Sample records for nano-crystalline titania films

  1. Microwave-assisted synthesis of porous carbon-titania and highly crystalline titania nanostructures.

    PubMed

    Parker, Alison; Marszewski, Michal; Jaroniec, Mietek

    2013-03-01

    Porous carbon-titania and highly crystalline titania nanostructured materials were obtained through a microwave-assisted one-pot synthesis. Resorcinol and formaldehyde were used as carbon precursors, triblock copolymer Pluronic F127 as a stabilizing agent, and titanium isopropoxide as a titania precursor. This microwave-assisted one-pot synthesis involved formation of carbon spheres according to the recently modified Stöber method followed by hydrolysis and condensation of titania precursor. This method afforded carbon-titania composite materials containing anatase phase with specific surface areas as high as 390 m(2) g(-1). The pure nanostructured titania, obtained after removal of carbon through calcination of the composite material in air, was shown to be the anatase phase with considerably higher degree of crystallinity and the specific surface area as high as 130 m(2) g(-1). The resulting titania, because of its high surface area, well-developed porosity, and high crystallinity, is of great interest for catalysis, water treatment, lithium batteries, and other energy-related applications.

  2. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, F. B.; Jing, B.; Cui, Y.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond filmmore » are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.« less

  3. Effect of chromium underlayer on the properties of nano-crystalline diamond films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Yoshitake, T.; Katamune, Y.; Bowden, M.; Nandasiri, M.; Ghantasala, M.; Mancini, D. C.; Thevuthasan, S.; Kayani, A.

    2013-01-01

    This paper investigated the effect of chromium underlayer on the structure, microstructure, and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on single crystal silicon substrate with a thin film of chromium as an underlayer. Characterization of the film was implemented using non-Rutherford backscattering spectrometry, Raman spectroscopy, near-edge x-ray absorption fine structure, x-ray diffraction, and atomic force microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphitic phases of the films evaluated by x-ray and optical spectroscopic analyses determined consistency between the sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.

  4. Effect Of Chromium Underlayer On The Properties Of Nano-Crystalline Diamond Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garratt, Elias; AlFaify, Salem; Yoshitake, T.

    2013-01-11

    This paper investigated the effect of chromium underlayer on the structure, microstructure and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on silicon substrate with a thin film of chromium as an underlayer. The composition, structure and microstructure of the deposited layers were analyzed using non-Rutherford Backscattering Spectrometry, Raman Spectroscopy, Near-Edge X-Ray Absorption Fine Structure, X-ray Diffraction and Atomic Force Microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphiticmore » phases of the films evaluated by x-ray and optical spectroscopic analysis determined consistency between sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.« less

  5. Macrostructure-dependent photocatalytic property of high-surface-area porous titania films

    NASA Astrophysics Data System (ADS)

    Kimura, T.

    2014-11-01

    Porous titania films with different macrostructures were prepared with precise control of condensation degree and density of the oxide frameworks in the presence of spherical aggregates of polystyrene-block-poly(oxyethylene) (PS-b-PEO) diblock copolymer. Following detailed explanation of the formation mechanisms of three (reticular, spherical, and large spherical) macrostructures by the colloidal PS-b-PEO templating, structural variation of the titania frameworks during calcination were investigated by X-ray diffraction and X-ray photoelectron spectroscopy. Then, photocatalytic performance of the macroporous titania films was evaluated through simple degradation experiments of methylene blue under an UV irradiation. Consequently, absolute surface area of the film and crystallinity of the titania frameworks were important for understanding the photocatalytic performance, but the catalytic performance can be improved further by the macrostructural design that controls diffusivity of the targeted molecules inside the film and their accessibility to active sites.

  6. Titania Deposition on PMR-15

    NASA Technical Reports Server (NTRS)

    Meador, Mary B.; Sutter, James K.; Pizem, Hillel; Gershevitz, Olga; Goffer, Yossi; Frimer, Aryeh A.; Sukenik, Chaim N.; Sampathkumaran, Uma; Milhet, Xavier; McIlwain, Alan

    2005-01-01

    The formation, degree of crystallinity and adherence of dense titania (TiO2) thin film coatings on a high-temperature polyimide resin (PMR-15) can be influenced by the chemical composition of the polymer surface. Furthermore, solution deposition conditions can be adjusted to provide additional control over the morphology and crystallinity of the titania films. Recipes for solution-based titania deposition that used a slowly-hydrolyzing titanium fluoride salt in the presence of boric acid as a fluoride scavenger allowed growth of films up to 750 nm thick in 22 h. By adjusting solution pH and temperature, either amorphous titania or oriented crystalline anatase films could be formed. Surface sulfonate groups enhance the adhesion of solution-deposited oxide thin film coatings. While most sulfonation procedures severely damaged the PMR-15 surface, the use of chlorosulfonic acid followed by hydrolysis of the installed chlorosulfonyl groups provided effective surface sulfonation without significant surface damage. In some cases, the oxide deposition solution caused partial hydrolysis of the polymer surface, which itself was sufficient to allow adhesion of the titania film through chelation of titanium ions by exposed benzoic acid groups on the polymer surface.

  7. Electrodeposition of titania and barium titanate thin films for high dielectric applications

    NASA Astrophysics Data System (ADS)

    Roy, Biplab Kumar

    In order to address the requirement of a low-temperature low-cost cost processing for depositing high dielectric constant ceramic films for applications in embedded capacitor and flexible electronics technology, two different chemical bath processes, namely, thermohydrolytic deposition (TD) and cathodic electrodeposition (ED) have been exploited to generate titania thin films. In thermohydrolytic deposition technique, titania films were generated from acidic aqueous solution of titanium chloride on F: SnO2 coated glass and Si substrates by temperature assisted hydrolysis mechanism. On the other hand, in cathodic electrodeposition, in-situ electro-generation of hydroxyl ions triggered a fast deposition of titania on conductive substrates such as copper and F: SnO2 coated glass from peroxotitanium solution at low temperatures (˜0°C). In both techniques, solution compositions affected the morphology and crystallinity of the films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques have been employed to perform such characterization. As both processes utilized water as solvent, the as-deposited films contained hydroxyl ligand or physically adsorbed water molecules in the titania layer. Besides that, electrodeposited films contained peroxotitanium bonds which were characterized by FTIR studies. Although as-electrodeposited titania films were X-ray amorphous, considerable crystallinity could be generated by heat treatment. The films obtained from both the processes showed v moderately high dielectric constant (ranging from 9-30 at 100 kHz) and high breakdown voltage (0.09-0.15 MV/cm) in electrical measurements. To further improve the dielectric constant, electrodeposited titania films were converted to barium titanate films in high pH barium ion containing solution at 80-90°C. The resultant film contained cubic crystalline barium titanate verified by XRD analysis. Simple low-temperature hydrothermal technique of conversion worked

  8. Fabrication of a pure TiO2 thin film using a self-polymeric titania nano-sol and its properties.

    PubMed

    Park, Won-Kyu; Song, Jeong-Hwan; Kim, Soo-Ryong; Kim, Tae-Hyun; Iwasaki, Mitusnobo

    2012-02-01

    A pure TiO2 thin film without adding any organic binder was fabricated by using a self-polymeric titania nano-sol (14 mass%), which was prepared by the acid peptization method. The particle size distribution in the 14 mass% TiO2 sol, in which almost of particles had a size below 10.2 nm and the crystal phase confirmed by X-ray diffraction analysis was anatase. The diluted nano-sol had a capability to form a thin film at a low temperature (100-400 degrees C) on the slide glass by dipping method. The average thickness of a coating film was measured to be about 0.25-0.30 microm. A coated film had a high refractive index over 1.88 at least irrespective of the heat-treatment even at room temperature drying and showed a super-hydrophilicity (< 5 degrees) after 20 minutes under Ultra Violet light irradiation, and it sustained in the darkness during a long period over 7 days depending on the heat-treatment conditions. Atomic Force Microscopic observation shows that the morphology of a heat-treated film had a relationship with the long-term hydrophilicity in the darkness.

  9. Development of highly porous crystalline titania photocatalysts

    NASA Astrophysics Data System (ADS)

    Marszewski, Michal

    The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal

  10. Biokinetics and effects of titania nano-material after inhalation and i.v. injection

    NASA Astrophysics Data System (ADS)

    Landsiedel, Robert; Fabian, Eric; Ma-Hock, Lan; Wiench, Karin; van Ravenzwaay, Bennard

    2009-05-01

    Within NanoSafe2 we developed a special inhalation model to investigate deposition of inhaled particles in the lung and the further distribution in the body after. Concurrently, the effects of the inhaled materials in the lung were examined. The results for nano-Titania were compared to results from inhalation studies with micron-sized (non-nano) Titania particles and to quartz particles (DQ12, known to be potent lung toxicants). To build a PBPK model for nano-Titania the tissue distribution of the material was also examined following intravenous (i.v.) administration.

  11. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    PubMed Central

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-01-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency. PMID:27194181

  12. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    NASA Astrophysics Data System (ADS)

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-05-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency.

  13. Nano-crystalline porous tin oxide film for carbon monoxide sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun (Inventor); Savinell, Robert F. (Inventor); Jin, Zhihong (Inventor)

    2000-01-01

    A tin oxide sol is deposited on platinum electrodes (12) of a sensor (10). The sol is calcined at a temperature of 500 to 800.degree. C. to produce a thin film of tin oxide with a thickness of about 150 nm to 2 .mu. and having a nano-crystalline structure with good stability. The sensor rapidly detects reducing gases, such as carbon monoxide, or hydrocarbons and organic vapors. Sensors using films calcined at around 700.degree. C. have high carbon monoxide selectivity with a response time of around 4 minutes and a recovery time of 1 minute, and therefore provide good detection systems for detection of trace amounts of pollutants such as toxic and flammable gases in homes, industrial settings, and hospitals.

  14. Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Jeong Hun; Lee, Sung Su; Lee, Hyeon Jun

    2016-03-21

    We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries;more » however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.« less

  15. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao

    2014-08-01

    A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.

  16. Depth profiling of nitrogen within 15N-incorporated nano-crystalline diamond thin films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Cassidy, D. P.; Dissanayake, A.; Mancini, D. C.; Ghantasala, M. K.; Kayani, A.

    2013-09-01

    Nano-Crystalline Diamond (NCD) thin films are a topic of recent interest due to their excellent mechanical and electrical properties. The inclusion of nitrogen is a specific interest as its presence within NCD modifies its conductive properties. The methodology adopted for the characterization of nitrogen incorporated NCD films grown on a chromium underlayer determined a correlation between the chromium and nitrogen concentrations as well as a variation in the concentration profile of elements. Additionally, the concentration of nitrogen was found to be more than three times greater for these films versus those grown on a silicon substrate.

  17. Carrier mobility enhancement of nano-crystalline semiconductor films: Incorporation of redox -relay species into the grain boundary interface

    NASA Astrophysics Data System (ADS)

    Desilva, L. A.; Bandara, T. M. W. J.; Hettiarachchi, B. H.; Kumara, G. R. A.; Perera, A. G. U.; Rajapaksa, R. M. G.; Tennakone, K.

    Dye-sensitized and perovskite solar cells and other nanostructured heterojunction electronic devices require securing intimate electronic contact between nanostructured surfaces. Generally, the strategy is solution phase coating of a hole -collector over a nano-crystalline high-band gap n-type oxide semiconductor film painted with a thin layer of the light harvesting material. The nano-crystallites of the hole - collector fills the pores of the painted oxide surface. Most ills of these devices are associated with imperfect contact and high resistance of the hole conducting layer constituted of nano-crystallites. Denaturing of the delicate light harvesting material forbid sintering at elevated temperatures to reduce the grain boundary resistance. It is found that the interfacial and grain boundary resistance can be significantly reduced via incorporation of redox species into the interfaces to form ultra-thin layers. Suitable redox moieties, preferably bonded to the surface, act as electron transfer relays greatly reducing the film resistance offerring a promising method of enhancing the effective hole mobility of nano-crystalline hole-collectors and developing hole conductor paints for application in nanostructured devices.

  18. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  19. Formation and photopatterning of nanoporous titania thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Oun-Ho; Cheng, Joy Y.; Kim, Hyun Suk

    2007-06-04

    Photopatternable nanoporous titania thin films were generated from mixtures of an organic diblock copolymer, poly(styrene-b-ethylene oxide) (PS-b-PEO), and an oligomeric titanate (OT) prepared from a chelated titanium isopropoxide. The PS-b-PEO templates well-defined microdomains in thin films of the mixtures, which upon thermal treatment at 450 deg. C, become nanopores in titania. Average pore size and porosity are controlled by the molecular weight and loading level of the PS-b-PEO, respectively. Patterns of nanoporous titania were created by selectively exposing UV light on the mixture films. The UV irradiation destroys the chelating bond and induces the cross-linking reaction of the OT. Subsequentmore » wet development followed by thermal treatment gives patterned nanoporous films of anatase phase titania.« less

  20. Thermal conductivity of ultrathin nano-crystalline diamond films determined by Raman thermography assisted by silicon nanowires

    NASA Astrophysics Data System (ADS)

    Anaya, Julian; Rossi, Stefano; Alomari, Mohammed; Kohn, Erhard; Tóth, Lajos; Pécz, Béla; Kuball, Martin

    2015-06-01

    The thermal transport in polycrystalline diamond films near its nucleation region is still not well understood. Here, a steady-state technique to determine the thermal transport within the nano-crystalline diamond present at their nucleation site has been demonstrated. Taking advantage of silicon nanowires as surface temperature nano-sensors, and using Raman Thermography, the in-plane and cross-plane components of the thermal conductivity of ultra-thin diamond layers and their thermal barrier to the Si substrate were determined. Both components of the thermal conductivity of the nano-crystalline diamond were found to be well below the values of polycrystalline bulk diamond, with a cross-plane thermal conductivity larger than the in-plane thermal conductivity. Also a depth dependence of the lateral thermal conductivity through the diamond layer was determined. The results impact the design and integration of diamond for thermal management of AlGaN/GaN high power transistors and also show the usefulness of the nanowires as accurate nano-thermometers.

  1. Synthesis and energy applications of mesoporous titania thin films

    NASA Astrophysics Data System (ADS)

    Islam, Syed Z.

    The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films are modified by doping using hydrogen and nitrogen, and sensitization using graphene quantum dot sensitization. For all of these modifiers, well-ordered mesoporous titania films were synthesized by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments have been developed for nitrogen and hydrogen doping in the mesoporous titania films for band gap reduction, visible light absorption and enhancement of photocatalytic activity. The hydrazine treatment in mesoporous titania thin films suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti3+ into the lattice of surfactant-templated TiO2 films and enhanced visible light photoactivity, but that the benefits are limited by gradual mesostructure deterioration. The plasma treated nitrogen doped mesoporous titania showed about 240 times higher photoactivity compared to undoped film in hydrogen production from photoelectrochemical water splitting under visible light illumination. Plasma treated hydrogen doped mesoporous titania thin films has also been developed for enhancement of visible light absorption. Hydrogen treatment has been shown to turn titania (normally bright white) black, indicating vastly improved visible light absorption. The cause of the color change and its effectiveness for photocatalysis remain open questions. For the first time, we showed that a significant amount of hydrogen is incorporated in hydrogen plasma treated mesoporous titania films by neutron reflectometry measurements. In addition to the

  2. A study of structural and mechanical properties of nano-crystalline tungsten nitride film synthesis by plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu

    2015-02-01

    Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.

  3. A hydrothermal peroxo method for preparation of highly crystalline silica-titania photocatalysts.

    PubMed

    Krivtsov, Igor; Ilkaeva, Marina; Avdin, Viacheslav; Khainakov, Sergei; Garcìa, Jose R; Ordòñez, Salvador; Dìaz, Eva; Faba, Laura

    2015-04-15

    A new completely inorganic method of preparation of silica-titania photocatalyst has been described. It has been established that the addition of silica promotes crystallinity of TiO2 anatase phase. Relative crystallinity and TiO2 crystal size in the silica-titania particles increase with the silica content until SiO2/TiO2 molar ratio of 0.9, but at higher molar ratios they start to decrease. The single-source precursor containing peroxo titanic (PTA) and silicic acids has been proved to be responsible for high crystallinity of TiO2 encapsulated into amorphous silica. It has been proposed that peroxo groups enhance rapid formation of crystalline titania seeds, while silica controls their growth. It has been concluded from the TEM that the most morphologically uniform anatase crystallites covered with SiO2 particles are prepared at SiO2/TiO2 molar ratio of 0.4. This sample, according to (29)Si NMR, also shows the high content of hydroxylated silica Q(3) and Q(2) groups, and it is the most photocatalytically active in UV-assisted decomposition of methylene blue among the tested materials. It has been determined that the increase in the amount of the condensed Q(4) silica in the mixed oxides leads to the decrease in photocatalytic performance of the material, despite its better crystallinity. High crystallinity, low degree of incorporation of Ti atoms in SiO2 in the mixed oxide and adsorption of methylene blue in the vicinity of photoactive sites on the hydroxylated silica have been considered as the main factors determining the high degradation degree of methylene blue in the presence of silica-titania. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Influence of different heat treatment methods of titania film on performance of DSSCs

    NASA Astrophysics Data System (ADS)

    More, Venumadhav; Mokurala, Krishna; Bhargava, Parag

    2018-04-01

    Titania mesoporous film is a key component of dye-sensitized solar cells (DSSCs) as it transfers electrons from dye molecule to external circuit through the transparent conducting oxide (TCO). Interparticle connectivity, porosity and cracks in the titania films play an important role in determining the performance of DSSCs. The heating schedule with respect to the repetitive coating to build up titania film thickness impacts the titania film characteristics. In the present study, experiments were designed to carry out heat treatments with expectation of improving connectivity and healing cracks. Repetitive screen printing was carried out with either heat treatment after each print step (multiple sintering) or the heat treatment was carried out just once after the desired thickness had been attained (single-step sintering). Interconnectivity of the titania particles in the sintered titania film was analyzed by impedance spectroscopy and nanoindentation. Titania films sintered by MS showed better performance in terms of higher efficiency for the corresponding DSSCs than those prepared using titania films sintered by SS.

  5. Synthesis and Microstructure Evolution of Nano-Titania Doped Silicon Coatings

    NASA Astrophysics Data System (ADS)

    Moroz, N. A.; Umapathy, H.; Mohanty, P.

    2010-01-01

    The Anatase phase of Titania (TiO2) in nanocrystalline form is a well known photocatalyst. Photocatalysts are commercially used to accelerate photoreactions and increase photovoltaic efficiency such as in solar cells. This study investigates the in-flight synthesis of Titania and its doping into a Silicon matrix resulting in a catalyst-dispersed coating. A liquid precursor of Titanium Isopropoxide and ethanol was coaxially fed into the plasma gun to form Titania nanoparticles, while Silicon powder was externally injected downstream. Coatings of 75-150 μm thick were deposited onto flat coupons. Further, Silicon powder was alloyed with aluminum to promote crystallization and reduce the amorphous phase in the Silicon matrix. Dense coatings containing nano-Titania particles were observed under electron microscope. X-ray diffraction showed that both the Rutile and Anatase phases of the Titania exist. The influence of process parameters and aluminum alloying on the microstructure evolution of the doped coatings is analyzed and presented.

  6. Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same

    DOEpatents

    Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.; Hersam, Mark C.

    2016-07-19

    In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.

  7. Templated synthesis of nanoporous titania/nanocarbon composites

    NASA Astrophysics Data System (ADS)

    Mistry, Jayur

    Hexagonally patterned (honeycomb structured) nano-porous titania finds distinct applications in the field of material science, electronics, and catalysis. The preparation of titania/nanocarbon composites was carried out using titanium iso-propoxide precursor and a viscous surfactant templated system arranged into nanoscopic channels of water and iso-octane. Nanocarbon was introduced into the titania pores, as it was dispersed into the water (used to increase the W0), while making templets. Prepared titania/nanocarbon composites were analyzed under scanning electron microscopy (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD) after a specific heat treatment. SEM and TEM allows us to see the morphology of the hexagonally patterned templates and XRD shows the change in the crystallinity of the titania after the heat treatment. Further tests are run with the Solartron™ CellTest potentiostat syste, which, allows us to study the electrical properties of the nanocomposites. The composites synthesized have wide applications in number of fields, including energy, sensors and electronics.

  8. Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Sahu, B. N.; Suresh, K. G.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.

    2018-05-01

    Single phase nano-crystalline zinc ferrite (ZnFe2O4) thin films were deposited on fused quartz substrate using the pulsed laser deposition technique. The films were deposited at different substrate temperatures. The field dependence of magnetization at 10 K shows hysteresis loops for all the samples. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) magnetization indicated irreversible behavior between the FC and ZFC data, and the irreversibility depends on the measuring magnetic field. The thermo-magnetic irreversibility in the magnetization data is correlated with the magnitude of the applied field and the coercivity (HC) obtained from the M-H loops.

  9. Controlling morphology, mesoporosity, crystallinity, and photocatalytic activity of ordered mesoporous TiO2 films prepared at low temperature

    NASA Astrophysics Data System (ADS)

    Elgh, Björn; Yuan, Ning; Cho, Hae Sung; Magerl, David; Philipp, Martine; Roth, Stephan V.; Yoon, Kyung Byung; Müller-Buschbaum, Peter; Terasaki, Osamu; Palmqvist, Anders E. C.

    2014-11-01

    Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.

  10. Europium-doped mesoporous titania thin films: rare-earth locations and emission fluctuations under illumination.

    PubMed

    Leroy, Celine Marie; Cardinal, Thierry; Jubera, Veronique; Treguer-Delapierre, Mona; Majimel, Jerome; Manaud, Jean Pierre; Backov, Renal; Boissière, Cedric; Grosso, David; Sanchez, Clement; Viana, Bruno; Pellé, Fabienne

    2008-10-06

    Herein, Eu(III)-doped 3D mesoscopically ordered arrays of mesoporous and nanocrystalline titania are prepared and studied. The rare-earth-doped titania thin films-synthesized via evaporation-induced self-assembly (EISA)-are characterized by using environmental ellipsoporosimetry, electronic microscopy (i.e. high-resolution scanning electron microscopy, HR-SEM, and transmission electron microscopy, HR-TEM), X-ray diffraction, and luminescence spectroscopy. Structural characterizations show that high europium-ion loadings can be incorporated into the titanium-dioxide walls without destroying the mesoporous arrangement. The luminescence properties of Eu(III) are investigated by using steady-state and time-resolved spectroscopy via excitation of the Eu(III) ions through the titania host. Using Eu(III) luminescence as a probe, the europium-ion sites can be addressed with at least two different environments within the mesoporous framework, namely, a nanocrystalline environment and a glasslike one. Emission fluctuations ((5)D(0)-->(7)F(2)) are observed upon continuous UV excitation in the host matrix. These fluctuations are attributed to charge trapping and appear to be strongly dependent on the amount of europium and the level of crystallinity.

  11. Impact of the titania nanostructure on charge transport and its application in hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Koffman-Frischknecht, Alejandro; Gonzalez, Fernando; Plá, Juan; Violi, Ianina; Soler-Illia, Galo J. A. A.; Perez, M. Dolores

    2018-02-01

    Porous titania films are widely studied in a number of optoelectronic applications due to its favorable optical and electronic characteristics. Mesoporous titania thin films (MTTFs) with tunable pore size, pore order, accessibility and crystallinity are of interest in electronic devices due to the potential for optimization of the desired characteristics for charge separation and carrier transport. In this work, several MTTFs were prepared by sol-gel chemistry with different structural properties tuned by post-synthesis thermal treatment. The effect of the structural properties (pore diameter, order and accessibility) on the electrical properties of the material was studied by films fabrication onto a transparent conducting electrode, ITO, such that it enables optoelectronic applications. The performance as photoanode was explored by the fabrication of hybrid polymer (P3HT): titania solar cells. Not only does structural properties affect polymer impregnation inside the titania pores as expected and hence impacts charge separation at the interface, but also the thermal treatment affects crystallinity and the films electronic properties. A more complete picture about the electronic properties of the different MTTFs prepared in this work was studied by mobility measurement by space charge limited current and impedance spectroscopy.

  12. Critical aspects in the production of periodically ordered mesoporous titania thin films

    NASA Astrophysics Data System (ADS)

    Soler-Illia, Galo J. A. A.; Angelomé, Paula C.; Fuertes, M. Cecilia; Grosso, David; Boissiere, Cedric

    2012-03-01

    Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems.Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials

  13. Structural phase study in un-patterned and patterned PVDF semi-crystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramod, K., E-mail: rameshg.phy@pondiuni.edu.in; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu.in

    2014-04-24

    This work explores the structural phase studies of organic polymer- polyvinylidene fluoride (PVDF) thin films in semi-crystallized phase and nano-patterned PVDF thin films. The nanopatterns are transferred with the CD layer as a master using soft lithography technique. The semi-crystalline PVDF films were prepared by a still and hot (SH) method, using a homemade spin coater that has the proficiency of substrate heating by a halogen lamp. Using this set up, smooth PVDF thin films in semi-crystalline α-phase were prepared using 2-Butanone as solvent. XRD, AFM and confocal Raman microscope have been utilized to study the structural phase, crystallinity andmore » quality of the films.« less

  14. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  15. High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates.

    PubMed

    Li, Xue; Lau, King Hang Aaron; Kim, Dong Ha; Knoll, Wolfgang

    2005-05-24

    Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.

  16. Effect of lead ion concentration on the structural and optical properties of nano-crystalline PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mehmood, S. K.; Mansoor, M.; Asim, M. M.

    2014-06-01

    PbS thin films have received considerable attention because of their potential applications in opto-electronics applications. Spontaneous reaction of lead acetate and thiourea in aqueous hydrazine hydrate has been used for depositing PbS thin films on glass substrates. Structural and optical properties of PbS thin films are greatly influenced by the morality of the reactants and crystal defects in the lattice. Our work focuses on the variation in lead ion concentration and its effect on the structural and optical properties of PbS thin films. The deposited films were analyzed using XRD, SEM, spectrophotometer and dark resistance measurement. XRD patterns indicated the formation of major phase of nano crystalline PbS with minor presence of lead oxide phase. We also noticed that peak intensity ratio of I111/I200 varied by changing the Pb ion concentration. The film thickness and dark resistance increased whereas optical band gap decreased with the decreasing Pb ion concentration. SEM scans showed that the grain size is less than 100 nm and is not affected by varying Pb ion concentration.

  17. Critical aspects in the production of periodically ordered mesoporous titania thin films.

    PubMed

    Soler-Illia, Galo J A A; Angelomé, Paula C; Fuertes, M Cecilia; Grosso, David; Boissiere, Cedric

    2012-04-21

    Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems.

  18. XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy.

    PubMed

    Chu, C L; Wang, R M; Hu, T; Yin, L H; Pu, Y P; Lin, P H; Dong, Y S; Guo, C; Chung, C Y; Yeung, K W K; Chu, Paul K

    2009-01-01

    A dense titania film is fabricated in situ on NiTi shape memory alloy (SMA) by anodic oxidation in a Na(2)SO(4) electrolyte. The microstructure of the titania film and its influence on the biocompatibility of NiTi SMA are investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), hemolysis analysis, and platelet adhesion test. The results indicate that the titania film has a Ni-free zone near the surface and can effectively block the release of harmful Ni ions from the NiTi substrate in simulated body fluids. Moreover, the wettability, hemolysis resistance, and thromboresistance of the NiTi sample are improved by this anodic oxidation method.

  19. Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells.

    PubMed

    Su, Bo; Caller-Guzman, Herbert A; Körstgens, Volker; Rui, Yichuan; Yao, Yuan; Saxena, Nitin; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter

    2017-12-20

    Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH 3 NH 3 PbI 3 ) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.

  20. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

    PubMed Central

    Chu, Zhuangzhuang; Zhao, Tianrui; Li, Lin; Fan, Jian; Qin, Yuyue

    2017-01-01

    Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of nano-Ag and nano-ZnO. The addition of nanoparticles into the pure PLA film decreased the tensile strength and elasticity modulus and increased the elongation of breaks—in other words, the flexibility and extensibility of these composites improved. According to the results of differential scanning calorimetry (DSC), the glass transition temperature of the PLA nano-composite films decreased, and the crystallinity of these films increased; a similar result was apparent from X-ray diffraction (XRD) analysis. The water vapor permeability (WVP) and opacity of the PLA nano-composite films augmented compared with pure PLA film. Incorporation of nanoparticles to the PLA films significantly improved the antimicrobial activity to inhibit the growth of Escherichia coli. The results indicated that PLA films with nanoparticles could be considered a potential environmental-friendly packaging material. PMID:28773018

  1. Microstructural evolutions and stress studies of titania films derived by "spin-deposition" methods

    NASA Astrophysics Data System (ADS)

    Eun, Tai Hee

    Titania (TiO2) films were fabricated by a "spin-deposition" process. Titanium alkoxides react with moisture in the air, leading to the formation of metal hydroxides which subsequently form an oxide network during deposition. The microstructure of film is easily controlled by the selection of titanium alkoxides and solvents. Films from titanium n-butoxide (Ti(OC 4H9n)4) in toluene exhibited a dense microstructure devoid of cracks. In contrast, films produced from titanium isopropoxide (Ti(OC3H7i)4) in the toluene regularly contained micro-cracks. Titanium isopropoxide in either isopropanol or n-propanol produces highly porous films. After annealing at 300°C, the film derived from titanium n-butoxide in toluene possessed 2˜3 nm nanocrystallites of titanium monoxide (TiO, cubic) in amorphous matrices. TEM and FTIR investigations indicate that the intermediates formed from the oligomers of titanium n-butoxide lead to the formation of the TiO. By annealing at 400°C, the TiO nanoparticles transformed to the TiO2 (anatase). At annealing higher than 450°C, the film was completely crystallized into a polycrystalline of ˜5 nm anatase. In water-rich environments, all amorphous titania films crystallized within 24 hours at 100°C. The crystallization of films is confirmed by XRD and FTIR studies. Amorphous titania films have remnant bridging and terminal hydroxy groups. Removal of these hydroxy groups is promoted by water vapor, which induces the crystallization of amorphous titania to anatase. The mechanism of crystallization in a water-rich environment was proposed based on the FTIR study. Stress evolution in titania films spin-deposited on silicon with solutions of titanium n-butoxide in toluene was investigated by an in-situ wafer curvature method. Tensile stresses were induced due to the densification by removal of water molecules attached to Ti-O-Ti linkages from 200°C to 300°C. The effect of crystallization on stress in the film was studied by comparing results

  2. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  3. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    PubMed

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite.

    PubMed

    Valencia, Germán Ayala; Luciano, Carla Giovana; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2018-02-01

    The aim of this research was to study the effects of laponite concentrations on some properties of nano-biocomposite films based on cassava starch, focusing mainly the relation between the properties of the surface microstructure and roughness, water contact angle and gloss. Nano-biocomposite films were produced by casting. We analyzed gloss, color, opacity, water contact angle, crystallinity by X-ray diffraction, and microstructure by scanning electron microscopy and atomic force microscopy. Texture parameters (energy, entropy and fractal dimension) were extracted from micrographs. We observed a great impact of laponite in the morphology of nano-biocomposite films. Texture parameters correlated with surface heterogeneity and roughness. Finally, surface roughness affected the surface hydrophilicity of nano-biocomposite films. Laponite platelets were exfoliated and/or intercalated with amylose and amylopectin chains. This research reports new information on the effects of laponite concentrations on the morphological, optical and wetting properties of nano-biocomposite films aiming future industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Improving the long-term stability of Ti6Al4V abutment screw by coating micro/nano-crystalline diamond films.

    PubMed

    Xie, Youneng; Zhou, Jing; Wei, Qiuping; Yu, Z M; Luo, Hao; Zhou, Bo; Tang, Z G

    2016-10-01

    Abutment screw loosening is the most common complication of implanting teeth. Aimed at improving the long-term stability of them, well-adherent and homogeneous micro-crystalline diamond (MCD) and nano-crystalline diamond (NCD) were deposited on DIO(®) (Dong Seo, Korea) abutment screws using a hot filament chemical vapor deposition (HFCVD) system. Compared with bare DIO(®) screws, diamond coated ones showed higher post reverse toque values than the bare ones (p<0.05) after cyclic loading one million times under 100N, and no obvious flaking happened after loading test. Diamond coated disks showed lower friction coefficients of 0.15 and 0.18 in artificial saliva when countered with ZrO2 than that of bare Ti6Al4V disks of 0.40. Though higher cell apoptosis rate was observed on film coated disks, but no significant difference between MCD group and NCD group. And the cytotoxicity of diamond films was acceptable for the fact that the cell viability of them was still higher than 70% after cultured for 72h. It can be inferred that coating diamond films might be a promising modification method for Ti6Al4V abutment screws. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Controlling the Morphology of Side Chain Liquid Crystalline Block Copolymer Thin Films through Variations in Liquid Crystalline Content

    PubMed Central

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T.

    2009-01-01

    In this paper we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the inter-material dividing surface (IMDS). By manipulating the strength of these interactions the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nano-patterning applications without manipulation of the surface chemistry or the application of external fields. PMID:18763835

  7. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajiki, Yoshiharu, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp; Kan, Tetsuo; Yahiro, Masayuki

    We propose a silicon (Si) based near-infrared photodetector using self-assembled organic crystalline nano-pillars, which were formed on an n-type Si substrate and were covered with an Au thin-film. These structures act as antennas for near-infrared light, resulting in an enhancement of the light absorption on the Au film. Because the Schottky junction is formed between the Au/n-type Si, the electron excited by the absorbed light can be detected as photocurrent. The optical measurement revealed that the nano-pillar structures enhanced the responsivity for the near-infrared light by 89 (14.5 mA/W) and 16 (0.433 mA/W) times compared with those of the photodetector without nano-pillarsmore » at the wavelengths of 1.2 and 1.3 μm, respectively. Moreover, no polarization dependency of the responsivity was observed, and the acceptable incident angle ranged from 0° to 30°. These broad responses were likely to be due to the organic nano-pillar structures' having variation in their orientation, which is advantageous for near-infrared detector uses.« less

  8. Sol-gel nano-porous silica-titania thin films with liquid fill for optical interferometric sensors

    NASA Astrophysics Data System (ADS)

    Martin, Andrew J.; Green, Mino

    1990-11-01

    The production of thin films whose refractive index is measurand specific, for use in an interferometric fiber optic chemical sensor, is discussed. The problem of making such coatings has been tackled by a system we have termed the "guest-host" approach, in which an active liquid whose index varies with measurand, is contained within a porous glass host of fixed index. Suitable porous silica-titania glass films have been produced via the sol-gel process. The use of this system enables the index of the glass to be varied, so that the composite index of the liquid filled film can be tailored to that required by the optical system. The sol-gel method developed is based upon the hydrolysis and polymerisation of metal alkoxides, in an acidic aqueous/alcoholic solution. Thin film slab waveguides were deposited in order to measure the light scattering losses, which were found to be typically ''1dB/cm. The porosity of films was studied using a new technique developed in which water adsorption isotherms are plotted using ellipsometry. The pore size was found to be very small of pore diameter in the nanometer range, and the total porosity -1O%. Both of these factors were increased by the removal of residual organic material, using hydrogen peroxide. Finally the use of pH indicator dyes as a liquid fill is discussed, to produce a pH sensor.

  9. Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films

    NASA Astrophysics Data System (ADS)

    Zeeshan, M. A.; Esqué-de Los Ojos, D.; Castro-Hartmann, P.; Guerrero, M.; Nogués, J.; Suriñach, S.; Baró, M. D.; Nelson, B. J.; Pané, S.; Pellicer, E.; Sort, J.

    2016-01-01

    The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires requires taking the curved geometry of the indented surface and sink-in effects into account. These findings are of high relevance for optimizing the performance of new, mechanically-robust, nanoscale materials for increasingly complex miniaturized devices.The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires

  10. Preparation of ordered mesoporous alumina-doped titania films with high thermal stability and their application to high-speed passive-matrix electrochromic displays.

    PubMed

    Jiang, Xiangfen; Bastakoti, Bishnu Prasad; Weng, Wu; Higuchi, Tetsuya; Oveisi, Hamid; Suzuki, Norihiro; Chen, Wei-Jung; Huang, Yu-Tzu; Yamauchi, Yusuke

    2013-08-12

    Ordered mesoporous alumina-doped titania thin films with anatase crystalline structure were prepared by using triblock copolymer Pluronic P123 as structure-directing agent. Uniform Al doping was realized by using aluminum isopropoxide as a dopant source which can be hydrolyzed together with titanium tetraisopropoxide. Aluminum doping into the titania framework can prevent rapid crystallization to the anatase phase, thereby drastically increasing thermal stability. With increasing Al content, the crystallization temperatures tend to increase gradually. Even when the Al content doped into the framework was increased to 15 mol %, a well-ordered mesoporous structure was obtained, and the mesostructural ordering was still maintained after calcination at 550 °C. During the calcination process, large uniaxial shrinkage occurred along the direction perpendicular to the substrate with retention of the horizontal mesoscale periodicity, whereby vertically oriented nanopillars were formed in the film. The resulting vertical porosity was successfully exploited to fabricate a high-speed and high-quality passive-matrix electrochromic display by using a leuco dye. The vertical nanospace in the films can effectively prevent drifting of the leuco dye. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photocatalytic activity of titania coatings synthesised by a combined laser/sol–gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adraider, Y.; Pang, Y.X., E-mail: F6098038@tees.ac.uk; Nabhani, F.

