Sample records for nano engineering institute

  1. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Engineering Institute

    Science.gov Websites

    Search Site submit National Security Education Center Los Alamos National LaboratoryEngineering Institute Addressing national needs by fostering specialized recruiting and strategic partnerships Los Alamos National LaboratoryEngineering Institute Menu NSEC Educational Programs Los Alamos Dynamics Summer

  3. Nano-engineered polyurethane resin-modified concrete.

    DOT National Transportation Integrated Search

    2014-04-01

    The goal of the proposed work is to investigate the application of nano-engineered polyurethane (NEPU) emulsions for latex modified : concrete (LMC). NEPU emulsions are non-toxic, environment friendly, durable over a wide temperature range, provide b...

  4. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-09-01

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, 'nano-engineered SiC') and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. It was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due to the local increase in electronic energy loss that enhanced dynamic recovery.

  5. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  6. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; ...

    2016-06-19

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  7. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 2 [Review on morphology and nanostructure characterization of nano-particle emission from internal combustion engines

    DOE PAGES

    Choi, Seungmok; Myung, C. L.; Park, S.

    2014-03-05

    This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less

  8. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    PubMed

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  9. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration.

    PubMed

    Leijten, Jeroen; Rouwkema, Jeroen; Zhang, Yu Shrike; Nasajpour, Amir; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-27

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in the generation of such implants, by enabling spatiotemporal control of the cellular microenvironment. Here we review the role, function and progress of a wide range of nano- and microtechnologies that are driving the advancements in the field of tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering.

    PubMed

    Ao, Chenghong; Niu, Yan; Zhang, Ximu; He, Xu; Zhang, Wei; Lu, Canhui

    2017-04-01

    Nanofibrous scaffolds from cotton cellulose and nano-hydroxyapatite (nano-HA) were electrospun for bone tissue engineering. The solution properties of cellulose/nano-HA spinning dopes and their associated electrospinnability were characterized. Morphological, thermal and mechanical properties of the electrospun cellulose/nano-HA nanocomposite nanofibers (ECHNN) were measured and the biocompatibility of ECHNN with human dental follicle cells (HDFCs) was evaluated. Scanning electron microscope (SEM) images indicated that the average diameter of ECHNN increased with a higher nano-HA loading and the fiber diameter distributions were well within the range of natural ECM (extra cellular matrix) fibers (50-500nm). The ECHNN exhibited extraordinary mechanical properties with a tensile strength and a Young's modulus up to 70.6MPa and 3.12GPa respectively. Moreover, it was discovered that the thermostability of the ECHNN could be enhanced with the incorporation of nano-HA. Cell culture experiments demonstrated that the ECHNN scaffolds were quite biocompatible for HDFCs attachment and proliferation, suggesting their great potentials as scaffold materials in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO 2  < nano iron oxides < nano-Al 2 O 3  < nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  12. The maximum efficiency of nano heat engines depends on more than temperature

    NASA Astrophysics Data System (ADS)

    Woods, Mischa; Ng, Nelly; Wehner, Stephanie

    Sadi Carnot's theorem regarding the maximum efficiency of heat engines is considered to be of fundamental importance in the theory of heat engines and thermodynamics. Here, we show that at the nano and quantum scale, this law needs to be revised in the sense that more information about the bath other than its temperature is required to decide whether maximum efficiency can be achieved. In particular, we derive new fundamental limitations of the efficiency of heat engines at the nano and quantum scale that show that the Carnot efficiency can only be achieved under special circumstances, and we derive a new maximum efficiency for others. A preprint can be found here arXiv:1506.02322 [quant-ph] Singapore's MOE Tier 3A Grant & STW, Netherlands.

  13. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    DOE PAGES

    Fomin, Vladimir M.; Balandin, Alexander A.

    2015-10-10

    We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatchmore » between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.« less

  14. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Vladimir M.; Balandin, Alexander A.

    We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatchmore » between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.« less

  15. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  16. Engineered nano particles: Nature, behavior, and effect on the environment.

    PubMed

    Goswami, Linee; Kim, Ki-Hyun; Deep, Akash; Das, Pallabi; Bhattacharya, Satya Sundar; Kumar, Sandeep; Adelodun, Adedeji A

    2017-07-01

    Increased application of engineered nano particles (ENPs) in production of various appliances and consumer items is increasing their presence in the natural environment. Although a wide variety of nano particles (NPs) are ubiquitously dispersed in ecosystems, risk assessment guidelines to describe their ageing, direct exposure, and long-term accumulation characteristics are poorly developed. In this review, we describe what is known about the life cycle of ENPs and their impact on natural systems and examine if there is a cohesive relationship between their transformation processes and bio-accessibility in various food chains. Different environmental stressors influence the fate of these particles in the environment. Composition of solid media, pore size, solution chemistry, mineral composition, presence of natural organic matter, and fluid velocity are some environmental stressors that influence the transformation, transport, and mobility of nano particles. Transformed nano particles can reduce cell viability, growth and morphology, enhance oxidative stress, and damage DNA in living organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Structured electron beams from nano-engineered cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lueangaramwong, A.; Mihalcea, D.; Andonian, G.

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  18. SOFTWARE ENGINEERING INSTITUTE (SEI)

    EPA Science Inventory

    The Software Engineering Institute (SEI) is a federally funded research and development center established in 1984 by the U.S. Department of Defense and operated by Carnegie Mellon University. SEI has a broad charter to provide leadership in the practice of software engineering t...

  19. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.

    PubMed

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-03-15

    Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes. Heart valve-related disease is an important clinical problem, with over 300,000 surgical repairs performed annually. Tissue engineering offers a promising strategy for heart valve repair and regeneration. In this study, we developed and tissue engineered living nano-micro fibrous woven fabric/hydrogel composite scaffolds by using textile technique combined with bioactive hydrogel formation. The novelty of our technique is that the composite scaffolds can mimic physical structure anisotropy and the mechanical strength of natural aortic valve leaflet. Moreover, the composite scaffolds prevented the

  20. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.

    PubMed

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-02-25

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  1. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    PubMed Central

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002

  2. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    PubMed

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering.

    PubMed

    Sarkar, Soumi Dey; Farrugia, Brooke L; Dargaville, Tim R; Dhara, Santanu

    2013-12-01

    In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze-drying, and subsequent cross-linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re-epithelization-a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  4. The Institute for Software Engineering.

    ERIC Educational Resources Information Center

    Inselbert, Armond

    1982-01-01

    The Institute for Software Engineering, a data processing education, publishing and consulting organization with offices and members worldwide, is described. The goal of the Institute is to assist data processing management and staff in providing the service levels required to support an organization's business needs. (Author/MLW)

  5. VERIFI | Virtual Engine Research Institute and Fuels Initiative

    Science.gov Websites

    VERIFI Virtual Engine Research Institute and Fuels Initiative Argonne National Laboratory Skip to Virtual Engine Research Institute and Fuels Initiative (VERIFI) at Argonne National Laboratory is the Argonne National Laboratory in which to answer your complex engine questions, verify the uncertainties

  6. Transparent, flexible supercapacitors from nano-engineered carbon films.

    PubMed

    Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  7. Transparent, flexible supercapacitors from nano-engineered carbon films

    PubMed Central

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970

  8. Transparent, flexible supercapacitors from nano-engineered carbon films

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  9. PREFACE: Selected papers from the Fourth Topical Conference on Nanoscale Science and Engineering of the American Institute of Chemical Engineers

    NASA Astrophysics Data System (ADS)

    Wong, Michael S.; Lee, Gil U.

    2005-07-01

    This special issue of Nanotechnology contains research papers contributed by the participants of the Fourth Topical Conference on Nanoscale Science and Engineering at the Annual Meeting of the American Institute of Chemical Engineers (AIChE), which was held in Austin, Texas, USA, 7-12 November, 2004. This conference saw 284 oral presentations from institutions around the world, which is the highest number for this topical conference series to date. These presentations were organized into 64 sessions, covering the range of nanotechnology subject areas in which chemical engineers are currently engaged. These sessions included the following areas. • Fundamentals: thermodynamics at the nanoscale; applications of nanostructured fluids; transport properties in nanophase and nanoscale systems; molecular modelling methods; self and directed assembly at the nanoscale; nanofabrication and nanoscale processing; manipulation of nanophases by external fields; nanoscale systems; adsorption and transport in carbon nanotubes; nanotribology; making the transition from materials and phenomena to new technologies; operation of micro-and nano-systems. • Materials: nanoparticle synthesis and stabilization; nanoscale structure in polymers; nanotemplating of polymers; synthesis of carbon nanotubes and nanotube-based materials; nanowires; nanoparticle assemblies and superlattices; nanoelectronic materials; self-assembly of templated inorganic materials; nanostructured hybrid organic/inorganic materials; gas phase synthesis of nanoparticles; multicomponent structured particles; nano energetic materials; liquid-phase synthesis of nanoparticles. • Energy: synthesis and characterization of nanostructured catalytic materials; nanomaterials and devices for energy applications. • Biotechnology: nanobiotechnology; nanotechnology for the biotechnology and pharmaceuticals industries; nanotechnology and nanobiotechnology for sensors; advances in biomaterials, bionanotechnology, biomimetic

  10. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  11. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    PubMed Central

    Wang, Xiaoliang; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    Titanium dioxide (TiO2) materials have been intensively studied in the past years because of many varied applications. This mini review article focuses on TiO2 micro and nano architectures with the prevalent crystal structures (anatase, rutile, brookite, and TiO2(B)), and summarizes the major advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO2 micro and nano structures, and present the principles and growth mechanisms of TiO2 nanostructures via different strategies, with an emphasis on rational control of the surface and interface structures. We further discuss the applications of TiO2 micro and nano architectures in photocatalysis, lithium/sodium ion batteries, and Li–S batteries. Throughout the discussion, the relationship between the device performance and the surface/interface structures of TiO2 micro and nano structures will be highlighted. Then, we discuss the phase transitions of TiO2 nanostructures and possible strategies of improving the phase stability. The review concludes with a perspective on the current challenges and future research directions. PMID:29120393

  12. Huyghens Engines--a new concept and its embodiment for nano-micro interlevel information processing.

    PubMed

    Santoli, Salvatore

    2009-02-01

    Current criteria in Bionanotechnology based on software and sensor/actuator hardware of Artificial Intelligence for bioinspired nanostructured systems lack the nanophysical background and key mathematics to describe and mimick the biological hierarchies of nano-to-micro-integrated informational/energetic levels. It is argued that bionanoscale hardware/software undividable solidarity can be mimicked by artificial nanostructured systems featuring intra/interlevel information processing through the emerging organization principle of quantum holography, described by the Heisenberg group G and by harmonic analysis on G. From a property of G as a Lie group, quantum holography is shown to merge the quantum/classical dynamic-symbolic ongoings into the structure-function unity of biological sensing-information processing-actuating, while by Ch. Huyghens' principles about wave motion and coupled oscillators synchronization it applies to environmental waves of any kind, so embodying a universal information processing engine, dubbed Huyghens Engine, that mimicks the holistic nanobiological structure-function solidarity and the kinetics/thermodynamics of nano/micro interface information transfer.

  13. Nano scaffolds and stem cell therapy in liver tissue engineering

    NASA Astrophysics Data System (ADS)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  14. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    NASA Astrophysics Data System (ADS)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  15. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering.

    PubMed

    Izadifar, Mohammad; Haddadi, Azita; Chen, Xiongbiao; Kelly, Michael E

    2015-01-09

    Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.

  16. [Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor].

    PubMed

    Zhang, Minglei; Wang, Dapeng; Yin, Ruofeng

    2015-10-06

    To explorec Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor transinfected. Rat bone marrow mesenchymal stem cells (BMSCs) was separated, using BMSCs as target cells, and then vascular endothelial growth factor (VEGF) gene was transfected. Composite bone marrow mesenchymal stem cells and cells transfected with nano-hydroxyapatite (HA)/polylactic-co-glycolic acid (PLGA). The composition of cell and scaffold was observed. The blank plasmid transfection was 39.1%, 40.1% in VEGF group. The cell adhesion and growth was found on the scaffold pore wall after 5 days, and the number of adherent cells in the nano-HA/PLGA composite scaffold material basically had no significant difference in both. Although the nano-HA/PLGA scaffold material is still not fully meet the requirements of the matrix material for bone tissue engineering, but good biocompatibility, structure is its rich microporous satisfaction in material mechanics, toughening, enhanced obviously. Composition scaffold with BMSCs transfected by VEGF plasmid, the ability of angiogenesis is promoted.

  17. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications

    PubMed Central

    Xia, Yan; Zhou, Panyu; Cheng, Xiaosong; Xie, Yang; Liang, Chong; Li, Chao; Xu, Shuogui

    2013-01-01

    The regeneration of functional tissue in osseous defects is a formidable challenge in orthopedic surgery. In the present study, a novel biomimetic composite scaffold, here called nano-hydroxyapatite (HA)/poly-ε-caprolactone (PCL) was fabricated using a selective laser sintering technique. The macrostructure, morphology, and mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the nano-HA/PCL scaffolds exhibited predesigned, well-ordered macropores and interconnected micropores. The scaffolds have a range of porosity from 78.54% to 70.31%, and a corresponding compressive strength of 1.38 MPa to 3.17 MPa. Human bone marrow stromal cells were seeded onto the nano-HA/PCL or PCL scaffolds and cultured for 28 days in vitro. As indicated by the level of cell attachment and proliferation, the nano-HA/PCL showed excellent biocompatibility, comparable to that of PCL scaffolds. The hydrophilicity, mineralization, alkaline phosphatase activity, and Alizarin Red S staining indicated that the nano-HA/PCL scaffolds are more bioactive than the PCL scaffolds in vitro. Measurements of recombinant human bone morphogenetic protein-2 (rhBMP-2) release kinetics showed that after nano-HA was added, the material increased the rate of rhBMP-2 release. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both nano-HA/PCL scaffolds and PCL scaffolds were implanted in rabbit femur defects for 3, 6, and 9 weeks. The wounds were studied radiographically and histologically. The in vivo results showed that both nano-HA/PCL composite scaffolds and PCL scaffolds exhibited good biocompatibility. However, the nano-HA/PCL scaffolds enhanced the efficiency of new bone formation more than PCL scaffolds and fulfilled all the basic requirements of bone tissue engineering scaffolds. Thus, they show large potential for use in orthopedic and reconstructive surgery. PMID:24204147

  18. Combinatorial Nano-Bio Interfaces.

    PubMed

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  19. Activities of the Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering (IME) is part of Canada's National Research Council. Its mission is to undertake, support, promote, and disseminate research and development in the mechanical engineering aspects of three vital sectors of the Canadian economy: transportation, resource industries, and manufacturing. The IME achieves its mission by performing research and development in its own facilities; by developing, providing, and transferring expertise and knowledge; by making its research facilities available to collaborators and clients; and by participating in international liaison and collaborative research activities. Six research programs are conducted in the IME: Advanced Manufacturing Technology; Coastal Zone Engineering; Cold Regions Engineering; Combustion and Fluids Engineering; Ground Transportation Technology; and Machinery and Engine Technology. The rationale and major research thrusts of each program are described, and specific achievements in 1991-92 are reviewed. Lists of technical reports and papers presented by IME personnel are also included.

  20. The NanoSustain and NanoValid project--two new EU FP7 research initiatives to assess the unique physical-chemical and toxicological properties of engineered nanomaterials.

    PubMed

    Reuther, Rudolf

    2011-02-01

    In 2010, the EU FP NanoSustain project (247989) has been successfully launched with the objective to develop innovative solutions for the sustainable use, recycling and final treatment of engineered nanomaterials (ENMs). The same year, NanoValid (263147), a large-scale integrating EU FP7 project has been initiated and contract negotiations with the European Commission commenced, to develop new reference methods and materials applicable to the unique properties of ENMs. The paper presented will give an overview on the main objectives of these 2 new European research initiatives, on main tasks to achieve objectives, and on the impact on current standardization efforts and technical innovations.

  1. Understanding Latino Students' Sense of Belonging in Engineering: The Impact of Institutional Agents at one Predominantly White Institution

    NASA Astrophysics Data System (ADS)

    Alva, Desiree D.

    This study explores the ways in which institutional agents (i.e., faculty, staff, and advisors) influence Latino engineering students' sense of belonging at a predominantly White institution (PWI). Research (e.g., Museus, Palmer, Davis, & Maramba, 2011) has shown the struggles that Latino students face in pursuing higher education (e.g., culture shock, marginalization, financial barriers), as well as the obstacles that some of them face related to their undocumented status (e.g., out-of-state tuition, ineligibility for federal student aid) (Gildersleeve & Ranero, 2010; Gildersleeve, Rumann, & Mondragon, 2010). However, there is little to no empirical research that describes how successful Latino engineering students connect socially in order to feel a sense of belonging in competitive majors, such as engineering, at a PWI. To explore this phenomenon, this study addressed the following research questions: (a) How do Latino students describe their social connections with institutional agents? (b) According to Latino students, how have those social connections influenced their sense of belonging in engineering at a PWI? (c) How are the social connections and their influence on sense of belonging in engineering alike or different for Latinos who identify as undocumented? Using a qualitative case study design (i.e., on-site observations, interviews, and a constant comparative method), the social connections that seven Latino students made at one Midwestern university were explored in an effort to understand the influence that institutional agents had on their sense of belonging in engineering at a PWI. The findings revealed that while Latinos felt marginalized, they eventually felt a sense of belonging in engineering through developing their engineering identity with the support of institutional agents and peers. Further implications for theory, methodology, policy, and practice were also explored.

  2. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation.

    PubMed

    Keivani, F; Shokrollahi, P; Zandi, M; Irani, S; F Shokrolahi; Khorasani, S C

    2016-11-01

    Polycaprolactone (PCL)/hydroxyapatite nano-composites are among the best candidates for tissue engineering. However, interactions between nHAp and PCL are difficult to control leading to inhomogeneous dispersion of the bio-ceramic particles. Grafting of polymer chains at high density/chain length while promotes the phase compatibility may result in reduced HAp exposed surface area and therefore, bioactivity is compromised. This issue is addressed here by grafting PCL chains onto HAp nano-particles through ring opening polymerization of ε-caprolactone (PCL-g-HAp). FTIR and TGA analysis showed that PCL (6.9wt%), was successfully grafted on the HAp. PCL/PCL-g-HAp nano-fibrous scaffold showed up to 10 and 33% enhancement in tensile strength and modulus, respectively, compared to those of PCL/HAp. The effects of HAp on the in vitro HAp formation were investigated for both the PCL/HAp and PCL/PCL-g-HAp scaffolds. Precipitation of HAp on the nano-composite scaffolds observed after 15days incubation in simulated body fluid (SBF), as confirmed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Human fibroblasts were seeded on PCL, PCL/HAp and PCL/PCL-g-HAp scaffolds. According to MTT assay, the highest cell proliferation was recorded for PCL/PCL-g-HAp nano-composite, at all time intervals (1-21days, P<0.001). Fluorescent microscopy (of DAPI stained samples) and electron microscopy images showed that all nano-fibrous scaffolds (PCL, PCL/HAp, and PCL/PCL-g-HAp), were non-toxic against cells, while more cell adhesion, and the most uniform cell distribution observed on the PCL/PCL-g-HAp. Overall, grafting of relatively short chains of PCL on the surface of HAp nano-particles stimulates fibroblasts adhesion and proliferation on the PCL/PCL-g-HAp nano-composite. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans

    PubMed Central

    Arora, Pooja; Sindhu, Annu; Dilbaghi, Neeraj; Chaudhury, Ashok; Rajakumar, Govindasamy; Rahuman, Abdul Abdul

    2012-01-01

    Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering. PMID:22260258

  4. Nano Step

    NASA Image and Video Library

    2012-09-25

    ISS033-E-007358 (25 Sept. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, services the Nano Step payload in the Kibo laboratory of the International Space Station.

  5. Best Practices for Quality Improvement--Lessons from Top Ranked Engineering Institutions

    ERIC Educational Resources Information Center

    Rao, Potti Srinivasa; Viswanadhan, K. G.; Raghunandana, K.

    2015-01-01

    Maximum number of privately funded engineering institutions have been established in India in the last two decades to meet the growing needs of technical manpower required by the Engineering and IT companies as well as aspiring students after completion of the Pre-University Program. However, a large number of institutions have not been able to…

  6. International Institute for Hydraulic and Environmental Engineering

    ERIC Educational Resources Information Center

    Mostertman, L. J.

    1977-01-01

    Describes the activities of the International Institute for Hydraulic and Environmental Engineering (IHE), whose primary function is the promotion of the better use of water resources as a vehicle of development by the transfer of knowledge and experience. (Author/RK)

  7. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    NASA Astrophysics Data System (ADS)

    Khodabandeh, M.; Koohi, M. K.; Roshani, A.; Shahroziyan, E.; Badri, B.; Pourfallah, A.; Shams, Gh; Hobbenaghi, R.; Sadeghi-Hashjin, G.

    2011-07-01

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3×10-3 - 24×10-3 ml/cm2 and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6×10-3, 23×10-3, 24×10-3 and 16×10-3 ml/cm2 respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most contact with environment and subsequently

  8. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling.

    PubMed

    Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd

    2016-12-01

    Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.

  9. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.

    PubMed

    Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V

    2011-03-01

    In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    NASA Astrophysics Data System (ADS)

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-06-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars.

  11. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    PubMed Central

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-01-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars. PMID:27353231

  12. Micro/nano-particles and Cells: Manipulation, Transport, and Self-assembly

    DTIC Science & Technology

    2014-10-23

    SECURITY CLASSIFICATION OF: Technologies that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered...that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered systems that can assemble, transport, and...nano-scale particles offer several advantages as building blocks of artificial materials . The relative ease of modifying their charge states

  13. caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine

    PubMed Central

    Gaheen, Sharon; Hinkal, George W.; Morris, Stephanie A.; Lijowski, Michal; Heiskanen, Mervi

    2014-01-01

    The use of nanotechnology in biomedicine involves the engineering of nanomaterials to act as therapeutic carriers, targeting agents and diagnostic imaging devices. The application of nanotechnology in cancer aims to transform early detection, targeted therapeutics and cancer prevention and control. To assist in expediting and validating the use of nanomaterials in biomedicine, the National Cancer Institute (NCI) Center for Biomedical Informatics and Information Technology, in collaboration with the NCI Alliance for Nanotechnology in Cancer (Alliance), has developed a data sharing portal called caNanoLab. caNanoLab provides access to experimental and literature curated data from the NCI Nanotechnology Characterization Laboratory, the Alliance and the greater cancer nanotechnology community. PMID:25364375

  14. The Chemo-Biological Outreach of Nano-Biomaterials: Implications for Tissue Engineering and Regenerative Medicine.

    PubMed

    Kumar, Pradeep; Choonara, Yahya E; Khan, Riaz A; Pillay, Viness

    2017-01-01

    Nanobiomaterials can be defined as materials interacting with and influencing the biological microenvironment at a nanointerface. Recently the basic as well as applied research related to nanobiomaterials - a conjugation of nano-, material- and life-sciences - has immensely evolved for therapeutics and related biotechnology areas. The current overview focused on the potential of nanobiomaterial-based substrates towards the generation of biocompatible surfaces, tissue engineering architectures, and regenerative medicine. Emphasis was given to chemomolecular functionalization of nanobiomaterials, nanobiomaterial composites, and morphomechanically modified nanoarchetypes and their inherent chemo-biological interaction with the biological microenvironment. Additionally, recent developments in nanobiomaterial substrate design and structure, chemo-biological interface related bio-systems uses and further evolving applications in health care, therapeutics and nanomedicine were discussed herein. Furthermore, a special emphasis was placed on the nano-chemo-biological interactions inherent to various nanobiomaterial substrates in close vicinity with biological systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. A Candidate Strategy for the Software Engineering Institute

    DTIC Science & Technology

    1983-03-15

    Strategy For The Software Engineering I Institute InstiuteG PL4FOPRMING ONG. REPORT NUMBER 7. AUTNOR(,) S. CONTRACT OR GRANT NUMUERfaj The DoD Joint Service...interface standards, STARS, APSE, training, state-of-the-practice, mission critical systems, software technology, hardware. 20. ABSTRACT fCantinue an , vape ...CLASSIFIrCATION OFr THIS PACE (When Data 211111104, A.•.. A CANDIDATE STRATEGY FOR THE SOFTWARE ENGINEEERING INSTITUTE Aoocession For DTIC TAB u t l It J oil

  16. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering.

    PubMed

    Naghashzargar, Elham; Farè, Silvia; Catto, Valentina; Bertoldi, Serena; Semnani, Dariush; Karbasi, Saeed; Tanzi, Maria Cristina

    2015-07-04

    A novel biodegradable nano/micro hybrid structure was obtained by electrospinning P3HB or PCL nanofibers onto a twisted silk fibroin (SF) structure, with the aim of fabricating a suitable scaffold for tendon and ligament tissue engineering. The electrospinning (ES) processing parameters for P3HB and PCL were optimized on 2D samples, and applied to produce two different nano/micro hybrid constructs (SF/ES-PCL and SF/ES-P3HB).Morphological, chemico-physical and mechanical properties of the novel hybrid scaffolds were evaluated by SEM, ATR FT-IR, DSC, tensile and thermodynamic mechanical tests. The results demonstrated that the nanofibers were tightly wrapped around the silk filaments, and the crystallinity of the SF twisted yarns was not influenced by the presence of the electrospun polymers. The slightly higher mechanical properties of the hybrid constructs confirmed an increase of internal forces due to the interaction between nano and micro components. Cell culture tests with L929 fibroblasts, in the presence of the sample eluates or in direct contact with the hybrid structures, showed no cytotoxic effects and a good level of cytocompatibility of the nano/micro hybrid structures in term of cell viability, particularly at day 1. Cell viability onto the nano/micro hybrid structures decreased from the first to the third day of culture when compared with the control culture plastic, but appeared to be higher when compared with the uncoated SF yarns. Although additional in vitro and in vivo tests are needed, the original fabrication method here described appears promising for scaffolds suitable for tendon and ligament tissue engineering.

  17. Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  18. Nano Engineered Energetic Materials (NEEM)

    DTIC Science & Technology

    2011-01-12

    Al nanoparticles, owing to the surface oxidation of the unpassivated particles. The major drawback with utilizing organic capping groups is the...increases seen with nano-sized aluminum are promising, there are certain drawbacks . A thin layer of alumina (Al2O3) usually forms on the exterior...rocket motor by lowering the active aluminum content of the particles. Because of these drawbacks , surface protection in the form of coatings is

  19. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven; Weber, William J.

    2015-10-01

    Nano-engineered 3C-SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. The resultant strain field probably contributes to the enhancement of radiation tolerance of this material.

  20. Engineering Knowledge and Student Development: An Institutional and Pedagogical Critique of Engineering Education

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofeng

    Educators have recommended the integration of engineering and the liberal arts as a promising educational model to prepare young engineers for global economic, environmental, sociotechnical, and ethical challenges. Drawing upon philosophy of technology, engineering studies, and educational psychology, this dissertation examines diverse visions and strategies for integrating engineering and liberal education and explores their impacts on students' intellectual and moral development. Based on archival research, interviews, and participant observation, the dissertation presents in-depth case studies of three educational initiatives that seek to blend engineering with the humanities, social sciences, and arts: Harvey Mudd College, the Picker Engineering Program at Smith College, and the Programs in Design and Innovation at Rensselaer Polytechnic Institute. The research finds that learning engineering in a liberal arts context increases students' sense of "owning" their education and contributes to their communication, teamwork, and other non-technical professional skills. In addition, opportunities for extensive liberal arts learning in the three cases encourage some students to pursue alternative, less technocentric approaches to engineering. Nevertheless, the case studies suggest that the epistemological differences between the engineering and liberal arts instructors help maintain a technical/social dualism among most students. Furthermore, the dissertation argues a "hidden curriculum," which reinforces the dominant ideology in the engineering profession, persists in the integrated programs and prevents the students from reflecting on the broad social context of engineering and critically examining the assumptions upheld in the engineering profession.

  1. "Scholarship of Impact" Framework in Engineering Education Research: Learnings from the Institute for Scholarship on Engineering Education. Research Brief

    ERIC Educational Resources Information Center

    Lande, Micah; Adams, Robin; Chen, Helen; Currano, Becky; Leifer, Larry

    2007-01-01

    The Institute for Scholarship on Engineering Education (ISEE) program is one element of the NSF-sponsored Center for the Advancement of Engineering Education (CAEE). Its primary goal is to build a community of engineering education scholars who can think and work across disciplines with an ultimate aim of improving the engineering student…

  2. Nano-education from a European perspective

    NASA Astrophysics Data System (ADS)

    Malsch, I.

    2008-03-01

    At a global level, educating the nanotechnology workforce has been discussed since the beginning of the new millennium. Scientists, engineers and technicians should be trained in nanotechnology. Most educators prefer training students first in their own discipline at the Bachelor level (physics, chemistry, biology, etc) followed by specialisation in nanoscience and technology at the Master's level. Some favour a broad interdisciplinary basic training in different nanosciences followed by specialisation in a particular application area. What constitutes a good nanoscience curriculum is also being discussed, as well as the application of e-learning methodologies. The European Union is stimulating the development of nanoscience education in universities. The Erasmus Mundus programme is funding nanoscience and nanotechnology education programmes involving universities in several European countries. The policy debate in Europe is moving towards vocational training in nanotechnology for educating the technicians needed in industry and research. The EU vocational training institute CEDEFOP published a report in 2005 The EU funded European gateway to nanotechnology Nanoforum has stimulated the accessibility of nano-education throughout Europe with reports and online databases of education courses and materials. For university education, they list courses at the Bachelor, Master's, and PhD level as well as short courses. The EU funded EuroIndiaNet project also reviewed Nano-education courses at the Master's level, short courses, e-learning programmes, summerschools and vocational training courses. In this presentation, I review Nanoforum and other publications on nano-education in Europe and highlight current trends and gaps.

  3. Nano-engineering of p-n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Karmakar, Keshab; Sarkar, Ayan; Mandal, Kalyan; Gopal Khan, Gobinda

    2017-08-01

    The effective utilization of abundant visible solar light for photoelectrochemical water splitting is a green approach for energy harvesting, to reduce the enormous rise of carbon content in the atmosphere. Here, a novel efficient design strategy for p-n type nano-heterojunction photoanodes is demonstrated, with the goal of improving water splitting efficiency by growing low band gap p-CuFeO2 nanolayers on n-ZnO nanorods by an easy and scalable electrochemical route. The photoconversion efficiency of p-n CuFeO2/ZnO photoanodes is found to be ˜450% higher than that of pristine ZnO nanorod electrodes under visible solar light illumination (λ > 420 nm, intensity 10 mW cm-2). The p-n CuFeO2/ZnO nano-engineering not only boosts the visible light absorption but also resolves limitations regarding effective charge carrier separation and transportation due to interfacial band alignment. This photoanode also shows remarkably enhanced stability, where the formation of p-n nano-heterojunction enhances the easy migration of holes to the electrode/electrolyte interface, and of electrons to the counter electrode (Pt) for hydrogen generation. Therefore, this work demonstrates that p-n nano-engineering is a potential strategy to design light-harvesting electrodes for water splitting and clean energy generation.

  4. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  5. UCSD's Institute of Engineering in Medicine: fostering collaboration through research and education.

    PubMed

    Chien, Shu

    2012-07-01

    The University of California, San Diego (UCSD) was established in 1961 as a new research university that emphasizes innovation, excellence, and interdisciplinary research and education. It has a School of Medicine (SOM) and the Jacobs School of Engineering (JSOE) in close proximity, and both schools have national rankings among the top 15. In 1991, with the support of the Whitaker Foundation, the Whitaker Institute of Biomedical Engineering was formed to foster collaborations in research and education. In 2008, the university extended the collaboration further by establishing the Institute of Engineering in Medicine (IEM), with the mission of accelerating the discoveries of novel science and technology to enhance health care through teamwork between engineering and medicine, and facilitating the translation of innovative technologies for delivery to the public through clinical application and commercialization.

  6. Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering.

    PubMed

    Karbasi, Saeed; Fekrat, Farnoosh; Semnani, Daryoush; Razavi, Shahnaz; Zargar, Elham Naghash

    2016-01-01

    One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.

  7. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; ...

    2015-06-18

    In this paper, nano-engineered 3C–SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. Finally, the resultant strain fieldmore » probably contributes to the enhancement of radiation tolerance of this material.« less

  8. Developing Technologies for Space Resource Utilization: Concept for a Planetary Engineering Research Institute

    NASA Astrophysics Data System (ADS)

    Blacic, J. D.; Dreesen, D.; Mockler, T.

    2000-01-01

    There are two principal factors that control the economics and ultimate utilization of space resources: 1) space transportation, and 2) space resource utilization technologies. Development of space transportation technology is driven by major government (military and civilian) programs and, to a lesser degree, private industry-funded research. Communication within the propulsion and spacecraft engineering community is aided by an effective independent professional organization, the American Institute of Aeronautics and Astronautics (AIAA). The many aerospace engineering programs in major university engineering schools sustain professional-level education in these fields. NASA does an excellent job of public education in space science and engineering at all levels. Planetary science, a precursor and supporting discipline for space resource utilization, has benefited from the establishment of the Lunar and Planetary Institute (LPI) which has served, since the early post-Apollo days, as a focus for both professional and educational development in the geosciences of the Moon and other planets. The closest thing the nonaerospace engineering disciplines have had to this kind of professional nexus is the sponsorship by the American Society of Civil Engineers of a series of space engineering conferences that have had a predominantly space resource orientation. However, many of us with long-standing interests in space resource development have felt that an LPI-like, independent institute was needed to focus and facilitate both research and education on the specific engineering disciplines needed to develop space resource utilization technologies on an on-going basis.

  9. An assessment on the trustworthiness of engineers in higher tertiary institutions

    NASA Astrophysics Data System (ADS)

    Ooi Kuan, Tan; Lloyd, Ling; Mou Chuan, Cheng

    2017-10-01

    In Malaysian higher education history, the evolution from public funded to private funded and now to private non profit oriented model has been taking place since 80s. The evolution also demarcated higher learning institution into academic or research based university. As such, postgraduate studies became increasingly competitive in students intake. The evolution also created doubt to the public in term of the quality of postgraduate education offered by different classifications. This study investigates the gender specific perception and trustworthiness of engineering postgraduate students in private non profit oriented higher tertiary institution. An equally divided gender groups of 118 respondents were chosen for the study. Non-parametric statistics were used and the result showed that there was no difference and no correlation of genders in perception on teaching role and trustworthiness among the future engineers in private non profit oriented higher tertiary institution.

  10. Computers in Electrical Engineering Education at Virginia Polytechnic Institute.

    ERIC Educational Resources Information Center

    Bennett, A. Wayne

    1982-01-01

    Discusses use of computers in Electrical Engineering (EE) at Virginia Polytechnic Institute. Topics include: departmental background, level of computing power using large scale systems, mini and microcomputers, use of digital logic trainers and analog/hybrid computers, comments on integrating computers into EE curricula, and computer use in…

  11. African American student perception of persistence in engineering at a predominantly white institution

    NASA Astrophysics Data System (ADS)

    Bennett, Sean T.

    This study examines African American student perceptions of persistence in engineering. The research design is methodologically qualitative using a purposefully selected population of engineering students. Semi-structured interviews were designed to develop an in-depth understanding of what completion of the engineering degree means to African American engineering students. This research seeks insight into the linkages between African American student perceptions of persistence as it relates to both the academic and social culture of the engineering department. Vincent Tinto's model of Institutional Departure (1975, 1987) is one of the most commonly cited models of persistence in higher education (Braxton, Milem, Sullivan, 2000). Tinto's model was leveraged in this study to understand perceptions obtained through student interviews. Tinto suggests that exploration of student goal commitment and perceptions of institutional commitment are key to understanding student persistence. Results of this study suggest that African American students have perceptions about the university that may influence the decision to persist in engineering. Ultimately, this study may prove useful to researchers and administrators interested in improving access and success for African American engineering students.

  12. Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering

    PubMed Central

    Karbasi, Saeed; Fekrat, Farnoosh; Semnani, Daryoush; Razavi, Shahnaz; Zargar, Elham Naghash

    2016-01-01

    Background: One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. Materials and Methods: In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Results: Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. Conclusions: It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering. PMID:28028520

  13. Effects of Nano Additives in engine emission Characteristics using Blends of Lemon Balm oil with Diesel

    NASA Astrophysics Data System (ADS)

    Senthil kumar, J.; Ganesan, S.; Sivasaravanan, S.; Padmanabhan, S.; Krishnan, L.; Aniruthan, V. C.

    2017-05-01

    Economic growth in developing countries has led to enormous increase in energy demand. In India the energy demand is increasing at a rate of 6.5% every year. The crude oil demand of country is meet by bring in of about 70%. Thus the energy safety measures have become key issue for our country. Bio diesel an eco-friendly and renewable fuel alternate for diesel has been getting the consideration of researcher’s entire world. The main aim of this paper is to evaluate the engine parameters using blend of pure lemon balm oil with diesel. Also nano Additives is used as a catalyst with blends of bio fuel to enhance the Emission Characteristics of various effective gases like CO2, NOx, CO and UHC with various levels of engine process parameters.

  14. Periodontal tissue engineering by nano beta-tricalcium phosphate scaffold and fibroblast growth factor-2 in one-wall infrabony defects of dogs.

    PubMed

    Ogawa, K; Miyaji, H; Kato, A; Kosen, Y; Momose, T; Yoshida, T; Nishida, E; Miyata, S; Murakami, S; Takita, H; Fugetsu, B; Sugaya, T; Kawanami, M

    2016-12-01

    Nanoparticle bioceramics are being investigated for biomedical applications. We fabricated a regenerative scaffold comprising type I collagen and beta-tricalcium phosphate (β-TCP) nanoparticles. Fibroblast growth factor-2 (FGF-2) is a bioeffective signaling molecule that stimulates cell proliferation and wound healing. This study examined the effects, on bioactivity, of a nano-β-TCP/collagen scaffold loaded with FGF-2, particularly on periodontal tissue wound healing. Beta-tricalcium phosphate was pulverized into nanosize particles (84 nm) and was then dispersed. A nano-β-TCP scaffold was prepared by coating the surface of a collagen scaffold with a nanosize β-TCP dispersion. Scaffolds were characterized using scanning electron microscopy, compressive testing, cell seeding and rat subcutaneous implant testing. Then, nano-β-TCP scaffold, nano-β-TCP scaffold loaded with FGF-2 and noncoated collagen scaffold were implanted into a dog one-wall infrabony defect model. Histological observations were made at 10 d and 4 wk postsurgery. Scanning electron microscopy images show that TCP nanoparticles were attached to collagen fibers. The nano-β-TCP scaffold showed higher compressive strength and cytocompatibility compared with the noncoated collagen scaffold. Rat subcutaneous implant tests showed that the DNA contents of infiltrating cells in the nano-β-TCP scaffold and the FGF-2-loaded scaffold were approximately 2.8-fold and 3.7-fold greater, respectively, than in the collagen scaffold. Histological samples from the periodontal defect model showed about five-fold greater periodontal tissue repair following implantation of the nano-β-TCP scaffold loaded with FGF-2 compared with the collagen scaffold. The β-TCP nanoparticle coating strongly improved the collagen scaffold bioactivity. Nano-β-TCP scaffolds containing FGF-2 are anticipated for use in periodontal tissue engineering. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model.

    PubMed

    Garner, Kendra L; Suh, Sangwon; Keller, Arturo A

    2017-05-16

    We developed a dynamic multimedia fate and transport model (nanoFate) to predict the time-dependent accumulation of metallic engineered nanomaterials (ENMs) across environmental media. nanoFate considers a wider range of processes and environmental subcompartments than most previous models and considers ENM releases to compartments (e.g., urban, agriculture) in a manner that reflects their different patterns of use and disposal. As an example, we simulated ten years of release of nano CeO 2 , CuO, TiO 2 , and ZnO in the San Francisco Bay area. Results show that even soluble metal oxide ENMs may accumulate as nanoparticles in the environment in sufficient concentrations to exceed the minimum toxic threshold in freshwater and some soils, though this is more likely with high-production ENMs such as TiO 2 and ZnO. Fluctuations in weather and release scenario may lead to circumstances where predicted ENM concentrations approach acute toxic concentrations. The fate of these ENMs is to mostly remain either aggregated or dissolved in agricultural lands receiving biosolids and in freshwater or marine sediments. Comparison to previous studies indicates the importance of some key model aspects including climatic and temporal variations, how ENMs may be released into the environment, and the effect of compartment composition on predicted concentrations.

  16. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.

    PubMed

    Sharma, Chhavi; Dinda, Amit Kumar; Potdar, Pravin D; Chou, Chia-Fu; Mishra, Narayan Chandra

    2016-07-01

    A novel nano-biocomposite scaffold was fabricated in bead form by applying simple foaming method, using a combination of natural polymers-chitosan, gelatin, alginate and a bioceramic-nano-hydroxyapatite (nHAp). This approach of combining nHAp with natural polymers to fabricate the composite scaffold, can provide good mechanical strength and biological property mimicking natural bone. Environmental scanning electron microscopy (ESEM) images of the nano-biocomposite scaffold revealed the presence of interconnected pores, mostly spread over the whole surface of the scaffold. The nHAp particulates have covered the surface of the composite matrix and made the surface of the scaffold rougher. The scaffold has a porosity of 82% with a mean pore size of 112±19.0μm. Swelling and degradation studies of the scaffold showed that the scaffold possesses excellent properties of hydrophilicity and biodegradability. Short term mechanical testing of the scaffold does not reveal any rupturing after agitation under physiological conditions, which is an indicative of good mechanical stability of the scaffold. In vitro cell culture studies by seeding osteoblast cells over the composite scaffold showed good cell viability, proliferation rate, adhesion and maintenance of osteoblastic phenotype as indicated by MTT assay, ESEM of cell-scaffold construct, histological staining and gene expression studies, respectively. Thus, it could be stated that the nano-biocomposite scaffold of chitosan-gelatin-alginate-nHAp has the paramount importance for applications in bone tissue-engineering in future regenerative therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    PubMed Central

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362

  18. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering.

