator of the evacuation from disastrous tsunami. Longer period seismic waves are considered to be more correlated with the earthquake magnitude. We investigated the possible application of this to tsunami hazard alarm using single-site ground motion observation. Information from the mass media is sometimes unavailable due to power failure soon after a large earthquake. Even when an official alarm is available, multiple information sources of tsunami alert would help people become aware of the coming risk of a tsunami. Thus, a device that indicates risk of a tsunami without requiring other data would be helpful to those who should evacuate. Since the sensitivity of a low-cost MEMS (microelectromechanical systems) accelerometer is sufficient for this purpose, tsunami alarm equipment for home use may be easily realized. Amplitude of long-period (20 s cutoff) displacement was proposed as the threshold for the alarm based on empirical relationships among magnitude, tsunami height, hypocentral distance, and peak ground displacement of seismic waves. Application of this method to recent major earthquakes indicated that such equipment could effectively alert people to the possibility of tsunami.

  9. Current status of water environment and their microbial biosensor techniques - Part II: Recent trends in microbial biosensor development.

    PubMed

    Nakamura, Hideaki

    2018-05-08

    In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.

  10. Triggered optical biosensor

    DOEpatents

    Song, Xuedong; Swanson, Basil I.

    2001-10-02

    An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.

  11. 46 CFR 78.47-75 - Ventilation alarm failure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ventilation alarm failure. 78.47-75 Section 78.47-75... Fire and Emergency Equipment, Etc. § 78.47-75 Ventilation alarm failure. (a) The alarm required by § 72... FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15284, Dec. 6, 1966] ...

  12. 46 CFR 78.47-75 - Ventilation alarm failure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ventilation alarm failure. 78.47-75 Section 78.47-75... Fire and Emergency Equipment, Etc. § 78.47-75 Ventilation alarm failure. (a) The alarm required by § 72... FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15284, Dec. 6, 1966] ...

  13. 46 CFR 78.47-75 - Ventilation alarm failure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation alarm failure. 78.47-75 Section 78.47-75... Fire and Emergency Equipment, Etc. § 78.47-75 Ventilation alarm failure. (a) The alarm required by § 72... FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15284, Dec. 6, 1966] ...

  14. 46 CFR 78.47-75 - Ventilation alarm failure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ventilation alarm failure. 78.47-75 Section 78.47-75... Fire and Emergency Equipment, Etc. § 78.47-75 Ventilation alarm failure. (a) The alarm required by § 72... FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15284, Dec. 6, 1966] ...

  15. 46 CFR 78.47-75 - Ventilation alarm failure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ventilation alarm failure. 78.47-75 Section 78.47-75... Fire and Emergency Equipment, Etc. § 78.47-75 Ventilation alarm failure. (a) The alarm required by § 72... FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15284, Dec. 6, 1966] ...

  16. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Mao, Xun; Gurung, Anant

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  17. Randomized controlled trial of ionization and photoelectric smoke alarm functionality.

    PubMed

    Mueller, B A; Sidman, E A; Alter, H; Perkins, R; Grossman, D C

    2008-04-01

    To compare functionality, reasons for non-function, and nuisance alarm levels of two common types of smoke alarms after installation in low- to mid-level income households in King County, Washington. Randomized controlled trial of 761 households. An ionization or photoelectric smoke alarm was installed between June 1, 2000 and July 31, 2002. Main outcome measures were: percentage of study alarms that were working, observed reasons for non-functional status, and self-reported frequency of nuisance alarms at 9 and 15 months of follow-up. At 9 months after installation, 20% of ionization, vs 5% of photoelectric alarms were non-functional, a difference that persisted at 15 months, with the most common reasons for both types being a disconnected or absent battery. The risk ratio for ionization, relative to photoelectric alarms, being non-functional or removed was 2.7 (95% CI 1.8 to 4.1) at 15 months of follow-up. These findings were not altered by educational level, or the presence of smokers, children <5 years, or adults > or =65 years. Burn prevention efforts are geared towards increasing smoke alarm ownership and improving maintenance of functional status. Results suggest that the selective use of photoelectric alarms by fire injury prevention programs or consumers may provide longer-term protection in similar populations. Designing smoke alarms that minimize nuisance alarming may also result in longer term functionality.

  18. Synthetic Electric Microbial Biosensors

    DTIC Science & Technology

    2017-06-10

    In particular, monitoring of heavy metals in the environment, drinking water, food , and biological fluids is of interest. Conventional techniques...instances of contamination , and the potential for deliberate spills, interest has grown in portable devices for onsite long-term detection using sensor...biosensor systems for the online detection of a range of contaminants . Synthetic Biology and biosensors Synthetic biology has gained much interest

  19. Evaluation of fire-safety programs that use 10-year smoke alarms.

    PubMed

    Jackson, Mark; Wilson, Jonathan; Akoto, Judith; Dixon, Sherry; Jacobs, David E; Ballesteros, Michael F

    2010-10-01

    The Centers for Disease Control and Prevention began funding a Smoke Alarm Installation and Fire Safety Education (SAIFE) program in 1998. This program involves the installation of lithium-powered "10-year" smoke alarms in homes at high risk for fires and injuries. This study aimed to (1) determine among original SAIFE homes if the lithium-powered alarms were still present and functional 8-10 years after installation and (2) understand factors related to smoke alarm presence and functionality. Data on a total of 384 homes and 601 smoke alarms in five states were collected and analyzed. Only one-third of alarms were still functional; 37% of installed alarms were missing; and 30% of alarms were present, but not functioning. Alarms were less likely to be functioning if they were installed in the kitchen and if homes had a different resident at follow-up. Of the 351 alarms that were present and had a battery at the time of the evaluation, only 21% contained lithium-powered batteries. Of these, 78% were still functioning. Programs that install lithium-powered alarms should use units that have sealed-in batteries and "hush" buttons. Additionally, education should be given on smoke alarm maintenance that includes a message that batteries in these alarms should not be replaced. Lithium-powered smoke alarms should last up to 10 years if maintained properly.

  20. 46 CFR 95.15-30 - Alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Dioxide Extinguishing Systems, Details § 95.15-30 Alarms. (a) Spaces which are protected by a carbon... audible alarm in such spaces which will be automatically sounded when the carbon dioxide is admitted to... sound during the 20 second delay period prior to the discharge of carbon dioxide into the space, and the...

  1. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN...

  2. 46 CFR 119.530 - Bilge high level alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bilge high level alarms. 119.530 Section 119.530... Bilge and Ballast Systems § 119.530 Bilge high level alarms. (a) Each vessel must be provided with a visual and audible alarm at the operating station to indicate a high water level in each of the following...

  3. Genetically Encoded Biosensors in Plants: Pathways to Discovery.

    PubMed

    Walia, Ankit; Waadt, Rainer; Jones, Alexander M

    2018-04-29

    Genetically encoded biosensors that directly interact with a molecule of interest were first introduced more than 20 years ago with fusion proteins that served as fluorescent indicators for calcium ions. Since then, the technology has matured into a diverse array of biosensors that have been deployed to improve our spatiotemporal understanding of molecules whose dynamics have profound influence on plant physiology and development. In this review, we address several types of biosensors with a focus on genetically encoded calcium indicators, which are now the most diverse and advanced group of biosensors. We then consider the discoveries in plant biology made by using biosensors for calcium, pH, reactive oxygen species, redox conditions, primary metabolites, phytohormones, and nutrients. These discoveries were dependent on the engineering, characterization, and optimization required to develop a successful biosensor; they were also dependent on the methodological developments required to express, detect, and analyze the readout of such biosensors.

  4. Yeast-based biosensors: design and applications.

    PubMed

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. Recent Development in Optical Fiber Biosensors

    PubMed Central

    Bosch, María Espinosa; Sánchez, Antonio Jesús Ruiz; Rojas, Fuensanta Sánchez; Ojeda, Catalina Bosch

    2007-01-01

    Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  6. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  7. Single bead-based electrochemical biosensor.

    PubMed

    Liu, Changchun; Schrlau, Michael G; Bau, Haim H

    2009-12-15

    A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor's working electrode consists of an electrochemically etched platinum wire, with a nominal diameter of 25 microm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H(2)O(2) concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor's response increased linearly as the H(2)O(2) concentration increased in the range from 1 x 10(-6) to 1.2 x10(-4)M with a detection limit of 5 x 10(-7)M. The SA-BMP was able to detect the amplicons of 1pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms.

  8. Application of the PageRank Algorithm to Alarm Graphs

    NASA Astrophysics Data System (ADS)

    Treinen, James J.; Thurimella, Ramakrishna

    The task of separating genuine attacks from false alarms in large intrusion detection infrastructures is extremely difficult. The number of alarms received in such environments can easily enter into the millions of alerts per day. The overwhelming noise created by these alarms can cause genuine attacks to go unnoticed. As means of highlighting these attacks, we introduce a host ranking technique utilizing Alarm Graphs. Rather than enumerate all potential attack paths as in Attack Graphs, we build and analyze graphs based on the alarms generated by the intrusion detection sensors installed on a network. Given that the alarms are predominantly false positives, the challenge is to identify, separate, and ideally predict future attacks. In this paper, we propose a novel approach to tackle this problem based on the PageRank algorithm. By elevating the rank of known attackers and victims we are able to observe the effect that these hosts have on the other nodes in the Alarm Graph. Using this information we are able to discover previously overlooked attacks, as well as defend against future intrusions.

  9. Onsite Portable Alarm System - Its Merit and Application

    NASA Astrophysics Data System (ADS)

    Saita, J.; Sato, T.; Nakamura, Y.

    2007-12-01

    Recently an existence of the earthquake early warning system (EEWS) becomes popular. In general, the EEWS will be installed in a fixed observation site and it may consist of several separated components such as a sensing portion, A/D converter, an information processing potion and so on. The processed information for warning may be transmitted to network via fixed communication line, and therefore this kind of alarm system is called as Network Alarm System. On the other hand, after the severe earthquake damage, it is very important to save the disaster victims immediately. These rescue staffs are also under the risk of aftershocks and need a local alarm not depending on the network, so this kind of alarm can be called as Onsite Alarm. But the common early warning system is too complex to set onsite temporary, and even if possible to install, the alarm is too late to receive at the epicentral area. However, the new generation earthquake early warning system FREQL can issue the P wave alarm by minimum 0.2 seconds after P wave detection. And FREQL is characterized as the unique all-in-one seismometer with power unit. At the time of the 2004 Niigata-Ken-Chuetsu earthquake, a land slide attacked a car just passing. A hyper rescue team of Tokyo Fire Department pulled the survivor, one baby, from the land slide area. During their activity the rescue team was exposed to the risk of secondary hazards caused by the aftershocks. It was clear that it is necessary to use a portable warning system to issue the onsite P wave alarm. Because FREQL was originally developed as portable equipment, Tokyo Fire Department asked us to modify it to the portable equipment with the loud sound and the light signal. In this moment, this portable FREQL has equipped in nation wide. When the hyper rescue team of Tokyo Fire Department was sent to Pakistan as a task force for rescue work of the 2005 Pakistan earthquake, the portable FREQL was used as important onsite portable warning system and P

  10. 46 CFR 78.47-7 - General alarm bells.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false General alarm bells. 78.47-7 Section 78.47-7 Shipping... and Emergency Equipment, Etc. § 78.47-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR STATION.” (b...

  11. Development of biosensors based on the one-dimensional semiconductor nanomaterials.

    PubMed

    Yan, Shancheng; Shi, Yi; Xiao, Zhongdang; Zhou, Minmin; Yan, Wenfu; Shen, Haoliang; Hu, Dong

    2012-09-01

    Biosensors are becoming increasingly important due to their applications in biological and chemical analyses, food safety industry, biomedical diagnostics, clinical detection, and environmental monitoring. Recent years, nanostructured semiconductor materials have been used to fabricate biosensors owing to their biocompatibility, low toxicity, high electron mobility, and easy fabrication. In the present study, we focus on recent various biosensors based on the one-dimensional semiconductor nanomaterials such as electrochemical biosensor, field-effect transistors biosensor, and label-free optical biosensor. In particular, the development of the electrochemical biosensor is discussed detailedly.

  12. Adjustable electronic load-alarm relay

    DOEpatents

    Mason, Charles H.; Sitton, Roy S.

    1976-01-01

    This invention is an improved electronic alarm relay for monitoring the current drawn by an AC motor or other electrical load. The circuit is designed to measure the load with high accuracy and to have excellent alarm repeatability. Chattering and arcing of the relay contacts are minimal. The operator can adjust the set point easily and can re-set both the high and the low alarm points by means of one simple adjustment. The relay includes means for generating a signal voltage proportional to the motor current. In a preferred form of the invention a first operational amplifier is provided to generate a first constant reference voltage which is higher than a preselected value of the signal voltage. A second operational amplifier is provided to generate a second constant reference voltage which is lower than the aforementioned preselected value of the signal voltage. A circuit comprising a first resistor serially connected to a second resistor is connected across the outputs of the first and second amplifiers, and the junction of the two resistors is connected to the inverting terminal of the second amplifier. Means are provided to compare the aforementioned signal voltage with both the first and second reference voltages and to actuate an alarm if the signal voltage is higher than the first reference voltage or lower than the second reference voltage.

  13. Synthetic biology for microbial heavy metal biosensors.

    PubMed

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  14. Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling

    PubMed Central

    Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid

    2014-01-01

    Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816

  15. Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde.

    PubMed

    Akshath, Uchangi Satyaprasad; Bhatt, Praveena

    2018-02-15

    Supramolecular nanoparticle hybrids for biosensing of analytes have been a major focus due to their tunable optical and surface properties. Quantum dots-Gold nanoparticle (QDs-GNP) based FRET probes involving turn on/off principles have gained immense interest due to their specificity and sensitivity. Recent focus is on applying these supramolecular hybrids for enzyme operated biosensors that can specifically turn-on fluorescence induced by co-factor or product formed from enzymatic reaction. The present study focuses on locking and unlocking the interaction between QD-GNP pair leading to differential fluorescent properties. Cationic GNPs efficiently quenched the anionic QD fluorescence by forming nanoparticle hybrid. Quenching interaction between QD-GNP pair was unlocked by NADH leading to QD fluorescence turn-on. This phenomenon was applied for the successful detection of formaldehyde using NAD + dependent formaldehyde dehydrogenase. The proposed nano-sniffer could successfully detect formaldehyde from 0.001 to 100000ng/mL (R 2 = 0.9339) by the turn off-turn on principle. It could also detect formaldehyde in fruit juice and wine samples indicating its stability and sensitivity in real samples. The proposed nanoprobe can have wide applications in developing enzyme biosensors in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level

    PubMed Central

    Esteban-Fernández de Ávila, B.; Yáñez-Sedeño, P.

    2017-01-01

    A perspective review of recent strategies involving the use of nano/microvehicles to address the key challenges associated with delivery and (bio)sensing at the cellular level is presented. The main types and characteristics of the different nano/microvehicles used for these cellular applications are discussed, including fabrication pathways, propulsion (catalytic, magnetic, acoustic or biological) and navigation strategies, and relevant parameters affecting their propulsion performance and sensing and delivery capabilities. Thereafter, selected applications are critically discussed. An emphasis is made on enhancing the extra- and intra-cellular biosensing capabilities, fast cell internalization, rapid inter- or intra-cellular movement, efficient payload delivery and targeted on-demand controlled release in order to greatly improve the monitoring and modulation of cellular processes. A critical discussion of selected breakthrough applications illustrates how these smart multifunctional nano/microdevices operate as nano/microcarriers and sensors at the intra- and extra-cellular levels. These advances allow both the real-time biosensing of relevant targets and processes even at a single cell level, and the delivery of different cargoes (drugs, functional proteins, oligonucleotides and cells) for therapeutics, gene silencing/transfection and assisted fertilization, while overcoming challenges faced by current affinity biosensors and delivery vehicles. Key challenges for the future and the envisioned opportunities and future perspectives of this remarkably exciting field are discussed. PMID:29147499

  17. BIOSENSORS

    EPA Science Inventory

    It has recently been proposed under the International Union of Pure and Applied Chemistry (IUPAC) Commission that biosensors be regarded as a subgroup of chemical sensors in which a biologically based mechanism is used for detection of the analyte. hemical sensors are defined und...