    2014-06-01

    Highlights: • Sol–gel method was used to prepare titania coatings. • Titania thin films were coated on substrate surface by dip coating. • Fibre laser was employed to irradiate the titania coated surfaces. • Photocatalytic efficiency of titania coatings was significantly improved after laser processing. - Abstract: Titania coatings were prepared using sol–gel method and then applied on the substrate surface by dip coating. Fibre laser (λ = 1064 nm) in continuous wave mode was used to irradiate the titania coated surfaces at different specific energies. The ATR-FTIR, XRD, SEM, EDS and contact angle measurement were employed to analyse surfacemore » morphology, phase composition and crystalline structure of laser-irradiated titania coatings, whilst the photocatalytic activity was evaluated by measuring the decomposition of methylene blue (MB) after exposure to the visible light for various illumination times. Results showed that the laser-irradiated titania coatings demonstrate significant different composition and microstructure in comparison with the as-coated from the same sol–gel titania. Photocatalytic efficiency of titania coatings was significantly improved after laser processing. The photocatalytic activity of laser-irradiated titania coatings was higher than that of the as-coated titania. The titania coating processed at laser specific energy of 6.5 J/mm{sup 2} exhibited the highest photocatalytic activity among all titania samples.« less

  12. Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Rani, D. Jhansi; Kumar, A. GuruSampath; Sarmash, T. Sofi; Chandra Babu Naidu, K.; Maddaiah, M.; Rao, T. Subba

    2016-06-01

    High transmitting, non absorbent, nano crystalline zirconium titanate (ZT) thin films suitable for anti reflection coatings (ARC) were deposited on to glass substrates by direct current (DC) magnetron reactive sputtering technique, under distinct Argon to Oxygen (Ar/O2) gas flow rate ratios of 31/1, 30/2, 29/3 and 28/4, with a net gas flow (Ar + O2) of 32sccm, at an optimum substrate temperature of 250°C. The influence of the gas mixture ratio on the film properties has been investigated by employing x-ray diffraction (XRD), ultra violet visible (UV-vis) spectroscopy, atomic force microscopy (AFM), energy dispersive x-ray analysis (EDX) and four point probe methods. The films showed a predominant peak at 30.85° with (111) orientation. The crystallite size reduced from 22.94 nm to 13.5 nm and the surface roughness increased from 11.53 nm to 50.58 nm with increase in oxygen content respectively. The films deposited at 31/1 and 30/2 showed almost similar chemical composition. Increased oxygen content results an increase in electrical resistivity from 3.59 × 103 to 2.1 × 106 Ωm. The film deposited at Ar/O2 of 28/4 exhibited higher average optical transmittance of 91%, but its refractive index is higher than that of what is required for ARC. The films deposited at 31/1 and 30/2 of Ar/O2 possess higher transmittance (low absorbance) apart from suitable refractive index. Thus, these films are preferable candidates for ARC.

  13. Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO2-SiO2 nano composite coatings on stainless steel substrates.

    PubMed

    Dadash, Mohammad Saleh; Karbasi, Saeed; Esfahani, Mojtaba Nasr; Ebrahimi, Mohammad Reza; Vali, Hojatollah

    2011-04-01

    Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO(2)-calcinated NBG and TiO(2)-Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBG-titania films have better bioactivity than non calcinated NBG-titania films.

  14. New High Aspect-Ratio Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Panaitescu, Eugen; Richter, Christiaan; Menon, Latika

    2007-03-01

    Titanium oxide nanotubes show great promise in photocatalytic, gas sensing, biological, and other applications. Techniques for the fabrication of titania nanotubes include electrodeposition in polymer molds starting from alumina templates, anodization of titanium in fluoride containing solutions, and hydrothermal treatment of nano- and micropowders. We have developed a new synthesis route for the production of new ultra-high aspect-ratio (over 1000:1) titania nanotubes by anodization in chloride containing acid solutions. The fabrication process occurs rapidly, in a fraction of the time when compared with other methods such as anodization in the highly toxic fluoride-containing electrolytes. We have demonstrated nanotubes with diameters as small as 25 nm, and lengths of up to 50 μm, and we have produced them with varying carbon content through the addition of organic acids in the electrolyte. This opens up new possibilities for many advanced applications of such nanotubes. Various synthesis conditions (pH, chloride content, electrolyte nature), and their influence on morphology, composition, and crystalline structure will be presented. Preliminary results on photocatalytic and transmission properties will also be discussed.

  15. Pore orientation effects on the kinetics of mesostructure loss in surfactant templated titania thin films

    DOE PAGES

    Das, Saikat; Nagpure, Suraj; Garlapalli, Ravinder K.; ...

    2016-12-17

    The mesostructure loss kinetics are measured as a function of the orientation of micelles in 2D hexagonal close packed (HCP) columnar mesostructured titania thin films using in situ grazing incidence small angle x-ray scattering (GISAXS). Complementary supporting information is provided by ex situ scanning electron microscopy. Pluronic surfactant P123 acts as the template to synthesize HCP structured titania thin films. When the glass substrates are modified with crosslinked P123, the micelles of the HCP mesophase align orthogonal to the films, whereas a mix of parallel and orthogonal alignment is found on unmodified glass. The rate of mesostructure loss of orthogonallymore » oriented (o-HCP) thin films (~60 nm thickness) prepared on modified substrate is consistently found to be less by a factor of 2.5 ± 0.35 than that measured for mixed orientation HCP films on unmodified substrates. The activation energy for mesostructure loss is only slightly greater for films on modified glass (155 ± 25 kJ/mol -1) than on unmodified (128 kJ/mol -1), which implies that the rate difference stems a greater activation entropy for mesostructure loss in o-HCP titania films. Nearly perfect orthogonal orientation of micelles on modified surfaces contributes to the lower rate of mesostructure loss by supporting the anisotropic stresses that develop within the films during annealing due to continuous curing, sintering and crystallization into the anatase phase during high temperature calcination (>450 °C). Because the film thickness dictates the propagation of orientation throughout the films and the degree of confinement, thicker (~250 nm) films cast onto P123-modified substrates have a much lower activation energy for mesostructure loss (89 ± 27 kJ/mol -1) due to the mix of orientations found in the films. Thus, in conclusion, this kinetic study shows that thin P123- templated o-HCP titania films are not only better able to achieve good orthogonal alignment of 3 the mesophase

  16. Pore orientation effects on the kinetics of mesostructure loss in surfactant templated titania thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Saikat; Nagpure, Suraj; Garlapalli, Ravinder K.

    The mesostructure loss kinetics are measured as a function of the orientation of micelles in 2D hexagonal close packed (HCP) columnar mesostructured titania thin films using in situ grazing incidence small angle x-ray scattering (GISAXS). Complementary supporting information is provided by ex situ scanning electron microscopy. Pluronic surfactant P123 acts as the template to synthesize HCP structured titania thin films. When the glass substrates are modified with crosslinked P123, the micelles of the HCP mesophase align orthogonal to the films, whereas a mix of parallel and orthogonal alignment is found on unmodified glass. The rate of mesostructure loss of orthogonallymore » oriented (o-HCP) thin films (~60 nm thickness) prepared on modified substrate is consistently found to be less by a factor of 2.5 ± 0.35 than that measured for mixed orientation HCP films on unmodified substrates. The activation energy for mesostructure loss is only slightly greater for films on modified glass (155 ± 25 kJ/mol -1) than on unmodified (128 kJ/mol -1), which implies that the rate difference stems a greater activation entropy for mesostructure loss in o-HCP titania films. Nearly perfect orthogonal orientation of micelles on modified surfaces contributes to the lower rate of mesostructure loss by supporting the anisotropic stresses that develop within the films during annealing due to continuous curing, sintering and crystallization into the anatase phase during high temperature calcination (>450 °C). Because the film thickness dictates the propagation of orientation throughout the films and the degree of confinement, thicker (~250 nm) films cast onto P123-modified substrates have a much lower activation energy for mesostructure loss (89 ± 27 kJ/mol -1) due to the mix of orientations found in the films. Thus, in conclusion, this kinetic study shows that thin P123- templated o-HCP titania films are not only better able to achieve good orthogonal alignment of 3 the mesophase

  17. Synthesis and characterization of Ni NPs-doped silica-titania nanocomposites: structural, optical and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Islam, S.; Bidin, N.; Osman, S. S.; Krishnan, G.; Salim, A. A.; Riaz, S.; Suan, L. P.; Naseem, S.; Sanagi, M. M.

    2017-01-01

    The synthesis of Ni-doped silica-titania nanocomposite is performed by sol-gel method. The samples prior and after heat treatment at 300 °C for 1 h are characterized by analytical instrumental techniques. FE-SEM and AFM results indicate the regular morphology with low surface roughness without any cracks. EDX analysis verifies the formation of nanocomposites. XRD of the films reveals crystalline titania phases after annealing at 300 °C. The FTIR confirms the bond linkage between silica, titania and nickel molecules. High surface area 155 m2/g, pore volume of 0.2 cm3/g and pore diameter of 48.10 Å are obtained after heat treatment. The magnetic results show that the composite content is reminiscent of ferromagnetic hysteresis loop, with remanence magnetization Mr of 45.35 and 13.20 emu/g for both samples. The organic dye phenol red is used for the evaluation of photocatalytic activity of the synthesized magnetic material. The homogeneous surface morphology, crystalline nature, good solubility of magnetic nanoparticles into the silica-titania matrix show that the Ni/SiO2-TiO2 magnetic photocatalyst can be efficient and reusable.

  18. Formation of crystalline heteroepitaxial SiC films on Si by carbonization of polyimide Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Luchinin, Viktor V.; Goloudina, Svetlana I.; Pasyuta, Vyacheslav M.; Panov, Mikhail F.; Smirnov, Alexander N.; Kirilenko, Demid A.; Semenova, Tatyana F.; Sklizkova, Valentina P.; Gofman, Iosif V.; Svetlichnyi, Valentin M.; Kudryavtsev, Vladislav V.

    2017-06-01

    High-quality crystalline nano-thin SiC films on Si substrates were prepared by carbonization of polyimide (PI) Langmuir-Blodgett (LB) films. The obtained films were characterized by Fourier transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, Raman spectroscopy, transmission electon microscopy (TEM), transmission electron diffraction (TED), and scanning electron microscopy (SEM). We demonstrated that the carbonization of a PI film on a Si substrate at 1000 °C leads to the formation of a carbon film and SiC nanocrystals on the Si substrate. It was found that five planes in the 3C-SiC(111) film are aligned with four Si(111) planes. As a result of repeated annealing of PI films containing 121 layers at 1200 °C crystalline SiC films were formed on the Si substrate. It was shown that the SiC films (35 nm) grown on Si(111) at 1200 °C have a mainly cubic 3C-SiC structure with small amount of hexagonal polytypes. Only 3C-SiC films (30 nm) were formed on the Si(100) substrate at the same temperature. It was shown that the SiC films (30-35 nm) can cover the voids with size up to 10 µm in the Si substrate. The current-voltage (I-V) characteristics of the n-Si/n-SiC heterostructure were obtained by conductive atomic force microscopy.

  19. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-01

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  20. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states.

    PubMed

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-27

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  1. Preparation of bioactive titania films on titanium metal via anodic oxidation.

    PubMed

    Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T

    2009-01-01

    To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.

  2. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in- situ formed lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Wang, Yige; Wang, Li; Li, Huanrong; Liu, Peng; Qin, Dashan; Liu, Binyuan; Zhang, Wenjun; Deng, Ruiping; Zhang, Hongjie

    2008-03-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.

  3. Anomalous behavior of B{sub 1g} mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com; Ojha, S.; Singh, Fouran, E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com

    2015-12-15

    The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO) thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO{sub 2} lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb{sup +5} in the TiO{sub 2} lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Ramanmore » (MR) spectra of films with small size crystallites shows stiffening of about 4 cm{sup −1} for the E{sub g(1)} mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B{sub 1g} mode exhibits a large anomalous softening of 20 cm{sup −1} with asymmetrical broadening; which was not reported for the case of pure TiO{sub 2} crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb{sup 5+} doping induced reduction of Ti{sup 4+} ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS) and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.« less

  4. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoping, E-mail: wxpchina64@aliyun.com, E-mail: wxpchina@sohu.com; Shanghai Key Laboratory of Modern Optical System, Shanghai 200093; Wang, Jinye

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibitsmore » the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm{sup 2} at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.« less

  5. Surface nano-structure of polyamide 6 film by hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaosong; Wang, Zhiliang; Liang, Songmiao; Jin, Yan; Lotz, Bernard; Yang, Shuguang

    2018-06-01

    Polyamide 6 (PA 6) melts and dissolves in super-heated water when T > 160 °C. Commercial PA 6 films were treated in super-heated water at 140 °C < T < 160 °C, i.e. below melting. Morphology, thermal behavior, mechanical properties, oxygen permeability and transparency of the film before and after hydrothermal treatment are investigated. After hydrothermal treatment, the melting temperature, crystallinity, elongation at break and toughness increase, whereas the strength decreases. The transparency and oxygen permeability decrease slightly. More interestingly, the hydrothermal treatment generates on the film surface a nano-structured layer 100 nm thick, which greatly improves adhesion and printing performance.

  6. Sol-Gel-Based Titania-Silica Thin Film Overlay for Long Period Fiber Grating-Based Biosensors.

    PubMed

    Chiavaioli, Francesco; Biswas, Palas; Trono, Cosimo; Jana, Sunirmal; Bandyopadhyay, Somnath; Basumallick, Nandini; Giannetti, Ambra; Tombelli, Sara; Bera, Susanta; Mallick, Aparajita; Baldini, Francesco

    2015-12-15

    An evanescent wave optical fiber biosensor based on titania-silica-coated long period grating (LPG) is presented. The chemical overlay, which increases the refractive index (RI) sensitivity of the sensor, consists of a sol-gel-based titania-silica thin film, deposited along the sensing portion of the fiber by means of the dip-coating technique. Changing both the sol viscosity and the withdrawal speed during the dip-coating made it possible to adjust the thickness of the film overlay, which is a crucial parameter for the sensor performance. After the functionalization of the fiber surface using a methacrylic acid/methacrylate copolymer, an antibody/antigen (IgG/anti-IgG) assay was carried out to assess the performance of sol-gel based titania-silica-coated LPGs as biosensors. The analyte concentration was determined from the wavelength shift at the end of the binding process and from the initial binding rate. This is the first time that a sol-gel based titania-silica-coated LPG is proposed as an effective and feasible label-free biosensor. The specificity of the sensor was validated by performing the same model assay after spiking anti-IgG into human serum. With this structured LPG, detection limits of the order of tens of micrograms per liter (10(-11) M) are attained.

  7. Rapid Obtaining of Nano-Hydroxyapatite Bioactive Films on NiTi Shape Memory Alloy by Electrodeposition Process

    NASA Astrophysics Data System (ADS)

    Lobo, A. O.; Otubo, J.; Matsushima, J. T.; Corat, E. J.

    2011-07-01

    Nano-hydroxyapatite (n-HA) crystalline films have been developed in this study by electrodeposition method on NiTi shape memory alloy (SMA). The electrodeposition of the n-HA films was carried out using 0.042 mol/L Ca(NO3)2 · 4H2O + 0.025 mol/L (NH4) · 2HPO4 electrolytes by applying a constant potential of -2.0 V for 120 min and keeping the solution temperature at 70 °C. The characterization of n-HA films is of special importance since bioactive properties related to n-HA have been directly identified with its specific composition and crystalline structure. AFM, XRD, EDX, FEG-SEM and Raman spectroscopy shows a homogeneous film, with high crystallinity, special composition, and bioactivity properties (Ca/P = 1.93) of n-HA on NiTi SMA surfaces. The n-HA coating with special structure would benefit the use of NiTi alloy in orthopedic applications.

  8. Non-stoichiometric mixed-phase titania photocatalyst

    DOEpatents

    Chen, Le [Lakewood, CO; Gray, Kimberly A [Evanston, IL; Graham, Michael E [Evanston, IL

    2012-06-19

    A mixed anatase-rutile phase, non-stoichiometric titania photocatalyst material is a highly reactive and is a UV and visible light responsive photocastalyst in the as-deposited condition (i.e. without the need for a subsequent thermal treatment). The mixed phase, non-stoichiometric titania thin film material is non-stoichiometric in terms of its oxygen content such that the thin film material shows a marked red-shift in photoresponse.

  9. Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging

    PubMed Central

    Westermeier, Christian; Cernescu, Adrian; Amarie, Sergiu; Liewald, Clemens; Keilmann, Fritz; Nickel, Bert

    2014-01-01

    Controlling the domain size and degree of crystallization in organic films is highly important for electronic applications such as organic photovoltaics, but suitable nanoscale mapping is very difficult. Here we apply infrared-spectroscopic nano-imaging to directly determine the local crystallinity of organic thin films with 20-nm resolution. We find that state-of-the-art pentacene films (grown on SiO2 at elevated temperature) are structurally not homogeneous but exhibit two interpenetrating phases at sub-micrometre scale, documented by a shifted vibrational resonance. We observe bulk-phase nucleation of distinct ellipsoidal shape within the dominant pentacene thin-film phase and also further growth during storage. A faint topographical contrast as well as X-ray analysis corroborates our interpretation. As bulk-phase nucleation obstructs carrier percolation paths within the thin-film phase, hitherto uncontrolled structural inhomogeneity might have caused conflicting reports about pentacene carrier mobility. Infrared-spectroscopic nano-imaging of nanoscale polymorphism should have many applications ranging from organic nanocomposites to geologic minerals. PMID:24916130

  10. Fabrication of photonic band gap materials

    DOEpatents

    Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana; Ho, Kai-Ming

    2002-01-15

    A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

  11. Magnetization enhancement due to incorporation of non-magnetic nitrogen content in (Co{sub 84}Zr{sub 16})N{sub x} nano-composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jitendra, E-mail: jitendra@ceeri.ernet.in; Akhtar, Jamil; Academy of Scientific and Innovative Research, New Delhi 110001

    We report the magnetic, electronic, and structural properties of nano-composite (Co{sub 84}Zr{sub 16})N{sub x} or CZN films prepared by reactive co-sputter deposition method. As-deposited CZN films have shown enhancement in magnetization (M{sub s}) with incorporation of nitrogen content, which is related to the evolution of nano-composite phase. X-ray diffraction study has confirmed poly-crystalline growth of CZN films with fcc(331) and fcc(422) phases. High-resolution transmission electron microscope study reveals that CZN films are composed of ordered and crystalline ferromagnetic Co nano-clusters, which are embedded in the nano-composite matrix. Photoemission measurements show the change in the intensity near the Fermi level mostmore » likely due to defects and shift in the core-levels binding energy with nitrogen concentration. Raman spectroscopy data show an increase in the intensity of the Raman lines with nitrogen concentration upto 20%. However, the intensity is significantly lower for 30% sample. This indicates that less nitrogen or defect states are being substituted into the lattice above 20% and is consistent with the observed magnetic behavior. Our studies indicate that defects induced due to the incorporation of non-magnetic nitrogen content play a key role to enhance the magnetization.« less

  12. Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang

    2017-03-01

    The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.

  13. Toward compositional design of reticular type porous films by mixing and coating titania-based frameworks with silica

    NASA Astrophysics Data System (ADS)

    Kimura, T.

    2015-12-01

    A recently developed reticular type porous structure, which can be fabricated as the film through the soft colloidal block copolymer (e.g., PS-b-PEO) templating, is very promising as the porous platform showing high-performance based on its high surface area as well as high diffusivity of targeted organic molecules and effective accommodation of bulky molecules, but the compositional design of oxide frameworks has not been developed so enough to date. Here, I report reliable synthetic methods of the reticular type porous structure toward simple compositional variations. Due to the reproducibility of reticular type porous titania films from titanium alkoxide (e.g., TTIP; titanium tetraisopropoxide), a titania-silica film having similar porous structure was obtained by mixing silicon alkoxide (e.g., tetraethoxysilane) and TTIP followed by their pre-hydrolysis, and the mixing ratio of Ti to Si composition was easily reached to 1.0. For further compositional design, a concept of surface coating was widely applicable; the reticular type porous titania surfaces can be coated with other oxides such as silica. Here, a silica coating was successfully achieved by the simple chemical vapor deposition of silicon alkoxide (e.g., tetramethoxysilane) without water (with water at the humidity level), which was also utilized for pore filling with silica by the similar process with water.

  14. Effective coating of titania nanoparticles with alumina via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.

    2017-12-01

    Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.

  15. Rotational reorganization of doped cholesteric liquid crystalline films.

    PubMed

    Eelkema, Rienk; Pollard, Michael M; Katsonis, Nathalie; Vicario, Javier; Broer, Dirk J; Feringa, Ben L

    2006-11-08

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pitch. The direction of this reorganization is correlated to the sign of the change in helical twisting power of the dopant. The rotational reorganization of the liquid crystalline film was used to rotate microscopic objects 4 orders of magnitude larger than the bistable dopants in the film, which shows that molecular motors and switches can perform work. The surface of the doped cholesteric liquid crystalline films was found to possess a regular surface relief, whose periodicity coincides with typical cholesteric polygonal line textures. These surface features originate from the cholesteric superstructure in the liquid crystalline film, which in turn is the result of the presence of the chiral dopant. As such, the presence of the dopant is expressed in these distinct surface structures. A possible mechanism at the origin of the rotational reorganization of liquid crystalline films and the cholesteric surface relief is discussed.

  16. Thick crystalline films on foreign substrates

    DOEpatents

    Smith, Henry I.; Atwater, Harry A.; Geis, Michael W.

    1986-01-01

    To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 .mu.m) film on a foreign substrate, the film is formed so as to be thin (<1 .mu.m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns.

  17. Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD)

    PubMed Central

    Nazarov, Denis V.; Zemtsova, Elena G.; Valiev, Ruslan Z.; Smirnov, Vladimir M.

    2015-01-01

    In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD), chemical etching and atomic layer deposition (ALD). For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions) and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD). Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material. PMID:28793716

  18. Ultrasound-Assisted Synthesis of Titania Nanoparticles, Characterization of Their Thin Films, and Activity in Photooxidation of β-Naphthol

    NASA Astrophysics Data System (ADS)

    Hurain, Syyeda Sana; Habib, Amir; Hussain, Syed Muzammil; Ul-Haq, Noaman

    2015-11-01

    Nanosized titania (TiO2) films and powders were prepared from titanium isopropoxide by ultrasonication then ultrasonic aerosol-assisted chemical vapor deposition (UAACVD). X-ray diffraction (XRD), used to study the crystal structure, phase, and crystallite size of TiO2 samples annealed at 500°C, revealed anatase was the main crystalline phase. Scanning electron microscopy and atomic force microscopy revealed the quasi-spherical morphology of the TiO2 nanoparticles; average size distribution was in the range 20-35 nm. Ultraviolet-visible spectroscopy was used to evaluate the photocatalytic activity of the anatase TiO2, on the basis of efficiency of degradation of β-naphthol. Pure TiO2 nanoparticles synthesized by use of sonication-UAACVD then calcination at 500°C enabled effective photodegradation under UV light. This method of synthesis of TiO2 is superior to the reflux-UAACVD method with titanium isopropoxide as precursor.

  19. Thick crystalline films on foreign substrates

    DOEpatents

    Smith, H.I.; Atwater, H.A.; Geis, M.W.

    1986-03-18

    To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 [mu]m) film on a foreign substrate, the film is formed so as to be thin (<1 [mu]m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns. 2 figs.

  20. Dielectric Measurements on Sol-Gel Derived Titania Films

    NASA Astrophysics Data System (ADS)

    Capan, Rifat; Ray, Asim K.

    2017-11-01

    Alternating current (AC) impedance measurements were performed on 37 nm thick nanostructured sol-gel derived anatase titania films on ultrasonically cleaned (100) p-silicon substrates at temperatures T ranging from 100 K to 300 K over a frequency range between 20 Hz and 1 MHz. The frequency-dependent behavior of the AC conductivity σ ac( f, T) obeys the universal power law, and the values of the effective hopping barrier and hopping distance were found to be 0.79 eV and 6.7 × 10-11 m from an analysis due to the correlated barrier-hopping model. The dielectric relaxation was identified as a thermally activated non-Debye process involving an activation energy of 41.5 meV.

  1. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions.

    PubMed

    Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi

    2008-04-01

    Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  2. Freely Suspended Liquid Crystalline Films

    NASA Astrophysics Data System (ADS)

    Sonin, A. A.

    2003-05-01

    Freely Suspended Liquid Crystalline Films Andrei A. Sonin Centre d'Etudes Atomiques de Saclay, France and Institute of Crystallography, Russian Academy of Sciences with a Foreword by Professor Noel Clark University of Colorado, USA This book provides a brief introduction to the physics of liquid crystals and to macroscopic physical parameters characterising freely suspended liquid crystalline (FSLC) films, and then reviews the experimental techniques for preparing these films, measuring their thicknesses, and investigating their physical properties and structural aspects. Molecular structures and defects of FSLC films and the problems of film stability, thinning and rupture are discussed in later chapters. Physical phenomena, such as orientational and phase transitions, Frederick's and flexoelectric effects, hydroelectrodynamics, etc., are also analysed. Finally, some applications of FSLC films in industry and in various branches of science are discussed. Specialists working in the physics of liquid crystals and in surface physics will find this book of interest. Industrial firms and their research centres investigating liquid crystals, biological membranes, detergent/surfactant/biomedical areas; and graduates and postgraduates in solid state physics and crystallography will also benefit from this book. The book has an easy-to-read style with just the minimum amount of mathematics necessary to explain important concepts. This is the first book dedicated exclusively to the physics of FSLC in almost a century since their discovery and last twenty years of their active studies. Andrei Sonin, a scientist in the area of FSLC and author of many articles on surface phenomena in liquid crystals, the properties and behaviour of thin liquid crystalline and surfactant films, has a long standing reputation in liquid crystals and surfactant systems and has been particularly active in issues involving surface interactions.

  3. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    DOE PAGES

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; ...

    2011-06-06

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 10 9 sec -1mV -1 range, linear response in a broad spectral range belowmore » 320 nm, photocurrents around ~10 -5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.« less

  4. Nano-crystallization in ZnO-doped In2O3 thin films via excimer laser annealing for thin-film transistors

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Ishihara, Ryoichi; van der Cingel, Johan; Mofrad, Mohammad R. T.; Bermundo, Juan Paolo Soria; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki; Uraoka, Yukiharu

    2016-06-01

    In a previous work, we reported the high field effect mobility of ZnO-doped In2O3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  5. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management.

    PubMed

    Palmqvist, N G M; Bejai, S; Meijer, J; Seisenbaeva, G A; Kessler, V G

    2015-05-13

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.

  6. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management

    NASA Astrophysics Data System (ADS)

    Palmqvist, N. G. M.; Bejai, S.; Meijer, J.; Seisenbaeva, G. A.; Kessler, V. G.

    2015-05-01

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.

  7. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management

    PubMed Central

    Palmqvist, N. G. M.; Bejai, S.; Meijer, J.; Seisenbaeva, G. A.; Kessler, V. G.

    2015-01-01

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection. PMID:25970693

  8. Structural Characterization and Corrosion Behavior of Stainless Steel Coated With Sol-Gel Titania

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Daniela C. L.; Nunes, Eduardo H. M.; Sabioni, Antônio Claret S.; da Costa, João C. Diniz; Vasconcelos, Wander L.

    2012-03-01

    Sol-gel titania films were prepared from hydrolysis and condensation of titanium (IV) isopropoxide. Diethanolamine was used as chelant agent in titania synthesis. 316L stainless steel substrates were dip-coated at three different withdrawal speeds (6, 30, and 60 mm/min) and heated up to 400 °C. Thermogravimetry and differential thermal analyses of the titania gel solution evinced a continuous mass loss for temperatures up to 800 °C. The transition of anatase to the rutile phase begins at 610-650 °C, being the rutile transformation completed at 900 °C. The thicknesses of the films were determined as a function of the heat treatment and withdrawal speed. It was observed that their thicknesses varied from 130 to 770 nm. Scanning electron microscopy images of the composites revealed the glass-like microstructure of the films. The obtained sol-gel films were also characterized by energy dispersive spectroscopy. The chemical evolution of the films as a function of the heating temperature was evaluated by Fourier transform infrared spectroscopy (specular reflectance method). After performing the adhesion tests, the adherence of the titania films to the stainless steel substrate was excellent, rated 5B according to ASTM 3359. The hardness of the ceramic films obtained was measured by the Knoop microindentation hardness test with a 10 g load. We observed that the titania film became harder than the steel substrate when it was heated above 400 °C. The corrosion rates of the titania/steel composites, determined from potentiodynamic curves, were two orders of magnitude lower than that of the bare stainless steel. The presence of the sol-gel titania film contributed to the increase of the corrosion potential in ca. 650 mV and the passivation potential in ca. 720 mV.

  9. Highly ordered, accessible and nanocrystalline mesoporous TiO₂ thin films on transparent conductive substrates.

    PubMed

    Violi, Ianina L; Perez, M Dolores; Fuertes, M Cecilia; Soler-Illia, Galo J A A

    2012-08-01

    Highly porous (V(mesopore) = 25-50%) and ordered mesoporous titania thin films (MTTF) were prepared on ITO (indium tin oxide)-covered glass by a fast two-step method. The effects of substrate surface modification and thermal treatment on pore order, accessibility and crystallinity of the MTTF were systematically studied for MTTF deposited onto bare and titania-modified ITO. MTTF exposed briefly to 550 °C resulted in highly ordered films with grid-like structures, enlarged pore size, and increased accessible pore volume when prepared onto the modified ITO substrate. Mesostructure collapse and no significant change in pore volume were observed for MTTF deposited on bare ITO substrates. Highly crystalline anatase was obtained for MTTF prepared on the modified-ITO treated at high temperatures, establishing the relationship between grid-like structures and titania crystallization. Photocatalytic activity was maximized for samples with increased crystallization and high accessible pore volume. In this manner, a simple way of designing materials with optimized characteristics for optoelectronic applications was achieved through the modification of the ITO surface and a controlled thermal treatment.

  10. Indium-tin-oxide nanowhiskers crystalline silicon photovoltaics combining micro- and nano-scale surface textures

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Hsu, M. H.; Chang, W. L.; Sun, W. C.; Yu, Peichen

    2011-02-01

    In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The combined surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on passivated, micro-grooved silicon solar cells using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared, which is optically equivalent to a stack of two dielectric thin-films with step- and graded- refractive index profiles. The ITO nanowhiskers provide broadband anti-reflective properties (R<5%) in the wavelength range of 350-1100nm. In comparison with conventional Si solar cell, the combined surface texture solar cell shows higher external quantum efficiency (EQE) in the range of 700-1100nm. Moreover, the ITO nano-whisker coating Si solar cell shows a high total efficiency increase of 1.1% (from 16.08% to17.18%). Furthermore, the nano-whiskers also provide strong forward scattering for ultraviolet and visible light, favorable in thin-wafer silicon photovoltaics to increase the optical absorption path.

  11. Comparison of the cohesive and delamination fatigue properties of atomic-layer-deposited alumina and titania ultrathin protective coatings deposited at 200 °C

    PubMed Central

    Sadeghi-Tohidi, Farzad; Samet, David; Graham, Samuel; Pierron, Olivier N

    2014-01-01

    The fatigue properties of ultrathin protective coatings on silicon thin films were investigated. The cohesive and delamination fatigue properties of 22 nm-thick atomic-layered-deposited (ALD) titania were characterized and compared to that of 25 nm-thick alumina. Both coatings were deposited at 200 °C. The fatigue rates are comparable at 30 °C, 50% relative humidity (RH) while they are one order of magnitude larger for alumina compared to titania at 80 °C, 90% RH. The improved fatigue performance is believed to be related to the improved stability of the ALD titania coating with water compared to ALD alumina, which may in part be related to the fact that ALD titania is crystalline, while ALD alumina is amorphous. Static fatigue crack nucleation and propagation was not observed. The underlying fatigue mechanism is different from previously documented mechanisms, such as stress corrosion cracking, and appears to result from the presence of compressive stresses and a rough coating–substrate interface. PMID:27877645

  12. Environmentally benign Friedel-Crafts benzylation over nano-TiO2/SO4 2-

    NASA Astrophysics Data System (ADS)

    Devi, Kalathiparambil RPS; Sreeja, Puthenveetil B.; Sugunan, Sankaran

    2013-05-01

    During the past decade, much attention has been paid to the replacement of homogeneous catalysts by solid acid catalysts. Friedel-Crafts benzylation of toluene with benzyl chloride (BC) in liquid phase was carried out over highly active, nano-crystalline sulfated titania systems. These catalysts were prepared using the sol gel method. Modification was done by loading 3% of transition metal oxides over sulfated titania. Reaction parameters such as catalyst mass, molar ratio, temperature, and time have been studied. More than 80% conversion of benzyl chloride and 100% selectivity are shown by all the catalysts under optimum conditions. Catalytic activity is correlated with Lewis acidity obtained from perylene adsorption studies. The reaction appears to proceed by an electrophile, which involves the reaction of BC with the acidic titania catalyst. The catalyst was regenerated and reused up to four reaction cycles with equal efficiency as in the first run. The prepared systems are environmentally friendly and are easy to handle.

  13. Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors

    NASA Astrophysics Data System (ADS)

    He, Chao; He, Yaowu; Li, Aiyuan; Zhang, Dongwei; Meng, Hong

    2016-10-01

    Solution processed small molecule polycrystalline thin films often suffer from the problems of inhomogeneity and discontinuity. Here, we describe a strategy to solve these problems through deposition of the active layer from a blended solution of crystalline (2-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Ph-BTBT) and liquid crystalline (2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, C12-Ph-BTBT) small molecule semiconductors with the hot spin-coating method. Organic thin film transistors with average hole mobility approaching 1 cm2/V s, much higher than that of single component devices, have been demonstrated, mainly due to the improved uniformity, continuity, crystallinity, and stronger intermolecular π-π stacking in blend thin films. Our results indicate that the crystalline/liquid crystalline semiconductor blend method is an effective way to enhance the performance of organic transistors.

  14. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-03-17

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermalmore » stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO{sub 2} passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness.« less

  15. Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces

    PubMed Central

    Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo

    2013-01-01

    We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708

  16. Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces

    NASA Astrophysics Data System (ADS)

    Bhosle, Sachin M.; Friedrich, Craig R.

    2017-10-01

    The amorphous to anatase transformation of anodized nanotubular titania surfaces has been studied by x-ray diffraction and transmission electron microscopy (TEM). A more rapid heat treatment for conversion of amorphous to crystalline anatase favorable for orthopedic implant applications was demonstrated. Nanotube titania surfaces were fabricated by electrochemical anodization of Ti6Al4V in an electrolyte containing 0.2 wt% NH4F, 60% ethylene glycol and 40% deionized water. The resulting surfaces were systematically heat treated in air with isochronal and isothermal experiments to study the temperature and time dependent transformation respectively. Energy dispersive spectroscopy shows that the anatase phase transformation of TiO2 in the as-anodized amorphous nanotube layer can be achieved in as little as 5 min at 350 °C in contrast to reports of higher temperature and much longer time. Crystallinity analysis at different temperatures and times yield transformation rate coefficients and activation energy for crystalline anatase coalescence. TEM confirms the (101) TiO2 presence within the nanotubes. These results confirm that for applications where amorphous titania nanotube surfaces are converted to crystalline anatase, a 5 min production flow-through heating process could be used instead of a 3 h batch process, reducing time, cost, and complexity.

  17. Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol.

    PubMed

    Siddiqa, Asima; Masih, Dilshad; Anjum, Dalaver; Siddiq, Muhammad

    2015-11-01

    Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol-gel method. A number of techniques including X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Rutherford backscattering spectrometry (RBS), thermal gravimetric analysis (TGA), Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties of synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution of dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration, catalyst dose and pH on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalyst and gain a better understanding of the process. Copyright © 2015. Published by Elsevier B.V.

  18. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy.

    PubMed

    Karlsson, Johan; Atefyekta, Saba; Andersson, Martin

    2015-01-01

    The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D) and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding-diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments.

  19. Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NOx abatement

    NASA Astrophysics Data System (ADS)

    Tobaldi, D. M.; Pullar, R. C.; Gualtieri, A. F.; Otero-Irurueta, G.; Singh, M. K.; Seabra, M. P.; Labrincha, J. A.

    2015-11-01

    Titanium dioxide (TiO2) is a popular photocatalyst used for many environmental and anti-pollution applications, but it normally operates under UV light, exploiting ∼5% of the solar spectrum. Nitrification of titania to form N-doped TiO2 has been explored as a way to increase its photocatalytic activity under visible light, and anionic doping is a promising method to enable TiO2 to harvest visible-light by changing its photo-absorption properties. In this paper, we explore the insertion of nitrogen into the TiO2 lattice using our green sol-gel nanosynthesis method, used to create 10 nm TiO2 NPs. Two parallel routes were studied to produce nitrogen-modified TiO2 nanoparticles (NPs), using HNO3+NH3 (acid-precipitated base-peptised) and NH4OH (totally base catalysed) as nitrogen sources. These NPs were thermally treated between 450 and 800 °C. Their true phase composition (crystalline and amorphous phases), as well as their micro-/nanostructure (crystalline domain shape, size and size distribution, edge and screw dislocation density) was fully characterised through advanced X-ray methods (Rietveld-reference intensity ratio, RIR, and whole powder pattern modelling, WPPM). As pollutants, nitrogen oxides (NOx) are of particular concern for human health, so the photocatalytic activity of the NPs was assessed by monitoring NOx abatement, using both solar and white-light (indoor artificial lighting), simulating outdoor and indoor environments, respectively. Results showed that the onset of the anatase-to-rutile phase transformation (ART) occurred at temperatures above 450 °C, and NPs heated to 450 °C possessed excellent photocatalytic activity (PCA) under visible white-light (indoor artificial lighting), with a PCA double than that of the standard P25 TiO2 NPs. However, higher thermal treatment temperatures were found to be detrimental for visible-light photocatalytic activity, due to the effects of four simultaneous occurrences: (i) loss of OH groups and water adsorbed

  20. Ultra-high aspect ratio titania nanoflakes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Yang-Yao; El-Shall, Hassan

    2017-12-01

    Micron sized titania flakes with thickness about 40 nm were used in the titania pastes to assemble dye-sensitized solar cells (DSSCs). Using the same deposition method, better particle dispersion of titania flakes resulted in well bonded and integral films comparing to cracking of Degussa P25 nanoparticle films during the evaporation and sintering processes. There are two features of titania flakes which leads to improved conversion efficiency of DSSC: (1) Higher and stronger adsorption of N-719 dyes due to high specific surface area (2) Stronger light scattering of visible light spectrum because of micron scale wide in two dimensions of the flakes. The thickness of the conducting TiO2 was critical to the IV characteristics of DSSC such as the short-circuit current density (Isc) and open-circuit voltage (Voc). Under the same thickness basis, calcined titania flakes provided 5 times higher efficiency than the photoelectrodes consisted of Degussa P25 nanoparticles (7.4% vs. 1.2%).