    PubMed

    Shen, Renze; Xu, Weihong; Xue, Yanxiang; Chen, Luyuan; Ye, Haicheng; Zhong, Enyi; Ye, Zhanchao; Gao, Jie; Yan, Yurong

    2018-04-16

    In this study, nanofibrous scaffolds base on pure polylactic acid (PLA) and chitosan/PLA blends were fabricated by emulsion eletrospinning. By modulating their mechanical and biological properties, cell-compatible and biodegradable scaffolds were developed for periodontal bone regeneration. Pure PLA and different weight ratios of chitosan nano-particle/PLA nano-fibers were fabricated by emulsion eletrospinning. Scanning electron microscope (SEM) was performed to observe the morphology of nano-fibers. Mechanical properties of nano-fibers were tested by single fiber strength tester. Hydrophilic/hydrophobic nature of the nano-fibers was observed by stereomicroscope. In vitro degradation was also tested. Cells were seeded on nano-fibers scaffolds. Changes in cell adhesion, proliferation and osteogenic differentiation were tested by MTT assay and Alizarin Red S staining. Reverse transcription-polymerase chain reaction (RT-PCR) assay was used to evaluate the expression of (Toll-like receptor 4) TLR4, IL-6, IL-8, IL-1β, OPG, RUNX2 mRNA. It is shown that the mean diameter of nano-fibers is about 200 nm. The mean diameter of chitosan nano-particles is about 50 nm. The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers. By adding a certain amount of chitosan nano-particles, it promoted cell adhesion. It also promoted the osteogenic differentiation of bone marrow stem cells (BMSCs) by elevating the expression of osteogenic marker genes such as BSP, Ocn, collagen I, and OPN and enhanced ECM mineralization. Nonetheless, it caused higher expression of inflammatory mediators and TLR4 of human periodontal ligament cells (hPDLCs). The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers and increased its hydrophilicity. Pure PLA nano-fibers scaffold facilitated BMSCs proliferation. Adding an appropriate amount of chitosan nano-particles may promote its properties of cell proliferation

  19. [Experimental study on tissue engineered cartilage complex three-dimensional nano-scaffold with collagen type II and hyaluronic acid in vitro].

    PubMed

    Yang, Zelong; Chen, Zhu; Liu, Kang; Bai, Yiguang; Jiang, Ting; Feng, Daxiong; Feng, Gang

    2013-10-01

    To explore the possibility of constructing tissue engineered cartilage complex three-dimensional nano-scaffold with collagen type II and hyaluronic acid (HA) by electrospinning. The three-dimensional porous nano-scaffolds were prepared by electrospinning techniques with collagen type II and HA (8 : 1, W : W), which was dissolved in mixed solvent of 3-trifluoroethanol and water (1 : 1, V : V). The morphology were observed by light microscope and scanning electron microscope (SEM). And the porosity, water absorption rate, contact angle, and degradation rate were detected. Chondrocytes were harvested from 1-week-old Japanese white rabbit, which was disgested by 0.25% trypsin 30 minutes and 1% collagenase overlight. The passage 2 chondrocytes were seeded on the nano-scaffold. The cell adhesion and proliferation were evaluated by cell counting kit 8 (CCK-8). The cell-scaffold composites were cultured for 2 weeks in vitro, and the biological morphology and extracelluar matrix (ECM) secretion were observed by histological analysis. The optimal electrospinning condition of nano-scaffold was 10% electrospinning solution concentration, 10 cm receiver distance, 5 mL/h spinning injection speed. The scaffold had uniform diameter and good porosity through the light microscope and SEM. The diameter was 300-600 nm, and the porosity was 89.5% +/- 25.0%. The contact angle was (35.6 +/- 3.4) degrees, and the water absorption was 1 120% +/- 34% at 24 hours, which indicated excellent hydrophilicity. The degradation rate was 42.24% +/- 1.51% at 48 days. CCK-8 results showed that the adhesive rate of cells with scaffold was 169.14% +/- 11.26% at 12 hours, and the cell survival rate was 126.03% +/- 4.54% at 7 days. The histological and immunohistochemical staining results showed that the chondrocytes could grow well on the scaffold and secreted ECM. And the similar cartilage lacuma structure could be found at 2 weeks after co-culture, which suggested that hyaline cartilage formed. The

  20. Micro/nano-fabrication technologies for cell biology.

    PubMed

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  1. Micro/nano-fabrication technologies for cell biology

    PubMed Central

    Qian, Tongcheng

    2012-01-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities. PMID:20490938

  2. Activities of the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1985 through October 2, 1985 is summarized.

  3. [Activities of Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics. fluid mechanics, and computer science during the period April 1, 1999 through September 30. 1999.

  4. Austenite Grain Size Control in Upstream Processing of Niobium Microalloyed Steels by Nano-Scale Precipitate Engineering of TiN-NbC Composite

    NASA Astrophysics Data System (ADS)

    Subramanian, S. V.; Ma, Xiaoping; Rehman, Kashif

    There is a growing demand for thicker gage pipes particularly for off-shore projects. Austenite grain size control in upstream processing before pancaking is essential to obtain excellent DBTT and DWTT properties in thicker gage product. This paper examines the basic science aspects of austenite grain size control by nano-scale precipitate engineering.

  5. Technological Nocturne: The Lisbon Industrial Institute and Romantic Engineering (1849-1888).

    PubMed

    Saraiva, Tiago; De Matos, Ana Cardoso

    This article explores technology as romantic culture in the second half of the nineteenth century. It details how new urban nocturnal experiences emerged from the Lisbon Industrial Institute (Instituto Industrial) founded in 1852. It combines the interest in the space of science production, typical of history of science and science studies, with the attention to production and consumption of lighting more commonly found in history of technology and urban history literature. Engineers' practices are put in a cultural continuum with poetry, opera, and modern city life at large. Industrial Institute directors Vitorino Damásio and Fonseca Benevides are described as romantic engineers for whom technology overcame differences between humans through the forging of new social bonds, produced new aesthetic experiences and new ways of feeling, expressed nature's harmony, and led to heroic lives.

  6. Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials.

    PubMed

    Sun, Tian Yin; Mitrano, Denise M; Bornhöft, Nikolaus A; Scheringer, Martin; Hungerbühler, Konrad; Nowack, Bernd

    2017-03-07

    The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental emissions. Material flow models (MFA) have been used to provide predicted environmental emissions but most current nano-MFA models consider neither the rapid development of ENM production nor the fact that a large proportion of ENM are entering an in-use stock and are released from products over time (i.e., have a lag phase). Here we use dynamic probabilistic material flow modeling to predict scenarios of the future flows of four ENM (nano-TiO 2 , nano-ZnO, nano-Ag and CNT) to environmental compartments and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. In these scenarios, we estimate likely future amounts if the use and distribution of ENM in products continues along current trends (i.e., a business-as-usual approach) and predict the effect of hypothetical trends in the market development of nanomaterials, such as the emergence of a new widely used product or the ban on certain substances, on the flows of nanomaterials to the environment in years to come. We show that depending on the scenario and the product type affected, significant changes of the flows occur over time, driven by the growth of stocks and delayed release dynamics.

  7. Launching partnership in optics and photonics education between University of Rochester and Moscow Engineering Physics Institute NRNU MEPhI

    NASA Astrophysics Data System (ADS)

    Lukishova, Svetlana G.; Zavestovskaya, Irina N.; Zhang, Xi-Cheng; Aleshchenko, Yury A.; Konov, Vitaly I.

    2017-08-01

    A collaboration in education between the oldest and one of the most comprehensive Optics schools in U.S., the Institute of Optics (IO), University of Rochester (UR), and one of the most recognized Russian university, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) was started in 2015 by signing an agreement on a double-Master's degree program in optics. It was based on earlier collaboration between research groups in both universities. In summer of 2016, nine UR Optics undergraduate students participated with MEPhI students at the International School on Optics and Laser Physics in MEPhI. During five days they were immersed into the world of cutting edge research, technologies and ideas that Russian, European and U.S. scientists offered them. This School also included tours of MEPhI Nanotechnologies and Lasers Centers and Nano-bioengineering Laboratory as well as of scientific laboratories of the leading institutes in optics, photonics and laser physics of the Russian Academy of Sciences. In December of 2015, one MEPhI Master student visited IO UR for one month for a research project with results presented later at a MEPhI conference. Samples prepared by MEPhI researchers are used in IO students teaching laboratories. One Master student from MEPhI is working now towards the Master's degree at the IO UR. In this paper benefits and pitfalls of a cross-border collaboration are discussed as well as different directions of such a collaboration to provide a high-quality specialization for the students of the 21 century which includes international cooperation.

  8. [Medical application of nano-materials].

    PubMed

    Jiang, Hui-qing; Chen, Yi-fei

    2002-11-01

    To review the research progress and medical application of nano-materials. The literature review and comprehensive analysis, methods were used in this study. The Nanotechnology is a typical crossing knowledge. It could be extensively applied in the fields of novel biomaterials, effective transmission of bioactive factor; the detection of functions for all vital organ systems, vascular circulation condition, the control of repair of burn trauma wounds will be monitored by the varied methods of nano technology combined with molecular biological engineering. The application of Nanotechnology will play important roles in clinical medicine, wound repair and basic research for the traditional Chinese medicine.

  9. Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C

    DOE PAGES

    Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...

    2016-02-03

    Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less

  10. ENGINEERING NANO- AND MICRO-PARTICLES TO TUNE IMMUNITY

    PubMed Central

    Moon, James J.; Irvine, Darrell J.; Huang, Bonnie

    2013-01-01

    The immune system can be a cure or cause of disease, fulfilling a protective role in attacking cancer or pathogenic microbes but also causing tissue destruction in autoimmune disorders. Thus, therapies aimed to amplify or suppress immune reactions are of great interest. However, the complex regulation of the immune system, coupled with the potential systemic side effects associated with traditional systemic drug therapies, has presented a major hurdle for the development of successful immunotherapies,. Recent progress in the design of synthetic micro- and nano-particles that can target drugs, deliver imaging agents, or stimulate immune cells directly through their physical and chemical properties is leading to new approaches to deliver vaccines, promote immune responses against tumors, and suppress autoimmunity. In addition, novel strategies, such as the use of particle-laden immune cells as living targeting agents for drugs, are providing exciting new approaches for immunotherapy. This progress report describes recent advances in the design of micro- and nano-particles in immunotherapies and diagnostics. PMID:22641380

  11. Activities of the Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1984 through March 31, 1985 is summarized.

  12. [Research Conducted at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.

  13. Activities of the Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes research conducted at the Institute for Computer Applications Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 2, 1987 through March 31, 1988.

  14. Nano-Bio Engineered Carbon Dot-Peptide Functionalized Water Dispersible Hyperbranched Polyurethane for Bone Tissue Regeneration.

    PubMed

    Gogoi, Satyabrat; Maji, Somnath; Mishra, Debasish; Devi, K Sanjana P; Maiti, Tapas Kumar; Karak, Niranjan

    2017-03-01

    The present study delves into a combined bio-nano-macromolecular approach for bone tissue engineering. This approach relies on the properties of an ideal scaffold material imbued with all the chemical premises required for fostering cellular growth and differentiation. A tannic acid based water dispersible hyperbranched polyurethane is fabricated with bio-nanohybrids of carbon dot and four different peptides (viz. SVVYGLR, PRGDSGYRGDS, IPP, and CGGKVGKACCVPTKLSPISVLYK) to impart target specific in vivo bone healing ability. This polymeric bio-nanocomposite is blended with 10 wt% of gelatin and examined as a non-invasive delivery vehicle. In vitro assessment of the developed polymeric system reveals good osteoblast adhesion, proliferation, and differentiation. Aided by this panel of peptides, the polymeric bio-nanocomposite exhibits in vivo ectopic bone formation ability. The study on in vivo mineralization and vascularization reveals the occurrence of calcification and blood vessel formation. Thus, the study demonstrates carbon dot/peptide functionalized hyperbranched polyurethane gel for bone tissue engineering application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Potential Nano-Enabled Environmental Applications for Radionuclides

    EPA Pesticide Factsheets

    This document provides information about nanotechnology materials and processes that may be applicable when cleaning up radioactively contaminated sites or materials, and presents a snapshot of lessons learned in nano-science and engineering.

  16. Virus scaffolds as enzyme nano-carriers.

    PubMed

    Cardinale, Daniela; Carette, Noëlle; Michon, Thierry

    2012-07-01

    The cooperative organization of enzymes by cells is a key feature for the efficiency of living systems. In the field of nanotechnologies, effort currently aims at mimicking this natural organization. Nanoscale resolution and high-registration alignment are necessary to control enzyme distribution in nano-containers or on the surface of solid supports. Virus capsid self-assembly is driven by precise supramolecular combinations of protein monomers, which have made them attractive building blocks to engineer enzyme nano-carriers (ENCs). We discuss some examples of what in our opinion constitute the latest advances in the use of plant viruses, bacteriophages and virus-like particles (VLPs) as nano-scaffolds for enzyme selection, enzyme confinement and patterning, phage therapy, raw material processing, and single molecule enzyme kinetics studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  18. Association of 17-β Estradiol with Adipose-Derived Stem Cells: New Strategy to Produce Functional Myogenic Differentiated Cells with a Nano-Scaffold for Tissue Engineering.

    PubMed

    Feng, Chunxiang; Hu, Jinqian; Liu, Chang; Liu, Shiliang; Liao, Guiying; Song, Linjie; Zeng, Xiaoyong

    2016-01-01

    The increased incidence of stress urinary incontinence (SUI) in postmenopausal women has been proposed to be associated with a reduction in the level of 17-β estradiol (E2). E2 has also been shown to enhance the multi-differentiation ability of adipose-derived stem cells (ASCs) in vitro. However, studies on the potential value of E2 for tissue engineering in SUI treatment are rare. In the present study, we successfully fabricated myogenically differentiated ASCs (MD-ASCs), which were seeded onto a Poly(l-lactide)/Poly(e-caprolactone) electrospinning nano-scaffold, and incorporated E2 into the system, with the aim of improving the proliferation and myogenic differentiation of ASCs. ASCs were collected from the inguinal subcutaneous fat of rats. The proliferation and myogenic differentiation of ASCs, as well as the nano-scaffold biocompatibility of MD-ASCs, with or without E2 supplementation, were investigated. We demonstrated that E2 incorporation enhanced the proliferation of ASCs in vitro, and the most optimal concentration was 10-9 M. E2 also led to modulation of the MD-ASCs phenotype toward a concentrated type with smooth muscle-inductive medium. The expression of early (alpha-smooth muscle actin), mid (calponin), and late-stage (myosin heavy chain) contractile markers in MD-ASCs was enhanced by E2 during the different differentiation stages. Furthermore, the nano-scaffold was biocompatible with MD-ASCs, and cell proliferation was significantly enhanced by E2. Taken together, these results demonstrate that E2 can enhance the proliferation and myogenic differentiation of ASCs and can be used to construct a biocompatible cell/nano-scaffold. These scaffolds with desirable differentiation cells show promising applications for tissue engineering.

  19. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  20. In vitro corrosion and cytocompatibility properties of nano-whisker hydroxyapatite coating on magnesium alloy for bone tissue engineering applications.

    PubMed

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-03-17

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  1. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Active control of nano dimers response using piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  3. Crystal engineering of giant molecules based on perylene diimide conjugated polyhedral oligomeric silsesquioxane nano-atom

    NASA Astrophysics Data System (ADS)

    Ren, He

    Molecular architectures and topologies are found contributing to the formation of supramolecular structures of giant molecules. Dr. Cheng's research group developed a diverse of giant molecules via precisely controlled chemistry synthetic routes. These giant molecules can be categorized into several different families, namely giant surfactants, giant shape amphiphiles and giant polyhedron. By analyzing the hierarchical structures of these carefully designed and precisely synthesized giant molecules, the structural factors which affect, or even dominates, in some cases, the formation of supramolecular structures are revealed in these intensive researches. The results will further contribute to the understanding of dependence of supramolecular structures on molecular designs as well as molecular topology, and providing a practical solution to the scaling up of microscopic molecular functionalities to macroscopic material properties. Molecular Nano Particles (MNPs), including fullerene (C60), POSS, Polyoxometalate (POM) and proteins etc., is defined and applied as a specific type of building blocks in the design and synthesis of giant molecules. The persistence in shape and symmetry is considered as one of the major properties of MNPs. This persistence will support the construction of giant molecules for further supramolecular structures' study by introducing specific shapes, or precisely located side groups which will facilitate self-assembling behaviors with pre-programmed secondary interactions. Dictating material physical properties by its chemical composition is an attractive yet currently failed approach in the study of materials. However, the pursuit of determining material properties by microscopic molecular level properties is never seized, and found its solution when the idea of crystal engineering is raised: should each atom in the material is located exactly where it is designed to be and is properly bonded, the property of the material is hence determined

  4. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability.

    PubMed

    Gulati, Karan; Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M; Atkins, Gerald J; Losic, Dusan

    2016-12-01

    There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Multi-Institution Study of Student Demographics and Outcomes in Electrical and Computer Engineering in the USA

    ERIC Educational Resources Information Center

    Lord, Susan M.; Layton, Richard A.; Ohland, Matthew W.

    2015-01-01

    Electrical Engineering (EE) and Computer Engineering (CpE) programs have similar curricula, but different demographics and student outcomes. This paper extends earlier longitudinal studies to a larger and more diverse dataset with 90,000 first-time-in-college and 26,000 transfer students who majored in engineering at USA institutions, including…

  6. A Curriculum Model: Engineering Design Graphics Course Updates Based on Industrial and Academic Institution Requirements

    ERIC Educational Resources Information Center

    Meznarich, R. A.; Shava, R. C.; Lightner, S. L.

    2009-01-01

    Engineering design graphics courses taught in colleges or universities should provide and equip students preparing for employment with the basic occupational graphics skill competences required by engineering and technology disciplines. Academic institutions should introduce and include topics that cover the newer and more efficient graphics…

  7. Practical Education Support to Foster Engineers at Manufacturing and Engineering Design Center in Muroran Institute of Technology

    NASA Astrophysics Data System (ADS)

    Kazama, Toshiharu; Hanajima, Naohiko; Shimizu, Kazumichi; Satoh, Kohki

    To foster engineers with creative power, Muroran Institute of Technology established Manufacturing and Engineering Design Center (MEDeC) that concentrates on Monozukuri. MEDeC consists of three project groups : i) Education Support Group provides educational support for practical training classes on and off campus and PDCA (plan-do-check-action) -conscious engineering design education related to Monozukuri ; ii) Fundamental Manufacturing Research Group carries out nurture research into fundamental and innovative technology of machining and manufacturing, and iii) Regional Cooperation Group coordinates the activities in cooperation with bureau, schools and industries in and around Muroran City. MEDeC has a fully integrated collection of machine tools and hand tools for manufacturing, an atelier, a tatara workplace, implements for measurement and related equipment designed for practically teaching state-of-the-practice manufacturing methods.

  8. Nano-technology and nano-toxicology.

    PubMed

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  9. Nano-technology and nano-toxicology

    PubMed Central

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021

  10. In Vitro Corrosion and Cytocompatibility Properties of Nano-Whisker Hydroxyapatite Coating on Magnesium Alloy for Bone Tissue Engineering Applications

    PubMed Central

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-01-01

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries. PMID:25789500

  11. PREFACE: International Conference on Structural Nano Composites (NANOSTRUC 2012)

    NASA Astrophysics Data System (ADS)

    Njuguna, James

    2012-09-01

    Dear Colleagues It is a great pleasure to welcome you to NanoStruc2012 at Cranfield University. The purpose of the 2012 International Conference on Structural Nano Composites (NanoStruc2012) is to promote activities in various areas of materials and structures by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. NanoStruc brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to structural materials, engineering structures, nanocomposites, modelling and simulations, and their related application areas. The conference is split in 7 panel sessions, Metallic Nanocomposites and Coatings, Silica based Nanocomposites, safty of Nanomaterials, Carboin based Nanocomposites, Multscale Modelling, Bio materials and Application of Nanomaterials. All accepted Papers will be published in the IOP Conference Series: Materials Science and Engineering (MSE), and included in the NanoStruc online digital library. The abstracts will be indexed in Scopus, Compedex, Inspec, INIS (International Nuclear Information System), Chemical Abstracts, NASA Astrophysics Data System and Polymer Library. Before ending this message, I would like to acknowledge the hard work, professional skills and efficiency of the team which ensured the general organisation. As a conclusion, I would like to Welcome you to the Nanostruc2012 and wish you a stimulating Conference and a wonderful time. On behalf of the scientific committee, Signature James Njuguna Conference Chair The PDF of this preface also contains committee listings and associates logos.

  12. Performance Evaluation of Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Hatsutori, Y.; Kobayashi, Y.; Gouda, N.; Yano, T.; Murooka, J.; Niwa, Y.; Yamada, Y.

    We report the results of performance evaluation of the first Japanese astrometry satellite, Nano-JASMINE. It is a very small satellite and weighs only 35 kg. It aims to carry out astrometry measurement of nearby bright stars (z ≤ 7.5 mag) with an accuracy of 3 milli-arcseconds. Nano-JASMINE will be launched by Cyclone-4 rocket in August 2011 from Brazil. The current status is in the process of evaluating the performances. A series of performance tests and numerical analysis were conducted. As a result, the engineering model (EM) of the telescope was measured to be achieving a diffraction-limited performance and confirmed that it has enough performance for scientific astrometry.

  13. Research in progress at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1987 through October 1, 1987.

  14. Continuous engineering of nano-cocrystals for medical and energetic applications.

    PubMed

    Spitzer, D; Risse, B; Schnell, F; Pichot, V; Klaumünzer, M; Schaefer, M R

    2014-10-10

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts - because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals.

  15. Continuous engineering of nano-cocrystals for medical and energetic applications

    NASA Astrophysics Data System (ADS)

    Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. R.

    2014-10-01

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts - because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals.

  16. Key Barriers for Academic Institutions Seeking to Retain Female Scientists and Engineers: Family-Unfriendly Policies. Low Numbers, Stereotypes, and Harassment

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.; Lane, Eliesh O'neil

    At the end of a special meeting held at the Massachusetts Institute of Technology in January 2001, a statement released on behalf of the most prestigious U. S. research universities suggested that institutional harriers have prevented viomen from having a level playing field in science and engineering. In 2001, the National Science Foundation initiated a new awards program, ADVANCE, focusing on institutional rather than individual solutions to empower women to participate fully in science and technology. In this study, the authors evaluate survey responses from almost 400 Professional Opportunities for Women in Research and Education awardees from fiscal years 1997 to 2000 to elucidate problems and opportunities identified by female scientists and engineers. Besides other issues, the respondents identified balancing a career and a family as the most significant challenge facing female scientists and engineers today. Institutions must seek to remove or at least lower these and other harriers to attract and retain female scientists and engineers. Grouping the survey responses into four categories forms the basis for four corresponding policy areas, which could be addressed at the institutional level to mitigate the difficulties and challenges currently experienced by female scientists and engineers.

  17. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    PubMed

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  18. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad

    2015-09-14

    Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.

  19. Performance Engineering Research Institute SciDAC-2 Enabling Technologies Institute Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Robert

    2013-04-20

    Enhancing the performance of SciDAC applications on petascale systems had high priority within DOE SC at the start of the second phase of the SciDAC program, SciDAC-2, as it continues to do so today. Achieving expected levels of performance on high-end computing (HEC) systems is growing ever more challenging due to enormous scale, increasing architectural complexity, and increasing application complexity. To address these challenges, the University of Southern California?s Information Sciences Institute organized the Performance Engineering Research Institute (PERI). PERI implemented a unified, tripartite research plan encompassing: (1) performance modeling and prediction; (2) automatic performance tuning; and (3) performance engineeringmore » of high profile applications. Within PERI, USC?s primary research activity was automatic tuning (autotuning) of scientific software. This activity was spurred by the strong user preference for automatic tools and was based on previous successful activities such as ATLAS, which automatically tuned components of the LAPACK linear algebra library, and other recent work on autotuning domain-specific libraries. Our other major component was application engagement, to which we devoted approximately 30% of our effort to work directly with SciDAC-2 applications. This report is a summary of the overall results of the USC PERI effort.« less

  20. "Nano": the new nemesis of cancer.

    PubMed

    Hede, Shantesh; Huilgol, Nagraj

    2006-01-01

    Materials at nano dimensions exhibit totally different properties compared to their bulk and atomic states. This feature has been harnessed by scientists from various disciplines, to develop functional nanomaterials for cancer diagnosis and therapeutics. The success stories range from delivering chemotherapeutic molecules in nano-sized formulations to functional nanomaterials, which deliver thermal and radiotherapy at specific targeted sites. This brief review summarizes the recent developments of various nanotechnologies in cancer therapy and diagnostics, both from the research sector and the upcoming products in pipeline on its route to commercialization. Supportive engineering innovations and frontiers in nanomolecular research, with a potential to revolutionize cancer therapy, have been discussed in brief.

  1. An Introduction to the Cost of Engineering and Institutional Controls at Brownfield Properties

    EPA Pesticide Factsheets

    This fact sheet introduces and explores the costs of site cleanup and, where cleanup leaves site contamination that restricts reuse, outlines the engineering and institutional controls and their monitoring and maintenance costs over a longer time frame.

  2. Nano-Material and Structural Engineering for Thermal Highways

    DTIC Science & Technology

    2013-06-14

    which are covered with a porous anodized aluminum oxide ( AAO ) membrane that is compatible to most if not all semiconductor electronics chips and has... aluminum oxide ( AAO ) templates as hard masks for fabrication of nanomesh thermoelectric structures. Both USPI’s and KPI’s laboratories have accumulated...T. Bigioni, M. Moskovits, and J. M. Xu, “Electrochemical fabrication of CdS nano-wire arrays in porous anodic aluminum oxide templates”, J. Phys

  3. Continuous engineering of nano-cocrystals for medical and energetic applications

    PubMed Central

    Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. R.

    2014-01-01

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts – because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals. PMID:25300652

  4. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials.

    PubMed

    Fox-Rabinovich, G; Kovalev, A; Veldhuis, S; Yamamoto, K; Endrino, J L; Gershman, I S; Rashkovskiy, A; Aguirre, M H; Wainstein, D L

    2015-03-05

    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment.

  5. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials

    PubMed Central

    Fox-Rabinovich, G.; Kovalev, A.; Veldhuis, S.; Yamamoto, K.; Endrino, J. L.; Gershman, I. S.; Rashkovskiy, A.; Aguirre, M. H.; Wainstein, D. L.

    2015-01-01

    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment. PMID:25740153

  6. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption.

    PubMed

    Jabbarzadeh, Ehsan; Nair, Lakshmi S; Khan, Yusuf M; Deng, Meng; Laurencin, Cato T

    2007-01-01

    A number of bone tissue engineering approaches are aimed at (i) increasing the osteconductivity and osteoinductivity of matrices, and (ii) incorporating bioactive molecules within the scaffolds. In this study we examined the growth of a nano-crystalline mineral layer on poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for tissue engineering. In addition, the influence of the mineral precipitate layer on protein adsorption on the scaffolds was studied. Scaffolds were mineralized by incubation in simulated body fluid (SBF). Scanning electron microscopy (SEM) analysis revealed that mineralized scaffolds possess a rough surface with a plate-like nanostructure covering the surface of microspheres. The results of protein adsorption and release studies showed that while the protein release pattern was similar for PLAGA and mineralized PLAGA scaffolds, precipitation of the mineral layer on PLAGA led to enhanced protein adsorption and slower protein release. Mineralization of tissue-engineered surfaces provides a method for both imparting bioactivity and controlling levels of protein adsorption and release.

  7. Studying Faculty Members' and Students' Perspective in an Affiliated Undergraduate Engineering Institution

    ERIC Educational Resources Information Center

    Kumari, Neeraj

    2015-01-01

    The study aims to examine the relationship between parameters affecting the quality of Education in affiliated Under Graduate Engineering institution from the faculty members' and students' perspective. It is a descriptive research. The data has been collected with the help of "Questionnaire Based Survey". The sample size for the study…

  8. [Application of electrostatic spinning technology in nano-structured polymer scaffold].

    PubMed

    Chen, Denglong; Li, Min; Fang, Qian

    2007-04-01

    To review the latest development in the research on the application of the electrostatic spinning technology in preparation of the nanometer high polymer scaffold. The related articles published at home and abroad during the recent years were extensively reviewed and comprehensively analyzed. Micro/nano-structure and space topology on the surfaces of the scaffold materials, especially the weaving structure, were considered to have an important effect on the cell adhesion, proliferation, directional growth, and biological activation. The electrospun scaffold was reported to have a resemblance to the structure of the extracellular matrix and could be used as a promising scaffold for the tissue engineering application. The electrospun scaffolds were applied to the cartilage, bone, blood vessel, heart, and nerve tissue engineering fields. The nano-structured polymer scaffold can support the cell adhesion, proliferation, location, and differentiation, and this kind of scaffold has a considerable value in the tissue engineering field.

  9. Microgravity experiments of nano-satellite docking mechanism for final rendezvous approach and docking phase

    NASA Astrophysics Data System (ADS)

    Ui, Kyoichi; Matunaga, Saburo; Satori, Shin; Ishikawa, Tomohiro

    2005-09-01

    Laboratory for Space Systems (LSS), Tokyo Institute of Technology (Tokyo Tech) conducted three-dimensional microgravity environment experiments about a docking mechanism for mothership-daughtership (MS-DS) nano-satellite using the facility of Japan Micro Gravity Center (JAMIC) with Hokkaido Institute of Technology (HIT). LSS has studied and developed a docking mechanism for MS-DS nano-satellite system in final rendezvous approach and docking phase since 2000. Consideration of the docking mechanism is to mate a nano-satellite stably while remaining control error of relative velocity and attitude because it is difficult for nano-satellite to have complicated attitude control and mating systems. Objective of the experiments is to verify fundamental grasping function based on our proposed docking methodology. The proposed docking sequence is divided between approach/grasping phase and guiding phase. In the approach/grasping phase, the docking mechanism grasps the nano-satellite even though the nano-satellite has relative position and attitude control errors as well as relative velocity in a docking space. In the guiding function, the docking mechanism guides the nano-satellite to a docking port while adjusting its attitude in order to transfer electrical power and fuel to the nano-satellite. In the paper, we describe the experimental system including the docking mechanism, control system, the daughtership system and the release mechanism, and describe results of microgravity experiments in JAMIC.

  10. The Open Academic Model for the Systems Engineering Graduate Program at Stevens Institute of Technology

    ERIC Educational Resources Information Center

    Lasfer, Kahina

    2012-01-01

    The Systems Engineering Program at Stevens Institute of Technology has developed the Open Academic Model (OAM) to guide its strategic planning and operations since its founding in 2001. Guided by OAM, the Stevens Systems Engineering Program (SSEP) has grown from inception in 2001 into one of the largest in the US. The main objectives of the…

  11. Strategies for the Cooperation of Educational Institutions and Companies in Mechanical Engineering

    ERIC Educational Resources Information Center

    Kettunen, Juha

    2006-01-01

    Purpose: The purpose of this study is to analyse the strategic planning of the Centre for Mechanical Engineering, which is a joint venture of educational institutions and companies in Southwest Finland. Design/methodology/approach: The paper presents the strategies of focus and cost efficiency and how the selected strategies can be adjusted…

  12. Limitations and information needs for engineered nanomaterial-specific exposure estimation and scenarios: recommendations for improved reporting practices

    NASA Astrophysics Data System (ADS)

    Clark, Katherine; van Tongeren, Martie; Christensen, Frans M.; Brouwer, Derk; Nowack, Bernd; Gottschalk, Fadri; Micheletti, Christian; Schmid, Kaspar; Gerritsen, Rianda; Aitken, Rob; Vaquero, Celina; Gkanis, Vasileios; Housiadas, Christos; de Ipiña, Jesús María López; Riediker, Michael

    2012-09-01

    The aim of this paper is to describe the process and challenges in building exposure scenarios for engineered nanomaterials (ENM), using an exposure scenario format similar to that used for the European Chemicals regulation (REACH). Over 60 exposure scenarios were developed based on information from publicly available sources (literature, books, and reports), publicly available exposure estimation models, occupational sampling campaign data from partnering institutions, and industrial partners regarding their own facilities. The primary focus was on carbon-based nanomaterials, nano-silver (nano-Ag) and nano-titanium dioxide (nano-TiO2), and included occupational and consumer uses of these materials with consideration of the associated environmental release. The process of building exposure scenarios illustrated the availability and limitations of existing information and exposure assessment tools for characterizing exposure to ENM, particularly as it relates to risk assessment. This article describes the gaps in the information reviewed, recommends future areas of ENM exposure research, and proposes types of information that should, at a minimum, be included when reporting the results of such research, so that the information is useful in a wider context.

  13. A Multi-Institution Study of Student Demographics and Outcomes in Chemical Engineering

    ERIC Educational Resources Information Center

    Lord, Susan M.; Layton, Richard A.; Ohland, Matthew W.; Brawner, Catherine E.; Long, Russell A.

    2014-01-01

    Using a large multi-institutional dataset, we describe demographics and outcomes for students starting in and transferring into chemical engineering (ChE). In this dataset, men outnumber women in ChE except among black students. While ChE starters graduate in ChE at rates comparable to or above their racial/ethnic population average for…

  14. Properties of forced convection experimental with silicon carbide based nano-fluids

    NASA Astrophysics Data System (ADS)

    Soanker, Abhinay

    With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano

  15. Engines without Fuel?--Empirical Findings on Finnish Higher Education Institutions as Education Exporters

    ERIC Educational Resources Information Center

    Schatz, Monika

    2016-01-01

    In 2010, the Finnish Ministry of Education and Culture formulated Finland's first education export strategy. This policy document attributed Finnish Higher Education Institutions (HEIs) a significant role in the emerging sector by declaring them as "engines" of education export. Situated in a phenomenological approach towards…

  16. Study Programmes for Engineers from Developing Countries at the Norwegian Institute of Technology.

    ERIC Educational Resources Information Center

    Lasson, Axel; Hermansen, John

    1989-01-01

    Describes the background of the study and fellowship programs for graduates from the developing countries at the Norwegian Institute of Technology. Discusses some experiences with the programs. Includes a brief description of five courses: (1) "Pulp and Paper Technology"; (2) "Marine Civil Engineering"; (3) "Hydropower…

  17. The Next Technology Revolution - Nano Electronic Technology

    NASA Astrophysics Data System (ADS)

    Turlik, Iwona

    2004-03-01

    Nanotechnology is a revolutionary engine that will engender enormous changes in a vast majority of today's industries and markets, while potentially creating whole new industries. The impact of nanotechnology is particularly significant in the electronics industry, which is constantly driven by the need for higher performance, increased functionality, smaller size and lower cost. Nanotechnology can influence many of the hundreds of components that are typically assembled to manufacture modern electronic devices. Motorola manufactures electronics for a wide range of industries and communication products. In this presentation, the typical components of a cellular phone are outlined and technology requirements for future products, the customer benefits, and the potential impact of nanotechnology on many of the components are discussed. Technology needs include reliable materials supply, processes for high volume production, experimental and simulation tools, etc. For example, even routine procedures such as failure characterization may require the development of new tools for investigating nano-scale phenomena. Business needs include the development of an effective, high volume supply chain for nano-materials and devices, disruptive product platforms, and visible performance impact on the end consumer. An equally significant long-term industry need is the availability of science and engineering graduates with a multidisciplinary focus and a deep understanding of the fundamentals of nano-technology, that can harness the technology to create revolutionary products.

  18. Nano-scale processes behind ion-beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  19. Local Government Planning Tool to Calculate Institutional and Engineering Control Costs for Brownfield Properties

    EPA Pesticide Factsheets

    This cost calculator is designed as a guide for municipal or local governments to assist in calculating their expected costs of implementing and conducting long-term stewardship of institutional controls and engineering controls at brownfield properties.

  20. Integrating Social Sustainability in Engineering Education at the KTH Royal Institute of Technology

    ERIC Educational Resources Information Center

    Björnberg, Karin Edvardsson; Skogh, Inga-Britt; Strömberg, Emma

    2015-01-01

    Purpose: The purpose of this paper is to investigate what are perceived to be the main challenges associated with the integration of social sustainability into engineering education at the KTH Royal Institute of Technology, Stockholm. Design/methodology/approach: Semi-structured interviews were conducted with programme leaders and teachers from…

  1. Integrating Communication into Engineering Curricula: An Interdisciplinary Approach to Facilitating Transfer at New Mexico Institute of Mining and Technology

    ERIC Educational Resources Information Center

    Ford, Julie Dyke

    2012-01-01

    This program profile describes a new approach towards integrating communication within Mechanical Engineering curricula. The author, who holds a joint appointment between Technical Communication and Mechanical Engineering at New Mexico Institute of Mining and Technology, has been collaborating with Mechanical Engineering colleagues to establish a…

  2. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    NASA Astrophysics Data System (ADS)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures

  3. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds

    PubMed Central

    Kim, Beom Su; Park, Ko Eun; Kim, Min Hee; You, Hyung Keun; Lee, Jun; Park, Won Ho

    2015-01-01

    The broad application of electrospun nanofibrous scaffolds in tissue engineering is limited by their small pore size, which has a negative influence on cell migration. This disadvantage could be significantly improved through the combination of nano- and microfibrous structure. To accomplish this, different nano/microfibrous scaffolds were produced by hybrid electrospinning, combining solution electrospinning with melt electrospinning, while varying the content of the nanofiber. The morphology of the silk fibroin (SF)/poly(ε-caprolactone) (PCL) nano/microfibrous composite scaffolds was investigated with field-emission scanning electron microscopy, while the mechanical and pore properties were assessed by measurement of tensile strength and mercury porosimetry. To assay cell proliferation, cell viability, and infiltration ability, human mesenchymal stem cells were seeded on the SF/PCL nano/microfibrous composite scaffolds. From in vivo tests, it was found that the bone-regenerating ability of SF/PCL nano/microfibrous composite scaffolds was closely associated with the nanofiber content in the composite scaffolds. In conclusion, this approach of controlling the nanofiber content in SF/PCL nano/microfibrous composite scaffolds could be useful in the design of novel scaffolds for tissue engineering. PMID:25624762

  4. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.

    PubMed

    Torabinejad, Bahman; Mohammadi-Rovshandeh, Jamshid; Davachi, Seyed Mohammad; Zamanian, Ali

    2014-09-01

    The employment of biodegradable polymer scaffolds is one of the main approaches for achieving a tissue engineered construct to reproduce bone tissues, which provide a three dimensional template to regenerate desirable tissues for different applications. The main goal of this study is to design a novel triblock scaffold reinforced with nano-hydroxyapatite (nHA) for hard tissue engineering using gas foaming/salt leaching method with minimum solvent usage. With this end in view, the biodegradable triblock copolymers of l-lactide and ε-caprolactone with different mol% were synthesized by ring-opening polymerization method in the presence of Sn(Oct)2 catalyst as initiator and ethylene glycol as co-initiator. The chemical compositions of biodegradable copolymers were characterized by means of FTIR and NMR. The thermal and crystallization behaviors of copolymers were characterized using TGA and DSC thermograms. Moreover, nano-hydroxyapatite was synthesized by the chemical precipitation process and was thoroughly characterized by FTIR, XRD and TEM. Additionally, the nanocomposites with different contents of nHA were prepared by mixing triblock copolymer with nHA. Mechanical properties of the prepared nanocomposites were evaluated by stress-strain measurements. It was found that the nanocomposite with 30% of nHA showed the optimum result. Therefore, nanocomposite scaffolds with 30% nHA were fabricated by gas foaming/salt leaching method and SEM images were used to observe the microstructure and morphology of nanocomposites and nanocomposite scaffolds before and after cell culture. The in-vitro and cell culture tests were also carried out to further evaluate the biological properties. The results revealed that the porous scaffolds were biocompatible to the osteoblast cells because the cells spread and grew well. The resultant nanocomposites could be considered as good candidates for use in bone tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Applying systems engineering methodologies to the micro- and nanoscale realm

    NASA Astrophysics Data System (ADS)

    Garrison Darrin, M. Ann

    2012-06-01

    Micro scale and nano scale technology developments have the potential to revolutionize smart and small systems. The application of systems engineering methodologies that integrate standalone, small-scale technologies and interface them with macro technologies to build useful systems is critical to realizing the potential of these technologies. This paper covers the expanding knowledge base on systems engineering principles for micro and nano technology integration starting with a discussion of the drivers for applying a systems approach. Technology development on the micro and nano scale has transition from laboratory curiosity to the realization of products in the health, automotive, aerospace, communication, and numerous other arenas. This paper focuses on the maturity (or lack thereof) of the field of nanosystems which is emerging in a third generation having transitioned from completing active structures to creating systems. The emphasis of applying a systems approach focuses on successful technology development based on the lack of maturity of current nano scale systems. Therefore the discussion includes details relating to enabling roles such as product systems engineering and technology development. Classical roles such as acquisition systems engineering are not covered. The results are also targeted towards small-scale technology developers who need to take into account systems engineering processes such as requirements definition, verification, and validation interface management and risk management in the concept phase of technology development to maximize the likelihood of success, cost effective micro and nano technology to increase the capability of emerging deployed systems and long-term growth and profits.