  18. A creatinine biosensor based on admittance measurement

    NASA Astrophysics Data System (ADS)

    Ching, Congo Tak-Shing; Sun, Tai-Ping; Jheng, Deng-Yun; Tsai, Hou-Wei; Shieh, Hsiu-Li

    2015-08-01

    Regular check of blood creatinine level is very important as it is a measurement of renal function. Therefore, the objective of this study is to develop a simple and reliable creatinine biosensor based on admittance measurement for precise determination of creatinine. The creatinine biosensor was fabricated with creatinine deiminase immobilized on screen-printed carbon electrodes. Admittance measurement at a specific frequency ranges (22.80 - 84.71 Hz) showed that the biosensor has an excellent linear (r2 > 0.95) response range (50 - 250 uM), which covers the normal physiological and pathological ranges of blood creatinine levels. Intraclass correlation coefficient (ICC) showed that the biosensor has excellent reliability and validity (ICC = 0.98). In conclusion, a simple and reliable creatinine biosensor was developed and it is capable of precisely determining blood creatinine levels in both the normal physiological and pathological ranges.

  19. Functionalized xenon as a biosensor

    PubMed Central

    Spence, Megan M.; Rubin, Seth M.; Dimitrov, Ivan E.; Ruiz, E. Janette; Wemmer, David E.; Pines, Alexander; Yao, Shao Qin; Tian, Feng; Schultz, Peter G.

    2001-01-01

    The detection of biological molecules and their interactions is a significant component of modern biomedical research. In current biosensor technologies, simultaneous detection is limited to a small number of analytes by the spectral overlap of their signals. We have developed an NMR-based xenon biosensor that capitalizes on the enhanced signal-to-noise, spectral simplicity, and chemical-shift sensitivity of laser-polarized xenon to detect specific biomolecules at the level of tens of nanomoles. We present results using xenon “functionalized” by a biotin-modified supramolecular cage to detect biotin–avidin binding. This biosensor methodology can be extended to a multiplexing assay for multiple analytes. PMID:11535830

  20. 46 CFR 113.27-1 - Engineers' assistance-needed alarm.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Engineers' assistance-needed alarm. 113.27-1 Section 113.27-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engineers' Assistance-Needed Alarm § 113.27-1 Engineers...

  1. 46 CFR 113.27-1 - Engineers' assistance-needed alarm.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Engineers' assistance-needed alarm. 113.27-1 Section 113.27-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engineers' Assistance-Needed Alarm § 113.27-1 Engineers...

  2. 46 CFR 113.27-1 - Engineers' assistance-needed alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engineers' assistance-needed alarm. 113.27-1 Section 113.27-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engineers' Assistance-Needed Alarm § 113.27-1 Engineers...

  3. 46 CFR 113.27-1 - Engineers' assistance-needed alarm.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Engineers' assistance-needed alarm. 113.27-1 Section 113.27-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engineers' Assistance-Needed Alarm § 113.27-1 Engineers...

  4. 46 CFR 113.27-1 - Engineers' assistance-needed alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Engineers' assistance-needed alarm. 113.27-1 Section 113.27-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engineers' Assistance-Needed Alarm § 113.27-1 Engineers...

  5. The impact of recent changes in smoke alarm legislation on residential fire injuries and smoke alarm ownership in New South Wales, Australia.

    PubMed

    Harvey, Lara A; Poulos, Roslyn G; Sherker, Shauna

    2013-01-01

    In 2006, New South Wales (NSW) state legislation changed from requiring smoke alarms in new houses only to all houses. We evaluated the impact of this legislative change on residential fire injury and smoke alarm ownership characteristics. Residential fire injuries for 2002 to 2010 were identified from hospitalization data for all hospitals in NSW. Data relating to smoke alarm ownership and demographic factors were obtained from the NSW Population Health Survey. Negative binomial regression analysis was used to analyze trends over time. Prior to the introduction of universal legislation, hospitalization rates were increasing slightly; however, following the introduction of legislation, hospitalization rates decreased by an estimated 36.2% (95% confidence interval [CI], 16.7-55.8) annually. Smoke alarm ownership increased from 73.3% (95% CI, 72.5-74.2) prelegislation to 93.6% (95% CI, 93.1-94.2) 18 months postlegislation. Thirty percent of households reported testing their alarms regularly. Speaking a language other than English (relative risks [RRs], 1.82; 95% CI, 1.44-2.99), allowing smoking in the home (RR, 1.73; 95% CI, 1.31-2.27), and being part of the most disadvantaged socioeconomic group (RR, 1.47; 95% CI, 1.14-1.91) remain major risk factors for nonownership. Broadening the scope of state legislation has had a positive impact on residential fire-related hospitalizations and smoke alarm ownership. However, it is of concern that the legislation has been the least effective in increasing smoke alarm ownership among non-English-speaking households, in households where smoking is allowed, in low socioeconomic households, and that a high proportion of householders do not test their smoke alarms regularly. Targeted campaigns are needed to reach these high-risk groups and to ensure that smoke alarms are functional.

  6. Do aphid colonies amplify their emission of alarm pheromone?

    PubMed

    Hatano, Eduardo; Kunert, Grit; Bartram, Stefan; Boland, Wilhelm; Gershenzon, Jonathan; Weisser, Wolfgang W

    2008-09-01

    When aphids are attacked by natural enemies, they emit alarm pheromone to alert conspecifics. For most aphids tested, (E)-beta-farnesene (EBF) is the main, or only, constituent of the alarm pheromone. In response to alarm pheromone, alerted aphids drop off the plant, walk away, or attempt to elude predators. However, under natural conditions, EBF concentration might be low due to the low amounts emitted, to rapid air movement, or to oxidative degradation. To ensure that conspecifics are warned, aphids might conceivably amplify the alarm signal by emitting EBF in response to EBF emitted by other aphids. To examine whether such amplification occurs, we synthesized deuterated EBF (DEBF), which allowed us to differentiate between applied and aphid-derived chemical. Colonies of Acyrthosiphon pisum were treated with DEBF, and headspace volatiles were collected and analyzed for evidence of aphid-derived EBF. No aphid-derived EBF was detected, suggesting that amplification of the alarm signal does not occur. We discuss the disadvantages of alarm signal reinforcement.

  7. Affinity Biosensors for Detection of Mycotoxins in Food.

    PubMed

    Evtugyn, Gennady; Subjakova, Veronika; Melikishvili, Sopio; Hianik, Tibor

    2018-01-01

    This chapter reviews recent achievements in methods of detection of mycotoxins in food. Special focus is on the biosensor technology that utilizes antibodies and nucleic acid aptamers as receptors. Development of biosensors is based on the immobilization of antibodies or aptamers onto various conventional supports like gold layer, but also on nanomaterials such as graphene oxide, carbon nanotubes, and quantum dots that provide an effective platform for achieving high sensitivity of detection using various physical methods, including electrochemical, mass sensitive, and optical. The biosensors developed so far demonstrate high sensitivity typically in subnanomolar limit of detection. Several biosensors have been validated in real samples. The sensitivity of biosensors is similar and, in some cases, even better than traditional analytical methods such as ELISA or chromatography. We believe that future trends will be focused on improving biosensor properties toward practical application in food industry. © 2018 Elsevier Inc. All rights reserved.

  8. Protein Detection with Aptamer Biosensors

    PubMed Central

    Strehlitz, Beate; Nikolaus, Nadia; Stoltenburg, Regina

    2008-01-01

    Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors) will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers. PMID:27879936

  9. Smoke alarms in the home: what every physician should know

    PubMed Central

    Sultan, Mohammed A.; Feldman, William M.

    1985-01-01

    Primary care physicians interested in health education and accident prevention should be knowledgeable about smoke alarms (smoke detectors with built-in alarms). Either ionization or photoelectric smoke alarms can help save lives if they are properly installed and maintained. The number, site and maintenance of smoke alarms in the home and the steps a person should take in the event of a fire are discussed. Considering the rates of death, disability and disfigurement associated with residential fires, early warning devices such as smoke alarms make sense. PMID:4063931

  10. Amperometric biosensor for Salmonella typhimurium detection in milk

    USDA-ARS?s Scientific Manuscript database

    This paper reports an amperometric biosensor for rapid and sensitive Salmonella Typhimurium detection in milk. The biosensor was assembled from the self-assembled monolayers technique on a gold surface. In this device, polyclonal antibodies were oriented by protein A. The biosensor structure was cha...

  11. In vitro evaluation of fluorescence glucose biosensor response.

    PubMed

    Aloraefy, Mamdouh; Pfefer, T Joshua; Ramella-Roman, Jessica C; Sapsford, Kim E

    2014-07-08

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  12. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    PubMed Central

    Aloraefy, Mamdouh; Pfefer, T. Joshua; Ramella-Roman, Jessica C.; Sapsford, Kim E.

    2014-01-01

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor. PMID:25006996

  13. False Fire Alarms: A Deviant Pattern of Seeking Help.

    ERIC Educational Resources Information Center

    Camblin, Louise; Weinland, Laura

    1987-01-01

    Discusses the phenomenon of false fire alarms, the deliberate, intentional false reporting of fires, by mentally troubled persons as a primitive kind of help-seeking behavior. Several common themes found by reviewing false alarm cases are presented. Suggests that identifying the intrapsychic dynamics of false alarm reporters could be useful in…

  14. 21 CFR 870.1100 - Blood pressure alarm.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood pressure alarm. 870.1100 Section 870.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1100 Blood pressure alarm...

  15. Novel amperometric glucose biosensor based on MXene nanocomposite.

    PubMed

    Rakhi, R B; Nayak, Pranati; Xia, Chuan; Alshareef, Husam N

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM -1 cm -2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  16. Novel amperometric glucose biosensor based on MXene nanocomposite

    PubMed Central

    Rakhi, R. B.; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors. PMID:27830757

  17. Giving radioiodine? Think about airport security alarms.

    PubMed

    Kaniuka-Jakubowska, S; Lewczuk, A; Mizan-Gross, K; Obołończyk, L; Lass, P; Sworczak, K

    2012-01-01

    An increased sensitivity of airport detectors, a growing number of isotopic tests, and globalization of the society have raised a number of false positive radioactive alarms at airports and public places. This paper presents two new cases of patients who triggered airport security alarms after receiving 740MBq of (131)I for non-toxic goitre and attempts to compare surprisingly limited literature concerning this problem. A 57-year-old man triggered a security alarm at three different airports on the 17th, 28th, and 31st day after radioiodine exposure. Interestingly enough, in the meantime, on the 18th and 22nd day, no radiation was detected in him at the airport where he was twice detained as a source of radiation later on. The second case presents a 45-year-old woman who activated security alarm detectors while crossing a border on her coach trip 28 days after radioiodine administration. Copyright © 2011 Elsevier España, S.L. and SEMNIM. All rights reserved.

  18. Smoke alarm installation and function in inner London council housing.

    PubMed

    DiGuiseppi, C; Roberts, I; Speirs, N

    1999-11-01

    To determine the prevalence of and predictors for installed, functioning smoke alarms in council (public) housing in a low income, multi-ethnic urban area. Cross sectional study. 40 materially deprived electoral wards in two inner London boroughs. Occupants of 315 addresses randomly selected from council housing lists, with 75% response rate. Installation and function of smoke alarms based on inspection and testing. 39% (95% confidence interval (CI) 33% to 46%) of council tenants owned a smoke alarm, 31% (95% CI 25% to 38%) had an installed alarm (of which 54% were correctly installed), and 16% (95% CI 12% to 22%) had at least one installed, functioning alarm. Alarms most commonly failed because they lacked batteries (72%). In multivariate modelling, having an installed, functioning alarm was most strongly associated with living in a house versus a flat (apartment) (odds ratio (OR) 3.2, 95% CI 1.1 to 10.0), having two resident adults versus one (OR 2.8, 95% CI 1.2 to 6.5), and recognising stills from a Home Office television smoke alarm campaign (OR 2.4, 95% CI 1.1 to 5.5). Fires are a leading cause of child injury and death, particularly among those younger than 5 years of age and those in social classes IV and V. Smoke alarms are associated with a significantly reduced risk of death in residential fires, and are more protective in households with young children. Few council properties in a multi-ethnic, materially deprived urban area had any installed, functioning smoke alarms, despite a high risk of residential fires and fire related injuries in such areas. Effective methods to increase the prevalence of installed and functioning alarms must be identified.

  19. Smoke alarm installation and function in inner London council housing

    PubMed Central

    DiGuiseppi, C.; Roberts, I.; Speirs, N.

    1999-01-01

    AIM—To determine the prevalence of and predictors for installed, functioning smoke alarms in council (public) housing in a low income, multi-ethnic urban area.
DESIGN—Cross sectional study.
SETTING—40 materially deprived electoral wards in two inner London boroughs.
PARTICIPANTS—Occupants of 315 addresses randomly selected from council housing lists, with 75% response rate.
MAIN OUTCOME MEASURES—Installation and function of smoke alarms based on inspection and testing.
RESULTS—39% (95% confidence interval (CI) 33% to 46%) of council tenants owned a smoke alarm, 31% (95% CI 25% to 38%) had an installed alarm (of which 54% were correctly installed), and 16% (95% CI 12% to 22%) had at least one installed, functioning alarm. Alarms most commonly failed because they lacked batteries (72%). In multivariate modelling, having an installed, functioning alarm was most strongly associated with living in a house versus a flat (apartment) (odds ratio (OR) 3.2, 95% CI 1.1 to 10.0), having two resident adults versus one (OR 2.8, 95% CI 1.2 to 6.5), and recognising stills from a Home Office television smoke alarm campaign (OR 2.4, 95% CI 1.1 to 5.5).
CONCLUSIONS—Fires are a leading cause of child injury and death, particularly among those younger than 5 years of age and those in social classes IV and V. Smoke alarms are associated with a significantly reduced risk of death in residential fires, and are more protective in households with young children. Few council properties in a multi-ethnic, materially deprived urban area had any installed, functioning smoke alarms, despite a high risk of residential fires and fire related injuries in such areas. Effective methods to increase the prevalence of installed and functioning alarms must be identified.

 PMID:10519711

  20. [Discuss about Alarm Requirements of Standards for Tests of Patient Monitor].

    PubMed

    Feng, Ting

    This paper introduces the alarm requirements of standards of patient monitor and expounds their significance for tests and guidance for patient monitor, then discusses whether technical alarm should not be closed and it latching alarm and non-latching alarm can not exist together.

  1. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.

    PubMed

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin

    2015-07-21

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.

  2. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor

    PubMed Central

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Myong Kim, Dong; Hwan Kim, Dae; Choi, Sung-Jin

    2015-01-01

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 105 times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 105 with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density. PMID:26197105

  3. Alarm guided critical function and success path monitoring

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    The use of alarm indication on the overview (IPSO) display to initiate diagnosis of challenges to critical functions or unavailability of success paths, and further alarm-based guidance toward ultimate diagnosis.