  1. Membrane transfer of crystalline silicon thin film solar cells

    NASA Astrophysics Data System (ADS)

    Vempati, Venkata Kesari Nandan

    Silicon has been dominating the solar industry for many years and has been touted as the gold standard of the photovoltaic world. The factors for its dominance: government subsidies and ease of processing. Silicon holds close to 90% of the market share in the material being used for solar cell production. Of which 14% belongs to single-crystalline Silicon. Although 24% efficient bulk crystalline solar cells have been reported, the industry has been looking for thin film alternatives to reduce the cost of production. Moreover with the new avenues like flexible consumer electronics opening up, there is a need to introduce the flexibility into the solar cells. Thin film films make up for their inefficiency keeping their mechanical properties intact by incorporating Anti-reflective schemes such as surface texturing, textured back reflectors and low reflective surfaces. This thesis investigates the possibility of using thin film crystalline Silicon for fabricating solar cells and has demonstrated a low cost and energy efficient way for fabricating 2microm thick single crystalline Silicon solar cells with an efficiency of 0.8% and fill factor of 35%.

  2. Silica sacrificial layer-assisted in-plane incorporation of Au nanoparticles into mesoporous titania thin films through different reduction methods.

    PubMed

    Liang, Chih-Peng; Yamauchi, Yusuke; Liu, Chia-Hung; Wu, Kevin C-W

    2013-06-28

    This study focuses on the incorporation of gold nanoparticles (Au NPs) into our previously synthesized mesoporous titania thin films consisting of titania nanopillars and inverse mesospace (C. W. Wu, T. Ohsuna, M. Kuwabara and K. Kuroda, J. Am. Chem. Soc., 2006, 128, 4544-4545, denoted as MTTFs). Recently, mesoporous titania materials doped with noble metals such as gold have attracted considerable attention because noble metals can enhance the efficiency of mesoporous titania-based devices. In this research, we attempted to use four different reduction methods (i.e., thermal treatment, photo irradiation, liquid immersion, and vapor contacting) to introduce gold nanoparticles (Au NPs) into MTTFs. The synthesized Au@MTTFs were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We further systematically investigated the formation mechanism of gold nanoparticles on the external and internal surfaces of the MTTFs. With the assistance of a silica sacrificial layer, well-dispersed Au NPs with sizes of 4.1 nm were obtained inside the MTTF by photo irradiation. The synthesized Au@MTTF materials show great potential in various photo-electronic and photo-catalytic applications.

  3. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  4. The photovoltaic efficiency of the fabrication of copolymer P3HT:PCBM on different thickness nano-anatase titania as solar cell

    NASA Astrophysics Data System (ADS)

    Lazim, Haidar Gazy; Ajeel, Khalid I.; Badran, Hussain A.

    2015-06-01

    Organic solar cells based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM) bulk heterojunction (BHJ) with an inverted structure have been fabricated using nano-anatase crystalline titanium dioxide (TiO2) as their electron transport layer, which was prepared on the indium tin oxide coated glass (ITO-glass), silicon wafer and glass substrates by sol-gel method at different spin speed by using spin-coating (1000, 2000 and 3000 rpm) for nano-thin film 58, 75 and 90 nm respectively. The effect of thickness on the surface morphology and optical properties of TiO2 layer were investigated by atomic force microscopy (AFM), X-ray diffraction and UV-visible spectrophotometer. The optical band gap of the films has been found to be in the range 3.63-3.96 eV for allowed direct transition and to be in the range 3.23-3.69 eV for forbidden direct transition to the different TiO2 thickness. The samples were examined to feature current and voltages darkness and light extraction efficiency of the solar cell where they were getting the highest open-circuit voltage, Voc, and power conversion efficiency were 0.66% and 0.39% fabricated with 90 nm respectively.

  5. Nano-sized crystalline drug production by milling technology.

    PubMed

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  6. Preparation of hydroxyapatite-titania hybrid coatings on titanium alloy.

    PubMed

    Un, Serhat; Durucan, Caner

    2009-08-01

    Hydroxypapatite-titania hybrid films on Ti6Al4V alloys were prepared by sol-gel technique by incorporating presynthesized hydroxypapatite (Ca(10)(PO(4))(6)(OH)(2) or HAp) powders into a titanium-alkoxide dip coating solution. Titania network was formed by the hydrolysis and condensation of Ti-isopropoxide Ti[OCH(CH(3))(2)](4)-based sols. The effect of titania sol formulation, specifically the effect of organic solvents on the microstructure of the dip coated films calcined at 500 degrees C has been investigated. The coatings exhibit higher tendency for cracking when a high vapor pressure solvent, such as ethanol (C(2)H(5)OH) is used causing development of higher macroscopic stresses during evaporation of the sol. Titania sol formulations replacing the solvent with n-proponal (CH(3)(CH(2))(2)OH) and acetly-acetone (C(5)H(8)O) combinations enhanced the microstructural integrity of the coating during evaporation and calcination treatments. Sol-gel processing parameters, such as multilayer coating application and withdrawal rate, can be employed to change the titania thickness in the range of 0.120-1.1 microm and to control the microstructure of HAp-titania hybrid coatings. A high-calcination temperature in the range of 400-600 degrees C does not cause a distinct change in crystals nature of the titania matrix or HAp, but results in more cracking due to the combined effect of densification originated stresses and thermal stresses upon cooling. Slower withdraw rates and multilayer dip coating lead to coatings more vulnerable to microcracking.

  7. Crystalline-silicon reliability lessons for thin-film modules

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1985-01-01

    The reliability of crystalline silicon modules has been brought to a high level with lifetimes approaching 20 years, and excellent industry credibility and user satisfaction. The transition from crystalline modules to thin film modules is comparable to the transition from discrete transistors to integrated circuits. New cell materials and monolithic structures will require new device processing techniques, but the package function and design will evolve to a lesser extent. Although there will be new encapsulants optimized to take advantage of the mechanical flexibility and low temperature processing features of thin films, the reliability and life degradation stresses and mechanisms will remain mostly unchanged. Key reliability technologies in common between crystalline and thin film modules include hot spot heating, galvanic and electrochemical corrosion, hail impact stresses, glass breakage, mechanical fatigue, photothermal degradation of encapsulants, operating temperature, moisture sorption, circuit design strategies, product safety issues, and the process required to achieve a reliable product from a laboratory prototype.

  8. A facile sol-gel synthesis of impurity-free nanocrystalline titania.

    PubMed

    Vinogradov, Alexandr V; Ermakova, Al'ena V; Butman, Mikhail F; Hey-Hawkins, Evamarie; Vinogradov, Vladimir V

    2014-06-14

    This paper reports an original technique that provides a highly pure crystalline sol of titania with controllable particle size by ultrasonic activation of the hydrolysis products of titanium isopropoxide in an aqueous medium at a near-neutral pH, which is potentially promising in impurity-sensitive electronics and biochemical engineering. Optimal conditions (H2O/TIP ratio, sonication time, etc.) for preparation of stable nanocrystalline titania sol were adopted. A new mechanism of regulation of aggregation and polycondensation under ultrasonic irradiation is proposed. Entrapment of human serum albumin (HSA) in the formed porous titania matrix results in high thermal stability of the protein dopants: the denaturation temperature of HSA is shifted by 31 °C.

  9. In Situ GISAXS investigation of low-temperature aging in oriented surfactant-mesostructured titania thin films

    DOE PAGES

    Nagpure, Suraj; Das, Saikat; Garlapalli, Ravinder K.; ...

    2015-09-11

    In this study, the mechanism of forming orthogonally oriented hexagonal close packed (o-HCP) mesostructures during aging of surfactant-templated titania thin films is elucidated using in situ grazing incidence small-angle x-ray scattering (GISAXS) in a controlled-environment chamber. To promote orthogonal orientation, glass slides are modified with crosslinked Pluronic P123, to provide surfaces chemically neutral towards both blocks of mesophase template P123. At 4 °C and 80% RH, the o-HCP mesophase emerges in thin (~60 nm) films by a direct disorder-to-order transition, with no intermediate ordered mesophase. The Pluronic/titania o-HCP GISAXS intensity emerges only after ~10-12 minutes, much slower than previously reportedmore » for smallmolecule surfactants. The Avrami model applied to the data suggests 2D growth with nucleation at the start of the process with a half-life of 39.7 minutes for the aging time just after the induction period of 7 minutes followed by a period consistent with 1D growth kinetics. Surprisingly, films that are thicker (~250 nm) or cast on unmodified slides form o-HCP mesophase domains, but by a different mechanism (2D growth with continuous nucleation) with faster and less complete orthogonal alignment. Thus, the o-HCP mesophase is favored not only 2 by modifying the substrate, but also by aging at 4 °C, which is below the lower consolute temperature (LCST) of the poly(propylene oxide) block of P123. Consistent with this, in situ GISAXS shows that films aged at room temperature (above the LCST of the PPO block) have randomly oriented HCP mesostructure.« less

  10. Adsorption of vitamin E on mesoporous titania nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw; Lin, C.T.; Wu, S.M.

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C tomore » 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.« less

  11. Field-Induced Crystalline-to-Amorphous Phase Transformation on the Si Nano-Apex and the Achieving of Highly Reliable Si Nano-Cathodes

    PubMed Central

    Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-01-01

    Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377

  12. Piezoelectric detection of bilirubin based on bilirubin-imprinted titania film electrode.

    PubMed

    Yang, Zhengpeng; Yan, Jinlong; Zhang, Chunjing

    2012-02-01

    A novel quartz crystal microbalance (QCM) sensor with a high selectivity and sensitivity has been developed for bilirubin determination, based on the modification of bilirubin-imprinted titania film onto a quartz crystal by molecular imprinting and surface sol-gel techniques. The performance of the developed bilirubin biosensor was evaluated and the results indicated that a sensitive bilirubin biosensor could be fabricated. The obtained bilirubin biosensor presents high-selectivity monitoring of bilirubin, better reproducibility, shorter response time (30 min), wider linear range (0.1-50 μM), and lower detection limit (0.05 μM). The analytical application of the bilirubin biosensor confirms the feasibility of bilirubin determination in serum sample. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The photovoltaic efficiency of the fabrication of copolymer P3HT:PCBM on different thickness nano-anatase titania as solar cell.

    PubMed

    Lazim, Haidar Gazy; Ajeel, Khalid I; Badran, Hussain A

    2015-06-15

    Organic solar cells based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM) bulk heterojunction (BHJ) with an inverted structure have been fabricated using nano-anatase crystalline titanium dioxide (TiO2) as their electron transport layer, which was prepared on the indium tin oxide coated glass (ITO-glass), silicon wafer and glass substrates by sol-gel method at different spin speed by using spin-coating (1000, 2000 and 3,000 rpm) for nano-thin film 58, 75 and 90 nm respectively. The effect of thickness on the surface morphology and optical properties of TiO2 layer were investigated by atomic force microscopy (AFM), X-ray diffraction and UV-visible spectrophotometer. The optical band gap of the films has been found to be in the range 3.63-3.96 eV for allowed direct transition and to be in the range 3.23-3.69 eV for forbidden direct transition to the different TiO2 thickness. The samples were examined to feature current and voltages darkness and light extraction efficiency of the solar cell where they were getting the highest open-circuit voltage, Voc, and power conversion efficiency were 0.66% and 0.39% fabricated with 90 nm respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Self-assembled metal nano-multilayered film prepared by co-sputtering method

    NASA Astrophysics Data System (ADS)

    Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.

  16. Titania-polymeric powder coatings with nano-topography support enhanced human mesenchymal cell responses.

    PubMed

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2012-10-01

    Titanium implant osseointegration is dependent on the cellular response to surface modifications and coatings. Titania-enriched nanocomposite polymeric resin coatings were prepared through the application of advanced ultrafine powder coating technology. Their surfaces were readily modified to create nano-rough (<100 nm) surface nano-topographies that supported human embryonic palatal mesenchymal cell responses. Energy dispersive x-ray spectroscopy confirmed continuous and homogenous coatings with a similar composition and even distribution of titanium. Scanning electron microscopy (SEM) showed complex micro-topographies, and atomic force microscopy revealed intricate nanofeatures and surface roughness. Cell counts, mitochondrial enzyme activity reduction of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple, SEM, and inverted fluorescence microscopy showed a marked increase in cell attachment, spreading, proliferation, and metabolic activity on the nanostructured surfaces. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) analysis showed that type I collagen and Runx2 expression were induced, and Alizarin red staining showed that mineral deposits were abundant in the cell cultures grown on nanosurfaces. This enhancement in human mesenchymal cell attachment, growth, and osteogenesis were attributed to the nanosized surface topographies, roughness, and moderate wetting characteristics of the coatings. Their dimensional similarity to naturally occurring matrix proteins and crystals, coupled with their increased surface area for protein adsorption, may have facilitated the response. Therefore, this application of ultrafine powder coating technology affords highly biocompatible surfaces that can be readily modified to accentuate the cellular response. Copyright © 2012 Wiley Periodicals, Inc.

  17. Crystalline, Highly Oriented MOF Thin Film: the Fabrication and Application.

    PubMed

    Fu, Zhihua; Xu, Gang

    2017-05-01

    The thin film of metal-organic frameworks (MOFs) is a rapidly developing research area which has tremendous potential applications in many fields. One of the major challenges in this area is to fabricate MOF thin film with good crystallinity, high orientation and well-controlled thickness. In order to address this challenge, different appealing approaches have been studied intensively. Among various oriented MOF films, many efforts have also been devoted to developing novel properties and broad applications, such as in gas separator, thermoelectric, storage medium and photovoltaics. As a result, there has been a large demand for fundamental studies that can provide guidance and experimental data for further applications. In this account, we intend to present an overview of current synthetic methods for fabricating oriented crystalline MOF thin film and bring some updated applications. We give our perspective on the background, preparation and applications that led to the developments in this area and discuss the opportunities and challenges of using crystalline, highly oriented MOF thin film. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characteristics of the Energetic Igniters Through Integrating B/Ti Nano-Multilayers on TaN Film Bridge

    NASA Astrophysics Data System (ADS)

    Yan, YiChao; Shi, Wei; Jiang, HongChuan; Cai, XianYao; Deng, XinWu; Xiong, Jie; Zhang, WanLi

    2015-05-01

    The energetic igniters through integrating B/Ti nano-multilayers on tantalum nitride (TaN) ignition bridge are designed and fabricated. The X-ray diffraction (XRD) and temperature coefficient of resistance (TCR) results show that nitrogen content has a great influence on the crystalline structure and TCR. TaN films under nitrogen ratio of 0.99 % exhibit a near-zero TCR value of approximately 10 ppm/°C. The scanning electron microscopy demonstrates that the layered structure of the B/Ti multilayer films is clearly visible with sharp and smooth interfaces. The electrical explosion characteristics employing a capacitor discharge firing set at the optimized charging voltage of 45 V reveal an excellent explosion performance by (B/Ti) n /TaN integration film bridge with small ignition delay time, high explosion temperature, much more bright flash of light, and much large quantities of the ejected product particles than TaN film bridge.

  19. Preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films.

    PubMed

    Chen, Zhiwen; Jiao, Zheng; Wu, Minghong; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L

    2012-01-01

    Metal/semiconductor thin films are a class of unique materials that are widespread technological applications, particularly in the field of microelectronic devices. Assessment strategies of fractal and tures are of fundamental importance in the development of nano/microdevices. This review presents the preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films including Au/Ge bilayer films and Pd-Ge alloy thin films, which show in the form of fractals and nanocrystals. Firstly, the extended version of Au/Ge thin films for the fractal crystallization of amorphous Ge and the formation of nanocrystals developed with improved micro- and nanostructured features are described in Section 2. Secondly, the nano/microstructural characteristics of Pd/Ge alloy thin films during annealing have been investigated in detail and described in Section 3. Finally, we will draw the conclusions from the present work as shown in Section 4. It is expected that the preparation methodologies developed and the knowledge of nano/microstructural evolution gained in metal/semiconductor thin films, including Au/Ge bilayer films and Pd-Ge alloy thin films, will provide an important fundamental basis underpinning further interdisciplinary research in these fields such as physics, chemistry, materials science, and nanoscience and nanotechnology, leading to promising exciting opportunities for future technological applications involving these thin films.

  20. New method to synthesize mesoporous titania by photodegradation of surfactant template

    NASA Astrophysics Data System (ADS)

    Zi, Shamsuddin Chik; Chandren, Sheela; Yuan, Lai Sin; Razali, Rasidah; Ho, Chin Siong; Hartanto, Djoko; Indra Mahlia, Teuku Meurah; Nur, Hadi

    2016-02-01

    Mesoporous titania has been successfully synthesized by photodegradation removal of cetyltrimethylammonium bromide as the surfactant, after slow hydrolyzation of titanium(IV) isopropoxide. Fourier transform infrared spectra proved that photodegradation has successfully decreased the peak areas of the alkyl groups from the template. The nitrogen adsorption analysis showed that the pore size and the specific surface area of the mesoporous titania were 3.7 nm and 203 m2 g-1, respectively, proving the mesoporosity of the titania obtained with the existence of the interparticle mesoporosity which was confirmed by transmission electron microscopy. Based on X-ray diffraction results, the mesoporous titania obtained was in the form of crystalline anatase phase. Furthermore, results from the diffuse reflectance ultra violet-visible spectra showed that the composition of tetrahedral titanium(IV) was more than the octahedral titanium(IV). When the mesoporous titania obtained was used as a catalyst in the oxidation of styrene, an improvement in the conversion of styrene (38%) was observed when compared to those obtained using Degussa P25 TiO2 (14%) as the catalyst.

  1. Dynamic studies of nano-confined polymer thin films

    NASA Astrophysics Data System (ADS)

    Geng, Kun

    Polymer thin films with the film thickness (h0 ) below 100 nm often exhibit physical properties different from the bulk counterparts. In order to make the best use of polymer thin films in applications, it is important to understand the physical origins of these deviations. In this dissertation, I will investigate how different factors influence dynamic properties of polymer thin films upon nano-confinement, including glass transition temperature (Tg), effective viscosity (etaeff) and self-diffusion coefficient (D ). The first part of this dissertation concerns the impacts of the molecular weight (MW) and tacticity on the Tg's of nano-confined polymer films. Previous experiments showed that the Tg of polymer films could be depressed or increased as h0 decreases. While these observations are usually attributed to the effects of the interfaces, some experiments suggested that MW's and tacticities might also play a role. To understand the effects of these factors, the Tg's of silica-based poly(alpha-methyl styrene) (PalphaMS/SiOx) and poly(methyl methacrylate) (PMMA/SiOx) thin films were studied, and the results suggested that MW's and tacticities influence Tg in nontrivial ways. The second part concerns an effort to resolve the long-standing controversy about the correlation between different dynamics of polymer thin films upon nano-confinement. Firstly, I discuss the experimental results of Tg, D and etaeff of poly(isobutyl methacrylate) films supported by silica (PiBMA/SiOx). Both T g and D were found to be independent of h 0, but etaeff decreased with decreasing h 0. Since both D and etaeff describe transport phenomena known to depend on the local friction coefficient or equivalently the local viscosity, it is questionable why D and etaeff displayed seemingly inconsistent h 0 dependencies. We envisage the different h0 dependencies to be caused by Tg, D and etaeff being different functions of the local T g's (Tg,i) or viscosities (eta i). By assuming a three

  2. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    PubMed

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  3. Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films

    PubMed Central

    Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.

    2013-01-01

    We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies. PMID:28348346

  4. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells.

    PubMed

    Varghese, Oomman K; Paulose, Maggie; Grimes, Craig A

    2009-09-01

    Dye-sensitized solar cells consist of a random network of titania nanoparticles that serve both as a high-surface-area support for dye molecules and as an electron-transporting medium. Despite achieving high power conversion efficiencies, their performance is limited by electron trapping in the nanoparticle film. Electron diffusion lengths can be increased by transporting charge through highly ordered nanostructures such as titania nanotube arrays. Although titania nanotube array films have been shown to enhance the efficiencies of both charge collection and light harvesting, it has not been possible to grow them on transparent conducting oxide glass with the lengths needed for high-efficiency device applications (tens of micrometres). Here, we report the fabrication of transparent titania nanotube array films on transparent conducting oxide glass with lengths between 0.3 and 33.0 microm using a novel electrochemistry approach. Dye-sensitized solar cells containing these arrays yielded a power conversion efficiency of 6.9%. The incident photon-to-current conversion efficiency ranged from 70 to 80% for wavelengths between 450 and 650 nm.

  5. Characteristics of the Energetic Igniters Through Integrating B/Ti Nano-Multilayers on TaN Film Bridge.

    PubMed

    Yan, YiChao; Shi, Wei; Jiang, HongChuan; Cai, XianYao; Deng, XinWu; Xiong, Jie; Zhang, WanLi

    2015-12-01

    The energetic igniters through integrating B/Ti nano-multilayers on tantalum nitride (TaN) ignition bridge are designed and fabricated. The X-ray diffraction (XRD) and temperature coefficient of resistance (TCR) results show that nitrogen content has a great influence on the crystalline structure and TCR. TaN films under nitrogen ratio of 0.99 % exhibit a near-zero TCR value of approximately 10 ppm/°C. The scanning electron microscopy demonstrates that the layered structure of the B/Ti multilayer films is clearly visible with sharp and smooth interfaces. The electrical explosion characteristics employing a capacitor discharge firing set at the optimized charging voltage of 45 V reveal an excellent explosion performance by (B/Ti) n /TaN integration film bridge with small ignition delay time, high explosion temperature, much more bright flash of light, and much large quantities of the ejected product particles than TaN film bridge.

  6. High-rate nano-crystalline Li 4Ti 5O 12 attached on carbon nano-fibers for hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Naoi, Katsuhiko; Ishimoto, Shuichi; Isobe, Yusaku; Aoyagi, Shintaro

    A lithium titanate (Li 4Ti 5O 12)-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li 4Ti 5O 12 electrode has a unique nano-structure consisting of unusually small nano-crystalline Li 4Ti 5O 12 (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li 4Ti 5O 12/CNF). This nano-structured nc-Li 4Ti 5O 12/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 °C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li 4Ti 5O 12/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L -1 and high power density of 7.5 kW L -1 comparable to conventional EDLCs.

  7. Crystalline Stratification in Semiconducting Polymer Thin Film Quantified by Grazing Incidence X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gann, Eliot; Caironi, Mario; Noh, Yong-Young; Kim, Yun-Hi; McNeill, Christopher R.

    The depth dependence of crystalline structure within thin films is critical for many technological applications, but has been impossible to measure directly using common techniques. In this work, by monitoring diffraction peak intensity and location and utilizing the highly angle-dependent waveguiding effects of X-rays near grazing incidence we quantitatively measure the thickness, roughness and orientation of stratified crystalline layers within thin films of a high-performance semiconducting polymer. In particular, this diffractive X-ray waveguiding reveals a self-organized 5-nm-thick crystalline surface layer with crystalline orientation orthogonal to the underlying 65-nm-thick layer. While demonstrated for an organic semiconductor film, this approach is applicable to any thin film material system where stratified crystalline structure and orientation can influence important interfacial processes such as charge injection and field-effect transport.

  8. Opto-electronic characterizations of oriented nano-structure CdSe film/Si (0 0 1) heterostructure

    NASA Astrophysics Data System (ADS)

    Al-Kotb, M. S.; Al-Waheidi, Jumana Z.; Kotkata, M. F.

    2014-05-01

    Nano-crystalline CdSe thin films were fabricated by evaporating CdSe nano-powders on glass and p-Si (0 0 1) substrates. X-ray diffraction analysis indicated the hexagonal structure for the growing film along the (0 0 2) plane. The results revealed that the thermally evaporated thin film has a comparatively smoother surface with grain size ˜21 nm. Analysis of the absorption coefficient dependence on the photon energy predicts two direct band-gap values of 2.11 ± 0.02 and 1.71 ± 0.03 eV. On the basis of the Wemple-diDomenico single oscillator model, the values of single oscillator energy (Eu) and oscillator dispersion energy (Ed) found to be 2.71 ± 0.09 and 12.94 ± 0.35 eV, respectively. The photoluminescence measurements show levels at the following values: 1.824, 1.786, 1.682, and 1.617 eV confirming the native defects existence in the gap of CdSe films because of stoichiometric deviation. The forward I-V characteristics of Ni/CdSe/p-Si (0 0 1) structure have been primarily analyzed within the framework of a standard thermionic emission theory over the temperature range of 160-360 K. The characteristic parameters of the Ni/CdSe/p-Si(0 0 1) structure such as barrier height (φb), ideality factor (n), and series resistance (Rs) have been calculated using a method developed by Cheung-Cheung.

  9. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Simona; Jerby, Eli, E-mail: jerby@eng.tau.ac.il; Meir, Yehuda

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy,more » and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.« less

  10. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com; King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh; Hanna, Adly

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP wasmore » studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.« less

  11. Effect of casting solvent on crystallinity of ondansetron in transdermal films.

    PubMed

    Pattnaik, Satyanarayan; Swain, Kalpana; Mallick, Subrata; Lin, Zhiqun

    2011-03-15

    The purpose of the present investigation is to assess the influence of casting solvent on crystallinity of ondansetron hydrochloride in transdermal polymeric matrix films fabricated using povidone and ethyl cellulose as matrix forming polymers. Various casting solvents like chloroform (CHL), dichloromethane (DCM), methanol (MET); and mixture of chloroform and ethanol (C-ETH) were used for fabrication of the transdermal films. Analytical tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) studies, differential scanning calorimetry (DSC), etc. were utilized to characterize the crystalline state of ondansetron in the film. Recrystallisation was observed in all the transdermal films fabricated using the casting solvents other than chloroform. Long thin slab-looking, long wire-like or spherulite-looking crystals with beautiful impinged boundaries were observed in SEM. Moreover, XRD revealed no crystalline peaks of ondansetron hydrochloride in the transdermal films prepared using chloroform as casting solvent. The significantly decreased intensity and sharpness of the DSC endothermic peaks corresponding to the melting point of ondansetron in the formulation (specifically in CHL) indicated partial dissolution of ondansetron crystals in the polymeric films. The employed analytical tools suggested chloroform as a preferred casting solvent with minimum or practically absence of recrystallization indicating a relatively amorphous state of ondansetron in transdermal films. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Nano CaCO₃ imprinted starch hybrid polyethylhexylacrylate\\polyvinylalcohol nanocomposite thin films.

    PubMed

    Prusty, Kalyani; Swain, Sarat K

    2016-03-30

    Starch hybrid polyethylhexylacrylate (PEHA)/polyvinylalcohol (PVA) nanocomposite thin films are prepared by different composition of nano CaCO3 in aqueous medium. The chemical interaction of nano CaCO3 with PEHA in presence of starch and PVA is investigated by Fourier transforms infrared spectroscopy (FTIR). X-ray diffraction (XRD) is used in order to study the change in crystallite size and d-spacing during the formation of nanocomposite thin film. The surface morphology of nanofilms is studied by scanning electron microscope (SEM). The topology and surface roughness of the films is noticed by atomic force microscope (AFM). The tensile strength, thermal stability and thermal conductivity of films are increased with increase in concentrations of CaCO3 nanopowder. The chemical resistance and biodegradable properties of the nanocomposite thin films are also investigated. The growth of bacteria and fungi in starch hybrid PEHA film is reduced substantially with imprint of nano CaCO3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Preparation and characterization of molecularly homogeneous silica-titania film by sol-gel process with different synthetic strategies.

    PubMed

    Chen, Hsueh-Shih; Huang, Sheng-Hsin; Perng, Tsong-Pyng

    2012-10-24

    Three silica-titania thin films with various degrees of molecular homogeneity were synthesized by the sol-gel process with the same precursor formula but different reaction paths. The dried films prepared by a single spin-coating process have a thickness of 500-700 nm and displayed no cracks or pin holes. The transmittances and refractive indices of the samples are >97.8% in the range of 350-1800 nm and 1.62-1.65 at 500 nm, respectively. The in-plane and out-of-plane chemical homogeneities of the films were analyzed by X-ray photoelectron spectroscopy and Auger electron spectroscopy, respectively. For the film with the highest degree of homogeneity, the deviations of O, Si, and Ti atomic contents in both in-plane and out-of-plane directions are less than 1.5%, indicating that the film is highly molecularly homogeneous. It also possesses the highest transparency and the lowest refractive index among the three samples.

  14. On hydrophilicity improvement of the porous anodic alumina film by hybrid nano/micro structuring

    NASA Astrophysics Data System (ADS)

    Wang, Weichao; Zhao, Wei; Wang, Kaige; Wang, Lei; Wang, Xuewen; Wang, Shuang; Zhang, Chen; Bai, Jintao

    2017-09-01

    In both, laboratory and industry, tremendous attention is paid to discover an effective technique to produce uniform, controllable and (super) hydrophilic surfaces over large areas that are useful in a wide range of applications. In this investigation, by combing porous anodic alumina (PAA) film with nano-structures and microarray of aluminum, the hydrophilicity of hybrid nano-micro structure has been significantly improved. It is found some factors can affect the hydrophilicity of film, such as the size and aspect ratio of microarray, the thickness of nano-PAA film etc. Comparing with pure nano-PAA films and microarray, the hybrid nano-micro structure can provide uniform surface with significantly better hydrophilicity. The improvement can be up to 84%. Also, this technique exhibits good stability and repeatability for industrial production. By optimizing the thickness of nano-PAA film and aspect ratio of micro-structures, super-hydrophilicity can be reached. This study has obvious prospect in the fields of chemical industry, biomedical engineering and lab-on-a-chip applications.

  15. Control of exposure to hexavalent chromium concentration in shielded metal arc welding fumes by nano-coating of electrodes.

    PubMed

    Sivapirakasam, S P; Mohan, Sreejith; Santhosh Kumar, M C; Thomas Paul, Ashley; Surianarayanan, M

    2017-04-01

    Background Cr(VI) is a suspected human carcinogen formed as a by-product of stainless steel welding. Nano-alumina and nano-titania coating of electrodes reduced the welding fume levels. Objective To investigate the effect of nano-coating of welding electrodes on Cr(VI) formation rate (Cr(VI) FR) from a shielded metal arc welding process. Methods The core welding wires were coated with nano-alumina and nano-titania using the sol-gel dip coating technique. Bead-on plate welds were deposited on SS 316 LN plates kept inside a fume test chamber. Cr(VI) analysis was done using an atomic absorption spectrometer (AAS). Results A reduction of 40% and 76%, respectively, in the Cr(VI) FR was observed from nano-alumina and nano-titania coated electrodes. Increase in the fume level decreased the Cr(VI) FR. Discussion Increase in fume levels blocked the UV radiation responsible for the formation of ozone thereby preventing the formation of Cr(VI).

  16. Self-organized micro-holes on titania based sol-gel films under continuous direct writing with a continuous wave ultraviolet laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhti, S.; Destouches, N.; Gamet, E.

    The microstructuring of titania based sol-gel films is investigated by direct writing with a continuous wave ultraviolet laser beam emitting at 244 nm. Depending on the exposure conditions, the films exhibit a volume expansion, a volume shrinkage, a self-shaped delamination, or are damaged. This paper is mainly focused on the regime where spontaneous local delamination occurs, which corresponds to a narrow range of laser irradiances and writing speeds. In this regime, self-organized round-shape micro-holes opened on the substrate are generated.

  17. Evolution of optical properties and band structure from amorphous to crystalline Ga2O3 films

    NASA Astrophysics Data System (ADS)

    Zhang, Fabi; Li, Haiou; Cui, Yi-Tao; Li, Guo-Ling; Guo, Qixin

    2018-04-01

    The optical properties and band structure evolution from amorphous to crystalline Ga2O3 films was investigated in this work. Amorphous and crystalline Ga2O3 films were obtained by changing the growth substrate temperatures of pulsed laser deposition and the crystallinity increase with the rising of substrate temperature. The bandgap value and ultraviolet emission intensity of the films increase with the rising of crystallinity as observed by means of spectrophotometer and cathodoluminescence spectroscopy. Abrupt bandgap value and CL emission variations were observed when amorphous to crystalline transition took place. X-ray photoelectron spectroscopy core level spectra reveal that more oxygen vacancies and disorders exist in amorphous Ga2O3 film grown at lower substrate temperature. The valence band spectra of hard X-ray photoelectron spectroscopy present the main contribution from Ga 4sp for crystalline film deposited at substrate temperature of 500 oC, while extra subgap states has been observed in amorphous film deposited at 300 oC. The oxygen vacancy and the extra subgap density of states are suggested to be the parts of origin of bandgap and CL spectra variations. The experimental data above yields a realistic picture of optical properties and band structure variation for the amorphous to crystalline transition of Ga2O3 films.

  18. Electrical conductivity modification using silver nano particles of Jatropha Multifida L. and Pterocarpus Indicus w. extracts films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diantoro, Markus, E-mail: markus.diantoro.fmipa@um.ac.id; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul

    Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C{sub 6}-C{sub 3}-C{sub 6} carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order tomore » obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.« less

  19. Electrical conductivity modification using silver nano particles of Jatropha Multifida L. and Pterocarpus Indicus w. extracts films

    NASA Astrophysics Data System (ADS)

    Diantoro, Markus; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin, Sujito, Hidayat, Arif

    2016-03-01

    Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C6-C3-C6 carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.

  20. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content.

    PubMed

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T

    2008-10-01

    In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

  1. Readily available titania nanostructuring routines based on mobility and polarity controlled phase separation of an amphiphilic diblock copolymer.

    PubMed

    Hohn, Nuri; Schlosser, Steffen J; Bießmann, Lorenz; Grott, Sebastian; Xia, Senlin; Wang, Kun; Schwartzkopf, Matthias; Roth, Stephan V; Müller-Buschbaum, Peter

    2018-03-15

    The amphiphilic diblock copolymer polystyrene-block-polyethylene oxide is combined with sol-gel chemistry to control the structure formation of blade-coated foam-like titania thin films. The influence of evaporation time before immersion into a poor solvent bath and polarity of the poor solvent bath are studied. Resulting morphological changes are quantified by scanning electron microscopy (SEM) and grazing incidence small angle X-ray scattering (GISAXS) measurements. SEM images surface structures while GISAXS accesses inner film structures. Due to the correlation of evaporation time and mobility of the polymer template during the phase separation process, a decrease in the distances of neighboring titania nanostructures from 50 nm to 22 nm is achieved. Furthermore, through an increase of polarity of an immersion bath the energetic incompatibility of the hydrophobic block and the solvent can be enhanced, leading to an increase of titania nanostructure distances from 35 nm to 55 nm. Thus, a simple approach is presented to control titania nanostructure in foam-like films prepared via blade coating, which enables an easy upscaling of film preparation.

  2. Corona-assisted flame synthesis of ultrafine titania particles

    NASA Astrophysics Data System (ADS)

    Vemury, Srinivas; Pratsinis, Sotiris E.

    1995-06-01

    Synthesis of ultrafine titania particles is investigated in a diffusion flame aerosol reactor in the presence of a gaseous electric discharge (corona) created by two needle electrodes. The corona wind flattens the flame and reduces the particle residence time at high temperatures, resulting in smaller primary particle sizes and lower level of crystallinity. Increasing the applied potential from 5 to 8 kV reduces the particle size from 50 to 25 nm and the rutile content from 20 to 8 wt %. Coronas provide a clean and simple technique that facilitates gas phase synthesis of nanosized materials with controlled size and crystallinity.

  3. Chirality of Single-Handed Twisted Titania Tubular Nanoribbons Prepared Through Sol-gel Transcription.

    PubMed

    Wang, Sibing; Zhang, Chuanyong; Li, Yi; Li, Baozong; Yang, Yonggang

    2015-08-01

    Single-handed twisted titania tubular nanoribbons were prepared through sol-gel transcription using a pair of enantiomers. Handedness was controlled by that of the template. The obtained samples were characterized using field-emission electron microscopy, transmission electron microscopy, diffuse reflectance circular dichroism (DRCD), and X-ray diffraction. The DRCD spectra indicated that the titania nanotubes exhibit optical activity. Although the tubular structure was destroyed after being calcined at 700 °C for 2.0 h, DRCD signals were still identified. However, the DRCD signals disappeared after being calcined at 1000 °C for 2.0 h. The optical activity of titania was proposed to be due to chiral defects. Previous results showed that straight titania tubes could be used as asymmetric autocatalysts, indicating that titania exhibit chirality at the angstrom level. Herein, it was found that they also exhibit DRCD signals, indicating that there are no obvious relationships between morphology at the nano level and chirality at the angstrom level. The nanotube chirality should originate from the chiral defects on the nanotube inner surface. The Fourier transform infrared spectra indicated that the chirality of the titania was transferred from the gelators through the hydrogen bonding between N-H and Ti-OH. © 2015 Wiley Periodicals, Inc.