  6. Self-patterning Gd nano-fibers in Mg-Gd alloys

    DOE PAGES

    Li, Yangxin; Wang, Jian; Chen, Kaiguo; ...

    2016-12-07

    Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with amore » $$\\langle$$c$$\\rangle$$ -rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. Finally, this nano-fiber patterning approach could be an effective method to engineer hexagonal metals.« less

  7. Self-patterning Gd nano-fibers in Mg-Gd alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangxin; Wang, Jian; Chen, Kaiguo

    Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with amore » $$\\langle$$c$$\\rangle$$ -rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. Finally, this nano-fiber patterning approach could be an effective method to engineer hexagonal metals.« less

  8. Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor.

    PubMed

    Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining

    2017-01-28

    Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system.

  9. Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor

    PubMed Central

    Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining

    2017-01-01

    Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system. PMID:28134854

  10. A NANO enhancement to Moore's law

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Shen, Yin-Lin; Reinhardt, Kitt; Szu, Harold

    2012-06-01

    In the past 46 years, Intel Moore observed an exponential doubling in the number of transistors in every 18 months through the size reduction of individual transistor components since 1965. In this paper, we are exploring the nanotechnology impact upon the Law. Since we cannot break down the atomic size barrier, the fact implies a fundamental size limit at the atomic or Nanotechnology scale. This means, no more simple 18 month doubling as in Moore's Law, but other forms of transistor doubling may happen at a different slope in new directions. We are particularly interested in the Nano enhancement area. (i) 3-D: If the progress in shrinking the in-plane dimensions (2D) is to slow down, vertical integration (3D) can help increasing the areal device transistor density and keep us on the modified Moore's Law curve including the 3rd dimension. As the devices continue to shrink further into the 20 to 30 nm range, the consideration of thermal properties and transport in such nanoscale devices becomes increasingly important. (ii) Carbon Computing: Instead of traditional Transistors, the other types of transistors material are rapidly developed in Laboratories Worldwide, e.g. IBM Spintronics bandgap material and Samsung Nano-storage material, HD display Nanotechnology, which are modifying the classical Moore's Law. We shall consider the overall limitation of phonon engineering, fundamental information unit 'Qubyte' in quantum computing, Nano/Micro Electrical Mechanical System (NEMS), Carbon NanoTubes (CNTs), single layer Graphemes, single strip Nano-Ribbons, etc., and their variable degree of fabrication maturities for the computing and information processing applications.

  11. Automatic and rapid identification of glycopeptides by nano-UPLC-LTQ-FT-MS and proteomic search engine.

    PubMed

    Giménez, Estela; Gay, Marina; Vilaseca, Marta

    2017-01-30

    Here we demonstrate the potential of nano-UPLC-LTQ-FT-MS and the Byonic™ proteomic search engine for the separation, detection, and identification of N- and O-glycopeptide glycoforms in standard glycoproteins. The use of a BEH C18 nanoACQUITY column allowed the separation of the glycopeptides present in the glycoprotein digest and a baseline-resolution of the glycoforms of the same glycopeptide on the basis of the number of sialic acids. Moreover, we evaluated several acquisition strategies in order to improve the detection and characterization of glycopeptide glycoforms with the maximum number of identification percentages. The proposed strategy is simple to set up with the technology platforms commonly used in proteomic labs. The method allows the straightforward and rapid obtention of a general glycosylated map of a given protein, including glycosites and their corresponding glycosylated structures. The MS strategy selected in this work, based on a gas phase fractionation approach, led to 136 unique peptides from four standard proteins, which represented 78% of the total number of peptides identified. Moreover, the method does not require an extra glycopeptide enrichment step, thus preventing the bias that this step could cause towards certain glycopeptide species. Data are available via ProteomeXchange with identifier PXD003578. We propose a simple and high-throughput glycoproteomics-based methodology that allows the separation of glycopeptide glycoforms on the basis of the number of sialic acids, and their automatic and rapid identification without prior knowledge of protein glycosites or type and structure of the glycans. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Understanding One Institutions' Process in Preparing Civil Engineering Students to Be Globally Competent

    ERIC Educational Resources Information Center

    Mavroudhis, Vasiliki Goudanas

    2017-01-01

    Civil engineering is an increasingly dynamic and global industry experiencing expansion cross borders, resulting in new required competencies sought out by employers and reflected in updated undergraduate program outcomes. These new competencies include attributes that result in global competence. Institutions of higher learning need to…

  13. Dual-wavelength nano-engineered Thulium-doped fiber laser via bending of singlemode-multimode-singlemode fiber structure

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. Z.; Latiff, A. A.; Paul, M. C.; Yasin, M.; Ahmad, H.; Harun, S. W.

    2016-12-01

    In this paper, a dual-wavelength fiber laser (DWFL) using nano-engineered Thulium-doped fiber as a gain medium with a bent singlemode-multimode-singlemode fiber structure (SMS) is demonstrated. The SMS structure is packaged systematically using Cr-39 polymer plates to provide linear bending via applied load. Experimental results have proved that the bent SMS is capable to provide highly effective wavelength filter and wavelengths stabilizer by balancing the net cavity gain between the two wavelengths. The DWFL provides very narrow spacing of 0.9 nm, narrow 3 dB spectral linewidth of ∼0.07 nm and SNR of ∼42 dB. Based on stability test, very small mode hopping is observed at the two wavelengths having deviations of ±0 nm and ±0.04 nm respectively. In conjunction, the DWFL provides very stable relative wavelength spacing with a deviation of ±0.04 nm.

  14. Personal Epistemological Development of Chinese Engineering Doctoral Students in U.S. Institutions: An Application of Perry's Theory

    ERIC Educational Resources Information Center

    Zhu, Jiabin

    2013-01-01

    The U.S. has experienced a large surge of foreign talent, as evidenced by the large number of international students enrolling each year in science and engineering fields (IIE, 2010). Among the foreign countries and economies, China ranks top in the number of doctorate degree recipients from U.S. institutions in science and engineering fields…

  15. A New Paradigm of Engineering Education for the 21st Century:Perspectives of Rose-Hulman Institute of Technology

    NASA Astrophysics Data System (ADS)

    Western, Arthur; Stamper, Richard

    Strategic initiatives for engineering education in the next decade as planned by the Rose-Hulman Institute of Technology are presented. The Rose-Hulman Institute of Technology is a private college in the United States that specializes in undergraduate engineering, mathematics and science education. The initiatives are in response to broad changes in the practice of the engineering profession in its modern global context. The initiatives comprise five strategic thrust areas and five programmatic themes. The thrust areas are: Energy and Environment; Health and Safety; Transportation; Materials; and Information, Computation, and Communication. The programmatic themes are: Excellence in Education; International Awareness; Business Awareness;Service Learning; and Life-long Learning. The objective of these initiatives is to prepare students to meet the challenges of the 21st century and to serve as leaders in society.

  16. Thermal effects in photomask engineering and nano-thermometry

    NASA Astrophysics Data System (ADS)

    Chu, Dachen

    Electron Beam Lithography (EBL) in photomask fabrication results in heating of the resist films. The local heating can change the chemical properties of resist, leading to placement errors. The heating induced error has been believed to be increasingly significant as the transistor minimum feature size approaches the sub 100 nm region. A Green's function approach has been developed to calculate four-dimensional temperature profiles in complex structures such as the multi-layer work-pieces being exposed in EBL. The model is being used to characterize different ebeam writing strategies to find the optimum. To provide the parameters for the model, two independent techniques have been employed: a thin film electrode method and a laser thermal-reflectance method. Unlike earlier results from polyimide films, no appreciable anisotropy was observed in thermal conductivities for the polymeric resists tested. Gold/nickel thin film thermocouples with minimum junction area of 100nm by 100nm were fabricated and calibrated. These thermocouple demonstrated a 400ns response time when heated by a 10ns laser pulse. Using these nano thermocouples, transient resist heating temperature profiles were for the first time measured at room temperature. Experimental results showed a good agreement with the Green's function model. We also observed a tradeoff in the scaling of thermocouple sensors. The smaller thermocouples may provide higher spatial and temporal resolutions but have poorer temperature resolution. In conclusion, we both modeled and measured the resist heating in EBL. In short exposure time (˜1us or less) the resist heating is nearly adiabatic, while in longer time the heating is dominated by substrate. Nano scale metallic thermocouples were explored and tradeoff was observed in dimension scaling.

  17. The Multiple-Institution Database for Investigating Engineering Longitudinal Development: An Experiential Case Study of Data Sharing and Reuse

    ERIC Educational Resources Information Center

    Ohland, Matthew W.; Long, Russell A.

    2016-01-01

    Sharing longitudinal student record data and merging data from different sources is critical to addressing important questions being asked of higher education. The Multiple-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) is a multi-institution, longitudinal, student record level dataset that is used to answer…

  18. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering.

    PubMed

    Hu, Yimin; Chen, Jingdi; Fan, Tiantang; Zhang, Yujue; Zhao, Yao; Shi, Xuetao; Zhang, Qiqing

    2017-09-01

    Biomimetic mineralized hybrid scaffolds are widely used as natural bone substitute materials in tissue engineering by mimicking vital characters of extracellular matrix (ECM). However, the fabrication of hybrid scaffolds with suitable mechanical properties and good biocompatibility remains a challenge. To solve the problems mentioned above, biomimetic calcium phosphate mineralized organic-inorganic hybrid scaffold composed of nano hydroxyapatite (nHAP), Chitosan (CS), Chondroitin sulfate (CSA) and hyaluronic acid (HA) with hierarchical micro/nano structures was successfully developed. In this process, an efficient and easy-to-accomplish method combining in situ biomimetic synthesis with freeze-drying technology was applied. The chemical structure of the scaffolds was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Surface morphology of scaffolds was characterized by Scanning electron microscopy (SEM). The nHAP/CS/CSA/HA hybrid scaffolds with a well-distributed pore size showed suitable mechanical strength which is not only due to the addition of the nHAP but also the interaction between the positively charged CS and the negatively charged CSA and HA. Simultaneously, the biocompatibility was evaluated by the MTT cytotoxicity assay, alkaline phosphatase (ALP) activity, Hoechst 33258 fluorescence staining. All those results proved that the scaffolds possess good biocompatibility and the components added have enhanced the proliferation and differentiation of osteoblast. Thus, it can be anticipated that the in situ biomimetic mineralized nHAP/CS/CAS/HA hybrid scaffolds will be promising candidates for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. On hydrophilicity improvement of the porous anodic alumina film by hybrid nano/micro structuring

    NASA Astrophysics Data System (ADS)

    Wang, Weichao; Zhao, Wei; Wang, Kaige; Wang, Lei; Wang, Xuewen; Wang, Shuang; Zhang, Chen; Bai, Jintao

    2017-09-01

    In both, laboratory and industry, tremendous attention is paid to discover an effective technique to produce uniform, controllable and (super) hydrophilic surfaces over large areas that are useful in a wide range of applications. In this investigation, by combing porous anodic alumina (PAA) film with nano-structures and microarray of aluminum, the hydrophilicity of hybrid nano-micro structure has been significantly improved. It is found some factors can affect the hydrophilicity of film, such as the size and aspect ratio of microarray, the thickness of nano-PAA film etc. Comparing with pure nano-PAA films and microarray, the hybrid nano-micro structure can provide uniform surface with significantly better hydrophilicity. The improvement can be up to 84%. Also, this technique exhibits good stability and repeatability for industrial production. By optimizing the thickness of nano-PAA film and aspect ratio of micro-structures, super-hydrophilicity can be reached. This study has obvious prospect in the fields of chemical industry, biomedical engineering and lab-on-a-chip applications.

  20. Success Factors of Black Science, Technology, Engineering and Mathematics Faculty at Predominantly White Institutions

    ERIC Educational Resources Information Center

    Currie, Michelle A.

    2012-01-01

    Black faculty at predominantly White institutions (PWIs) have historically been underrepresented and made to endure with academic isolation, scholarship marginalization and other challenges to the tenure process. When it comes to science, technology, engineering and math, also known as STEM, as it relates to race and success, little is known of…

  1. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.

    PubMed

    Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C

    2014-01-01

    Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies. © 2014 American Institute of Chemical Engineers.

  2. Performance of concrete incorporating colloidal nano-silica

    NASA Astrophysics Data System (ADS)

    Zeidan, Mohamed Sabry

    Nanotechnology, as one of the most modern fields of science, has great market potential and economic impact. The need for research in the field of nanotechnology is continuously on the rise. During the last few decades, nanotechnology was developing rapidly into many fields of applied sciences, engineering and industrial applications, especially through studies of physics, chemistry, medicine and fundamental material science. These new developments may be attributed to the fact that material properties and performance can be significantly improved and controlled through nano-scale processes and nano-structures. This research program aims at 1) further understanding the behavior of cementitious materials when amended on the nano-scale level and 2) exploring the effect of this enhancement on the microstructure of cement matrix. This study may be considered as an important step towards better understanding the use of nano-silica in concrete. The main goal of the study is to investigate the effect of using colloidal nano-silica on properties of concrete, including mechanical properties, durability, transport properties, and microstructure. The experimental program that was conducted included a laboratory investigation of concrete mixtures in which nano-silica was added to cement or to a combination of cement and Class F fly ash. Various ratios of nano-silica were used in concrete mixtures to examine the extent and types of improvements that could be imparted to concrete. The conducted experimental program assessed these improvements in terms of reactivity, mechanical properties, and durability of the mixtures under investigation. Advanced testing techniques---including mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM)---were used to investigate the effect of nano-silica on the microstructure of the tested mixtures. In addition, the effect of nano-silica on the alkali-silica reaction (ASR) was examined using various techniques, including testing

  3. A Study of Engineering Freshmen Regarding Nanotechnology Understanding

    ERIC Educational Resources Information Center

    Lu, Kathy

    2009-01-01

    This study was conducted under the grand scheme of nanotechnology education and was focused on examining the nanotechnology readiness of first-year engineering students. The study found that most students learned the term "nano" from popular science magazines or as a measurement unit; less than 5% of the students learned "nano" through…

  4. Nano-volcanic Eruption of Silver

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  5. Nano-volcanic Eruption of Silver.

    PubMed

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-05

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O 2 gas and suspended Ag and Ag 2 O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag "nano-volcanic eruption" mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  6. The Roles of Professional Engineers at the Institutions of Higher Learning in Nation-Building

    ERIC Educational Resources Information Center

    Harun, Zambri; Khamis, Nor Kamaliana; Isa, Mohamad Dali; Hashim, Hashimah

    2013-01-01

    This paper discusses the roles of professional engineers (PEs) who are attached to the Institutions of Higher Learning (IHLs) and how their contributions are as important as their counterparts in the industry. This paper highlights the roles for PEs at IHLs based on a survey conducted at selected IHLs in Malaysia. Academician-professional…

  7. Biocompatibility Assessment of Si-based Nano- and Micro-particles

    PubMed Central

    Jaganathan, Hamsa; Godin, Biana

    2012-01-01

    Silicon is one of the most abundant chemical elements found on the Earth. Due to its unique chemical and physical properties, silicon based materials and their oxides (e.g. silica) have been used in several industries such as building and construction, electronics, food industry, consumer products and biomedical engineering/medicine. This review summarizes studies on effects of silicon and silica nano- and micro-particles on cells and organs following four main exposure routes, namely, intravenous, pulmonary, dermal and oral. Further, possible genotoxic effects of silica based nanoparticles are discussed. The review concludes with an outlook on improving and standardizing biocompatibility assessment for nano- and micro-particles. PMID:22634160

  8. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation.

    PubMed

    Meesters, Johannes A J; Koelmans, Albert A; Quik, Joris T K; Hendriks, A Jan; van de Meent, Dik

    2014-05-20

    Screening level models for environmental assessment of engineered nanoparticles (ENP) are not generally available. Here, we present SimpleBox4Nano (SB4N) as the first model of this type, assess its validity, and evaluate it by comparisons with a known material flow model. SB4N expresses ENP transport and concentrations in and across air, rain, surface waters, soil, and sediment, accounting for nanospecific processes such as aggregation, attachment, and dissolution. The model solves simultaneous mass balance equations (MBE) using simple matrix algebra. The MBEs link all concentrations and transfer processes using first-order rate constants for all processes known to be relevant for ENPs. The first-order rate constants are obtained from the literature. The output of SB4N is mass concentrations of ENPs as free dispersive species, heteroaggregates with natural colloids, and larger natural particles in each compartment in time and at steady state. Known scenario studies for Switzerland were used to demonstrate the impact of the transport processes included in SB4N on the prediction of environmental concentrations. We argue that SB4N-predicted environmental concentrations are useful as background concentrations in environmental risk assessment.

  9. Wakata performs microscopic analysis of the NanoRacks Module-38 Petri Dishes

    NASA Image and Video Library

    2014-01-13

    ISS038-E-029082 (12 Jan. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, performs microscopic analysis of the NanoRacks Module-38 Petri Dishes, using Celestron Reflective Microscope, in the Kibo laboratory of the International Space Station. These Module-38 experiments are designed by students as part of a competition sponsored by the International Space School Educational Trust (ISSET). This experiment examines three-dimensional growth of slime mold in petri dishes utilizing the NanoRacks Microscopes Facility.

  10. NASA LWS Institute GIC Working Group: GIC science, engineering and applications readiness

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A. A.; Thomson, A. W. P.; Bernabeu, E.

    2016-12-01

    In recognition of the rapidly growing interest on the topic, this paper is based on the findings of the very first NASA Living With a Star (LWS) Institute Working Group that was specifically targeting the GIC issue. The new LWS Institutes program element was launched 2014 and the concept is built around small working group style meetings that focus on well defined problems that demand intense, direct interactions between colleagues in neighboring disciplines to facilitate the development of a deeper understanding of the variety of processes that link the solar activity to Earth's environment. The LWS Institute Geomagnetically Induced Currents (GIC) Working Group (WG) led by A. Pulkkinen (NASA GSFC) and co-led by E. Bernabeu (PJM) and A. Thomson (BGS) was selected competitively as the pilot activity for the new LWS element. The GIC WG was tasked to 1) identify, advance, and address the open scientific and engineering questions pertaining to GIC, 2) advance predictive modeling of GIC, 3) advocate and act as a catalyst to identify resources for addressing the multidisciplinary topic of GIC. In this paper, we target the goal 1) of the GIC WG. More specifically, the goal of this paper is to review the current status and future challenges pertaining to science, engineering and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allow improved understanding and physics-based modeling of physical processes behind GIC. Engineering in turn is understood here as the "impact" aspect of GIC. The impact includes any physical effects GIC may have on the performance of the manmade infrastructure. Applications is understood as the models, tools and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government for managing any potential consequences from GIC impact to critical infrastructure. In this sense, applications can be considered as

  11. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    PubMed

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc.

  12. Bio-nano interactions detected by nanochannel electrophoresis.

    PubMed

    Luan, Binquan

    2016-08-01

    Engineered nanoparticles have been widely used in industry and are present in many consumer products. However, their bio-safeties especially in a long term are largely unknown. Here, a nanochannel-electrophoresis-based method is proposed for detecting the potential bio-nano interactions that may further lead to damages to human health and/or biological environment. Through proof-of-concept molecular dynamics simulations, it was demonstrated that the transport of a protein-nanoparticle complex is very different from that of a protein along. By monitoring the change of ionic currents induced by a transported analyte as well as the transport velocities of the analyte, the complex (with bio-nano interaction) can be clearly distinguished from the protein alone (with no interaction with tested nanoparticles). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Knowledge Engineering for Preservation and Future use of Institutional Knowledge

    NASA Technical Reports Server (NTRS)

    Moreman, Douglas; Dyer, John

    1996-01-01

    This Project has two main thrusts-preservation of special knowledge and its useful representation via computers. NASA is losing the expertise of its engineers and scientists who put together the great missions of the past. We no longer are landing men on the moon. Some of the equipment still used today (such as the RL-10 rocket) was designed decades ago by people who are now retiring. Furthermore, there has been a lack, in some areas of technology, of new projects that overlap with the old and that would have provided opportunities for monitoring by senior engineers of the young ones. We are studying this problem and trying out a couple of methods of soliciting and recording rare knowledge from experts. One method is that of Concept Maps which produces a graphical interface to knowledge even as it helps solicit that knowledge. We arranged for experienced help in this method from John Coffey of the Institute of Human and Machine Technology at the University of West Florida. A second method which we plan to try out in May, is a video-taped review of selected failed missions (e.g., the craft tumbled and blew up). Five senior engineers (most already retired from NASA) will, as a team, analyze available data, illustrating their thought processes as they try to solve the problem of why a space craft failed to complete its mission. The session will be captured in high quality audio and with at least two video cameras. The video can later be used to plan future concept mapping interviews and, in edited form, be a product in itself. Our computer representations of the amassed knowledge may eventually, via the methods of expert systems, be joined with other software being prepared as a suite of tools to aid future engineers designing rocket engines. In addition to representation by multimedia concept maps, we plan to consider linking vast bodies of text (and other media) by hypertexting methods.

  14. Evolution from education to practical use in University of Tokyo's nano-satellite activities

    NASA Astrophysics Data System (ADS)

    Nakasuka, Shinichi; Sako, Nobutada; Sahara, Hironori; Nakamura, Yuya; Eishima, Takashi; Komatsu, Mitsuhito

    2010-04-01

    The paper overviews recent nano-satellite development activities of University of Tokyo, Intelligent Space Systems Laboratory (ISSL). Development of real satellites and actually launching them provides excellent materials for space engineering education as well as project management, which is rather difficult to teach in usual class lectures. In addition, it may lead to a new way of space development with its cheap and quick access to space. Two educational CubeSats were launched successfully in 2003 and 2005, and they have been surviving in space more than 5 years, which showed that the COTS (commercial off the shelf) can be reliably used in space if the system is designed appropriately. Based on the experiences and technologies obtained in CubeSat projects, ISSL initiated practical applications of nano-satellite, starting with PRISM, 8 kg remote sensing satellite aiming for 30 m ground resolution and Nano-JASMINE, 20 kg astrometry satellite, which will be launched in 2009 and 2010, respectively. In order to support these kinds of student-oriented activities in Japan, University Space Engineering Consortium (UNISEC) was founded in 2002 by the author's group, which has had large effect of further facilitating students' space-related activities in Japan. Significance and history of such activities are reviewed briefly, followed by the objectives and future vision of such nano-satellite activities.

  15. Results in Developing an Engineering Degree Program in Safeguards and Security of Nuclear Materials at Moscow Engineering Physics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Killinger, Mark H.

    The world’s first master’s degree program in nuclear safeguards and security, established at Moscow Engineering Physics Institute (MEPhI), has now graduated nine classes of students. Most of the graduates have gone on to work at government agencies, research organizations, or obtain their PhD. In order to meet the demand for safeguards and security specialists at nuclear facilities, MEPhI established a 5½ year engineering degree program that provides more hands-on training desired by facilities. In February 2004, the first students began their studies in the new discipline Nuclear Material Safeguards and Nonproliferation. This class, as well as other subsequent classes, includedmore » students who started the program in their third year of studies, as the first 2½ years consists of general engineering curriculum. Fourteen students made up the first graduating class, receiving their engineering degrees in February 2007. The topics addressed in this paper include specific features of the program caused by peculiarities of Russian education legislation and government quality control of academic education. This paper summarizes the main joint actions undertaken by MEPhI and the US National Laboratories in conjunction with the U.S. Department of Energy, to develop the engineering degree program. Also discussed are the program’s specific training requirements, student internships, and job placement. The paper concludes with recommendations from a recent international seminar on nonproliferation education and training.« less

  16. Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications.

    PubMed

    Maji, Somnath; Agarwal, Tarun; Das, Joyjyoti; Maiti, Tapas Kumar

    2018-06-01

    The present study delineates a relatively simpler approach for fabrication of a macroporous three-dimensional scaffold for bone tissue engineering. The novelty of the work is to obtain a scaffold with macroporosity (interconnected networks) through a combined approach of high stirring induced foaming of the gelatin/carboxymethyl chitosan (CMC)/nano-hydroxyapatite (nHAp) matrix followed by freeze drying. The fabricated macroporous (SGC) scaffold had a greater pore size, higher porosity, higher water retention capacity, slow and sustained enzymatic degradation rate along with higher compressive strength compared to that of non-macroporous (NGC, prepared by conventional freeze drying methodology) scaffold. The biological studies revealed the increased percentage of viability, proliferation, and differentiation as well as higher mineralization of differentiated human Wharton's jelly MSC microtissue (wjhMSC-MT) on SGC as compared to NGC scaffold. RT-PCR also showed enhanced expression level of collagen type I, osteocalcin and Runx2 when seeded on SGC. μCT and histological analysis further revealed a penetration of cellular spheroid to a greater depth in SGC scaffold than NGC scaffold. Furthermore, the effect of cryopreservation on microtissue survival on the three-dimensional construct revealed significant higher viability upon revival in macroporous SGC scaffolds. These results together suggest that high stirring based macroporous scaffolds could have a potential application in bone tissue engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Nano-enabled tribological thin film coatings: global patent scenario.

    PubMed

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds.

  18. Development of hydrogels for regenerative engineering.

    PubMed

    Guan, Xiaofei; Avci-Adali, Meltem; Alarçin, Emine; Cheng, Hao; Kashaf, Sara Saheb; Li, Yuxiao; Chawla, Aditya; Jang, Hae Lin; Khademhosseini, Ali

    2017-05-01

    The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Priorities for Standards and Measurements to Accelerate Innovations in Nano-Electrotechnologies: Analysis of the NIST-Energetics-IEC TC 113 Survey+,*

    PubMed Central

    Bennett, Herbert S.; Andres, Howard; Pellegrino, Joan; Kwok, Winnie; Fabricius, Norbert; Chapin, J. Thomas

    2009-01-01

    In 2008, the National Institute of Standards and Technology and Energetics Incorporated collaborated with the International Electrotechnical Commission Technical Committee 113 (IEC TC 113) on nano-electrotechnologies to survey members of the international nanotechnologies community about priorities for standards and measurements to accelerate innovations in nano-electrotechnologies. In this paper, we analyze the 459 survey responses from 45 countries as one means to begin building a consensus on a framework leading to nano-electrotechnologies standards development by standards organizations and national measurement institutes. The distributions of priority rankings from all 459 respondents are such that there are perceived distinctions with statistical confidence between the relative international priorities for the several items ranked in each of the following five Survey category types: 1) Nano-electrotechnology Properties, 2) Nano-electrotechnology Taxonomy: Products, 3) Nano-electrotechnology Taxonomy: Cross-Cutting Technologies, 4) IEC General Discipline Areas, and 5) Stages of the Linear Economic Model. The global consensus prioritizations for ranked items in the above five category types suggest that the IEC TC 113 should focus initially on standards and measurements for electronic and electrical properties of sensors and fabrication tools that support performance assessments of nano-technology enabled sub-assemblies used in energy, medical, and computer products. PMID:27504216

  20. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    PubMed Central

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  1. The eNanoMapper database for nanomaterial safety information.

    PubMed

    Jeliazkova, Nina; Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon

    2015-01-01

    The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the "representational state transfer" (REST) API enables building user friendly

  2. Spotlight on nano-theranostics in South Korea: applications in diagnostics and treatment of diseases.

    PubMed

    Lee, Sangwha; Kim, Jongsung; Bark, Chung Wung; Lee, Bonghee; Ju, Heongkyu; Kang, Se Chan; Kim, TaeYoung; Kim, Moon Il; Ko, Young Tag; Nam, Jeong-Seok; Yoon, Hyon Hee; Yun, Kyu-Sik; Yoon, Young Soo; An, Seong Soo A; Hulme, John

    2015-01-01

    From the synergistic integration and the multidisciplinary strengths of the BioNano Sensor Research Center, Gachon Bionano Research Institute, and Lee Gil Ya Cancer and Diabetes Institute, researchers, students, and faculties at Gachon University in collaboration with other institutions in Korea, Australia, France, America, and Japan have come together to produce a special issue on the diverse applications of nano-theranostics in nanomedicine. This special issue will showcase new research conducted by various scientific groups in Gyonggi-do and Songdo/Incheon, South Korea. The objectives of this special issue are as follows: 1) to bring together and demonstrate some of the latest research results in the field, 2) to introduce new multifunctional nanomaterials and their applications in imaging and detection methods, and 3) to stimulate collaborative interdisciplinary research at both national and international levels in nanomedicine.

  3. Spotlight on nano-theranostics in South Korea: applications in diagnostics and treatment of diseases

    PubMed Central

    Lee, Sangwha; Kim, Jongsung; Bark, Chung Wung; Lee, Bonghee; Ju, Heongkyu; Kang, Se Chan; Kim, TaeYoung; Kim, Moon Il; Ko, Young Tag; Nam, Jeong-Seok; Yoon, Hyon Hee; Yun, Kyu-Sik; Yoon, Young Soo; An, Seong Soo A; Hulme, John

    2015-01-01

    From the synergistic integration and the multidisciplinary strengths of the BioNano Sensor Research Center, Gachon Bionano Research Institute, and Lee Gil Ya Cancer and Diabetes Institute, researchers, students, and faculties at Gachon University in collaboration with other institutions in Korea, Australia, France, America, and Japan have come together to produce a special issue on the diverse applications of nano-theranostics in nanomedicine. This special issue will showcase new research conducted by various scientific groups in Gyonggi-do and Songdo/Incheon, South Korea. The objectives of this special issue are as follows: 1) to bring together and demonstrate some of the latest research results in the field, 2) to introduce new multifunctional nanomaterials and their applications in imaging and detection methods, and 3) to stimulate collaborative interdisciplinary research at both national and international levels in nanomedicine. PMID:26345737

  4. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOEpatents

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  5. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Luo, Zhuangzhu; Tan, Sheng; Luo, Yimin; Wang, Yunjiao; Zhang, Zhaozhu; Liu, Weimin

    2014-07-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force ( F blow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1-8 μm in length/10-80 nm in width) are generated by "spinning/stretching" under internal microscopic force ( F T) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer "bionic lotus" surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing.

  6. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  7. Self Diffusion in Nano Filled Polymer Melts: a Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Desai, Tapan; Keblinski, Pawel

    2003-03-01

    SELF DIFFUSION IN NANO FILLED POLYMER MELTS: A MOLECULAR DYNAMICS SIMULATION STUDY* T. G. Desai,P. Keblinski, Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY. Using molecular dynamics simulations, we studied the dynamics of the polymeric systems containing immobile and analytically smooth spherical nanoparticles. Each chain consisted of N monomers connected by an anharmonic springs described by the finite extendible nonlinear elastic, FENE potential. The system comprises of 3nanoparticles and the rest by freely rotating but not overlapping chains. The longest chain studied has a Radius of gyration equal to particle size radius and comparable to inter-particle distance. There is no effect on the structural characteristics such as Radius of gyration or end to end distance due to the nanoparticles. Diffusion of polymeric chains is not affected by the presence of either attractive or repulsive nanoparticles. In all cases Rouse dynamics is observed for short chains with a crossover to reptation dynamics for longer chains.

  8. Characterization of Silk/Poly 3-Hydroxybutyrate-chitosan-multi-walled Carbon Nanotube Micro-nano Scaffold: A New Hybrid Scaffold for Tissue Engineering Applications.

    PubMed

    Mirmusavi, Mohammad Hossein; Karbasi, Saeed; Semnani, Dariush; Kharazi, Anousheh Zargar

    2018-01-01

    Long-term healing tissue engineering scaffolds must hold its full mechanical strength at least for 12 weeks. Nano-micro scaffolds consist of electrospinning nanofibers and textile microfibers to support cell behavior and mechanical strength, respectively. The new nano-micro hybrid scaffold was fabricated by electrospinning poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube (MWNT functionalized by COOH) solution on knitted silk in a random manner with different amounts of MWNT. The physical, mechanical, and biodegradation properties were assessed through scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, water contact angle test, tensile strength test, and weight loss test. The scaffold without MWNT was chosen as control sample. An increase in the amount of MWNT up to 1 wt% leads to better fiber diameter distribution, more hydrophilicity, biodegradation rate, and higher tensile strength in comparison with other samples. The porosity percentage of all scaffolds is more than 80%. According to FTIR spectra, the nanofibrous coat on knitted silk did not have any effect on silk fibroin crystallinity structures, and according to tensile strength test, the coat had a significant effect on tensile strength in comparison with pure knitted silk ( P ≤ 0.05). The average fiber diameter decreased due to an increase in electrical conductivity of the solution and fiber stretch in electrical field due to MWNTs. The scaffold containing 1 wt% MWNT was more hydrophilic due to the presence of many COOH groups of functionalized MWNT, thus an increase in the hydrolysis and degradation rate of this sample. High intrinsic tensile strength of MWNTs and improvement of nano-micro interface connection lead to an increase in tensile strength in scaffolds containing MWNT.

  9. Characterization of Silk/Poly 3-Hydroxybutyrate-chitosan-multi-walled Carbon Nanotube Micro-nano Scaffold: A New Hybrid Scaffold for Tissue Engineering Applications

    PubMed Central

    Mirmusavi, Mohammad Hossein; Karbasi, Saeed; Semnani, Dariush; Kharazi, Anousheh Zargar

    2018-01-01

    Background: Long-term healing tissue engineering scaffolds must hold its full mechanical strength at least for 12 weeks. Nano-micro scaffolds consist of electrospinning nanofibers and textile microfibers to support cell behavior and mechanical strength, respectively. Methods: The new nano-micro hybrid scaffold was fabricated by electrospinning poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube (MWNT functionalized by COOH) solution on knitted silk in a random manner with different amounts of MWNT. The physical, mechanical, and biodegradation properties were assessed through scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, water contact angle test, tensile strength test, and weight loss test. The scaffold without MWNT was chosen as control sample. Results: An increase in the amount of MWNT up to 1 wt% leads to better fiber diameter distribution, more hydrophilicity, biodegradation rate, and higher tensile strength in comparison with other samples. The porosity percentage of all scaffolds is more than 80%. According to FTIR spectra, the nanofibrous coat on knitted silk did not have any effect on silk fibroin crystallinity structures, and according to tensile strength test, the coat had a significant effect on tensile strength in comparison with pure knitted silk (P ≤ 0.05). The average fiber diameter decreased due to an increase in electrical conductivity of the solution and fiber stretch in electrical field due to MWNTs. The scaffold containing 1 wt% MWNT was more hydrophilic due to the presence of many COOH groups of functionalized MWNT, thus an increase in the hydrolysis and degradation rate of this sample. Conclusions: High intrinsic tensile strength of MWNTs and improvement of nano-micro interface connection lead to an increase in tensile strength in scaffolds containing MWNT. PMID:29535924

  10. Experimental Investigations to Enhance the Tribological Performance of Engine Oil by Using Nano-Boric Acid and Functionalized Multiwalled Carbon Nanotubes: A Comparative Study to Assess Wear in Bronze Alloy

    NASA Astrophysics Data System (ADS)

    Ajay Vardhaman, B. S.; Amarnath, M.; Ramkumar, J.; Rai, Prabhat K.

    2018-04-01

    In various mechanical systems, lubricants are generally used to reduce friction and wear; thus, the total energy loss in the mechanical systems can be minimized by the proper enhancement of lubrication properties. In general, friction modifiers and antiwear additives are used to improve the tribological properties of the lubricant. However, the use of these additives has to be phased out due to their fast chemical degradation in their applications and other environmental issues. In recent years, the use of nanoparticles as a potential lubricant additive has received considerable attention because of its excellent mechanical and tribological characteristics. The present work describes the tribological behavior of nano-boric acid, multiwalled carbon nanotubes (MWCNTs), and functionalized multiwalled carbon nanotubes (FMWCNTs) modified with carboxylic acid. These nanoparticles were used to enhance the tribological properties of engine oil (SAE20W40) used to lubricate bronze alloy samples. The performance of these nano-coolants was assessed on a linear reciprocating ball-on-flat tribometer. Results highlight the friction and wear behavior of the nano-boric acid, MWCNTs, and FMWCNTs under three varying parameters such as the effect of nanoparticles concentration, load-carrying capacity, and sliding speed. The addition of nano-boric acid, MWCNTs, and FMWCNTs has significantly improved the tribological properties of the base lubricant. The addition of 0.5 wt.% of nano-boric acid, MWCNTs, and FMWCNTs to the base lubricant has decreased the coefficient of friction by 19.76, 30.55, and 35.65%, respectively, and a significant reduction in wear volume by 55.17, 71.42, and 88.97% was obtained in comparison with base lubricant.

  11. Fabrication of nano-engineered transparent conducting oxides by pulsed laser deposition.

    PubMed

    Gondoni, Paolo; Ghidelli, Matteo; Di Fonzo, Fabio; Li Bassi, Andrea; Casari, Carlo S

    2013-02-27

    Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O₂ pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO₂, Al₂O₃, WO₃ and Ag₄O₄.

  12. Fabrication of Nano-engineered Transparent Conducting Oxides by Pulsed Laser Deposition

    PubMed Central

    Gondoni, Paolo; Ghidelli, Matteo; Di Fonzo, Fabio; Li Bassi, Andrea; Casari, Carlo S.

    2013-01-01

    Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O2 pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO2, Al2O3, WO3 and Ag4O4. PMID:23486076

  13. Multi-functional nano silver: A novel disruptive and theranostic agent for pathogenic organisms in real-time

    PubMed Central

    Gopinath, Ponnusamy Manogaran; Ranjani, Anandan; Dhanasekaran, Dharumadurai; Thajuddin, Nooruddin; Archunan, Govindaraju; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman

    2016-01-01

    The present study was aimed at evaluating the fluorescence property, sporicidal potency against Bacillus and Clostridium endospores, and surface disinfecting ability of biogenic nano silver. The nano silver was synthesized using an actinobacterial cell-filtrate. The fluorescence property as well as imaging facilitator potency of this nano silver was verified adopting spectrofluorometer along with fluorescent and confocal laser scanning microscope wherein strong emission and bright green fluorescence, respectively, on the entire spore surface was observed. Subsequently, the endospores of B. subtilis, B. cereus, B. amyloliquefaciens, C. perfringens and C. difficile were treated with physical sporicides, chemical sporicides and nano silver, in which the nano silver brought about pronounced inhibition even at a very low concentration. Finally, the environmental surface-sanitizing potency of nano silver was investigated adopting cage co-contamination assay, wherein vital organs of mice exposed to the nano silver-treated cage did not show any signs of pathological lesions, thus signifying the ability of nano silver to completely disinfect the spore or reduce the count required for infection. Taken these observations together, we have shown the multi-functional biological properties of the nano silver, synthesized using an actinobacterial cell-filtrate, which could be of application in advanced diagnostics, biomedical engineering and therapeutics in the near future. PMID:27666290

  14. A Study to Determine the Basic Science and Mathematics Topics Most Needed by Engineering Technology Graduates of Wake Technical Institute in Performing Job Duties.

    ERIC Educational Resources Information Center

    Edwards, Timothy I.; Roberson, Clarence E., Jr.

    A survey of 470 graduates of the six engineering technology programs at Wake Technical Institute--Architectural, Chemical, Civil Engineering, Computer, Electronic Engineering, and Industrial Engineering Technologies--and 227 of their employers was conducted in October, 1979, to determine the science and mathematics topics most needed by…

  15. Nano-Disperse Borides and Carbides: Plasma Technology Production, Specific Properties, Economic Evaluation

    NASA Astrophysics Data System (ADS)

    Galevskii, G. V.; Rudneva, V. V.; Galevskii, S. G.; Tomas, K. I.; Zubkov, M. S.

    2016-04-01

    The experience of production and study on properties of nano-disperse chromium and titanium borides and carbides, and silicon carbide has been generalized. The structure and special service aspects of utilized plasma-metallurgical complex equipped with a three-jet direct-flow reactor with a capacity of 150 kW have been outlined. Processing, heat engineering and service life characteristics of the reactor are specified. The synthesis parameters of borides and carbides, as well as their basic characteristics in nano-disperse condition and their production flow diagram are outlined. Engineering and economic performance of synthesizing borides in laboratory and industrial conditions is assessed, and the respective segment of the international market as well. The work is performed at State Siberian Industrial University as a project part of the State Order of Ministry of Science and Education of the Russian Federation No. 11.1531/2014/K.

  16. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process.

    PubMed

    Yang, Qin; Luo, Zhuangzhu; Tan, Sheng; Luo, Yimin; Wang, Yunjiao; Zhang, Zhaozhu; Liu, Weimin

    2014-01-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force (F blow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1-8 μm in length/10-80 nm in width) are generated by "spinning/stretching" under internal microscopic force (F T) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer "bionic lotus" surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing.