  4. Disease-Related Detection with Electrochemical Biosensors: A Review.

    PubMed

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  5. 33 CFR 146.105 - General alarm system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manned facility must have a general alarm system. When operated, this system shall be audible in all... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false General alarm system. 146.105 Section 146.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...

  6. Fault Diagnosis with Multi-State Alarms in a Nuclear Power Control Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart A. Ragsdale; Roger Lew; Ronald L. Boring

    2014-09-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effects of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized the use of three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. Sensitivity and criterion based on the Signal Detection Theory were used to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed bettermore » and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.« less

  7. Alarm Fatigue vs User Expectations Regarding Context-Aware Alarm Handling in Hospital Environments Using CallMeSmart.

    PubMed

    Solvoll, Terje; Arntsen, Harald; Hartvigsen, Gunnar

    2017-01-01

    Surveys and research show that mobile communication systems in hospital settings are old and cause frequent interruptions. In the quest to remedy this, an Android based communication system called CallMeSmart tries to encapsulate most of the frequent communication into one hand held device focusing on reducing interruptions and at the same time make the workday easier for healthcare workers. The objective of CallMeSmart is to use context-awareness techniques to automatically monitor the availability of physicians' and nurses', and use this information to prevent or route phone calls, text messages, pages and alarms that would otherwise compromise patient care. In this paper, we present the results from interviewing nurses on alarm fatigue and their expectations regarding context-aware alarm handling using CallMeSmart.

  8. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor rectifier must have a high temperature alarm or shutdown, except as provided in § 111.33-11. ...

  9. Smoke alarm and battery function 42 months after installation: a randomized trial.

    PubMed

    Peek-Asa, Corinne; Yang, Jingzhen; Hamann, Cara; Jones, Michael P; Young, Tracy; Zwerling, Craig

    2010-10-01

    This randomized trial presents findings from the longest follow-up study of smoke alarm and battery function to date. The purpose of this study is to examine differences in long-term function of smoke alarm and battery combinations. A total of 691 households in an ongoing cohort study were randomly allocated into smoke alarm groups of ionizing and photoelectric and battery groups of zinc and lithium. Smoke alarm function was measured in 633 (91.6%) households from January 2007 through February 2008, 42 months following original smoke alarm/battery installation. Data analyses were conducted in 2009. After 3.5 years, 81.9% of the 1898 smoke alarms were functional. Ionizing alarms with zinc batteries were the least likely to function (72.7%). In comparison, photoelectric alarms with lithium batteries were 2.9 times (95% CI=1.8, 4.5) more likely to function; ionizing alarms with lithium batteries were 2.0 times (95% CI=1.3, 3.1) more likely to function; and photoelectric alarms with zinc batteries were 1.7 times (95% CI=1.1, 2.5) more likely to function. Functionality was strongly tied to number of reports of nuisance alarms, which was higher for ionizing than photoelectric alarms. Photoelectric smoke alarms and lithium batteries are the most likely to function long after smoke alarm installation, and may be worthwhile investments despite their increased cost. Copyright © 2010 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Recent Advances in Nanotechnology Applied to Biosensors

    PubMed Central

    Zhang, Xueqing; Guo, Qin; Cui, Daxiang

    2009-01-01

    In recent years there has been great progress the application of nanomaterials in biosensors. The importance of these to the fundamental development of biosensors has been recognized. In particular, nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination. PMID:22399954

  11. REVIEW ARTICLE: Environmental applications of analytical biosensors

    NASA Astrophysics Data System (ADS)

    Marco, María-Pilar; Barceló, Damià

    1996-11-01

    A review of the fundamental aspects and environmental applications of biosensors is presented. The bases of different transducer principles such as electrochemical, optical and piezoelectric are discussed. Various examples are given of the applications of such principles to develop immunosensor devices to determine common environmental contaminants. Attention is also paid to catalytic biosensors, using enzymes as sensing elements. Biosensor devices based on the use of cholinesterase and various oxidase enzymes such as tyrosinase, laccase, peroxidase and aldehyde dehydrogenase are reported. Some examples are given of the applications of other biomolecules such as whole cells, DNA or proteins, to determine pollution. Validation studies are presented comparing biosensors with chromatographic techniques to determine organophosphorus pesticides and phenolic compounds in environmental samples.

  12. 46 CFR 162.050-35 - Bilge alarm: Approval tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... alarm is calibrated and zeroed to manufacturer's instructions. (2) It is then fed with water for 15... the end of the 5-minute period an oil content reading is obtained and recorded. (2) The bilge alarm is... concentration of iron oxide. Any change in the bilge alarm reading during the 5 minutes is recorded. (3) Repeat...

  13. Reducing SCADA System Nuisance Alarms in the Water Industry in Northern Ireland.

    PubMed

    O'Donoghue, Nigel; Phillips, Debra H; Nicell, Ciaran

    2015-08-01

    The advancement of telemetry control for the water industry has increased the difficulty of managing large volumes of nuisance alarms (i.e., alarms that do not require a response). The aim of this study was to identify and reduce the number of nuisance alarms that occur for Northern Ireland (NI) Water by carrying out alarm duration analysis to determine the appropriate length of persistence (an advanced alarm management tool) that could be applied. All data were extracted from TelemWeb (NI Water's telemetry monitoring system) and analyzed in Excel. Over a 6-week period, an average of 40 000 alarms occurred per week. The alarm duration analysis, which has never been implemented before by NI Water, found that an average of 57% of NI Water alarms had a duration of <5 minutes. Applying 5-minute persistence, therefore, could prevent an average 26 816 nuisance alarms per week. Most of these alarms were from wastewater assets.

  14. Biosensor technology for pesticides--a review.

    PubMed

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and

  15. Biosensor technology: technology push versus market pull.

    PubMed

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2008-01-01

    Biosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities. The rationale behind the slow and limited technology transfer could be attributed to cost considerations and some key technical barriers. Analytical chemistry has changed considerably, driven by automation, miniaturization, and system integration with high throughput for multiple tasks. Such requirements pose a great challenge in biosensor technology which is often designed to detect one single or a few target analytes. Successful biosensors must be versatile to support interchangeable biorecognition elements, and in addition miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost. A significant upfront investment in research and development is a prerequisite in the commercialization of biosensors. The progress in such endeavors is incremental with limited success, thus, the market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume.

  16. Increasing smoke alarm operability through theory-based health education: a randomised trial.

    PubMed

    Miller, Ted R; Bergen, Gwen; Ballesteros, Michael F; Bhattacharya, Soma; Gielen, Andrea Carlson; Sheppard, Monique S

    2014-12-01

    Although working smoke alarms halve deaths in residential fires, many households do not keep alarms operational. We tested whether theory-based education increases alarm operability. Randomised multiarm trial, with a single arm randomly selected for use each day, in low-income neighbourhoods in Maryland, USA. Intervention arms: (1) Full Education combining a health belief module with a social-cognitive theory module that provided hands-on practice installing alarm batteries and using the alarm's hush button; (2) Hands-on Practice social-cognitive module supplemented by typical fire department education; (3) Current Norm receiving typical fire department education only. Four hundred and thirty-six homes recruited through churches or by knocking on doors in 2005-2008. Follow-up visits checked alarm operability in 370 homes (85%) 1-3.5 years after installation. number of homes with working alarms defined as alarms with working batteries or hard-wired and number of working alarms per home. Regressions controlled for alarm status preintervention; demographics and beliefs about fire risks and alarm effectiveness. Homes in the Full Education and Practice arms were more likely to have a functioning smoke alarm at follow-up (OR=2.77, 95% CI 1.09 to 7.03) and had an average of 0.32 more working alarms per home (95% CI 0.09 to 0.56). Working alarms per home rose 16%. Full Education and Practice had similar effectiveness (p=0.97 on both outcome measures). Without exceeding typical fire department installation time, installers can achieve greater smoke alarm operability. Hands-on practice is key. Two years after installation, for every three homes that received hands-on practice, one had an additional working alarm. http://www.clinicaltrials.gov number NCT00139126. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Spiny lobsters detect conspecific blood-borne alarm cues exclusively through olfactory sensilla.

    PubMed

    Shabani, Shkelzen; Kamio, Michiya; Derby, Charles D

    2008-08-01

    When attacked by predators, diverse animals actively or passively release molecules that evoke alarm and related anti-predatory behavior by nearby conspecifics. The actively released molecules are alarm pheromones, whereas the passively released molecules are alarm cues. For example, many insects have alarm-signaling systems that involve active release of alarm pheromones from specialized glands and detection of these signals using specific sensors. Many crustaceans passively release alarm cues, but the nature of the cues, sensors and responses is poorly characterized. Here we show in laboratory and field experiments that injured Caribbean spiny lobsters, Panulirus argus, passively release alarm cues via blood (hemolymph) that induce alarm responses in the form of avoidance and suppression of feeding. These cues are detected exclusively through specific olfactory chemosensors, the aesthetasc sensilla. The alarm cues for Caribbean spiny lobsters are not unique to the species but do show some phylogenetic specificity: P. argus responds primarily with alarm behavior to conspecific blood, but with mixed alarm and appetitive behaviors to blood from the congener Panulirus interruptus, or with appetitive behaviors to blood from the blue crab Callinectes sapidus. This study lays the foundation for future neuroethological studies of alarm cue systems in this and other decapod crustaceans.

  18. Disease-Related Detection with Electrochemical Biosensors: A Review

    PubMed Central

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-01-01

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed. PMID:29039742

  19. Prototype amperometric biosensor for sialic acid determination.

    PubMed

    Marzouk, Sayed A M; Ashraf, S S; Tayyari, Khawla A Al

    2007-02-15

    This paper describes the first report on the development, characterization, and applications of a prototype amperometric biosensor for free sialic acid (SA). The sensor was constructed by the coimmobilization of two enzymes, i.e., N-acetylneuraminic acid aldolase and pyruvate oxidase, on a polyester microporous membrane, which was then mounted on top of a platinum disk electrode. The SA biosensor operation was based on the sequential action of the two enzymes to ultimately produce hydrogen peroxide, which was then detected by anodic amperometry at the platinum electrode. The surface of the platinum electrode was coated with an electropolymeric layer to enhance the biosensor selectivity in the presence of interfering oxidizable species. Optimization of the enzyme layer composition resulted in a fast and steady current response in phosphate buffer pH 7.2 at 37 degrees C. The limit of detection was 10 microM, and the response was linear to 3.5 mM (r = 0.9987). The prepared SA biosensors retained approximately 85% of their initial sensitivity after 8 days and showed excellent response reproducibility (CV = 2.3%). Utilization of a third enzyme, sialidase, expanded the scope of the present SA biosensor to determine bound sialic acid as well. The merits of the described biosensor allowed its successful application in determining SA in biological and pharmaceutical samples. The obtained results indicated that the presented SA biosensor should be a useful bioanalytical tool in several biological and clinical applications such as screening of SA as a nonspecific tumor marker as well as monitoring of tumor therapy.

  20. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors.

    PubMed

    Dekker, Linda; Polizzi, Karen M

    2017-10-01

    Biosensors use biological elements to detect or quantify an analyte of interest. In bioprocessing, biosensors are employed to monitor key metabolites. There are two main types: fully biological systems or biological recognition coupled with physical/chemical detection. New developments in chemical biosensors include multiplexed detection using microfluidics. Synthetic biology can be used to engineer new biological biosensors with improved characteristics. Although there have been few biosensors developed for bioprocessing thus far, emerging trends can be applied in the future. A range of new platform technologies will enable rapid engineering of new biosensors based on transcriptional activation, riboswitches, and Förster Resonance Energy Transfer. However, translation to industry remains a challenge and more research into the robustness biosensors at scale is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fluidics cube for biosensor miniaturization

    NASA Technical Reports Server (NTRS)

    Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.

    2001-01-01

    To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.

  2. Ultrasensitive detection of endotoxins using computationally designed nanoMIPs.

    PubMed

    Altintas, Zeynep; Abdin, Mohammed J; Tothill, Alexander M; Karim, Kal; Tothill, Ibtisam E

    2016-09-07

    Novel molecularly imprinted polymer nanoparticles (nanoMIPs) were designed for endotoxin from Escherichia coli 0111:B4, using computational modeling. The screening process based on binding energy between endotoxin and each monomer was performed with 21 commonly used monomers, resulting in the selection of itaconic acid, methacrylic acid and acrylamide as functional monomers due to their strong binding interaction with the endotoxin template. The nanoMIPs were successfully synthesized with functional groups on the outer surface to aid in the immobilization onto sensor surface. The solid phase photopolymerization approach used for the synthesis of nanoMIPs ranging from 200 to 235 nm in diameter. The limit of detection and KD were significantly improved when endotoxin samples were prepared using a novel triethylamine method. This improved the efficiency of gold nanoparticle functionalization by targeting the subunits of the endotoxin. Compared to the vancomycin MIP control, the endotoxin MIPs displayed outstanding affinity and selectivity towards the endotoxin with KD values in the range of 4.4-5.3 × 10(-10) M, with limits of detection of 0.44 ± 0.02 ng mL(-1) as determined by surface plasmon resonance (SPR) sensor when itaconic acid was used as the functional monomer. The MIP surface can be regenerated >30 times without significant loss of binding activity making this approach highly cost effective for expensive analyte templates. The combination of molecular modeling and solid phase synthesis enabled the successful synthesis of nanoMIPs capable of recognition and ultrasensitive detection of endotoxins using the highly sensitive SPR biosensor with triethylamine method. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Nurses' Perceptions and Practices Related to Alarm Management: A Quality Improvement Initiative.

    PubMed

    Cameron, Hannah L; Little, Barbara

    2018-05-01

    The purpose of this quality improvement project was to develop, implement, and assess the effects of an alarm management policy and educational program on nurses' perceptions and practices of alarm management in an acute care hospital. Nurses from an acute care hospital in the southeastern United States attended a mandatory alarm management education program. The hospital implemented the evidence-based alarm management education to achieve the NPSG.06.01.01: Alarm Management. Pre- and posttests were administered to evaluate the education and the changes in nurses' perceptions and practices of clinical alarms. A total of 417 nurses received the educational intervention. All participants completed the pretest, and 215 (51%) completed the voluntary posttest. Significant improvements were made in alarm perceptions and practices. Nurses suggested unit-specific alarm education, improved staffing, and updated equipment. Findings support the benefits of continued education in alarm management for nurses. Bedside nurses are a critical member of a multidisciplinary alarm management team because they are at the forefront of patient safety and most at risk for experiencing alarm fatigue. J Contin Educ Nurs. 2018;49(5):207-215. Copyright 2018, SLACK Incorporated.