  4. Characterization of single-crystalline Al films grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Fortuin, A. W.; Alkemade, P. F. A.; Verbruggen, A. H.; Steinfort, A. J.; Zandbergen, H.; Radelaar, S.

    1996-10-01

    Single-crystalline Al films have been grown by molecular beam epitaxy on a (7 × 7) reconstructed Si(111) surface at 50°C. The 100 nm thick Al films were extensively characterized by X-ray diffraction, transmission electron diffraction and microscopy, SIMS, and RBS in combination with ion channeling. The orientational relationship found was Al(111) t' | Si(111) and Al[11¯0] t'| Si[11¯0]. The film is single-crystalline over the entire 4″ Si wafer. TED and TEM showed that the lattice mismatch of 25.3% at room temperature is accommodated at the interface by alignment of every three Si atoms to four Al atoms. Annealing of the film at 400°C for 30 min led to a reduction of defects in the film and an increase at the interface. Furthermore, it increased the Si concentration in the Al film slightly. We regard this deposition method as the most appropriate one among the various techniques for epitaxial growth of Al on Si explored so far.

  5. Cellulose Acetate/N-TiO2 Biocomposite Flexible Films with Enhanced Solar Photochromic Properties

    NASA Astrophysics Data System (ADS)

    Radhika, T.; Anju, K. R.; Silpa, M. S.; Ramalingam, R. Jothi; Al-Lohedan, Hamad A.

    2017-07-01

    Flexible cellulose acetate/N-TiO2 nanocomposite films containing various concentrations of nanosized N-TiO2 and an intelligent methylene blue ink have been prepared by solution casting. The hydrothermally prepared nitrogen-doped titania (N-TiO2) and the films were characterized in detail. The photochromic properties of the prepared films were investigated under ultraviolet (UV), visible light, and simulated solar irradiation by UV-Vis spectrophotometry. Upon irradiation, the films exhibited rapid photochromic response that was reversible at room temperature. Films with higher content of nano N-TiO2 showed enhanced decoloration/recoloration under all irradiation conditions, with fast decoloration/recoloration under simulated solar irradiation. These results suggest that the amount of nano N-TiO2 in the composite, the concentration of methylene blue, and the solvent greatly influence the photochromic properties of the films. Such flexible and transparent cellulose acetate/N-TiO2 films with enhanced decoloration/recoloration properties under solar irradiation are promising smart materials for use in photoreversible printed electronics applications.

  6. A crystalline germanium flexible thin-film transistor

    NASA Astrophysics Data System (ADS)

    Higashi, H.; Nakano, M.; Kudo, K.; Fujita, Y.; Yamada, S.; Kanashima, T.; Tsunoda, I.; Nakashima, H.; Hamaya, K.

    2017-11-01

    We experimentally demonstrate a flexible thin-film transistor (TFT) with (111)-oriented crystalline germanium (Ge) layers grown by a gold-induced crystallization method. Accumulation-mode metal source/drain p-channel Ge TFTs are fabricated on a polyimide film at ≤ 400 ° C . A field-effect mobility (μFE) of 10.7 cm2/Vs is obtained, meaning the highest μFE in the p-TFTs fabricated at ≤ 400 ° C on flexible plastic substrates. This study will lead to high-performance flexible electronics based on an inorganic-semiconductor channel.

  7. Preparation and crystalline studies of PVDF hybrid composites

    NASA Astrophysics Data System (ADS)

    Chethan P., B.; Renukappa, N. M.; Sanjeev, Ganesh

    2018-04-01

    The conducting polymer composites have become increasingly important for electrical and electronic applications due to their flexibility, easy of processing, high strength and low cost. A flexible conducting polymer hybrid composite was prepared by melt mixing of nickel coated multi-walled carbon nanotubes (Ni-MWNT) and graphitized carbon nanofibres (GCNF) in Polyvinylidene fluoride (PVDF) matrix. The crystalline structures of the nano composites were studied by X-ray diffraction (XRD) method and showed characteristic peaks at 17.7°, 18.5°, 20° and 26.7° of 2θ. The β phase crystalline nature of the composite films, degree of crystallinity, melting temperature and crystallization behavior of the hybrid composites were studied using appropriate characterization techniques. The filler in the insulating polymer matrix plays crucial role to improve the crystallinity of the composites.

  8. Organic crystalline films for optical applications and related methods of fabrication

    NASA Technical Reports Server (NTRS)

    Leyderman, Alexander (Inventor); Cui, Yunlong (Inventor)

    2003-01-01

    The present invention provides organic single crystal films of less than 20 .mu.m, and devices and methods of making such films. The crystal films are useful in electro-optical applications and can be provided as part of an electro-optical device which provides strength, durability, and relative ease of manipulation of the mono-crystalline films during and after crystal growth.

  9. In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates

    NASA Astrophysics Data System (ADS)

    Proehl, Holger; Nitsche, Robert; Dienel, Thomas; Leo, Karl; Fritz, Torsten

    2005-04-01

    We report an investigation of the excitonic properties of thin crystalline films of the archetypal organic semiconductor PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) grown on poly- and single crystalline surfaces. A sensitive setup capable of measuring the optical properties of ultrathin organic molecular crystals via differential reflectance spectroscopy (DRS) is presented. This tool allows to carry out measurements in situ, i.e., during the actual film growth, and over a wide spectral range, even on single crystalline surfaces with high symmetry or metallic surfaces, where widely used techniques like reflection anisotropy spectroscopy (RAS) or fluorescence excitation spectroscopy fail. The spectra obtained by DRS resemble mainly the absorption of the films if transparent substrates are used, which simplifies the analysis. In the case of mono- to multilayer films of PTCDA on single crystalline muscovite mica(0001) and Au(111) substrates, the formation of the solid state absorption from monomer to dimer and further to crystal-like absorption spectra can be monitored.

  10. Modulation of the nanometer pore size improves magnesium adsorption into mesoporous titania coatings and promotes bone morphogenic protein 4 expression in adhering osteoblasts.

    PubMed

    Cecchinato, Francesca; Atefyekta, Saba; Wennerberg, Ann; Andersson, Martin; Jimbo, Ryo; Davies, Julia R

    2016-07-01

    Mesoporous (MP) titania films used as implant coatings have recently been considered as release systems for controlled administration of magnesium to enhance initial osteoblast proliferation in vitro. Tuning of the pore size in such titania films is aimed at increasing the osteogenic potential through effects on the total loading capacity and the release profile of magnesium. In this study, evaporation-induced self-assembly (EISA) was used with different structure-directing agents to form three mesoporous films with average pore sizes of 2nm (MP1), 6nm (MP2) and 7nm (MP3). Mg adsorption and release was monitored using quartz crystal microbalance with dissipation (QCM-D). The film surfaces were characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The effect of different Mg release on osteogenesis was investigated in human fetal osteoblasts (hFOB) using pre-designed osteogenesis arrays and real-time polymerase chain reaction (RT-PCR). Results showed a sustained release from all the films investigated, with higher magnesium adsorption into MP1 and MP3 films. No significant differences were observed in the surface nanotopography of the films, either with or without the presence of magnesium. MP3 films (7nm pore size) had the greatest effect on osteogenesis, up-regulating 15 bone-related genes after 1 week of hFOB growth and significantly promoting bone morphogenic protein (BMP4) expression after 3 weeks of growth. The findings indicate that the increase in pore width on the nano scale significantly enhanced the bioactivity of the mesoporous coating, thus accelerating osteogenesis without creating differences in surface roughness. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. "Silicon millefeuille": From a silicon wafer to multiple thin crystalline films in a single step

    NASA Astrophysics Data System (ADS)

    Hernández, David; Trifonov, Trifon; Garín, Moisés; Alcubilla, Ramon

    2013-04-01

    During the last years, many techniques have been developed to obtain thin crystalline films from commercial silicon ingots. Large market applications are foreseen in the photovoltaic field, where important cost reductions are predicted, and also in advanced microelectronics technologies as three-dimensional integration, system on foil, or silicon interposers [Dross et al., Prog. Photovoltaics 20, 770-784 (2012); R. Brendel, Thin Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany 2003); J. N. Burghartz, Ultra-Thin Chip Technology and Applications (Springer Science + Business Media, NY, USA, 2010)]. Existing methods produce "one at a time" silicon layers, once one thin film is obtained, the complete process is repeated to obtain the next layer. Here, we describe a technology that, from a single crystalline silicon wafer, produces a large number of crystalline films with controlled thickness in a single technological step.

  12. Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NO{sub x} abatement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobaldi, D.M., E-mail: david.tobaldi@ua.pt; Pullar, R.C.; Gualtieri, A.F.

    2015-11-15

    Titanium dioxide (TiO{sub 2}) is a popular photocatalyst used for many environmental and anti-pollution applications, but it normally operates under UV light, exploiting ∼5% of the solar spectrum. Nitrification of titania to form N-doped TiO{sub 2} has been explored as a way to increase its photocatalytic activity under visible light, and anionic doping is a promising method to enable TiO{sub 2} to harvest visible-light by changing its photo-absorption properties. In this paper, we explore the insertion of nitrogen into the TiO{sub 2} lattice using our green sol–gel nanosynthesis method, used to create 10 nm TiO{sub 2} NPs. Two parallel routesmore » were studied to produce nitrogen-modified TiO{sub 2} nanoparticles (NPs), using HNO{sub 3}+NH{sub 3} (acid-precipitated base-peptised) and NH{sub 4}OH (totally base catalysed) as nitrogen sources. These NPs were thermally treated between 450 and 800 °C. Their true phase composition (crystalline and amorphous phases), as well as their micro-/nanostructure (crystalline domain shape, size and size distribution, edge and screw dislocation density) was fully characterised through advanced X-ray methods (Rietveld-reference intensity ratio, RIR, and whole powder pattern modelling, WPPM). As pollutants, nitrogen oxides (NO{sub x}) are of particular concern for human health, so the photocatalytic activity of the NPs was assessed by monitoring NO{sub x} abatement, using both solar and white-light (indoor artificial lighting), simulating outdoor and indoor environments, respectively. Results showed that the onset of the anatase-to-rutile phase transformation (ART) occurred at temperatures above 450 °C, and NPs heated to 450 °C possessed excellent photocatalytic activity (PCA) under visible white-light (indoor artificial lighting), with a PCA double than that of the standard P25 TiO{sub 2} NPs. However, higher thermal treatment temperatures were found to be detrimental for visible-light photocatalytic activity, due to the

  13. Correction: Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability.

    PubMed

    Frančič, N; Bellino, M G; Soler-Illia, G J A A; Lobnik, A

    2016-07-07

    Correction for 'Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability' by N. Frančičet al., Analyst, 2014, 139, 3127-3136.

  14. Ultrasoft magnetic films investigated with Lorentz tranmission electron microscopy and electron holography.

    PubMed

    De Hosson, Jeff Th M; Chechenin, Nicolai G; Alsem, Daan-Hein; Vystavel, Tomas; Kooi, Bart J; Chezan, Antoni R; Boerma, Dik O

    2002-08-01

    As a tribute to the scientific work of Professor Gareth Thomas in the field of structure-property relationships this paper delineates a new possibility of Lorentz transmission electron microscopy (LTEM) to study the magnetic properties of soft magnetic films. We show that in contrast to the traditional point of view, not only does the direction of the magnetization vector in nano-crystalline films make a correlated small-angle wiggling, but also the magnitude of the magnetization modulus fluctuates. This fluctuation produces a rapid modulation in the LTEM image. A novel analysis of the ripple structure in nano-crystalline Fe-Zr-N film corresponds to an amplitude of the transversal component of the magnetization deltaMy of 23 mT and a longitudinal fluctuation of the magnetization of the order of deltaMx = 30 mT. The nano-crystalline (Fe99Zr1)1-xNx films have been prepared by DC magnetron reactive sputtering with a thickness between 50 and 1000 nm. The grain size decreased monotonically with N content from typically 100 nm in the case of N-free films to less than 10 nm for films containing 8 at%. The specimens were examined with a JEOL 2010F 200 kV transmission electron microscope equipped with a post column energy filter (GIF 2000 Gatan Imaging Filter). For holography, the microscope is mounted with a biprism (JEOL biprism with a 0.6 microm diameter platinum wire).

  15. Heteroepitaxial growth of tin-doped indium oxide films on single crystalline yttria stabilized zirconia substrates

    NASA Astrophysics Data System (ADS)

    Kamei, Masayuki; Yagami, Teruyuki; Takaki, Satoru; Shigesato, Yuzo

    1994-05-01

    Heteroepitaxial growth of tin-doped indium oxide (ITO) film was achieved for the first time by using single crystalline yttria stabilized zirconia (YSZ) as substrates. The epitaxial relationship between ITO film and YSZ substrate was ITO[100]∥YSZ[100]. By comparing the electrical properties of this epitaxial ITO film with that of a randomly oriented polycrystalline ITO film grown on a glass substrate, neither the large angle grain boundaries nor the crystalline orientation were revealed to be dominant in determining the carrier mobility in ITO films.

  16. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition.

    PubMed

    Zhang, Daixiong; Li, Xueming

    2015-05-21

    Nano-Al/NiO thermites were successfully prepared as film by electrophoretic deposition (EPD). For the key issue of this EPD, a mixture solvent of ethanol-acetylacetone (1:1 in volume) containing 0.00025 M nitric acid was proved to be a suitable dispersion system for EPD. The kinetics of electrophoretic deposition for both nano-Al and nano-NiO were investigated; the linear relation between deposition weight and deposition time in short time and parabolic relation in prolonged time were observed in both EPDs. The critical transition time between linear deposition kinetics and parabolic deposition kinetics for nano-Al and nano-NiO were 20 and 10 min, respectively. The theoretical calculation of the kinetics of electrophoretic deposition revealed that the equivalence ratio of nano-Al/NiO thermites film would be affected by the behavior of electrophoretic deposition for nano-Al and nano-NiO. The equivalence ratio remained steady when the linear deposition kinetics dominated for both nano-Al and nano-NiO. The equivalence ratio would change with deposition time when deposition kinetics for nano-NiO changed into parabolic kinetics dominated after 10 min. Therefore, the rule was suggested to be suitable for other EPD of bicomposites. We also studied thermodynamic properties of electrophoretic nano-Al/NiO thermites film as well as combustion performance.

  17. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Jiang, Jie; Liu, Liang; Zheng, Ke; Yu, Shiyuan; Fan, Yimin

    2015-05-01

    Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized α-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14 ± 4.3 and 190 ± 140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6 ± 1.7 and 320 ± 105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material.

  18. Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Matsubara, Yuya; Takahashi, Kei S.; Tokura, Yoshinori; Kawasaki, Masashi

    2014-12-01

    Thin BaTiO3 films were grown on GdScO3 (110) substrates by metalorganic gas-source molecular beam epitaxy. Titanium tetra-isopropoxide (TTIP) was used as a volatile precursor that provides a wide growth window of the supplied TTIP/Ba ratio for automatic adjustment of the film composition. Within the growth window, compressively strained films can be grown with excellent crystalline quality, whereas films grown outside of the growth window are relaxed with inferior crystallinity. This growth method will provide a way to study the intrinsic properties of ferroelectric BaTiO3 films and their heterostructures by precise control of the stoichiometry, structure, and purity.

  19. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.

    PubMed

    Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan

    2018-05-01

    Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P  < 0.01, P  < 0.05); high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value ( P  < 0.01, P  < 0.05); high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits' scalded skin crusting time ( P  < 0.01), significantly shortened the rabbit skin burns from the scab time ( P  < 0.01), and significantly improved the treatment of skin diseases in rabbits scald model change ( P  < 0.01, P  < 0.05). The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.

  20. Emission-photoactivity cross-processing of mesoporous interfacial charge transfer in Eu3+ doped titania.

    PubMed

    Leroy, Céline Marie; Wang, Hong Feng; Fargues, Alexandre; Cardinal, Thierry; Jubera, Véronique; Treguer-Delapierre, Mona; Boissière, Cédric; Grosso, David; Sanchez, Clément; Viana, Bruno; Pellé, Fabienne

    2011-07-07

    Periodic mesoporous Eu(3+) doped titania materials were obtained through the EISA (Evaporation Induced Self Assembly) process. Eu(3+) ions, entrapped within the semi-crystalline walls of the highly porous framework, appear to be advantageous during the probing of surface photochemical reactions. Its emission intensity is very sensitive to the presence of physisorbed molecules, in gas or liquid phase, that reside within the pores. In particular, strong fluctuations in intensity of the (5)D(0)→(7)F(2) transition were observed under UV light exposure on the time scale of tens of seconds. The emission modulation dynamics show a strong correlation with the crystallinity of the titania matrix. Correlation of the emission with the photocatalytic activity of the semiconductor for photodegradation of an organic molecule is observed. A model is proposed to describe the involved mechanisms. This journal is © the Owner Societies 2011

  1. Highly crystalline MoS{sub 2} thin films grown by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrao, Claudy R.; You, Long; Gadgil, Sushant

    2015-02-02

    Highly crystalline thin films of MoS{sub 2} were prepared over large area by pulsed laser deposition down to a single monolayer on Al{sub 2}O{sub 3} (0001), GaN (0001), and SiC-6H (0001) substrates. X-ray diffraction and selected area electron diffraction studies show that the films are quasi-epitaxial with good out-of-plane texture. In addition, the thin films were observed to be highly crystalline with rocking curve full width half maxima of 0.01°, smooth with a RMS roughness of 0.27 nm, and uniform in thickness based on Raman spectroscopy. From transport measurements, the as-grown films were found to be p-type.

  2. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges.

    PubMed

    Zhang, Yan; Jiang, Jie; Liu, Liang; Zheng, Ke; Yu, Shiyuan; Fan, Yimin

    2015-01-01

    Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized α-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14 ± 4.3 and 190 ± 140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6 ± 1.7 and 320 ± 105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material.

  3. Synthesis of nano-sized lithium cobalt oxide via a sol-gel method

    NASA Astrophysics Data System (ADS)

    Li, Guangfen; Zhang, Jing

    2012-07-01

    In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.

  4. Sol-gel titania-coated needles for solid phase dynamic extraction-GC/MS analysis of desomorphine and desocodeine.

    PubMed

    Su, Chi-Ju; Srimurugan, Sankarewaran; Chen, Chinpiao; Shu, Hun-Chi

    2011-01-01

    Novel sol-gel titania film coated needles for solid-phase dynamic extraction (SPDE)-GC/MS analysis of desomorphine and desocodeine are described. The high thermal stability of titania film permits efficient extraction and analysis of poorly volatile opiate drugs. The influences of sol-gel reaction time, coating layer, extraction and desorption time and temperature on the SPDE needle performance were investigated. The deuterium labeled internal standard was introduced either during the extraction of analyte or directly injected to GC after the extraction process. The latter method was shown to be more sensitive for the analysis of water and urine samples containing opiate drugs. The proposed conditions provided a wide linear range (from 5-5000 ppb), and satisfactory linearity, with R(2) values from 0.9958 to 0.9999, and prominent sensitivity, LOQs (1.0-5.0 ng/g). The sol-gel titania film coated needle with SPDE-GC/MS will be a promising technique for desomorphine and desocodeine analysis in urine.

  5. Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.

    PubMed

    Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang

    2016-11-23

    Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m -2 (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.

  6. Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells.

    PubMed

    Wu, Wu-Qiang; Xu, Yang-Fan; Rao, Hua-Shang; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-04-30

    An unprecedented attempt was conducted on suitably functionalized integration of three-dimensional hyperbranched titania architectures for efficient multistack photoanode, constructed via layer-by-layer assembly of hyperbranched hierarchical tree-like titania nanowires (underlayer), branched hierarchical rambutan-like titania hollow submicrometer-sized spheres (intermediate layer), and hyperbranched hierarchical urchin-like titania micrometer-sized spheres (top layer). Owing to favorable charge-collection, superior light harvesting efficiency and extended electron lifetime, the multilayered TiO2-based devices showed greater J(sc) and V(oc) than those of a conventional TiO2 nanoparticle (TNP), and an overall power conversion efficiency of 11.01% (J(sc) = 18.53 mA cm(-2); V(oc) = 827 mV and FF = 0.72) was attained, which remarkably outperformed that of a TNP-based reference cell (η = 7.62%) with a similar film thickness. Meanwhile, the facile and operable film-fabricating technique (hydrothermal and drop-casting) provides a promising scheme and great simplicity for high performance/cost ratio photovoltaic device processability in a sustainable way.

  7. Transparent, flexible supercapacitors from nano-engineered carbon films.

    PubMed

    Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  8. Transparent, flexible supercapacitors from nano-engineered carbon films

    PubMed Central

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970

  9. Transparent, flexible supercapacitors from nano-engineered carbon films

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  10. Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.

    2017-10-01

    An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.

  11. Photocatalytic performance of crystalline titania polymorphs in the degradation of hazardous pharmaceuticals and dyes

    NASA Astrophysics Data System (ADS)

    Thuong Huyen Tran, Thi; Kosslick, Hendrik; Schulz, Axel; Liem Nguyen, Quang

    2017-03-01

    In the present work, nano-sized TiO2 polymorphs (anatase, brookite, and rutile) were synthesized via hydrothermal treatment of an amorphous titania. Three polymorphs were characterized by XRD, Raman spectroscopy, SEM, UV-Vis DRS, and N2-sorption measurements. The photocatalytic degradation experiments were performed with low catalyst concentration, high organic loading under a 60 W UV-Vis solarium lamp irradiation. The photocatalytic degradation was monitored by UV-Vis spectroscopy and TOC measurements. Cinnamic acid, ibuprofen, phenol, diatrizoic acid and the dyes rhodamine B and rose bengal were used as model pollutants. The formation of intermediates was studied by ESI-TOF-MS measurements. The presence of active species was checked by quenching the activity by addition of scavengers. The photocatalytic activity decreased in the order: anatase  ⩾  brookite  >  rutile, with growing recalcitrance of organic compounds. The differences in the activity are more pronounced in the degree of mineralization. The valence band holes and superoxide radicals were the major active species in the photocatalytic treatment with anatase and brookite, whereas hydroxyl radicals and superoxide radicals contributed mainly in the treatment with rutile explaining the lower activity of rutile. The complementary use of UV-Vis spectroscopy and TOC measurements was required to obtain a comprehensive realistic assessment on the photocatalytic performance of catalyst. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  12. Development of Antimicrobial Packaging Film Made from Poly(Lactic Acid) Incorporating Titanium Dioxide and Silver Nanoparticles.

    PubMed

    Li, Wenhui; Zhang, Cheng; Chi, Hai; Li, Lin; Lan, Tianqing; Han, Peng; Chen, Haiyan; Qin, Yuyue

    2017-07-13

    Polylactide (PLA)/nano-TiO₂ and PLA/nano-TiO₂/nano-Ag blends films were prepared by a solvent volatilization method. Compared to pure PLA film, the nano-blend films have low water vapor permeability (WVP) and a poor transparency. With the increase of the NPs in the PLA, the tensile strength (TS) and elastic modulus (EM) decreased, while the elongation at break (ε) increased. SEM analysis indicated a rougher cross-section of the nano-blend films. According to the FTIR analysis, no new chemical bonds were formed in the nano-blend films. By using DSC to examine the crystallization and melting behavior, the result shows that the NPs have no effect on the glass transition (T g ) and melting temperature (T m ), but they caused an increase on the cold crystallization (T c) and crystallinity ( X c ). TGA results show that the addition of nanoparticles significantly improved the thermal stability. The PLA nano-blend films show a good antimicrobial activity against. E. coli and Listeria monocytogenes . Most important, we carried out migration tests, and verified that the release of NPs from the nano-blend films was within the standard limits.

  13. Design of titania nanotube structures by focused laser beam direct writing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enachi, Mihai; Stevens-Kalceff, Marion A.; Sarua, Andrei

    In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO{sub 2} NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes.

  14. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viayan, B.; Dimitrijevic, N. M.; Rajh, T.

    Titania nanotubes having diameters 8 to 12 nm and lengths of 50-300 nm were prepared using a hydrothermal method. Further, the titania nanotubes were calcined over the temperature range 200-800 C in order to enhance their photocatalytic properties by altering their morphology. The calcined titania nanotubes were characterized by using X-ray diffraction and surface area analysis and their morphological features were studied by scanning and transmission electron microscopy. Nanotubes calcined at 400 C showed the maximum extent of photocatalyitc reduction of carbon dioxide to methane, whereas samples calcined at 600 C produced maximum photocatalytic oxidation of acetaldehyde. Electron paramagnetic resonancemore » (EPR) spectroscopy was used to interrogate the effects of nanotube structure on the charge separation and trapping as a function of calcination temperature. EPR results indicated that undercoordinated titania sites are associated with maximum CO{sub 2} reduction occurring in nanotubes calcined at 400 C. Despite the collapse of the nantube structure to form nanorods and the concomitant loss of surface area, the enhanced charge separation associated with increased crystallinity promoted high rates of oxidation of acetaldehyde in titania materials calcined at 600 C. These results illustrate that calcination temperature allows us to tune the morphological and surface features of the titania nanostructures for particular photocatalytic reactions.« less

  16. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    NASA Astrophysics Data System (ADS)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  17. One-step synthesis of titania nanoparticles from PS-P4VP diblock copolymer solution

    NASA Astrophysics Data System (ADS)

    Song, Lixin; Lam, Yeng Ming; Boothroyd, Chris; Teo, Puat Wen

    2007-04-01

    Polymeric films containing titania nanoparticles have potential as dielectric films for flexible electronic applications. For this purpose, the nanoparticles must be homogeneously distributed. Self-assembly is emerging as a neat, elegant method for fabricating such nanostructured hybrid materials with well-distributed nanoparticles. In this work, we report a micellar solution approach for the assembly of copolymer-titanium precursor nanostructures in which titania nanoparticles were synthesized. The ratio of the amount of titanium precursor, titanium isopropoxide, to the blocks forming the micellar core, poly(4-vinylpyridine), was found to play a key role in controlling film morphology. A sphere-to-ribbon transition was observed when the amount of titanium isopropoxide was increased. The thin film morphology can be tuned using the precursor-copolymer interaction rather than just the polymer-polymer interaction or the polymer-solution interaction. This method provides yet another way to control the morphology of nanostructures.

  18. Femtosecond pulsed laser micromachining of single crystalline 3C SiC structures based on a laser-induced defect-activation process

    NASA Astrophysics Data System (ADS)

    Dong, Yuanyuan; Zorman, Christian; Molian, Pal

    2003-09-01

    A femtosecond pulsed Ti:sapphire laser with a pulse width of 120 fs, a wavelength of 800 nm and a repetition rate of 1 kHz was employed for direct write patterning of single crystalline 3C-SiC thin films deposited on Si substrates. The ablation mechanism of SiC was investigated as a function of pulse energy. At high pulse energies (>1 µJ), ablation occurred via thermally dominated processes such as melting, boiling and vaporizing of single crystalline SiC. At low pulse energies, the ablation mechanism involved a defect-activation process that included the accumulation of defects, formation of nano-particles and vaporization of crystal boundaries, which contributed to well-defined and debris-free patterns in 3C-SiC thin films. The interactions between femtosecond laser pulses and the intrinsic lattice defects in epitaxially grown 3C-SiC films led to the generation of nano-particles. Micromechanical structures such as micromotor rotors and lateral resonators were patterned into 3C-SiC films using the defect-activation ablation mechanism.

  19. Formation and characterization of preferred oriented perovskite thin films on single-crystalline substrates

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Chien; Chen, Cheng-Chiang; Hsiung Chang, Sheng; Lee, Kuan-Lin; Tseng, Zong-Liang; Chen, Sheng-Hui; Kuo, Hao-Chung

    2018-06-01

    Three single-crystalline (Al2O3, GaN/Al2O3 and InAs) substrates are used to assist the formation of crystallographically preferred oriented CH3NH3PbI3 (MAPbI3) thin films. The estimation of the lattice mismatch at the MAPbI3/substrate interface and water-droplet contact angle experiments indicate that the formation of a preferred oriented MAPbI3 thin film is induced by the single-crystalline substrate and is insensitive to the surface wettibility of the substrate. Moreover, the experimental results suggest that the lattice mismatch at the MAPbI3/single-crystalline semiconductor interface can strongly influence the photovoltaic performance of tandem solar cells.

  20. A direct correlation of x-ray diffraction orientation distributions to the in-plane stiffness of semi-crystalline organic semiconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bingxiao; Awartani, Omar; O'Connor, Brendan

    2016-05-02

    Large charge mobilities of semi-crystalline organic semiconducting films could be obtained by mechanically aligning the material phases of the film with the loading axis. A key element is to utilize the inherent stiffness of the material for optimal or desired alignment. However, experimentally determining the moduli of semi-crystalline organic thin films for different loading directions is difficult, if not impossible, due to film thickness and material anisotropy. In this paper, we address these challenges by presenting an approach based on combining a composite mechanics stiffness orientation formulation with a Gaussian statistical distribution to directly estimate the in-plane stiffness (transverse isotropy)more » of aligned semi-crystalline polymer films based on crystalline orientation distributions obtained by X-ray diffraction experimentally at different applied strains. Our predicted results indicate that the in-plane stiffness of an annealing film was initially isotropic, and then it evolved to transverse isotropy with increasing mechanical strains. This study underscores the significance of accounting for the crystalline orientation distributions of the film to obtain an accurate understanding and prediction of the elastic anisotropy of semi-crystalline polymer films.« less

  1. Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure

    NASA Technical Reports Server (NTRS)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal K. (Inventor); Solayappan, Narayanan (Inventor)

    1995-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  2. Solution processed nanogap organic diodes based on liquid crystalline materials

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Fei; Iino, Hiroaki; Hanna, Jun-ichi

    2017-09-01

    Co-planar nanogap organic diodes were fabricated with smectic liquid crystalline materials of the benzothienobenzothiophene (BTBT) derivative by a spin-coating technique. A high rectification ratio of the order of 106 at ±3 V was achieved when a liquid crystalline material of 2,7-didecyl benzothieno[3,2-b][1]benzothiophene (10-BTBT-10) was used in a device configuration of Al/10-BTBT-10/pentafluorobenzenethiol-treated Au on a glass substrate, which was 4 orders higher than that of the device based on non-liquid crystalline materials of 2,7-dibutyl benzothieno[3,2-b][1]benzothiophene (4-BTBT-4) and BTBT. Similar results were also observed when another liquid crystalline material of ω, ω'-dioctylterthiophene (8-TTP-8) and a non-liquid crystalline material of terthiophene (TTP) were used. These improved rectifications can be ascribed to the self-assembly properties and controllable molecular orientation of liquid crystalline materials, which made uniform perpendicular oriented polycrystalline films favorable for superior charge transport in nano-channels.

  3. Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation

    PubMed Central

    Badr-Eldin, Shaimaa M; Ahmed, Osamaa AA

    2016-01-01

    Sildenafil citrate (SLD) is a selective cyclic guanosine monophosphate-specific phosphodiesterase type 5 inhibitor used for the oral treatment of erectile dysfunction and, more recently, for other indications, including pulmonary hypertension. The challenges facing the oral administration of the drug include poor bioavailability and short duration of action that requires frequent administration. Thus, the objective of this work is to formulate optimized SLD nano-transfersomal transdermal films with enhanced and controlled permeation aiming at surmounting the previously mentioned challenges and hence improving the drug bioavailability. SLD nano-transfersomes were prepared using modified lipid hydration technique. Central composite design was applied for the optimization of SLD nano-transfersomes with minimized vesicular size. The independent variables studied were drug-to-phospholipid molar ratio, surfactant hydrophilic lipophilic balance, and hydration medium pH. The optimized SLD nano-transfersomes were developed and evaluated for vesicular size and morphology and then incorporated into hydroxypropyl methyl cellulose transdermal films. The optimized transfersomes were unilamellar and spherical in shape with vesicular size of 130 nm. The optimized SLD nano-transfersomal films exhibited enhanced ex vivo permeation parameters with controlled profile compared to SLD control films. Furthermore, enhanced bioavailability and extended absorption were demonstrated by SLD nano-transfersomal films as reflected by their significantly higher maximum plasma concentration (Cmax) and area under the curve and longer time to maxi mum plasma concentration (Tmax) compared to control films. These results highlighted the potentiality of optimized SLD nano-transfersomal films to enhance the transdermal permeation and the bioavailability of the drug with the possible consequence of reducing the dose and administration frequency. PMID:27103786

  4. Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation.

    PubMed

    Badr-Eldin, Shaimaa M; Ahmed, Osamaa Aa

    2016-01-01

    Sildenafil citrate (SLD) is a selective cyclic guanosine monophosphate-specific phosphodiesterase type 5 inhibitor used for the oral treatment of erectile dysfunction and, more recently, for other indications, including pulmonary hypertension. The challenges facing the oral administration of the drug include poor bioavailability and short duration of action that requires frequent administration. Thus, the objective of this work is to formulate optimized SLD nano-transfersomal transdermal films with enhanced and controlled permeation aiming at surmounting the previously mentioned challenges and hence improving the drug bioavailability. SLD nano-transfersomes were prepared using modified lipid hydration technique. Central composite design was applied for the optimization of SLD nano-transfersomes with minimized vesicular size. The independent variables studied were drug-to-phospholipid molar ratio, surfactant hydrophilic lipophilic balance, and hydration medium pH. The optimized SLD nano-transfersomes were developed and evaluated for vesicular size and morphology and then incorporated into hydroxypropyl methyl cellulose transdermal films. The optimized transfersomes were unilamellar and spherical in shape with vesicular size of 130 nm. The optimized SLD nano-transfersomal films exhibited enhanced ex vivo permeation parameters with controlled profile compared to SLD control films. Furthermore, enhanced bioavailability and extended absorption were demonstrated by SLD nano-transfersomal films as reflected by their significantly higher maximum plasma concentration (C max) and area under the curve and longer time to maxi mum plasma concentration (T max) compared to control films. These results highlighted the potentiality of optimized SLD nano-transfersomal films to enhance the transdermal permeation and the bioavailability of the drug with the possible consequence of reducing the dose and administration frequency.

  5. The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moerman, David; Colbert, Adam E.; Ginger, David S., E-mail: ginger@chem.washington.edu

    We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO{sub 2}) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO{sub 2} thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO{sub 2} thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO{sub 2} form. Finally, we use localmore » SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO{sub 2} thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO{sub 2} is amorphous, in agreement with the device measurements.« less

  6. Photoinduced Changes of Surface Topography in Amorphous, Liquid-Crystalline, and Crystalline Films of Bent-Core Azobenzene-Containing Substance.

    PubMed

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Solovyeva, Daria; Shibaev, Valery; Bogdanova, Yulia; Hamplová, Vĕra; Kašpar, Miroslav; Bubnov, Alexej

    2016-06-09

    Recently, photofluidization and mass-transfer effects have gained substantial interest because of their unique abilities of photocontrolled manipulation with material structure and physicochemical properties. In this work, the surface topographies of amorphous, nematic, and crystalline films of an azobenzene-containing bent-core (banana-shaped) compound were studied using a special experimental setup combining polarizing optical microscopy and atomic force microscopy. Spin-coating or rapid cooling of the samples enabled the formation of glassy amorphous or nematic films of the substance. The effects of UV and visible-light irradiation on the surface roughness of the films were investigated. It was found that UV irradiation leads to the fast isothermal transition of nematic and crystalline phases into the isotropic phase. This effect is associated with E-Z photoisomerization of the compound accompanied by a decrease of the anisometry of the bent-core molecules. Focused polarized visible-light irradiation (457.9 nm) results in mass-transfer phenomena and induces the formation of so-called "craters" in amorphous and crystalline films of the substance. The observed photofluidization and mass-transfer processes allow glass-forming bent-core azobenzene-containing substances to be considered for the creation of promising materials with photocontrollable surface topographies. Such compounds are of principal importance for the solution of a broad range of problems related to the investigation of surface phenomena in colloid and physical chemistry, such as surface modification for chemical and catalytic reactions, predetermined morphology of surfaces and interfaces in soft matter, and chemical and biochemical sensing.

  7. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias

    2014-10-01

    A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  8. Pinning in high performance MgB2 thin films and bulks: Role of Mg-B-O nano-scale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Prikhna, Tatiana; Shapovalov, Andrey; Eisterer, Michael; Shaternik, Vladimir; Goldacker, Wilfried; Weber, Harald W.; Moshchil, Viktor; Kozyrev, Artem; Sverdun, Vladimir; Boutko, Viktor; Grechnev, Gennadiy; Gusev, Alexandr; Kovylaev, Valeriy; Shaternik, Anton

    2017-02-01

    The comparison of nano-crystalline MgB2 oxygen-containing thin film (140 nm) and highly dense bulk materials showed that the critical current density, Jc, depends on the distribution of Mg-B-O nano-scale inhomogeneities. It has been shown that MgB2 bulks with high Jc in low (∼106 A/cm2 in 0-1 T at 10 K) and medium magnetic fields contain MgB0.6-0.8O0.8-0.9 nano-inclusions, where δTc or a combined δTc (dominant) / δl pinning mechanism prevails, while in bulk MgB2 with high Jc in high magnetic fields (Birr(18.5 K) = 15 T, Bc2(0 K) = 42.1 T) MgB1.2-2.7O1.8-2.5 nano-layers are present and δl pinning prevails. The structure of oxygen-containing films with high Jc in low and high magnetic fields (Jc (0 Т) = 1.8 × 107 А/сm2 and Jc (5 Т) = 2 × 106 А/сm2 at 10 К) contains very fine oxygen-enriched Mg-B-O inhomogeneities and δl pinning is realized. The results of DOS calculations in MgB2-xOx cells for x = 0, 0.125, 0.25, 0.5, 1 demonstrate that all compounds are conductors with metal-like behaviour. In the case of ordered oxygen substitution for boron the binding energy, Eb, does not increase sufficiently as compared with that for MgB2, while when oxygen atoms form zigzag chains the calculated Eb is even lower (Eb = -1.15712 Ry).