  17. Micro- and nano-NDE systems for aircraft: great things in small packages

    NASA Astrophysics Data System (ADS)

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny

    2003-07-01

    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  18. Nano-modification to improve the ductility of cementitious composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeşilmen, Seda; Al-Najjar, Yazin; Balav, Mohammad Hatam

    2015-10-15

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexuralmore » strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO{sub 3} was more effective compared to nano-silica. However, the crystal structure of CaCO{sub 3} played a very important role in the range of expected improvements.« less

  19. The Institute of Biological Engineering 2013 Annual Conference

    DTIC Science & Technology

    2014-10-30

    of Bioengineering University of Washington Presentation: Peptide-Based materials for Drug Delivery Dr. Ya-Ping Sun (Supported by the Grant) Frank...Professor of Biomedical Engineering and Mechanical Engineering and Materials Science Duke University Presentation: Acoustic Microfluidics and New...Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Department of Mechanical Engineering

  20. Creation of security engineering programs by the Southwest Surety Institute

    NASA Astrophysics Data System (ADS)

    Romero, Van D.; Rogers, Bradley; Winfree, Tim; Walsh, Dan; Garcia, Mary Lynn

    1998-12-01

    The Southwest Surety Institute includes Arizona State University (ASU), Louisiana State University (LSU), New Mexico Institute of Mining and Technology (NM Tech), New Mexico State University (NMSU), and Sandia National Laboratories (SNL). The universities currently offer a full spectrum of post-secondary programs in security system design and evaluation, including an undergraduate minor, a graduate program, and continuing education programs. The programs are based on the methodology developed at Sandia National Laboratories over the past 25 years to protect critical nuclear assets. The programs combine basic concepts and principles from business, criminal justice, and technology to create an integrated performance-based approach to security system design and analysis. Existing university capabilities in criminal justice (NMSU), explosives testing and technology (NM Tech and LSU), and engineering technology (ASU) are leveraged to provide unique science-based programs that will emphasize the use of performance measures and computer analysis tools to prove the effectiveness of proposed systems in the design phase. Facility managers may then balance increased protection against the cost of implementation and risk mitigation, thereby enabling effective business decisions. Applications expected to benefit from these programs include corrections, law enforcement, counter-terrorism, critical infrastructure protection, financial and medical care fraud, industrial security, and border security.

  1. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    EPA Science Inventory

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  2. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration.

    PubMed

    Radhakrishnan, Janani; Manigandan, Amrutha; Chinnaswamy, Prabu; Subramanian, Anuradha; Sethuraman, Swaminathan

    2018-04-01

    Fabrication of anisotropic osteochondral-mimetic scaffold with mineralized subchondral zone and gradient interface remains challenging. We have developed an injectable semi-interpenetrating network hydrogel construct with chondroitin sulfate nanoparticles (ChS-NPs) and nanohydroxyapatite (nHA) (∼30-90 nm) in chondral and subchondral hydrogel zones respectively. Mineralized subchondral hydrogel exhibited significantly higher osteoblast proliferation and alkaline phosphatase activity (p < 0.05). Osteochondral hydrogel exhibited interconnected porous structure and spatial variation with gradient interface of nHA and ChS-NPs. Microcomputed tomography (μCT) demonstrated nHA gradation while rheology showed predominant elastic modulus (∼930 Pa) at the interface. Co-culture of osteoblasts and chondrocytes in gradient hydrogels showed layer-specific retention of cells and cell-cell interaction at the interface. In vivo osteochondral regeneration by biphasic (nHA or ChS) and gradient (nHA + ChS) hydrogels was compared with control using rabbit osteochondral defect after 3 and 8 weeks. Complete closure of defect was observed in gradient (8 weeks) while defect remained in other groups. Histology demonstrated collagen and glycosaminoglycan deposition in neo-matrix and presence of hyaline cartilage-characteristic matrix, chondrocytes and osteoblasts. μCT showed mineralized neo-tissue formation, which was confined within the defect with higher bone mineral density in gradient (chondral: 0.42 ± 0.07 g/cc, osteal: 0.64 ± 0.08 g/cc) group. Further, biomechanical push-out studies showed significantly higher load for gradient group (378 ± 56 N) compared to others. Thus, the developed nano-engineered gradient hydrogel enhanced hyaline cartilage regeneration with subchondral bone formation and lateral host-tissue integration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  4. Nano-food packaging: an overview of market, migration research, and safety regulations.

    PubMed

    Bumbudsanpharoke, Nattinee; Ko, Seonghyuk

    2015-05-01

    Recently, food packages produced with nanoparticles, "nano-food packaging," have become more available in the current market. However, although the use of nanomaterials is increasing in food packaging applications, concern over toxicity affects consumer perceptions and acceptance. Quite a number of commercialized forms of nano-food packaging are coated or composited product with inorganic materials, for example, nanosilver and nanoclay as representative examples. Several studies have shown the possibility of nanomaterial migration from packaging or containers to foodstuff. The debate is still ongoing among researchers about the extent of migration and whether it is negligible and safe. Government agencies and stakeholders must hurry to determine use limitations and release conclusive legislation and regulations as soon as possible since nano-food packaging may have great impacts on human health. This paper aims to review the availability of nano-food packaging in the current market, report case studies on nanomaterial migration, and present the current status of safety regulations and management of nano-food packaging in leading countries across regions. This review should enable governments and researchers to develop further nanomaterial risk assessment studies. © 2015 Institute of Food Technologists®

  5. A Bayesian-Based EDA Tool for Nano-circuits Reliability Calculations

    NASA Astrophysics Data System (ADS)

    Ibrahim, Walid; Beiu, Valeriu

    As the sizes of (nano-)devices are aggressively scaled deep into the nanometer range, the design and manufacturing of future (nano-)circuits will become extremely complex and inevitably will introduce more defects while their functioning will be adversely affected by transient faults. Therefore, accurately calculating the reliability of future designs will become a very important aspect for (nano-)circuit designers as they investigate several design alternatives to optimize the trade-offs between the conflicting metrics of area-power-energy-delay versus reliability. This paper introduces a novel generic technique for the accurate calculation of the reliability of future nano-circuits. Our aim is to provide both educational and research institutions (as well as the semiconductor industry at a later stage) with an accurate and easy to use tool for closely comparing the reliability of different design alternatives, and for being able to easily select the design that best fits a set of given (design) constraints. Moreover, the reliability model generated by the tool should empower designers with the unique opportunity of understanding the influence individual gates play on the design’s overall reliability, and identifying those (few) gates which impact the design’s reliability most significantly.

  6. Nano-Sized Grain Refinement Using Friction Stir Processing

    DTIC Science & Technology

    2013-03-01

    friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During

  7. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticlemore » surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  8. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect.

    PubMed

    Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang

    2018-03-26

    Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.

  9. Mass production of polymer nano-wires filled with metal nano-particles.

    PubMed

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  10. Dual luciferase assay for secreted luciferases based on Gaussia and NanoLuc.

    PubMed

    Heise, Kerstin; Oppermann, Henry; Meixensberger, Jürgen; Gebhardt, Rolf; Gaunitz, Frank

    2013-05-01

    Just recently, NanoLuc, a new engineered luciferase based on the small subunit of the luciferase from Oplophorus gracilirostris was introduced. Like the luciferase from Gaussia princeps, this luciferase is secreted into the medium. Both luciferases are the smallest and brightest luciferases known and well-suited for reporter assays. In our experiments, we demonstrate that both luciferases can be used together in a dual-reporter assay by solving the problem that NanoLuc produces a significant signal with coelenterazine, which is the substrate for Gaussia luciferase. We found that the background signal from NanoLuc with coelenterazine can be calculated from the determination of NanoLuc activity in the presence of its substrate furimazine. This in turn allows the precise determination of the activity of Gaussia which does not produce light in the presence of furimazine. Based on this observation, we developed a high sensitive dual secreted luciferase assay which allows the determination of both activities in a single cotransfection experiment. We demonstrate the versatility and robustness of the assay for the normalization of reporter gene activities. Since Gaussia luciferase and NanoLuc are nonhomologous reporters, the method to determine both luciferase activities may also be useful for coincidence reporter gene systems for high-throughput screening.

  11. Nano-metal Oxides: Exposure and Engineering Control Assessment

    PubMed Central

    Garcia, Alberto; Sparks, Christopher; Martinez, Kenneth; Topmiller, Jennifer L.; Eastlake, Adrienne; Geraci, Charles L.

    2017-01-01

    This paper discusses the evaluation of a facility that produces high quality engineered nanomaterials. These ENMs consist of various metals including iron, nickel, silver, manganese, and palladium. Although occupational exposure levels are not available for these metals, studies have indicated that it may be prudent to keep exposures to the nano-scale metal as low as possible. Previous In vitro studies indicated that in comparison with a material’s larger (parent) counterpart, nanomaterials can move easily through cell membranes and can cause severe toxic effects on human health. The in vitro studies showed that the toxicological effects specific to exposure to nanoscale nickel oxide and nickel have been found to be more inflammatory and toxic than larger-sized nickel particles and can decrease cell metabolic activity, arrest the G2-M cell cycle, and increase cell death. An in vitro study on exposure to iron nanoparticles indicated that the reactive oxygen species produced by exposure may increase cell permeability thereby increasing the potential for vascular movement. Much of the data available on palladium focus on dermal or ingestion exposure; the chronic effects are not well understood. Given the available limited data on the metals evaluated, caution is warranted. One should always keep in mind that the current OELs were not developed specifically for nanoscale particles. With limited data suggesting that certain nanoparticles may be more toxic than the larger counterparts of the same material; employers should attempt to control emissions of these particles at the source, to limit the potential for exposure. Evidence suggests that in general some nanomaterials can be more toxic than their macro-scale counterparts, and therefore caution is warranted. It appears that the personal protective equipment utilized by the employee was appropriate for this type of operation. It should be noted that the use of respiratory protection should not be used as sole

  12. The eNanoMapper database for nanomaterial safety information

    PubMed Central

    Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon

    2015-01-01

    Summary Background: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. Results: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. Conclusion: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the “representational state transfer

  13. Plasmonic graded nano-disks as nano-optical conveyor belt.

    PubMed

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

  14. Parenterally administrable nano-micelles of 3,4-difluorobenzylidene curcumin for treating pancreatic cancer.

    PubMed

    Kesharwani, Prashant; Banerjee, Sanjeev; Padhye, Subhash; Sarkar, Fazlul H; Iyer, Arun K

    2015-08-01

    Pancreatic cancer remains one of the most devastating diseases in terms of patient mortality rates for which current treatment options are very limited. 3,4-Difluorobenzylidene curcumin (CDF) is a nontoxic analog of curcumin (CMN) developed in our laboratory, which exhibits extended circulation half-life, while maintaining high anticancer activity and improved pancreas specific accumulation in vivo, compared with CMN. CDF however has poor aqueous solubility and its dose escalation for systemic administration remains challenging. We have engineered self-assembling nano-micelles of amphiphilic styrene-maleic acid copolymer (SMA) with CDF by non-covalent hydrophobic interactions. The SMA-CDF nano-micelles were characterized for size, charge, drug loading, release, serum stability, and in vitro anticancer activity. The SMA-CDF nano-micelles exhibited tunable CDF loading from 5 to 15% with excellent aqueous solubility, stability, favorable hemocompatibility and sustained drug release characteristics. The outcome of cytotoxicity testing of SMA-CDF nano-micelles on MiaPaCa-2 and AsPC-1 pancreatic cancer cell lines revealed pronounced antitumor response due to efficient intracellular trafficking of the drug loaded nano-micelles. Additionally, the nano-micelles are administrable via the systemic route for future in vivo studies and clinical translation. The currently developed SMA based nano-micelles thus portend to be a versatile carrier for dose escalation and targeted delivery of CDF, with enhanced therapeutic margin and safety. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Gibbs, Norman

    1988-01-01

    The goals of the Software Engineering Institute's Education Program are as follows: to increase the number of highly qualified software engineers--new software engineers and existing practitioners; and to be the leading center of expertise for software engineering education and training. A discussion of these goals is presented in vugraph form.

  16. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    NASA Astrophysics Data System (ADS)

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  17. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    NASA Astrophysics Data System (ADS)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  18. Gender Equality in Public Higher Education Institutions of Ethiopia: The Case of Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Egne, Robsan Margo

    2014-01-01

    Ensuring gender equality in higher education system is high on the agenda worldwide particularly in science disciplines. This study explores the problems and prospects of gender equality in public higher education institutions of Ethiopia, especially in science, technology, engineering, and mathematics. Descriptive survey and analytical research…

  19. Electronic structure of polycrystalline CVD-graphene revealed by Nano-ARPES

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyu; Avila, José; Asensio, Maria C.

    2017-06-01

    The ability to explore electronic structure and their role in determining material’s macroscopic behaviour is essential to explain and engineer functions of material and device. Since its debut in 2004, graphene has attracted global research interest due to its unique properties. Chemical vapor deposition (CVD) has emerged as an important method for the massive preparation and production of graphene for various applications. Here by employing angle-resolved photoemission spectroscopy with nanoscale spatial resolution ˜ 100 nm (Nano-ARPES), we describe the approach to measure the electronic structure of polycrystalline graphene on copper foils, demonstrating the power of Nano-ARPES to detect the electronic structure of microscopic single crystalline domains, being fully compatible with conventional ARPES. Similar analysis could be employed to other microscopic materials

  20. Engineered nano-magnetic iron oxide-urea-activated carbon nanolayer sorbent for potential removal of uranium (VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed E.; Khalifa, Mohamed A.; El Wakeel, Yasser M.; Header, Mennatllah S.; Abdel-Fattah, Tarek M.

    2017-04-01

    A novel magnetic nanosorbent was designed using chemical grafting of nano-magnetite (Nano-Fe3O4) with nanolayer of activated carbon (AC) via urea intermediate for the formation of Nano-Fe3O4-Urea-AC. Characterizing was carried out using FT-IR, SEM, HR-TEM, TGA, point of zero charge (Pzc) and surface area analysis. The designed sorbent maintained its magnetic properties and nanosized structure in the range of 8.7-14.1 nm. The surface area was identified as 389 m2/g based on the BET method. Sorption of uranyl ions from aqueous solutions was studied and evaluated in different experimental conditions. Removal of uranyl ions increased with increasing in pH value and the maximum percentage removal was established at pH 5.0. The removal and sorption processes of uranyl ions by Nano-Fe3O4-Urea-AC sorbent were studied and optimized using the batch technique. The key variables affecting removal of uranyl ions were studied including the effect of the contact time, dosage of Nano-Fe3O4-Urea-AC sorbent, reaction temperature, initial uranyl ions concentration and interfering anions and cations.

  1. Exploring the Academic and Social Experiences of Latino Engineering Community College Transfer Students at a 4-Year Institution: A Qualitative Research Study

    NASA Astrophysics Data System (ADS)

    Hagler, LaTesha R.

    As the number of historically underrepresented populations transfer from community college to university to pursue baccalaureate degrees in science, technology, engineering, and mathematics (STEM), little research exists about the challenges and successes Latino students experience as they transition from 2-year colleges to 4-year universities. Thus, institutions of higher education have limited insight to inform their policies, practices, and strategic planning in developing effective sources of support, services, and programs for underrepresented students in STEM disciplines. This qualitative research study explored the academic and social experiences of 14 Latino engineering community college transfer students at one university. Specifically, this study examined the lived experiences of minority community college transfer students' transition into and persistence at a 4-year institution. The conceptual framework applied to this study was Schlossberg's Transition Theory, which analyzed the participant's social and academic experiences that led to their successful transition from community college to university. Three themes emerged from the narrative data analysis: (a) Academic Experiences, (b) Social Experiences, and (c) Sources of Support. The findings indicate that engineering community college transfer students experience many challenges in their transition into and persistence at 4-year institutions. Some of the challenges include lack of academic preparedness, environmental challenges, lack of time management skills and faculty serving the role as institutional agents.

  2. Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3

    DOE PAGES

    Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; ...

    2015-04-01

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterizationmore » of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions ( 84Kr 22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x10 10 ions/cm 2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO 3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less

  3. Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations.

    PubMed

    Baumgartner, Ramona; Eitzlmayr, Andreas; Matsko, Nadejda; Tetyczka, Carolin; Khinast, Johannes; Roblegg, Eva

    2014-12-30

    Since more than 40% of today's drugs have low stability, poor solubility and/or limited ability to cross certain biological barriers, new platform technologies are required to address these challenges. This paper describes a novel continuous process that converts a stabilized aqueous nano-suspension into a solid oral formulation in a single step (i.e., the NANEX process) in order to improve the solubility of a model drug (phenytoin). Phenytoin nano-suspensions were prepared via media milling using different stabilizers. A stable nano-suspension was obtained using Tween(®) 80 as a stabilizer. The matrix material (Soluplus(®)) was gravimetrically fed into the hot melt extruder. The suspension was introduced through a side feeding device and mixed with the molten polymer to immediately devolatilize the water in the nano-suspension. Phenytoin nano-crystals were dispersed and embedded in the molten polymer. Investigation of the nano-extrudates via transmission electron microscopy and atomic force microscopy showed that the nano-crystals were embedded de-aggregated in the extrudates. Furthermore, no changes in the crystallinity (due to the mechanical and thermal stress) occurred. The dissolution studies confirmed that the prepared nano-extrudates increased the solubility of nano-crystalline phenytoin, regardless of the polymer. Our work demonstrates that NANEX represents a promising new platform technology in the design of novel drug delivery systems to improve drug performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bañares, Miguel A.; Haase, Andrea; Tran, Lang

    A first European Conference on Computational Nanotoxicology, CompNanoTox, was held in November 2015 in Benahavís, Spain with the objectives to disseminate and integrate results from the European modeling and database projects (NanoPUZZLES, ModENPTox, PreNanoTox, MembraneNanoPart, MODERN, eNanoMapper and EU COST TD1204 MODENA) as well as to create synergies within the European NanoSafety Cluster. This conference was supported by the COST Action TD1204 MODENA on developing computational methods for toxicological risk assessment of engineered nanoparticles and provided a unique opportunity for crossfertilization among complementary disciplines. The efforts to develop and validate computational models crucially depend on high quality experimental data andmore » relevant assays which will be the basis to identify relevant descriptors. The ambitious overarching goal of this conference was to promote predictive nanotoxicology, which can only be achieved by a close collaboration between the computational scientists (e.g. database experts, modeling experts for structure, (eco) toxicological effects, performance and interaction of nanomaterials) and experimentalists from different areas (in particular toxicologists, biologists, chemists and material scientists, among others). The main outcome and new perspectives of this conference are summarized here.« less

  5. CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology.

    PubMed

    Bañares, Miguel A; Haase, Andrea; Tran, Lang; Lobaskin, Vladimir; Oberdörster, Günter; Rallo, Robert; Leszczynski, Jerzy; Hoet, Peter; Korenstein, Rafi; Hardy, Barry; Puzyn, Tomasz

    2017-09-01

    A first European Conference on Computational Nanotoxicology, CompNanoTox, was held in November 2015 in Benahavís, Spain with the objectives to disseminate and integrate results from the European modeling and database projects (NanoPUZZLES, ModENPTox, PreNanoTox, MembraneNanoPart, MODERN, eNanoMapper and EU COST TD1204 MODENA) as well as to create synergies within the European NanoSafety Cluster. This conference was supported by the COST Action TD1204 MODENA on developing computational methods for toxicological risk assessment of engineered nanoparticles and provided a unique opportunity for cross fertilization among complementary disciplines. The efforts to develop and validate computational models crucially depend on high quality experimental data and relevant assays which will be the basis to identify relevant descriptors. The ambitious overarching goal of this conference was to promote predictive nanotoxicology, which can only be achieved by a close collaboration between the computational scientists (e.g. database experts, modeling experts for structure, (eco) toxicological effects, performance and interaction of nanomaterials) and experimentalists from different areas (in particular toxicologists, biologists, chemists and material scientists, among others). The main outcome and new perspectives of this conference are summarized here.

  6. Federal Science and Engineering Support to Universities, Colleges, and Nonprofit Institutions: Fiscal Year 1999. Detailed Statistical Tables.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA.

    This document presents statistical data of direct federal science and engineering support to higher education institutions in the United States. Data presented in the report are collected annually and exclude financial support of an indirect nature. There are six categories of support presented: (1) "Research and Development"; (2) "Research and…

  7. Federal Science and Engineering Support to Universities, Colleges, and Nonprofit Institutions: Fiscal Year 1996. Detailed Statistical Tables.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

    The National Science Foundation (NSF) Act of 1950 stipulates that NSF must maintain a program for determining the total amount of money for scientific and engineering research received from federal agencies by each educational institution and appropriate nonprofit organization and to report these data annually to Congress and the President. NSF…

  8. Exploring packaging strategies of nano-embedded thermoelectric generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singha, Aniket; Muralidharan, Bhaskaran, E-mail: bm@ee.iitb.ac.in; Mahanti, Subhendra D.

    2015-10-15

    Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to a multimore » moded one. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - the advantage factor, to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.« less

  9. Bio-nano interface and environment: A critical review.

    PubMed

    Pulido-Reyes, Gerardo; Leganes, Francisco; Fernández-Piñas, Francisca; Rosal, Roberto

    2017-12-01

    The bio-nano interface is the boundary where engineered nanomaterials (ENMs) meet the biological system, exerting the biological function for which they have been designed or inducing adverse effects on other cells or organisms when they reach nontarget scenarios (i.e., the natural environment). Research has been performed to determine the fate, transport, and toxic properties of ENMs, but much of it is focused on pristine or so-called as-manufactured ENMs, or else modifications of the materials were not assessed. We review the most recent progress regarding the bio-nano interface and the transformations that ENMs undergo in the environment, paying special attention to the adsorption of environmental biomolecules on the surface of ENMs. Whereas the protein corona has received considerable attention in the fields of biomedics and human toxicology, its environmental analogue (the eco-corona) has been much less studied. A section dedicated to the analytical methods for studying and characterizing the eco-corona is also presented. We conclude by presenting and discussing the key problems and knowledge gaps that need to be resolved in the near future regarding the bio-nano interface and the eco-corona. Environ Toxicol Chem 2017;36:3181-3193. © 2017 SETAC. © 2017 SETAC.

  10. Micro- and nano-porous surface patterns prepared by surface-confined directional melt crystallization of solvent

    NASA Astrophysics Data System (ADS)

    Kim, Byoung Soo; Kim, Hyun Jin; An, Suyeong; Chi, Sangwon; Kim, Junseok; Lee, Jonghwi

    2017-07-01

    Recently, numerous attempts have been made to engineer micro- and nano-porous surface patterns or to develop convenient preparation methods for the practical applications of self-cleaning surfaces, water-repellent surfaces, novel textures, etc. Herein, we introduce a simple, cheap, and repeatable crystallization-based method to produce porous surface structures, on any surface of already fabricated polymeric materials. Contact of the solvent phase with cooled polymer surfaces enabled the limited dissolution of the surfaces and the subsequent extremely fast melt crystallization of the solvent. After removing the crystals, various micro- and nano-porous patterns were obtained, whose pore sizes ranged over three orders of magnitude. Pore depth was linearly dependent on the dissolution time. Crystal growth was mainly directed normal to the surfaces, but it was also controlled in-plane, resulting in cylindrical or lamellar structures. Superhydrophobic surfaces were successfully prepared on both polystyrene and polycarbonate. This process offers a novel surface engineering tool for a variety of polymer surfaces, whose topology can be conveniently controlled over a wide range by crystal engineering.

  11. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering.

    PubMed

    Shakir, Mohammad; Jolly, Reshma; Khan, Mohd Shoeb; Rauf, Ahmar; Kazmi, Shadab

    2016-12-01

    Herein, we report the synthesis of a novel tri-component nanocomposite system incorporating β-cyclodextrin (β-CD) with nano-hydroxyapatite (n-HA) and chitosan (CS), (n-HA/β-CD/CS) at three different temperatures via co-precipitation method. The chemical interactions and surface morphology have been evaluated by TEM, SEM and AFM techniques revealing the agglomerated nanoparticles in CS/n-HA-HA binary system whereas the ternary systems produced needle shaped nanoparticles dispersed homogeneously at low temperature with more porous and rougher surface. The addition of β-CD in CS/n-HA at low temperature decreased the particle size and raised the thermal stability as compared to CS/n-HA. The comparative hemolytic, protein adsorption and platelet adhesion studies confirmed the better hemocompatibility of n-HA/β-CD/CS-(RT,HT,LT) nanocomposites relative to CS/n-HA. The cell viability has been evaluated in vitro using MG-63 cell line which revealed superior non toxicity of n-HA/β-CD/CS-LT nanocomposite in comparison to n-HA/β-CD/CS-(RT,HT) and CS/n-HA nanocomposites. Thus it may be concluded that the orchestrated organic/inorganic n-HA/β-CD/CS-(RT,HT,LT) nanocomposites exhibited relatively higher cell viability of human osteoblast cells, stimulated greater osteogenesis, controlled biodegradation, enhanced antibacterial activity with excellent in-vitro biomineralization and remarkable mechanical parameters as compared to CS/n-HA nanocomposite and thus may provide opportunities for potential use as an alternative biomaterial for Bone tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Integrating design and communication in engineering education: a collaboration between Northwestern University and the Rehabilitation Institute of Chicago.

    PubMed

    Hirsch, Penny L; Yarnoff, Charles

    2011-01-01

    The required course for freshmen in Northwestern University's engineering school - a 2-quarter sequence called Engineering Design and Communication (EDC) - is noteworthy not only for its project-based focus on user-centered design, but also for its innovative integrated approach to teaching communication, teamwork, and ethics. Thanks to the collaboration between EDC faculty and staff at the Rehabilitation Institute of Chicago, EDC students, at the beginning of their education, experience the excitement of solving problems for real clients and users. At the same time, these authentic design projects offer an ideal setting for teaching students how to communicate effectively to different audiences and perform productively as team members and future leaders in engineering.

  13. Open Access Internet Resources for Nano-Materials Physics Education

    NASA Astrophysics Data System (ADS)

    Moeck, Peter; Seipel, Bjoern; Upreti, Girish; Harvey, Morgan; Garrick, Will

    2006-05-01

    Because a great deal of nano-material science and engineering relies on crystalline materials, materials physicists have to provide their own specific contributions to the National Nanotechnology Initiative. Here we briefly review two freely accessible internet-based crystallographic databases, the Nano-Crystallography Database (http://nanocrystallography.research.pdx.edu) and the Crystallography Open Database (http://crystallography.net). Information on over 34,000 full structure determinations are stored in these two databases in the Crystallographic Information File format. The availability of such crystallographic data on the internet in a standardized format allows for all kinds of web-based crystallographic calculations and visualizations. Two examples of which that are dealt with in this paper are: interactive crystal structure visualizations in three dimensions and calculations of lattice-fringe fingerprints for the identification of unknown nanocrystals from their atomic-resolution transmission electron microscopy images.

  14. Probabilistic modeling of the flows and environmental risks of nano-silica.

    PubMed

    Wang, Yan; Kalinina, Anna; Sun, Tianyin; Nowack, Bernd

    2016-03-01

    Nano-silica, the engineered nanomaterial with one of the largest production volumes, has a wide range of applications in consumer products and industry. This study aimed to quantify the exposure of nano-silica to the environment and to assess its risk to surface waters. Concentrations were calculated for four environmental (air, soil, surface water, sediments) and two technical compartments (wastewater, solid waste) for the EU and Switzerland using probabilistic material flow modeling. The corresponding median concentration in surface water is predicted to be 0.12 μg/l in the EU (0.053-3.3 μg/l, 15/85% quantiles). The concentrations in sediments in the complete sedimentation scenario were found to be the largest among all environmental compartments, with a median annual increase of 0.43 mg/kg · y in the EU (0.19-12 mg/kg · y, 15/85% quantiles). Moreover, probabilistic species sensitivity distributions (PSSD) were computed and the risk of nano-silica in surface waters was quantified by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) distribution, which was derived from the cumulative PSSD. This assessment suggests that nano-silica currently poses no risk to aquatic organisms in surface waters. Further investigations are needed to assess the risk of nano-silica in other environmental compartments, which is currently not possible due to a lack of ecotoxicological data. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Science-Driven NanoSats Design for Deep Space

    NASA Astrophysics Data System (ADS)

    Klesh, A. T.; Castillo, J. C.

    2012-12-01

    CubeSat-based exploration of Earth has driven the development of miniaturized systems and research-grade instruments. The current performance of CubeSats raises the question of their potential contribution to planetary exploration. Two possible applications can be foreseen. One would take advantage of the readily availability of the CubeSat deployer Poly Picosatellite Orbital Deployer (P-POD) for planetary-related observations around Earth (e.g., O/OREOS mission, ExoPlanetSat), and, when propulsion systems develop, for interplanetary exploration. However, the CubeSat formfactor restricts payloads to be in an undeployed volume of 10x10x10 (1U) to 10x20x30 (6U) cm, based on the qualified and accepted P-POD. As a possible alternative, one may leverage the CubeSat-tailored subsystems to operate that platform as a secondary payload on a deep space mission. Whether the CubeSat formfactor constraint might be adjusted to accommodate a broader range of science applications or specific tailoring is required remains to be quantified. Through consultation with a wide range of scientists and engineers, we have examined the possible applications of secondary deep space NanoSats, and what derived requirements stem from these missions. Applications and requirements, together with existing technology, inform on common formfactors that could be useful for future planetary missions. By examining these formfactors, we have identified different categories of NanoSat explorer (additionally imposing discrete requirements on the mothership) that directly support scientific endeavors. In this paper, we outline some of the scientific applications that would drive the NanoSat formfactor design, as well as describe how the requirements affect programmatic issues. Several mission types are considered: passive deployment, active propulsion, targeted landing, and sample return. Each scenario changes the risk posture, and can impose additional considerations. Our goal has been to identify

  16. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April, 1986 through September 30, 1986 is summarized.

  17. Mothership - Affordable Exploration of Planetary Bodies through Individual Nano-Sats and Swarms

    NASA Astrophysics Data System (ADS)

    DiCorcia, James D.; Ernst, Sebastian M.; Grace, J. Mike; Gump, David P.; Lewis, John S.; Foulds, Craig F.; Faber, Daniel R.

    2015-04-01

    One concept to enable broad participation in the scientific exploration of small bodies is the Mothership mission architecture which delivers third-party nano-sats, experiments, and sensors to a near Earth asteroid or comet. Deep Space Industries' Mothership service includes delivery of nano-sats, communication to Earth, and visuals of the asteroid surface and surrounding area. It allows researchers to house their instruments in a low-cost nano-sat platform that does not require the high-performance propulsion or deep space communication capabilities that otherwise would be required for a solo asteroid mission. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. In addition, the Mothership and its deployed nano-sats can offer a platform for instruments which need to be distributed over multiple spacecraft. The Mothership is designed to carry 10 to 12 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accomodates the same volume as a traditional 3U Cubesat. This design was found to be more favorable for deep space due to its thermal characteristics. The CubeSat standard was originally designed with operations in low Earth orbit in mind. By deliberately breaking the standard, Deep Space Nano-Sats offer better performance with less chance of a critical malfunction in the more hostile deep space environment. The first mission can launch as early as Q4 2017, with subsequent, regular launches through the 2020's.

  18. Retention and promotion of women and underrepresented minority faculty in science and engineering at four large land grant institutions.

    PubMed

    Gumpertz, Marcia; Durodoye, Raifu; Griffith, Emily; Wilson, Alyson

    2017-01-01

    In the most recent cohort, 2002-2015, the experiences of men and women differed substantially among STEM disciplines. Female assistant professors were more likely than men to leave the institution and to leave without tenure in engineering, but not in the agricultural, biological and biomedical sciences and natural resources or physical and mathematical sciences. In contrast, the median times to promotion from associate to full professor were similar for women and men in engineering and the physical and mathematical sciences, but one to two years longer for women than men in the agricultural, biological and biomedical sciences and natural resources. URM faculty hiring is increasing, but is well below the proportions earning doctoral degrees in STEM disciplines. The results are variable and because of the small numbers of URM faculty, the precision and power for comparing URM faculty to other faculty were low. In three of the four institutions, lower fractions of URM faculty than other faculty hired in the 2002-2006 time frame left without tenure. Also, in the biological and biomedical and physical and mathematical sciences no URM faculty left without tenure. On the other hand, at two of the institutions, significantly more URM faculty left before their tenth anniversary than other faculty and in engineering significantly more URM faculty than other faculty left before their tenth anniversary. We did not find significant differences in promotion patterns between URM and other faculty.

  19. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  20. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?

    PubMed

    Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen

    2010-02-01

    The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P < 0.05) and group 3 (nano-ionomer, mean: 6.14 +/- 2.12 MPa; P < 0.001). No significant differences in debond locations were found among the three groups. Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.

  1. Nano-metal oxides: Exposure and engineering control assessment.

    PubMed

    Garcia, Alberto; Eastlake, Adrienne; Topmiller, Jennifer L; Sparks, Christopher; Martinez, Kenneth; Geraci, Charles L

    2017-09-01

    In January 2007, the National Institute for Occupational Safety and Health (NIOSH) conducted a field study to evaluate process specific emissions during the production of ENMs. This study was performed using the nanoparticle emission assessment technique (NEAT). During this study, it was determined that ENMs were released during production and cleaning of the process reactor. Airborne concentrations of silver, nickel, and iron were found both in the employee's personal breathing zone and area samples during reactor cleaning. At the completion of this initial survey, it was suggested that a flanged attachment be added to the local exhaust ventilation system.  NIOSH re-evaluated the facility in December 2011 to assess worker exposures following an increase in production rates. This study included a fully comprehensive emissions, exposure, and engineering control evaluation of the entire process. This study made use of the nanoparticle exposure assessment technique (NEAT 2.0). Data obtained from filter-based samples and direct reading instruments indicate that reactor cleanout increased the overall particle concentration in the immediate area. However, it does not appear that these concentrations affect areas outside of the production floor. As the distance between the reactor and the sample location increased, the observed particle number concentration decreased, creating a concentration gradient with respect to the reactor. The results of this study confirm that the flanged attachment on the local exhaust ventilation system served to decrease exposure potential.  Given the available toxicological data of the metals evaluated, caution is warranted. One should always keep in mind that occupational exposure levels were not developed specifically for nanoscale particles. With data suggesting that certain nanoparticles may be more toxic than the larger counterparts of the same material; employers should attempt to control emissions of these particles at the source

  2. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.

    PubMed

    Lowe, Baboucarr; Venkatesan, Jayachandran; Anil, Sukumaran; Shim, Min Suk; Kim, Se-Kwon

    2016-12-01

    Solid three dimensional (3D) composite scaffolds for bone tissue engineering were prepared using the freeze-drying method. The scaffolds were composed of chitosan, natural nano-hydroxyapatite (nHA) and fucoidan in the following combinations: chitosan, chitosan-fucoidan, chitosan-nHA, and chitosan-nHA-fucoidan. Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and optical microscopy (OM) were used to determine the physiochemical constituents and the morphology of the scaffolds. The addition of nHA into the chitosan-fucoidan composite scaffold reduced the water uptake and water retention. FT-IR analysis confirmed the presence of a phosphate group in the chitosan-nHA-fucoidan scaffold. This group is present because of the presence of nHA (isolated via alkaline hydrolysis from salmon fish bones). Microscopic results indicated that the dispersion of nHA and fucoidan in the chitosan matrix was uniform with a pore size of 10-400μm. The composite demonstrated a suitable micro architecture for cell growth and nutrient supplementation. This compatibility was further elucidated in vitro using periosteum-derived mesenchymal stem cells (PMSCs). The cells demonstrated high biocompatibility and excellent mineralization for the chitosan-nHA-fucoidan scaffold. We believe that a chitosan-nHA-fucoidan composite is a promising biomaterial for the scaffold that can be used for bone tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1986 through March 31, 1987 is summarized.

  4. E-learning in engineering education: a theoretical and empirical study of the Algerian higher education institution

    NASA Astrophysics Data System (ADS)

    Benchicou, Soraya; Aichouni, Mohamed; Nehari, Driss

    2010-06-01

    Technology-mediated education or e-learning is growing globally both in scale and delivery capacity due to the large diffusion of the ubiquitous information and communication technologies (ICT) in general and the web technologies in particular. This statement has not yet been fully supported by research, especially in developing countries such as Algeria. The purpose of this paper was to identify directions for addressing the needs of academics in higher education institutions in Algeria in order to adopt the e-learning approach as a strategy to improve quality of education. The paper will report results of an empirical study that measures the readiness of the Algerian higher education institutions towards the implementation of ICT in the educational process and the attitudes of faculty members towards the application of the e-learning approach in engineering education. Three main objectives were targeted, namely: (a) to provide an initial evaluation of faculty members' attitudes and perceptions towards web-based education; (b) reporting on their perceived requirements for implementing e-learning in university courses; (c) providing an initial input for a collaborative process of developing an institutional strategy for e-learning. Statistical analysis of the survey results indicates that the Algerian higher education institution, which adopted the Licence - Master and Doctorate educational system, is facing a big challenge to take advantage of emerging technological innovations and the advent of e-learning to further develop its teaching programmes and to enhance the quality of education in engineering fields. The successful implementation of this modern approach is shown to depend largely on a set of critical success factors that would include: 1. The extent to which the institution will adopt a formal and official e-learning strategy. 2. The extent to which faculty members will adhere and adopt this strategy and develop ownership of the various measures in the

  5. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    NASA Astrophysics Data System (ADS)

    Li, Xin; Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce

    2009-04-01

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.

  6. Magnetic Nano-Materials: Truly Sustainable Green Chemistry Nano Catalysis

    EPA Science Inventory

    We envisioned a novel nano-catalyst system, which can bridge the homogenous and heterogeneous system, and simultaneously be cheaper, easily accessible (sustainable) and possibly does not require elaborate work-up. Because of its nano-size, i.e. high surface area, the contact betw...

  7. Infrared Active Sm1-xndxnio3 Based Nano-Switchings For High Powers Laser Sources

    NASA Astrophysics Data System (ADS)

    Ngom, B. D.; Kana, J. B. Kana; Nemraoui, O.; Manyala, N.; Maaza, M.; Mdjoe, R.; Beye, A. C.

    2008-09-01

    This contribution was targeted to engineer novel thermochromic infrared nano-structured photonics. These smart optically tuneable materials are based on rare earth nickelates in the form of ReNiO3 where Re is bi-solution of rare earth metals of Samarium "Sm" and Neodynium "Nd." In addition to their Metal-Insulator tuneable transition temperature (MIT), these MIT oxide family exhibit a specific thermal stability and thus could be ideal to an ultimate optical limiting and other Non-Linear Optical properties for high power laser sources. This MIT thermochomic ReNiO3 system is novel in its nano-structured form and has not been investigated from nonlinear optical viewpoint. This contribution reports on the optimization of the synthesis of Sm1-xNdxNiO3 Nano-structures and investigation of their corresponding MIT electron dynamics.

  8. Critical review of the safety assessment of nano-structured silica additives in food.

    PubMed

    Winkler, Hans Christian; Suter, Mark; Naegeli, Hanspeter

    2016-06-10

    The development of nano-materials is viewed as one of the most important technological advances of the 21st century and new applications of nano-sized particles in the production, processing, packaging or storage of food are expected to emerge soon. This trend of growing commercialization of engineered nano-particles as part of modern diet will substantially increase oral exposure. Contrary to the proven benefits of nano-materials, however, possible adverse health effects have generally received less attention. This problem is very well illustrated by nano-structured synthetic amorphous silica (SAS), which is a common food additive since several decades although the relevant risk assessment has never been satisfactorily completed. A no observed adverse effect level of 2500 mg SAS particles/kg body weight per day was derived from the only available long-term administration study in rodents. However, extrapolation to a safe daily intake for humans is problematic due to limitations of this chronic animal study and knowledge gaps as to possible local intestinal effects of SAS particles, primarily on the gut-associated lymphoid system. This uncertainty is aggravated by digestion experiments indicating that dietary SAS particles preserve their nano-sized structure when reaching the intestinal lumen. An important aspect is whether food-borne particles like SAS alter the function of dendritic cells that, embedded in the intestinal mucosa, act as first-line sentinels of foreign materials. We conclude that nano-particles do not represent a completely new threat and that most potential risks can be assessed following procedures established for conventional chemical hazards. However, specific properties of food-borne nano-particles should be further examined and, for that purpose, in vitro tests with decision-making cells of the immune system are needed to complement existing in vivo studies.

  9. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988.

  10. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material.

    PubMed

    Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung

    2017-07-01

    Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Exploring the experiences of female students in introductory project-based engineering courses at two- and four-year institutions

    NASA Astrophysics Data System (ADS)

    Swan, Amy K.

    2011-12-01

    This qualitative study explored the experiential and contextual factors that shaped female students' pathways into introductory project-based engineering classes at two community colleges and one four-year institution, as well as female students' experiences within and outside of these classes. The study was framed by Social Cognitive Career Theory (SCCT) (Lent, Brown & Hackett, 1996) and Bronfenbrenner's (1979) ecological systems theory. Findings were based on analyses of data gathered through multiple methods: observations; individual interviews with female students; focus group interviews with project teams; and document collection. The findings of this study revealed that while positive experiences with math or science were a likely pre-cursor to engineering interest, experiential learning appeared to be a more powerful force in fostering students' engineering interest. Specifically, participants developed an interest in engineering through academic, professional, and extracurricular engineering- and design-related activities that familiarized them with the tasks and skills involved in engineering work and helped them develop a sense of selfefficacy with regard to this work. Interest and self-efficacy, in turn, played a role in students' postsecondary educational decision-making processes, as did contextual factors including families and finances. This study's findings also showed that participants' project teams were a critically important microsystem within participants' ecological environments. Within this sometimes "chilly" microsystem, female students negotiated intrateam processes, which were in some cases affected by gender norms. Intrateam processes that influenced female students' project-based learning experiences included: interpersonal dynamics; leadership; and division of labor. This study also identified several ways in which the lived experiences of participants at the community colleges were different from, or similar to, those of participants

  12. A dimorphic magnetorheological elastomer incorporated with Fe nano-flakes modified carbonyl iron particles: preparation and characterization

    NASA Astrophysics Data System (ADS)

    Yu, M.; Zhu, M.; Fu, J.; Yang, P. A.; Qi, S.