  4. Early Lung Cancer Diagnosis by Biosensors

    PubMed Central

    Zhang, Yuqian; Yang, Dongliang; Weng, Lixing; Wang, Lianhui

    2013-01-01

    Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted. PMID:23892596

  5. Increasing smoke alarm operability through theory-based health education: a randomised trial

    PubMed Central

    Miller, Ted R; Bergen, Gwen; Ballesteros, Michael F; Bhattacharya, Soma; Gielen, Andrea Carlson; Sheppard, Monique S

    2015-01-01

    Background Although working smoke alarms halve deaths in residential fires, many households do not keep alarms operational. We tested whether theory-based education increases alarm operability. Methods Randomised multiarm trial, with a single arm randomly selected for use each day, in low-income neighbourhoods in Maryland, USA. Intervention arms: (1) Full Education combining a health belief module with a social-cognitive theory module that provided hands-on practice installing alarm batteries and using the alarm’s hush button; (2) Hands-on Practice social-cognitive module supplemented by typical fire department education; (3) Current Norm receiving typical fire department education only. Four hundred and thirty-six homes recruited through churches or by knocking on doors in 2005–2008. Followup visits checked alarm operability in 370 homes (85%) 1–3.5 years after installation. Main outcome measures: number of homes with working alarms defined as alarms with working batteries or hard-wired and number of working alarms per home. Regressions controlled for alarm status preintervention; demographics and beliefs about fire risks and alarm effectiveness. Results Homes in the Full Education and Practice arms were more likely to have a functioning smoke alarm at follow-up (OR=2.77, 95% CI 1.09 to 7.03) and had an average of 0.32 more working alarms per home (95% CI 0.09 to 0.56). Working alarms per home rose 16%. Full Education and Practice had similar effectiveness (p=0.97 on both outcome measures). Conclusions Without exceeding typical fire department installation time, installers can achieve greater smoke alarm operability. Hands-on practice is key. Two years after installation, for every three homes that received hands-on practice, one had an additional working alarm. Trial registration number http://www.clinicaltrials.gov number NCT00139126. PMID:25165090

  6. Device considerations for development of conductance-based biosensors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Scott, Adina; Alam, Muhammad A.; Janes, David B.

    2009-01-01

    Design and fabrication of electronic biosensors based on field-effect-transistor (FET) devices require understanding of interactions between semiconductor surfaces and organic biomolecules. From this perspective, we review practical considerations for electronic biosensors with emphasis on molecular passivation effects on FET device characteristics upon immobilization of organic molecules and an electrostatic model for FET-based biosensors. PMID:24753627

  7. Pilot Study of a Novel Partnership for Installing Smoke Alarms.

    PubMed

    Omaki, Elise C; Frattaroli, Shannon; Shields, Wendy C; McDonald, Eileen M; Rizzutti, Nicholas; Appy, Meri-K; Voiles, Denise; Jamison, Shelly; Gielen, Andrea C

    2018-02-07

    Objectives To demonstrate the feasibility of partnering fire department personnel and home visiting nurses to increase the number of low-income homes protected by smoke alarms. Methods During a regularly scheduled home visit, nurses at the Nurse-Family Partnership of Maricopa County (NFP) informed their clients about an opportunity to have smoke alarms installed in their homes for free. For interested families, nurses sent a referral to the Phoenix Fire Department (PFD), scheduled an appointment, and accompanied the PFD volunteers during the installation. During the appointment, PFD personnel installed alarms and provided safety education. Clients completed a follow-up survey 1-3 months after the installation visit. In-depth interviews were completed with key informants from NFP and PFD to solicit feedback on the program. Results Fifty-two smoke alarm installation visits were completed. Before the fire department arrived, 55% of homes had no working smoke alarm. Almost all (94%) homes received at least one new smoke alarm, and every home had at least one working smoke alarm at the end of the fire department visit. At follow-up, all homes maintained at least one working smoke alarm. Members from both organizations were enthusiastic about, and supportive of the project. NFP nurses appreciated the skill and knowledge of the firefighters; PFD representatives noted that the nurses' relationships with clients made it easier for them to gain access to families who are often described as "hard-to-reach". Conclusions Partnering home visiting nurses and fire departments can be successful to increase the number of vulnerable homes with smoke alarms.

  8. Metallic nano-structures for polarization-independent multi-spectral filters

    NASA Astrophysics Data System (ADS)

    Tang, Yongan; Vlahovic, Branislav; Brady, David Jones

    2011-05-01

    Cross-shaped-hole arrays (CSHAs) are selected for diminishing the polarization-dependent transmission differences of incident plane waves. We investigate the light transmission spectrum of the CSHAs in a thin gold film over a wide range of features. It is observed that two well-separated and high transmission efficiency peaks could be obtained by designing the parameters in the CSHAs for both p-polarized and s-polarized waves; and a nice transmission band-pass is also observed by specific parameters of a CSHA too. It implicates the possibility to obtain a desired polarization-independent transmission spectrum from the CSHAs by designing their parameters. These findings provide potential applications of the metallic nano-structures in optical filters, optical band-pass, optical imaging, optical sensing, and biosensors.

  9. 46 CFR 76.35-10 - Location and spacing of manual alarm boxes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROTECTION EQUIPMENT Manual Alarm System, Details § 76.35-10 Location and spacing of manual alarm boxes. (a) There shall be at least one manual alarm box in each zone. (b) Manual alarms shall be located in main... 46 Shipping 3 2014-10-01 2014-10-01 false Location and spacing of manual alarm boxes. 76.35-10...

  10. 46 CFR 76.35-10 - Location and spacing of manual alarm boxes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROTECTION EQUIPMENT Manual Alarm System, Details § 76.35-10 Location and spacing of manual alarm boxes. (a) There shall be at least one manual alarm box in each zone. (b) Manual alarms shall be located in main... 46 Shipping 3 2013-10-01 2013-10-01 false Location and spacing of manual alarm boxes. 76.35-10...

  11. 46 CFR 76.35-10 - Location and spacing of manual alarm boxes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROTECTION EQUIPMENT Manual Alarm System, Details § 76.35-10 Location and spacing of manual alarm boxes. (a) There shall be at least one manual alarm box in each zone. (b) Manual alarms shall be located in main... 46 Shipping 3 2011-10-01 2011-10-01 false Location and spacing of manual alarm boxes. 76.35-10...

  12. 46 CFR 76.35-10 - Location and spacing of manual alarm boxes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROTECTION EQUIPMENT Manual Alarm System, Details § 76.35-10 Location and spacing of manual alarm boxes. (a) There shall be at least one manual alarm box in each zone. (b) Manual alarms shall be located in main... 46 Shipping 3 2012-10-01 2012-10-01 false Location and spacing of manual alarm boxes. 76.35-10...

  13. 46 CFR 76.35-10 - Location and spacing of manual alarm boxes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROTECTION EQUIPMENT Manual Alarm System, Details § 76.35-10 Location and spacing of manual alarm boxes. (a) There shall be at least one manual alarm box in each zone. (b) Manual alarms shall be located in main... 46 Shipping 3 2010-10-01 2010-10-01 false Location and spacing of manual alarm boxes. 76.35-10...

  14. Fabric Organic Electrochemical Transistors for Biosensors.

    PubMed

    Yang, Anneng; Li, Yuanzhe; Yang, Chenxiao; Fu, Ying; Wang, Naixiang; Li, Li; Yan, Feng

    2018-06-01

    Flexible fabric biosensors can find promising applications in wearable electronics. However, high-performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber-based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 47 CFR 80.307 - Compulsory use of radiotelegraph auto alarm.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Compulsory use of radiotelegraph auto alarm. 80.307 Section 80.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Safety Watches § 80.307 Compulsory use of radiotelegraph auto alarm. The radiotelegraph auto alarm...

  16. 47 CFR 80.307 - Compulsory use of radiotelegraph auto alarm.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Compulsory use of radiotelegraph auto alarm. 80.307 Section 80.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Safety Watches § 80.307 Compulsory use of radiotelegraph auto alarm. The radiotelegraph auto alarm...

  17. 47 CFR 80.307 - Compulsory use of radiotelegraph auto alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Compulsory use of radiotelegraph auto alarm. 80.307 Section 80.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Safety Watches § 80.307 Compulsory use of radiotelegraph auto alarm. The radiotelegraph auto alarm...

  18. 47 CFR 80.307 - Compulsory use of radiotelegraph auto alarm.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Compulsory use of radiotelegraph auto alarm. 80.307 Section 80.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Safety Watches § 80.307 Compulsory use of radiotelegraph auto alarm. The radiotelegraph auto alarm...

  19. 47 CFR 80.307 - Compulsory use of radiotelegraph auto alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Compulsory use of radiotelegraph auto alarm. 80.307 Section 80.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Safety Watches § 80.307 Compulsory use of radiotelegraph auto alarm. The radiotelegraph auto alarm...

  20. DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development.

    PubMed

    Ye, Dekai; Zuo, Xiaolei; Fan, Chunhai

    2018-06-12

    Biosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.

  1. 46 CFR 28.250 - High water alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false High water alarms. 28.250 Section 28.250 Shipping COAST... Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.250 High water alarms. On... operating station to indicate high water level in each of the following normally unmanned spaces: (a) A...

  2. 46 CFR 28.250 - High water alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false High water alarms. 28.250 Section 28.250 Shipping COAST... Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.250 High water alarms. On... operating station to indicate high water level in each of the following normally unmanned spaces: (a) A...

  3. 46 CFR 28.250 - High water alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false High water alarms. 28.250 Section 28.250 Shipping COAST... Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.250 High water alarms. On... operating station to indicate high water level in each of the following normally unmanned spaces: (a) A...

  4. 46 CFR 28.250 - High water alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false High water alarms. 28.250 Section 28.250 Shipping COAST... Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.250 High water alarms. On... operating station to indicate high water level in each of the following normally unmanned spaces: (a) A...

  5. 46 CFR 28.250 - High water alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false High water alarms. 28.250 Section 28.250 Shipping COAST... Individuals On Board, or for Fish Tender Vessels Engaged in the Aleutian Trade § 28.250 High water alarms. On... operating station to indicate high water level in each of the following normally unmanned spaces: (a) A...

  6. Dynamic alarm response procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, J.; Gordon, P.; Fitch, K.

    2006-07-01

    The Dynamic Alarm Response Procedure (DARP) system provides a robust, Web-based alternative to existing hard-copy alarm response procedures. This paperless system improves performance by eliminating time wasted looking up paper procedures by number, looking up plant process values and equipment and component status at graphical display or panels, and maintenance of the procedures. Because it is a Web-based system, it is platform independent. DARP's can be served from any Web server that supports CGI scripting, such as Apache{sup R}, IIS{sup R}, TclHTTPD, and others. DARP pages can be viewed in any Web browser that supports Javascript and Scalable Vector Graphicsmore » (SVG), such as Netscape{sup R}, Microsoft Internet Explorer{sup R}, Mozilla Firefox{sup R}, Opera{sup R}, and others. (authors)« less

  7. Non-specific alarm calls trigger mobbing behavior in Hainan gibbons (Nomascus hainanus).

    PubMed

    Deng, Huaiqing; Gao, Kai; Zhou, Jiang

    2016-09-30

    Alarm calls are important defensive behaviors. Here, we report the acoustic spectrum characteristics of alarm calls produced by Hainan gibbons (Nomascus hainanus) inhabiting Bawangling National Nature Reserve in Hainan, China. Analysis of call data collected from 2002-2014 shows that alarm calls are emitted by all family group members, except infants. Alarm behavior included simple short alarming calls (7-10 min) followed by longer variable-frequency mobbing calls lasting 5-12 min. The duration of individual alarming and mobbing calls was 0.078 ± 0.014 s and 0.154 ± 0.041 s at frequency ranges of 520-1000 Hz and 690-3920 Hz, respectively. Alarming call duration was positively associated with group size. The alarm calls can trigger mobbing behavior in Hainan gibbons; this is a defense way of social animals, and first report among the primates' species. The system of vocal alarm behavior described in this critically endangered species is simple and effective.

  8. Superior Sensitivity of Copper-Based Plasmonic Biosensors.

    PubMed

    Stebunov, Yury V; Yakubovsky, Dmitry I; Fedyanin, Dmitry Yu; Arsenin, Aleksey V; Volkov, Valentyn S

    2018-04-17

    Plasmonic biosensing has been demonstrated to be a powerful technique for quantitative determination of molecular analytes and kinetic analysis of biochemical reactions. However, interfaces of most plasmonic biosensors are made of noble metals, such as gold and silver, which are not compatible with industrial production technologies. This greatly limits biosensing applications beyond biochemical and pharmaceutical research. Here, we propose and investigate copper-based biosensor chips fully fabricated with a standard complementary metal-oxide-semiconductor (CMOS) process. The protection of thin copper films from oxidation is achieved with SiO 2 and Al 2 O 3 dielectric films deposited onto the metal surface. In addition, the deposition of dielectric films with thicknesses of only several tens of nanometers significantly improves the biosensing sensitivity, owing to better localization of electromagnetic field above the biosensing surface. According to surface plasmon resonance (SPR) measurements, the copper biosensor chips coated with thin films of SiO 2 (25 nm) and Al 2 O 3 (15 nm) show 55% and 75% higher sensitivity to refractive index changes, respectively, in comparison to pure gold sensor chips. To test biomolecule immobilization, the copper-dielectric biosensor chips are coated with graphene oxide linking layers and used for the selective analysis of oligonucleotide hybridization. The proposed plasmonic biosensors make SPR technology more affordable for various applications and provide the basis for compact biosensors integrated with modern electronic devices.

  9. Biosensors based on β-galactosidase enzyme: Recent advances and perspectives.

    PubMed

    Sharma, Shiv K; Leblanc, Roger M

    2017-10-15

    Many industries are striving for the development of more reliable and robust β-galactosidase biosensors that exhibit high response rate, increased detection limit and enriched useful lifetime. In a newfangled technological atmosphere, a trivial advantage or disadvantage of the developed biosensor may escort to the survival and extinction of the industry. Several alternative strategies to immobilize β-galactosidase enzyme for their utilization in biosensors have been developed in recent years in the quest of maximum utility by controlling the defects seen in the previous biosensors. The overwhelming call for on-line measurement of different sample constituents has directed science and industry to search for best practical solutions and biosensors are witnessed as the best prospect. The main objective of this paper is to serve as a narrow footbridge by comparing the literary works on the β-galactosidase biosensors, critically analyze their use in the construction of best biosensor by showing the pros and cons of the predicted methods for the practical use of biosensors. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. 46 CFR 62.25-20 - Instrumentation, alarms, and centralized stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Instrumentation, alarms, and centralized stations. 62.25... Instrumentation, alarms, and centralized stations. (a) General. Minimum instrumentation and alarms required for specific types of automated vital systems are listed in Table 62.35-50. (b) Instrumentation Location. (1...

  11. 46 CFR 62.25-20 - Instrumentation, alarms, and centralized stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Instrumentation, alarms, and centralized stations. 62.25... Instrumentation, alarms, and centralized stations. (a) General. Minimum instrumentation and alarms required for specific types of automated vital systems are listed in Table 62.35-50. (b) Instrumentation Location. (1...

  12. 46 CFR 62.25-20 - Instrumentation, alarms, and centralized stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Instrumentation, alarms, and centralized stations. 62.25... Instrumentation, alarms, and centralized stations. (a) General. Minimum instrumentation and alarms required for specific types of automated vital systems are listed in Table 62.35-50. (b) Instrumentation Location. (1...

  13. 46 CFR 62.25-20 - Instrumentation, alarms, and centralized stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Instrumentation, alarms, and centralized stations. 62.25... Instrumentation, alarms, and centralized stations. (a) General. Minimum instrumentation and alarms required for specific types of automated vital systems are listed in Table 62.35-50. (b) Instrumentation Location. (1...

  14. 40 CFR 264.34 - Access to communications or alarm system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Access to communications or alarm... FACILITIES Preparedness and Prevention § 264.34 Access to communications or alarm system. (a) Whenever... operation must have immediate access to an internal alarm or emergency communication device, either directly...

  15. 46 CFR 97.37-7 - General alarm bells.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 97.37-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR...