  9. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2018-06-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  10. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2017-11-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  11. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications.

    PubMed

    Noorbakhsh-Soltani, S M; Zerafat, M M; Sabbaghi, S

    2018-06-01

    Environmental concerns have led to extensive research for replacing polymer-based food packaging with bio-nano-composites. In this study, incorporation of nano-cellulose into gelatin and starch matrices is investigated for this purpose. Chitosan is used to improve mechanical, anti-fungal and waterproof properties. Experiments are designed and analyzed using response surface methodology. Nano-Cellulose is synthesized via acid hydrolysis and incorporated in base matrices through wet processing. Also, tensile strength test, food preservation, transparency in visible and UV and water contact angle are performed on the nano-composite films. DSC/TGA and air permeability tests are also performed on the optimal films. The results show that increasing nano-cellulose composition to 10% leads to increase the tensile strength at break to 8121 MN/m 2 and decrease the elongation at break. Also, increasing chitosan composition from 5% to 30% can enhance food preservation up to 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti

    PubMed Central

    2011-01-01

    We present a novel method to fabricate complete and highly oriented anodic titanium oxide (ATO) nano-porous structures with uniform and parallel nanochannels. ATO nano-porous structures are fabricated by anodizing a Ti-foil in two different organic viscous electrolytes at room temperature using a two-step anodizing method. TiO2 nanotubes covered with a few nanometer thin nano-porous layer is produced when the first and the second anodization are carried out in the same electrolyte. However, a complete titania nano-porous (TNP) structures are obtained when the second anodization is conducted in a viscous electrolyte when compared to the first one. TNP structure was attributed to the suppression of F-rich layer dissolution between the cell boundaries in the viscous electrolyte. The structural morphologies were examined by field emission scanning electron microscope. The average pore diameter is approximately 70 nm, while the average inter-pore distance is approximately 130 nm. These TNP structures are useful to fabricate other nanostructure materials and nanodevices. PMID:21711844

  13. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    NASA Astrophysics Data System (ADS)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  14. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in

    2016-04-18

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra canmore » be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.« less

  15. In vitro apatite formation on nano-crystalline titania layer aligned parallel to Ti6Al4V alloy substrates with sub-millimeter gap.

    PubMed

    Hayakawa, Satoshi; Matsumoto, Yuko; Uetsuki, Keita; Shirosaki, Yuki; Osaka, Akiyoshi

    2015-06-01

    Pure titanium substrates were chemically oxidized with H2O2 and subsequent thermally oxidized at 400 °C in air to form anatase-type titania layer on their surface. The chemically and thermally oxidized titanium substrate (CHT) was aligned parallel to the counter specimen such as commercially pure titanium (cpTi), titanium alloy (Ti6Al4V) popularly used as implant materials or Al substrate with 0.3-mm gap. Then, they were soaked in Kokubo's simulated body fluid (SBF, pH 7.4, 36.5 °C) for 7 days. XRD and SEM analysis showed that the in vitro apatite-forming ability of the contact surface of the CHT specimen decreased in the order: cpTi > Ti6Al4V > Al. EDX and XPS surface analysis showed that aluminum species were present on the contact surface of the CHT specimen aligned parallel to the counter specimen such as Ti6Al4V and Al. This result indicated that Ti6Al4V or Al specimens released the aluminum species into the SBF under the spatial gap. The released aluminum species might be positively or negatively charged in the SBF and thus can interact with calcium or phosphate species as well as titania layer, causing the suppression of the primary heterogeneous nucleation and growth of apatite on the contact surface of the CHT specimen under the spatial gap. The diffusion and adsorption of aluminum species derived from the half-sized counter specimen under the spatial gap resulted in two dimensionally area-selective deposition of apatite particles on the contact surfaces of the CHT specimen.

  16. Synthesis and polymorphic control for visible light active titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaewgun, Sujaree

    Titania (TiO2) is useful for many applications in photocatalysis, antimicrobials, pigment, deodorization, and decomposition of harmful organics and undesirable compounds in the air and waste water under UV irradiation. Among the three phases of TiO2, Rutile, Anatase, and Brookite, studies have been more focused on the anatase and rutile phases. Pure brookite is the most difficult phase to prepare, even under hydrothermal conditions. Predominantly brookite phase TiO2 nanoparticles were prepared by the Water-based Ambient Condition Sol (WACS) process in our laboratory. The objectives of this research were to enhance visible light active (VLA) photocatalytic properties of polymorphic brookite TiO2 by minimizing the lattice defects and narrowing band gap of titania by nitrogen and/or carbon chromophone, and to investigate the deactivation, reusability, and regeneration of the VLA titania in order to design better titania catalysts for organic compound degradation applications. In order to study the influence of hydroxyl content on photocatalytic activities (PCAs) of polymorphic titania nanoparticles, the WACS samples were post-treated by a Solvent-based Ambient Condition Sol (SACS) process in sec-butanol (sec-BuOH). All samples were characterized for phase composition, surface area, hydroxyl contamination, and particle morphology by x-ray diffraction, N2 physisorption, FT-IR, solid state 1H NMR and scanning electron microscopy, and then compared to a commercial titania, Degussa P25. Evaluation of methyl orange (MO) degradation under UV irradiation results showed that the lower lattice hydroxyl content in SACS titania enhanced the PCA. As-prepared titania and SACS samples, which have similar surface areas and crystallinity, were compared in order to prove that the superior PCA came from the reduction in the lattice hydroxyl content. To enhance PCA and VLA properties of WACS, an alternative high boiling point polar solvent, N-methylpyrrolidone (NMP), was utilized in the

  17. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    PubMed

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    NASA Astrophysics Data System (ADS)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  19. Evaluation of the adhesion on the nano-scaled polymeric film systems.

    PubMed

    Park, Tae Sung; Park, Ik Keun; Yoshida, Sanichiro

    2017-04-01

    We applied scanning acoustic microscopy known as the V(z) curve technique to photoresist thin-film systems for the evaluation of the adhesive strength at the film-substrate interface. Through the measurement of the SAW (Surface Acoustic Wave) velocity, the V(z) curve analysis allows us to quantify the stiffness of the film-substrate interface. In addition, we conducted a nano-scratch test to quantify the ultimate strength of the adhesion through the evaluation of the critical load. To vary the adhesive conditions, we prepared thin-film specimens with three different types of pre-coating surface treatments, i.e., oxygen-plasma bombardment, HMDS (Hexametyldisilazane) treatment and untreated. The magnitudes of the quantified stiffness and ultimate strength are found consistent with each other for all the specimens tested, indicating that the pre-coating surface treatment can strengthen both the stiffness and ultimate strength of the adhesion. The results of this study demonstrate the usefulness of the V(Z) analysis as a nondestructive method to evaluate the adhesion strength of nano-structured thin-film systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Incorporating poly(3-hexyl thiophene) into orthogonally aligned cylindrical nanopores of titania for optoelectronics

    DOE PAGES

    Nagpure, Suraj; Browning, James F.; Rankin, Stephen E.

    2016-11-03

    Here, the incorporation of hole conducting polymer poly(3-hexyl thiophene) (P3HT) into the 8-9 nm cylindrical nanopores of titania is investigated using films with a unique orthogonally oriented hexagonal close packed mesostructure. The films are synthesized using evaporation induced self-assembly (EISA) with Pluronic triblock copolymer F127 as the structure directing agent. The orthogonally oriented cylindrical nanopore structure was chosen over a cubic structure because confinement in uniform cylindrical channels is hypothesized to enhance hole conductivity of P3HT by inducing local polymer chain ordering. Orthogonal orientation of the cylindrical nanopores is achieved by modifying the substrate (FTO-coated glass slides) with crosslinked F127.more » After thermal treatment to remove organic templates from the films, P3HT is infiltrated into the nanopores by spin coating a 1 wt% P3HT solution in chlorobenzene onto the titania films followed by thermal annealing under vacuum at 200 °C. The results show that infiltration is essentially complete after 30 minutes of annealing, with little or no further infiltration thereafter. A final infiltration depth of ~14 nm is measured for P3HT into the nanopores of titania using neutron reflectometry measurements. Photoluminescence measurements demonstrate that charge transfer at the P3HT-TiO 2 interface improves as the P3HT is infiltrated into the pores, suggesting that an active organic-inorganic heterojuction is formed in the materials.« less

  1. Incorporating poly(3-hexyl thiophene) into orthogonally aligned cylindrical nanopores of titania for optoelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagpure, Suraj; Browning, James F.; Rankin, Stephen E.

    Here, the incorporation of hole conducting polymer poly(3-hexyl thiophene) (P3HT) into the 8-9 nm cylindrical nanopores of titania is investigated using films with a unique orthogonally oriented hexagonal close packed mesostructure. The films are synthesized using evaporation induced self-assembly (EISA) with Pluronic triblock copolymer F127 as the structure directing agent. The orthogonally oriented cylindrical nanopore structure was chosen over a cubic structure because confinement in uniform cylindrical channels is hypothesized to enhance hole conductivity of P3HT by inducing local polymer chain ordering. Orthogonal orientation of the cylindrical nanopores is achieved by modifying the substrate (FTO-coated glass slides) with crosslinked F127.more » After thermal treatment to remove organic templates from the films, P3HT is infiltrated into the nanopores by spin coating a 1 wt% P3HT solution in chlorobenzene onto the titania films followed by thermal annealing under vacuum at 200 °C. The results show that infiltration is essentially complete after 30 minutes of annealing, with little or no further infiltration thereafter. A final infiltration depth of ~14 nm is measured for P3HT into the nanopores of titania using neutron reflectometry measurements. Photoluminescence measurements demonstrate that charge transfer at the P3HT-TiO 2 interface improves as the P3HT is infiltrated into the pores, suggesting that an active organic-inorganic heterojuction is formed in the materials.« less

  2. Impact of nano/micron vegetable carbon black on mechanical, barrier and anti-photooxidation properties of fish gelatin film.

    PubMed

    Ding, Junsheng; Wu, Xiaomeng; Qi, Xiaona; Guo, Heng; Liu, Anjun; Wang, Wenhang

    2018-05-01

    In this paper, two kinds of commonly used vegetable carbon black (VCB, 3000 mesh; nano) at 50 g kg -1 concentration (based on dried gelatin) were added to 48 g kg -1 of fish gelatin (GEL) solutions and their effects on mechanical, barrier and anti-photooxidation properties of GEL films were investigated. From the SEM images, it was shown that compared with 3000 mesh VCB (1-2 μm), nano VCB (100-200 nm) made the microstructure of GEL film more compact and more gelatin chains were cross-linked by nano VCB. The addition of nano VCB significantly increased gelatin film strength with the greatest tensile strength of 52.589 MPa and stiffness with the highest Young's modulus of 968.874 MPa, but led to the reduction of film elongation. Also, the VCB presence significantly improved water vapour and oxygen barrier properties of GEL film. Importantly, nano VCB increased GEL film with better UV barrier property due to its stronger UV absorption nature when compared with micron VCB. This property could help in the preservation of oil samples in the photooxidation accelerated test. With improved properties, the nano VCB-reinforced GEL film may have great potential for application in the edible packaging field, especially for the anti-photooxidation property. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Nano-enabled tribological thin film coatings: global patent scenario.

    PubMed

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds.

  4. High crystalline CuAlS2 thin films via chemical spray pyrolysis route

    NASA Astrophysics Data System (ADS)

    Naveena, D.; Logu, T.; Sethuraman, K.; Bose, A. Chandra

    2018-04-01

    High crystalline and non-toxic CuAlS2 thin films were successfully deposited on glass substrate by chemical spray pyrolysis method. The as-prepared sample was subjected to the sulphurization at 450 °C for 30 min. The structural, morphological, optical and electrical properties of the as deposited and sulphurized films have been systematically analyzed. XRD result shows that the sulphurized sample exhibited tetragonal crystal structure with increase in crystallite size. The optical band gap was found to decrease from 3.25 eV to 3.21 eV and the carrier concentration is 4.22×1015cm-3 for the as-deposited film which rises to 6.29×1015cm-3 after sulphurizing the film in nitrogen atmosphere. The results of this study provide a framework for fabricating an optimized high crystalline CuAlS2 layer in optoelectronic devices.

  5. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  6. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of amore » blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.« less

  7. Fabrication of Cu2ZnSn(S,Se)4 (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes

    NASA Astrophysics Data System (ADS)

    Ma, Ruixin; Yang, Fan; Li, Shina; Zhang, Xiaoyong; Li, Xiang; Cheng, Shiyao; Liu, Zilin

    2016-04-01

    CZTSSe is an important earth abundant collection of materials for the development of low cost and high efficiency thin film solar cells. This work developed a simple non-vacuum-based route to fabricate CZTSSe absorber films. This was demonstrated by first synthesizing Cu2ZnSnS4 (CZTS) nano-crystalline based on solid-phase synthesis. Then a stable colloidal ink composed of CZTS nano-crystalline was blade coated on Mo-coated substrates followed by an annealing process under Ar atmosphere. After CZTS films formation, the films were sintered into CZTSSe absorber films by exposing them under Selenium vapor. The formation of a kesterite type CZTS was confirmed using X-ray diffraction and Raman scattering measurements. The band gap of CZTSSe absorber films was determined to be 1.26 eV, which was appropriate for use as an absorber layer in thin film solar cells. The CZTSSe absorber films showed a good photovoltatic performance, demonstrating this simple approach had great potential for CZTSSe solar cell production.

  8. Molecular beam epitaxy of single-crystalline aluminum film for low threshold ultraviolet plasmonic nanolasers

    NASA Astrophysics Data System (ADS)

    Liu, Shuanglong; Sheng, Bowen; Wang, Xinqiang; Dong, Dashan; Wang, Ping; Chen, Zhaoying; Wang, Tao; Rong, Xin; Li, Duo; Yang, Liuyun; Liu, Shangfeng; Li, Mo; Zhang, Jian; Ge, Weikun; Shi, Kebin; Tong, Yuzhen; Shen, Bo

    2018-06-01

    High-quality single-crystalline aluminum films have been grown on Si(111) substrates by molecular beam epitaxy. The x-ray diffraction rocking curve of the (111) plane of the Al film shows a full width at half maximum of 564 arc sec for the sample grown at 100 °C, where the surface is atomically flat with a root-mean-square roughness of 0.40 nm in a scanned area of 3 × 3 μm2. By using such a high-quality Al film, we have demonstrated a room temperature ultraviolet surface-plasmon-polariton nanolaser at a wavelength of 360 nm with a threshold as low as ˜0.2 MW/cm2, which provides a powerful evidence for potential application of the single-crystalline Al film in plasmonic devices.

  9. Two-dimensional limit of crystalline order in perovskite membrane films

    PubMed Central

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di; Marshall, Ann F.; Hikita, Yasuyuki; Cui, Yi; Hwang, Harold Y.

    2017-01-01

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO3 membrane lattice collapses below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. The transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices. PMID:29167822

  10. Two-dimensional limit of crystalline order in perovskite membrane films

    DOE PAGES

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di; ...

    2017-11-17

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less

  11. Tin doped indium oxide anodes with artificially controlled nano-scale roughness using segregated Ag nanoparticles for organic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki

    2016-09-01

    Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes.

  12. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.

    PubMed

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-04

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  13. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  14. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    PubMed Central

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006

  15. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.

    PubMed

    Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv

    2018-02-02

    Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4  Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.

  16. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    PubMed Central

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  17. Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering.

    PubMed

    Chang, Chun-Yu; Huang, Yu-Ching; Tsao, Cheng-Si; Su, Wei-Fang

    2016-10-12

    Controlling the crystallization and morphology of perovskite films is crucial for the fabrication of high-efficiency perovskite solar cells. For the first time, we investigate the formation mechanism of the drop-cast perovskite film from its precursor solution, PbCl 2 and CH 3 NH 3 I in N,N-dimethylformamide, to a crystalline CH 3 NH 3 PbI 3-x Cl x film at different substrate temperatures from 70 to 180 °C in ambient air and humidity. We employed an in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) technique for this study. When the substrate temperature is at or below 100 °C, the perovskite film is formed in three stages: the initial solution stage, transition-to-solid film stage, and transformation stage from intermediates into a crystalline perovskite film. In each stage, the multiple routes for phase transformations are preceded concurrently. However, when the substrate temperature is increased from 100 to 180 °C, the formation mechanism of the perovskite film is changed from the "multistage formation mechanism" to the "direct formation mechanism". The proposed mechanism has been applied to understand the formation of a perovskite film containing an additive. The result of this study provides a fundamental understanding of the functions of the solvent and additive in the solution and transition states to the crystalline film. It provides useful knowledge to design and fabricate crystalline perovskite films for high-efficiency solar cells.

  18. Extremely enhanced photovoltaic properties of dye-sensitized solar cells by sintering mesoporous TiO2 photoanodes with crystalline titania chelated by acetic acid

    NASA Astrophysics Data System (ADS)

    Liu, Bo-Tau; Chou, Ya-Hui; Liu, Jin-Yan

    2016-04-01

    The study presents a significant improvement on the performance of dye-sensitized solar cells (DSSCs) through incorporating the crystalline titania chelated by acetic acid (TAc) into the mesoporous TiO2 photoanodes. The effects of TAc on the blocking layer, mesoporous TiO2 layer, and post-treatment have been investigated. The TAc blocking layer displays compact construction, revealing superior response time and resistance to suppress dark current compared to the blocking layer made from titanium(IV) isopropoxide (TTIP). The power conversion efficiency of DSSCs with the TAc treatment can reach as high as 10.49%, which is much higher than that of pristine DSSCs (5.67%) and that of DSSCs treated by TTIP (7.86%). We find that the TAc incorporation can lead to the decrease of charge transfer resistance and the increase of dye adsorption. The result may be attributed to the fact that the TAc possesses high crystallinity, exposed (101) planes, and acid groups chelated on surface, which are favorable for dye attachment and strong bonding at the FTO/TiO2 and the TiO2/TiO2 interfaces, These improvements result in the remarkable increase of photocurrent and thereby that of power conversion efficiency.

  19. Attenuated total reflection fourier transform infrared spectroscopy towards disclosing mechanism of bacterial adhesion on thermally stabilized titanium nano-interfaces.

    PubMed

    Gopal, Judy; Chun, Sechul; Doble, Mukesh

    2016-08-01

    Titanium is widely used as medical implant material and as condenser material in the nuclear industry where its integrity is questioned due to its susceptibility to bacterial adhesion. A systematic investigation on the influence of thermally (50-800 °C) stabilized titanium (TS-Ti) nano oxide towards bacterial adhesion was carried out. The results showed that below 350 °C significant bacterio-phobicity was observed, while above 500 °C significant affinity towards bacterial cells was recorded. Conventional characterization tools such as HR-TEM and XRD did not provide much insight on the changes occurring on the oxide film with heat treatment, however, attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) of the surface showed significant changes in the spectral pattern as a function of increasing heat treatment. It was observed that elevated OH, N-H and C=O groups and rutile titania on the TS-Ti oxide films led to higher affinity for bacterial adhesion. On the other hand low temperature TS-Ti nanooxide films (<350 °C) showed high C-H groups and decreased OH groups on their surface, which possibly contributed towards their bacterio-phobicity. The TS-Ti nanooxide film grown at 50 °C was observed to be the most efficient anti-bacterial adhesion interface, while the 800 °C interface was the one showing highest affinity towards bacterial adhesion. This study confirms the successful application of ATR-FTIR technique for nano-oxide film characterization and towards understanding the variations in bacterial interaction of such nano interfaces.

  20. New possibility on InZnO nano thin film for green emissive optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Sugumaran, Sathish; Noor Bin Ahmad, Mohd; Faizal Jamlos, Mohd; Bellan, Chandar Shekar; Chandran, Sharmila; Sivaraj, Manoj

    2016-04-01

    Indium zinc oxide (InZnO) nano thin film was prepared from InZnO nanoparticles (NPs) by thermal evaporation technique. Fourier transform infrared spectroscopy showed the presence of metal-oxide bond. X-ray diffraction pattern revealed the mixed phase structure. The presence of elements In, Zn and O were identified from energy dispersive X-ray analysis. Size of the NPs was found to be 171 and 263 nm by transmission electron microscopy. Scanning electron microscopy image showed the spherical shape uniform morphology with uniform distribution grains. Photoluminescence spectrum exhibited a broad green emission for InZnO nano thin film. The acquired results of structure, smooth morphology and photoluminescence property suggested that the InZnO nano thin film to be a promising material for room temperature green emissive optoelectronic, laser diodes, solar cells and other optical devices.

  1. Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection

    NASA Technical Reports Server (NTRS)

    Raina, K. K.; Narayanan, S.; Pandey, R. K.

    1992-01-01

    Thin films of the 80 K-phase of BiCaSrCu-oxide superconductor having the composition of Bi2Ca1.05Sr2.1Cu2.19O(x) and high degree of crystalline perfection have been grown on c-axis oriented twin free single crystal substrates of NdGaO3. This has been achieved by carefully establishing the growth conditions of the LPE experiments. The temperature regime of 850 to 830 C and quenching of the specimens on the termination of the growth period are found to be pertinent for the growth of quasi-single crystalline superconducting BCSCO films on NdGaO3 substrates. The TEM analysis reveals a single crystalline nature of these films which exhibit 100 percent reflectivity in infrared regions at liquid nitrogen temperature.

  2. Distinct crystallinity and orientations of hydroxyapatite thin films deposited on C- and A-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Ueno, Yuko

    2014-10-01

    We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.

  3. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    NASA Astrophysics Data System (ADS)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  4. Rationale for the crystallization of titania polymorphs in solution

    NASA Astrophysics Data System (ADS)

    Kränzlin, N.; Staniuk, M.; Heiligtag, F. J.; Luo, L.; Emerich, H.; van Beek, W.; Niederberger, M.; Koziej, D.

    2014-11-01

    We use in situ X-ray absorption and diffraction studies to directly monitor the crystallization of different titania polymorphs in one and the same solution. We find that, despite the commonly accepted polymorphic-crossover from anatase to rutile triggered by the critical size of nanoparticles, in the solution their respective nucleation and growth are independent processes. Moreover, we find that 5.9 nm rutile nanoparticles are formed prior to the formation of 8.4 nm anatase nanoparticles. Our results suggest that the origins of this crystallization mechanism lie in the formation of an intermediate non-crystalline phase and in time-dependent changes in the chemical environment.We use in situ X-ray absorption and diffraction studies to directly monitor the crystallization of different titania polymorphs in one and the same solution. We find that, despite the commonly accepted polymorphic-crossover from anatase to rutile triggered by the critical size of nanoparticles, in the solution their respective nucleation and growth are independent processes. Moreover, we find that 5.9 nm rutile nanoparticles are formed prior to the formation of 8.4 nm anatase nanoparticles. Our results suggest that the origins of this crystallization mechanism lie in the formation of an intermediate non-crystalline phase and in time-dependent changes in the chemical environment. Electronic supplementary information (ESI) available: Detailed instructions on the experimental part including set-up, recorded XAS and PXRD raw data and their details. See DOI: 10.1039/c4nr04346d

  5. Comparison of high pressure homogenization and stirred bead milling for the production of nano-crystalline suspensions.

    PubMed

    Nakach, Mostafa; Authelin, Jean-René; Perrin, Marc-Antoine; Lakkireddy, Harivardhan Reddy

    2018-05-19

    Currently, the two technologies primarily used for the manufacturing of nano-crystalline suspensions using top down process (i.e. wet milling) are high pressure homogenization (HPH) and stirred bead milling (SBM). These two technologies are based upon different mechanisms, i.e., cavitation forces for HPH and shear forces for stirred bead milling. In this article, the HPH and SBM technologies are compared in terms of the impact of the suspension composition the process parameters and the technological configuration on milling performances and physical quality of the suspensions produced. The data suggested that both HPH and SBM are suitable for producing nano-crystalline suspensions, although SBM appeared more efficient than HPH, since the limit of milling (d 50 ) for SBM was found to be lower than that obtained with HPH (100 nm vs 200 nm). For both these technologies, regardless of the process parameters used for milling and the scale of manufacturing, the relationship of d 90 versus d 50 could be described by a unique master curve (technology signature of milling pathway) outlining that the HPH leads to more uniform particle size distribution as compared to SBM. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Measurement of host-to-activator transfer efficiency in nano-crystalline Y{sub 2}O{sub 3}:Eu{sup 3+} under VUV excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waite, Christopher; Mann, Rusty; Diaz, Anthony L., E-mail: DiazA@cwu.edu

    2013-02-15

    We have conducted a systematic study of the excitation and reflectance spectra of nano-crystalline Y{sub 2}O{sub 3}:Eu prepared by combustion synthesis. Excitation through the host lattice becomes relatively more efficient as the firing temperature of the precursor is increased, while reflectance properties remain essentially unchanged. Using these data, host-to-activator transfer efficiencies were calculated for excitation at the band edge of Y{sub 2}O{sub 3}, and evaluated using a competition kinetics model. From this analysis we conclude that the relatively low luminous efficiency of these materials is due more to poor bulk crystallinity than to surface loss effects. - Graphical abstract: Themore » low luminous efficiency of nano-crystalline Y{sub 2}O{sub 3}:Eu{sup 3+} prepared by combustion synthesis is due to poor bulk crystallinity rather than surface loss effects. Highlights: Black-Right-Pointing-Pointer We report on the optical properties of Y{sub 2}O{sub 3}:Eu{sup 3+} prepared by combustion synthesis. Black-Right-Pointing-Pointer Host-to-activator transfer efficiencies under VUV excitation were calculated. Black-Right-Pointing-Pointer The low luminous efficiency of these materials is due to poor bulk crystallinity.« less

  7. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.

    PubMed

    Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E

    2011-01-01

    Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.

  8. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation

    PubMed Central

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo

    2017-01-01

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures. PMID:29206155

  9. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation.

    PubMed

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo; Madurga, Vicente

    2017-12-05

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  10. Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications.

    PubMed

    Khaleque, Tanzina; Svavarsson, Halldor Gudfinnur; Magnusson, Robert

    2013-07-01

    A single-step, low-cost fabrication method to generate resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. A guided-mode resonant structure is obtained by subsequent deposition of thin films of transparent conductive oxide and amorphous silicon on the imprinted area. Referenced to equivalent planar structures, around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm to 900-nm wavelength range in one- and two-dimensional patterned samples, respectively. The fabricated elements provided have 300-nm periods. Thermally imprinted thermoplastic substrates hold potential for low-cost fabrication of nano-patterned thin-film solar cells for efficient light management.

  11. The Nature of Metastable AA’ Graphite: Low Dimensional Nano- and Single-Crystalline Forms

    PubMed Central

    Lee, Jae-Kap; Kim, Jin-Gyu; Hembram, K. P. S. S.; Kim, Yong-Il; Min, Bong-Ki; Park, Yeseul; Lee, Jeon-Kook; Moon, Dong Ju; Lee, Wooyoung; Lee, Sang-Gil; John, Phillip

    2016-01-01

    Over the history of carbon, it is generally acknowledged that Bernal AB stacking of the sp2 carbon layers is the unique crystalline form of graphite. The universal graphite structure is synthesized at 2,600~3,000 °C and exhibits a micro-polycrystalline feature. In this paper, we provide evidence for a metastable form of graphite with an AA’ structure. The non-Bernal AA’ allotrope of graphite is synthesized by the thermal- and plasma-treatment of graphene nanopowders at ~1,500 °C. The formation of AA’ bilayer graphene nuclei facilitates the preferred texture growth and results in single-crystal AA’ graphite in the form of nanoribbons (1D) or microplates (2D) of a few nm in thickness. Kinetically controlled AA’ graphite exhibits unique nano- and single-crystalline feature and shows quasi-linear behavior near the K-point of the electronic band structure resulting in anomalous optical and acoustic phonon behavior. PMID:28000780

  12. P-type single-crystalline ZnO films obtained by (N,O) dual implantation through dynamic annealing process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen

    2016-12-01

    Single-crystalline ZnO films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy technique. The films have been implanted with fixed fluence of 120 keV N and 130 keV O ions at 460 °C. Hall measurements show that the dually-implanted single-crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 2.1 × 1018-1.1 × 1019 cm-3, hole mobilities between 1.6 and 1.9 cm2 V-1 s-1, and resistivities in the range of 0.353-1.555 Ω cm. The ZnO films exhibit (002) (c-plane) orientation as identified by the X-ray diffraction pattern. It is confirmed that N ions were effectively implanted by SIMS results. Raman spectra, polarized Raman spectra, and X-ray photoelectron spectroscopy results reflect that the concentration of oxygen vacancies is reduced, which is attributed to O ion implantation. It is concluded that N and O implantation and dynamic annealing play a critical role in forming p-type single-crystalline ZnO films.

  13. Measurements of Raman crystallinity profiles in thin-film microcrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Choong, G.; Vallat-Sauvain, E.; Multone, X.; Fesquet, L.; Kroll, U.; Meier, J.

    2013-06-01

    Wedge-polished thin film microcrystalline silicon solar cells are prepared and used for micro-Raman measurements. Thereby, the variations of the Raman crystallinity with depth are accessed easily. Depth resolution limits of the measurement set-up are established and calculations evidencing the role of optical limits are presented. Due to this new technique, Raman crystallinity profiles of two microcrystalline silicon cells give first hints for the optimization of the profile leading to improved electrical performance of such devices.

  14. C-Ni-Pd and CNT-Ni-Pd film's molecular and crystalline structure investigations by FTIR spectroscopy and XRD diffraction

    NASA Astrophysics Data System (ADS)

    Stepińska, Izabela; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław; Wronka, Halina

    2017-08-01

    In this work molecular and crystalline structure of new type of nanocomposite films were investigated. These films compose of CNT decorated with palladium nanograins. They were prepared on a base of C-Ni films modified in CVD process. C-Ni nanocomposite films were obtained by PVD process and their modification by CVD leads to a growth of CNT film. CNTs-Ni or C-Ni films were treated with additional PVD process with palladium. Nickel and palladium acetate and fulleren C60 are precursors of films in PVD process. FTIR spectroscopy was used to studied the molecular structure of film in every stage of preparation . The crystalline structure of these films was studied by X-ray diffraction. SEM (scanning electron microscopy) was applied to investigate film's surface topography.

  15. Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates.

    PubMed

    Janneck, Robby; Pilet, Nicolas; Bommanaboyena, Satya Prakash; Watts, Benjamin; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2017-11-01

    Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Non-Metal Doped Titania Photocatalysts for the Degradation of Neonicotinoid Insecticides Under Visible Light Irradiation.

    PubMed

    Joseph, Amala Infant Joice; Thiripuranthagan, Sivakumar

    2018-05-01

    Recombination of e-/h+ pair, the major issue of any titania based photocatalytic material, is addressed here by doping non-metals such as C, N, B, F into the lattice of nano TiO2. The as-synthesised catalysts were characterized by using various instrumental techniques such as X-ray diffraction (XRD), UV-Diffuse reflectance spectroscopy (UV-DRS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Nanosize of titania was confirmed by both XRD and TEM studies. Visible light inactivity of TiO2 is overcome by C, N, B, F doped titania catalysts in the degradation of neonicotinoid type insecticides namely imidacloprid (IMI) and thiamethoxam (TMX). The degradation efficiencies of the catalysts under different irradiations namely UV, visible and solar were compared. Among the catalysts, CNBF/TiO2 degraded IMI completely at 150, 240 and 330 min whereas TMX has been degraded completely at 210, 270 and 420 min under UV, solar and visible irradiations respectively. The recyclability test of CNBF/TiO2 confirmed its stability towards photocatalytic reaction.

  17. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.

    PubMed

    Zhang, Xiao-Sheng; Zhu, Fu-Yun; Han, Meng-Di; Sun, Xu-Ming; Peng, Xu-Hua; Zhang, Hai-Xia

    2013-08-27

    This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.

  18. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, X.; Liang, J. H.; Chen, B. L.

    2015-07-28

    Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.

  19. Correlation of lattice defects and thermal processing in the crystallization of titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Pegah M.; Yung, Daniel; Panaitescu, Eugen; Heiman, Don; Menon, Latika; Budil, David; Lewis, Laura H.

    2014-12-01

    Titania nanotubes have the potential to be employed in a wide range of energy-related applications such as solar energy-harvesting devices and hydrogen production. As the functionality of titania nanostructures is critically affected by their morphology and crystallinity, it is necessary to understand and control these factors in order to engineer useful materials for green applications. In this study, electrochemically-synthesized titania nanotube arrays were thermally processed in inert and reducing environments to isolate the role of post-synthesis processing conditions on the crystallization behavior, electronic structure and morphology development in titania nanotubes, correlated with the nanotube functionality. Structural and calorimetric studies revealed that as-synthesized amorphous nanotubes crystallize to form the anatase structure in a three-stage process that is facilitated by the creation of structural defects. It is concluded that processing in a reducing gas atmosphere versus in an inert environment provides a larger unit cell volume and a higher concentration of Ti3+ associated with oxygen vacancies, thereby reducing the activation energy of crystallization. Further, post-synthesis annealing in either reducing or inert atmospheres produces pronounced morphological changes, confirming that the nanotube arrays thermally transform into a porous morphology consisting of a fragmented tubular architecture surrounded by a network of connected nanoparticles. This study links explicit data concerning morphology, crystallization and defects, and shows that the annealing gas environment determines the details of the crystal structure, the electronic structure and the morphology of titania nanotubes. These factors, in turn, impact the charge transport and consequently the functionality of these nanotubes as photocatalysts.

  20. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains

    PubMed Central

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-01-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability. PMID:26537788

  1. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains

    NASA Astrophysics Data System (ADS)

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-11-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability.

  2. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    DOE PAGES

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; ...

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb 3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb 3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb 3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb 6 octahedra with motifs highly resembling the local structure in crystalline FeSb 3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb 3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less

  3. Photoluminescence and charge-transport characteristics of nano-columnar titanium dioxide films prepared by rf-sputtering on alumina templates

    NASA Astrophysics Data System (ADS)

    Kheirandish, E.; Hosseini, T.; Yavarishad, N.; King, S.; Kouklin, N.

    2018-02-01

    The current study presents the synthesis and characterization of poly-crystalline TiO2 thin-film prepared by rf-sputtering on top of a highly regimented nanoporous Au-coated Al2O3 substrate. The film’s physical and electronic properties were characterized via SEM, EDS, x-ray diffraction and RAMAN spectroscopy as well as temperature dependent photoluminescence (PL) and I-V measurements. The films feature a 1D, columnar-like structure and exhibit a medium strength, spectrally-broad light emission in the UV-visible range. PL emission shows a weak T-dependence and is attributed to interband electronic transitions and defect-assisted radiative recombinations. The charge transport is confirmed to be polaronic in nature with both thermally-assisted hopping and quantum mechanical tunneling regulating a charge flow within the columns in the intermediate temperature regime of ˜200-320 K. These results open a door to utilizing nano-textured substrates/scaffolds to produce electronic-grade anatase TiO2 by sputtering for advanced opto-electronic device applications.

  4. The enhancement of photovoltaic parameters in dye-sensitized solar cells of nano-crystalline SnO2 by incorporating with large SrTiO3 particles.

    PubMed

    Aponsu, G M L P; Wijayarathna, T R C K; Perera, I K; Perera, V P S; Siriwardhana, A C P K

    2013-05-15

    In this paper, the performance of nano-porous electrodes made of a composite material of SrTiO3 and SnO2 are compared with those made of bare SnO2. When these particular devices are analyzed in a comparative mode the results confirmed the enhancement of photovoltaic parameters in the former device. The performance of respective cells were examined by several methods including I-V characteristic measurements, photocurrent action spectra, dark I-V measurements, Mott-Schottky measurements and X-ray diffraction measurements. Even though such improvements in this particular cell could be explicated by the formation of a potential energy barrier of SrTiO3 particles of comparably large width at the SrTiO3/SnO2 interface, the passivation of voids in the SnO2 film by SrTiO3 particles to a certain extent could not be totally ruled out. Besides, high energetic electrons injected by dye molecules move more credibly through mini-bands formed in the chain of nano-crystalline SnO2 particles to the back contact. The blocking of the recombination path and the shifting up of the uppermost electron occupied level of SnO2 accompanying the conduction band edge in the SrTiO3/SnO2 composite film, may have lead to the observed enhancement of the fill factor and photovoltage, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE.

    PubMed

    Skibitzki, Oliver; Prieto, Ivan; Kozak, Roksolana; Capellini, Giovanni; Zaumseil, Peter; Arroyo Rojas Dasilva, Yadira; Rossell, Marta D; Erni, Rolf; von Känel, Hans; Schroeder, Thomas

    2017-03-01

    We present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy. The results show single-crystalline, nearly relaxed GaAs NCs on top of slightly, by the SiO 2 -mask compressively strained Si nano-tips (NTs). Given the limited contact area, GaAs/Si nanostructures benefit from limited intermixing in contrast to planar GaAs films on Si. Even though a few growth defects (e.g. stacking faults, micro/nano-twins, etc) especially located at the GaAs/Si interface region were detected, the nanoheterostructures show intensive light emission, as investigated by μ-PL spectroscopy. Achieving well-ordered high quality GaAs NCs on Si NTs may provide opportunities for superior electronic, photonic, or photovoltaic device performances integrated on the silicon technology platform.