    2015-11-01

    This paper describes a simple and convenient approach for the synthesis of Fe nano-flakes coated spherical carbonyl iron particles (CIP-Nano-Fe). The morphology and composition of CIP-Nano-Fe were characterized using electron scanning microscope and x-ray diffraction analysis. The results indicated that the CI particles were coated with uniform and continuous Fe nanostructures. Partial substitution of CI particles with CIP-Nano-Fe constituted a novel dimorphic magnetorheological elastomer (D-MRE), and the influence of the content of CIP-Nano-Fe on the viscoelastic performance of the magnetorheological elastomers (MREs) were systematically studied. The magnetorheological properties and the damping properties of the D-MRE samples were analyzed to evaluate their dynamic properties. The experimental results indicated that the MR effect, the max loss factor and the magneto-induced loss factor in the sample 3 (CIP-Nano-Fe weight content 6 wt%) were approximately 1.32, 1.45 and 1.56 times that in the sample 1 (non-doped MRE). The approach to synthesize CIP-Nano-Fe reported here can be readily explored for fabricating particles modified by other metal nanostructures, and the resulting D-MREs are expected to be applied in various applications, especially in the field of vibration and noise control, involving vibration isolators, tunable engine mounts, noise insulation devices, and so forth.

  13. Engineering and management experience at Texas A&M Transportation Institute

    NASA Astrophysics Data System (ADS)

    Chowdhury, Arif Tahjibul

    This manuscript presents the author's engineering and management experience during his internship in the Materials and Pavements (M&P) Division at the Texas A&M Transportation Institute (TTI), and is a record of study for the Doctor of Engineering at Texas A&M University. Through this internship, he met his established internship objectives of gaining technical knowledge as well as knowledge and skills in project management, organizational communication, and quality management of pavement condition data, and of attaining professional development. In meeting these objectives, the author describes the history, mission, and organizational structure of his workplace. He also presents his experience of developing and delivering a two-week training course on pavement design and construction in Kosovo. Participating in a number of professional development training courses and other activities prepared him for working as an engineering manager. These activities include Delta-T leadership training, an instructor development course, a time management and organizational skills course, and the M&P Division lecture series. Leadership and skills learned through the Delta-T program were beneficial for the employee as well as the employer. For the class project, the author and his teammates performed a study dealing with improving TTI's deliverables. The Delta-T team composed a report summarizing their efforts of examining the current state of TTI's project deliverables, the deliverables' shortcomings, and potential enhancements to expand the deliverables' appeal to additional types of potential users outside the traditional research community. The team also developed a prototype web-based model of deliverables and presented some implementation recommendations. Participating in the Texas Department of Transportation's (TxDOT's) pavement surface distress data collection program enabled the author to become familiar with pavement distress data quality management and thus attain the

  14. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering.

    PubMed

    Bakhtiyari, Sanaz Soleymani Eil; Karbasi, Saeed; Monshi, Ahmad; Montazeri, Mahbobeh

    2016-01-01

    To emulate bone structure, porous composite scaffold with suitable mechanical properties should be designed. In this research the effects of nano-titania (nTiO2) on the bioactivity and mechanical properties of nano-bioglass-poly-3-hydroxybutyrate (nBG/P3HB)-composite scaffold were evaluated. First, nBG powder was prepared by melting method of pure raw materials at a temperature of 1400 °C and then the porous ceramic scaffold of nBG/nTiO2 with 30 wt% of nBG containing different weight ratios of nTiO2 (3, 6, and 9 wt% of nTiO2 with grain size of 35-37 nm) was prepared by using polyurethane sponge replication method. Then the scaffolds were coated with P3HB in order to increase the scaffold's mechanical properties. Mechanical strength and modulus of scaffolds were improved by adding nTiO2 to nBG scaffold and adding P3HB to nBG/nTiO2 composite scaffold. The results of the compressive strength and porosity tests showed that the best scaffold is 30 wt% of nBG with 6 wt% of nTiO2 composite scaffold immersed for 30 s in P3HB with 79.5-80 % of porosity in 200-600 μm, with a compressive strength of 0.15 MPa and a compressive modulus of 30 MPa, which is a good candidate for bone tissue engineering. To evaluate the bioactivity of the scaffold, the simulated body fluid (SBF) solution was used. The best scaffold with 30 wt% of nBG, 6 wt% of P3HB and 6 wt% of nTiO2 was immersed in SBF for 4 weeks at an incubation temperature of 37 °C. The bioactivity of the scaffolds was characterized by AAS, SEM, EDXA and XRD. The results of bioactivity showed that bone-like apatite layer formed well at scaffold surface and adding nTiO2 to nBG/P3HB composite scaffold helped increase the bioactivity rate.

  15. Study on Locally Confined Deposition of Si Nanocrystals in High-Aspect-Ratio Si Nano-Pillar Arrays for Nano-Electronic and Nano-Photonic Applications II

    DTIC Science & Technology

    2010-12-03

    photoluminescence characteristics of equivalent-size controlled silicon quantum dots by employing a nano-porous aluminum oxide membrane as the template for growing...synthesis of Si quantum dots (Si-QDs) embedded in low-temperature (500oC) annealed Si-rich SiOx nano-rod deposited in nano-porous anodic aluminum oxide ...characteristics of the equivalent-size controlled Si-QDs by employing the nano-porous AAO membrane as the template for growing Si-rich SiOx nano-rods

  16. Convergence Science in a Nano World

    PubMed Central

    Cady, Nathaniel

    2013-01-01

    Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innovative and groundbreaking technologies. In the biological and biomedical sciences, nanotechnology research has resulted in dramatic improvements in sensors, diagnostics, imaging, and even therapeutics. In particular, there is a current push to examine the interface between the biological world and micro/nano-scale systems. For example, my laboratory is developing novel strategies for spatial patterning of biomolecules, electrical and optical biosensing, nanomaterial delivery systems, cellular patterning techniques, and the study of cellular interactions with nano-structured surfaces. In this seminar, I will give examples of how convergent research is being applied to three major areas of biological research &endash; cancer diagnostics, microbiology, and DNA-based biosensing. These topics will be presented as case studies, showing the benefits (and challenges) of multi-disciplinary, convergent research and development.

  17. Angular trapping of anisometric nano-objects in a fluid.

    PubMed

    Celebrano, Michele; Rosman, Christina; Sönnichsen, Carsten; Krishnan, Madhavi

    2012-11-14

    We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.

  18. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum.

    PubMed

    Chen, Xin-Xin; Cheng, Bin; Yang, Yi-Xin; Cao, Aoneng; Liu, Jia-Hui; Du, Li-Jing; Liu, Yuanfang; Zhao, Yuliang; Wang, Haifang

    2013-05-27

    Nanotechnology shows great potential for producing food with higher quality and better taste through including new additives, improving nutrient delivery, and using better packaging. However, lack of investigations on safety issues of nanofood has resulted in public fears. How to characterize engineered nanomaterials in food and assess the toxicity and health impact of nanofood remains a big challenge. Herein, a facile and highly reliable separation method of TiO2 particles from food products (focusing on sugar-coated chewing gum) is reported, and the first comprehensive characterization study on food nanoparticles by multiple qualitative and quantitative methods is provided. The detailed information on nanoparticles in gum includes chemical composition, morphology, size distribution, crystalline phase, particle and mass concentration, surface charge, and aggregation state. Surprisingly, the results show that the number of food products containing nano-TiO2 (<200 nm) is much larger than known, and consumers have already often been exposed to engineered nanoparticles in daily life. Over 93% of TiO2 in gum is nano-TiO2 , and it is unexpectedly easy to come out and be swallowed by a person who chews gum. Preliminary cytotoxicity assays show that the gum nano-TiO2 particles are relatively safe for gastrointestinal cells within 24 h even at a concentration of 200 μg mL(-1) . This comprehensive study demonstrates accurate physicochemical property, exposure, and cytotoxicity information on engineered nanoparticles in food, which is a prerequisite for the successful safety assessment of nanofood products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Consumer exposures to laser printer-emitted engineered nanoparticles: A case study of life-cycle implications from nano-enabled products.

    PubMed

    Pirela, Sandra V; Sotiriou, Georgios A; Bello, Dhimiter; Shafer, Martin; Bunker, Kristin Lee; Castranova, Vincent; Thomas, Treye; Demokritou, Philip

    2015-01-01

    It is well established that printers emit nanoparticles during their operation. To-date, however, the physicochemical and toxicological characterization of "real world" printer-emitted nanoparticles (PEPs) remains incomplete, hampering proper risk assessment efforts. Here, we investigate our earlier hypothesis that engineered nanomaterials (ENMs) are used in toners and ENMs are released during printing (consumer use). Furthermore, we conduct a detailed physicochemical and morphological characterization of PEPs in support of ongoing toxicological assessment. A comprehensive suite of state of the art analytical methods and tools was employed for the physicochemical and morphological characterization of 11 toners widely utilized in printers from major printer manufacturers and their PEPs. We confirmed that a number of ENMs incorporated into toner formulations (e.g. silica, alumina, titania, iron oxide, zinc oxide, copper oxide, cerium oxide, carbon black among others) and released into the air during printing. All evaluated toners contained large amounts of organic carbon (OC, 42-89%), metals/metal oxides (1-33%), and some elemental carbon (EC, 0.33-12%). The PEPs possess a composition similar to that of toner and contained 50-90% OC, 0.001-0.5% EC and 1-3% metals. While the chemistry of the PEPs generally reflected that of their toners, considerable differences are documented indicative of potential transformations taking place during consumer use (printing). We conclude that: (i) Routine incorporation of ENMs in toners classifies them as nano-enabled products (NEPs); (ii) These ENMs become airborne during printing; (iii) The chemistry of PEPs is complex and it reflects that of the toner and paper. This work highlights the importance of understanding life-cycle (LC) nano-EHS implications of NEPs and assessing real world exposures and associated toxicological properties rather than focusing on "raw" materials used in the synthesis of an NEP.

  20. Consumer exposures to laser printer-emitted engineered nanoparticles: A case study of life-cycle implications from nano-enabled products

    PubMed Central

    Pirela, Sandra V.; Sotiriou, Georgios A.; Bello, Dhimiter; Shafer, Martin; Bunker, Kristin Lee; Castranova, Vincent; Thomas, Treye; Demokritou, Philip

    2015-01-01

    It is well established that printers emit nanoparticles during their operation. To-date, however, the physicochemical and toxicological characterization of “real world” printer-emitted nanoparticles (PEPs) remains incomplete, hampering proper risk assessment efforts. Here, we investigate our earlier hypothesis that engineered nanomaterials (ENMs) are used in toners and ENMs are released during printing (consumer use). Furthermore, we conduct a detailed physicochemical and morphological characterization of PEPs in support of ongoing toxicological assessment. A comprehensive suite of state of the art analytical methods and tools was employed for the physicochemical and morphological characterization of 11 toners widely utilized in printers from major printer manufacturers and their PEPs. We confirmed that a number of ENMs incorporated into toner formulations (e.g., silica, alumina, titania, iron oxide, zinc oxide, copper oxide, cerium oxide, carbon black among others) and released into the air during printing. All evaluated toners contained large amounts of organic carbon (OC, 42–89%), metals/metal oxides (1–33%), and some elemental carbon (EC, 0.33–12%). The PEPs possess a composition similar to that of toner and contained 50–90% OC, 0.001–0.5% EC and 1–3% metals. While the chemistry of the PEPs generally reflected that of their toners, considerable differences are documented indicative of potential transformations taking place during consumer use (printing). We conclude that: (i) Routine incorporation of ENMs in toners classifies them as nano-enabled products (NEPs); (ii) These ENMs become airborne during printing; (iii) The chemistry of PEPs is complex and it reflects that of the toner and paper. This work highlights the importance of understanding life-cycle (LC) nano-EHS implications of NEPs and assessing real world exposures and associated toxicological properties rather than focusing on “raw” materials used in the synthesis of an NEP. PMID

  1. To be nano or not to be nano?

    NASA Astrophysics Data System (ADS)

    Joachim, Christian

    2005-02-01

    Nanomaterials, nanostructures, nanostructured materials, nanoimprint, nanobiotechnology, nanophysics, nanochemistry, radical nanotechnology, nanosciences, nanooptics, nanoelectronics, nanorobotics, nanosoldiers, nanomedecine, nanoeconomy, nanobusiness, nanolawyer, nanoethics to name a few of the nanos. We need a clear definition of all these burgeoning fields for the sake of the grant attribution, for the sake of research program definition, and to avoid everyone being lost in so many nanos.

  2. Path to bio-nano-information fusion.

    PubMed

    Chen, Jia Ming; Ho, Chih-Ming

    2006-12-01

    This article will discuss the challenges in a new convergent discipline created by the fusion of biotechnology, nanotechnology, and information technology. To illustrate the research challenges, we will begin with an introduction to the nanometer-scale environment in which biology resides, and point out the many important behaviors of matters at that scale. Then we will describe an ideal model system, the cell, for bio-nano-information fusion. Our efforts in advancing this field at the Institute of Cell Mimetic Space Exploration (CMISE) will be introduced here as an example to move toward achieving this goal.

  3. Sensing the Presence and Transport of Engineered Nanoparticles in Saturated PorousMedia using Spectral Induced Polarization (SIP) Method

    EPA Science Inventory

    Nano-materials are emerging into the global marketplace. Engineered Nano-particles, and other throwaway nanodevices may constitute a whole new class of non-biodegradable pollutants of which scientists have very little understanding. Therefore, the production of significant quanti...

  4. Biofunctionalized 3-D Carbon Nano-Network Platform for Enhanced Fibroblast Cell Adhesion

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. K. M. Rezaul Haque; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2017-03-01

    Carbon nanomaterials have been investigated for various biomedical applications. In most cases, however, these nanomaterials must be functionalized biologically or chemically due to their biological inertness or possible cytotoxicity. Here, we report the development of a new carbon nanomaterial with a bioactive phase that significantly promotes cell adhesion. We synthesize the bioactive phase by introducing self-assembled nanotopography and altered nano-chemistry to graphite substrates using ultrafast laser. To the best of our knowledge, this is the first time that such a cytophilic bio-carbon is developed in a single step without requiring subsequent biological/chemical treatments. By controlling the nano-network concentration and chemistry, we develop platforms with different degrees of cell cytophilicity. We study quantitatively and qualitatively the cell response to nano-network platforms with NIH-3T3 fibroblasts. The findings from the in vitro study indicate that the platforms possess excellent biocompatibility and promote cell adhesion considerably. The study of the cell morphology shows a healthy attachment of cells with a well-spread shape, overextended actin filaments, and morphological symmetry, which is indicative of a high cellular interaction with the nano-network. The developed nanomaterial possesses great biocompatibility and considerably stimulates cell adhesion and subsequent cell proliferation, thus offering a promising path toward engineering various biomedical devices.

  5. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?

    PubMed

    Reddy, P Venkata Laxma; Hernandez-Viezcas, J A; Peralta-Videa, J R; Gardea-Torresdey, J L

    2016-10-15

    The expansion of nanotechnology and its ubiquitous applications has fostered unavoidable interaction between engineered nanomaterials (ENMs) and plants. Recent research has shown ambiguous results with regard to the impact of ENMs in plants. On one hand, there are reports that show hazardous effects, while on the other hand, some reports highlight positive effects. This uncertainty whether the ENMs are primarily hazardous or whether they have a potential for propitious impact on plants, has raised questions in the scientific community. In this review, we tried to demystify this ambiguity by citing various exposure studies of different ENMs (nano-Ag, nano-Au, nano-Si, nano-CeO2, nano-TiO2, nano-CuO, nano-ZnO, and CNTs, among others) and their effects on various groups of plant families. After scrutinizing the most recent literature, it seems that the divergence in the research results may be possibly attributed to multiple factors such as ENM properties, plant species, soil dynamics, and soil microbial community. The analysis of the literature also suggests that there is a knowledge gap on the effects of ENMs towards changes in color, texture, shape, and nutritional aspects on ENM exposed plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    PubMed

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Micro and Nano-mediated 3D Cardiac Tissue Engineering

    DTIC Science & Technology

    2011-10-01

    Engineering Dr. M. Gibb, Head of Cardiology, Carle Hospital Dr. Sherrie Clark, UIUC swine species veterinarian 7 Year 3 Project Goals Interface DFB...engineering and regenerative medicine in the 1990s to accommodate for the shortage of organ donors. Today, the shortage still exists and the development...medicine in the 1990s to accommodate for the shortage of organ donors. Today, the shortage still exists and the development of tissue equivalents has

  8. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE PAGES

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    2018-05-09

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  9. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  10. EDITORIAL: The 1st International Conference on Nanomanufacturing (NanoMan2008) The 1st International Conference on Nanomanufacturing (NanoMan2008)

    NASA Astrophysics Data System (ADS)

    Luo, Jack Jiqui; Fang, Fengzhou

    2009-05-01

    would like to express our sincere thanks to Dr Ian Forbes and the other members of editorial board of the Journal of Micromechanics and Microengineering of the Institute of Physics for their help and support in making this special section. The conference was a success. We found there is a great demand for continuation of the conference, and it has been agreed by the conference committee to hold the conference biannually from now on. The 2nd International Conference on Nanomanufacturing (NanoMan2010) is to be held in Tianjin, China in 2010. On behalf of the committee we would like to take this opportunity to welcome everybody to NanoMan2010.

  11. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    PubMed

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  12. Summary of research in applied mathematics, numerical analysis and computer science at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.

  13. Aeronautical Envineering at Technion - Israel Institute of Technology.

    ERIC Educational Resources Information Center

    Mathieu, Richard D.

    The shortage of engineers in Israel and the role that the Technion - Israel Institute of Technology plays in the education of engineers is discussed. Emphasis is placed on the academic program, research, and related activities in the Department of Aeronautical Engineering. A brief description of the development of the institute and its…

  14. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration.

    PubMed

    Bai, Long; Liu, Yanlian; Du, Zhibin; Weng, Zeming; Yao, Wei; Zhang, Xiangyu; Huang, Xiaobo; Yao, Xiaohong; Crawford, Ross; Hang, Ruiqiang; Huang, Di; Tang, Bin; Xiao, Yin

    2018-06-15

    Coating materials applied for intraosseous implants must be optimized to stimulate osseointegration. Osseointegration is a temporal and spatial physiological process that not only requires interactions between osteogenesis and angiogenesis but also necessitates a favorable immune microenvironment. It is now well-documented that hierarchical nano-micro surface structures promote the long-term stability of implants, the interactions between nano-micro structure and the immune response are largely unknown. Here, we report the effects of microporous titanium (Ti) surfaces coated with nano-hydroxyapatite (HA) produced by micro-arc oxidation and steam-hydrothermal treatment (SHT) on multiple cell behavior and osseointegration. By altering the processing time of SHT it was possible to shift HA structures from nano-particles to nano-rods on the microporous Ti surfaces. Ti surfaces coated with HA nano-particles were found to modulate the inflammatory response resulting in an osteoimmune microenvironment more favorable for osteo-/angio-genesis, most likely via the activation of certain key signaling pathways (TGF-β, OPG/RANKL, and VEGF). By contrast, Ti surfaces coated with nano-rod shaped HA particles had a negative impact on osteo-/angio-genesis and osteoimmunomodulation. In vivo results further demonstrated that Ti implant surfaces decorated with HA nano-particles can stimulate new bone formation and osseointegration with enhanced interaction between osteocytes and implant surfaces. This study demonstrated that Ti implants with micro-surfaces coated with nano-particle shaped HA have a positive impact on osseointegration. Osteo-/angio-genesis are of importance during osteointegration of the implants. Recent advances unravel that immune response of macrophages and its manipulated osteoimmunomodulation also exerts a pivotal role to determine the fate of the implant. Surface nano-micro modification has evidenced to be efficient to influence osteogenesis, however, little is

  15. High precision tracking of a piezoelectric nano-manipulator with parameterized hysteresis compensation

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Zhang, Yangming

    2018-06-01

    High performance scanning of nano-manipulators is widely deployed in various precision engineering applications such as SPM (scanning probe microscope), where trajectory tracking of sophisticated reference signals is an challenging control problem. The situation is further complicated when rate dependent hysteresis of the piezoelectric actuators and the stress-stiffening induced nonlinear stiffness of the flexure mechanism are considered. In this paper, a novel control framework is proposed to achieve high precision tracking of a piezoelectric nano-manipulator subjected to hysteresis and stiffness nonlinearities. An adaptive parameterized rate-dependent Prandtl-Ishlinskii model is constructed and the corresponding adaptive inverse model based online compensation is derived. Meanwhile a robust adaptive control architecture is further introduced to improve the tracking accuracy and robustness of the compensated system, where the parametric uncertainties of the nonlinear dynamics can be well eliminated by on-line estimations. Comparative experimental studies of the proposed control algorithm are conducted on a PZT actuated nano-manipulating stage, where hysteresis modeling accuracy and excellent tracking performance are demonstrated in real-time implementations, with significant improvement over existing results.

  16. Visualizing Microbial Biogeochemistry: NanoSIMS and Stable Isotope Probing (Invited)

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; Weber, P. K.

    2009-12-01

    Linking phylogenetic information to function in microbial communities is a key challenge for microbial ecology. Isotope-labeling experiments provide a useful means to investigate the ecophysiology of microbial populations and cells in the environment and allow measurement of nutrient transfers between cell types, symbionts and consortia. The combination of Nano-Secondary Ion Mass Spectrometry (NanoSIMS) analysis, in situ labeling and high resolution microscopy allows isotopic analysis to be linked to phylogeny and morphology and holds great promise for fine-scale studies of microbial systems. In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio ‘map’ can then be generated for the analyzed area. NanoSIMS images of 13C, 15N and Mo (a nitrogenase co-factor) localization in diazotrophic cyanobacteria show how cells differentially allocate resources within filaments and allow calculation of nutrient uptake rates on a cell by cell basis. Images of AM fungal hyphae-root and cyanobacteria-rhizobia associations indicate the mobilization and sharing (stealing?) of newly fixed C and N. In a related technique, “El-FISH”, stable isotope labeled biomass is probed with oligonucleotide-elemental labels and then imaged by NanoSIMS. In microbial consortia and cyanobacterial mats, this technique helps link microbial structure and function simultaneously even in systems with unknown and uncultivated microbes. Finally, the combination of re-engineered universal 16S oligonucleotide microarrays with NanoSIMS analyses may allow microbial identity to be linked to functional roles in complex systems such as mats and cellulose degrading hindgut communities. These newly developed methods provide correlated

  17. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer

    PubMed Central

    Premnath, P.; Tan, B.; Venkatakrishnan, K.

    2015-01-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy. PMID:26190009

  18. Nano-textured high sensitivity ion sensitive field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.

    2016-02-07

    Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict themore » extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.« less

  19. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    PubMed

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  20. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    PubMed Central

    Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce

    2008-01-01

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976–2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005–2006 identified through the Nano Mapper system. PMID:21170121

  1. Order of magnitude improvement of nano-contact spin torque nano-oscillator performance.

    PubMed

    Banuazizi, Seyed Amir Hossein; Sani, Sohrab R; Eklund, Anders; Naiini, Maziar M; Mohseni, Seyed Majid; Chung, Sunjae; Dürrenfeld, Philipp; Malm, B Gunnar; Åkerman, Johan

    2017-02-02

    Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (t Cu ) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing t Cu from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.

  2. Laser-assisted nanoceramics reinforced polymer scaffolds for tissue engineering: additional heating and stem cells behavior

    NASA Astrophysics Data System (ADS)

    Shishkovsky, Igor; Scherbakov, Vladimir; Volchkov, Vladislav; Volova, Larisa

    2018-02-01

    The conditions of selective laser melting (SLM) of tissue engineering scaffolds affect cell response and must be engineered to support cell adhesion, proliferation, and differentiation. In the present study, the influence of additional heating during SLM process on stem cell viability near biopolymer matrix reinforced by nanoceramics additives was carried out. We used the biocompatible and bioresorbable polymers (polyetheretherketone /PEEK/ and polycaprolactone /PCL/) as a matrix and nano-oxide ceramics - TiO2, Al2O3, ZrO2, FexOy and/or hydroxyapatite as a basis of the additives. The rate of pure PEEK and PCL bio-resorption and in mixtures with nano oxides on the matrix was studied by the method of mass loss on bacteria of hydroxylase and enzyme complex. The stem cellular morphology, proliferative MMSC activity, and adhesion of the 2D and 3D nanocomposite matrices were the subjects of comparison. Medical potential of the SLS/M-fabricated nano-oxide ceramics after additional heating as the basis for tissue engineering scaffolds and cell targeting systems were discussed.

  3. Self-sensing and thermal energy experimental characterization of multifunctional cement-matrix composites with carbon nano-inclusions

    NASA Astrophysics Data System (ADS)

    D'Alessandro, A.; Pisello, A. L.; Sambuco, Sara; Ubertini, F.; Asdrubali, F.; Materazzi, A. L.; Cotana, F.

    2016-04-01

    The recent progress of Nanotechnology allowed the development of new smart materials in several fields of engineering. In particular, innovative construction materials with multifunctional enhanced properties can be produced. The paper presents an experimental characterization on cement-matrix pastes doped with Carbon Nanotubes, Carbon Nano-fibers, Carbon Black and Graphene Nano-platelets. Both electro-mechanical and thermo-physical investigations have been carried out. The conductive nano-inclusions provide the cementitious matrix with piezo-resistive properties allowing the detection of external strain and stress changes. Thereby, traditional building materials, such as concrete and cementitious materials in general, would be capable of self-monitoring the state of deformation they are subject to, giving rise to diffuse sensing systems of structural integrity. Besides supplying self-sensing abilities, carbon nano-fillers may change mechanical, physical and thermal properties of cementitious composites. The experimental tests of the research have been mainly concentrated on the thermal conductivity and the optical properties of the different nano-modified materials, in order to make a critical comparison between them. The aim of the work is the characterization of an innovative multifunctional composite capable of combining self-monitoring properties with proper mechanical and thermal-energy efficiency characteristics. The potential applications of these nano-modified materials cover a wide range of possibilities, such as structural elements, floors, geothermal piles, radiant systems and more.

  4. PREFACE: International Conference on Theoretical Physics: Dubna-Nano 2012

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir; Nesterenko, Valentin; Shukrinov, Yury M.

    2012-11-01

    The International Conference 'Dubna-Nano2012' was held on 9-14 July 2012 at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The conference was the third one in the series started in 2008. 'Dubna-Nano2012' provided an opportunity for presentations and discussions about theoretical and experimental advances in the rapidly growing area of nanophysics. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: graphene and other carbon nanostructures, topological insulators, quantum transport, quantum dots, atomic clusters, Josephson junctions and applications of nanosystems. About 100 scientists from 22 countries participated in the conference. The program included 38 oral talks and 39 posters. This volume contains 35 contributions. We would like to express our gratitude to all participants for their presentations and discussions. We are deeply indebted to the members of the International Advisory Committee Professors K S Novoselov, T Ando, T Chakraborty, J Fabian, V M Galitski, F Guinea, M Z Hasan, P Hawrylak, K Kadowaki, R Kleiner, T Koyama, Yu I Latyshev, Yu E Lozovik, M Machida, B K Nikolic, N F Pedersen, P-G. Reinhard, J M Rost and A Ya Vul. Financial support from BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Further information about 'Dubna-Nano2012' is available on the homepage http://theor.jinr.ru/~nano12. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  5. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  6. Nature-replicated nano-in-micro structures for triboelectric energy harvesting.

    PubMed

    Seol, Myeong-Lok; Woo, Jong-Ho; Lee, Dong-Il; Im, Hwon; Hur, Jae; Choi, Yang-Kyu

    2014-10-15

    Triboelectric nanogenerators with nature-replicated interface structures are presented. Effective contact areas of the triboelectric surfaces are largely enhanced because of the densely packed nano-in-micro hierarchical structures in nature. The enlarged contact area causes stronger triboelectric charge density, which results in output power increment. The interface engineering also allows the improved humidity resistance, which is an important parameter for the stable energy harvesting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Single-cell intracellular nano-pH probes†

    PubMed Central

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  8. Single-cell intracellular nano-pH probes.

    PubMed

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  9. NanoStringNormCNV: pre-processing of NanoString CNV data.

    PubMed

    Sendorek, Dorota H; Lalonde, Emilie; Yao, Cindy Q; Sabelnykova, Veronica Y; Bristow, Robert G; Boutros, Paul C

    2018-03-15

    The NanoString System is a well-established technology for measuring RNA and DNA abundance. Although it can estimate copy number variation, relatively few tools support analysis of these data. To address this gap, we created NanoStringNormCNV, an R package for pre-processing and copy number variant calling from NanoString data. This package implements algorithms for pre-processing, quality-control, normalization and copy number variation detection. A series of reporting and data visualization methods support exploratory analyses. To demonstrate its utility, we apply it to a new dataset of 96 genes profiled on 41 prostate tumour and 24 matched normal samples. NanoStringNormCNV is implemented in R and is freely available at http://labs.oicr.on.ca/boutros-lab/software/nanostringnormcnv. paul.boutros@oicr.on.ca. Supplementary data are available at Bioinformatics online.

  10. Cytotoxic Effect of Nano-SiO2 in Human Breast Cancer Cells via Modulation of EGFR Signaling Cascades.

    PubMed

    Jeon, Donghwan; Kim, Hyungjoo; Nam, Keesoo; Oh, Sunhwa; Son, Seog-Ho; Shin, Incheol

    2017-11-01

    Silica nanoparticles (nano-SiO 2 ) are widely used in many industrial areas and there is much controversy surrounding cytotoxic effects of such nanoparticles. In order to determine the toxicity and possible molecular mechanisms involved, we conducted several tests with two breast cancer cell lines, MDA-MB-231 and Hs578T. After exposure to nano-SiO 2 , growth, apoptosis, motility of breast cancer cells were monitored. In addition, modulation of signal transduction induced by nano-SiO 2 was detected through western blot analysis. Treatment of nano-SiO 2 repressed the growth of breast cancer cell lines. It also increased apoptosis and reduced cell motility. Moreover, exposure to nano-SiO 2 significantly disturbed the dimerization of epidermal growth factor receptor (EGFR), followed by down-regulation of its downstream cellular sarcoma kinase (c-SRC) and signal transducer and activator of transcription 3 (STAT3) signaling cascades. Nano-SiO 2 has a cytotoxic effect on MDA-MB-231 and Hs578T breast cancer cells via modulation of EGFR signaling cascades. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Cellular-level surgery using nano robots.

    PubMed

    Song, Bo; Yang, Ruiguo; Xi, Ning; Patterson, Kevin Charles; Qu, Chengeng; Lai, King Wai Chiu

    2012-12-01

    The atomic force microscope (AFM) is a popular instrument for studying the nano world. AFM is naturally suitable for imaging living samples and measuring mechanical properties. In this article, we propose a new concept of an AFM-based nano robot that can be applied for cellular-level surgery on living samples. The nano robot has multiple functions of imaging, manipulation, characterizing mechanical properties, and tracking. In addition, the technique of tip functionalization allows the nano robot the ability for precisely delivering a drug locally. Therefore, the nano robot can be used for conducting complicated nano surgery on living samples, such as cells and bacteria. Moreover, to provide a user-friendly interface, the software in this nano robot provides a "videolized" visual feedback for monitoring the dynamic changes on the sample surface. Both the operation of nano surgery and observation of the surgery results can be simultaneously achieved. This nano robot can be easily integrated with extra modules that have the potential applications of characterizing other properties of samples such as local conductance and capacitance.

  12. Virtual Parts Engineering Research Center

    DTIC Science & Technology

    2010-05-20

    engineering 10 materials. High strength alloys , composites (polymer composites and metallic composites), and the like cannot merely be replaced by...ceramics, smart materials, shape memory alloys , super plastic materials and nano- structured materials may be more appropriate substitutes in a reverse...molding process using thermosetting Bakelite. For remanufacturing the part in small quantities, machining has been identified as the most economical

  13. Surface roughness: A review of its measurement at micro-/nano-scale

    NASA Astrophysics Data System (ADS)

    Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.

    2018-01-01

    The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.

  14. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid.

    PubMed

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-04

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  15. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  16. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    PubMed Central

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-01-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process. PMID:27488733

  17. 3D nano-structures for laser nano-manipulation

    PubMed Central

    Seniutinas, Gediminas; Gervinskas, Gediminas; Brasselet, Etienne; Juodkazis, Saulius

    2013-01-01

    Summary The resputtering of gold films from nano-holes defined in a sacrificial PMMA mask, which was made by electron beam lithography, was carried out with a dry plasma etching tool in order to form well-like structures with a high aspect ratio (height/width ≈ 3–4) at the rims of the nano-holes. The extraordinary transmission through the patterns of such nano-wells was investigated experimentally and numerically. By doing numerical simulations of 50-nm and 100-nm diameter polystyrene beads in water and air, we show the potential of such patterns for self-induced back-action (SIBA) trapping. The best trapping conditions were found to be a trapping force of 2 pN/W/μm2 (numerical result) exerted on a 50-nm diameter bead in water. The simulations were based on the analytical Lorentz force model. PMID:24062979

  18. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  19. Janus "nano-bullets" for magnetic targeting liver cancer chemotherapy.

    PubMed

    Shao, Dan; Li, Jing; Zheng, Xiao; Pan, Yue; Wang, Zheng; Zhang, Ming; Chen, Qi-Xian; Dong, Wen-Fei; Chen, Li

    2016-09-01

    Tumor-targeted delivery of anti-cancer drugs with controlled drug release function has been recognized as a promising strategy for pursuit of increased chemotherapeutic efficacy and reduced adverse effects. Development of magnetic nanoparticulates as delivery carriers to accommodate cytotoxic drugs for liver cancer treatment has evoked immense interest with respect to their convenience in biomedical application. Herein, we engineered multifunctional Janus nanocomposites, characterized by a head of magnetic Fe3O4 and a body of mesoporous SiO2 containing doxorubicin (DOX) as "nano-bullets" (M-MSNs-DOX). This nanodrug formulation possessed nanosize with controlled aspect-ratio, defined abundance in pore structures, and superior magnetic properties. M-MSN-DOX was determined to induce selective growth inhibition to the cancer cell under magnetic field rather than human normal cells due to its preferable endocytosis by the tumor cells and pH-promoted DOX release in the interior of cancer cells. Ultimately, both subcutaneous and orthotropic liver tumor models in mice have demonstrated that the proposed Janus nano-bullets imposed remarkable suppression of the tumor growth and significantly reduced systematic toxicity. Taken together, this study demonstrates an intriguing targeting strategy for liver cancer treatment based on a novel Janus nano-bullet, aiming for utilization of nanotechnology to obtain safe and efficient treatment of liver cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sustainable nano-catalysis

    EPA Science Inventory

    A novel nano-catalyst system which bridges the homogenous and heterogeneous system is described that is cheaper, easily accessible (sustainable) and requires no need of catalyst filtration during the work-up. Because of its nano-size, i.e. high surface area, the contact between r...

  1. Summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.

  2. Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research

    DTIC Science & Technology

    2008-11-04

    and their composites . This grant was used to procure equipment to synthesize and characterize the nano- and meso-porous geopolymers , and study their...and meso-porosity and microstructure of geopolymers and their composites is part of an ongoing research project in the PIs research group, which has...the synthesis and processing of geopolymers and geopolymer composites . The attritor mill enables synthesis Technical Report of nano-sized high

  3. Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research

    DTIC Science & Technology

    2008-11-04

    working on tailoring the nano- and meso-porosity, and the microstructure of geopolymers and their composites . This grant was used to procure equipment...and tailor the nano and meso-porosity and microstructure of geopolymers and their composites is part of an ongoing research project in the Pis...purchased to improve the synthesis and processing of geopolymers and geopolymer composites . The attritor mill enables synthesis Technical Report of

  4. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  5. Introducing the Institute of Physics in Engineering and Medicine (IPEM)

    NASA Astrophysics Data System (ADS)

    Keevil, Stephen F.

    2014-04-01

    Physics in Medicine and Biology is one of three journals owned by the UK based Institute of Physics and Engineering in Medicine (IPEM), along with Physiological Measurement and Medical Engineering and Physics. IPEM is a charity and journal revenues are a vital part of our income stream. By subscribing to our journals, you are helping to support the work of IPEM, so you may be interested to learn more about who we are and what we do. IPEM aims to advance physics and engineering applied to medicine and biology for the public good. Our membership comprises over 4000 physicists, engineers and technologists working in healthcare, academia and industry. Most of our work depends on these members generously volunteering their expert knowledge and extensive experience to work in the following areas. Promoting research and innovation Along with the scientific journals mentioned above, we also regularly produce scientific reports. There are currently 40 IPEM reports in print, as well as reference books such as The Gamma Camera—A Comprehensive Guide and the recently published Physicists and Physicians: A History of Medical Physics from the Renaissance to Röntgen. Publishing is just one way in which we encourage R&D and increase the uptake of new knowledge and innovations. We also support scientific conferences, such as the International Conference on Medical Physics 50th anniversary meeting, which we hosted in 2013 on behalf of the International Organization for Medical Physics (IOMP). This four-day event explored the contribution that physics and engineering can make to healthcare and showcased the latest developments via 312 international speakers, 212 posters and an exhibition. Our awards, travel bursaries and grants enable us to facilitate, recognize and reward the work of our members. In 2012 we awarded almost #95 000 (around 155 000) this way. Championing the sector IPEM provides a unified voice with which to represent the views of our membership and raise the

  6. Completeness and overlap in open access systems: Search engines, aggregate institutional repositories and physics-related open sources.

    PubMed

    Tsay, Ming-Yueh; Wu, Tai-Luan; Tseng, Ling-Li

    2017-01-01

    This study examines the completeness and overlap of coverage in physics of six open access scholarly communication systems, including two search engines (Google Scholar and Microsoft Academic), two aggregate institutional repositories (OAIster and OpenDOAR), and two physics-related open sources (arXiv.org and Astrophysics Data System). The 2001-2013 Nobel Laureates in Physics served as the sample. Bibliographic records of their publications were retrieved and downloaded from each system, and a computer program was developed to perform the analytical tasks of sorting, comparison, elimination, aggregation and statistical calculations. Quantitative analyses and cross-referencing were performed to determine the completeness and overlap of the system coverage of the six open access systems. The results may enable scholars to select an appropriate open access system as an efficient scholarly communication channel, and academic institutions may build institutional repositories or independently create citation index systems in the future. Suggestions on indicators and tools for academic assessment are presented based on the comprehensiveness assessment of each system.

  7. Eddy Current Assessment of Engineered Components Containing Nanofibers

    NASA Astrophysics Data System (ADS)

    Ko, Ray T.; Hoppe, Wally; Pierce, Jenny

    2009-03-01

    The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.

  8. Multifunctional carbon nano-paper composite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Chu, Hetao; Wang, Kuiwen; Liu, Yanjv; Leng, Jinsong

    2013-08-01

    Carbon Nanotube (CNT), for its excellent mechanical, electrical properties and nano size, large special surface physical property, become the most promising material. But carbon nanotube can still fabricated in micro dimension, and can't be made into macro size, so to the carbon nanotube filled composite can't explore the properties of the CNT. Carbon nano-paper is made of pure CNT, with micro pore, and it turn micro sized CNT into macro shaped membrane. Based on the piezo-resistivity and electrical conductivity of the carbon nano-paper, we used the carbon nano-paper as functional layers fabricate functional composite, and studies its strain sensing, composite material deicing and shape memory polymer (SMP) material electric actuation performance. The results shown that the resin can pregnant the nano paper, and there was good bond for nano paper and composite. The functional composite can monitoring the strain with high sensitivity comparing to foil strain gauge. The functional composite can be heated via the carbon nano paper with low power supply and high heating rate. The composite has good deicing and heat actuation performance to composite material. For the good strain sensing, electric conductivity and self-heating character of the carbon nano-paper composite, it can be used for self sensing, anti lightning strike and deicing of composite materials in aircrafts and wind turbine blades.

  9. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    NASA Astrophysics Data System (ADS)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  10. Development of Useful Biomaterial for Bone Tissue Engineering by Incorporating Nano-Copper-Zinc Alloy (nCuZn) in Chitosan/Gelatin/Nano-Hydroxyapatite (Ch/G/nHAp) Scaffold.