  16. 46 CFR 196.37-7 - General alarm bells.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Markings for Fire and Emergency Equipment, etc. § 196.37-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR...

  17. 46 CFR 196.37-7 - General alarm bells.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Markings for Fire and Emergency Equipment, etc. § 196.37-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR...

  18. 46 CFR 97.37-7 - General alarm bells.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 97.37-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR...

  19. 46 CFR 196.37-7 - General alarm bells.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Markings for Fire and Emergency Equipment, etc. § 196.37-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR...

  20. 46 CFR 97.37-7 - General alarm bells.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 97.37-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR...

  1. 46 CFR 97.37-7 - General alarm bells.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 97.37-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR...

  2. 46 CFR 196.37-7 - General alarm bells.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Markings for Fire and Emergency Equipment, etc. § 196.37-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR...

  3. 46 CFR 97.37-7 - General alarm bells.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 97.37-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR...

  4. 46 CFR 196.37-7 - General alarm bells.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Markings for Fire and Emergency Equipment, etc. § 196.37-7 General alarm bells. (a) All general alarm bells shall be identified by red lettering at least 1/2 inch high: “GENERAL ALARM—WHEN BELL RINGS GO TO YOUR...

  5. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations

    PubMed Central

    Wall, Mark J.

    2016-01-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue

  6. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations.

    PubMed

    Newton, Adam J H; Wall, Mark J; Richardson, Magnus J E

    2017-03-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue

  7. BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE

    EPA Science Inventory

    Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...

  8. Large Scale Bacterial Colony Screening of Diversified FRET Biosensors

    PubMed Central

    Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver

    2015-01-01

    Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878

  9. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  10. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2013-07-02

    A system for biosensor-based detection of toxins includes providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  11. Emerging Synergy between Nanotechnology and Implantable Biosensors: A Review

    PubMed Central

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-01-01

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interest. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology-based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. PMID:20042326

  12. 40 CFR 265.34 - Access to communications or alarm system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Access to communications or alarm..., STORAGE, AND DISPOSAL FACILITIES Preparedness and Prevention § 265.34 Access to communications or alarm... involved in the operation must have immediate access to an internal alarm or emergency communication device...

  13. Design Strategies for Aptamer-Based Biosensors

    PubMed Central

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  14. Strategies to increase smoke alarm use in high-risk households.

    PubMed

    Harvey, Pauline A; Aitken, Mary; Ryan, George W; Demeter, Lori A; Givens, Jeanne; Sundararaman, Ramya; Goulette, Scott

    2004-10-01

    A 3-year project was undertaken to evaluate two methods of promoting residential smoke alarm installation and maintenance in high risk households across the U.S. Five states (Arkansas, Maine, Maryland, Massachusetts, and North Carolina) participated. The two strategies under study were direct installation of smoke alarms and distribution of a voucher for free smoke alarms. The target population included occupants of high-risk households without working smoke alarms who were approached as part of a door-to-door canvassing program. Fire Safety education was provided to both groups. A follow up assessment conducted 6-12 months post intervention assessed the presence and functional status of smoke alarms in each of the two groups. Demographic and fire safety data were also collected at baseline and follow up for each group. 4,455 households were enrolled in the study [Installation Group: 2,206 (49.5%), Voucher Group: 2,249 (50.5%)]. Baseline characteristics of the groups within each state were comparable. Follow up data was obtained on 1,583 installation group households and 1,545 voucher group households. At follow up, 1,421 (89.8%) households in the installation group had working smoke alarms, compared with 997 (65%) households in the voucher group, Odds Ratio 4.82 (95% CI=3.97, 5.85) (p <.0001). On average, 47% of all households enrolled in the voucher group did not redeem their vouchers (range 26-63%). Direct installation of alarms by program staff resulted in working smoke alarms in 90% of households receiving the direct installation intervention. Only 65% of voucher households had functioning alarms at follow up, largely due to failure to redeem vouchers.

  15. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.

    PubMed

    Zhou, Ming; Dong, Shaojun

    2011-11-15

    Over the past decade, researchers have devoted considerable attention to the integration of living organisms with electronic elements to yield bioelectronic devices. Not only is the integration of DNA, enzymes, or whole cells with electronics of scientific interest, but it has many versatile potential applications. Researchers are using these ideas to fabricate biosensors for analytical applications and to assemble biofuel cells (BFCs) and biomolecule-based devices. Other research efforts include the development of biocomputing systems for information processing. In this Account, we focus on our recent progress in engineering at the bioelectrochemical interface (BECI) for the rational design and construction of important bioelectronic devices, ranging from electrochemical (EC-) biosensors to BFCs, and self-powered logic biosensors. Hydrogels and sol-gels provide attractive materials for the immobilization of enzymes because they make EC-enzyme biosensors stable and even functional in extreme environments. We use a layer-by-layer (LBL) self-assembly technique to fabricate multicomponent thin films on the BECI at the nanometer scale. Additionally, we demonstrate how carbon nanomaterials have paved the way for new and improved EC-enzyme biosensors. In addition to the widely reported BECI-based electrochemical impedance spectroscopy (EIS)-type aptasensors, we integrate the LBL technique with our previously developed "solid-state probe" technique for redox probes immobilization on electrode surfaces to design and fabricate BECI-based differential pulse voltammetry (DPV)-type aptasensors. BFCs can directly harvest energy from ambient biofuels as green energy sources, which could lead to their application as simple, flexible, and portable power sources. Porous materials provide favorable microenvironments for enzyme immobilization, which can enhance BFC power output. Furthermore, by introducing aptamer-based logic systems to BFCs, such systems could be applied as self

  16. Optical fiber-based biosensors.

    PubMed

    Monk, David J; Walt, David R

    2004-08-01

    This review outlines optical fiber-based biosensor research from January 2001 through September 2003 and was written to complement the previous review in this journal by Marazuela and Moreno-Bondi. Optical fiber-based biosensors combine the use of a biological recognition element with an optical fiber or optical fiber bundle. They are classified by the nature of the biological recognition element used for sensing: enzyme, antibody/antigen (immunoassay), nucleic acid, whole cell, and biomimetic, and may be used for a variety of analytes ranging from metals and chemicals to physiological materials.

  17. Ship cabin leakage alarm based on ARM SCM

    NASA Astrophysics Data System (ADS)

    Qu, Liyan

    2018-03-01

    If there is a leakage in the cabin of a sailing ship, it is a major accident that threatens the personnel and property of the ship. If we can’t take timely measures, there will be a devastating disaster. In order to judge the leakage of the cabin, it is necessary to set up a leakage alarm system, so as to achieve the purpose of detecting and alarming the leakage of the cabin, and avoid the occurrence of accidents. This paper discusses the design of ship cabin leakage alarm system based on ARM SCM. In order to ensure the stability and precision of the product, the hardware design of the alarm system is carried out, such as circuit design, software design, the programming of SCM, the software programming of upper computer, etc. It is hoped that it can be of reference value to interested readers.

  18. 21 CFR 870.1025 - Arrhythmia detector and alarm (including ST-segment measurement and alarm).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a visible or audible signal or alarm when atrial or ventricular arrhythmia, such as premature contraction or ventricular fibrillation, occurs. (b) Classification. Class II (special controls). The guidance...

  19. 21 CFR 870.1025 - Arrhythmia detector and alarm (including ST-segment measurement and alarm).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a visible or audible signal or alarm when atrial or ventricular arrhythmia, such as premature contraction or ventricular fibrillation, occurs. (b) Classification. Class II (special controls). The guidance...

  20. Recent Developments in Enzyme, DNA and Immuno-Based Biosensors.

    PubMed

    Asal, Melis; Özen, Özlem; Şahinler, Mert; Polatoğlu, İlker

    2018-06-13

    Novel sensitive, rapid and economical biosensors are being developed in a wide range of medical environmental and food applications. In this paper, we review some of the main advances in the field over the past few years by discussing recent studies from literature. A biosensor, which is defined as an analytical device consisting of a biomolecule, a transducer and an output system, can be categorized according to the type of the incorporated biomolecule. The biomolecules can be enzymes, antibodies, ssDNA, organelles, cells etc. The main biosensor categories classified according to the biomolecules are enzymatic biosensors, immunosensors and DNA-based biosensors. These sensors can measure analytes produced or reduced during reactions at lower costs compared to the conventional detection techniques. Numerous types of biosensor studies conducted over the last decade have been explored here to reveal their key applications in medical, environmental and food industries which provide comprehensive perspective to the readers. Overviews of the working principles and applications of the reviewed sensors are also summarized.

  1. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.

    PubMed

    Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A

    2017-10-20

    Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.

  2. Biosensors in the small scale: methods and technology trends.

    PubMed

    Senveli, Sukru U; Tigli, Onur

    2013-03-01

    This study presents a review on biosensors with an emphasis on recent developments in the field. A brief history accompanied by a detailed description of the biosensor concepts is followed by rising trends observed in contemporary micro- and nanoscale biosensors. Performance metrics to quantify and compare different detection mechanisms are presented. A comprehensive analysis on various types and subtypes of biosensors are given. The fields of interest within the scope of this review are label-free electrical, mechanical and optical biosensors as well as other emerging and popular technologies. Especially, the latter half of the last decade is reviewed for the types, methods and results of the most prominently researched detection mechanisms. Tables are provided for comparison of various competing technologies in the literature. The conclusion part summarises the noteworthy advantages and disadvantages of all biosensors reviewed in this study. Furthermore, future directions that the micro- and nanoscale biosensing technologies are expected to take are provided along with the immediate outlook.

  3. Non-specific alarm calls trigger mobbing behavior in Hainan gibbons (Nomascus hainanus)

    PubMed Central

    Deng, Huaiqing; Gao, Kai; Zhou, Jiang

    2016-01-01

    Alarm calls are important defensive behaviors. Here, we report the acoustic spectrum characteristics of alarm calls produced by Hainan gibbons (Nomascus hainanus) inhabiting Bawangling National Nature Reserve in Hainan, China. Analysis of call data collected from 2002–2014 shows that alarm calls are emitted by all family group members, except infants. Alarm behavior included simple short alarming calls (7–10 min) followed by longer variable-frequency mobbing calls lasting 5–12 min. The duration of individual alarming and mobbing calls was 0.078 ± 0.014 s and 0.154 ± 0.041 s at frequency ranges of 520–1000 Hz and 690–3920 Hz, respectively. Alarming call duration was positively associated with group size. The alarm calls can trigger mobbing behavior in Hainan gibbons; this is a defense way of social animals, and first report among the primates’ species. The system of vocal alarm behavior described in this critically endangered species is simple and effective. PMID:27686623

  4. Realization of time keeping alarming system based on CTI technique

    NASA Astrophysics Data System (ADS)

    Cai, Cheng-Lin; Dong, Shao-Wu

    2003-12-01

    An application of CTI (Computer Telephone Integration) technique to fault alarming in time keeping system is presented in this paper. Two key parts of this alarming system, telephone phonic card and TTS (Text To Speech) are briefly introduced. A series of events and methods for programming interface based on ActiveX control (phonic.OCX) is discussed, and an alarming program module is developed. The alarming program module can be used in reporting accidents for time keeping system, and can also be applied to power supply system and environmental monitoring system.

  5. Acoustic structures in the alarm calls of Gunnison's prairie dogs.

    PubMed

    Slobodchikoff, C N; Placer, J

    2006-05-01

    Acoustic structures of sound in Gunnison's prairie dog alarm calls are described, showing how these acoustic structures may encode information about three different predator species (red-tailed hawk-Buteo jamaicensis; domestic dog-Canis familaris; and coyote-Canis latrans). By dividing each alarm call into 25 equal-sized partitions and using resonant frequencies within each partition, commonly occurring acoustic structures were identified as components of alarm calls for the three predators. Although most of the acoustic structures appeared in alarm calls elicited by all three predator species, the frequency of occurrence of these acoustic structures varied among the alarm calls for the different predators, suggesting that these structures encode identifying information for each of the predators. A classification analysis of alarm calls elicited by each of the three predators showed that acoustic structures could correctly classify 67% of the calls elicited by domestic dogs, 73% of the calls elicited by coyotes, and 99% of the calls elicited by red-tailed hawks. The different distributions of acoustic structures associated with alarm calls for the three predator species suggest a duality of function, one of the design elements of language listed by Hockett [in Animal Sounds and Communication, edited by W. E. Lanyon and W. N. Tavolga (American Institute of Biological Sciences, Washington, DC, 1960), pp. 392-430].

  6. SeaQuest/E906 Shift Alarm System

    NASA Astrophysics Data System (ADS)

    Kitts, Noah

    2014-09-01

    SeaQuest, Fermilab E906, is a fixed target experiment that measures the Drell-Yan cross-section ratio of proton-proton to proton-deuterium collisions in order to extract the sea anti-quark structure of the proton. SeaQuest will extend the measurements made by E866/NuSea with greater precision at higher Bjorken-x. The continuously running experiment is always being monitored. Those on shift must keep track of all of the detector readouts in order to make sure the experiment is running correctly. As an experiment that is still in its early stages of running, an alarm system for people on shift is being created to provide warnings, such as a plot showing a detector's performance is sufficiently different to need attention. This plan involves python scripts that track live data. When the data shows a problem within the experiment, a corresponding alarm ID is sent to the MySQL database which then sets off an alarm. These alarms, which will alert the person on shift through both an audible and visual response, are important for ensuring that issues do not go unnoticed, and to help make sure the experiment is recording good data.

  7. Emerging synergy between nanotechnology and implantable biosensors: a review.

    PubMed

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-03-15

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. (c) 2009 Elsevier B.V. All rights reserved.

  8. Fiber optic-based regenerable biosensor

    DOEpatents

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  9. Biofuel metabolic engineering with biosensors.

    PubMed

    Morgan, Stacy-Anne; Nadler, Dana C; Yokoo, Rayka; Savage, David F

    2016-12-01

    Metabolic engineering offers the potential to renewably produce important classes of chemicals, particularly biofuels, at an industrial scale. DNA synthesis and editing techniques can generate large pathway libraries, yet identifying the best variants is slow and cumbersome. Traditionally, analytical methods like chromatography and mass spectrometry have been used to evaluate pathway variants, but such techniques cannot be performed with high throughput. Biosensors - genetically encoded components that actuate a cellular output in response to a change in metabolite concentration - are therefore a promising tool for rapid and high-throughput evaluation of candidate pathway variants. Applying biosensors can also dynamically tune pathways in response to metabolic changes, improving balance and productivity. Here, we describe the major classes of biosensors and briefly highlight recent progress in applying them to biofuel-related metabolic pathway engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. PT-SAFE: a software tool for development and annunciation of medical audible alarms.

    PubMed

    Bennett, Christopher L; McNeer, Richard R

    2012-03-01

    Recent reports by The Joint Commission as well as the Anesthesia Patient Safety Foundation have indicated that medical audible alarm effectiveness needs to be improved. Several recent studies have explored various approaches to improving the audible alarms, motivating the authors to develop real-time software capable of comparing such alarms. We sought to devise software that would allow for the development of a variety of audible alarm designs that could also integrate into existing operating room equipment configurations. The software is meant to be used as a tool for alarm researchers to quickly evaluate novel alarm designs. A software tool was developed for the purpose of creating and annunciating audible alarms. The alarms consisted of annunciators that were mapped to vital sign data received from a patient monitor. An object-oriented approach to software design was used to create a tool that is flexible and modular at run-time, can annunciate wave-files from disk, and can be programmed with MATLAB by the user to create custom alarm algorithms. The software was tested in a simulated operating room to measure technical performance and to validate the time-to-annunciation against existing equipment alarms. The software tool showed efficacy in a simulated operating room environment by providing alarm annunciation in response to physiologic and ventilator signals generated by a human patient simulator, on average 6.2 seconds faster than existing equipment alarms. Performance analysis showed that the software was capable of supporting up to 15 audible alarms on a mid-grade laptop computer before audio dropouts occurred. These results suggest that this software tool provides a foundation for rapidly staging multiple audible alarm sets from the laboratory to a simulation environment for the purpose of evaluating novel alarm designs, thus producing valuable findings for medical audible alarm standardization.