  6. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.

    PubMed

    Park, Gye-Choon; Li, Zhen-Yu; Yang, O-Bong

    2017-04-01

    In this letter, for the absorption layer of a CuInS₂/TiO₂ composite solar cell, I–III–VI2 chalcopyrite semiconductor CuInS₂ nano-particles were deposited by using spray pyrolysis method on TiO2 porous film. Their material characteristics including structural and optical properties of CuInS₂ nano-particles on TiO₂ nanorods were analyzed as a function of its composition ratios of Cu:In:S. Crystalline structure, surface morphology and crystalline size were also investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and High-Resolution TEM (HRTEM), respectively. On the other hand, optical property was characterized by an UV-Visible Spectrophotometer. As a result, it was found that the size of CuInS₂ nano-particles, which was formed at 300±5 °C, was smaller than 16 nm from HRTEM analyses, and it was identified that the CuInS₂ particle size was increased as increasing the heat-treatment temperature and time. However, as the size of CuInS₂ nano-particle becomes smaller, optical absorption edge of ternary compound film tends to move to the blue wavelength band. It turns out that the optical energy-band gap of the compound films was ranging from 1.48 eV to 1.53 eV.

  7. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko,; David, J [Naperville, IL

    2007-05-08

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  8. Magnetoresistance measurements of superconducting molybdenum nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskaran, R., E-mail: baskaran@igcar.gov.in; Arasu, A. V. Thanikai; Amaladass, E. P.

    2016-05-23

    Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc{sub 2}(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.

  9. Proximity-Induced Superconductivity and Quantum Interference in Topological Crystalline Insulator SnTe Thin-Film Devices.

    PubMed

    Klett, Robin; Schönle, Joachim; Becker, Andreas; Dyck, Denis; Borisov, Kiril; Rott, Karsten; Ramermann, Daniela; Büker, Björn; Haskenhoff, Jan; Krieft, Jan; Hübner, Torsten; Reimer, Oliver; Shekhar, Chandra; Schmalhorst, Jan-Michael; Hütten, Andreas; Felser, Claudia; Wernsdorfer, Wolfgang; Reiss, Günter

    2018-02-14

    Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.

  10. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    NASA Astrophysics Data System (ADS)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-09-01

    In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  11. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  12. Depolarized haze of nano-porous AAO film via porosity and aspect control

    NASA Astrophysics Data System (ADS)

    Tseng, Chun-Wei; Lin, Yung-Hsiang; Cheng, Chih-Hsien; Lin, Gong-Ru

    2018-01-01

    Multiple scattering induced haze and depolarization effects of nano-porous AAO films controlled by detuning the porosity and aspect ratio of the nano holes are investigated. The nano-porous AAO film with its porosity increasing from 12.6% to 19.3% enhances the scattering of the incident laser beam with its maximal scattering angle enlarged from 5° to 8° under TM-mode incidence and from 6° to 10° under TE-mode incidence. Because of multiple scattering within the porous holes of the AAO, the depolarization on the reflected beam by transferring its electric field from horizontal to the vertical such that the polarization ratio is degraded with a randomized haze. The porosity of AAO surface broadens from 12.6% to 19.3% when increasing the bias voltage from 40 to 60 V during the second-step of the electro-chemical anodization process, which essentially adjusts the polarization ratio under TM-mode and TE-mode incidences raise from 0.31 to 0.35 and from 0.32 to 0.48, respectively. The depolarized haze of the nano-porous AAO film is correlated with its porosity and aspect ratio controlled by the pore size and etched depth of the AAO. Under TM-mode incidence, the simulated polarization ratio increases from 0.35 to 0.38, which correlates well with experimental results. In contrast, the experiment result slightly deviates from the theoretical prediction as the TE-mode field interacts more surface area than the TM-mode field does. Such a nano-porous AAO exhibits tunable depolarized haze via the control porosity and aspect ratio, which is particularly suitable to serve as the catalytic buffer for synthesizing the hydrophobic and hazed solar energy converters.

  13. Control of composition and crystallinity in hydroxyapatite films deposited by electron cyclotron resonance plasma sputtering

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Ueno, Yuko

    2014-01-01

    Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.

  14. Development and characterization of silica and titania based nano structured materials for the removal of indoor and outdoor air pollutants

    NASA Astrophysics Data System (ADS)

    Peiris, Thelge Manindu Nirasha

    Solar energy driven catalytic systems have gained popularity in environmental remediation recently. Various photocatalytic systems have been reported in this regard and most of the photocatalysts are based on well-known semiconducting material, Titanium Dioxide, while some are based on other materials such as Silicon Dioxide and various Zeolites. However, in titania based photocatalysts, titania is actively involved in the catalytic mechanism by absorbing light and generating exitons. Because of this vast popularity of titania in the field of photocatalysis it is believed that photocatalysis mainly occurs via non-localized mechanisms and semiconductors are extremely important. Even though it is still rare, photocatalysis could be localized and possible without use of a semiconductor as well. Thus, to support localized photocatalytic systems, and to compare the activity to titania based systems, degradation of organic air pollutants by nanostructured silica, titania and mixed silica titania systems were studied. New materials were prepared using two different approaches, precipitation technique (xerogel) and aerogel preparation technique. The prepared xerogel samples were doped with both metal (silver) and non-metals (carbon and sulfur) and aerogel samples were loaded with Chromium, Cobalt and Vanadium separately, in order to achieve visible light photocatalytic activity. Characterization studies of the materials were carried out using Nova BET analysis, DR UV-vis spectrometry, powder X-ray diffraction, X-ray photoelectron Spectroscopy, FT-IR spectroscopy, Transmission Electron Microscopy, etc. Kinetics of the catalytic activities was studied using a Shimadzu GCMS-QP 5000 instrument using a closed glass reactor. All the experiments were carried out in gaseous phase using acetaldehyde as the model pollutant. Kinetic results suggest that chromium doped silica systems are good UV and visible light active photocatalysts. This is a good example for a localized

  15. Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts.

    PubMed

    Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio

    2014-06-24

    Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.

  16. Enhanced Raman spectroscopy of 2,4,6-TNT in anatase and rutile titania nanocrystals

    NASA Astrophysics Data System (ADS)

    De La Cruz-Montoya, Edwin; Jeréz, Jaqueline I.; Balaguera-Gelves, Marcia; Luna-Pineda, Tatiana; Castro, Miguel E.; Hernández-Rivera, Samuel P.

    2006-05-01

    The majority of explosives found in antipersonnel and antitank landmines contain 2,4,6-trinitrotoluene (TNT). Chemical sensing of landmines and Improvised Explosive Devices (IED) requires detecting the chemical signatures of the explosive components in these devices. Nanotechnology is ideally suited to needs in microsensors development by providing new materials and methods that can be employed for trace explosive detection. This work is focused on modification of nano-scaled colloids of titanium dioxide (Titania: anatase, rutile and brookite) and thin layer of the oxides as substrates for use in Enhanced Raman Scattering (ERS) spectroscopy. Ultrafine particles have been generated by hydrothermally treating the sol-gel derived hydrous oxides. ERS spectra of nanocrystalline anatase Titania samples prepared with different average sizes: 38 nm (without acid), 24 nm (without acid) and 7 nm (with HCl). Bulk phase (commercial) and KBr were also used to prepare mixtures with TNT to look for Enhanced Raman Effect of the nitroaromatic explosive on the test surfaces. The studies clearly indicated that the anatase crystal size affects the enhancement of the TNT Raman signal. This enhancement was highest for the samples with Titania average crystal size of 7 nm.

  17. Automatic hammering of nano-patterns on special polymer film by using a vibrating AFM tip

    PubMed Central

    2012-01-01

    Complicated nano-patterns with linewidth less than 18 nm can be automatically hammered by using atomic force microscopy (AFM) tip in tapping mode with high speed. In this study, the special sample was thin poly(styrene-ethylene/butylenes-styrene) (SEBS) block copolymer film with hexagonal spherical microstructures. An ordinary silicon tip was used as a nano-hammer, and the entire hammering process is controlled by a computer program. Experimental results demonstrate that such structure-tailored thin films enable AFM tip hammering to be performed on their surfaces. Both imprinted and embossed nano-patterns can be generated by using a vibrating tip with a larger tapping load and by using a predefined program to control the route of tip movement as it passes over the sample’s surface. Specific details for the fabrication of structure-tailored SEBS film and the theory for auto-hammering patterns were presented in detail. PMID:22889045

  18. Nano crystalline Bi2(VO5) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Khasa, S.; Dahiya, M. S.; Agarwal, A.

    2016-05-01

    Glass composition 7V2O5.23Li2O.20Bi2O3.50B2O3 and x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi2(VO5) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V2O5-crystal were observed along with the nano crystalline Bi2(VO5) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi2(VO5) nano-crystallite was ~30nm for samples annealed at 400°C and ~42nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi2(VO5) crystallite.

  19. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE PAGES

    Si, W.; Zhang, C.; Wu, L.; ...

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  20. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Weidong, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov; Zhang, Cheng; Wu, Lijun

    2015-08-31

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF{sub 2} crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. Withmore » large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  1. Heats of immersion of titania powders in primer solutions

    NASA Technical Reports Server (NTRS)

    Siriwardane, R.; Wightman, J. P.

    1983-01-01

    The oxide layer present on titanium alloys can play an important role in determining the strength and durability of adhesive bonds. Here, three titania powders in different crystalline phases, rutile-R1, anatase-A1, and anatase-A2, are characterized by several techniques. These include microelectrophoresis, X-ray diffractometry, surface area pore volume analysis, X-ray photoelectron spectroscopy, and measurements of the heats of immersion. Of the three powders, R1 has the highest heat of immersion in water, while the interaction between water and A1 powder is low. Experimental data also suggest a specific preferential interaction of polyphenylquinoxaline with anatase.

  2. Nano and micro mechanical properties of uncross-linked and cross-linked chitosan films

    PubMed Central

    Aryaei, Ashkan; Jayatissa, Ahalapitiya H.; Jayasuriya, A. Champa

    2016-01-01

    The aim of this study is to determine the nano and micro mechanical properties for uncross-linked and cross-linked chitosan films. Specifically, we looked at nanoindentation hardness, microhardness, and elastic modulus. It is important to study the nano and microscale mechanical properties of chitosan since chitosan has been widely used for biomedical applications. Using the solvent-cast method, the chitosan films were prepared at room temperature on the cleaned glass plates. The chitosan solution was prepared by dissolving chitosan in acetic acid 1% (v/v). Tripolyphosphate (TPP) was used to create the cross-links between amine groups in chitosan and phosphate groups in TPP. In this study, atomic force microscopy was used to measure the nanoindentation hardness and surface topography of the uncross-linked and cross-linked chitosan films. Elastic modulus was then calculated from the nanoindentation results. The effective elastic modulus was determined by microhardness with some modifications to previous theories. The microhardness of the chitosan films were measured using Vicker’s hardness meter under three different loads. Our results show that the microhardness and elastic modulus for cross-linked chitosan films are higher than the uncross-linked films. However, the cross-linked chitosan films show increased brittleness when compared to uncross-linked films. By increasing the load magnitude, the microhardness increases for both uncross-linked and cross-linked chitosan films. PMID:22100082

  3. Characterization nano crystalline cellulose from sugarcane baggase for reinforcement in polymer composites: Effect of formic acid concentrations

    NASA Astrophysics Data System (ADS)

    Aprilia, N. A. S.; Mulyati, S.; Alam, P. N.; Karmila; Ambarita, A. C.

    2018-04-01

    Nanocellulose from sugarcane bagasse for reinforcement in polymer composites has isolated from formic acid (FA) with different concentration. This research was conducted with three level concentration of FA ei. 15, 30 and 50%. The nanocellulose were successfully prepared with variations of total yields of 66.66, 67.33 and 69.33% respectively with increase of FA concentrations at 6 hours of hidrolysis time. The obtained nanocellulose were characterized by fourier transform infrared (FT-IR) spectroscopy confirmed the introduction of carboxyl goups on the surface of cellulose. The X-ray diffraction (XRD) spectra proved the existence of cellulose, with a highly crystalline of 62.466, 71.033, and 76.296% with increase of FA concentrations. The size of crystallinity of nanocellulose were decreased with increased of FA concentration. The result investigated that size of crystallinity of nano cellulose reduced from 4.37, 4.15 and 3.94 nm.

  4. AZO films with Al nano-particles to improve the light extraction efficiency of GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chou, Ying-Hung; Yan, Jheng-Tai; Lee, Hsin-Ying; Lee, Ching-Ting

    2008-02-01

    The co-sputtering Al-doped ZnO (AZO) films with Al nano-particles were used to increase the extraction efficiency of GaN-based light-emitting diodes (LEDs). Fixing the ZnO radio frequency (RF) power of 100W and changing the Al DC power from 0 to 13W, the AZO films with various Al contents can be obtained. In the experimental results, the AZO films deposited with Al DC power of 0, 4.5 and 7W do not have Al segregation. However, the segregated Al nano-particles can be found in the AZO films deposited by Al DC power of 10W and 13W. The co-sputtering 170 nm-thick AZO films with and without Al nano-particles were deposited on the transparent area of LEDs and compared the light output intensity of conventional LEDs. The light intensity of LEDs with AZO films with Al DC power 0, 4.5 and 7W increased 10% than that of conventional LEDs. This was due to the AZO film played a role of anti-reflection coating (ARC) layer. The light intensity of LEDs with AZO film deposited using Al DC power of 10W and 13W increased about 35% and 30%, respectively. It can be deduced that the output light is scattered by the Al nano-particles existed in the AZO film.

  5. Physical properties of spin-valve films grown on naturally oxidized metal nano-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Mao, Ming; Cerjan, Charlie; Kools, Jacques

    2002-05-01

    The physical properties of spin-valve films NiFe 25 Å/CoFe 10 Å/Cu(tCu)/CoFe 30 Å/IrMn 70 Å/Ta 20 Å with graded Cu layer thickness (tCu=18-45 Å) grown on the surface of metal nano-oxide layers (NOLs) were studied. The NOLs were formed from ultrathin Al, Cr, Cu, Nb, Ta, CoFe, NiFe, and NiFeCr layers by natural oxidation. The growth of the spin-valve films on NOLs has led to an enhancement in giant magnetoresistance value by up to 48%. A corresponding reduction in minimum film resistance by over 10% confirms that this enhancement originates from an increase in the mean free path of spin-polarized electrons due to the resultant specular reflection at the nano-oxide surfaces. A wide spectrum of oscillatory interlayer exchange coupling dependence on tCu for these NOL-bearing films suggests that a specular nano-oxide surface does not necessarily result in a smoother multilayer structure. The observation of an enhanced exchange biasing among these spin-valve films appears in contradiction to the observed deterioration of their crystallographic quality. As an important application, TaOx, CrOx, and NbOx could be employed as an alternative to AlOx as the barrier layer for magnetic tunnel junctions.

  6. Morphology and crystalline phase study of electrospun TiO2 SiO2 nanofibres

    NASA Astrophysics Data System (ADS)

    Ding, Bin; Kim, Hakyong; Kim, Chulki; Khil, Myungseob; Park, Soojin

    2003-05-01

    Nanofibres of TiO2-SiO2 (Ti:Si = 50: 50 mol%) with diameters of 50-400 nm were prepared by calcining electrospun nanofibres of polyvinyl acetate (PVac)/titania-silica composite as precursor. These PVac/titania-silica hybrid nanofibres were obtained from a homogenous solution of PVac with a sol-gel of titanium isopropoxide (TiP) and tetraethoxysilane by using the electrospinning technique. The nanofibres were characterized by scanning electron microscopy (SEM), wide-angle x-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy and Brunauer-Emmett-Teller (BET) surface area. SEM, WAXD and FTIR results indicated that the morphology and crystalline phase of TiO2-SiO2 nanofibres were strongly influenced by the calcination temperature and the content of titania and silica in the nanofibres. Additionally, the BET results showed that the surface area of TiO2-SiO2 nanofibres was decreased with increasing calcination temperature and the content of titania and silica in nanofibres.

  7. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    PubMed Central

    Jensen, Kirsten M. Ø.; Blichfeld, Anders B.; Bauers, Sage R.; Wood, Suzannah R.; Dooryhée, Eric; Johnson, David C.; Iversen, Bo B.; Billinge, Simon J. L.

    2015-01-01

    By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The ‘tfPDF’ method is illustrated through studies of as-deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films. PMID:26306190

  8. Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 thin film capacitors

    NASA Astrophysics Data System (ADS)

    Lee, J.; Johnson, L.; Safari, A.; Ramesh, R.; Sands, T.; Gilchrist, H.; Keramidas, V. G.

    1993-07-01

    Pb(Zr(0.52)Ti(0.48))O3 (PZT)/Y1Ba2Cu3O(x) (YBCO) heterostructures were grown by pulsed laser deposition, in which PZT films were epitaxial, highly oriented, or polycrystalline. These PZT films were obtained by varying the deposition temperature from 550 to 760 C or by using various substrates such as SrTiO3 (100), MgO (100), and r-plane sapphire. PZT films with Pt top electrodes exhibited large fatigue with 35-50 percent loss of the remanent polarization after 10 exp 9 cycles, depending on the crystalline quality. Polycrystalline films showed better fatigue resistance than epitaxial or highly oriented films. However, PZT films with both top and bottom YBCO electrodes had significantly improved fatigue resistance for both epitaxial and polycrystalline films. Electrode material seems to be a more important parameter in fatigue than the crystalline quality of the PZT films.

  9. Biomedical applications of nano-titania in theranostics and photodynamic therapy.

    PubMed

    Rehman, F U; Zhao, C; Jiang, H; Wang, X

    2016-01-01

    Titanium dioxide (TiO2) is one of the most abundantly used nanomaterials for human life. It is used in sunscreen, photovoltaic devices, biomedical applications and as a food additive and environmental scavenger. Nano-TiO2 in biomedical applications is well documented. It is used in endoprosthetic implants and early theranostics of neoplastic and non-neoplastic maladies as a photodynamic therapeutic agent and as vehicles in nano-drug delivery systems. Herein, we focus on the recent advancements and applications of nano-TiO2 in bio-nanotechnology, nanomedicine and photodynamic therapy (PDT).

  10. Tuning magnetic exchange interactions in crystalline thin films of substituted Cobalt Phthalocyanine

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Manning, Lane; Hua, Kim-Ngan; Headrick, Randall; Bishop, Michael; McGill, Stephen; Waterman, Rory; Furis, Madalina

    Magnetic exchange interactions in diluted organometallic crystalline thin film alloys of Phthalocyanines (Pcs) made of a organo-soluble derivatives of Cobalt Pc and metal-free (H2Pc) molecule and is investigated. To this end, we synthesized a organosoluble CoPc and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of different ratios ranging from 1:1 to 10:1 H2Pc:CoPc. Our previous magnetic circular dichroism (MCD) results on the parent CoPc crystalline thin films identified different electronic states mediating exchange interactions and indirect exchange interaction competing with superexchange interaction. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins along with the excitonic delocalization character enabled the further tuning of these interactions by essentially varying the spatial distance between the spins. Furthermore, high magnetic field (B < 25 T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials. This work was possible due to support by the National Science Foundation, Division of Materials Research MRI, CAREER and EPM program Awards: DMR-0722451, DMR-0821268, DMR-1307017 and DMR-1056589, DMR-1229217.

  11. Photoluminescence and photoconductivity studies on amorphous and crystalline ZnO thin films obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; Manríquez Zepeda, J. L.

    2015-03-01

    Amorphous and crystalline ZnO thin films were obtained by the sol-gel process. A precursor solution of ZnO was synthesized by using zinc acetate dehydrate as inorganic precursor at room temperature. The films were spin-coated on silicon and glass wafers and gelled in humid air. The films were calcined at 450 °C for 15 min to produce ZnO nanocrystals with a wurtzite structure. Crystalline ZnO film exhibits an absorption band located at 359 nm (3.4 eV). Photoconductivity technique was used to determine the charge transport mechanism on both kinds of films. Experimental data were fitted with straight lines at darkness and under illumination at 355 and 633 nm wavelengths. This indicates an ohmic behavior. The photovoltaic and photoconductivity parameters were determined from the current density versus the applied electrical field results.

  12. van der Waals interaction between a moving nano-cylinder and a liquid thin film.

    PubMed

    Ledesma-Alonso, René; Raphaël, Elie; Salez, Thomas; Tordjeman, Philippe; Legendre, Dominique

    2017-05-24

    We study the static and dynamic interaction between a horizontal cylindrical nano-probe and a thin liquid film. The effects of the physical and geometrical parameters, with a special focus on the film thickness, the probe speed, and the distance between the probe and the free surface are analyzed. Deformation profiles have been computed numerically from a Reynolds lubrication equation, coupled to a modified Young-Laplace equation, which takes into account the probe/liquid and the liquid/substrate non-retarded van der Waals interactions. We have found that the film thickness and the probe speed have a significant effect on the threshold separation distance below which the jump-to-contact instability is triggered. These results encourage the use of horizontal cylindrical nano-probes to scan thin liquid films, in order to determine either the physical or geometrical properties of the latter, through the measurement of interaction forces.

  13. Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature

    NASA Astrophysics Data System (ADS)

    Huang, Chung-Che; Al-Saab, Feras; Wang, Yudong; Ou, Jun-Yu; Walker, John C.; Wang, Shuncai; Gholipour, Behrad; Simpson, Robert E.; Hewak, Daniel W.

    2014-10-01

    Nano-scale MoS2 thin films are successfully deposited on a variety of substrates by atmospheric pressure chemical vapor deposition (APCVD) at ambient temperature, followed by a two-step annealing process. These annealed MoS2 thin films are characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), micro-Raman, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-VIS-NIR spectrometry, photoluminescence (PL) and Hall Effect measurement. Key optical and electronic properties of APCVD grown MoS2 thin films are determined. This APCVD process is scalable and can be easily incorporated with conventional lithography as the deposition is taking place at room temperature. We also find that the substrate material plays a significant role in the crystalline structure formation during the annealing process and single crystalline MoS2 thin films can be achieved by using both c-plane ZnO and c-plane sapphire substrates. These APCVD grown nano-scale MoS2 thin films show great promise for nanoelectronic and optoelectronic applications.

  14. Synthesis of nano-structure tungsten nitride thin films on silicon using Mather-type plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, A.; Rawat, R. S.; Ahmad, R.; Umar, Z. A.; Hussain, T.; Lee, P.; Chen, Z.

    2015-07-01

    Nano-structure thin film of tungsten nitride was deposited onto Si-substrate at room temperature using Mather-type plasma focus (3.3 kJ) machine. Substrate was exposed against 10, 20, 30, and 40 deposition shots and its corresponding effect on structure, morphology, conductivity and nano-hardness has been systematically studied. The X-ray diffractormeter spectra of the exposed samples show the presence of various phases of WN and WN2 that depends on number of deposition shots. Surface morphological study revealed the uniform distribution of nano-sized grains on deposited film surface. Hardness and conductivity of exposed substrate improved with higher deposition shots. X-ray photo-electron spectroscopy survey scan of 40 deposition shots confirmed the elemental presence of W and N on Si-substrate.

  15. Photo-catalytic decolourisation of toxic dye with N-doped titania: a case study with Acid Blue 25.

    PubMed

    Chakrabortty, Dhruba; Gupta, Susmita Sen

    2013-05-01

    Dyes are one of the hazardous water pollutants. Toxic Acid Blue 25, an anthraquinonic dye, has been decolourised by photo-catalysing it with nitrogen doped titania in aqueous medium. The photo catalyst was prepared from 15% TiCl3 and 25% aqueous NH3 solution as precursor. XRD and TEM revealed the formation of well crystalline anatase phase having particle size in the nano-range. BET surface area of the sample was higher than that of pure anatase TiO2. DRS showed higher absorption of radiation in visible range compared to pure anatase TiO2. XPS revealed the presence of nitrogen in N-Ti-O environment. The experimental parameters, namely, photocatalyst dose, initial dye concentration as well as solution pH influence the decolourisation process. At pH 3.0, the N-TiO2 could decolourise almost 100% Acid Blue 25 within one hour. The influence of N-TiO2 dose, initial concentration of Acid Blue 25 and solution pH on adsorption-desorption equilibrium is also studied. The adsorption process follows Lagergren first order kinetics while the modified Langmuir-Hinselwood model is suitably fitted for photocatalytic decolourisation of Acid Blue 25.

  16. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  17. The effect of the stretching of PLA extruded films on their crystallinity and gas barrier properties

    NASA Astrophysics Data System (ADS)

    Guinault, A.; Menary, G. H.; Courgneau, C.; Griffith, D.; Ducruet, V.; Miri, V.; Sollogoub, C.

    2011-05-01

    Driven by environmental concerns, new polymers based on renewable resources are arriving on the market to replace conventional polymers, obtained from petroleum, for different applications like food packaging. One of the most prominent polymers among these materials is poly(lactic acid) (PLA), a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, such as corn starch (in the USA) or sugarcanes (in the rest of the world). However this polymer presents different disadvantages and especially low gas barrier properties [1]. Thermal crystallization can be used to increase its gas barrier properties but long times are necessary [2] and are not compatible with an industrial process. Another way to increase the gas barrier properties consists in stretching the film in order to increase its crystallinity and so its diffusion coefficient. We have prepared stretched PLA films with different stretch ratio and we have studied the effect of the stretching parameters on the gas barrier properties of PLA films. Finally we compared this process with the isothermal crystallization process by taking into account the crystallinity degree and the crystalline morphology.

  18. Oriented Liquid Crystalline Polymer Semiconductor Films with Large Ordered Domains.

    PubMed

    Xue, Xiao; Chandler, George; Zhang, Xinran; Kline, R Joseph; Fei, Zhuping; Heeney, Martin; Diemer, Peter J; Jurchescu, Oana D; O'Connor, Brendan T

    2015-12-09

    Large strains are applied to liquid crystalline poly(2,5-bis(3-tetradecylthiophen-2yl)thieno(3,2-b)thiophene) (pBTTT) films when held at elevated temperatures resulting in in-plane polymer alignment. We find that the polymer backbone aligns significantly in the direction of strain, and that the films maintain large quasi-domains similar to that found in spun-cast films on hydrophobic surfaces, highlighted by dark-field transmission electron microscopy imaging. The highly strained films also have nanoscale holes consistent with dewetting. Charge transport in the films is then characterized in a transistor configuration, where the field effect mobility is shown to increase in the direction of polymer backbone alignment, and decrease in the transverse direction. The highest saturated field-effect mobility was found to be 1.67 cm(2) V(-1) s(-1), representing one of the highest reported mobilities for this material system. The morphology of the oriented films demonstrated here contrast significantly with previous demonstrations of oriented pBTTT films that form a ribbon-like morphology, opening up opportunities to explore how differences in molecular packing features of oriented films impact charge transport. Results highlight the role of grain boundaries, differences in charge transport along the polymer backbone and π-stacking direction, and structural features that impact the field dependence of charge transport.

  19. Defect analysis and detection of micro nano structured optical thin film

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Shi, Nuo; Zhou, Lang; Shi, Qinfeng; Yang, Yang; Li, Zhuo

    2017-10-01

    This paper focuses on developing an automated method for detecting defects on our wavelength conversion thin film. We analyzes the operating principle of our wavelength conversion Micro/Nano thin film which absorbing visible light and emitting infrared radiation, indicates the relationship between the pixel's pattern and the radiation of the thin film, and issues the principle of defining blind pixels and their categories due to the calculated and experimental results. An effective method is issued for the automated detection based on wavelet transform and template matching. The results reveal that this method has desired accuracy and processing speed.

  20. Effect of molarity on sol-gel routed nano TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Lourduraj, Stephen; Williams, Rayar Victor

    The nanostructured titanium dioxide (TiO2) thin films have been prepared for the molar concentrations of titanium tetra isopropoxide (TTIP) 0.05M, 0.1M, 0.15M and 0.2M by sol-gel routed spin coating technique with calcination at 450∘C. The processing parameters such as, pH value (8), catalyst HCl (0.1ml), spin speed (3000rpm) and calcination temperature (450∘C) are optimized. The crystalline nature and surface morphology were analyzed by XRD, SEM and AFM analysis. The XRD results confirm that the films are crystalline with anatase phase, and are nanostructured. The SEM micrographs of the TiO2 film reveal the spherical nature of the particle. AFM analysis establishes that the uniformity of the TiO2 thin film was optimized at 0.2M. The optical measurements show that the transmittance depends on the molarity, and the optical band gap energy of TiO2 films is found to be inversely proportional to molarity. The I-V characteristics exhibit that the molarity strongly influences the electrical conductivity of the film. The results indicate that the significant effect of molarity on structural, optical and electrical properties of the nanostructured TiO2 thin films will be useful to photovoltaic application.

  1. Novel nano-semiconductor film layer supported nano-Pd Complex Nanostructured Catalyst Pd/Ⓕ-MeOx/AC for High Efficient Selective Hydrogenation of Phenol to Cyclohexanone.

    PubMed

    Si, Jiaqi; Ouyang, Wenbing; Zhang, Yanji; Xu, Wentao; Zhou, Jicheng

    2017-04-28

    Supported metal as a type of heterogeneous catalysts are the most widely used in industrial processes. High dispersion of the metal particles of supported catalyst is a key factor in determining the performance of such catalysts. Here we report a novel catalyst Pd/Ⓕ-MeO x /AC with complex nanostructured, Pd nanoparticles supported on the platelike nano-semiconductor film/activated carbon, prepared by the photocatalytic reduction method, which exhibited high efficient catalytic performance for selective hydrogenation of phenol to cyclohexanone. Conversion of phenol achieved up to more than 99% with a lower mole ratio (0.5%) of active components Pd and phenol within 2 h at 70 °C. The synergistic effect of metal nanoparticles and nano-semiconductors support layer and the greatly increasing of contact interface of nano-metal-semiconductors may be responsible for the high efficiency. This work provides a clear demonstration that complex nanostructured catalysts with nano-metal and nano-semiconductor film layer supported on high specific surface AC can yield enhanced catalytic activity and can afford promising approach for developing new supported catalyst.

  2. On the AC-conductivity mechanism in nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) alloys

    NASA Astrophysics Data System (ADS)

    Anjali; Patial, Balbir Singh; Bhardwaj, Suresh; Awasthi, A. M.; Thakur, Nagesh

    2017-10-01

    In-depth analysis of complex AC-conductivity for nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10 at wt%) alloys is made in the temperature range 308-423 K and over the frequency range 10-1-107 Hz, to understand the conduction mechanism. The investigated nano-crystalline alloys were prepared by melt-quench technique. Sharp structural peaks in X-ray diffraction pattern indicate the nano-crystalline nature, which is also confirmed by FESEM. The AC conductivity shows universal characteristics and at higher frequency a transition from dc to dispersive behavior occurs. Moreover, it is confirmed that ac conductivity (σac) obeys the Jonscher power law as ωs (s< 1). The obtained results are analyzed in the light of various theoretical models. The correlated barrier hopping (CBH) model associated with non-intimate valence alternation pairs (NVAP's) is found most appropriate to describe the conduction mechanisms in these alloys. In addition, the CBH model description reveals that the bipolaron (single polaron) transport dominates at lower (higher) temperature. The density of localized states has also been deduced.

  3. Method for forming single phase, single crystalline 2122 BCSCO superconductor thin films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)

    1994-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  4. Molecular organic crystalline matrix for hybrid organic-inorganic (nano) composite materials

    NASA Astrophysics Data System (ADS)

    Stanculescu, A.; Tugulea, L.; Alexandru, H. V.; Stanculescu, F.; Socol, M.

    2005-02-01

    Metal-doped benzil crystals have been grown by thermal gradient solidification in a vertical transparent growth configuration to investigate the effect of metallic guest on the ordered organic host. We have identified the conditions for growing homogeneous, optically good crystals of benzil doped with sodium and silver, limiting the effect of supercooling, low thermal conductivity and anisotropy of the growth speed (temperature gradient at the liquid-solid interface: 10-25 °C, moving speed of the growth interface 2.0 mm/h). The nature and concentration of the dopant are parameters affecting, through the growth process, the crystalline perfection and the optical properties of the organic matrix. Bulk optical characterisation, by spectrophotometrical methods, has offered details on some intrinsic properties of the system metal particles/benzil crystalline matrix. Analytical processing of the experimental data emphasised that benzil is a wide optical band gap organic semiconductor Eg=2.65 eV. We also have investigated the effect of sodium and silver on the properties of benzil crystal as potential transparent semiconductor matrix for (nano)composite metal/molecular organic material. With the increase of sodium concentration from c=1 to 6 wt%, a small narrowing of the band gap has been remarked. The same behaviour has been found for benzil doped with silver (c=2 wt%) compared to pure benzil.

  5. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres.

    PubMed

    Yang, Wenguang; Yu, Haibo; Li, Gongxin; Wang, Yuechao; Liu, Lianqing

    2016-12-01

    Poly(ethylene glycol) diacrylate (PEGDA) is a common hydrogel that has been actively investigated for various tissue engineering applications owing to its biocompatibility and excellent mechanical properties. However, the native PEGDA films are known for their bio-inertness which can hinder cell adhesion, thereby limiting their applications in tissue engineering and biomedicine. Recently, nano composite technology has become a particularly hot topic, and has led to the development of new methods for delivering desired properties to nanomaterials. In this study, we added polystyrene nano-spheres (PS) into a PEGDA solution to synthesize a nano-composite film and evaluated its characteristics. The experimental results showed that addition of the nanospheres to the PEGDA film not only resulted in modification of the mechanical properties and surface morphology but further improved the adhesion of cells on the film. The tensile modulus showed clear dependence on the addition of PS, which enhanced the mechanical properties of the PEGDA-PS film. We attribute the high stiffness of the hybrid hydrogel to the formation of additional cross-links between polymeric chains and the nano-sphere surface in the network. The effect of PS on cell adhesion and proliferation was evaluated in L929 mouse fibroblast cells that were seeded on the surface of various PEGDA-PS films. Cells density increased with a larger PS concentration, and the cells displayed a spreading morphology on the hybrid films, which promoted cell proliferation. Impressively, cellular stiffness could also be modulated simply by tuning the concentration of nano-spheres. Our results indicate that the addition of PS can effectively tailor the physical and biological properties of PEGDA as well as the mechanical properties of cells, with benefits for biomedical and biotechnological applications.

  6. Carbon nanotube TiO2 hybrid films for detecting traces of O2

    NASA Astrophysics Data System (ADS)

    Llobet, E.; Espinosa, E. H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J. J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.

    2008-09-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. <=10 ppm) in a flow of CO2, which is of interest for the beverage industry.

  7. P-type single-crystalline ZnO films obtained by (Na,N) dual implantation through dynamic annealing process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen

    2018-02-01

    Single-crystalline ZnO films were grown by plasma-assisted molecular beam epitaxy technique on c-plane sapphire substrates. The films have been implanted with fixed fluence of 130 keV Na and 90 keV N ions at 460 °C. It is observed that dually-implanted single crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 1.24 × 1016-1.34 × 1017 cm-3, hole mobilities between 0.65 and 8.37 cm2 V-1 s-1, and resistivities in the range of 53.3-80.7 Ω cm by Hall-effect measurements. There are no other secondary phase appearing, with (0 0 2) (c-plane) orientation after ion implantation as identified by the X-ray diffraction pattern. It is obtained that Na and N ions were successfully implanted and activated as acceptors measured by XPS and SIMS results. Also compared to other similar studies, lower amount of Na and N ions make p-type characteristics excellent as others deposited by traditional techniques. It is concluded that Na and N ion implantation and dynamic annealing are essential in forming p-type single-crystalline ZnO films.

  8. Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors.

    PubMed

    Ma, Qian; Zheng, He-Mei; Shao, Yan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Zhang, David Wei

    2018-01-09

    Atomic-layer-deposition (ALD) of In 2 O 3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H 2 O 2 ) as precursors. The In 2 O 3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (E g ) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In 2 O 3 , and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In 2 O 3 thin-film transistors with an Al 2 O 3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm 2 /V⋅s, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 10 7 . This was ascribed to passivation of oxygen vacancies in the device channel.

  9. Nano confinement effects on dynamic and viscoelastic properties of Selenium Films

    NASA Astrophysics Data System (ADS)

    Yoon, Heedong; McKenna, Gregory

    2015-03-01

    In current study, we use a novel nano bubble inflation technique to study nano confinement effects on the dynamic and viscoelastic properties of physical vapor deposited Selenium films. Film thicknesses ranged from 60 to 260 nm. Creep experiments were performed for the temperatures ranging from Tg,macroscopic-14 °C to Tg,\\ macroscopic + 19 °C. Time temperature superposition and time thickness superposition were applied to create reduced creep curves, and those were compared with macroscopic data [J. Non-Cryst. Solids. 2002, 307, 790-801]. The results showed that the time temperature superposition was applicable in the glassy relaxation regime to the steady-state plateau regime. However in the long time response of the creep compliance, time thickness superposition failed due to the thickness dependence on the steady-state plateau. It was observed that the steady state compliance increased with film thickness. The thickness dependence on the plateau stiffening followed a power law of DPlateau ~ h2.46, which is greater than observed in organic polymers where the exponents observed range from 0.83 to 2.0 [Macromolecules. 2012, 45 (5), 2453-2459]. National Science Foundation Grant No. CHE 1112416 and John R. Bradford Endowment at Texas Tech

  10. Rapid nano impact printing of silk biopolymer thin films

    NASA Astrophysics Data System (ADS)

    White, Robert D.; Gray, Caprice; Mandelup, Ethan; Amsden, Jason J.; Kaplan, David L.; Omenetto, Fiorenzo G.