    PubMed

    Forero, Juan Carlos; Roa, Eduardo; Reyes, Juan G; Acevedo, Cristian; Osses, Nelson

    2017-10-17

    Ceramic and metallic nanoparticles can improve the mechanical and biological properties of polymeric scaffolds for bone tissue engineering (BTE). In this work, nanohydroxyapatite (nHAp) and nano-copper-zinc alloy (nCuZn) were added to a chitosan/gelatin (Ch/G) scaffold in order to investigate the effects on morphological, physical, and biocompatibility properties. Scaffolds were fabricated by a freeze-drying technique using different pre-freezing temperatures. Microstructure and morphology were studied by scanning electron microscopy (SEM), glass transition ( T g ) was studied using differential scanning calorimetry (DSC), cell growth was estimated by MTT assay, and biocompatibility was examined in vitro and in vivo by histochemistry analyses. Scaffolds and nanocomposite scaffolds presented interconnected pores, high porosity, and pore size appropriate for BTE. T g of Ch/G scaffolds was diminished by nanoparticle inclusion. Mouse embryonic fibroblasts (MEFs) cells loaded in the Ch/G/nHAp/nCuZn nanocomposite scaffold showed suitable behavior, based on cell adhesion, cell growth, alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation, and histological in vitro cross sections. In vivo subcutaneous implant showed granulation tissue formation and new tissue infiltration into the scaffold. The favorable microstructure, coupled with the ability to integrate nanoparticles into the scaffold by freeze-drying technique and the biocompatibility, indicates the potential of this new material for applications in BTE.

  11. Micro and nanotechnologies in heart valve tissue engineering.

    PubMed

    Hasan, Anwarul; Saliba, John; Pezeshgi Modarres, Hassan; Bakhaty, Ahmed; Nasajpour, Amir; Mofrad, Mohammad R K; Sanati-Nezhad, Amir

    2016-10-01

    Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Illuminating Engineering Research Institute Annual Report 1967. A Review of Project Activities and a Roundup of IERI Research Interests.

    ERIC Educational Resources Information Center

    Illuminating Engineering Research Inst., New York, NY.

    Presented in this report are the Illuminating Engineering Research Institute's fundamental scientific concepts in a new frame of realism while relating them to an up-to-date accounting of the search for new basic knowledge. In addition to being an annual accounting, it is also intended to provide orientation. Its presented in dramatic and…

  13. Engineered Polymers for Advanced Drug Delivery

    PubMed Central

    Kim, Sungwon; Kim, Jong-Ho; Jeon, Oju; Kwon, Ick Chan; Park, Kinam

    2009-01-01

    Engineered polymers have been utilized for developing advanced drug delivery systems. The development of such polymers has caused advances in polymer chemistry, which, in turn, has resulted in smart polymers that can respond to changes in environmental condition, such as temperature, pH, and biomolecules. The responses vary widely from swelling/deswelling to degradation. Drug-polymer conjugates and drug-containing nano/micro-particles have been used for drug targeting. Engineered polymers and polymeric systems have also been used in new areas, such as molecular imaging as well as in nanotechnology. This review examines the engineered polymers that have been used as traditional drug delivery and as more recent applications in nanotechnology. PMID:18977434

  14. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres.

    PubMed

    Yang, Wenguang; Yu, Haibo; Li, Gongxin; Wang, Yuechao; Liu, Lianqing

    2016-12-01

    Poly(ethylene glycol) diacrylate (PEGDA) is a common hydrogel that has been actively investigated for various tissue engineering applications owing to its biocompatibility and excellent mechanical properties. However, the native PEGDA films are known for their bio-inertness which can hinder cell adhesion, thereby limiting their applications in tissue engineering and biomedicine. Recently, nano composite technology has become a particularly hot topic, and has led to the development of new methods for delivering desired properties to nanomaterials. In this study, we added polystyrene nano-spheres (PS) into a PEGDA solution to synthesize a nano-composite film and evaluated its characteristics. The experimental results showed that addition of the nanospheres to the PEGDA film not only resulted in modification of the mechanical properties and surface morphology but further improved the adhesion of cells on the film. The tensile modulus showed clear dependence on the addition of PS, which enhanced the mechanical properties of the PEGDA-PS film. We attribute the high stiffness of the hybrid hydrogel to the formation of additional cross-links between polymeric chains and the nano-sphere surface in the network. The effect of PS on cell adhesion and proliferation was evaluated in L929 mouse fibroblast cells that were seeded on the surface of various PEGDA-PS films. Cells density increased with a larger PS concentration, and the cells displayed a spreading morphology on the hybrid films, which promoted cell proliferation. Impressively, cellular stiffness could also be modulated simply by tuning the concentration of nano-spheres. Our results indicate that the addition of PS can effectively tailor the physical and biological properties of PEGDA as well as the mechanical properties of cells, with benefits for biomedical and biotechnological applications.

  15. Erythrocyte-derived optical nano-vesicles as theranostic agents

    NASA Astrophysics Data System (ADS)

    Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman

    2015-07-01

    We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).

  16. Retention and promotion of women and underrepresented minority faculty in science and engineering at four large land grant institutions

    PubMed Central

    Durodoye, Raifu; Griffith, Emily; Wilson, Alyson

    2017-01-01

    The current climate on college campuses has brought new urgency to the need to increase faculty diversity. In STEM fields particularly, the dearth of underrepresented minority (URM) and female faculty is severe. The retention and success of African American, Hispanic/Latino, American Indian and female faculty have direct implications for the quality and diversity of the future scientific workforce. Understanding the ways retention patterns differ by discipline and institution is crucial for developing a diverse faculty. This study investigates tenure attainment, retention, and time to promotion to full professor for women and URM faculty. We analyze personnel records for assistant and associate professors hired or appointed from 1992 to 2015 at four large land grant institutions. Representation of women and URM faculty in STEM disciplines increased substantially from 1992 to 2015, but mostly for women and Hispanic faculty and more slowly for black and American Indian faculty. Results by gender In the most recent cohort, 2002–2015, the experiences of men and women differed substantially among STEM disciplines. Female assistant professors were more likely than men to leave the institution and to leave without tenure in engineering, but not in the agricultural, biological and biomedical sciences and natural resources or physical and mathematical sciences. In contrast, the median times to promotion from associate to full professor were similar for women and men in engineering and the physical and mathematical sciences, but one to two years longer for women than men in the agricultural, biological and biomedical sciences and natural resources. Results for underrepresented minority faculty URM faculty hiring is increasing, but is well below the proportions earning doctoral degrees in STEM disciplines. The results are variable and because of the small numbers of URM faculty, the precision and power for comparing URM faculty to other faculty were low. In three of the

  17. Effects of Structural Properties of Electrospun TiO2 Nano-fiber Meshes on their Osteogenic Potential

    PubMed Central

    Wang, Xiaokun; Gittens, Rolando A.; Song, Rosemary; Tannenbaum, Rina; Olivares-Navarrete, Rene; Schwartz, Zvi; Chen, Haifeng; Boyan, Barbara D.

    2011-01-01

    Ideal outcomes in the field of tissue engineering and regenerative medicine involve biomaterials that can enhance cell differentiation and production of local factors for natural tissue regeneration without the use of systemic drugs. Biomaterials typically used in tissue engineering applications include polymeric scaffolds that mimic the 3-D structural environment of the native tissue, but these are often functionalized with proteins or small peptides to improve their biological performance. For bone applications, titanium (Ti) implants, or more appropriately the titania (TiO2) passive oxide layer formed on their surface, have been shown to enhance osteoblast differentiation in vitro and to promote osseointegration in vivo. In this study we evaluated the effect on osteoblast differentiation of pure TiO2 nano-fiber meshes with different surface micro-roughness and nano-fiber diameters, prepared by the electrospinning method. MG63 cells were seeded on TiO2 meshes, and cell number, differentiation markers and local factor production were analyzed. The results showed that cells grew throughout the entire surfaces and with similar morphology in all groups. Cell number was sensitive to surface micro-roughness, whereas cell differentiation and local factor production was regulated by both surface roughness and nano-fiber diameter. These results indicate that scaffold structural cues alone can be used to drive cell differentiation and create an osteogenic environment without the use of exogenous factors. PMID:22075122

  18. Towards an ideal polymer scaffold for tendon/ligament tissue engineering

    NASA Astrophysics Data System (ADS)

    Sahoo, Sambit; Ouyang, Hong Wei; Goh, James Cho-Hong; Tay, Tong-Earn; Toh, Siew Lok

    2005-04-01

    Tissue engineering holds promise in treating injured tendons and ligaments by replacing the injured tissues with "engineered tissues" with identical mechanical and functional characteristics. A biocompatible, biodegradable, porous scaffold with optimized architecture, sufficient surface area for cell attachment, growth and proliferation, faborable mechanical properties, and suitable degradation rate is a pre-requisite to achieve success with this aproach. Knitted poly(lactide-co-glycolide) (PLGA) scaffolds comprising of microfibers of 25 micron diameter were coated with PLGA nanofibers on their surfaces by electrospinning technique. A cell suspension of pig bone marrow stromal cells (BMSC) was seeded on the scaffolds by pipetting, and the cell-scaffold constructs were cultured in a CO2 incubator, at 37°C for 1-2 weeks. The "engineered tissues" were then assessed for cell attachment and proliferation, tissue formation, and mechanical properties. Nanofibers, of diameter 300-900 nm, were spread randomly over the knitted scaffold. The reduction in pore-size from about 1 mm (in the knitted scaffold) to a few micrometers (in the nano-microscaffold) allowed cell seeding by direct pipetting, and eliminated the need of a cell-delivery system like fibrin gel. BMSCs were seen to attach and proliferate well on the nano-microscaffold, producing abundant extracellular matrix. Mechanical testing revealed that the cell-seeded nano-microscaffolds possessed slightly higher values of failure load, elastic-region stiffness and toe-region stiffness, than the unseeded scaffolds. The combination of superior mechanical strength and integrity of knitted microfibers, with the large surface area and improved hydrophilicity of the electrospun nanofibers facilitated cell attachment and new tissue formation. This holds promise in tissue engineering of tendon/ligament.

  19. Facile fabrication and characterization of poly(tetrafluoroethylene)@polypyrrole/nano-silver composite membranes with conducting and antibacterial property

    NASA Astrophysics Data System (ADS)

    Shi, Zhiquan; Zhou, Hui; Qing, Xutang; Dai, Tingyang; Lu, Yun

    2012-06-01

    Porous poly(tetrafluoroethylene) (PTFE) membranes play an important role in air purification and separation engineering. To achieve the bi-functionality of conducting and antibacterial property, two kinds of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes have been prepared. One involves hydrophobic polypyrrole/nano-silver composite with hollow capsule nanostructures immobilized on the surface of the PTFE membranes. The other is a type of composite membranes with polypyrrole/nano-silver composite wholly packed on the fibrils of the expand PTFE membrane to form core/shell coaxial cable structures. The structure and morphology of the two kinds of composite membranes have been characterized by FTIR, UV-vis, XRD, TGA and SEM measurements. Possible formation mechanisms of the hollow capsules and the core/shell nanocable structures have been discussed in detail. The antibacterial effects of composite membranes are also briefly investigated.

  20. The open prototype for educational NanoSats: Fixing the other side of the small satellite cost equation

    NASA Astrophysics Data System (ADS)

    Berk, Josh; Straub, Jeremy; Whalen, David

    Government supported nano-satellite launch programs and emerging commercial small satellite launch services are reducing the cost of access to space for educational and other CubeSat projects. The cost and complexity of designing and building these satellites remains a vexing complication for many would be CubeSat aspirants. The Open Prototype for Educational NanoSats (OPEN), a proposed nano-satellite development platform, is described in this paper. OPEN endeavors to reduce the costs and risks associated with educational, government and commercial nano-satellite development. OPEN provides free and publicly available plans for building, testing and operating a versatile, low-cost satellite, based on the standardized CubeSat form-factor. OPEN consists of public-domain educational reference plans, complete with engineering schematics, CAD files, construction and test instructions as well as ancillary reference materials relevant to satellite building and operation. By making the plan, to produce a small but capable spacecraft freely available, OPEN seeks to lower the barriers to access on the other side (non-launch costs) of the satellite cost equation.

  1. [Research Conducted at the Institute for Computer Applications in Science and Engineering for the Period October 1, 1999 through March 31, 2000

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, computer science, fluid mechanics, and structures and materials during the period October 1, 1999 through March 31, 2000.

  2. Photovoltaic cell with nano-patterned substrate

    DOEpatents

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2016-10-18

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  3. Aligned Layers of Silver Nano-Fibers.

    PubMed

    Golovin, Andrii B; Stromer, Jeremy; Kreminska, Liubov

    2012-02-01

    We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  4. Characterizing dynamic behavior of carbon dioxide nano-jets using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Huang, Pei-Hsing; Chou, Chuen-Shii; Hung, Shang-Chao; Jhan, Jhih-Wei

    2017-12-01

    This paper reports on the use of molecular dynamics (MD) simulations to elucidate the dynamic behavior of CO2 through a Graphene/Au(111) nano-injector. We investigated the effects of jet diameter ( d), system temperature ( T), and the extrusion velocity ( v) of a graphite piston plate on the jet pattern, system pressure ( P), and the number of molecules ( N m) in the outflow. Simulation results show that the combined effects of high v and small d induced a larger jet angle, resulting in an increase in the number of CO2 molecules attached to the surface of the outlet. Increasing d enhanced the formation of the T-junction molecular geometry of CO2 molecules, due to the effects of electrostatic attraction between C (0.5888 e) and O (- 0.2944 e) of CO2, which caused the formation of larger agglomerations of CO2 molecules in the vicinity of the nano-injector orifice in the final extrusion stage. The increase in P within the cylinder of the nano-injector was more pronounced during middle and final stages of extrusion, compared with the effects observed during the initial stages. Despite the fact that N m increased noticeably with an increase in T, the value of N m at d = 1.5 nm and T ≥ 300 K greatly exceeded that at d = 1.0 nm and T = 500 K, regardless of the value of v. The numerical simulations presented in this study could be helpful in the design of nano-injectors for a diversity of applications associated with engineering systems and biomedicine at the nano-scale.

  5. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface.

  6. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.

    PubMed

    Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng

    2016-08-01

    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.

  7. Engineering Approaches Toward Deconstructing and Controlling the Stem Cell Environment

    PubMed Central

    Edalat, Faramarz; Bae, Hojae; Manoucheri, Sam; Cha, Jae Min; Khademhosseini, Ali

    2012-01-01

    Stem cell-based therapeutics have become a vital component in tissue engineering and regenerative medicine. The microenvironment within which stem cells reside, i.e. the niche, plays a crucial role in regulating stem cell self-renewal and differentiation. However, current biological techniques lack the means to recapitulate the complexity of this microenvironment. Nano- and microengineered materials offer innovative methods to: (1) deconstruct the stem cell niche to understand the effects of individual elements; (2) construct complex tissue-like structures resembling the niche to better predict and control cellular processes; and (3) transplant stem cells or activate endogenous stem cell populations for regeneration of aged or diseased tissues. Here, we highlight some of the latest advances in this field and discuss future applications and directions of the use of nano- and microtechnologies for stem cell engineering. PMID:22101755

  8. Engineering approaches toward deconstructing and controlling the stem cell environment.

    PubMed

    Edalat, Faramarz; Bae, Hojae; Manoucheri, Sam; Cha, Jae Min; Khademhosseini, Ali

    2012-06-01

    Stem cell-based therapeutics have become a vital component in tissue engineering and regenerative medicine. The microenvironment within which stem cells reside, i.e., the niche, plays a crucial role in regulating stem cell self-renewal and differentiation. However, current biological techniques lack the means to recapitulate the complexity of this microenvironment. Nano- and microengineered materials offer innovative methods to (1) deconstruct the stem cell niche to understand the effects of individual elements; (2) construct complex tissue-like structures resembling the niche to better predict and control cellular processes; and (3) transplant stem cells or activate endogenous stem cell populations for regeneration of aged or diseased tissues. In this article, we highlight some of the latest advances in this field and discuss future applications and directions of the use of nano- and microtechnologies for stem cell engineering.

  9. Nano-JASMINE Data Analysis and Publication

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Hara, T.; Yoshioka, S.; Kobayashi, Y.; Gouda, N.; Miyashita, H.; Hatsutori, Y.; Lammers, U.; Michalik, D.

    2012-09-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). A collaboration between the Gaia AGIS and Nano-JASMINE teams on the Nano-JASMINE data reduction started in 2007. The Nano-JASMINE team writes codes to generate AGIS input, and this is called Initial Data Treament (IDT). Identification of observed stars and their observed field of view, getting color index, are different from those of Gaia because Nano-JASMINE is ultra small satellite. For converting centroiding results on detector to the celestial sphere, orbit and attitude data of the satellite are used. In Nano-JASMINE, orbit information is derived from on board GPS data and attitude is processed from on-board star sensor data and on-ground Kalman filtering. We also show the Nano-JASMINE goals, status of the data publications and utilizations, and introduce the next Japanese space astrometric mission.

  10. Applications of Nano palm oil fuel ash and Nano fly ash in concrete

    NASA Astrophysics Data System (ADS)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    This paper discusses the applications of Nano waste materials including palm oil fuel ash and fly ash in the concrete production. The implementation of nanotechnology has been instrumental in the development of significant interest among the stakeholders to improve the mechanical and chemical properties of materials involved in the production of concrete. Although many researchers have shown the potential of nanomaterials to increase strength and durability of concrete and improve its physical and chemical properties, there is still a knowledge gap regarding the preparation of Nano waste materials from agricultural waste to use as cement replacement instead of non-renewable materials. Therefore, it should be focused on to study Nano- waste materials to benefit from these characteristics during preparation of concrete mixtures. Therefore, this paper highlights the potential of waste materials in the Nano size to partially replace cement in concrete and achieve the same or better result than the traditional concrete. This paper recommends to conduct further experimental works to improve the concrete material properties by investigating the properties of waste materials in Nano size.

  11. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize].

    PubMed

    Wang, Wei-Zhong; Wang, Fa-Yuan; Li, Shuai; Liu, Xue-Qin

    2014-08-01

    Engineered nanoparticles (ENPs) can be taken up and accumulated in plants, then enter human bodies via food chain, and thus cause potential health risk. Arbuscular mycorrhizal fungi form mutualistic symbioses with the majority of higher plants in terrestrial ecosystems, and potentially influence the biological effects of ENPs. The present greenhouse pot culture experiment studied the effects of inoculation with or without arbuscular mycorrhizal fungus Acaulospora mellea on growth and nutritional status of maize under different nano-ZnO levels (0, 500, 1 000, 2000 and 3 000 mg x kg(-1)) artificially added into soil. Results showed that with the increasing nano-ZnO levels in soil, mycorrhizal colonization rate and biomass of maize plants showed a decreasing trend, total root length, total surface area and total volume reduced, while Zn concentration and uptake in plants gradually increased, and P, N, K, Fe, and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  12. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    NASA Astrophysics Data System (ADS)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  13. Nano Catalysts for Diesel Engine Emission Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Debusk, Melanie Moses

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperaturesmore » should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  14. The effects of networks on U.S. institution selection by foreign doctoral students in science and engineering

    NASA Astrophysics Data System (ADS)

    Tanyildiz, Zeynep Esra

    The United States has been a very attractive destination for foreign Science and Engineering (S&E) graduate students and postdoctoral scholars for a considerable period of time. Several studies have documented significant contributions of foreign students and foreign scientists in S&E. These contributions in turn foster economic development. Recent studies suggest, however, that the U.S. is losing its dominance in attracting foreign talent. Increased competition outside the U.S. contributes to the change as do changes in visa regulations. Despite the important role of foreign doctoral students in the U.S., relatively little is known about factors influencing their decision to attend an institution. One factor that is rarely explored is the effect of networks on institution selection. Through their networks, students learn about application procedures, studying at an institution, housing opportunities, general culture and people. In doing this, they draw both on the experience of the alumni as well as the support of current students and faculty at their target institution. Thus, networks can play an important role in where foreign doctoral students actually end up studying. This study aims to provide both qualitative and quantitative information about the role networks play in foreign doctoral students' institution selection. This three-part study utilizes different methodologies: (1) focus group interviews conducted with Turkish doctoral students at the Georgia Institute of Technology; (2) a web study of research laboratories in science and engineering; and (3) the estimation of Random Utility Model (RUM) of institution selection. These three components build on each other, in addition to the individual contributions that they make. Together they provide an in-depth and comprehensive analysis of the role of networks. The results from guided focus group interviews indicate that students, alumni, faculty and local community of the same nationality influence

  15. Mechanical, Biological and Electrochemical Investigations of Advanced Micro/Nano Materials for Tissue Engineering and Energy Storage

    NASA Astrophysics Data System (ADS)

    Pu, Juan

    Various micro/nano materials have been extensively studied for applications in tissue engineering and energy storage. Tissue engineering seeks to repair or replace damaged tissue by integrating approaches from cellular/molecular biology and material chemistry/engineering. A major challenge is the consistent design of three-dimensional (3D) scaffolds that mimic the structure and biological functions of extracellular matrix (ECM), guide cell migration, provide mechanical support, and regulate cell activity. Electrospun micro/nanofibers have been investigated as promising tissue engineering scaffolds because they resemble native ECM and possess tunable surface morphologies. Supercapacitors, one of the energy storage devices, bridge the performance gap between rechargeable batteries and conventional capacitors. Active electrode materials of supercapacitors must possess high specific surface area, high conductivity, and good electrochemical properties. Carbon-based micro/nano-particles, such as graphene, activated carbon (AC), and carbon nanotubes, are commonly used as active electrode materials for storing charge in supercapacitors by the electrical double layer mechanism due to their high specific surface area and excellent conductivity. In this thesis, the mechanical properties of electrospun bilayer microfibrous membranes were investigated for potential applications in tissue engineering. Bilayer microfibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning using a parallel-disk mandrel configuration, which resulted in the sequential deposition of a layer with aligned fibers (AFL) across the two parallel disks and a layer with random fibers (RFL), both deposited by a single process step. The membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, the bilayer membranes exhibited higher porosity than the

  16. The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.

    PubMed

    Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui

    2010-10-01

    Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.

  17. Scientists versus regulators: precaution, novelty & regulatory oversight as predictors of perceived risks of engineered nanomaterials.

    PubMed

    Beaudrie, Christian E H; Satterfield, Terre; Kandlikar, Milind; Harthorn, Barbara H

    2014-01-01

    Engineered nanoscale materials (ENMs) present a difficult challenge for risk assessors and regulators. Continuing uncertainty about the potential risks of ENMs means that expert opinion will play an important role in the design of policies to minimize harmful implications while supporting innovation. This research aims to shed light on the views of 'nano experts' to understand which nanomaterials or applications are regarded as more risky than others, to characterize the differences in risk perceptions between expert groups, and to evaluate the factors that drive these perceptions. Our analysis draws from a web-survey (N = 404) of three groups of US and Canadian experts: nano-scientists and engineers, nano-environmental health and safety scientists, and regulatory scientists and decision-makers. Significant differences in risk perceptions were found across expert groups; differences found to be driven by underlying attitudes and perceptions characteristic of each group. Nano-scientists and engineers at the upstream end of the nanomaterial life cycle perceived the lowest levels of risk, while those who are responsible for assessing and regulating risks at the downstream end perceived the greatest risk. Perceived novelty of nanomaterial risks, differing preferences for regulation (i.e. the use of precaution versus voluntary or market-based approaches), and perceptions of the risk of technologies in general predicted variation in experts' judgments of nanotechnology risks. Our findings underscore the importance of involving a diverse selection of experts, particularly those with expertise at different stages along the nanomaterial lifecycle, during policy development.

  18. Engineers and Active Responsibility.

    PubMed

    Pesch, Udo

    2015-08-01

    Knowing that technologies are inherently value-laden and systemically interwoven with society, the question is how individual engineers can take up the challenge of accepting the responsibility for their work? This paper will argue that engineers have no institutional structure at the level of society that allows them to recognize, reflect upon, and actively integrate the value-laden character of their designs. Instead, engineers have to tap on the different institutional realms of market, science, and state, making their work a 'hybrid' activity combining elements from the different institutional realms. To deal with this institutional hybridity, engineers develop routines and heuristics in their professional network, which do not allow societal values to be expressed in a satisfactory manner. To allow forms of 'active' responsibility, there have to be so-called 'accountability forums' that guide moral reflections of individual actors. The paper will subsequently look at the methodologies of value-sensitive design (VSD) and constructive technology assessment (CTA) and explore whether and how these methodologies allow engineers to integrate societal values into the design technological artifacts and systems. As VSD and CTA are methodologies that look at the process of technological design, whereas the focus of this paper is on the designer, they can only be used indirectly, namely as frameworks which help to identify the contours of a framework for active responsibility of engineers.

  19. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer

    NASA Astrophysics Data System (ADS)

    Anisja, D. H.; Indrani, D. J.; Herda, E.

    2017-08-01

    Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.

  20. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F. A.; Abdelkareem, Mohamed A. A.

    2016-12-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al2O3 and TiO2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al2O3 and TiO2 nanoparticles had sizes of 8-12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35-51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al2O3 and TiO2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  1. The Neurologic Assessment in Neuro-Oncology (NANO) Scale as an Assessment Tool for Survival in Patients With Primary Glioblastoma.

    PubMed

    Ung, Timothy H; Ney, Douglas E; Damek, Denise; Rusthoven, Chad G; Youssef, A Samy; Lillehei, Kevin O; Ormond, D Ryan

    2018-03-30

    The Neurologic Assessment in Neuro-Oncology (NANO) scale is a standardized objective metric designed to measure neurological function in neuro-oncology. Current neuroradiological evaluation guidelines fail to use specific clinical criteria for progression. To determine if the NANO scale was a reliable assessment tool in glioblastoma (GBM) patients and whether it correlated to survival. Our group performed a retrospective review of all patients with newly diagnosed GBM from January 1, 2010, through December 31, 2012, at our institution. We applied the NANO scale, Karnofsky performance score (KPS), Eastern Cooperative Oncology Group (ECOG) scale, Macdonald criteria, and the Response Assessment in Neuro-Oncology (RANO) criteria to patients at the time of diagnosis as well as at 3, 6, and 12 mo. Initial NANO score was correlated with overall survival at time of presentation. NANO progression was correlated with decreased survival in patients at 6 and 12 mo. A decrease in KPS was associated with survival at 3 and 6 mo, an increase in ECOG score was associated only at 3 mo, and radiological evaluation (RANO and Macdonald) was correlated at 3 and 6 mo. Only the NANO scale was associated with patient survival at 1 yr. NANO progression was the only metric that was linked to decreased overall survival when compared to RANO and Macdonald at 6 and 12 mo. The NANO scale is specific to neuro-oncology and can be used to assess patients with glioma. This retrospective analysis demonstrates the usefulness of the NANO scale in glioblastoma.

  2. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    NASA Astrophysics Data System (ADS)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  3. Review on Enhanced Heat Transfer Techniques using Modern Technologies for 4S Air Cooled Engines

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, S.; Bupesh Raja, V. K.

    2017-05-01

    Engine performance is a biggest challenge and a vital area of concern when it comes to automobiles. Researchers across the globe have been working decades together meticulously improvising the performance of engine in terms of efficiency. The durability of the engine components mainly depends on the thermal stress it undergoes over the period of operation. Air cooling of engine is the simplest and most desirous technique that has been adopted for ages. In this regard fins or extended surfaces are employed for effective cooling of the cylinder while in operation. The conductive and convective heat transfer rate from the cylinder to the fins and in turn from the fins to surrounding ambience determines the effective performance of the engine. In this paper an attempt is made to review and summarize the various researches that were conducted on the Fins in terms of profile geometry, number of fins, size, thickness factor, material used etc., and to bring about a long term solution with the modern technologies like nano coatings and nano materials.

  4. Nano silver diffusion behaviour on conductive polymer during doping process for high voltage application

    NASA Astrophysics Data System (ADS)

    Mohammad, A.; Mahmood, A.; Chin, K. T.; Danquah, M. K.; van Stratan, S.

    2017-06-01

    Conductive polymer had opened a new era of engineering for microelectronics and semiconductor applications. However, it is still a challenge for high voltage applications due to lower electrical conductivity compare to metals. This results tremendous energy losses during transmission and restricts its usage. In order to address such problem a novel method was investigated using nano silver particle doped iodothiophene since silver is the highest electrical conductive material. The experiments were carried out to study the organometallic diffusion behaviour of nanosilver doped iodothiophene with different concentration of iodothiophene. Five different mixing ratio between nanosilver and the solution of iodothiophene dissolved in diethyl ether were used which are 1:1.25, 1:1.5, 1:2.5, 1:3 and l:5. It was revealed that there is an effective threshold concentration of which the nano silver evenly distributed and there was no coagulation observed. These parameters laid the foundation of better doping process between the nano silver and the polymer significantly which would contribute developing conductive polymer towards high voltage application for industries that are vulnerable to corrosive environment.

  5. Toward ethical norms and institutions for climate engineering research

    NASA Astrophysics Data System (ADS)

    Morrow, David R.; Kopp, Robert E.; Oppenheimer, Michael

    2009-10-01

    Climate engineering (CE), the intentional modification of the climate in order to reduce the effects of increasing greenhouse gas concentrations, is sometimes touted as a potential response to climate change. Increasing interest in the topic has led to proposals for empirical tests of hypothesized CE techniques, which raise serious ethical concerns. We propose three ethical guidelines for CE researchers, derived from the ethics literature on research with human and animal subjects, applicable in the event that CE research progresses beyond computer modeling. The Principle of Respect requires that the scientific community secure the global public's consent, voiced through their governmental representatives, before beginning any empirical research. The Principle of Beneficence and Justice requires that researchers strive for a favorable risk-benefit ratio and a fair distribution of risks and anticipated benefits, all while protecting the basic rights of affected individuals. Finally, the Minimization Principle requires that researchers minimize the extent and intensity of each experiment by ensuring that no experiments last longer, cover a greater geographical extent, or have a greater impact on the climate, ecosystem, or human welfare than is necessary to test the specific hypotheses in question. Field experiments that might affect humans or ecosystems in significant ways should not proceed until a full discussion of the ethics of CE research occurs and appropriate institutions for regulating such experiments are established.

  6. Applications of Nano-optics.

    PubMed

    Zhou, Changhe; Fainman, Yeshaiahu; Sheng, Yunlong

    2011-11-01

    As nanoscale fabrication techniques advance, nano-optics continues to offer enabling solutions to numerous practical applications for information optics. This Applied Optics feature issue focuses on the Application of Nano-optics. © 2011 Optical Society of America

  7. Research on surface modification of nano-zirconia

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhang, Cun-Lin; Yang, Xiao-Yi

    2005-02-01

    The mechanisms about the aggregation and dispersibility of nano-zirconia were analyzed in detail. And nano-zirconia powders which were surface-modified with silane coupling reagent WD70 were prepared in order to disperse homogeneously in ethanol in this investigation. The grain size and grain phase of nano-zirconia were obtained by XRD. Research and characterization on the structure and surface characteristic of surface-modified nano-zirconia were achieved by XPS, TG-DSC, TEM and FT-IR. The results given by FT-IR and XPS showed WD70 was jointed on the surface of nano-zirconia through both physical adsorption and chemical binding after the de-methanol reaction between the methoxyl groups of WD70 and the hydroxy groups on the surface of nano-zirconia. And the corresponding model of surface-modified nano-zirconia was given. The images provided by TEM presented intuitionistic effect of surface modification on the dispersibility of nano-zirconia in ethanol. And TG-DSC analysis ascertained the amount of WD70 that was jointed on the surface of nano-zirconia and the amount was about 6.21 percent.

  8. Nano/macro porous bioactive glass scaffold

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    exchange process. Although both techniques lower the surface area of BG scaffolds, the temperature-dependent sintering process closes nanopores through densification, while the concentration-dependent solvent exchange process enlarges nanopores through Ostwald-ripening type coarsening. Therefore, nanopore size and surface area of BG scaffold are independently controlled using these methods. In vitro cell and in vivo animal tissue responses have been investigated to evaluate the performance of the nano-macro porous BG scaffold. The cells are found to migrate and penetrate deep into the 3D nano-macro porous structure, while exhibiting excellent adhesion to the bioscaffold surface. Importantly, the new tissue with both blood vessels and collagen fibers is formed deep inside the implanted scaffolds without obvious inflammatory reaction. Furthermore, our observations show biological benefits of the nanopores in the BG scaffold. In comparison to BG scaffold without nanopores, cells migrate and penetrate into nano-macro dual-porous BG scaffold faster and deeper mainly because of the increase of surface area. To study the effect of nanopore topography, we fabricated BG scaffolds with the same surface area but different nanopore sizes. It is found that the initial cell attachment is significantly enhanced on the BG scaffold with the same surface area but smaller nanopores size, indicating that the nanopore topography strongly influences the performance of BG scaffold. In conclusion, the present results demonstrate most clearly the usefulness of our nano-macro dual-porous BG as a novel and superior 3D bioscaffold for regenerative medicine and hard tissue engineering.

  9. Nano/micro-scale magnetophoretic devices for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lim, Byeonghwa; Vavassori, Paolo; Sooryakumar, R.; Kim, CheolGi

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology.

  10. Important Earthquake Engineering Resources

    Science.gov Websites

    PEER logo Pacific Earthquake Engineering Research Center home about peer news events research Engineering Resources Site Map Search Important Earthquake Engineering Resources - American Concrete Institute Motion Observation Systems (COSMOS) - Consortium of Universities for Research in Earthquake Engineering

  11. Nano-Engineered Biomimetic Optical Sensors for Glucose Monitoring in Diabetes.

    PubMed

    Rauf, Sajid; Hayat Nawaz, Muhammad Azhar; Badea, Mihaela; Marty, Jean Louis; Hayat, Akhtar

    2016-11-17

    Diabetes is a rapidly growing disease that can be monitored at an individual level by controlling the blood glucose level, hence minimizing the negative impact of the disease. Significant research efforts have been focused on the design of novel and improved technologies to overcome the limitations of existing glucose analysis methods. In this context, nanotechnology has enabled the diagnosis at the single cell and molecular level with the possibility of incorporation in advanced molecular diagnostic biochips. Recent years have witnessed the exploration and synthesis of various types of nanomaterials with enzyme-like properties, with their subsequent integration into the design of biomimetic optical sensors for glucose monitoring. This review paper will provide insights on the type, nature and synthesis of different biomimetic nanomaterials. Moreover, recent developments in the integration of these nanomaterials for optical glucose biosensing will be highlighted, with a final discussion on the challenges that must be addressed for successful implementation of these nano-devices in the clinical applications is presented.

  12. Nano-Engineered Biomimetic Optical Sensors for Glucose Monitoring in Diabetes

    PubMed Central

    Rauf, Sajid; Hayat Nawaz, Muhammad Azhar; Badea, Mihaela; Marty, Jean Louis; Hayat, Akhtar

    2016-01-01

    Diabetes is a rapidly growing disease that can be monitored at an individual level by controlling the blood glucose level, hence minimizing the negative impact of the disease. Significant research efforts have been focused on the design of novel and improved technologies to overcome the limitations of existing glucose analysis methods. In this context, nanotechnology has enabled the diagnosis at the single cell and molecular level with the possibility of incorporation in advanced molecular diagnostic biochips. Recent years have witnessed the exploration and synthesis of various types of nanomaterials with enzyme-like properties, with their subsequent integration into the design of biomimetic optical sensors for glucose monitoring. This review paper will provide insights on the type, nature and synthesis of different biomimetic nanomaterials. Moreover, recent developments in the integration of these nanomaterials for optical glucose biosensing will be highlighted, with a final discussion on the challenges that must be addressed for successful implementation of these nano-devices in the clinical applications is presented. PMID:27869658

  13. [Nano-ESI-MS/MS identification on differentiation-associated proteins in M1 mouse myeloid leukemia cells induced by IL-6].

    PubMed

    Xia, Qing; Wang, Hong-xia; Wang, Jie; Liu, Bing-yu; Hu, Mei-ru; Zhang, Xue-min; Shen, Bei-fen

    2004-10-01

    To identify two differentiation-associated proteins induced by rhIL-6 in M1 mouse myeloid leukemia cells. Protein spots were excised from 2-D gels and digested in-gel with trypsin. The trypsin lysis products were first analyzed by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) through peptide mass fingerprinting and then performed peptide sequencing by nano-electrospray ionization mass spectrometry/mass spectrometry (nano-ESI-MS/MS). The database search was finished with the Mascot search engine (http://www.matrixscience.co.uk) using the data processed through MaxEnt3 and MasSeq. The two proteins were not revealed by peptide mass fingerprint using MALDI-TOF-MS, while they were respectively identified as Destrin and Putative protein after the sequence of their trypic peptides were obtained by the nano-ESI-MS/MS techniques. Nano-ESI-MS/MS technique can successfully identify the two differentiation-associated proteins induced by rhIL-6 and has great advantage in protein analysis.

  14. Research in progress and other activities of the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  15. Completeness and overlap in open access systems: Search engines, aggregate institutional repositories and physics-related open sources

    PubMed Central

    Wu, Tai-luan; Tseng, Ling-li

    2017-01-01

    This study examines the completeness and overlap of coverage in physics of six open access scholarly communication systems, including two search engines (Google Scholar and Microsoft Academic), two aggregate institutional repositories (OAIster and OpenDOAR), and two physics-related open sources (arXiv.org and Astrophysics Data System). The 2001–2013 Nobel Laureates in Physics served as the sample. Bibliographic records of their publications were retrieved and downloaded from each system, and a computer program was developed to perform the analytical tasks of sorting, comparison, elimination, aggregation and statistical calculations. Quantitative analyses and cross-referencing were performed to determine the completeness and overlap of the system coverage of the six open access systems. The results may enable scholars to select an appropriate open access system as an efficient scholarly communication channel, and academic institutions may build institutional repositories or independently create citation index systems in the future. Suggestions on indicators and tools for academic assessment are presented based on the comprehensiveness assessment of each system. PMID:29267327

  16. In situ microscopy of rapidly heated nano-Al and nano-Al/WO{sub 3} thermites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kyle T.; Zachariah, Michael R.; Chiou, Wen-An

    2010-09-27

    The initiation and reaction mechanism of nano-Al and nano-Al thermites in rapid heating environments is investigated in this work. A semiconductor-based grid/stage was used, capable of in situ heating of a sample from room temperature to 1473 K, and at a rate of 10{sup 6} K/s, inside an electron microscope. Nano-Al was rapidly heated in a transmission electron microscope, and before and after images indicate that the aluminum migrates through the shell, consistent with a diffusion-based mechanism. A nano-Al/WO{sub 3} composite was then heated in a scanning electron microscope. The results indicate that a reactive sintering mechanism is occurring formore » the nano-Al/WO{sub 3} thermite, as the products are found to be in surface contact and significantly deformed after the heating pulse.« less

  17. Forming engineers' sociocultural competence: Engineering ethics at tomsk polytechnic university

    NASA Astrophysics Data System (ADS)

    Galanina, E.; Dulzon, A.; Schwab, A.

    2015-10-01

    The aim of the present research is to discuss Tomsk Polytechnic University in respect of forming engineers’ sociocultural competence and teaching engineering ethics. Today international standards of training engineers cover efficient communication skills, ability to understand societal and environment context, professional and ethical responsibility. This article deals with the problem of contradiction between the need to form engineers’ sociocultural competence in Russian higher education institutions in order to meet the requirements of international accreditation organizations and the real capabilities of existing engineering curricula. We have described ethics teaching experience of TPU, studied the engineering master programs of TPU to see how the planned results are achieved. We have also given our recommendations to alter the structure of TPU educational curricula, which can also be applied in other higher education institutions.

  18. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  19. Label it or ban it? Public perceptions of nano-food labels and propositions for banning nano-food applications

    NASA Astrophysics Data System (ADS)

    Chuah, Agnes S. F.; Leong, Alisius D.; Cummings, Christopher L.; Ho, Shirley S.

    2018-02-01

    The future of nano-food largely hinges on public perceptions and willingness to accept this novel technology. The present study utilizes the scientific literacy model and psychometric paradigm as the key theoretical frameworks to examine the factors influencing public support for labeling and banning of nano-food in Singapore. Using data collected from a nationally representative survey of 1001 respondents, the findings demonstrated that attitudes toward technology, preference for natural product, science knowledge, and risk perception were found to substantially affect public support for both labeling and banning of nano-food. Conversely, attention to food safety news on traditional media and attention to nano-news on new media were only associated with public support for labeling of nano-food. Similarly, benefit perception was only significantly associated with public support for banning of nano-food. Theoretically, these findings support the growing body of literature that argues for the significant role played by predispositions, media use, science knowledge, and risk and benefit perceptions on attitude formation toward nano-food. It serves as the pioneering piece to address the aspect of banning in the field of nano-food. Practically, insights drawn from this study could aid relevant stakeholders in enlisting effecting strategies to convey the benefits of nano-food while mitigating the risk perceptions among the public.

  20. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

    PubMed

    Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T

    2013-08-01

    Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered

  1. Engineered peptide-based nanobiomaterials for electrochemical cell chip.

    PubMed

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo

    2016-01-01

    Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly-l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

  2. Molecular modeling in structural nano-toxicology: interactions of nano-particles with nano-machinery of cells.

    PubMed

    Yanamala, Naveena; Kagan, Valerian E; Shvedova, Anna A

    2013-12-01

    Over the past two decades, nanotechnology has emerged as a key player in various disciplines of science and technology. Some of the most exciting applications are in the field of biomedicine - for theranostics (for combined diagnostic and therapeutic purposes) as well as for exploration of biological systems. A detailed understanding of the molecular interactions between nanoparticles and biological nano-machinery - macromolecules, membranes, and intracellular organelles - is crucial for obtaining adequate information on mechanisms of action of nanomaterials as well as a perspective on the long term effects of these materials and their possible toxicological outcomes. This review focuses on the use of structure-based computational molecular modeling as a tool to understand and to predict the interactions between nanomaterials and nano-biosystems. We review major approaches and provide examples of computational analysis of the structural principles behind such interactions. A rationale on how nanoparticles of different sizes, shape, structure and chemical properties can affect the organization and functions of nano-machinery of cells is also presented. Published by Elsevier B.V.