  11. Development of a biosensor for caffeine.

    PubMed

    Babu, V R Sarath; Patra, S; Karanth, N G; Kumar, M A; Thakur, M S

    2007-01-23

    We have utilized a microbe, which can degrade caffeine to develop an Amperometric biosensor for determination of caffeine in solutions. Whole cells of Pseudomonas alcaligenes MTCC 5264 having the capability to degrade caffeine were immobilized on a cellophane membrane with a molecular weight cut off (MWCO) of 3000-6000 by covalent crosslinking method using glutaraledhyde as the bifunctional crosslinking agent and gelatin as the protein based stabilizing agent (PBSA). The biosensor system was able to detect caffeine in solution over a concentration range of 0.1 to 1 mg mL(-1). With read-times as short as 3 min, this caffeine biosensor acts as a rapid analysis system for caffeine in solutions. Interestingly, successful isolation and immobilization of caffeine degrading bacteria for the analysis of caffeine described here was enabled by a novel selection strategy that incorporated isolation of caffeine degrading bacteria capable of utilizing caffeine as the sole source of carbon and nitrogen from soils and induction of caffeine degrading capacity in bacteria for the development of the biosensor. This biosensor is highly specific for caffeine and response to interfering compounds such as theophylline, theobromine, paraxanthine, other methyl xanthines and sugars was found to be negligible. Although a few biosensing methods for caffeine are reported, they have limitations in application for commercial samples. The development and application of new caffeine detection methods remains an active area of investigation, particularly in food and clinical chemistry. The optimum pH and temperature of measurement were 6.8 and 30+/-2 degrees C, respectively. Interference in analysis of caffeine due to different substrates was observed but was not considerable. Caffeine content of commercial samples of instant tea and coffee was analyzed by the biosensor and the results compared well with HPLC analysis.

  12. A novel biosensor selective for organoarsenicals.

    PubMed

    Chen, Jian; Zhu, Yong-Guan; Rosen, Barry P

    2012-10-01

    Organoarsenicals used as herbicides and growth promoters for farm animals are degraded to inorganic arsenic. Available bacterial whole-cell biosensors detect only inorganic arsenic. We report a biosensor selective for the trivalent organoarsenicals methylarsenite and phenylarsenite over inorganic arsenite. This sensor may be useful for detecting degradation of arsenic-containing herbicides and growth promoters.

  13. Alarm signals of the Sichuan sika deer Cervus nippon sichuanicus.

    PubMed

    Yang, Chengzhong; Xiao, Zhen; Guo, Yanshu; Xiong, Yuanqing; Zhang, Xiuyue; Yue, Bisong

    2012-07-01

    Sichuan sika deer (Cervus nippon sichuanicus) is an endangered and endemic subspecies of sika deer to Sichuan Province, China. According to our observations in the wild, the Sichuan sika deer makes alarm signals in the presence of actual or potential predators. In order to test the variation of the rhythmic alarm calls in some sex/age classes and different risk contexts, we recorded alarm calls of Sichuan sika deer from 2 October to 30 November 2008 and from 4 April to 5 September 2009 in the Tiebu Nature Reserve, Zoige County, Sichuan Province, China, and made acoustic analysis of these alarm calls. The results showed that the fundamental frequencies of alarm signals of Sichuan sika deer tended to decrease with age, and were significantly higher for females than for males. Duration tended to increase with age, and was significantly longer for males than for females. The fundamental frequencies and duration of alarm calls in adults were significantly higher and shorter respectively in high-risk than in moderate-risk contexts.

  14. Understanding heart rate alarm adjustment in the intensive care units through an analytical approach.

    PubMed

    Fidler, Richard L; Pelter, Michele M; Drew, Barbara J; Palacios, Jorge Arroyo; Bai, Yong; Stannard, Daphne; Aldrich, J Matt; Hu, Xiao

    2017-01-01

    Heart rate (HR) alarms are prevalent in ICU, and these parameters are configurable. Not much is known about nursing behavior associated with tailoring HR alarm parameters to individual patients to reduce clinical alarm fatigue. To understand the relationship between heart rate (HR) alarms and adjustments to reduce unnecessary heart rate alarms. Retrospective, quantitative analysis of an adjudicated database using analytical approaches to understand behaviors surrounding parameter HR alarm adjustments. Patients were sampled from five adult ICUs (77 beds) over one month at a quaternary care university medical center. A total of 337 of 461 ICU patients had HR alarms with 53.7% male, mean age 60.3 years, and 39% non-Caucasian. Default HR alarm parameters were 50 and 130 beats per minute (bpm). The occurrence of each alarm, vital signs, and physiologic waveforms was stored in a relational database (SQL server). There were 23,624 HR alarms for analysis, with 65.4% exceeding the upper heart rate limit. Only 51% of patients with HR alarms had parameters adjusted, with a median upper limit change of +5 bpm and -1 bpm lower limit. The median time to first HR parameter adjustment was 17.9 hours, without reduction in alarms occurrence (p = 0.57). HR alarms are prevalent in ICU, and half of HR alarm settings remain at default. There is a long delay between HR alarms and parameters changes, with insufficient changes to decrease HR alarms. Increasing frequency of HR alarms shortens the time to first adjustment. Best practice guidelines for HR alarm limits are needed to reduce alarm fatigue and improve monitoring precision.

  15. Understanding heart rate alarm adjustment in the intensive care units through an analytical approach

    PubMed Central

    Pelter, Michele M.; Drew, Barbara J.; Palacios, Jorge Arroyo; Bai, Yong; Stannard, Daphne; Aldrich, J. Matt; Hu, Xiao

    2017-01-01

    Background Heart rate (HR) alarms are prevalent in ICU, and these parameters are configurable. Not much is known about nursing behavior associated with tailoring HR alarm parameters to individual patients to reduce clinical alarm fatigue. Objectives To understand the relationship between heart rate (HR) alarms and adjustments to reduce unnecessary heart rate alarms. Methods Retrospective, quantitative analysis of an adjudicated database using analytical approaches to understand behaviors surrounding parameter HR alarm adjustments. Patients were sampled from five adult ICUs (77 beds) over one month at a quaternary care university medical center. A total of 337 of 461 ICU patients had HR alarms with 53.7% male, mean age 60.3 years, and 39% non-Caucasian. Default HR alarm parameters were 50 and 130 beats per minute (bpm). The occurrence of each alarm, vital signs, and physiologic waveforms was stored in a relational database (SQL server). Results There were 23,624 HR alarms for analysis, with 65.4% exceeding the upper heart rate limit. Only 51% of patients with HR alarms had parameters adjusted, with a median upper limit change of +5 bpm and -1 bpm lower limit. The median time to first HR parameter adjustment was 17.9 hours, without reduction in alarms occurrence (p = 0.57). Conclusions HR alarms are prevalent in ICU, and half of HR alarm settings remain at default. There is a long delay between HR alarms and parameters changes, with insufficient changes to decrease HR alarms. Increasing frequency of HR alarms shortens the time to first adjustment. Best practice guidelines for HR alarm limits are needed to reduce alarm fatigue and improve monitoring precision. PMID:29176776

  16. Nanoscale bacteriophage biosensors beyond phage display.

    PubMed

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.

  17. Nanoscale bacteriophage biosensors beyond phage display

    PubMed Central

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology. PMID:24143096

  18. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.

    PubMed

    De Paepe, Brecht; Maertens, Jo; Vanholme, Bartel; De Mey, Marjan

    2018-05-18

    To monitor the intra- and extracellular environment of micro-organisms and to adapt their metabolic processes accordingly, scientists are reprogramming nature's myriad of transcriptional regulatory systems into transcriptional biosensors, which are able to detect small molecules and, in response, express specific output signals of choice. However, the naturally occurring response curve, the key characteristic of biosensor circuits, is typically not in line with the requirements for real-life biosensor applications. In this contribution, a natural LysR-type naringenin-responsive biosensor circuit is developed and characterized with Escherichia coli as host organism. Subsequently, this biosensor is dissected into a clearly defined detector and effector module without loss of functionality, and the influence of the expression levels of both modules on the biosensor response characteristics is investigated. Two collections of ten unique synthetic biosensors each are generated. Each collection demonstrates a unique diversity of response curve characteristics spanning a 128-fold change in dynamic and 2.5-fold change in operational ranges and 3-fold change in levels of Noise, fit for a wide range of applications, such as adaptive laboratory evolution, dynamic pathway control and high-throughput screening methods. The established biosensor engineering concepts, and the developed biosensor collections themselves, are of use for the future development and customization of biosensors in general, for the multitude of biosensor applications and as a compelling alternative for the commonly used LacI-, TetR- and AraC-based inducible circuits.

  19. Recent advances in polyaniline based biosensors.

    PubMed

    Dhand, Chetna; Das, Maumita; Datta, Monika; Malhotra, B D

    2011-02-15

    The present paper contains a detailed overview of recent advances relating to polyaniline (PANI) as a transducer material for biosensor applications. This conducting polymer provides enormous opportunities for binding biomolecules, tuning their bio-catalytic properties, rapid electron transfer and direct communication to produce a range of analytical signals and new analytical applications. Merging the specific nature of different biomolecules (enzymes, nucleic acids, antibodies, etc.) and the key properties of this modern conducting matrix, possible biosensor designs and their biosensing characteristics have been discussed. Efforts have been made to discuss and explore various characteristics of PANI responsible for direct electron transfer leading towards fabrication of mediator-less biosensors. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Graphene-Based Optical Biosensors and Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhiwen; He, Shijiang; Pei, Hao

    2014-01-13

    This chapter focuses on the design, fabrication and application of graphene based optical nanobiosensors. The emerging graphene based optical nanobiosensors demonstrated the promising bioassay and biomedical applications thanking to the unique optical features of graphene. According to the different applications, the graphene can be tailored to form either fluorescent emitter or efficient fluorescence quencher. The exceptional electronic feature of graphene makes it a powerful platform for fabricating the SPR and SERS biosensors. Today the graphene based optical biosensors have been constructed to detect various targets including ions, small biomolecules, DNA/RNA and proteins. This chapter reviews the recent progress in graphene-basedmore » optical biosensors and discusses the opportunities and challenges in this field.« less

  1. 46 CFR 108.627 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...

  2. 46 CFR 108.627 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...

  3. 46 CFR 108.627 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...

  4. 78 FR 21567 - Installation of Radiation Alarms for Rooms Housing Neutron Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... [Docket No. PRM-73-15; NRC-2011-0251] Installation of Radiation Alarms for Rooms Housing Neutron Sources... amend its regulations to require the installation of radiation alarms for rooms housing neutron sources... alarms for rooms housing neutron sources. The petitioner stated that the use of alarms can be effective...

  5. Comparison between pulse oximetry and transthoracic impedance alarm traces during home monitoring.

    PubMed

    Nassi, N; Piumelli, R; Lombardi, E; Landini, L; Donzelli, G; de Martino, M

    2008-02-01

    To compare transthoracic impedance (TTI/ECG) and pulse oximetry alarm traces detected during home monitoring in infants at risk of apnoea, bradycardia and hypoxaemia. A retrospective evaluation of the monitor downloads of 67 infants who had undergone either TTI/ECG or pulse oximetry home monitoring using a device which can detect both parameters. The patients were categorised as: apparent life-threatening events (n = 39), preterm infants (n = 21) and miscellaneous (n = 7). TTI/ECG and pulse oximetry alarm traces were scored as either true or false alarms. Classification criteria were based on visual analysis of the impedance and plethysmographic waveforms captured by the memory monitor every time alarm thresholds were violated. 5242 alarms occurred over 3452 days of monitoring: 4562 (87%) were false and 680 (13%) true. The mean duration of monitoring was 51 days (range 5-220 days). There were 2982 TTI/ECG false alarms (65% of the total) and 1580 pulse oximetry false alarms (35%) (p = 0.0042). Of the 680 true alarms, 507 (74%) were desaturations not attributable to central apnoea and 173 (26%) were true TTI/ECG alarms (p = 0.0013). Comparison of pulse oximetry and TTI/ECG alarm traces shows that true events were mostly attributable to desaturations, while false alarms were mainly provoked by TTI/ECG. The total number of false alarms is lower than reported in other studies using TTI/ECG only, thus indicating that monitoring using both pulse oximetry and TTI/ECG is suitable for home use. When the combination of both techniques is not feasible or not required, we recommend the use of motion resistant pulse oximetry alone.

  6. Retrospective analysis of pulse oximeter alarm settings in an intensive care unit patient population.

    PubMed

    Lansdowne, Krystal; Strauss, David G; Scully, Christopher G

    2016-01-01

    The cacophony of alerts and alarms in a hospital produced by medical devices results in alarm fatigue. The pulse oximeter is one of the most common sources of alarms. One of the ways to reduce alarm rates is to adjust alarm settings at the bedside. This study is aimed to retrospectively examine individual pulse oximeter alarm settings on alarm rates and inter- and intra- patient variability. Nine hundred sixty-two previously collected intensive care unit (ICU) patient records were obtained from the Multiparameter Intelligent Monitoring in Intensive Care II Database (Beth Israel Deaconess Medical Center, Boston, MA). Inclusion criteria included patient records that contained SpO2 trend data sampled at 1 Hz for at least 1 h and a matching clinical record. SpO2 alarm rates were simulated by applying a range of thresholds (84, 86, 88, and 90 %) and delay times (10 to 60 s) to the SpO2 data. Patient records with at least 12 h of SpO2 data were examined for the variability in alarm rate over time. Decreasing SpO2 thresholds and increasing delay times resulted in decreased alarm rates. A limited number of patient records accounted for most alarms, and this number increased as alarm settings loosened (the top 10 % of patient records were responsible for 57.4 % of all alarms at an SpO2 threshold of 90 % and 15 s delay and 81.6 % at an SpO2 threshold of 84 % and 45 s delay). Alarm rates were not consistent over time for individual patients with periods of high and low alarms for all alarm settings. Pulse oximeter SpO2 alarm rates are variable between patients and over time, and the alarm rate and the extent of inter- and intra-patient variability can be affected by the alarm settings. Personalized alarm settings for a patient's current status may help to reduce alarm fatigue for nurses.

  7. 46 CFR 154.1365 - Audible and visual alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... it to be turned off after sounding. For remote group alarms this arrangement must not interrupt the..., except for remote group alarms, the location of each fault that actuates it. (d) Each vessel must have...

  8. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  9. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  10. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  11. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  12. 46 CFR 131.805 - General alarm bell, switch.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false General alarm bell, switch. 131.805 Section 131.805 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.805 General alarm bell, switch. The switch in the...

  13. 46 CFR 131.805 - General alarm bell, switch.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false General alarm bell, switch. 131.805 Section 131.805 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.805 General alarm bell, switch. The switch in the...

  14. 46 CFR 131.805 - General alarm bell, switch.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false General alarm bell, switch. 131.805 Section 131.805 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.805 General alarm bell, switch. The switch in the...