    2011-11-01

    In this paper, nano impact printing of silk biopolymer films is described. An indenter is rapidly accelerated and transfers the nanopattern from a silicon master into the silk film during an impact event that occurs in less than 1 ms. Contact stresses of greater than 100 MPa can be achieved during the short impact period with low power and inexpensive hardware. Ring shaped features with a diameter of 2 µm and a ring width of 100-200 nm were successfully transferred into untreated silk films using this method at room temperature. Mechanical modeling was carried out to determine the contact stress distribution, and demonstrates that imprinting can occur for contact stresses of less than 2 MPa. Thermal characterization at the impact location shows that raising the temperature to 70 °C has only a limited effect on pattern transfer. Contact stresses of greater than approximately 100 MPa result in excessive deformation of the film and poor pattern transfer.

  11. Predicting the optimal process window for the coating of single-crystalline organic films with mobilities exceeding 7 cm2/Vs.

    NASA Astrophysics Data System (ADS)

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.

  12. Compostability assessment of nano-reinforced poly(lactic acid) films.

    PubMed

    Balaguer, M P; Aliaga, C; Fito, C; Hortal, M

    2016-02-01

    Nanomaterials can provide plastics with great advantages on mechanical and active properties (i.e. release and capture of specific substances). Therefore, packaging is expected to become one of the leading applications for these substances by 2020. There are some applications already in the market. Nevertheless, there is still some areas under development. A key issue to be analyzed is the end-of-life of these materials once they become waste, and specifically when nanomaterials are used in biodegradable products. The present study evaluated the disintegration, biodegradability, and ecotoxicity of poly(lactic acid) films reinforced with the three following nanomaterials: (1) montmorillonite modified with an ammonium quaternary salt, (2) calcium carbonate and (3) silicon dioxide. Results on disintegration showed that films completely disintegrated into visually indistinguishable residues after 6-7weeks of incubation in composting environment. Moreover, no differences were observed in the evolution of the bioresidue with respect to color, aspect, and odor in comparison with the control. It was also observed that nanomaterials did not significantly reduce the level of biodegradability of PLA (p>0.05). In fact, biodegradation was higher, without finding significant differences (p>0.05), in all the nano-reinforced samples with respect to PLA after 130days in composting (9.4% in PLA+Nano-SiO2; 34.0% in PLA+Clay1; 48.0% in PLA+Nano-CaCO3). Finally, no significant differences (p>0.05) in ecotoxicity in plants were observed as a result of the incorporation of nanoparticles in the PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wang, Ziqiao; Zhang, Xuefeng; Liu, Chaofei; Liu, Yongjie; Zhou, Zhimou; Wang, Junfeng; Wang, Qingyan; Liu, Yanzhao; Xi, Chuanying; Tian, Mingliang; Liu, Haiwen; Feng, Ji; Xie, X. C.; Wang, Jian

    2018-04-01

    Two-dimensional (2D) superconducting systems are of great importance for exploring exotic quantum physics. The recent development of fabrication techniques has stimulated studies of high-quality single-crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here, we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4-monolayer (ML) to 6-ML crystalline Pb films grown on striped incommensurate Pb layers on Si(111) substrates by molecular beam epitaxy. An anomalously large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that, in superconducting heterostructures, the interface can induce Zeeman-type spin-orbit interactions and modulate the superconductivity.

  14. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics

    NASA Astrophysics Data System (ADS)

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-01

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.

  15. Amorphous titania/carbon composite electrode materials

    DOEpatents

    Vaughey, John T.; Jansen, Andrew; Joyce, Christopher D.

    2017-05-09

    An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.

  16. Application Of Positron Beams For The Characterization Of Nano-scale Pores In Thin Films

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Ito, K.; Kobayashi, Y.; Suzuki, R.; Ohdaira, T.; Eijt, S. W. H.; Schut, H.; van Veen, A.

    2003-08-01

    We applied three positron annihilation techniques, positron 3γ-annihilation spectroscopy, positron annihilation lifetime spectroscopy, and angular correlation of annihilation radiation, to the characterization of nano-scale pores in thin films by combining them with variable-energy positron beams. Characterization of pores in thin films is an important part of the research on various thin films of industrial importance. The results of our recent studies on pore characterization of thin films by positron beams will be reported here.

  17. Surface induced phonon decay rates in thin film nano-structures

    NASA Astrophysics Data System (ADS)

    Photiadis, D. M.

    2007-12-01

    Nano-scale structure significantly impacts phonon transport and related phonon relaxation rates, with order of magnitude effects on the thermal conductivity of dielectric thin films and quantum wires, and even larger effects on the lifetimes of ultrasonic phonons of micro- (nano-) oscillators. In both cases, efforts to explain the data have been hampered by our lack of knowledge of the effects of confined dimensionality on phonon-phonon scattering rates. Using a phonon Boltzmann equation with appropriate boundary conditions on the free surfaces to take surface roughness into account, we have obtained an expression yielding phonon lifetimes in 2-D dielectric nanostructures(thin films) resulting from phonon-phonon scattering in conjunction with phonon-surface scattering. We present these theoretical results and, in the limit in which surface induced losses dominate, obtain explicit predictions for the phonon lifetimes. The predicted temperature dependence of the ultrason! ic loss does not explain the observed saturation of the loss at low temperatures(τ(T) → const), but does give results of the order of magnitude of measured ultrasonic lifetimes.

  18. Characterization of MAPLE deposited WO3 thin films for electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S. I.; Stefan, N.; Szilágyi, I. M.; Mihailescu, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Besleaga, C.; Iliev, M. T.; Gesheva, K. A.

    2017-01-01

    Tungsten trioxide (WO3) is a widely studied material for electrochromic applications. The structure, morphology and optical properties of WO3 thin films, grown by matrix assisted pulsed laser evaporation (MAPLE) from monoclinic WO3 nano-sized particles, were investigated for their possible application as electrochromic layers. A KrF* excimer (λ=248 nm, ζFWHM=25 ns) laser source was used in all experiments. The MAPLE deposited WO3 thin films were studied by atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetry measurements were also performed, and the coloring and bleaching were observed. The morpho-structural investigations disclosed the synthesis of single-phase monoclinic WO3 films consisting of crystalline nano-grains embedded in an amorphous matrix. All thin films showed good electrochromic properties, thus validating application of the MAPLE deposition technique for the further development of electrochromic devices.

  19. Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinyu, E-mail: xinyu.zhang@anu.edu.au; Wan, Yimao; Bullock, James

    2016-08-01

    This work explores the application of transparent nitrogen doped copper oxide (CuO{sub x}:N) films deposited by reactive sputtering to create hole-selective contacts for p-type crystalline silicon (c-Si) solar cells. It is found that CuO{sub x}:N sputtered directly onto crystalline silicon is able to form an Ohmic contact. X-ray photoelectron spectroscopy and Raman spectroscopy measurements are used to characterise the structural and physical properties of the CuO{sub x}:N films. Both the oxygen flow rate and the substrate temperature during deposition have a significant impact on the film composition, as well as on the resulting contact resistivity. After optimization, a low contactmore » resistivity of ∼10 mΩ cm{sup 2} has been established. This result offers significant advantages over conventional contact structures in terms of carrier transport and device fabrication.« less

  20. Mechanical properties of pulsed laser-deposited hydroxyapatite thin films implanted at high energy with N + and Ar + ions. Part II: nano-scratch tests with spherical tipped indenter

    NASA Astrophysics Data System (ADS)

    Pelletier, H.; Nelea, V.; Mille, P.; Muller, D.

    2004-02-01

    In this study we report a method to improve the adherence of hydroxyapatite (HA) thin films, using an ion beam implantation treatment. Crystalline HA films were grown by pulsed laser deposition technique (PLD), using an excimer KrF * laser. The films were deposited at room temperature in vacuum on Ti-5Al-2.5Fe alloy substrates previously coated with a ceramic TiN buffer layer and then annealed in ambient air at (500-600) °C. After deposition the films were implanted with N + and Ar + ions accelerated at high energy (1-1.5 MeV range) at a fixed dose of 10 16 cm -2. The intrinsic mechanical resistance and adherence to the TiN buffer layer of the implanted HA films have been evaluated by nano-scratch tests. We used for measurements a spherical indenter with a tip radius of 5 μm. Different scratch tests have been performed on implanted and unimplanted areas of films to put into evidence the effects of N + and Ar + ion implantation process on the films properties. Results show an enhancement of the dynamic mechanical properties in the implanted zones and influence of the nature of the implanted species. The best results are obtained for films implanted with nitrogen.

  1. Photocatalytic degradation of methylene blue on Sn-doped titania nanoparticles synthesized by solution combustion route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhange, P.D., E-mail: pallavi.ncl@gmail.com; Awate, S.V.; Gholap, R.S.

    2016-04-15

    Highlights: • Series of Sn-doped titania nanoparticles were prepared by solution combustion synthesis method. • Sn-doped titania nanoparticles were tested for degradation of MB under UV light irradiation. • The maximum Sn doping in the TiO{sub 2} lattice is found to be less than 10%. • The crystallite size decreases with increase in the Sn content. • The doping of Sn into TiO{sub 2} lattice hinders the recombination of electrons and holes thus enhance the photocatalytic activity. - Abstract: Series of tin-doped titania nanoparticles with varying tin content in the range 0–20 mol% have been prepared by solution combustion synthesismore » route using urea as a fuel. The structure, surface morphology and optical activity of Sn-doped TiO{sub 2} nanoparticles were investigated by various analytical techniques such as powder XRD, SEM, TEM, UV–vis and N{sub 2} adsorption study. The crystalline structures of the various phases were studied by rietveld refinement of the XRD data. The photocatalytic performance of Sn-doped titania nanoparticles were tested for degradation of MB under UV and visible light irradiation. The results reveal that the photocatalytic activity increases with increase in tin content which may be due to decrease in crystallite size with increase in surface area. The doping of Sn into TiO{sub 2} lattice hinders the recombination of electrons and holes thus enhance the quantum efficiency of photocatalytic reaction.« less

  2. Sacrificial photocatalysis: removal of nitrate and hydrogen production by nano-copper-loaded P25 titania. A kinetic and ecotoxicological assessment.

    PubMed

    Lucchetti, Roberta; Siciliano, Antonietta; Clarizia, Laura; Russo, Danilo; Di Somma, Ilaria; Di Natale, Francesco; Guida, Marco; Andreozzi, Roberto; Marotta, Raffaele

    2017-02-01

    The photocatalytic removal of nitrate with simultaneous hydrogen generation was demonstrated using zero-valent nano-copper-modified titania (P25) as photocatalyst in the presence of UV-A-Vis radiation. Glycerol, a by-product in biodiesel production, was chosen as a hole scavenger. Under the adopted experimental conditions, a nitrate removal efficiency up to 100% and a simultaneous hydrogen production up to 14 μmol/L of H 2 were achieved (catalyst load = 150 mg/L, initial concentration of nitrate = 50 mg/L, initial concentration of glycerol = 0.8 mol/L). The reaction rates were independent of the starting glycerol concentration. This process allows accomplishing nitrate removal, with the additional benefit of producing hydrogen under artificial UV-A radiation. A kinetic model was also developed and it may represent a benchmark for a detailed understanding of the process kinetics. A set of acute and chronic bioassays (Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna) was performed to evaluate the potential ecotoxicity of the nitrate/by-product mixture formed during the photocatalytic process. The ecotoxicological assessment indicated an ecotoxic effect of oxidation intermediates and by-products produced during the process.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Nibedita; Deka, Amrita; Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in

    The present work reports on the effect of Tb³⁺ doping on the luminescence and photocatalytic performance of nano-structured titania derived through a sol-gel route. X-ray diffraction patterns have revealed the existence of anatase phase with and without Tb³⁺ doping and with an improved orientation factor along (004) and (200) planes. Transmission electron microscopy and selective area electron diffraction studies, while exhibiting ample poly-crystallinity feature, have predicted an average particle size of ~9 nm and ~6 nm for the un-doped and 5% Tb³⁺ doped nano-titania samples; respectively. Apart from emissions accompanied by different types of defects, Tb³⁺ related transitions, such as,more » ⁵D₃ → ⁷F₅, ⁵D₃ → ⁷F₄, and ⁵D₄ → ⁷F₆ were identified in the photoluminescence spectra. Brunauer-Emmett-Teller surface area analysis, as carried out on a Tb³⁺ doped nano-titania system, has demonstrated a more-open hysteretic loop owing to significant difference of N₂ adsorption/desorption rates. The photocatalytic activity of nano-titania, as evaluated from the nature of degradation of methyl orange under UV illumination, exhibited the highest efficiency for a Tb³⁺ doping level of 2.5%. The augmented photocatalytic degradation has also been discussed in the light of a model based on pseudo first-order kinetics.« less

  4. Improvement of thermal stability of nano-granular TMR films by using a Mg-Al-O insulator matrix

    NASA Astrophysics Data System (ADS)

    Kanie, S.; Koyama, S.

    2018-05-01

    A new metal-insulator nano-granular tunneling magnetoresistance (TMR) film made of (Fe-Co)-(Mg-Al-O) has been investigated. It is confirmed that the film has granular structure in which crystal Fe-Co granules are surrounded by an amorphous Mg-Al-O matrix. A large MR ratio of 11.8 % at room temperature is observed for a 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film annealed at 395 °C. The electrical resistivity increases rapidly by annealing at above the changing point (500 °C). The changing point is about 300 °C higher than that of conventional (Fe-Co)-(Mg-F) nano-granular TMR films. The 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film also exhibits less degradation in the MR ratio at high annealing temperatures such as 600 °C. These results suggest the (Fe-Co)-(Mg-Al-O) film is superior to the (Fe-Co)-(Mg-F) film in thermal stability.

  5. Solid state microwave synthesis of highly crystalline ordered mesoporous hausmannite Mn 3 O 4 films

    DOE PAGES

    Xia, Yanfeng; Qiang, Zhe; Lee, Byeongdu; ...

    2017-06-23

    Microwave calcination of ordered micelle templated manganese carbonate films leads to highly crystalline, ordered mesoporous manganese oxide, while similar temperatures in a furnace lead to disordered, amorphous manganese oxide.

  6. Solvent influence upon structure & throughput of poly vinyledene fluoride thin film nano-patterns by imprint lithography

    NASA Astrophysics Data System (ADS)

    Sankar, M. S. Ravi; Gangineni, R. B.

    2018-04-01

    This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.

  7. Titania - Highest Resolution Voyager Picture

    NASA Image and Video Library

    1996-01-29

    On Jan. 24, 1986, NASA Voyager 2 returned the highest-resolution picture of Titania, Uranus largest satellite. Abundant impact craters of many sizes pockmark the ancient surface; most prominent features are fault valleys that stretch across Titania. http://photojournal.jpl.nasa.gov/catalog/PIA00039

  8. A study on flash sintering and related phenomena in titania and its composite with alumina

    NASA Astrophysics Data System (ADS)

    Shikhar

    In 2010, Cologna et. al. [1] reported that with a help of small electric field 120 Vcm-1, the sintering temperature of 3 mol % yittria stabilized zirconia could be brought down to 850°C from 1450°C. On top of reducing the temperature requirements, the green sample could be sintered from starting density of 50% to near full density in mere 5 seconds, a sintering rate three orders of magnitude higher than conventional methods. This discovery led to the emergence of a new field of enhanced sintering with electric field, named "Flash Sintering". The objective of this thesis is to understand the phenomenological behavior of flash-sintering and related phenomena on titania and its composites with alumina at elevated temperature. The possible mechanisms to explain flash sintering are discussed: Joule heating and the avalanche of defect generation [2], both induced by the rapid rise in conductivity just before the onset of the flash. Apparently, both mechanisms play a role. The thesis covers the response of pure titania and composites of titania-alumina under flash and compared with conventional sintering. We start with the sintering behavior of pure titania and observe lowering of sintering temperature requirements with higher applied electric field. The conductivity of titania during flash is also measured, and compared with the nominal conductivity of titania at equivalent temperatures. The conductivity during flash is determined to be have a different activation energy. For the composites of titania-alumina, effect of flash on the constrained sintering was studied. It is a known fact that sintering of one component of composite slows down when the other component of a different densification rate is added to it, called constrained sintering. In our case, large inclusions of alumina particles were added to nano-grained titania green compact that hindered its densification. Flash sintering was found to be overcoming this problem and near full densification was achieved

  9. The structural and optical properties of Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films from the first principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenshu; Hu, Huijun; Zhang, Caili; Li, Jianguo; Li, Yuping; Ling, Lixia; Han, Peide

    2017-12-01

    Based on the density functional theory, the structural stability and optical properties of undoped and Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films are investigated. The good stability of the films based on the ZnO (0 0 0 1) can be obtained when the layer is larger than 12. Moreover, the dielectric function, refractive index, absorption, and reflectivity of doped ZnO nano thin films have been analyzed in detail. In the visible light range, the values of ZnO films from 12 to 24 layers are all smaller than those of the bulk. And with the augment of the layers, the values keep increasing. All the results signify that the nano film of 12 layers possesses the lowest reflectivity and weakest absorption. In addition, there is an evident impact of some doped element on the properties of nano films. The absorption and reflectivity of Ti, Si-doped ZnO nano thin films are higher than those of the clean films, while Al, B-doped are lower, especially B-doped. Moreover, the conductivity of the doped structure is better than that of the bulk. Thus, the B-doped ZnO nano thin films could be potential candidate materials of transparent conductive films.

  10. Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications.

    PubMed

    Nandakumar, Deepika; Bendavid, Avi; Martin, Philip J; Harris, Kenneth D; Ruys, Andrew J; Lord, Megan S

    2016-03-23

    Biomaterials with the ability to interface with, but not activate, blood components are essential for a multitude of medical devices. Diamond-like carbon (DLC) and titania (TiO2) have shown promise for these applications; however, both support platelet adhesion and activation. This study explored the fabrication of nanostructured DLC and TiO2 thin film coatings using a block copolymer deposition technique that produced semiordered nanopatterns with low surface roughness (5-8 nm Rrms). These surfaces supported fibrinogen and plasma protein adsorption that predominantly adsorbed between the nanofeatures and reduced the overall surface roughness. The conformation of the adsorbed fibrinogen was altered on the nanopatterned surfaces as compared with the planar surfaces to reveal higher levels of the platelet binding region. Planar DLC and TiO2 coatings supported less platelet adhesion than nanopatterned DLC and TiO2. However, platelets on the nanopatterned DLC coatings were less spread indicating a lower level of platelet activation on the nanostructured DLC coatings compared with the planar DLC coatings. These data indicated that nanostructured DLC coatings may find application in blood contacting medical devices in the future.

  11. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel M.; Noh, Hyunwoo; Singh, Vivek; Cha, Jennifer N.; Nagpal, Prashant

    2015-02-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  12. Cd-doped ZnO nano crystalline thin films prepared at 723K by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Joishy, Sumanth; Rajendra B., V.

    2018-04-01

    Ternary Zn1-xCdxO(x=0.10, 0.40, 0.70 at.%) thin films of 0.025M precursor concentration have been successfully deposited on preheated (723K) glass substrates using spray pyrolysis route. The structure, morphology and optical properties of deposited films have been characterized by X-ray diffraction, Scanning Electron Microscopy (SEM) and UV-Visible spectrophotometry. X-ray diffraction study shows that the prepared films are polycrystalline in nature. 10% Cd doped ZnO film belongs to the hexagonal wurtzite system and 70% Cd doped ZnO film belongs to the cubic system, although mixed phases were formed for 40% Cd doped ZnO film. The optical transmittance spectra has shown red shift with increasing cadmium content. Optical energy band gap has been reduced with cadmium dopant.

  13. Neural learning circuits utilizing nano-crystalline silicon transistors and memristors.

    PubMed

    Cantley, Kurtis D; Subramaniam, Anand; Stiegler, Harvey J; Chapman, Richard A; Vogel, Eric M

    2012-04-01

    Properties of neural circuits are demonstrated via SPICE simulations and their applications are discussed. The neuron and synapse subcircuits include ambipolar nano-crystalline silicon transistor and memristor device models based on measured data. Neuron circuit characteristics and the Hebbian synaptic learning rule are shown to be similar to biology. Changes in the average firing rate learning rule depending on various circuit parameters are also presented. The subcircuits are then connected into larger neural networks that demonstrate fundamental properties including associative learning and pulse coincidence detection. Learned extraction of a fundamental frequency component from noisy inputs is demonstrated. It is then shown that if the fundamental sinusoid of one neuron input is out of phase with the rest, its synaptic connection changes differently than the others. Such behavior indicates that the system can learn to detect which signals are important in the general population, and that there is a spike-timing-dependent component of the learning mechanism. Finally, future circuit design and considerations are discussed, including requirements for the memristive device.

  14. Mesoporous Titania Powders: The Role of Precursors, Ligand Addition and Calcination Rate on Their Morphology, Crystalline Structure and Photocatalytic Activity

    PubMed Central

    Masolo, Elisabetta; Meloni, Manuela; Garroni, Sebastiano; Mulas, Gabriele; Enzo, Stefano; Baró, Maria Dolors; Rossinyol, Emma; Rzeszutek, Agnieszka; Herrmann-Geppert, Iris; Pilo, Maria

    2014-01-01

    We evaluate the influence of the use of different titania precursors, calcination rate, and ligand addition on the morphology, texture and phase content of synthesized mesoporous titania samples, parameters which, in turn, can play a key role in titania photocatalytic performances. The powders, obtained through the evaporation-induced self-assembly method, are characterized by means of ex situ X-Ray Powder Diffraction (XRPD) measurements, N2 physisorption isotherms and transmission electron microscopy. The precursors are selected basing on two different approaches: the acid-base pair, using TiCl4 and Ti(OBu)4, and a more classic route with Ti(OiPr)4 and HCl. For both precursors, different specimens were prepared by resorting to different calcination rates and with and without the addition of acetylacetone, that creates coordinated species with lower hydrolysis rates, and with different calcination rates. Each sample was employed as photoanode and tested in the water splitting reaction by recording I-V curves and comparing the results with commercial P25 powders. The complex data framework suggests that a narrow pore size distribution, due to the use of acetylacetone, plays a major role in the photoactivity, leading to a current density value higher than that of P25. PMID:28344237

  15. Enhancement on crystallinity property of low annealed PbTiO3 thin films for metal-insulator-metal capacitor

    NASA Astrophysics Data System (ADS)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    This study presents the investigation on crystallinity property of PbTiO3 thin films towards metal-insulator-metal capacitor device fabrication. The preparation of the thin films utilizes sol-gel spin coating method with low annealing temperature effect. Hence, structural and electrical characterization is brought to justify the thin films consistency.

  16. Single crystalline thin films as a novel class of electrocatalysts

    DOE PAGES

    Snyder, Joshua; Markovic, Nenad; Stamenkovic, Vojislav

    2013-01-01

    The ubiquitous use of single crystal metal electrodes has garnered invaluable insight into the relationship between surface atomic structure and functional electrochemical properties. But, the sensitivity of their electrochemical response to surface orientation and the amount of precious metal required can limit their use. We present here a generally applicable procedure for producing thin metal films with a large proportion of atomically flat (111) terraces without the use of an epitaxial template. Thermal annealing in a controlled atmosphere induces long-range ordering of magnetron sputtered thin metal films deposited on an amorphous substrate. The ordering transition in these thin metal filmsmore » yields characteristic (111) electrochemical signatures with minimal amount of material and provides an adequate replacement for oriented bulk single crystals. Our procedure can be generalized towards a novel class of practical multimetallic thin film based electrocatalysts with tunable near-surface compositional profile and morphology. Annealing of atomically corrugated sputtered thin film Pt-alloy catalysts yields an atomically smooth structure with highly crystalline, (111)-like ordered and Pt segregated surface that displays superior functional properties, bridging the gap between extended/bulk surfaces and nanoscale systems.« less

  17. Thermal behaviour and corrosion resistance of nano-ZnO/polyurethane film

    NASA Astrophysics Data System (ADS)

    Virgawati, E.; Soegijono, B.

    2018-03-01

    Hybrid materials Nano-ZnO/polyurethane film was prepared with different zinc oxide (ZnO) content in polyurethane as a matrix. The film was deposited on low carbon steel plate using high volume low pressure (HVLP) method. To observe thermal behaviour of the film, the sample was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to see whether any chemical reaction of ZnO in polyurethane occured. TGA and FTIR results showed that the decomposition temperature shifted to a higher point and the chemical reaction of zinc oxide in polyurethane occurred. The surface morphology changed and the corrosion resistance increased with an increase of ZnO content

  18. Au-C allotrope nano-composite films at extreme conditions generated by intense ultra-short laser

    NASA Astrophysics Data System (ADS)

    Khan, Saif A.; Saravanan, K.; Tayyab, M.; Bagchi, S.; Avasthi, D. K.

    2016-07-01

    Structural evolution of gold-carbon allotrope nano-composite films under relativistically intense, ultra-short laser pulse irradiation is studied in this work. Au-C nano-composite films, having 4 and 10 at.% of Au, were deposited by co-sputtering technique on silicon substrates. Au-C60 NC films with 2.5 at.% Au were deposited on 12 μm thick Al foil using co-evaporation technique. These samples were radiated with single pulse from 45 fs, 10 TW Ti:Sapphire Laser at RRCAT at an intensity of 3 × 1018 W cm-2. The morphological and compositional changes were investigated using scanning electron microscopy (SEM) and Rutherford back-scattering spectrometry (RBS) techniques. Laser pulse created three morphologically distinct zones around the point of impact on samples with silicon substrates. The gold content in 600 μm circular region around a point of impact is found to reduce by a factor of five. Annular rings of ∼70 nm in diameter were observed in case of Au-C NC film after irradiation. Laser pulse created a hole of about 400 μm in the sample with Al foil as substrate and wavy structures of 6 μm wavelength are found to be created around this hole. The study shows radial variation in nano-structure formation with varying local intensity of laser pulse.

  19. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics.

    PubMed

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-25

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS 2 ) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS 2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS 2 thin film by annealing at 450 °C for 1 h in H 2 S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS 2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 10 5 and 10 4 cm -1 in the visible region, respectively. In addition, SnS and SnS 2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS 2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS 2 thin films exhibited on-off drain current ratios of 8.8 and 2.1 × 10 3 and mobilities of 0.21 and 0.014 cm 2 V -1 s -1 , respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS 2 thin films were 6.0 × 10 16 and 8.7 × 10 13 cm -3 , respectively, in this experiment.

  20. Magnetic anisotropy engineering: Single-crystalline Fe films on ion eroded ripple surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liedke, M. O.; Koerner, M.; Lenz, K.

    We present a method to preselect the direction of an induced in-plane uniaxial magnetic anisotropy (UMA) in thin single-crystalline Fe films on MgO(001). Ion beam irradiation is used to modulate the MgO(001) surface with periodic ripples on the nanoscale. The ripple direction determines the orientation of the UMA, whereas the intrinsic cubic anisotropy of the Fe film is not affected. Thus, it is possible to superimpose an in-plane UMA with a precision of a few degrees - a level of control not reported so far that can be relevant for example in spintronics.

  1. Freestanding nano crystalline Tin@carbon anode electrodes for high capacity Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Guler, M. O.; Guzeler, M.; Nalci, D.; Singil, M.; Alkan, E.; Dogan, M.; Guler, A.; Akbulut, H.

    2018-07-01

    Due to their high specific capacities tin based electrode materials are in the focus of many researchers almost for a decade. However, tin based electrodes are hampered in practical applications due to the volumetric changes during the lithiation and delithiation processes. Therefore, we designed and synthesized a novel "yolk-shell" structure in order to remove these challenges. The production of high purity nano Sn particles were synthesized through a facile chemical reduction method. As-synthesized nano particles were then embedded into conformal and self-standing carbon architectures, designed with hollow space in between the shell and the active electrode particles. As-synthesized Sn@C composite particles were decorated between the layers of graphene produced by Hummers method in order to obtained self-standing thin graphene films. A stable discharge capacity of 284.5 mA h g-1 after 250 cycles is obtained. The results have shown that Sn@C@graphene composite electrodes will be a promising novel candidate electrode material for high capacity lithium ion batteries.

  2. The Evolution of Fabricated Gold Thin Films to Nano-Micro Particles Under Thermal Annealing Process

    NASA Astrophysics Data System (ADS)

    Hajivaliei, Mahdi; Nazari, Saeed

    2016-06-01

    Gold (Au) thin films with thickness of 35nm were prepared by electron beam deposition onto flat glass substrates under high vacuum (5.3×10-3Pa) condition and they were annealed in the range of 573-873 K for 1 and 2h in atmospheric pressure. The influence of the annealing temperature on the evolution of Au thin film to nano-micro particles was studied. Moreover, the basic properties of the films, namely morphological, structural and optical were investigated. The X-ray diffraction (XRD) analysis revealed that the Au thin films were cubic structure phase with lattice parameter around a=4.0786Å. The most preferential orientation is along (111) planes for all Au films. The lattice parameter and grain size in the films were calculated by X-ray patterns and correlated with annealing temperatures. The obtained results of ultraviolet-visible spectrometry (UV-Vis) indicate that with increasing annealing temperature, the surface plasmon resonance peak of gold nanocrystallite will disappear which implies the size of particles are grown. Field-emission scanning electron microscopy (FE-SEM) results show that the prepared gold thin films have been converted to nano-micro gold particles in different annealing temperatures. These results lead to controlling the size of produced nanocrystallite.

  3. Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Muruganantham, G.; Sakthivel, B.

    2009-11-01

    Doubly doped (simultaneous doping of antimony and fluorine) tin oxide films (SnO 2:Sb:F) have been fabricated by employing an inexpensive and simplified spray technique using perfume atomizer from aqueous solution of SnCl 2 precursor. The structural studies revealed that the films are highly crystalline in nature with preferential orientation along the (2 0 0) plane. It is found that the size of the crystallites of the doubly doped tin oxide films is larger (69 nm) than that (27 nm) of their undoped counterparts. The dislocation density of the doubly doped film is lesser (2.08×10 14 lines/m 2) when compared with that of the undoped film (13.2×10 14 lines/m 2), indicating the higher degree of crystallinity of the doubly doped films. The SEM images depict that the films are homogeneous and uniform. The optical transmittance in the visible range and the optical band gap of the doubly doped films are 71% and 3.56 eV respectively. The sheet resistance (4.13 Ω/□) attained for the doubly doped film in this study is lower than the values reported for spray deposited fluorine or antimony doped tin oxide films prepared from aqueous solution of SnCl 2 precursor (without using methanol or ethanol).

  4. Linear Dichroism and Photoluminescence Microscopy Imaging of Grain Boundaries in Crystalline Metal-Free Phthalocyanine Thin Films

    NASA Astrophysics Data System (ADS)

    Pan, Zhenwen; Lamarche, Cody; Cour, Ishviene; Rawat, Naveen; Manning, Lane; Headrick, Randall; Furis, Madalina; Physics Dept.; Material Science Program, University of Vermont, Burlington, VT 05405 Team

    2011-03-01

    We employed a combination of linear dichroism and photoluminescence microscopy with spatial resolution of 5 μ m to study the excitonic properties of solution-processed metal-free phthalocyanine (H2Pc) crystalline thin films with millimeter-sized grains. We observe a highly-localized, sharp, monomer-like emission at the high angle grain boundaries, in contrast to samples with more uniform grain orientation where no such feature has been observed. The energy difference between the grain boundary luminescence and the HOMO-LUMO singlet exciton recombination of the crystalline H2Pc is measured to be 160meV. Our systematic survey of grain boundaries indicates this localized state is never present at low angle boundaries where the π -orbital overlap between adjacent grains is significant. It supports recent results which associated a decrease in carrier mobility with the presence of large angle boundaries in similar crystalline pentacene films. This project is supported by DMR- 0722451; DMR-0348354; DMR- 0821268.

  5. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films.

    PubMed

    Chen, Junyu; Zhang, Xin; Huang, Chao; Cai, He; Hu, Shanshan; Wan, Qianbing; Pei, Xibo; Wang, Jian

    2017-03-01

    As a new class of crystalline nanoporous materials, metal-organic frameworks (MOFs) have recently been used for biomedical applications due to their large surface area, high porosity, and theoretically infinite structures. To improve the biological performance of titanium, MOF films were applied to surface modification of titanium. Zn-based MOF films composed of zeolitic imidazolate framework-8 (ZIF-8) crystals with nanoscale and microscale sizes (nanoZIF-8 and microZIF-8) were prepared on porous titanium surfaces by hydrothermal and solvothermal methods, respectively. The ZIF-8 films were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The nanoZIF-8 film exhibited good biocompatibility, whereas the microZIF-8 film showed obvious cytotoxicity to MG63 cells. Compared to pure titanium and alkali- and heat-treated porous titanium, the nanoZIF-8 film not only enhanced alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and expression of osteogenic genes (ALP, Runx2) in MG63 cells but also inhibited the growth of Streptococcus mutans. These results indicate that MOF films or coatings may be promising candidates for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 834-846, 2017. © 2016 Wiley Periodicals, Inc.

  6. Influence of the crystallinity of a sputtered hydroxyapatite film on its osteocompatibility.

    PubMed

    Ozeki, K; Goto, T; Aoki, H; Masuzawa, T

    2015-01-01

    Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering, and the sputtered films were crystallized using a hydrothermal treatment at 120°C and 170°C to evaluate the influence of the crystallinity of the HA film on its osteocompatibility. The crystallite size and surface morphology of the films were observed using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The alkaline phosphatase (ALP) expression, osteocalin (OCN) expression and bone formation of osteoblast cells on the films were measured to evaluate the osteocompatibility of the film.The crystallite size increased as the hydrothermal temperature increased, and the crystallite sizes of the film treated at 120°C and 170°C were 82.2±12.3 nm and 124.7±13.3 nm, respectively. Globular particles were observed in the hydrothermally treated film using SEM. The size of the particles on the film increased as the hydrothermal temperature increased, and the width of the particles on the film treated at 120°C and 170°C were approximately 120-190 nm and 300-500 nm, respectively. In the osteoblast cell culture experiments, the ALP expression, OCN expression and bone formation area on the films treated at 120°C were higher than those treated for films treated at 170°C.

  7. Development of anodic titania nanotubes for application in high sensitivity amperometric glucose and uric acid biosensors.

    PubMed

    Lee, Hsiang-Ching; Zhang, Li-Fan; Lin, Jyh-Ling; Chin, Yuan-Lung; Sun, Tai-Ping

    2013-10-21

    The purpose of this study was to develop novel nanoscale biosensors using titania nanotubes (TNTs) made by anodization. Titania nanotubes were produced on pure titanium sheets by anodization at room temperature. In this research, the electrolyte composition ethylene glycol 250 mL/NH4F 1.5 g/DI water 20 mL was found to produce the best titania nanotubes array films for application in amperometric biosensors. The amperometric results exhibit an excellent linearity for uric acid (UA) concentrations in the range between 2 and 14 mg/dL, with 23.3 (µA·cm-2)·(mg/dL)-1 UA sensitivity, and a correlation coefficient of 0.993. The glucose biosensor presented a good linear relationship in the lower glucose concentration range between 50 and 125 mg/dL, and the corresponding sensitivity was approximately 249.6 (µA·cm-2)·(100 mg/dL)-1 glucose, with a correlation coefficient of 0.973.

  8. Development of Anodic Titania Nanotubes for Application in High Sensitivity Amperometric Glucose and Uric Acid Biosensors

    PubMed Central

    Lee, Hsiang-Ching; Zhang, Li-Fan; Lin, Jyh-Ling; Chin, Yuan-Lung; Sun, Tai-Ping

    2013-01-01

    The purpose of this study was to develop novel nanoscale biosensors using titania nanotubes (TNTs) made by anodization. Titania nanotubes were produced on pure titanium sheets by anodization at room temperature. In this research, the electrolyte composition ethylene glycol 250 mL/NH4F 1.5 g/DI water 20 mL was found to produce the best titania nanotubes array films for application in amperometric biosensors. The amperometric results exhibit an excellent linearity for uric acid (UA) concentrations in the range between 2 and 14 mg/dL, with 23.3 (μA·cm−2)·(mg/dL)−1 UA sensitivity, and a correlation coefficient of 0.993. The glucose biosensor presented a good linear relationship in the lower glucose concentration range between 50 and 125 mg/dL, and the corresponding sensitivity was approximately 249.6 (μA·cm−2)·(100 mg/dL)−1 glucose, with a correlation coefficient of 0.973. PMID:24152934

  9. Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3:Er(3+)/Yb(3+) nano-crystalline phosphor.

    PubMed

    Joshi, C; Dwivedi, A; Rai, S B

    2014-08-14

    Infrared-to-visible upconverting rare earths Er(3+)/Yb(3+) co-doped Y2O3 nano-crystalline phosphor samples have been prepared by solution combustion method followed by post-heat treatment at higher temperatures. A slight increase in average crystallite size has been found on calcinations verified by X-ray analysis. Transmission electron microscopy (TEM) confirms the nano-crystalline nature of the as-prepared and calcinated samples. Fourier transform infrared (FTIR) analysis shows the structural changes in as-prepared and calcinated samples. Upconversion and downconversion emission recorded using 976 and 532 nm laser sources clearly demonstrates a better luminescence properties in the calcinated samples as compared to as-prepared sample. Upconversion emission has been quantified in terms of standard chromaticity diagram (CIE) showing a shift in overall upconversion emission of as-prepared and calcinated samples. Temperature sensing behaviour of this material has also been investigated by measurement of fluorescence intensity ratio (FIR) of various signals in green emission in the temperature range of 315 to 555 K under 976 nm laser excitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig.