  3. Institutional transformation: An analysis of change initiatives at NSF ADVANCE institutions

    NASA Astrophysics Data System (ADS)

    Plummer, Ellen W.

    The purpose of this study was to examine how institutional culture promoted or impeded the implementation of round one and two NSF ADVANCE initiatives designed to improve academic climates for women in science and engineering. This study was conducted in two phases. In phase one, 35 participants from 18 institutions were interviewed to answer three research questions. Participants identified a policy, process, or program designed to improve academic cultures for women in science and engineering fields. Participants also identified strategies that promoted the implementation of these efforts, and discussed factors that impeded these efforts. In phase two, site visits were conducted at two institutions to answer a fourth research question. How did institutional culture shape the design and implementation of faculty search processes? Policies, processes, and programs were implemented by participants at the institutional, departmental, and individual levels and included family friendly and dual career policies at the institutional level, improved departmental faculty search and climate improvement processes, and mentoring programs and training for department heads at the individual level. Communication and leadership strategies were key to the successful implementation of policies, processes, and programs designed to achieve institutional transformation. Communication strategies involved shaping change messages to reach varied audiences often with the argument that change efforts would improve the climate for everyone not just women faculty members. Administrative and faculty leaders from multiple levels proved important to change efforts. Institutional Transformation Institutional culture shaped initiatives to improve faculty search processes. Faculty leaders in both settings used data to persuade faculty members of the need for change. At one site, data that included national availability information was critical to advancing the change agenda. At the other site

  4. NanoJapan: international research experience for undergraduates program: fostering U.S.-Japan research collaborations in terahertz science and technology of nanostructures

    NASA Astrophysics Data System (ADS)

    Phillips, Sarah R.; Matherly, Cheryl A.; Kono, Junichiro

    2014-09-01

    The international nature of science and engineering research demands that students have the skillsets necessary to collaborate internationally. However, limited options exist for science and engineering undergraduates who want to pursue research abroad. The NanoJapan International Research Experience for Undergraduates Program is an innovative response to this need. Developed to foster research and international engagement among young undergraduate students, it is funded by a National Science Foundation Partnerships for International Research and Education (PIRE) grant. Each summer, NanoJapan sends 12 U.S. students to Japan to conduct research internships with world leaders in terahertz (THz) spectroscopy, nanophotonics, and ultrafast optics. The students participate in cutting-edge research projects managed within the framework of the U.S-Japan NSF-PIRE collaboration. One of our focus topics is THz science and technology of nanosystems (or `TeraNano'), which investigates the physics and applications of THz dynamics of carriers and phonons in nanostructures and nanomaterials. In this article, we will introduce the program model, with specific emphasis on designing high-quality international student research experiences. We will specifically address the program curriculum that introduces students to THz research, Japanese language, and intercultural communications, in preparation for work in their labs. Ultimately, the program aims to increase the number of U.S. students who choose to pursue graduate study in this field, while cultivating a generation of globally aware engineers and scientists who are prepared for international research collaboration.

  5. Developing Leadership Skills of Undergraduate Engineering Students: Perspectives from Engineering Faculty

    ERIC Educational Resources Information Center

    Cox, Monica F.; Cekic, Osman; Adams, Stephanie G.

    2010-01-01

    The engineering education community (motivated by internal and external factors) has begun to focus on leadership abilities of college students in engineering fields via reports from ABET, the National Academy of Engineering, and the National Research Council. These reports have directed criticism toward higher education institutions for their…

  6. Principles and Practices Fostering Inclusive Excellence: Lessons from the Howard Hughes Medical Institute's Capstone Institutions

    ERIC Educational Resources Information Center

    DiBartolo, Patricia Marten; Gregg-Jolly, Leslie; Gross, Deborah; Manduca, Cathryn A.; Iverson, Ellen; Cooke, David B., III; Davis, Gregory K.; Davidson, Cameron; Hertz, Paul E.; Hibbard, Lisa; Ireland, Shubha K.; Mader, Catherine; Pai, Aditi; Raps, Shirley; Siwicki, Kathleen; Swartz, Jim E.

    2016-01-01

    Best-practices pedagogy in science, technology, engineering, and mathematics (STEM) aims for inclusive excellence that fosters student persistence. This paper describes principles of inclusivity across 11 primarily undergraduate institutions designated as Capstone Awardees in Howard Hughes Medical Institute's (HHMI) 2012 competition. The Capstones…

  7. Advances in bionanomaterials for bone tissue engineering.

    PubMed

    Scott, Timothy G; Blackburn, Gary; Ashley, Michael; Bayer, Ilker S; Ghosh, Anindya; Biris, Alexandru S; Biswas, Abhijit

    2013-01-01

    Bone is a specialized form of connective tissue that forms the skeleton of the body and is built at the nano and microscale levels as a multi-component composite material consisting of a hard inorganic phase (minerals) in an elastic, dense organic network. Mimicking bone structure and its properties present an important frontier in the fields of nanotechnology, materials science and bone tissue engineering, given the complex morphology of this tissue. There has been a growing interest in developing artificial bone-mimetic nanomaterials with controllable mineral content, nanostructure, chemistry for bone, cartilage tissue engineering and substitutes. This review describes recent advances in bionanomaterials for bone tissue engineering including developments in soft tissue engineering. The significance and basic process of bone tissue engineering along with different bionanomaterial bone scaffolds made of nanocomposites and nanostructured biopolymers/bioceramics and the prerequisite biomechanical functions are described. It also covers latest developments in soft-tissue reconstruction and replacement. Finally, perspectives on the future direction in nanotechnology-enabled bone tissue engineering are presented.

  8. Lotka's Law and Institutional Productivity.

    ERIC Educational Resources Information Center

    Kumar, Suresh; Sharma, Praveen; Garg, K. C.

    1998-01-01

    Examines the applicability of Lotka's Law, negative binomial distribution, and lognormal distribution for institutional productivity in the same way as it is to authors and their productivity. Results indicate that none of the distributions are applicable for institutional productivity in engineering sciences. (Author/LRW)

  9. Integrating Metagenomics and NanoSIMS to Investigate the Evolution and Ecophysiology of Magnetotactic Bacteria

    NASA Astrophysics Data System (ADS)

    Lin, W.; Zhang, W.; He, M.; Pan, Y.

    2017-12-01

    Magnetotactic bacteria (MTB) synthesize intracellular nano-sized magnetite (Fe3O4) and/or greigite (Fe3S4) crystals, called magnetosomes, which impart a permanent magnetic dipole moment to the cell causing it to align along the geomagnetic field lines as it swims. MTB play essential roles in global cycling of Fe, S, N and C, and represent an excellent model system not just for the investigation of the mechanisms of microbial engines that drive Earth's biogeochemical cycles but also for magnetotaxis and microbial biomineralization. Most of the previous studies on MTB were based on 16S rRNA gene-targeting analyses, which are powerful approaches to characterize the diversity, ecology and biogeography of MTB in nature. However, these approaches are somewhat limited in the physiological detail they can provide. In the present study, we have combined the genome-resolved metagenomics and nanoscale secondary ion mass spectrometry (NanoSIMS) analyses to study the genomic information, biomineralization mechanism and metabolic potential of environmental MTB. Two nearly complete genomes from uncultivated MTB belonging to the Nitrospirae phylum were reconstructed and their proposed metabolisms were further investigated and confirmed through NanoSIMS analyses. These results improve our understanding about the ecophysiology and evolution of MTB and their environmental function. The development of metagenomics-NanoSIMS integrated approach will provide a powerful tool for the research of geomicrobiology and environmental microbiology.

  10. Brownian Carnot engine

    PubMed Central

    Dinis, L.; Petrov, D.; Parrondo, J. M. R.; Rica, R. A.

    2016-01-01

    The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths1. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors2 and some artificial micro-engines3–5 operate. As described by stochastic thermodynamics6,7, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit8. Here we report an experimental realization of a Carnot engine with a single optically trapped Brownian particle as the working substance. We present an exhaustive study of the energetics of the engine and analyse the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures9–11. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency—an insight that could inspire new strategies in the design of efficient nano-motors. PMID:27330541

  11. Neoproteoglycans in tissue engineering.

    PubMed

    Weyers, Amanda; Linhardt, Robert J

    2013-05-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein-glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer-glycosaminoglycan complexes. © 2013 The Authors Journal compilation © 2013 FEBS.

  12. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  13. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool.

    PubMed

    Soloperto, Alessandro; Palazzolo, Gemma; Tsushima, Hanako; Chieregatti, Evelina; Vassalli, Massimo; Difato, Francesco

    2016-01-01

    Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.

  14. Defect-free fabrication of nano-disk and nano-wire by fusion of bio-template and neutral beam etching

    NASA Astrophysics Data System (ADS)

    Samukawa, S.; Noda, Shuichi; Higo, Akio; Yasuda, Manabu; Wada, Kazumi

    2016-11-01

    We have developed an innovated fabrication technology of Si, GaAs, and Ge nano-structures, i.e., we called defect-free neutral beam etching. The technology has been successfully applied to prototype the quantum nano-disks and nano-wires with ferritin based bio-templates. SEM observation verifies that the designed structures are prototyped. Photoluminescence measurements demonstrates high optical quality of nano-structures based on the technology.

  15. Nanoscale Resolution 3D Printing with Pin-Modified Electrified Inkjets for Tailorable Nano/Macrohybrid Constructs for Tissue Engineering.

    PubMed

    Kim, Jeong In; Kim, Cheol Sang

    2018-04-18

    Cells respond to their microenvironment, which is of a size comparable to that of the cells. The macroscale features of three-dimensional (3D) printing struts typically result in whole cell contact guidance (CCG). In contrast, at the nanoscale, where features are of a size similar to that of receptors of cells, the response of cells is more complex. The cell-nanotopography interaction involves nanoscale adhesion localized structures, which include cell adhesion-related particles that change in response to the clustering of integrin. For this reason, it is necessary to develop a technique for manufacturing tailorable nano/macrohybrid constructs capable of freely controlling the cellular activity. In this study, a hierarchical 3D nano- to microscale hybrid structure was fabricated by combinational processing of 3D printing and electrified inkjet spinning via pin motions. This method overcomes the disadvantages of conventional 3D printing, providing a novel combinatory technique for the fabrication of 3D hybrid constructs with excellent cell proliferation. Through a pin-modified electrified inkjet spinning, we have successfully fabricated customizable nano-/microscale hybrid constructs in a fibrous or mesh form, which can control the cell fate. We have conducted this study of cell-topography interactions from the fabrication approach to accelerate the development of next-generation 3D scaffolds.

  16. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt.

    PubMed

    Ghorbanzade, Tahere; Jafari, Seid Mahdi; Akhavan, Sahar; Hadavi, Roxana

    2017-02-01

    Fish oils have many dietary benefits, but due to their strong odors and rapid deterioration, their application in food formulations is limited. For these reasons, nano-liposome was used to nano-encapsulate fish oil in this study and encapsulated fish oil was utilized in fortifying yogurt. Physicochemical properties of produced yogurt including pH, acidity, syneresis, fatty acid composition, peroxide value as well as sensory tests were investigated during three weeks storage at 4°C. Nano-liposome encapsulation resulted in a significant reduction in acidity, syneresis and peroxide value. The results of gas chromatography analyses revealed that after 21days storage, yogurt fortified with nano-encapsulated fish oil had a higher DHA and EPA contents than yogurt containing free fish oil. Overall, the results of this study indicates that adding nano-encapsulated fish oil into yogurt gave closer characteristics to control sample in terms of sensory characteristics than yogurt fortified with free fish oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Superconducting properties of Nb-Cu nano-composites and nano-alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Pradnya, E-mail: pradnyaprb@gmail.com; Kumar, Sanjeev; Bhui, Prabhjyot

    The evolution of the superconducting transition temperature (T{sub c}) in nano-composite and nano-alloys of Nb-Cu, grown by DC magnetron co-sputtering are investigated. Microstructure of these films depends less strongly on the ratio of Nb:Cu but more on the growth temperature. At higher growth temperature, phase separated granular films of Nb and Cu were formed which showed superconducting transition temperatures (T{sub c}) of ~ 7.2±0.5 K, irrespective of the composition. Our results show that this is primarily influenced by the microstructure of the films determined during growth which rules out the superconducting proximity effect expected in these systems. At room temperaturemore » growth, films with nano-scale alloying were obtained at the optimal compositional range of 45-70 atomic% (At%) of Nb. These were also superconducting with a T{sub c} of 3.2 K.« less

  18. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    PubMed

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  19. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    PubMed Central

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  20. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications

    PubMed Central

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang; Chalbot, Marie-Cecile G.; Spielman-Sun, Eleanor; Hoering, Lutz; Kavouras, Ilias G.; Lowry, Gregory V.; Wohlleben, Wendel; Demokritou, Philip

    2015-01-01

    Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of a widely used NEP, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications. PMID:26642449

  1. Scientists versus Regulators: Precaution, Novelty & Regulatory Oversight as Predictors of Perceived Risks of Engineered Nanomaterials

    PubMed Central

    Beaudrie, Christian E. H.; Satterfield, Terre; Kandlikar, Milind; Harthorn, Barbara H.

    2014-01-01

    Engineered nanoscale materials (ENMs) present a difficult challenge for risk assessors and regulators. Continuing uncertainty about the potential risks of ENMs means that expert opinion will play an important role in the design of policies to minimize harmful implications while supporting innovation. This research aims to shed light on the views of ‘nano experts’ to understand which nanomaterials or applications are regarded as more risky than others, to characterize the differences in risk perceptions between expert groups, and to evaluate the factors that drive these perceptions. Our analysis draws from a web-survey (N = 404) of three groups of US and Canadian experts: nano-scientists and engineers, nano-environmental health and safety scientists, and regulatory scientists and decision-makers. Significant differences in risk perceptions were found across expert groups; differences found to be driven by underlying attitudes and perceptions characteristic of each group. Nano-scientists and engineers at the upstream end of the nanomaterial life cycle perceived the lowest levels of risk, while those who are responsible for assessing and regulating risks at the downstream end perceived the greatest risk. Perceived novelty of nanomaterial risks, differing preferences for regulation (i.e. the use of precaution versus voluntary or market-based approaches), and perceptions of the risk of technologies in general predicted variation in experts' judgments of nanotechnology risks. Our findings underscore the importance of involving a diverse selection of experts, particularly those with expertise at different stages along the nanomaterial lifecycle, during policy development. PMID:25222742

  2. Mechano-micro/nano systems

    NASA Astrophysics Data System (ADS)

    Horie, Mikio

    2004-10-01

    In recent years, the researches about Micro/Nano Systems are down actively in the bio-medical research fields, DNA research fields, chemical analysis systems fields, etc. In the results, a new materials and new functions in the systems are developed. In this invited paper, Mechano-Micro/Nano Systems, especially, motion systems are introduced. First, the research activities concerning the Mechano-Micro/Nano Systems in the world(MST2003, MEMS2003 and MEMS2004) and in Japan(Researech Projects on Nanotechnology and Materials in Ministry of Education, Culture, Sports, Science and Technology) are shown. Secondary, my research activities are introduced. As my research activities, (1) a comb-drive static actuator for the motion convert mechanisms, (2) a micro-nano fabrication method by use of FAB(Fast Atom Beam) machines, (3) a micro optical mirror manipulator for inputs-outputs optical switches, (4) a miniature pantograph mechanism with large-deflective hinges and links made of plastics are discussed and their performances are explained.

  3. Microfluidics and Microfabrication in a Chemical Engineering Lab

    ERIC Educational Resources Information Center

    Archer, Shivaun D.

    2011-01-01

    Microfluidics, the manipulation of fluids in channels with micron dimensions, has emerged as an exciting new field that impacts the broad area of nano/microtechnology. This is an important area to train the next generation of chemical engineers. This paper describes an experiment where students are given a problem to design a microfluidic mixer…

  4. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  5. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  6. 2006 summer transportation institute final report

    DOT National Transportation Integrated Search

    2008-02-01

    The Department of Civil Engineering at the Missouri University of Science & Technology hosted its seventh U.S. Department of Transportation Summer Transportation Institute (STI). The mission of the institutes program is as follows: To contribute t...

  7. Metabolic Engineering X Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, Evan

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  8. Nanos genes and their role in development and beyond.

    PubMed

    De Keuckelaere, Evi; Hulpiau, Paco; Saeys, Yvan; Berx, Geert; van Roy, Frans

    2018-06-01

    The hallmark of Nanos proteins is their typical (CCHC) 2 zinc finger motif (zf-nanos). Animals have one to four nanos genes. For example, the fruit fly and demosponge have only one nanos gene, zebrafish and humans have three, and Fugu rubripes has four. Nanos genes are mainly known for their evolutionarily preserved role in germ cell survival and pluripotency. Nanos proteins have been reported to bind the C-terminal RNA-binding domain of Pumilio to form a post-transcriptional repressor complex. Several observations point to a link between the miRNA-mediated repression complex and the Nanos/Pumilio complex. Repression of the E2F3 oncogene product is, indeed, mediated by cooperation between the Nanos/Pumilio complex and miRNAs. Another important interaction partner of Nanos is the CCR4-NOT deadenylase complex. Besides the tissue-specific contribution of Nanos proteins to normal development, their ectopic expression has been observed in several cancer cell lines and various human cancers. An inverse correlation between the expression levels of human Nanos1 and Nanos3 and E-cadherin was observed in several cancer cell lines. Loss of E-cadherin, an important cell-cell adhesion protein, contributes to tumor invasion and metastasis. Overexpression of Nanos3 induces epithelial-mesenchymal transition in lung cancer cell lines partly by repressing E-cadherin. Other than some most interesting data from Nanos knockout mice, little is known about mammalian Nanos proteins, and further research is needed. In this review, we summarize the main roles of Nanos proteins and discuss the emerging concept of Nanos proteins as oncofetal antigens.

  9. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    NASA Astrophysics Data System (ADS)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  10. Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

    NASA Astrophysics Data System (ADS)

    Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.

    2017-05-01

    Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.

  11. Engineering Education 2001. The Samuel Neaman Institute--Technion Report.

    ERIC Educational Resources Information Center

    Engineering Education, 1987

    1987-01-01

    Presents a view of future engineering education as perceived by the Technion faculty group on the basis of their own analysis and the insights gathered from workshop discussions. Contrasts basic and specialized education. Reviews the technologies and skills of the future engineer. Gives an overview of curriculum requirements. (CW)

  12. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    EPA Science Inventory

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  13. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    PubMed

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Development of Electrothermal Pulsed Plasma Thrusters for Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Yushuke; Yamamoto, Tsuyoshi; Yamada, Minetsugu

    2008-12-31

    The Project of Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship (PROITERES) was started at Osaka Institute of Technology. In PROITERES, a 10-kg small satellite with electrothermal pulsed plasma thrusters (PPTs), named JOSHO, will be launched in 2010. The main mission is powered flight of small satellite by electric thruster itself. Electrothermal PPTs were studied with both experiments and numerical simulations. An electrothermal PPT with a side-fed propellant feeding mechanism achieved a total impulse of 3.6 Ns with a repetitive 10000-shot operation. An unsteady numerical simulation showed the existence of considerable amount of ablation delaying to the discharge. However, it was alsomore » shown that this phenomenon should not be regarded as the 'late time ablation' for electrothermal PPTs.« less

  15. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  16. Monitoring of magnetic nano-particles in EOR by using the CSEM modeling and inversion.

    NASA Astrophysics Data System (ADS)

    Heo, J. Y.; KIM, S.; Jeong, G.; Hwang, J.; Min, D. J.

    2016-12-01

    EOR, which injects water, CO2, or other chemical components into reservoirs to increase the production rate of oil and gas, has widely been used. To promote efficiency of EOR, it is important to monitor distribution of injected materials in reservoirs. Using nano-particles in EOR has advantages that the size of particles is smaller than the pore and particles can be characterized by various physical properties. Specifically, if we use magnetic nano-particles, we can effectively monitor nano-particles by using the electromagnetic survey. CSEM, which can control the frequency range of source, is good to monitor magnetic nano-particles under various reservoir circumstances. In this study, we first perform numerical simulation of 3D CSEM for reservoir under production. In general, two wells are used for EOR: one is for injection, and the other is for extraction. We assume that sources are applied inside the injection well, and receivers are deployed inside the extraction well. To simulate the CSEM survey, we decompose the total fields into primary and secondary fields in Maxwell's equations. For the primary fields, we calculate the analytic solutions of the layered earth. With the calculated primary fields, we compute the secondary fields due to anomalies using the edge-based finite-element method. Finally, we perform electromagnetic inversion for both conductivity and permeability to trace the distribution of magnetic nano-particles. Since these two parameters react differently according to the frequency range of sources, we can effectively describe the distribution of magnetic nano-particles by considering two parameters at the same time. Acknowledgements This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20168510030830), and by the International Cooperation (No. 2012-8510030010) of KETEP, and by the Dual Use Technology Program, granted

  17. EDITORIAL: Advances in Measurement Technology and Intelligent Instruments for Production Engineering

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Takaya, Yasuhiro; Gao, Yongsheng; Krystek, Michael

    2008-08-01

    Measurement and instrumentation have long played an important role in Production Engineering, through supporting both the traditional field of manufacturing and the new field of micro/nano-technology. Papers published in this special feature were selected and updated from those presented at The 8th International Symposium on Measurement Technology and Intelligent Instruments (ISMTII 2007) held at Tohoku University, Sendai, Japan, on 24-27 September 2007. ISMTII 2007 was organized by ICMI (The International Committee on Measurements and Instrumentation), Japan Society for Precision Engineering (JSPE, Technical Committee of Intelligent Measurement with Nanoscale), Korean Society for Precision Engineering (KSPE), Chinese Society for Measurement (CSM) and Tohoku University. The conference was also supported by Center for Precision Metrology of UNC Charlotte and Singapore Institute of Manufacturing Technology. A total of 220 papers, including four keynote papers, were presented at ISMTII 2007, covering a wide range of topics, including micro/nano-metrology, precision measurement, online & in-process measurement, surface metrology, optical metrology & image processing, biomeasurement, sensor technology, intelligent measurement & instrumentation, uncertainty, traceability & calibration, and signal processing algorithms. The guest editors recommended publication of updated versions of some of the best ISMTII 2007 papers in this special feature of Measurement Science and Technology. The first two papers were presented in ISMTII 2007 as keynote papers. Takamasu et al from The University of Tokyo report uncertainty estimation for coordinate metrology, in which methods of estimating uncertainties using the coordinate measuring system after calibration are formulated. Haitjema, from Mitutoyo Research Center Europe, treats the most often used interferometric measurement techniques (displacement interferometry and surface interferometry) and their major sources of errors. Among

  18. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  19. Nano-based PCMs for building energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which themore » PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.« less

  20. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.

    PubMed

    Lv, Qing; Nair, Lakshmi; Laurencin, Cato T

    2009-12-01

    Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.

  1. Replication of surface nano-structure of the wing of dragonfly ( Pantala Flavescens) using nano-molding and UV nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Cho, Joong-Yeon; Kim, Gyutae; Kim, Sungwook; Lee, Heon

    2013-07-01

    The hydrophobicity of a dragonfly's wing originates from the naturally occurring nano-structure on its surface. The nano-structure on a dragonfly's wing consists of an array of nano-sized pillars, 100 nm in diameter. We re-create this hydrophobicity on various substrates, such as Si, glass, curved acrylic polymer, and flexible PET film, by replicating the nano-structure using UV curable nano-imprint lithography (NIL) and PDMS molding. The success of the nano-structure duplication was confirmed using scanning electron microscopy (SEM). The hydrophobicity was measured by water-based contact angle measurements. The water contact angle of the replica made of UV cured polymer was 135° ± 2°, which was slightly lower than that of the original dragonfly's wing (145° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (80°). The hydrophobicity was further improved by applying a coating of Teflon-like material.

  2. Curriculum: Integrating Health and Safety Into Engineering Curricula.

    ERIC Educational Resources Information Center

    Talty, John T.

    1985-01-01

    National Institute for Occupational Safety and Health instituted a project in 1980 to encourage engineering educators to focus on occupational safety and health issues in engineering curricula. Progress to date is outlined, considering specific results in curriculum development, engineering society interaction, and formation of a teaching…

  3. AUTHENTIC INVOLVEMENT IN INTERDISCIPLINARY DESIGN, PROCEEDINGS OF CONFERENCE ON ENGINEERING DESIGN EDUCATION (3D, CARNEGIE INSTITUTE OF TECHNOLOGY, JULY 12-13, 1965).

    ERIC Educational Resources Information Center

    BULKELEY, PETER Z.

    REPORTED ARE THE PROCEEDINGS OF THE THIRD CONFERENCE ON ENGINEERING DESIGN EDUCATION. ITS CONCERNS WERE THE CRITICISM AND DISSEMINATION OF RESULTS OF DESIGN LABORATORY WORKSHOPS HELD EARLIER AT EACH OF THE PARTICIPATING INSTITUTIONS. WORKSHOPS WERE CONCERNED WITH FACULTY DEVELOPMENT TO DETERMINE WHETHER TEACHERS, MANY OF WHOM WERE EXPERIENCED IN…

  4. Illuminating Engineering Research Institute Annual Report 1966. A Review of Research Activities and a View of New Goals in a Luminous Environment.

    ERIC Educational Resources Information Center

    Illuminating Engineering Research Inst., New York, NY.

    Several of the more familiar Illuminating Engineering Research Institute projects which have been chronicled progressively during the past several years are discussed in this report. Those elaborated on are--(1) visual performance and illumination, (2) roadway visual tasks, (3) color preference studies, (4) glare from large sources, (5) discomfort…

  5. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  6. Toxicological Implications of Released Particulate Matter during Thermal Decomposition of Nano-Enabled Thermoplastics

    PubMed Central

    Watson-Wright, Christa; Singh, Dilpreet; Demokritou, Philip

    2017-01-01

    Nano-enabled thermoplastics are part of the growing market of nano-enabled products (NEPs) that have vast utility in several industries and consumer goods. The use and disposal of NEPs at their end of life has raised concerns about the potential release of constituent engineered nanomaterials (ENMs) during thermal decomposition and their impact on environmental health and safety. To investigate this issue, industrially relevant nano-enabled thermoplastics including polyurethane, polycarbonate, and polypropylene containing carbon nanotubes (0.1 and 3% w/v, respectively), polyethylene containing nanoscale iron oxide (5% w/v), and ethylene vinyl acetate containing nanoscale titania (2 and 5% w/v) along with their pure thermoplastic matrices were thermally decomposed using the recently developed lab based Integrated Exposure Generation System (INEXS). The life cycle released particulate matter (called LCPM) was monitored using real time instrumentation, size fractionated, sampled, extracted and prepared for toxicological analysis using primary small airway epithelial cells to assess potential toxicological effects. Various cellular assays were used to assess reactive oxygen species and total glutathione as measurements of oxidative stress along with mitochondrial function, cellular viability, and DNA damage. By comparing toxicological profiles of LCPM released from polymer only (control) with nano-enabled LCPM, potential nanofiller effects due to the use of ENMs were determined. We observed associations between NEP properties such as the percent nanofiller loading, host matrix, and nanofiller chemical composition and the physico-chemical properties of released LCPM, which were linked to biological outcomes. More specifically, an increase in percent nanofiller loading promoted a toxicological response independent of increasing LCPM dose. Importantly, differences in host matrix and nanofiller composition were shown to enhance biological activity and toxicity of LCPM

  7. Toxicological Implications of Released Particulate Matter during Thermal Decomposition of Nano-Enabled Thermoplastics.

    PubMed

    Watson-Wright, Christa; Singh, Dilpreet; Demokritou, Philip

    2017-01-01

    Nano-enabled thermoplastics are part of the growing market of nano-enabled products (NEPs) that have vast utility in several industries and consumer goods. The use and disposal of NEPs at their end of life has raised concerns about the potential release of constituent engineered nanomaterials (ENMs) during thermal decomposition and their impact on environmental health and safety. To investigate this issue, industrially relevant nano-enabled thermoplastics including polyurethane, polycarbonate, and polypropylene containing carbon nanotubes (0.1 and 3% w/v, respectively), polyethylene containing nanoscale iron oxide (5% w/v), and ethylene vinyl acetate containing nanoscale titania (2 and 5% w/v) along with their pure thermoplastic matrices were thermally decomposed using the recently developed lab based Integrated Exposure Generation System (INEXS). The life cycle released particulate matter (called LCPM) was monitored using real time instrumentation, size fractionated, sampled, extracted and prepared for toxicological analysis using primary small airway epithelial cells to assess potential toxicological effects. Various cellular assays were used to assess reactive oxygen species and total glutathione as measurements of oxidative stress along with mitochondrial function, cellular viability, and DNA damage. By comparing toxicological profiles of LCPM released from polymer only (control) with nano-enabled LCPM, potential nanofiller effects due to the use of ENMs were determined. We observed associations between NEP properties such as the percent nanofiller loading, host matrix, and nanofiller chemical composition and the physico-chemical properties of released LCPM, which were linked to biological outcomes. More specifically, an increase in percent nanofiller loading promoted a toxicological response independent of increasing LCPM dose. Importantly, differences in host matrix and nanofiller composition were shown to enhance biological activity and toxicity of LCPM

  8. Final priority; National Institute on Disability and Rehabilitation Research--Rehabilitation Engineering Research Centers. Final priority.

    PubMed

    2014-06-05

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority for the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce a priority for a Rehabilitation Engineering Research Center (RERC) on Technologies to Enhance Independence in Daily Living for Adults with Cognitive Impairments. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus research attention on an area of national need. We intend the priority to contribute to improved outcomes related to independence in daily activities in the home, community, or workplace setting for adults with cognitive impairments.

  9. Final priority; National Institute on Disability and Rehabilitation Research--Rehabilitation Engineering Research Centers. Final priority.

    PubMed

    2014-07-09

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce a priority for a Rehabilitation Engineering Research Center (RERC) on Improving the Accessibility, Usability, and Performance of Technology for Individuals who are Deaf or Hard of Hearing. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus research attention on an area of national need. We intend the priority to contribute to improving the accessibility, usability, and performance of technology for individuals who are deaf or hard of hearing.

  10. High Temperature Near-Field NanoThermoMechanical Rectification

    PubMed Central

    Elzouka, Mahmoud; Ndao, Sidy

    2017-01-01

    Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures. PMID:28322324

  11. High Temperature Near-Field NanoThermoMechanical Rectification

    NASA Astrophysics Data System (ADS)

    Elzouka, Mahmoud; Ndao, Sidy

    2017-03-01

    Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures.

  12. Software Engineering Institute, Annual Report 2001

    DTIC Science & Technology

    2002-03-01

    PSP and TSP written by Watts S . Humphrey for the Addison- Wesley SEI Series in...become SCAMPI Lead Assessors. SEI A n n u a l R epo r t fy20 0 1 • 25 CMM Pioneer: Watts S . Humphrey The effort to create the original concepts of the SW...CMM was led by SEI Fellow Watts S . Humphrey , who has had a profound impact on the field of software engineering. In February 2000, a new

  13. Toward Advancing Nano-Object Count Metrology: A Best Practice Framework

    PubMed Central

    Boyko, Volodymyr; Meyers, Greg; Voetz, Matthias; Wohlleben, Wendel

    2013-01-01

    Background: A movement among international agencies and policy makers to classify industrial materials by their number content of sub–100-nm particles could have broad implications for the development of sustainable nanotechnologies. Objectives: Here we highlight current particle size metrology challenges faced by the chemical industry due to these emerging number percent content thresholds, provide a suggested best-practice framework for nano-object identification, and identify research needs as a path forward. Discussion: Harmonized methods for identifying nanomaterials by size and count for many real-world samples do not currently exist. Although particle size remains the sole discriminating factor for classifying a material as “nano,” inconsistencies in size metrology will continue to confound policy and decision making. Moreover, there are concerns that the casting of a wide net with still-unproven metrology methods may stifle the development and judicious implementation of sustainable nanotechnologies. Based on the current state of the art, we propose a tiered approach for evaluating materials. To enable future risk-based refinements of these emerging definitions, we recommend that this framework also be considered in environmental and human health research involving the implications of nanomaterials. Conclusion: Substantial scientific scrutiny is needed in the area of nanomaterial metrology to establish best practices and to develop suitable methods before implementing definitions based solely on number percent nano-object content for regulatory purposes. Strong cooperation between industry, academia, and research institutions will be required to fully develop and implement detailed frameworks for nanomaterial identification with respect to emerging count-based metrics. Citation: Brown SC, Boyko V, Meyers G, Voetz M, Wohlleben W. 2013. Toward advancing nano-object count metrology: a best practice framework. Environ Health Perspect 121:1282–1291;

  14. Nano-Satellite Avionics

    NASA Technical Reports Server (NTRS)

    Culver, Harry

    1999-01-01

    Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)

  15. Corrosion Engineering.

    ERIC Educational Resources Information Center

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  16. Micro/nano moire methods

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Shang, Haixia; Xie, Huimin; Li, Biao

    2003-10-01

    Two novel micro/nano moire method, SEM scanning moiré and AFM scanning moire techniques are discussed in this paper. The principle and applications of two scanning moire methods are described in detail. The residual deformation in a polysilicon MEMS cantilever structure with a 5000 lines/mm grating after removing the SiO2 sacrificial layer is accurately measured by SEM scanning moire method. While AFM scanning moire method is used to detect thermal deformation of electronic package components, and formation of nano-moire on a freshly cleaved mica crystal. Experimental results demonstrate the feasibility of these two moire methods, and also show they are effective methods to measure the deformation from micron to nano-scales.

  17. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  18. Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite.

    PubMed

    Razavi, Shahnaz; Karbasi, Saeed; Morshed, Mohammad; Zarkesh Esfahani, Hamid; Golozar, Mohammad; Vaezifar, Sedigheh

    2015-01-01

    In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P<0.05). We found that CS enhanced cell adhesion and proliferation rate, and aligned nanofibers guided cell growth along the longitudinal axis of the nanofibers, which would provide a beneficial approach for tissue engineering.

  19. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials.

    PubMed

    Sun, Tian Yin; Gottschalk, Fadri; Hungerbühler, Konrad; Nowack, Bernd

    2014-02-01

    Concerns about the environmental risks of engineered nanomaterials (ENM) are growing, however, currently very little is known about their concentrations in the environment. Here, we calculate the concentrations of five ENM (nano-TiO2, nano-ZnO, nano-Ag, CNT and fullerenes) in environmental and technical compartments using probabilistic material-flow modelling. We apply the newest data on ENM production volumes, their allocation to and subsequent release from different product categories, and their flows into and within those compartments. Further, we compare newly predicted ENM concentrations to estimates from 2009 and to corresponding measured concentrations of their conventional materials, e.g. TiO2, Zn and Ag. We show that the production volume and the compounds' inertness are crucial factors determining final concentrations. ENM production estimates are generally higher than a few years ago. In most cases, the environmental concentrations of corresponding conventional materials are between one and seven orders of magnitude higher than those for ENM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. SANITARY ENGINEERING TECHNOLOGY TRAINING, REPORT ON A PROGRAM DEVELOPED AT THE FAYETTEVILLE TECHNICAL INSTITUTE IN NORTH CAROLINA TO MEET A NATIONAL NEED.

    ERIC Educational Resources Information Center

    BOUDREAU, HOWARD E.; PURCELL, CHARLES A.

    THE FAYETTEVILLE TECHNICAL INSTITUTE IN NORTH CAROLINA ESTABLISHED ITS PROGRAM IN SANITARY ENGINEERING TECHNOLOGY IN 1964, WITH ITS FIRST GRADUATING CLASS PLANNED FOR SPRING 1966. IN COOPERATION WITH THE CURRICULUM LABORATORY AND THE STATE DEPARTMENT OF COMMUNITY COLLEGES, AN ADVISORY COMMITTEE WAS FORMED, MADE UP OF SPECIALISTS IN MANY AREAS OF…

  1. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool

    PubMed Central

    Soloperto, Alessandro; Palazzolo, Gemma; Tsushima, Hanako; Chieregatti, Evelina; Vassalli, Massimo; Difato, Francesco

    2016-01-01

    Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery. PMID:27013962

  2. Sub-toxic concentrations of nano-ZnO and nano-TiO2 suppress neurite outgrowth in differentiated PC12 cells.

    PubMed

    Irie, Tomohiko; Kawakami, Tsuyoshi; Sato, Kaoru; Usami, Makoto

    2017-01-01

    Nanomaterials have been extensively used in our daily life, and may also induce health effects and toxicity. Nanomaterials can translocate from the outside to internal organs, including the brain. For example, both nano-ZnO and nano-TiO 2 translocate into the brain via the olfactory pathway in rodents, possibly leading to toxic effects on the brain. Although the effects of nano-ZnO and nano-TiO 2 on neuronal viability or neuronal excitability have been studied, no work has focused on how these nanomaterials affect neuronal differentiation and development. In this study, we investigated the effects of nano-ZnO and nano-TiO 2 on neurite outgrowth of PC12 cells, a useful model system for neuronal differentiation. Surprisingly, the number, length, and branching of differentiated PC12 neurites were significantly suppressed by the 7-day exposure to nano-ZnO (in the range of 1.0 × 10 -4 to 1.0 × 10 -1 µg/mL), at which the cell viability was not affected. The number and length were also significantly inhibited by the 7-day exposure to nano-TiO 2 (1.0 × 10 -3 to 1.0 µg/mL), which did not have cytotoxic effects. These results demonstrate that the neurite outgrowth in differentiated PC12 cells was suppressed by sub-cytotoxic concentrations of nano-ZnO or nano-TiO 2 .

  3. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    PubMed

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Self assembly of nano metric metallic particles for realization of photonic and electronic nano transistors.

    PubMed

    Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev

    2010-05-25

    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles.

  5. Salinity mediates the toxic effect of nano-TiO2 on the juvenile olive flounder Paralichthys olivaceus.

    PubMed

    Huang, Xizhi; Lan, Yawen; Liu, Zekang; Huang, Wei; Guo, Qindan; Liu, Liping; Hu, Menghong; Sui, Yanming; Wu, Fangli; Lu, Weiqun; Wang, Youji

    2018-06-04

    Increased production of engineered nanoparticles has raised extensive concern about the potential toxic effects on marine organisms living in estuarine and coastal environments. Meanwhile, salinity is one of the key environmental factors that may influence the physiological activities in flatfish species inhabiting in those waters due to fluctuations caused by freshwater input or rainfall. In this study, we investigated the oxidative stress and histopathological alteration of the juvenile Paralichthys olivaceus exposed to nano-TiO 2 (1 and 10 mg L -1 ) under salinities of 10 and 30 psu for 4 days. In the gills, Na + -K + -ATPase activity significantly deceased after 4 days 10 psu exposure without nano-TiO 2 compared with 1 day of acclimating the salinity from the normal salinity (30 psu) to 10 psu. Under this coastal salinity, low concentration (1 mg L -1 ) of nano-TiO 2 exerted significant impacts. In the liver, the activities of superoxide dismutase, catalase, the levels of lipid peroxide and malondialdehyde increased with nano-TiO 2 exposed under 30 psu. Such increase indicated an oxidative stress response. The result of the integrated biomarker responses showed that P. olivaceus can be adversely affected by high salinity and high concentration of nano-TiO 2 for a short-term (4 days) exposure. The histological analysis revealed the accompanying severe damages for the gill filaments. Principal component analysis further showed that the oxidative stress was associated with the nano-TiO 2 effect at normal salinity. These findings indicated that nano-TiO 2 and normal salinity exert synergistic effects on juvenile P. olivaceus, and low salinity plays a protective role in its physiological state upon short-term exposure to nano-TiO 2 . The mechanism of salinity mediating the toxic effects of NPs on estuarine fish should be further considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    NASA Astrophysics Data System (ADS)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  7. Catalyst shape engineering for anisotropic cross-sectioned nanowire growth

    NASA Astrophysics Data System (ADS)

    Calahorra, Yonatan; Kelrich, Alexander; Cohen, Shimon; Ritter, Dan

    2017-01-01

    The ability to engineer material properties at the nanoscale is a crucial prerequisite for nanotechnology. Hereunder, we suggest and demonstrate a novel approach to realize non-hemispherically shaped nanowire catalysts, subsequently used to grow InP nanowires with a cross section anisotropy ratio of up to 1:1.8. Gold was deposited inside high aspect ratio nanotrenches in a 5 nm thick SiNx selective area mask; inside the growth chamber, upon heating to 455 °C, the thin gold stripes agglomerated, resulting in an ellipsoidal dome (hemiellipsoid). The initial shape of the catalyst was preserved during growth to realize asymmetrically cross-sectioned nanowires. Moreover, the crystalline nature of the nanowire side facets was found to depend on the nano-trench orientation atop the substrate, resulting in hexagonal or octagonal cross-sections when the nano-trenches are aligned or misaligned with the [1¯10] orientation atop a [111]B substrate. These results establish the role of catalyst shape as a unique tool to engineer nanowire growth, potentially allowing further control over its physical properties.

  8. [Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].

    PubMed

    Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping

    2012-05-01

    Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.