  15. 46 CFR 131.805 - General alarm bell, switch.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false General alarm bell, switch. 131.805 Section 131.805 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.805 General alarm bell, switch. The switch in the...

  16. 46 CFR 131.805 - General alarm bell, switch.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false General alarm bell, switch. 131.805 Section 131.805 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.805 General alarm bell, switch. The switch in the...

  17. 33 CFR 157.440 - Autopilot alarm or indicator.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Autopilot alarm or indicator. 157.440 Section 157.440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... § 157.440 Autopilot alarm or indicator. (a) A tankship owner or operator shall ensure that each...

  18. 33 CFR 157.440 - Autopilot alarm or indicator.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Autopilot alarm or indicator. 157.440 Section 157.440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... § 157.440 Autopilot alarm or indicator. (a) A tankship owner or operator shall ensure that each...

  19. Pulse register phonation in Diana monkey alarm calls

    NASA Astrophysics Data System (ADS)

    Riede, Tobias; Zuberbühler, Klaus

    2003-05-01

    The adult male Diana monkeys (Cercopithecus diana) produce predator-specific alarm calls in response to two of their predators, the crowned eagles and the leopards. The acoustic structure of these alarm calls is remarkable for a number of theoretical and empirical reasons. First, although pulsed phonation has been described in a variety of mammalian vocalizations, very little is known about the underlying production mechanism. Second, Diana monkey alarm calls are based almost exclusively on this vocal production mechanism to an extent that has never been documented in mammalian vocal behavior. Finally, the Diana monkeys' pulsed phonation strongly resembles the pulse register in human speech, where fundamental frequency is mainly controlled by subglottal pressure. Here, we report the results of a detailed acoustic analysis to investigate the production mechanism of Diana monkey alarm calls. Within calls, we found a positive correlation between the fundamental frequency and the pulse amplitude, suggesting that both humans and monkeys control fundamental frequency by subglottal pressure. While in humans pulsed phonation is usually considered pathological or artificial, male Diana monkeys rely exclusively on pulsed phonation, suggesting a functional adaptation. Moreover, we were unable to document any nonlinear phenomena, despite the fact that they occur frequently in the vocal repertoire of humans and nonhumans, further suggesting that the very robust Diana monkey pulse production mechanism has evolved for a particular functional purpose. We discuss the implications of these findings for the structural evolution of Diana monkey alarm calls and suggest that the restricted variability in fundamental frequency and robustness of the source signal gave rise to the formant patterns observed in Diana monkey alarm calls, used to convey predator information.

  20. Attributions of cancer 'alarm' symptoms in a community sample.

    PubMed

    Whitaker, Katriina L; Scott, Suzanne E; Winstanley, Kelly; Macleod, Una; Wardle, Jane

    2014-01-01

    Attribution of early cancer symptoms to a non-serious cause may lead to longer diagnostic intervals. We investigated attributions of potential cancer 'alarm' and non-alarm symptoms experienced in everyday life in a community sample of adults, without mention of a cancer context. A questionnaire was mailed to 4858 adults (≥50 years old, no cancer diagnosis) through primary care, asking about symptom experiences in the past 3 months. The word cancer was not mentioned. Target 'alarm' symptoms, publicised by Cancer Research UK, were embedded in a longer symptom list. For each symptom experienced, respondents were asked for their attribution ('what do you think caused it'), concern about seriousness ('not at all' to 'extremely'), and help-seeking ('did you contact a doctor about it': Yes/No). The response rate was 35% (n = 1724). Over half the respondents (915/1724; 53%) had experienced an 'alarm' symptom, and 20 (2%) cited cancer as a possible cause. Cancer attributions were highest for 'unexplained lump'; 7% (6/87). Cancer attributions were lowest for 'unexplained weight loss' (0/47). A higher proportion (375/1638; 23%) were concerned their symptom might be 'serious', ranging from 12% (13/112) for change in a mole to 41% (100/247) for unexplained pain. Just over half had contacted their doctor about their symptom (59%), although this varied by symptom. Alarm symptoms were appraised as more serious than non-alarm symptoms, and were more likely to trigger help-seeking. Consistent with retrospective reports from cancer patients, 'alarm' symptoms experienced in daily life were rarely attributed to cancer. These results have implications for understanding how people appraise and act on symptoms that could be early warning signs of cancer.

  1. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions.

    PubMed

    Stein, Nienke E; Hamelers, Hubertus V M; Buisman, Cees N J

    2010-04-01

    A MFC-based biosensor can act as online toxicity sensor. Electrical current is a direct linear measure for metabolic activity of electrochemically active microorganisms. Microorganisms gain energy from anodic overpotential and current strongly depends on anodic overpotential. Therefore control of anodic overpotential is necessary to detect toxic events and prevent false positive alarms. Anodic overpotential and thus current is influenced by anode potential, pH, substrate and bicarbonate concentrations. In terms of overpotential all factor showed a comparable effect, anode potential 1.2% change in current density per mV, pH 0.43%/mV, bicarbonate 0.75%/mV and acetate 0.8%/mV. At acetate saturation the maximum acetate conversion rate is reached and with that a constant bicarbonate concentration. Control of acetate and bicarbonate concentration can be less strict than control of anode potential and pH. Current density changes due to changing anode potential and pH are in the same order of magnitude as changes due to toxicity. Strict control of pH and anode potential in a small range is required. The importance of anodic overpotential control for detection of toxic compounds is shown. To reach a stable baseline current under nontoxic conditions a MFC-based biosensor should be operated at controlled anode potential, controlled pH and saturated substrate concentrations. 2009 Elsevier B.V. All rights reserved.

  2. Carbon nanomaterials in biosensors: should you use nanotubes or graphene?

    PubMed

    Yang, Wenrong; Ratinac, Kyle R; Ringer, Simon P; Thordarson, Pall; Gooding, J Justin; Braet, Filip

    2010-03-15

    From diagnosis of life-threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.

  3. A thermal biosensor based on enzyme reaction.

    PubMed

    Zheng, Yi-Hua; Hua, Tse-Chao; Xu, Fei

    2005-01-01

    Application of the thermal biosensor as analytical tool is promising due to advantages as universal, simplicity and quick response. A novel thermal biosensor based on enzyme reaction has been developed. This biosensor is a flow injection analysis system and consists of two channels with enzyme reaction column and reference column. The reference column, which is set for eliminating the unspecific heat, is inactived on special enzyme reaction of the ingredient to be detected. The special enzyme reaction takes places in the enzyme reaction column at a constant temperature realizing by a thermoelectric thermostat. Thermal sensor based on the thermoelectric module containing 127 serial BiTe-thermocouples is used to monitor the temperature difference between two streams from the enzyme reaction column and the reference column. The analytical example for dichlorvos shows that this biosensor can be used as analytical tool in medicine and biology.

  4. The Recognizability and Localizability of Auditory Alarms: Setting Global Medical Device Standards.

    PubMed

    Edworthy, Judy; Reid, Scott; McDougall, Siné; Edworthy, Jonathan; Hall, Stephanie; Bennett, Danielle; Khan, James; Pye, Ellen

    2017-11-01

    Objective Four sets of eight audible alarms matching the functions specified in IEC 60601-1-8 were designed using known principles from auditory cognition with the intention that they would be more recognizable and localizable than those currently specified in the standard. Background The audible alarms associated with IEC 60601-1-8, a global medical device standard, are known to be difficult to learn and retain, and there have been many calls to update them. There are known principles of design and cognition that might form the basis of more readily recognizable alarms. There is also scope for improvement in the localizability of the existing alarms. Method Four alternative sets of alarms matched to the functions specified in IEC 60601-1-8 were tested for recognizability and localizability and compared with the alarms currently specified in the standard. Results With a single exception, all prototype sets of alarms outperformed the current IEC set on both recognizability and localizability. Within the prototype sets, auditory icons were the most easily recognized, but the other sets, using word rhythms and simple acoustic metaphors, were also more easily recognized than the current alarms. With the exception of one set, all prototype sets were also easier to localize. Conclusion Known auditory cognition and perception principles were successfully applied to an existing audible alarm problem. Application This work constitutes the first (benchmarking) phase of replacing the alarms currently specified in the standard. The design principles used for each set demonstrate the relative ease with which different alarm types can be recognized and localized.

  5. 46 CFR 162.050-33 - Bilge alarm: Design specification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to re-zero the instrument. The accuracy of the readings must at all times remain within the limits...) Each bilge alarm must activate its alarm whenever clean water is used for cleaning or zeroing purposes...

  6. 46 CFR 162.050-33 - Bilge alarm: Design specification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to re-zero the instrument. The accuracy of the readings must at all times remain within the limits...) Each bilge alarm must activate its alarm whenever clean water is used for cleaning or zeroing purposes...

  7. 46 CFR 162.050-33 - Bilge alarm: Design specification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to re-zero the instrument. The accuracy of the readings must at all times remain within the limits...) Each bilge alarm must activate its alarm whenever clean water is used for cleaning or zeroing purposes...

  8. A description of nurses' decision-making in managing electrocardiographic monitor alarms.

    PubMed

    Gazarian, Priscilla K; Carrier, Natalie; Cohen, Rachel; Schram, Haley; Shiromani, Samara

    2015-01-01

    To describe the cues and factors that nurses use in their decision-making when responding to clinical alarms. Alarms are designed to be very sensitive, and as a result, they are not very specific. Lack of adherence to the practice standards for electrocardiographic monitoring in hospital settings has been observed, resulting in overuse of the electrocardiographic monitoring. Monitoring without consideration of clinical indicators uses scarce healthcare resources and may even produce untoward circumstances because of alarm fatigue. With so many false alarms, alarm fatigue represents a symptom of a larger problem. It cannot be fixed until all of the factors that contribute to its existence have been examined. This was a qualitative descriptive study. This study was conducted at an academic medical centre located in the Northeast United States. Eight participants were enrolled using purposive sampling. Nurses were observed for two three-hour periods. Following each observation, the nurse was interviewed using the critical decision method to describe the cognitive processes related to the alarm activities. Qualitative data from the conducted interviews were analysed via an a priori framework founded in the critical decision method. This study reveals information, experience, guidance and decision-making as the four prominent categories contributing to nurses' decision-making in relation to alarm management. Managing technology was a category not identified a priori that emerged in the data analysis. Nurses revealed a breadth of information needed to adequately identify and interpret monitor alarms, and how they used that information to put the alarms into the particular context of an individual patient's situations. Understanding the cues and factors nurses use when responding to cardiac alarms will guide the development of learning experiences and inform policies to guide practice. © 2014 John Wiley & Sons Ltd.

  9. Differences in alarm events between disposable and reusable electrocardiography lead wires.

    PubMed

    Albert, Nancy M; Murray, Terri; Bena, James F; Slifcak, Ellen; Roach, Joel D; Spence, Jackie; Burkle, Alicia

    2015-01-01

    Disposable electrocardiographic lead wires (ECG-LWs) may not be as durable as reusable ones. To examine differences in alarm events between disposable and reusable ECG-LWs. Two cardiac telemetry units were randomized to reusable ECG-LWs, and 2 units alternated between disposable and reusable ECG-LWs for 4 months. A remote monitoring team, blinded to ECG-LW type, assessed frequency and type of alarm events by using total counts and rates per 100 patient days. Event rates were compared by using generalized linear mixed-effect models for differences and noninferiority between wire types. In 1611 patients and 9385.5 patient days of ECG monitoring, patient characteristics were similar between groups. Rates of alarms for no telemetry, leads fail, or leads off were lower in disposable ECG-LWs (adjusted relative risk [95% CI], 0.71 [0.53-0.96]; noninferiority P < .001; superiority P = .03) and monitoring (artifact) alarms were significantly noninferior (adjusted relative risk [95% CI]: 0.88, [0.62-1.24], P = .02; superiority P = .44). No between-group differences existed in false or true crisis alarms. Disposable ECG-LWs were noninferior to reusable ECG-LWs for all false-alarm events (N [rate per 100 patient days], disposable 2029 [79.1] vs reusable 6673 [97.9]; adjusted relative risk [95% CI]: 0.81 [0.63-1.06], P = .002; superiority P = .12.) Disposable ECG-LWs with patented push-button design had superior performance in reducing alarms created by no telemetry, leads fail, or leads off and significant noninferiority in all false-alarm rates compared with reusable ECG-LWs. Fewer ECG alarms may save nurses time, decrease alarm fatigue, and improve patient safety. ©2015 American Association of Critical-Care Nurses.

  10. A cost analysis of a smoke alarm installation and fire safety education program.

    PubMed

    Parmer, John E; Corso, Phaedra S; Ballesteros, Michael F

    2006-01-01

    While smoke alarm installation programs can help prevent residential fire injuries, the costs of running these programs are not well understood. We conducted a retrospective cost analysis of a smoke alarm installation program in 12 funded communities across four states. Costs included financial and economic resources needed for training, canvassing, installing, and following-up, within four cost categories: (a) personnel, (b) transportation, (c) facility, and (d) supplies. Local cost per completed home visit averaged 214.54 dollars, with an average local cost per alarm installed of 115.02 dollars. Combined state and local cost per alarm installed across all four states averaged 132.15 dollars. For every 1% increase in alarm installation, costs per alarm decrease by 1.32 dollars. As more smoke alarms are installed, the average installation cost per alarm decreases. By demonstrating effective economies of scale, this study suggests that smoke alarm programs can be implemented efficiently and receive positive economic returns on investment.

  11. Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication.

    PubMed

    Zhu, Xiaoli; Sun, Liya; Chen, Yangyang; Ye, Zonghuang; Shen, Zhongming; Li, Genxi

    2013-09-15

    Graphene, a single atom thick and two dimensional carbon nano-material, has been proven to possess many unique properties, one of which is the recent discovery that it can interact with single-stranded DNA through noncovalent π-π stacking. In this work, we demonstrate that a new strategy to fabricate many kinds of biosensors can be developed by combining this property with cascade chemical reactions. Taking the fabrication of glucose sensor as an example, while the detection target, glucose, may regulate the graphene-DNA interaction through three cascade chemical reactions, electrochemical techniques are employed to detect the target-regulated graphene-DNA interaction. Experimental results show that in a range from 5μM to 20mM, the glucose concentration is in a natural logarithm with the logarithm of the amperometric response, suggesting a best detection limit and detection range. The proposed biosensor also shows favorable selectivity, and it has the advantage of no need for labeling. What is more, by controlling the cascade chemical reactions, detection of a variety of other targets may be achieved, thus the strategy proposed in this work may have a wide application potential in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Effect of Diffusion Limitations on Multianalyte Determination from Biased Biosensor Response

    PubMed Central

    Baronas, Romas; Kulys, Juozas; Lančinskas, Algirdas; Žilinskas, Antanas

    2014-01-01

    The optimization-based quantitative determination of multianalyte concentrations from biased biosensor responses is investigated under internal and external diffusion-limited conditions. A computational model of a biocatalytic amperometric biosensor utilizing a mono-enzyme-catalyzed (nonspecific) competitive conversion of two substrates was used to generate pseudo-experimental responses to mixtures of compounds. The influence of possible perturbations of the biosensor signal, due to a white noise- and temperature-induced trend, on the precision of the concentration determination has been investigated for different configurations of the biosensor operation. The optimization method was found to be suitable and accurate enough for the quantitative determination of the concentrations of the compounds from a given biosensor transient response. The computational experiments showed a complex dependence of the precision of the concentration estimation on the relative thickness of the outer diffusion layer, as well as on whether the biosensor operates under diffusion- or kinetics-limited conditions. When the biosensor response is affected by the induced exponential trend, the duration of the biosensor action can be optimized for increasing the accuracy of the quantitative analysis. PMID:24608006

  13. Judging the urgency of non-verbal auditory alarms: a case study.

    PubMed

    Arrabito, G Robert; Mondor, Todd; Kent, Kimberley

    2004-06-22

    When designed correctly, non-verbal auditory alarms can convey different levels of urgency to the aircrew, and thereby permit the operator to establish the appropriate level of priority to address the alarmed condition. The conveyed level of urgency of five non-verbal auditory alarms presently used in the Canadian Forces CH-146 Griffon helicopter was investigated. Pilots of the CH-146 Griffon helicopter and non-pilots rated the perceived urgency of the signals using a rating scale. The pilots also ranked the urgency of the alarms in a post-experiment questionnaire to reflect their assessment of the actual situation that triggers the alarms. The results of this investigation revealed that participants' ratings of perceived urgency appear to be based on the acoustic properties of the alarms which are known to affect the listener's perceived level of urgency. Although for 28% of the pilots the mapping of perceived urgency to the urgency of their perception of the triggering situation was statistically significant for three of the five alarms, the overall data suggest that the triggering situations are not adequately conveyed by the acoustic parameters inherent in the alarms. The pilots' judgement of the triggering situation was intended as a means of evaluating the reliability of the alerting system. These data will subsequently be discussed with respect to proposed enhancements in alerting systems as it relates to addressing the problem of phase of flight. These results call for more serious consideration of incorporating situational awareness in the design and assignment of auditory alarms in aircraft.

  14. Three-Dimensional Hierarchical Plasmonic Nano-Architecture Enhanced Surface-Enhanced Raman Scattering Immuno-Sensor for Cancer Biomarker Detection in Blood Plasma

    PubMed Central

    Li, Ming; Cushing, Scott K.; Zhang, Jianming; Suri, Savan; Evans, Rebecca; Petros, William P.; Gibson, Laura F.; Ma, Dongling; Liu, Yuxin; Wu, Nianqiang

    2013-01-01

    A three-dimensional (3D) hierarchical plasmonic nano-architecture has been designed for a sensitive surface-enhanced Raman scattering (SERS) immuno-sensor for protein biomarker detection. The capture antibody molecules are immobilized on a plasmonic gold triangle nano-array pattern. On the other hand, the detection antibody molecules are linked to the gold nano-star@Raman-reporter@silica sandwich nanoparticles. When protein biomarkers are present, the sandwich nanoparticles are captured over the gold triangle nano-array, forming a confined 3D plasmonic field, leading to the enhanced electromagnetic field in intensity and in 3D space. As a result, the Raman reporter molecules are exposed to a high density of “hot spots”, which amplifies the Raman signal remarkably, improving the sensitivity of the SERS immuno-sensor. This SERS immuno-sensor exhibits a wide linear range (0.1 pg/mL to 10 ng/mL), and a low limit of detection (7 fg/mL) toward human immunoglobulin G (IgG) protein in the buffer solution. This biosensor has been successfully used for detection of the vascular endothelial growth factor (VEGF) in the human blood plasma from clinical breast cancer patient samples. PMID:23659430

  15. 33 CFR 401.17 - Pitch indicators and alarms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pitch indicators and alarms. 401... indicators and alarms. Every vessel of 1600 gross registered tons or integrated tug and barge or articulated... propeller shall be equipped with— (a) A pitch indicator in the wheelhouse and the engine room; and (b...

  16. 33 CFR 401.17 - Pitch indicators and alarms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pitch indicators and alarms. 401... indicators and alarms. Every vessel of 1600 gross registered tons or integrated tug and barge or articulated... propeller shall be equipped with— (a) A pitch indicator in the wheelhouse and the engine room; and (b...

  17. Antibodies and antibody-derived analytical biosensors

    PubMed Central

    Sharma, Shikha; Byrne, Hannah

    2016-01-01

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  18. Nuthatches eavesdrop on variations in heterospecific chickadee mobbing alarm calls.

    PubMed

    Templeton, Christopher N; Greene, Erick

    2007-03-27

    Many animals recognize the alarm calls produced by other species, but the amount of information they glean from these eavesdropped signals is unknown. We previously showed that black-capped chickadees (Poecile atricapillus) have a sophisticated alarm call system in which they encode complex information about the size and risk of potential predators in variations of a single type of mobbing alarm call. Here we show experimentally that red-breasted nuthatches (Sitta canadensis) respond appropriately to subtle variations of these heterospecific "chick-a-dee" alarm calls, thereby evidencing that they have gained important information about potential predators in their environment. This study demonstrates a previously unsuspected level of discrimination in intertaxon eavesdropping.

  19. Nano-technology and nano-toxicology.

    PubMed

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  20. Nano-technology and nano-toxicology

    PubMed Central

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021

  1. A general strategy to construct small molecule biosensors in eukaryotes.

    PubMed

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  2. Development and experimental evaluation of an alarm concept for an integrated surgical workstation.

    PubMed

    Zeißig, Eva-Maria; Janß, Armin; Dell'Anna-Pudlik, Jasmin; Ziefle, Martina; Radermacher, Klaus

    2016-04-01

    Alarm conditions of the technical equipment in operating rooms represent a prevalent cause for interruptions of surgeons and scrub nurses, resulting in an increase of workload and potential reduction of patient safety. In this work, an alarm concept for an integrated operating room system based on open communication standards is developed and tested. In a laboratory experiment, the reactions of surgeons were analysed, comparing the displaying of alarms on an integrated workstation and on single devices: disruptive effects of alarm handling on primary task (ratings of perceived distraction, resumption lag, deterioration of speed, accuracy, and prospective memory), efficiency and effectiveness of identification of alarms, as well as perceived workload were included. The identification of the alarm cause is significantly more efficient and effective with the integrated alarm concept. Moreover, a slightly lower deterioration of performance of the primary task due to the interruption of alarm handling was observed. Displaying alarms on an integrated workstation supports alarm handling and consequently reduces disruptive effects on the primary task. The findings show that even small changes can reduce workload in a complex work environment like the operating room, resulting in improved patient safety.

  3. Blood leak alarm interference by hydoxocobalamin is hemodialysis machine dependent.

    PubMed

    Sutter, M E; Clarke, M E; Cobb, J; Daubert, G P; Rathore, V S; Aston, L S; Poppenga, R H; Ford, J B; Owen, K P; Albertson, T E

    2012-12-01

    Hydroxocobalamin has been reported to interfere with the blood leak alarm on hemodialysis machines making it difficult to use this treatment modality after hydroxocobalamin infusion. The objective was to determine if this interference with hydroxocobalamin occurs across hemodialysis machines by different manufacturers. Additionally, we aimed to see if this represented a colorimetric interference alone or if it is the optical properties of hydroxocobalamin. Hydroxocobalamin was reconstituted per package insert. Food coloring was added to 0.9% saline to create the colors of the visual spectrum. Optical properties of absorbance and transmittance were measured. Hydroxocobalamin and the saline solutions were infused into the Fresenius 2008K™ and the Gambro Phoenix X36™ machines. Times were recorded from the start of the machine until the solution finished or the alarm triggered. When evaluating the Gambro Phoenix X36™ machine and dialysis circuit; the alarm did not trigger. In contrast, the blood leak alarm on the Fresenius 2008K™ machine was tripped by both the red solution and hydoxocobalamin infused per the package insert. The alarm stopped the machine between 128 and 132 seconds for the red solution and between 30 and 35 seconds with the hydroxocobalamin. Membranes of the circuits where the alarm tripped were examined and remained intact without blood. Results were validated on different machines with new circuits. Hydroxocobalamin infusion per package insert and the red saline solution prepared with Red Dye 40 both triggered the blood leak alarm and stopped the Fresenius 2008K™ machine. However, this was not true for the Gambro Phoenix X36™ machine as the alarm never triggered. The interference with the Fresenius 2008K™ appears colorimetric due to normal saline with Red Dye 40 triggering the alarm. We alert physicians to become familiar with the properties of individual dialysis machines prior to use of hydroxocobalamin. When facing difficulties with

  4. 33 CFR 127.201 - Sensing and alarm systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... systems. (a) Fixed sensors must have audio and visual alarms in the control room and audio alarms nearby. (b) Fixed sensors that continuously monitor for LNG vapors must— (1) Be in each enclosed area where vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously...

  5. 33 CFR 127.201 - Sensing and alarm systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems. (a) Fixed sensors must have audio and visual alarms in the control room and audio alarms nearby. (b) Fixed sensors that continuously monitor for LNG vapors must— (1) Be in each enclosed area where vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously...

  6. 33 CFR 127.201 - Sensing and alarm systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems. (a) Fixed sensors must have audio and visual alarms in the control room and audio alarms nearby. (b) Fixed sensors that continuously monitor for LNG vapors must— (1) Be in each enclosed area where vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously...

  7. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Bilge high level alarms. 182.530 Section 182.530... TONS) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.530 Bilge high level alarms. (a) On a... operating station to indicate a high water level in each of the following normally unmanned spaces: (1) A...

  8. Perimeter security alarm system based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Cui; Wang, Lixin

    2010-11-01

    With the development of the society and economy and the improvement of living standards, people need more and more pressing security. Perimeter security alarm system is widely regarded as the first line of defense. A highly sensitive Fiber Bragg grating (FBG) vibration sensor based on the theory of the string vibration, combined with neural network adaptive dynamic programming algorithm for the perimeter security alarm system make the detection intelligently. Intelligent information processing unit identify the true cause of the vibration of the invasion or the natural environment by analyzing the frequency of vibration signals, energy, amplitude and duration. Compared with traditional perimeter security alarm systems, such as infrared perimeter security system and electric fence system, FBG perimeter security alarm system takes outdoor passive structures, free of electromagnetic interference, transmission distance through optical fiber can be as long as 20 km It is able to detect the location of event within short period of time (high-speed response, less than 3 second).This system can locate the fiber cable's breaking sites and alarm automatically if the cable were be cut. And the system can prevent effectively the false alarm from small animals, birds, strong wind, scattering things, snowfalls and vibration of sensor line itself. It can also be integrated into other security systems. This system can be widely used in variety fields such as military bases, nuclear sites, airports, warehouses, prisons, residence community etc. It will be a new force of perimeter security technology.

  9. Ultrasonic Technology in Duress Alarms.

    ERIC Educational Resources Information Center

    Lee, Martha A.

    2000-01-01

    Provides the pros and cons of the most commonly used technologies in personal duress alarm systems in the school environment. Discussed are radio frequency devices, infrared systems, and ultrasonic technology. (GR)

  10. 46 CFR 131.815 - Alarm for fixed gaseous fire-extinguishing system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Alarm for fixed gaseous fire-extinguishing system. 131... VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Alarm for fixed gaseous fire-extinguishing system. Each alarm for a fixed gaseous fire-extinguishing system must be...

  11. 46 CFR 131.815 - Alarm for fixed gaseous fire-extinguishing system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarm for fixed gaseous fire-extinguishing system. 131... VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Alarm for fixed gaseous fire-extinguishing system. Each alarm for a fixed gaseous fire-extinguishing system must be...

  12. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    PubMed

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  14. Magnetic biosensors: Modelling and simulation.

    PubMed

    Nabaei, Vahid; Chandrawati, Rona; Heidari, Hadi

    2018-04-30

    In the past few years, magnetoelectronics has emerged as a promising new platform technology in various biosensors for detection, identification, localisation and manipulation of a wide spectrum of biological, physical and chemical agents. The methods are based on the exposure of the magnetic field of a magnetically labelled biomolecule interacting with a complementary biomolecule bound to a magnetic field sensor. This Review presents various schemes of magnetic biosensor techniques from both simulation and modelling as well as analytical and numerical analysis points of view, and the performance variations under magnetic fields at steady and nonstationary states. This is followed by magnetic sensors modelling and simulations using advanced Multiphysics modelling software (e.g. Finite Element Method (FEM) etc.) and home-made developed tools. Furthermore, outlook and future directions of modelling and simulations of magnetic biosensors in different technologies and materials are critically discussed. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  16. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  17. Persistent Females and Compliant Males Coordinate Alarm Calling in Diana Monkeys.

    PubMed

    Stephan, Claudia; Zuberbühler, Klaus

    2016-11-07

    Sexual dimorphisms in animal vocal behavior have been successfully explained by sexual selection theory (e.g., mammals [1-5]; birds [6, 7]; anurans [8, 9]), but this does not usually include alarm calls, which are thought to be the product of kin or individual selection (e.g., [10, 11]). Here, we present the results of playback experiments with wild Diana monkeys, a species with highly dimorphic predator-specific alarms, to investigate the communication strategies of males and females during predator encounters. First, we simulated predator presence by broadcasting vocalizations of their main predators, leopards or eagles. We found that males only produced predator-specific alarms after the females had produced theirs, in response to which the females ceased alarm calling. In a second experiment, we created congruent and incongruent situations, so that the calls of a predator were followed by playbacks of male or female alarms with a matching or mismatching referent. For congruent conditions, results were the same as in the first experiment. For incongruent conditions, however, the males always gave predator-specific alarms that referentially matched the females' calls, regardless of the previously displayed predator. In contrast, females always gave predator-specific alarms that matched the predator type, regardless of their own male's subsequent calls. Moreover, the females persistently continued to alarm call until their own male produced calls with the matching referent. Results show that males and females attend to the informational content of each other's alarm calls but prioritize them differently relative to an experienced external event, a likely reflection of different underlying selection pressures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-01

    The lack of specific, low-cost, rapid, sensitive, and easy detection of biomolecules has resulted in the development of biosensor technology. Innovations in biosensor technology have enabled many biosensors to be commercialized and have enabled biomolecules to be detected onsite. Moreover, the emerging technologies of lab-on-a-chip microdevices and nanosensors offer opportunities for the development of new biosensors with much better performance. Biosensors were first introduced into the laboratory by Clark and Lyons. They developed the first glucose biosensor for laboratory conditions. Then in 1973, a glucose biosensor was commercialized by Yellow Springs Instruments. The commercial biosensors have small size and simple construction and they are ideal for point-of-care biosensing. In addition to glucose, a wide variety of metabolites such as lactate, cholesterol, and creatinine can be detected by using commercial biosensors. Like the glucose biosensors (tests) other commercial tests such as for pregnancy (hCG), Escherichia coli O157, influenza A and B viruses, Helicobacter pylori, human immunodeficiency virus, tuberculosis, and malaria have achieved success. Apart from their use in clinical analysis, commercial tests are also used in environmental (such as biochemical oxygen demand, nitrate, pesticide), food (such as glutamate, glutamine, sucrose, lactose, alcohol, ascorbic acid), and biothreat/biowarfare (Bacillus anthracis, Salmonella, Botulinum toxin) analysis. In this review, commercial biosensors in clinical, environmental, food, and biowarfare analysis are summarized and the commercial biosensors are compared in terms of their important characteristics. This is the first review in which all the commercially available tests are compiled together. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. 46 CFR 97.37-50 - Ventilation alarm failure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation alarm failure. 97.37-50 Section 97.37-50... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-50 Ventilation alarm failure. (a) The...-inch letters “VENTILATION FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15286, Dec. 6...

  20. 46 CFR 97.37-50 - Ventilation alarm failure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation alarm failure. 97.37-50 Section 97.37-50... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-50 Ventilation alarm failure. (a) The...-inch letters “VENTILATION FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15286, Dec. 6...