  9. Nano-Science-Engineering-Technology Applications to Food and Nutrition.

    PubMed

    Nakajima, Mitsutoshi; Wang, Zheng; Chaudhry, Qasim; Park, Hyun Jin; Juneja, Lekh R

    2015-01-01

    Nanoscale Science, Engineering and Technology are applied to Food and Nutrition. Various delivery systems include nanoemulsions, microemulsions, solid lipid nanoparticles, micelles, and liposomes. The nanoscale systems have advantages, such as higher bioavailabitity, and other physicochemical properties. The symposium will provide an overview of the formulation, characterization, and utilization of nanotechnology-based food and nutrition.

  10. Multi-physics damage sensing in nano-engineered structural composites.

    PubMed

    de Villoria, Roberto Guzmán; Yamamoto, Namiko; Miravete, Antonio; Wardle, Brian L

    2011-05-06

    Non-destructive evaluation techniques can offer viable diagnostic and prognostic routes to mitigating failures in engineered structures such as bridges, buildings and vehicles. However, existing techniques have significant drawbacks, including poor spatial resolution and limited in situ capabilities. We report here a novel approach where structural advanced composites containing electrically conductive aligned carbon nanotubes (CNTs) are ohmically heated via simple electrical contacts, and damage is visualized via thermographic imaging. Damage, in the form of cracks and other discontinuities, usefully increases resistance to both electrical and thermal transport in these materials, which enables tomographic full-field damage assessment in many cases. Characteristics of the technique include the ability for real-time measurement of the damage state during loading, low-power operation (e.g. 15 °C rise at 1 W), and beyond state-of-the-art spatial resolution for sensing damage in composites. The enhanced thermographic technique is a novel and practical approach for in situ monitoring to ascertain structural health and to prevent structural failures in engineered structures such as aerospace and automotive vehicles and wind turbine blades, among others.

  11. Multi-physics damage sensing in nano-engineered structural composites

    NASA Astrophysics Data System (ADS)

    Guzmán de Villoria, Roberto; Yamamoto, Namiko; Miravete, Antonio; Wardle, Brian L.

    2011-05-01

    Non-destructive evaluation techniques can offer viable diagnostic and prognostic routes to mitigating failures in engineered structures such as bridges, buildings and vehicles. However, existing techniques have significant drawbacks, including poor spatial resolution and limited in situ capabilities. We report here a novel approach where structural advanced composites containing electrically conductive aligned carbon nanotubes (CNTs) are ohmically heated via simple electrical contacts, and damage is visualized via thermographic imaging. Damage, in the form of cracks and other discontinuities, usefully increases resistance to both electrical and thermal transport in these materials, which enables tomographic full-field damage assessment in many cases. Characteristics of the technique include the ability for real-time measurement of the damage state during loading, low-power operation (e.g. 15 °C rise at 1 W), and beyond state-of-the-art spatial resolution for sensing damage in composites. The enhanced thermographic technique is a novel and practical approach for in situ monitoring to ascertain structural health and to prevent structural failures in engineered structures such as aerospace and automotive vehicles and wind turbine blades, among others.

  12. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A study on the phytotoxicity of nano mullite and metal-amended nano mullite on mung bean plants.

    PubMed

    Dey, Anindita; Bagchi, Biswajoy; Das, Sukhen; Basu, Ruma; Nandy, Papiya

    2011-06-01

    The presence of engineered nanoparticles is continuously increasing in our environment and causing potential risks to the ecosystem. Researchers from various fields report many articles on the effects of different nanoparticles on plants, animals and microorganisms. Here we have studied for the first time the effect of nano mullite (NMu) and their metal- amended derivatives on the growth of mung bean plants. Results shows that the metal- amended NMu exerts adverse effects on the growth and biomass production of plants compared to NMu. For toxicity studies, we measured the germination index and relative root elongation, while leakage of electrolytes and root oxidizability were measured to study the effect of NMu on mung bean seeds and seedling tissues. Translocation and accumulation of NMu within different parts of the plant body were proved by elemental analysis of dried plant samples.

  14. [Integration of fundamental and applied medical and technical research made at the department of the biomedical systems, Moscow State Institute of Electronic Engineering].

    PubMed

    Selishchev, S V

    2004-01-01

    The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.

  15. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Záruba, K.; Král, V.; Bláhová, O.; Macková, A.; Hnatowicz, V.

    2009-08-01

    Polyethylene (PE) was treated in Ar plasma discharge and then grafted from methanol solution of 1,2-ethanedithiol to enhance adhesion of gold nano-particles or sputtered gold layers. The modified PE samples were either immersed into freshly prepared colloid solution of Au nano-particles or covered by sputtered, 50 nm thick gold nano-layer. Properties of the plasma modified, dithiol grafted and gold coated PE were studied using XPS, UV-VIS, AFM, EPR, RBS methods and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain, creation of excessive free radicals and conjugated double bonds. After grafting with 1,2-ethanedithiol the concentration of free radicals declined but the concentration of double bonds remained unchanged. Plasma treatment changes PE surface morphology and increases surface roughness too. Another significant change in the surface morphology and roughness was observed after deposition of Au nano-particles. The presence of Au on the sample surface after the coating with Au nano-particles was proved by XPS and RBS methods. Nanoindentation measurements shown that the grafting of plasma activated PE surface with dithiol increases significantly adhesion of sputtered Au nano-layer.

  17. Institute for Scientific and Educational Technology (ISET)-Education, Research and Training Programs in Engineering and Sciences

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N. (Principal Investigator); Massenberg, Samuel E. (Technical Monitor)

    2002-01-01

    The 'Institute for Scientific and Educational Technology' has been established to provide a mechanism through which universities and other research organizations may cooperate with one another and with different government agencies and industrial organizations to further and promote research, education, and training programs in science, engineering, and related fields. This effort has been undertaken consistent with the national vision to 'promote excellence in America s educational system through enhancing and expanding scientific and technological competence.' The specific programs are directed in promoting and achieving excellence for individuals at all levels (elementary and secondary schools, undergraduate and graduate education, and postdoctoral and faculty research). The program is consistent with the existing activities of the Institute for Computational and Applied Mechanics (ICAM) and the American Society for Engineering Education (ASEE) at NASA Langley Research Center (LaRC). The efforts will be directed to embark on other research, education, and training activities in various fields of engineering, scientific, and educational technologies. The specific objectives of the present program may be outlined briefly as follows: 1) Cooperate in the various research, education, and technology programs of the Office of Education at LaRC. 2) Develop procedures for interactions between precollege, college, and graduate students, and between faculty and students at all levels. 3) Direct efforts to increase the participation by women and minorities in educational programs at all levels. 4) Enhance existing activities of ICAM and ASEE in education, research, and training of graduate students and faculty. 5) Invite distinguished scholars as appropriate and consistent with ISET goals to spend their summers and/or sabbaticals at NASA Langley andor ODU and interact with different researchers and graduate students. Perform research and administrative activities as needed

  18. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive.

    PubMed

    Peters, Ruud; Kramer, Evelien; Oomen, Agnes G; Rivera, Zahira E Herrera; Oegema, Gerlof; Tromp, Peter C; Fokkink, Remco; Rietveld, Anton; Marvin, Hans J P; Weigel, Stefan; Peijnenburg, Ad A C M; Bouwmeester, Hans

    2012-03-27

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products subjected to in vitro digestion included (i) hot water, (ii) coffee with powdered creamer, (iii) instant soup, and (iv) pancake which either contained silica as the food additive E551, or to which a form of synthetic amorphous silica or 32 nm SiO(2) particles were added. The results showed that, in the mouth stage of the digestion, nano-sized silica particles with a size range of 5-50 and 50-500 nm were present in food products containing E551 or added synthetic amorphous silica. However, during the successive gastric digestion stage, this nano-sized silica was no longer present for the food matrices coffee and instant soup, while low amounts were found for pancakes. Additional experiments showed that the absence of nano-sized silica in the gastric stage can be contributed to an effect of low pH combined with high electrolyte concentrations in the gastric digestion stage. Large silica agglomerates are formed under these conditions as determined by DLS and SEM experiments and explained theoretically by the extended DLVO theory. Importantly, in the subsequent intestinal digestion stage, the nano-sized silica particles reappeared again, even in amounts higher than in the saliva (mouth) digestion stage. These findings suggest that, upon consumption of foods containing E551, the gut epithelium is most likely exposed to nano-sized silica. © 2012 American Chemical Society

  19. Ion Beam Etching: Replication of Micro Nano-structured 3D Stencil Masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Patrick; Guibert, Edouard; Mikhailov, Serguei

    2009-03-10

    Ion beam LIGA allows the etching of 3D nano-structures by direct writing with a nano-sized beam. However, this is a relatively time consuming process. We propose here another approach for etching structures on large surfaces and faster, compared to the direct writing process. This approach consists of replicating 3D structured masks, by scanning an unfocused ion beam. A polymer substrate is placed behind the mask, as in UV photolithography. But the main advantage is that the 3D structure of the mask can be replicated into the polymer. For that purpose, the masks (developped at LMIS1, EPFL) are made of amore » silicon nitride membrane 100 nm thick, on which 3D gold structures up to 200 nm thick, are deposited. The 3D Au structures are made with the nanostencil method, based on successive gold deposition. The IMA institute, from HE-Arc, owns a High Voltage Engineering 1.7 MV Tandetron with both solid and gaseous negative ion sources, able to generate ions from almost every chemical element in a broad range of energies comprised between 400 keV and 6.8 MeV. The beam composition and energy are chosen in such a way, that ions lose a significant fraction of their energy when passing through the thickest regions of the mask. Ions passing through thinner regions of the mask loose a smaller fraction of their energy and etch the polymer with larger thicknesses, allowing a replication of the mask into the polymer. For our trials, we have used a carbon beam with an energy of 500 keV. The beam was focussed to a diameter of 5 mm with solid slits, in order to avoid border effects and thus ensure a homogeneous dose distribution on the beam diameter. The feasibility of this technique has been demonstrated, allowing industrial applications for micro-mould fabrication, micro-fluidics and micro-optics.« less

  20. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    PubMed

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  1. Self Assembly of Nano Metric Metallic Particles for Realization of Photonic and Electronic Nano Transistors

    PubMed Central

    Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev

    2010-01-01

    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles. PMID:20559513

  2. Nano-composites for water remediation: a review.

    PubMed

    Tesh, Sarah J; Scott, Thomas B

    2014-09-17

    As global populations continue to increase, the pressure on water supplies will inevitably intensify. Consequently the international need for more efficient and cost effective water remediation technologies will also rise. The introduction of nano-technology into the industry may represent a significant advancement and zero-valent iron nano-particles (INPs) have been thoroughly studied for potential remediation applications. However, the application of water dispersed INP suspensions is limited and somewhat contentious on the grounds of safety, whilst INP reaction mechanisms, transport properties and ecotoxicity are areas still under investigation. Theoretically, the development of nano-composites containing INPs to overcome these issues provides the logical next step for developing nano-materials that are better suited to wide application across the water industry. This review provides an overview of the range of static, bulk nano-composites containing INPs being developed, whilst highlighting the limitations of individual solutions, overall classes of technology, and lack of comparative testing for nano-composites. The review discusses what further developments are needed to optimize nano-composite water remediation systems to subsequently achieve commercial maturity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Trends in Environmental Health Engineering

    ERIC Educational Resources Information Center

    Rowe, D. R.

    1972-01-01

    Reviews the trends in environmental health engineering and describes programs in environmental engineering technology and the associated environmental engineering courses at Western Kentucky University (four-year program), Wytheville Community College (two-year program), and Rensselaer Polytechnic Institute (four-year program). (PR)

  4. Conceptual energy and water recovery system for self-sustained nano membrane toilet.

    PubMed

    Hanak, Dawid P; Kolios, Athanasios J; Onabanjo, Tosin; Wagland, Stuart T; Patchigolla, Kumar; Fidalgo, Beatriz; Manovic, Vasilije; McAdam, Ewan; Parker, Alison; Williams, Leon; Tyrrel, Sean; Cartmell, Elise

    2016-10-15

    With about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kg settledsolids and water recovery rate of 13.4 dm 3 /day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kg settledsolids . Such household-scale system would deliver the net power output (1.9-5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs.

  5. Nano-funnels as electro-osmotic ``tweezers and pistons''

    NASA Astrophysics Data System (ADS)

    Wang, Yanqian; Panyukov, Sergey; Zhou, Jinsheng; Menard, Laurent D.; Ramsey, J. Michael; Rubinstien, Michael

    2014-03-01

    An electric field is used to force a DNA molecule into a nano-channel by compensating the free energy penalty that results from the reduced conformational entropy of the confined macromolecule. Narrow nano-channels require high critical electric fields to achieve DNA translocation, leading to short dwell times of DNA in these channels. We demonstrate that nano-funnels integrated with nano-channels reduce the free energy barrier and lower the critical electric field required for DNA translocation. A focused electric field within the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic pressure at the nano-channel entrance. This ``electro-osmotic piston'' forces the molecule into the nano-channel at lower electric fields than those observed without the funnel. Appropirately designed nano-funnels can also function as tweezers that allow manipulation of the position of the DNA molecule. The predictions of our theory describing double-stranded DNA behavior in nano-funnel - nano-channel devices are consistent with experimental results. Thanks for the financial support from NSF (DMR-1309892, DMR-1121107, DMR-1122483), NIH (1-P50-HL107168, 1-P01-HL108808-01A1, R01HG02647), NHGRI and CF Foundation.

  6. Comparative evaluation of hydroxyapatite and nano-bioglass in two forms of conventional micro- and nano-particles in repairing bone defects (an animal study).

    PubMed

    Nosouhian, Saied; Razavi, Mohammad; Jafari-Pozve, Nasim; Rismanchian, Mansour

    2015-01-01

    Many synthetic bone materials have been introduced for repairing bone defects. The aim of this study is to comparatively evaluate the efficacy of nano-hydroxyapatite (HA) and nano-bioglass bone materials with their traditional micro counterparts in repairing bone defects. In this prospective animal study, four healthy dogs were included. First to fourth premolars were extracted in each quadrant and five cavities in each quadrant were created using trephine. Sixteen cavities in each dog were filled by HA, nano-HA, bioglass, and nano-bioglass and four defects were left as the control group. All defects were covered by a nonrestorable membrane. Dogs were sacrificed after 15, 30, 45, and 60 days sequentially. All 20 samples were extracted by trephine #8 with a sufficient amount of surrounding bone. All specimens were investigated under an optical microscope and the percentage of total regenerated bone, lamellar, and woven bone were evaluated. Data analysis was carried out by SPSS Software ver. 15 and Mann-Whitney U-test (α =0.05). After 15 days, the bone formation percentage showed a significant difference between HA and nano-HA and between HA and bioglass (P < 0.001). The nano-HA group showed the highest rate of bone formation after 15 days. Nano-bioglass and bioglass and nano-HA and nano-bioglass groups represented a significant difference and nano-bioglass showed the highest rate of bone formation after 30 days (P = 0.01). After 45 days, the bone formation percentage showed a significant difference between nano-bioglass and bioglass and between nano-HA and nano-bioglass groups (P = 0.01). Nano-HA and nano-bioglass biomaterials showed promising results when compared to conventional micro-particles in the repair of bone defects.

  7. Anisotropic stress in narrow sGe fin field-effect transistor channels measured using nano-focused Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nuytten, T.; Bogdanowicz, J.; Witters, L.; Eneman, G.; Hantschel, T.; Schulze, A.; Favia, P.; Bender, H.; De Wolf, I.; Vandervorst, W.

    2018-05-01

    The continued importance of strain engineering in semiconductor technology demands fast and reliable stress metrology that is non-destructive and process line-compatible. Raman spectroscopy meets these requirements but the diffraction limit prevents its application in current and future technology nodes. We show that nano-focused Raman scattering overcomes these limitations and can be combined with oil-immersion to obtain quantitative anisotropic stress measurements. We demonstrate accurate stress characterization in strained Ge fin field-effect transistor channels without sample preparation or advanced microscopy. The detailed analysis of the enhanced Raman response from a periodic array of 20 nm-wide Ge fins provides direct access to the stress levels inside the nanoscale channel, and the results are validated using nano-beam diffraction measurements.

  8. An Exploration in Theory of the Storied Experiences of Women Earning Engineering Bachelor's Degrees at a Southern, Research, Predominately White Institution

    ERIC Educational Resources Information Center

    Dinin, Alessandra Jayne

    2017-01-01

    This dissertation study explores the experiences of 11 undergraduate women in a variety of engineering majors graduating from a Southern, research, predominately White institution and the use of theory to understand those experiences. While narrative inquiry is used throughout, this dissertation study is organized into three separate papers. The…

  9. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

    PubMed

    Navya, P N; Daima, Hemant Kumar

    2016-01-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  10. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives

    NASA Astrophysics Data System (ADS)

    Navya, P. N.; Daima, Hemant Kumar

    2016-02-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  11. Gearing up for transportation engineering, a summer institute : phase IX.

    DOT National Transportation Integrated Search

    2009-02-01

    The numbers of female and minority students enrolled in engineering schools are increasing slowly, however there is still a relatively small percentage drawn to the field of transportation civil engineering. As a consequence, there is a need to educa...

  12. Gearing up for transportation engineering, a summer institute : phase 2

    DOT National Transportation Integrated Search

    2001-12-31

    The numbers of female and minority students enrolled in engineering schools are increasing slowly; however, a relatively small percentage of these students are drawn to the field of transportation engineering. For this reason, there is a need to educ...

  13. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder.

    PubMed

    Yuan, Chunmiao; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-30

    Minimum ignition temperature (MIT) of micro Ti powder increased gradually with increases in nano-sized TiO2 employed as an inertant. Solid TiO2 inertant significantly reduced ignition hazard of micro Ti powder in contact with hot surfaces. The MIT of nano Ti powder remained low (583 K), however, even with 90% TiO2. The MIT of micro Ti powder, when mixed with nano Ti powder at concentrations as low as 10%, decreased so dramatically that its application as a solid fuel may be possible. A simple MIT model was proposed for aggregate particle size estimation and better understanding of the inerting effect of nano TiO2 on MIT. Estimated particle size was 1.46-1.51 μm larger than that in the 20-L sphere due to poor dispersion in the BAM oven. Calculated MITs were lower than corresponding empirically determined values for micro Ti powder because nano-sized TiO2 coated the micro Ti powder, thereby decreasing its reaction kinetics. In the case of nano Ti powder, nano-sized TiO2 facilitated dispersion of nano Ti powder which resulted in a calculated MIT that was greater than the experimentally determined value. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Preparation and application of functionalized nano drug carriers.

    PubMed

    Gong, Rudong; Chen, Gaimin

    2016-05-01

    Targeting at category memory characteristics and preparation methods of functionalized nano drugs, preparation technology of functionalized nano drug carriers is studied, and then important role of functionalized nano drug carrier in preparation of medicine is studied. Carry out the relevant literature search with computer, change limited language in the paper to Chinese and necessarily remove repetitive studies. After first review of 1260 retrieved literature, it can be found that nano drug is with accurate quantity, relatively good targeting, specificity and absorbency. Necessary research of nano drug carriers can prevent and treat disease to a certain extent. Preparation of functionalized nanocarrier is simple and convenient, which can improve frequency of use of nano preparation technology and provide better development space for medical use. Therefore, nanocarriers should be combined with drugs with relatively strong specificity in clinics, in order to be able to conduct effective research on nanometer intelligent drug, effectively promote long-term development of nano biotechnology, and then provide favorable, reliable basis for clinical diagnosis and treatment.

  15. Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.

    2005-01-01

    Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.

  16. Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds

    PubMed Central

    Yoganarasimha, Suyog; Trahan, William R.; Best, Al M.; Bowlin, Gary L.; Kitten, Todd O.; Moon, Peter C.

    2014-01-01

    Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering. PMID:24341350

  17. An Engineering Degree Does Not (Necessarily) an Engineer Make: Career Decision Making among Undergraduate Engineering Majors. Research Brief

    ERIC Educational Resources Information Center

    Lichtenstein, Gary; Loshbaugh, Heidi G.; Claar, Brittany; Chen, Helen L.; Jackson, Kristyn; Sheppard, Sheri

    2009-01-01

    This paper explores the career-related decision making of seniors enrolled in undergraduate engineering programs at two nationally recognized institutions. This strand of the Academic Pathways Study (APS) research revealed that many engineering students were undecided about their career plans, even late into their senior years and that many were…

  18. This photocopy of an engineering drawing shows the floor plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the floor plan of the Liner Lab, including room functions. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex Phase II, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "Liner Laboratory, Floor Plan and Schedules," drawing no. E33/4-2, 26 June 1962. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  19. Advanced Transportation Institute 2008.

    DOT National Transportation Integrated Search

    2009-02-01

    The seventh version of the Advanced Transportation Institute (ATI-08) was conducted in 2008 to encourage high school students to pursue careers in the field of transportation engineering. The University Transportation Center for Alabama partnered wit...

  20. Advanced Transportation Institute 2009.

    DOT National Transportation Integrated Search

    2009-09-01

    The eighth version of the Advanced Transportation Institute (ATI-09) was conducted in 2009 to encourage high school students to pursue careers in the field of transportation engineering. The University Transportation Center for Alabama partnered with...

  1. NanoRacks CubeSat

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047232 (14 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. International Space Station solar array panels provide the backdrop for the scene.

  2. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    NASA Astrophysics Data System (ADS)

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-10-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops.

  3. Settling into the midstream? Lessons for governance from the decade of nanotechnology

    NASA Astrophysics Data System (ADS)

    Bosso, Christopher

    2016-06-01

    This paper analyzes scholarly papers published from 2003 through 2013 on the general theme of nanotechnology and governance. It considers three general points: (1) the "problem" of nanotechnology; (2) general lessons for governance obtained; and (3) prospects for aligning the US regulatory system to the next generation of complex engineered nano-materials. It argues that engineered nano-materials and products are coming to market within an already mature regulatory framework of decade-old statutes, long-standing bureaucratic rules and routines, narrowly directive judicial decisions, and embedded institutional norms. That extant regulatory regime shapes how policymakers perceive, define, and address the relative benefits and risks of both proximate and yet-to-be idealized nano-materials and applications. The paper concludes that fundamental reforms in the extant regime are unlikely short of a perceived crisis.

  4. Nano-plastics in the aquatic environment.

    PubMed

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  5. Antibacterial performance of nano polypropylene filter media containing nano-TiO2 and clay particles

    NASA Astrophysics Data System (ADS)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham; Semnani, Dariush

    2015-10-01

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO2 were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO2 nanoparticles.

  6. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    ERIC Educational Resources Information Center

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  7. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers.

    PubMed

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-12-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO 2 -PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  8. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers

    NASA Astrophysics Data System (ADS)

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-03-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  9. Sex segregation in undergraduate engineering majors

    NASA Astrophysics Data System (ADS)

    Litzler, Elizabeth

    Gender inequality in engineering persists in spite of women reaching parity in college enrollments and degrees granted. To date, no analyses of educational sex segregation have comprehensively examined segregation within one discipline. To move beyond traditional methods of studying the long-standing stratification by field of study in higher education, I explore gender stratification within one field: engineering. This dissertation investigates why some engineering disciplines have a greater representation of women than other engineering disciplines. I assess the individual and institutional factors and conditions associated with women's representation in certain engineering departments and compare the mechanisms affecting women's and men's choice of majors. I use national data from the Engineering Workforce Commission, survey data from 21 schools in the Project to Assess Climate in Engineering study, and Carnegie Foundation classification information to study sex segregation in engineering majors from multiple perspectives: the individual, major, institution, and country. I utilize correlations, t-tests, cross-tabulations, log-linear modeling, multilevel logistic regression and weighted least squares regression to test the relative utility of alternative explanations for women's disproportionate representation across engineering majors. As a whole, the analyses illustrate the importance of context and environment for women's representation in engineering majors. Hypotheses regarding hostile climate and discrimination find wide support across different analyses, suggesting that women's under-representation in certain engineering majors is not a question of choice or ability. However, individual level factors such as having engineering coursework prior to college show an especially strong association with student choice of major. Overall, the analyses indicate that institutions matter, albeit less for women, and women's under-representation in engineering is not

  10. Repair of rabbit cartilage defect based on the fusion of rabbit bone marrow stromal cells and Nano-HA/PLLA composite material.

    PubMed

    Zhu, Weimin; Guo, Daiqi; Peng, Liangquan; Chen, Yun Fang; Cui, Jiaming; Xiong, Jianyi; Lu, Wei; Duan, Li; Chen, Kang; Zeng, Yanjun; Wang, Daping

    2017-02-01

    Objective To assess the effect of the fusion of rabbit bone marrow stromal cells (rBMSCs) and Nano-hydroxyapatite/poly (l-lactic acid) (Nano-HA/PLLA) in repairing the rabbit knee joint with full-thickness cartilage defect. Method The rBMSCs were isolated and cultured in vitro, and the third generation of rBMSCs was co-cultured with the Nano-HA/PLLA to construct the tissue-engineered cartilage (TEC). Eighteen New Zealand white rabbits were selected and randomly divided into three groups, namely, TEC group, Nano-HA/PLLA group, and control group. A cartilage defect model with the diameter of 4.5 mm and depth of 5 mm was constructed on the articular surface of medial malleolus of rabbit femur. General observation, histological observation, and Wakitani's histological scoring were conducted in the 12th and 24th week postoperatively. Results The results of TEC group indicated that new cartilage tissue was formed on the defect site and subchondral bone achieved physiological integration basically. Histological and immunohistochemical analyses indicated the generation of massive extracellular matrix. In contrast, limited regeneration and reconstruction of cartilage was achieved in the Nano-HA/PLLA group and control group, with a significant difference from the TEC group (p < 0.05). Moreover, the effect of cartilage repair was positively correlated with time. Conclusion The porous Nano-HA/PLLA combined with BMSCs promoted the repair of weight-bearing bone of adult rabbit's knee joint with cartilage defect.

  11. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering.

    PubMed

    Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid

    2014-01-01

    Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.

  12. Expansion of Private Engineering Institutions: Challenges Ahead

    ERIC Educational Resources Information Center

    Singh, Antra; Singh, Seema

    2018-01-01

    Globalization process and growth of knowledge economy with increasing dependency on innovative information technology necessitated an expansion of higher education institution. With the country counting on its demographic dividend, the increase in number of students seeking university degree is putting pressure on the higher education sector to…

  13. PREFACE International Conference on Theoretical Physics Dubna-Nano 2010

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir; Nesterenko, Valentin; Shukrinov, Yury

    2010-11-01

    The International Conference on Theoretical Physics 'Dubna-Nano2010' was held on 5-10 July 2010, at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The previous conference of this series was at Dubna in 2008. The conference provided the opportunity for the presentation and discussion of theoretical and experimental advances in the rapidly growing area of nanophysics, with the accent on its theoretical aspects. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: carbon nanosystems (graphene, nanotubes, fullerenes), quantum dots, quantum transport, spectroscopy and dynamics of atomic clusters, Josephson junctions, modelling, applications and perspectives. Approximately 120 scientists from 26 countries participated in the conference. The program included 63 oral talks and 70 posters. The 62 contributions are included in these proceedings. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference indeed successful. We are deeply indebted to the members of the International Advisory Committee (Professors T Ando, J Fabian, F Guinea, P Hawrylak, K Kadowaki, T Koyama, Yu I Latushev, Yu E Lozovik, M Machida, B K Nikolic, N F Pedersen, P-G Reinhard, J M Rost, A Ya Vul') and the Local Organizing Committee for their fruitful work. The financial support of BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Additional information about 'Dubna-Nano2010' is available at the homepage http://theor.jinr.ru/~nano10. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  14. Software Engineering Education Directory. Software Engineering Curriculum Project

    DTIC Science & Technology

    1991-05-01

    1986 with a questionnaire mailed to schools selected from Peterson’s Graduate Programs in Engineering and Applied Sciences 1986. We contacted schools...the publi- cation more complete. To discuss any issues related to this report, please contact: Education Program Software Engineering Institute...considered to be required course reading. How to Use This Section This portion of the directory is organized by state (in the U.S.), province (in

  15. Bimodal fibrous structures for tissue engineering: Fabrication, characterization and in vitro biocompatibility.

    PubMed

    Tiwari, Arjun Prasad; Joshi, Mahesh Kumar; Kim, Jeong In; Unnithan, Afeesh Rajan; Lee, Joshua; Park, Chan Hee; Kim, Cheol Sang

    2016-08-15

    We report for the first time a polycaprolactone-human serum albumin (PCL-HSA) membrane with bimodal structures comprised of spider-web-like nano-nets and conventional fibers via facile electro-spinning/netting (ESN) technique. Such unique controllable morphology was developed by electrospinning the blend solution of PCL (8wt% in HFIP 1,1,1,3,3,3,-Hexafluoro-2-propanol) and HSA (10wt% deionized water). The phase separation during electrospinning caused the formation of bimodal structure. Various processing factors such as applied voltage, feeding rate, and distance between nozzle tip and collector were found responsible for the formation and distribution of the nano-nets throughout the nanofibrous mesh. Field emission electron microscopy (FE-SEM) confirmed that the nano-nets were composed of interlinked nanowires with an ultrathin diameter (10-30nm). When compared with a pure PCL membrane, the membrane containing nano-nets was shown to have better support for cellular activities as determined by cell viability and attachment assays. These results revealed that the blending of albumin, a hydrophilic biomolecule, with PCL, a hydrophobic polymer, proves to be an outstanding approach to developing membranes with controlled spider-web-like nano-nets for tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Every which way--nanos gene regulation in echinoderms.

    PubMed

    Oulhen, Nathalie; Wessel, Gary M

    2014-03-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. Copyright © 2013 Wiley Periodicals, Inc.

  17. PREFACE: The International Conference on Theoretical Physics `Dubna-Nano2008'

    NASA Astrophysics Data System (ADS)

    Osipov, V. A.; Nesterenko, V. O.; Shukrinov, Y. M.

    2008-07-01

    The International Conference on Theoretical Physics `Dubna-Nano2008' was held on 7-11 July 2008 at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The conference provided the opportunity for the presentation and discussion of theoretical and experimental advances in the rapidly growing area of the nanophysics, with the accent on its theoretical aspects. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: carbon nanosystems (fullerenes, nanotubes, graphene), quantum dots, electron and spin transport, spectroscopy and dynamics of atomic clusters, Josephson junctions, bio-complexes, and applications of nanosystems. Approximately 90 scientists from 16 countries participated in the conference. The program included 48 oral talks and 40 posters. The 51 contributions are included in this proceedings. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference so successful. We are deeply indebted to the members of the International Advisory Committee (Professors T Ando, S Datta, A V Eletskii, J Fabian, F Guinea, P Hawrylak, K Kadowaki, T Koyama, Yu I Latushev, N F Pedersen, P-G Reinhard, J M Rost, A Ya Vul') and the Local Organizing Committee for their fruitful work. The financial support of BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Additional information about `Dubna-Nano2008' is available at the homepage http://theor.jinr.ru/~nano08. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  18. Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite

    PubMed Central

    Razavi, Shahnaz; Karbasi, Saeed; Morshed, Mohammad; Zarkesh Esfahani, Hamid; Golozar, Mohammad; Vaezifar, Sedigheh

    2015-01-01

    Objective In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. Materials and Methods In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. Results H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P<0.05). Conclusion We found that CS enhanced cell adhesion and proliferation rate, and aligned nanofibers guided cell growth along the longitudinal axis of the nanofibers, which would provide a beneficial approach for tissue engineering. PMID:26464814

  19. Retraining the Modern Civil Engineer.

    ERIC Educational Resources Information Center

    Priscoli, Jerome Delli

    1983-01-01

    Discusses why modern engineering requires social science and the nature of planning. After these conceptional discussions, 12 practical tools which social science brings to engineering are reviewed. A tested approach to training engineers in these tools is then described. Tools include institutional analysis, policy profiling, and other impact…

  20. Investigation of Surface Enhanced Coherent Raman Scattering on Nano-patterned Insect Wings

    NASA Astrophysics Data System (ADS)

    Ujj, Laszlo; Lawhead, Carlos

    2015-03-01

    Many insect wings (cicadas, butterflies, mosquitos) poses nano-patterned surface structure. Characterization of surface morphology and chemical composition of insect wings is important to understand the extreme mechanical properties and the biophysical functionalities of the wings. We have measured the image of the membrane of a cicada's wing with the help of Scanning Electron Microscopy (SEM). The results confirm the existing periodic structure of the wing measured previously. In order to identify the chemical composition of the wing, we have deposited silver nanoparticles on it and applied Coherent anti-Stokes Raman Spectroscopy to measure the vibrational spectra of the molecules comprising the wing for the first time. The measured spectra are consistent with the original assumption that the wing membrane is composed of protein, wax, and chitin. The results of these studies can be used to measure other nano-patterned surfaces and to make artificial materials in the future. Authors grateful for financial support from the Department of Physics of the College of Sciences Engineering and Health of UWF and the Pall Corporation for SEM imaging.

  1. Utilizing Civil Engineering Senior Design Capstone Projects to Evaluate Students' Sustainability Education across Engineering Curriculum

    ERIC Educational Resources Information Center

    Dancz, Claire L. A.; Ketchman, Kevin J.; Burke, Rebekah D.; Hottle, Troy A.; Parrish, Kristen; Bilec, Melissa M.; Landis, Amy E.

    2017-01-01

    While many institutions express interest in integrating sustainability into their civil engineering curriculum, the engineering community lacks consensus on established methods for infusing sustainability into curriculum and verified approaches to assess engineers' sustainability knowledge. This paper presents the development of a sustainability…

  2. Engineers: Going Global

    ERIC Educational Resources Information Center

    Feest, Tim

    2008-01-01

    This article demonstrates the need for engineering courses in UK higher education to give a higher priority to global and sustainability issues. In support of this case, the author summarizes and assesses evidence from a recently-concluded study by the Institute of Education, University of London, and Engineers Against Poverty, a specialist…

  3. Clean-Burning Diesel Engines.

    DTIC Science & Technology

    1986-03-01

    Dietzmann L.R. Smith Engines, Emissions, and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prepared for Belvoir Fuels and...replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric -powered forklifts have no...diesel engines considered as potential candidates for forklift vehicles used to handle hazardous materials. The first program was conducted to

  4. Predictors of Associate's Degree Completion in Engineering and Engineering Technologies

    NASA Astrophysics Data System (ADS)

    Reys-Nickel, Lynsey L.

    The purpose of this ex post facto study was to describe completers and non-completers of associate's degree programs in engineering and engineering technologies and determine whether and to what extent completion in these programs is a function of selected student-related variables and institutional variables. Data from the 2004/2009 Beginning Postsecondary Students Longitudinal Study (BPS: 04/09) of associate's degree completers and non-completers in engineering and engineering technologies were accessed and analyzed through PowerStats, a web-based data analysis tool from National Center for Education Statistics (NCES). Descriptive data indicated that, proportionally, engineering and engineering technologies completers were mostly White, married, middle income, employed part-time, enrolled full-time, did not hold a high school diploma or certificate, completed Trigonometry/Algebra II, had a father who's highest education level was an associate's degree, but did not know their mother's highest level of education, completed remedial coursework, and started college with the goal of earning an associate's degree. While more males enrolled in the programs, males and females demonstrated similar completion rates, proportionally--with females showing a slightly higher percentage of completion. Results from the logistic regression further indicated that the variables significant to completion in associate's degree programs in engineering and engineering technologies were gender and enrollment size. Findings suggested that female students were more likely to earn the degree, and that the larger the institution, the more likely the student would become a completer. However, since a major limitation of the study was the small weighted sample size, the results of the study are inconclusive in terms of the extent to which the findings can be generalized to the population of students in associate's degree programs in engineering and engineering technologies. This study fills a

  5. Naming it 'nano': Expert views on 'nano' terminology in informed consent forms of first-in-human nanomedicine trials.

    PubMed

    Satalkar, Priya; Elger, Bernice Simone; Shaw, David

    2016-04-01

    Obtaining valid informed consent (IC) can be challenging in first-in-human (FIH) trials in nanomedicine due to the complex interventions, the hype and hope concerning potential benefits, and fear of harms attributed to 'nano' particles. We describe and analyze the opinions of expert stakeholders involved in translational nanomedicine regarding explicit use of 'nano' terminology in IC documents. We draw on content analysis of 46 in-depth interviews with European and North American stakeholders. We received a spectrum of responses (reluctance, ambivalence, absolute insistence) on explicit mention of 'nano' in IC forms with underlying reasons. We conclude that consistent, clear and honest communication regarding the 'nano' dimension of investigational product is critical in IC forms of FIH trials.

  6. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    PubMed

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. © The Author(s) 2014.

  7. BEST: A Learner-Centered Workplace Literacy Partnership of the Vermont Institute for Self-Reliance and General Electric Aircraft Engines Rutland, VT. Final Performance Report.

    ERIC Educational Resources Information Center

    Lashof, Judith R.

    The Vermont Institute for Self Reliance (VISR) conducted a Basic Educational Skills for Training (BEST) program, a national demonstration project in workplace literacy, from April 1990 to March 1992. BEST provided learner-centered, context-based literacy instruction onsite, on company time, at two General Electric (GE) Aircraft Engines Rutland…

  8. Molecular Bases of cyclodextrin Adapter Interactions with Engineered Protein Nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, A.; Mikhailova, E; Cheley, S

    2010-01-01

    Engineered protein pores have several potential applications in biotechnology: as sensor elements in stochastic detection and ultrarapid DNA sequencing, as nanoreactors to observe single-molecule chemistry, and in the construction of nano- and micro-devices. One important class of pores contains molecular adapters, which provide internal binding sites for small molecules. Mutants of the {alpha}-hemolysin ({alpha}HL) pore that bind the adapter {beta}-cyclodextrin ({beta}CD) {approx}10{sup 4} times more tightly than the wild type have been obtained. We now use single-channel electrical recording, protein engineering including unnatural amino acid mutagenesis, and high-resolution x-ray crystallography to provide definitive structural information on these engineered protein nanoporesmore » in unparalleled detail.« less

  9. Synthetic biodegradable functional polymers for tissue engineering: a brief review.

    PubMed

    BaoLin, Guo; Ma, Peter X

    2014-04-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix (ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.

  10. Electrochemical method of producing nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  11. Influence of marine engine simulator training to marine engineer's competence

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai

    2011-12-01

    Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.

  12. Influence of marine engine simulator training to marine engineer's competence

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai

    2012-01-01

    Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.

  13. Instrument platforms for nano liquid chromatography.

    PubMed

    Šesták, Jozef; Moravcová, Dana; Kahle, Vladislav

    2015-11-20

    The history of liquid chromatography started more than a century ago and miniaturization and automation are two leading trends in this field. Nanocolumn liquid chromatography (nano LC) and largely synonymous capillary liquid chromatography (capillary LC) are the most recent results of this process where miniaturization of column dimensions and sorbent particle size play crucial role. Very interesting results achieved in the research of extremely miniaturized LC columns at the end of the last century lacked distinctive raison d'être and only advances in mass spectrometry brought a real breakthrough. Configuration of nano LC-electrospray ionization mass spectrometry (LC-ESI-MS) has become a basic tool in bioanalytical chemistry, especially in proteomics. This review discusses and summarizes past and current trends in the realization of nano liquid chromatography (nano LC) platforms. Special attention is given to the mobile phase delivery under nanoflow rates (isocratic, gradient) and sample injection to the nanocolumn. Available detection techniques applied in nano LC separations are also briefly discussed. We followed up the key themes from the original scientific reports over gradual improvements up to the contemporary commercial solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Determining the applicability of the Landauer nanoDot as a general public dosimeter in a research imaging facility.

    PubMed

    Charlton, Michael A; Thoreson, Kelly F; Cerecero, Jennifer A

    2012-11-01

    The Research Imaging Institute (RII) building at the University of Texas Health Science Center at San Antonio (UTHSCSA) houses two cyclotron particle accelerators, positron emission tomography (PET) machines, and a fluoroscopic unit. As part of the radiation protection program (RPP) and meeting the standard for achieving ALARA (as low as reasonably achievable), it is essential to minimize the ionizing radiation exposure to the general public through the use of controlled areas and area dose monitoring. Currently, thirty-four whole body Luxel+ dosimeters, manufactured by Landauer, are being used in various locations within the RII to monitor dose to the general public. The intent of this research was to determine if the nanoDot, a single point dosimeter, can be used as a general public dosimeter in a diagnostic facility. This was tested by first verifying characteristics of the nanoDot dosimeter including dose linearity, dose rate dependence, angular dependence, and energy dependence. Then, the response of the nanoDot dosimeter to the Luxel+ dosimeter when placed in a continuous, low dose environment was investigated. Finally, the nanoDot was checked for appropriate response in an acute, high dose environment. Based on the results, the current recommendation is that the nanoDot should not replace the Luxel+ dosimeter without further work to determine the energy spectra in the RII building and without considering the limitation of the microStar reader, portable on-site OSL reader, at doses below 0.1 mGy (10 mrad).

  15. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-13

    ISS038-E-046586 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  16. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-13

    ISS038-E-046579 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  17. A Global Assessment of Stem Cell Engineering

    PubMed Central

    Loring, Jeanne F.; McDevitt, Todd C.; Palecek, Sean P.; Schaffer, David V.; Zandstra, Peter W.

    2014-01-01

    Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic–industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms. PMID:24428577

  18. A global assessment of stem cell engineering.

    PubMed

    Loring, Jeanne F; McDevitt, Todd C; Palecek, Sean P; Schaffer, David V; Zandstra, Peter W; Nerem, Robert M

    2014-10-01

    Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic-industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms.

  19. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    NASA Astrophysics Data System (ADS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  20. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.