    PubMed

    Götz, Werner; Lenz, Solvig; Reichert, Christoph; Henkel, Kai-Olaf; Bienengräber, Volker; Pernicka, Laura; Gundlach, Karsten K H; Gredes, Tomasz; Gerber, Thomas; Gedrange, Tomasz; Heinemann, Friedhelm

    2010-12-01

    To test the probable osteoinductive properties of NanoBone, a new highly non-sintered porous nano-crystalline hydroxylapatite bone substitute embedded into a silica gel matrix, granules were implanted subcutaneously and intramuscularly into the back region of 18 mini pigs. After periods of 5 and 10 weeks as well as 4 and 8 months, implantation sites were investigated using histological and histomorphometric procedures. Signs of early osteogenesis could already be detected after 5 weeks. The later periods were characterized by increasing membranous osteogenesis in and around the granules leading to the formation of bone-like structures showing periosteal and tendon-like structures with bone marrow and focal chondrogenesis. Bone formation was better in the subcutaneous than in the intramuscular implantation sites. This ectopic osteogenesis is discussed with regard to the nanoporosity and microporosity of the material, physico-chemical interactions at its surface, the differentiation of osteoblasts, the role of angiogenesis and the probable involvement of growth factors. The results of this preliminary study indicate that this biomaterial has osteoinductive potential and induces the formation of bone structures, mainly in subcutaneous adipose tissue in the pig.

  11. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films.

    PubMed

    Ranjan, Ashwini; Webster, Thomas J

    2009-07-29

    The success of synthetic vascular grafts is largely determined by their ability to promote vital endothelial cell functions such as adhesion, alignment, proliferation, and extracellular matrix (ECM) deposition. Developing such biomaterials requires the design and fabrication of materials that mimic select properties of native extracellular matrices. Furthermore, cells of the native endothelium have elongated and aligned morphology in the direction of blood flow, yet few materials promote this type of morphology initially, but rather rely on blood flow to orient endothelial cells. Therefore, the objective of this in vitro study was to design a biomaterial that mimics the conditions of the micro- and nano-environment of vascular intima tissue suitable for endothelial cell adhesion and elongation to improve the efficacy of small synthetic vascular grafts. Towards this end, patterned poly(dimethylsiloxane) (PDMS) films consisting of periodic arrays of nano-grooves (500 nm), with spacings ranging from 22 to 80 microm, and alternating nano- and micron roughness were fabricated using a novel electron beam physical vapor deposition method followed by polymer casting. By varying pattern spacing, the area of micron- and nano-rough surface was controlled. In vitro rat aortic endothelial cell adhesion and elongation studies indicated that endothelial cell function was enhanced on patterned PDMS surfaces with the widest spacing and greatest surface area of nano-roughness, as compared to more narrow pattern spacings and non-patterned PDMS surfaces. Specifically, endothelial cells adherent on PDMS patterned films of the widest spacing (greatest nano-rough area) displayed almost twice as much elongation as cells on non-patterned surfaces. For these reasons, the present study highlighted design criteria (the use of micron patterns of nano-features on PDMS) that may contribute to the intelligent design of new-generation vascular grafts.

  12. PECVD based silicon oxynitride thin films for nano photonic on chip interconnects applications.

    PubMed

    Sharma, Satinder K; Barthwal, Sumit; Singh, Vikram; Kumar, Anuj; Dwivedi, Prabhat K; Prasad, B; Kumar, Dinesh

    2013-01-01

    Thin silicon oxynitride (SiO(x)N(y)) films were deposited by low temperature (~300°C) plasma enhanced chemical vapour deposition (PECVD), using SiH(4), N(2)O, NH(3) precursor of the flow rate 25, 100, 30 sccm and subjected to the post deposition annealing (PDA) treatment at 400°C and 600°C for nano optical/photonics on chip interconnects applications. AFM result reveals the variation of roughness from 60.9 Å to 23.4 Å after PDA treatment with respect to the as-deposited films, favourable surface topography for integrated waveguide applications. A model of decrease in island height with the effect of PDA treatment is proposed in support of AFM results. Raman spectroscopy and FTIR measurements are performed in order to define the change in crystallite and chemical bonding of as-deposited as well as PDA treated samples. These outcomes endorsed to the densification of SiO(x)N(y) thin films, due to decrease in Si-N and Si-O bonds strain, as well the O-H, N-H bonds with in oxynitride network. The increase in refractive index and PL intensity of as deposited SiO(x)N(y) thin films to the PDA treated films at 400°C and 600°C are observed. The significant shift of PL spectra peak positions indicate the change in cluster size as the result of PDA treatment, which influence the optical properties of thin films. It might be due to out diffusion of hydrogen containing species from silicon oxynitride films after PDA treatment. In this way, the structural and optical, feasibility of SiO(x)N(y) films are demonstrated in order to obtain high quality thin films for nano optical/photonics on chip interconnects applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Controlling compositional homogeneity and crystalline orientation in Bi 0.8 Sb 0.2 thermoelectric thin films [Control of composition and crystallinity in Bi 0.8Sb 0.2 thermoelectric thin films].

    DOE PAGES

    Rochford, C.; Medlin, D. L.; Erickson, K. J.; ...

    2015-12-01

    Controlling alloy composition, crystalline quality, and crystal orientation is necessary to achieve high thermoelectric performance in Bi 1-xSb x thin films. These microstructural attributes are demonstrated in this letter via co-sputter deposition of Bi and Sb metals on Si/SiO 2 substrates followed by ex-situ post anneals ranging from 200 – 300 °C in forming gas with rapid cooling to achieve orientation along the trigonal axis. We show with cross-sectional transmission electron microscopy and energy-dispersive X-ray spectrometry that 50 – 95% of the Sb segregates at the surface upon exposure to air during transfer. This then forms a nanocrystalline Sb 2Omore » 3 layer upon annealing, leaving the bulk of the film primarily Bi metal which is a poor thermoelectric material. We demonstrate a SiN capping technique to eliminate Sb segregation and preserve a uniform composition throughout the thickness of the film. Given that the Bi 1-xSb x solid solution melting point depends on the Sb content, the SiN cap allows one to carefully approach but not exceed the melting point during annealing. This leads to the strong orientation along the trigonal axis and high crystalline quality desired for thermoelectric applications.« less

  14. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    NASA Astrophysics Data System (ADS)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  15. Anti-flammable vinyl ester resin nano-composite with nano-titania

    NASA Astrophysics Data System (ADS)

    Das, Rajib

    Anti-flammable material is a common expectation for any industry and household applications to protect the material from fire accident. Polymer composites also play a significant role in preparing anti flammable materials. Vinyl ester resins (VERs) are thermosetting resins that have excellent mechanical and thermal properties of epoxy resins and Nanotitania is an inexpensive, nontoxic and biocompatible inorganic material. In this paper to investigate the flame retardency of polymer nanocomposites VER is used as polymer matrix and TiO2 is used as inorganic nanofiller.3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (TATMS), a kind of silane is used as a coupling agent to functionalize the surface of nanoTiO2 to improve its flame retardency by adding Si and N2 group. TGA test and FTIR test have been performed and different peaks for Si and N2 in the modified nanofiller and weight loss of fabricated nanofiller confirmed that fabrication method was successful. After that, nanocomposite sample of VERs reinforced with nano TiO2 prepared and the effects of different loadings on mechanical and flame retardant properties are investigated after and before the modification of nanofillers. From tensile test result it is found that up to 5% loading of modified nanofiller the tensile strength is 62 MPa that is almost as same as pure VER and the tensile strength of unmodified nanofiller based PNC is 68 MPa which is not significant improvement in its mechanical property. From MCC test of flame retardancy it is found that the normalized heat release capacity of modified nanofiller based nanocomposite is decreased by 27.7% than unmodified nanofiller based PNC that is 9.8%. Also the normalized total heat release of modified nanofiller based PNC is 21.4% than unmodified PNC that is 12.4%.

  16. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors.

    PubMed

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-02-25

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.

  17. Remarkably High Mobility Thin-Film Transistor on Flexible Substrate by Novel Passivation Material.

    PubMed

    Shih, Cheng Wei; Chin, Albert

    2017-04-25

    High mobility thin-film transistor (TFT) is crucial for future high resolution and fast response flexible display. Remarkably high performance TFT, made at room temperature on flexible substrate, is achieved with record high field-effect mobility (μ FE ) of 345 cm 2 /Vs, small sub-threshold slope (SS) of 103 mV/dec, high on-current/off-current (I ON /I OFF ) of 7 × 10 6 , and a low drain-voltage (V D ) of 2 V for low power operation. The achieved mobility is the best reported data among flexible electronic devices, which is reached by novel HfLaO passivation material on nano-crystalline zinc-oxide (ZnO) TFT to improve both I ON and I OFF . From X-ray photoelectron spectroscopy (XPS) analysis, the non-passivated device has high OH-bonding intensity in nano-crystalline ZnO, which damage the crystallinity, create charged scattering centers, and form potential barriers to degrade mobility.

  18. Growth of fullerene-like carbon nitride thin solid films consisting of cross-linked nano-onions

    NASA Astrophysics Data System (ADS)

    Czigány, Zs.; Brunell, I. F.; Neidhardt, J.; Hultman, L.; Suenaga, K.

    2001-10-01

    Fullerene-like CNx (x≈0.12) thin solid films were deposited by reactive magnetron sputtering of graphite in a nitrogen and argon discharge on cleaved NaCl and Si(001) substrates at 450 °C. As-deposited films consist of 5 nm diam CNx nano-onions with shell sizes corresponding to Goldberg polyhedra determined by high-resolution transmission electron microscopy. Electron energy loss spectroscopy revealed that N incorporation is higher in the core of the onions than at the perimeter. N incorporation promotes pentagon formation and provides reactive sites for interlinks between shells of the onions. A model is proposed for the formation of CNx nano-onions by continuous surface nucleation and growth of hemispherical shells.

  19. Effect of Fe3O4 addition on dielectric properties of LaFeO3 nano-crystalline materials synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Laysandra, H.; Triyono, D.

    2017-04-01

    Dielectric properties of nano-crystalline material LaFeO3.xFe3O4 with x = 0, 0.1, 0.2, 0.3, and 0.4 at.% have been studied by impedance spectroscopy method. LaFeO3 was synthesized by sol-gel method resulting nano-particle. Then, it was mixed with Fe3O4 powder. The mixture powder was pressed to form pellet and then sintered at 1300°C for 1 h to form nano-crystalline of LaFeO3.xFe3O4. X-ray diffraction characterization at room temperature for all samples show two phases i.e. perovskite LaFeO3 (orthorhombic) as a main phase and Fe3O4 (cubic) as second phase. It is found that the crystallite size of main phase increases with addition of Fe3O4 until 0.3 at.%. The electrical properties as a function of temperature (300-500 K) and frequency (100 Hz - 1 MHz) are presented in Nyquist and Bode plots. It is observed that from equivalent circuit and their parameters, dielectrical properties are contributed by grain and grain boundary. The dielectric constant, ε‧ were calculated by parallel plate method and their values reach up to 107 exhibiting typical colossal dielectric constant (CDC) material like behavior.

  20. Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations.

    PubMed

    Baumgartner, Ramona; Eitzlmayr, Andreas; Matsko, Nadejda; Tetyczka, Carolin; Khinast, Johannes; Roblegg, Eva

    2014-12-30

    Since more than 40% of today's drugs have low stability, poor solubility and/or limited ability to cross certain biological barriers, new platform technologies are required to address these challenges. This paper describes a novel continuous process that converts a stabilized aqueous nano-suspension into a solid oral formulation in a single step (i.e., the NANEX process) in order to improve the solubility of a model drug (phenytoin). Phenytoin nano-suspensions were prepared via media milling using different stabilizers. A stable nano-suspension was obtained using Tween(®) 80 as a stabilizer. The matrix material (Soluplus(®)) was gravimetrically fed into the hot melt extruder. The suspension was introduced through a side feeding device and mixed with the molten polymer to immediately devolatilize the water in the nano-suspension. Phenytoin nano-crystals were dispersed and embedded in the molten polymer. Investigation of the nano-extrudates via transmission electron microscopy and atomic force microscopy showed that the nano-crystals were embedded de-aggregated in the extrudates. Furthermore, no changes in the crystallinity (due to the mechanical and thermal stress) occurred. The dissolution studies confirmed that the prepared nano-extrudates increased the solubility of nano-crystalline phenytoin, regardless of the polymer. Our work demonstrates that NANEX represents a promising new platform technology in the design of novel drug delivery systems to improve drug performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less

  2. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  3. Highly Transparent Wafer-Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity-Sensing Applications.

    PubMed

    Pawbake, Amit S; Waykar, Ravindra G; Late, Dattatray J; Jadkar, Sandesh R

    2016-02-10

    In the present investigation, we report a one-step synthesis method of wafer-scale highly crystalline tungsten disulfide (WS2) nanoparticle thin film by using a modified hot wire chemical vapor deposition (HW-CVD) technique. The average size of WS2 nanoparticle is found to be 25-40 nm over an entire 4 in. wafer of quartz substrate. The low-angle XRD data of WS2 nanoparticle shows the highly crystalline nature of sample along with orientation (002) direction. Furthermore, Raman spectroscopy shows two prominent phonon vibration modes of E(1)2g and A1g at ∼356 and ∼420 cm(-1), respectively, indicating high purity of material. The TEM analysis shows good crystalline quality of sample. The synthesized WS2 nanoparticle thin film based device shows good response to humidity and good photosensitivity along with good long-term stability of the device. It was found that the resistance of the films decreases with increasing relative humidity (RH). The maximum humidity sensitivity of 469% along with response time of ∼12 s and recovery time of ∼13 s were observed for the WS2 thin film humidity sensor device. In the case of photodetection, the response time of ∼51 s and recovery time of ∼88 s were observed with sensitivity ∼137% under white light illumination. Our results open up several avenues to grow other transition metal dichalcogenide nanoparticle thin film for large-area nanoelectronics as well as industrial applications.

  4. Guided in Situ Polymerization of MEH-PPV in Mesoporous Titania Photoanodes.

    PubMed

    Minar, Norma K; Docampo, Pablo; Fattakhova-Rohlfing, Dina; Bein, Thomas

    2015-05-20

    Incorporation of conjugated polymers into porous metal oxide networks is a challenging task, which is being pursued via many different approaches. We have developed the guided in situ polymerization of poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene) (MEH-PPV) in porous titania films by means of surface functionalization. The controlled polymerization via the Gilch route was induced by an alkoxide base and by increasing the temperature. The selected and specially designed surface-functionalizing linker molecules mimic the monomer or its activated form, respectively. In this way, we drastically enhanced the amount of MEH-PPV incorporated into the porous titania phase compared to nonfunctionalized samples by a factor of 6. Additionally, photovoltaic measurements were performed. The devices show shunting or series resistance limitations, depending on the surface functionalization prior to in situ polymerization of MEH-PPV. We suggest that the reason for this behavior can be found in the orientation of the grown polymer chains with respect to the titania surface. Therefore, the geometry of the anchoring via the linker molecules is relevant for exploiting the full electronic potential of the conjugated polymer in the resulting hybrid composite. This observation will help to design future synthesis methods for new hybrid materials from conjugated polymers and n-type semiconductors to take full advantage of favorable electronic interactions between the two phases.

  5. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.

    PubMed

    Hsieh, Ping-Yen; Lee, Chi-Young; Tai, Nyan-Hwa

    2016-02-01

    We developed an innovative approach of self-biased sputtering solid doping source process to synthesize doped crystalline Si film on flexible polyimide (PI) substrate via microwave-plasma-enhanced chemical vapor deposition (MWPECVD) using SiCl4/H2 mixture. In this process, P dopants or B dopants were introduced by sputtering the solid doping target through charged-ion bombardment in situ during high-density microwave plasma deposition. A strong correlation between the number of solid doping targets and the characteristics of doped Si films was investigated in detail. The results show that both P- and B-doped crystalline Si films possessed a dense columnar structure, and the crystallinity of these structures decreased with increasing the number of solid doping targets. The films also exhibited a high growth rate (>4.0 nm/s). Under optimal conditions, the maximum conductivity and corresponding carrier concentration were, respectively, 9.48 S/cm and 1.2 × 10(20) cm(-3) for P-doped Si film and 7.83 S/cm and 1.5 × 10(20) cm(-3) for B-doped Si film. Such high values indicate that the incorporation of dopant with high doping efficiency (around 40%) into the Si films was achieved regardless of solid doping sources used. Furthermore, a flexible crystalline Si film solar cell with substrate configuration was fabricated by using the structure of PI/Mo film/n-type Si film/i-type Si film/p-type Si film/ITO film/Al grid film. The best solar cell performance was obtained with an open-circuit voltage of 0.54 V, short-circuit current density of 19.18 mA/cm(2), fill factor of 0.65, and high energy conversion of 6.75%. According to the results of bending tests, the critical radius of curvature (RC) was 12.4 mm, and the loss of efficiency was less than 1% after the cyclic bending test for 100 cycles at RC, indicating superior flexibility and bending durability. These results represent important steps toward a low-cost approach to high-performance flexible crystalline Si film

  6. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.

    PubMed

    Nomura, Kenji; Ohta, Hiromichi; Ueda, Kazushige; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2003-05-23

    We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of approximately 106 and a field-effect mobility of approximately 80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics.

  7. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers

    PubMed Central

    Chou, Bo-Tsun; Chou, Yu-Hsun; Wu, Yen-Mo; Chung, Yi-Cheng; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di

    2016-01-01

    Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications. PMID:26814581

  8. Effect of annealing temperature on titania nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manikandan, K., E-mail: sanjaymani367@gmail.com; Arumugam, S., E-mail: sanjaymani367@gmail.com; Chandrasekaran, G.

    2014-04-24

    Titania polycrystalline samples are prepared by using sol-gel route hydrolyzing a alkoxide titanium precursor under acidic conditions. The as prepared samples are treated with different calcination temperatures. The anatase phase of titania forms when treated below 600°C, above that temperature the anatase phase tends to transform into the rutile phase of titania. The experimental determination of average grain size, phase formation, lattice parameters and the crystal structures of titania samples at different calcinations is done using X-ray diffraction (XRD). Fourier Transform Infra-red Spectroscopy (FTIR), UV-vis-NIR spectroscopy and Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis X-ray are used to characterizemore » the samples to bring impact on the respective properties.« less

  9. Preparation of proton conducting membranes containing bifunctional titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslan, Ayşe; Bozkurt, Ayhan

    2013-07-01

    Throughout this work, the synthesis and characterization of novel proton conducting nanocomposite membranes including binary and ternary mixtures of sulfated nano-titania (TS), poly(vinyl alcohol) (PVA), and nitrilotri(methyl phosphonic acid) (NMPA) are discussed. The materials were produced by means of two different approaches where in the first, PVA and TS (10-15 nm) were admixed to form a binary system. The second method was the ternary nanocomposite membranes including PVA/TS/NMPA that were prepared at several compositions to get PVA-TS-(NMPA) x . The interaction of functional nano particles and NMPA in the host matrix was explored by FT-IR spectroscopy. The homogeneous distribution of bifunctional nanoparticles in the membrane was confirmed by SEM micrographs. The spectroscopic measurements and water/methanol uptake studies suggested a complexation between PVA and NMPA, which inhibited the leaching of the latter. The thermogravimetry analysis results verified that the presence of TS in the composite membranes suppressed the formation of phosphonic acid anhydrides up to 150 °C. The maximum proton conductivity has been measured for PVA-TS-(NMPA)3 as 0.003 S cm-1 at 150 °C.

  10. Nano-Titania Photocatalyst Loaded on W-MCM-41 Support and Its Highly Efficient Degradation of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Shankar, H.; Saravanan, R.; Narayanan, V.; Stephen, A.

    2011-07-01

    Most of the azo dyes produced in textile, printing, paper manufacturing, pulp processing and pharmaceutical industries contain different organic contaminants. These dyes can enter the body through ingestion and the high content in living systems can prove to be carcinogenic. Therefore photocatalytic degradation of such toxic organic compounds in water, in the presence of semiconductor powders has received much attention over the last two decades. Nanocrystalline titanium dioxide, TiO2, is a well studied and commonly used material for photocatalytic applications. However, the control of particle size, monodispersity, large catalytic surface for sufficient adsorption of organic pollutants, recovery and recycle of TiO2 nanoparticles are challenging tasks. Hence in the present study, titania was introduced into the nanopores (2-10 nm size) of MCM-41 to produce stable nanoparticles of uniform size and shape. Further, in order to lengthen the life time of the excited electrons/holes during photoreaction, tungsten atoms were incorporated in to the MCM-41 silica matrix in addition to titania loading.

  11. Understanding the growth of micro and nano-crystalline AlN by thermal plasma process

    NASA Astrophysics Data System (ADS)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.

    2012-01-01

    We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.

  12. Transparent oxygen and water vapor barriers for flexible electronics using semi-crystalline polymer matrix thin films

    NASA Astrophysics Data System (ADS)

    Sehgal, Akhil

    Electronic components such as organic light emitting diodes (OLED) and photo-voltaics have been of more focus with the advancement of technology. These electronics are susceptible to degradable in the presence of gases such as water vapor and oxygen. Being that these gases are constituents of the atmosphere and can be found in nearly every environment, certain protocols must take place to mitigate the issues that occur. New generation electronics are sensitive to oxidation and corrosion in the presence of extremely low concentrations of moisture and oxygen and therefore the development and improvements of gas barriers are vital for advancements in electronics technology. The improvements of appliances such as flexible solar cells and OLEDs require barriers that need to be flexible in order to achieve high longevity. The area of research has been focused on designing flexible polymer films with composite nanoparticles and cross-linking agents that have low permeability to moisture and oxygen gas. The polymers studied are in the family of methacrylates. Due to the properties of methacrylate polymers, it has been proposed that they are capable of having efficient barrier properties due to their ability to cross link and form crystalline structures with low chain mobility. The change in intensities of the FTIR peaks of different functional groups indicates the cross-linking and crystallinity of the polymer films. The UV-Vis data indicates high transparency of the films. SEM images of the films show continuous and well cured surfaces with minimal deviations, pores and defects. The addition of cross-linking agents and nanoparticles increased polymerization and cross-linking of the methacrylate polymer chains, therefore increasing inter-chain density and long range order. The incorporation of these additives increased the crystallinity of the films and by decreasing the distances and number of voids between polymer chains along with having minimal sorption sites for gases

  13. Elastic properties of porous low-k dielectric nano-films

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  14. Mechanical properties of amorphous and devitrified Ni-Zr alloy thin films: A cyclic nanoindentation study

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Debarati; Chatterjee, Arnomitra; Jana, Swapan

    2018-04-01

    Thin films of Ni-Zr glassy alloy were deposited at room temperature by magnetron co-sputtering. The alloy films were vacuum annealed in steps of 200°C from room temperature up to 800 °C, where devitrification finally occurred. Mechanical properties of the films were measured after each thermal anneal, through (cyclic) nanoindentation technique. The hardness values were observed to steadily increase with annealing temperature, as the alloy films underwent an amorphous to crystalline transformation. Grazing incidence X-ray diffraction measurements were performed on the as-deposited and annealed films both before and after nanoindentation. The resistance to plastic deformation was strongly linked to the (nano)structure of the material.

  15. Superconducting properties of Nb-Cu nano-composites and nano-alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Pradnya, E-mail: pradnyaprb@gmail.com; Kumar, Sanjeev; Bhui, Prabhjyot

    The evolution of the superconducting transition temperature (T{sub c}) in nano-composite and nano-alloys of Nb-Cu, grown by DC magnetron co-sputtering are investigated. Microstructure of these films depends less strongly on the ratio of Nb:Cu but more on the growth temperature. At higher growth temperature, phase separated granular films of Nb and Cu were formed which showed superconducting transition temperatures (T{sub c}) of ~ 7.2±0.5 K, irrespective of the composition. Our results show that this is primarily influenced by the microstructure of the films determined during growth which rules out the superconducting proximity effect expected in these systems. At room temperaturemore » growth, films with nano-scale alloying were obtained at the optimal compositional range of 45-70 atomic% (At%) of Nb. These were also superconducting with a T{sub c} of 3.2 K.« less

  16. Graphene-silicon layered structures on single-crystalline Ir(111) thin films

    DOE PAGES

    Que, Yande D.; Tao, Jing; Zhang, Yong; ...

    2015-01-20

    Epitaxial growth of graphene on transition metal crystals, such as Ru,⁽¹⁻³⁾ Ir,⁽⁴⁻⁶⁾ and Ni,⁽⁷⁾ provides large-area, uniform graphene layers with controllable defect density, which is crucial for practical applications in future devices. To decrease the high cost of single-crystalline metal bulks, single-crystalline metal films are strongly suggested as the substrates for epitaxial growth large-scale high-quality graphene.⁽⁸⁻¹⁰⁾ Moreover, in order to weaken the interactions of graphene with its metal host, which may result in a suppression of the intrinsic properties of graphene,⁽¹¹ ¹²⁾ the method of element intercalation of semiconductors at the interface between an epitaxial graphene layer and a transitionmore » metal substrate has been successfully realized.⁽¹³⁻¹⁶⁾« less

  17. Chemically deposited nano grain composed MoS(2) thin films for supercapacitor application.

    PubMed

    Pujari, R B; Lokhande, A C; Shelke, A R; Kim, J H; Lokhande, C D

    2017-06-15

    Low temperature soft chemical synthesis approach is employed towards MoS 2 thin film preparation on cost effective stainless steel substrate. 3-D semispherical nano-grain composed surface texture of MoS 2 film is observed through FE-SEM technique. Electrochemical supercapacitor performance of MoS 2 film is tested from cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques in 1M aqueous Na 2 SO 4 electrolyte. Specific capacitance (C s ) of 180Fg -1 with CV cycling stability of 82% for 1000 cycles is achieved. Equivalent series resistance (R s ) of 1.78Ωcm -2 observed through Nyquist plot shows usefulness of MoS 2 thin film for charge conduction in supercapacitor application. Copyright © 2016. Published by Elsevier Inc.

  18. Spatial height directed microfluidic synthesis of transparent inorganic upconversion nano film

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Zhu, Cheng; Liao, Wei; Jin, Junyang; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2017-11-01

    A microfluidic-based synthesis of an inorganic upconversion nano film has been developed with a large area of dense-distributed NaYF4 crystal grains in a silica glass micro-reactor and the film exhibits high transparence, strong upconversion luminescence and robust adhesion with the substrate. The spatial heights of micro-reactors are tuned between 31 and 227 mm, which can regulate flow regimes. The synergistic effect of spatial height and fluid regime is put forward, which influences diffusion paths and assembly ways of different precursor molecules and consequently directs final distributions and morphologies of crystal grains, as well as optical properties due to diversity of surface and thickness of films. The spatial height of 110 mm is advantageous for high transmittance of upconversion film due to the flat surface and appropriate film thickness of 67 nm. The height of 150 mm is in favor of uniform distribution of upconversion fluorescence and achieving the strongest fluorescence due to minimized optical loss. Such a transparent upconversion film with a large area of uniform distribution is promising to promote the application of upconversion materials and spatial height directed microfluidic regime have a certain significance on many microfluidic synthesis.

  19. Novel hydrothermal method for effective doping of N and F into nano Titania for both, energy and environmental applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jyothi, M.S.; D’Souza Laveena, P.; Shwetharani, R.

    2016-02-15

    Highlights: • Novel method to synthesize N, F doped TiO{sub 2} via hydrothermal method is discussed. • Change in bandgap of TiO{sub 2} upon doping makes a photocatalyst visible active. • 94% of degradation of EtBr was achieved within a less time of 90 min. • The doped titania also showed good efficiency as photo anodic material for solar cell. - Abstract: A novel and an efficient hydrothermal method for the preparation of an effective doped titania photocatalyst is reported. The crystal phase, binding energy, elemental composition, morphology, optical and electronic structure analyses were done by various techniques. The dopedmore » titania proved as an efficient electrode material and photocatalyst for solar cells and water treatment respectively. The photocatalyst is able to degrade the most potent mutagen ethidium bromide under sunlight with an enhancement of 1.6 times over its undoped analogue. As photo-anode material, showed an improved open circuit potential and fill factor. The created electron states in the doped sample act as charge carrier traps suppressing recombination which later detraps the same to the surface of the catalyst causing enhanced interfacial charge transfer. Surface acidity caused by F induction and lowered band gap energy that can respond to visible light facilitates improved energy harvesting and energy transfer leading to better photo activity.« less

  20. Nucleation and Growth of Crystalline Grains in RF-Sputtered TiO 2 Films

    DOE PAGES

    Johnson, J. C.; Ahrenkiel, S. P.; Dutta, P.; ...

    2009-01-01

    Amore » morphous TiO 2 thin films were radio frequency sputtered onto siliconmonoxide and carbon support films on molybdenum transmission electron microscope (TEM) grids and observed during in situ annealing in a TEM heating stage at 250 ∘ C. The evolution of crystallization is consistent with a classical model of homogeneous nucleation and isotropic grain growth. The two-dimensional grain morphology of the TEM foil allowed straightforward recognition of amorphous and crystallized regions of the films, for measurement of crystalline volume fraction and grain number density. By assuming that the kinetic parameters remain constant beyond the onset of crystallization, the final average grain size was computed, using an analytical extrapolation to the fully crystallized state. Electron diffraction reveals a predominance of the anatase crystallographic phase.« less

  1. Effect of sputtering pressure on crystalline quality and residual stress of AlN films deposited at 823 K on nitrided sapphire substrates by pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki

    2016-05-01

    Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4-1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.

  2. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors

    PubMed Central

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-01-01

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al2O3 and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value. PMID:28344296

  3. Preparation of biomimetic nano-structured films with multi-scale roughness

    NASA Astrophysics Data System (ADS)

    Shelemin, A.; Nikitin, D.; Choukourov, A.; Kylián, O.; Kousal, J.; Khalakhan, I.; Melnichuk, I.; Slavínská, D.; Biederman, H.

    2016-06-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45-240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery.

  4. Nano crystalline Bi{sub 2}(VO{sub 5}) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Arti, E-mail: artidabhur@gmail.com; Khasa, S.; Dahiya, M. S.

    2016-05-23

    Glass composition 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3}, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi{sub 2}(VO{sub 5}) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V{sub 2}O{sub 5}-crystal were observed along with the nano crystalline Bi{sub 2}(VO{sub 5}) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRDmore » diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi{sub 2}(VO{sub 5}) nano-crystallite was ~30 nm for samples annealed at 400°C and ~42 nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi{sub 2}(VO{sub 5}) crystallite.« less

  5. Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Bui, Hao, E-mail: H.VanBui@utwente.nl; Wiggers, Frank B.; Gupta, Anubha

    2015-01-01

    The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution ofmore » the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30 nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.« less

  6. Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications

    PubMed Central

    Haring, Andrew; Morris, Amanda; Hu, Michael

    2012-01-01

    Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs) and bulk heterojuntion solar cells (BHJs)]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes are aligned perpendicular to the substrate surface, reducing the electron diffusion path to the external circuit in solar cells. The nanotube morphology can be optimized for the various applications by adjusting the anodization parameters but the optimum crystallinity of the nanotube arrays remains to be realized. In addition to morphology and crystallinity, the method of device fabrication significantly affects photon and electron dynamics and its energy conversion efficiency. This paper provides the state-of-the-art knowledge to achieve experimental tailoring of morphological parameters including nanotube diameter, length, wall thickness, array surface smoothness, and annealing of nanotube arrays.

  7. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    PubMed

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  8. Nano- and micro-scale Bi-substituted iron garnet films for photonics and magneto-optic eddy current defectoscopy

    NASA Astrophysics Data System (ADS)

    Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.

    2017-10-01

    Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution eddy current magnetic field near defects.

  9. Effect of annealing on structural, optical and electrical properties of SILAR synthesized CuO thin film

    NASA Astrophysics Data System (ADS)

    Das, M. R.; Mukherjee, A.; Mitra, P.

    2017-05-01

    Nano crystalline CuO thin films were synthesize on glass substrate using SILAR technique. The structural, optical and electrical properties of the films were carried out for as deposited as well as for films post annealed in the temperature range 300 - 500° C. The X-ray diffraction pattern shows all the films are polycrystalline in nature with monoclinic phase. The crystallite size increase and lattice strain decreases with increase of annealing temperature indicating high quality of the films for annealed films. The value of band gap decreases with increases of annealing temperature of the film. The effect of annealing temperature on ionic conductivity and activation energy to electrical conduction process are discussed.

  10. Morphological and crystalline characterization of pulsed laser deposited pentacene thin films for organic transistor applications

    NASA Astrophysics Data System (ADS)

    Pereira, Antonio; Bonhommeau, Sébastien; Sirotkin, Sergey; Desplanche, Sarah; Kaba, Mamadouba; Constantinescu, Catalin; Diallo, Abdou Karim; Talaga, David; Penuelas, Jose; Videlot-Ackermann, Christine; Alloncle, Anne-Patricia; Delaporte, Philippe; Rodriguez, Vincent

    2017-10-01

    We show that high-quality pentacene (P5) thin films of high crystallinity and low surface roughness can be produced by pulsed laser deposition (PLD) without inducing chemical degradation of the molecules. By using Raman spectroscopy and X-ray diffraction measurements, we also demonstrate that the deposition of P5 on Au layers result in highly disordered P5 thin films. While the P5 molecules arrange within the well-documented 1.54-nm thin-film phase on high-purity fused silica substrates, this ordering is indeed destroyed upon introducing an Au interlayer. This observation may be one explanation for the low electrical performances measured in P5-based organic thin film transistors (OTFTs) deposited by laser-induced forward transfer (LIFT).

  11. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-11-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

  12. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    PubMed Central

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-01-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ − d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of −4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials. PMID:26559337

  13. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films.

    PubMed

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G; Headrick, Randall L; McGill, Stephen A; Furis, Madalina I

    2015-11-12

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

  14. Wrinkling of flexoelectric nano-film/substrate systems

    NASA Astrophysics Data System (ADS)

    Su, Shengkai; Huang, Huaiwei; Liu, Yijie; Zhu, Zheng H.

    2018-02-01

    The study of wrinkling mechanisms essentially helps to establish stable and controllable performance in electronic products. To gain some basic understanding of the wrinkling process in flexoelectric dielectrics, this paper models the wrinkling of nano-film/substrate systems, typically seen in stretchable electronics, subjected to substrate prestrain and voltage loading on electrodes. Flexoelectricity is considered through the constitutive equations proposed by Shen and Hu, and Euler-Bernoulli beam theory is applied to formulate the expressions of wrinkling wavelength and amplitude through the Ritz method. The effects of flexoelectricity, surface parameters, prestrain, applied voltage, structural scale etc on wrinkling behaviors, including wrinkling deformation and the wrinkling critical condition, are discussed. Results reveal that the action of both flexoelectric and surface effects is significant over only a small scale range, with film thickness less than 10 nm. Alongside these issues, the fundamental difference between flexoelectric and piezoelectric effects on wrinkling behaviors is highlighted. Piezoelectricity may act as a promoter or suppressor of wrinkling initiation and amplitude, depending on the applied voltage, while flexoelectricity not only reduces the critical prestrain or voltage required for wrinkling, but also decreases the wrinkling wavelength and amplitude.

  15. Effect of Long Selenization Time on Co Films under a Low Temperature of 300 °C to Synthesize a Nanostructure CoSe2 and Optical Properties

    NASA Astrophysics Data System (ADS)

    Wu, Po-Feng; Shi, Jen-Bin; Cheng, Bo-Ci; Wu, Cheng-Han; Lee, Hsuan-Wei; Lin, Hsien-Sheng; Cheng, Fu-Chou; Chen, Kuan-Ping

    2018-05-01

    This work investigates a simple and non-toxic method to transform pre-deposited amorphous Co film into CoSe2 films at a fixed, low temperature of 300 °C. Single CoSe2-phase films having good crystallinity were obtained at a selenisation time ≧ 24 hours. A nanostructure CoSe2 having two different nano-morphological layers was observed. The CoSe2 films (72 hours) observed a large absorption and a direct band gap.

  16. Ferromagnetism in spin-coated cobalt-doped TiO2 thin films and the role of crystalline phases

    NASA Astrophysics Data System (ADS)

    Salazar Cuaila, J. L.; Alayo, W.; Avellaneda, César O.

    2017-11-01

    Two sets of Cobalt-doped (1-10% at) TiO2 thin films, for different molar concentrations of the Ti precursor (0.3 and 0.5 mol/L), have been deposited onto Si substrates by combining the Sol Gel process and the Spin Coating technique. The structure of the samples was studied by X-ray reflectivity (XRR) and X-ray diffraction (XRD) and their magnetic properties were analyzed by magnetization measurements as a function of the applied magnetic field. The XRR results provided the thickness and interfacial roughness of the films, while XRD patterns revealed the crystalline phases and lattice parameters. Room temperature ferromagnetic behaviour was observed for some of the atomic Co concentrations by the magnetization measurements. This behaviour has been correlated to the crystalline phases, which were found to be modified by both the molar ratio of Ti precursor and the concentration of the Co dopant. A suppression of ferromagnetism is observed for some atomic Co fractions and it was attributed to the presence of secondary crystalline phases.

  17. Scalable Directed Assembly of Highly Crystalline 2,7-Dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) Films.

    PubMed

    Chai, Zhimin; Abbasi, Salman A; Busnaina, Ahmed A

    2018-05-30

    Assembly of organic semiconductors with ordered crystal structure has been actively pursued for electronics applications such as organic field-effect transistors (OFETs). Among various film deposition methods, solution-based film growth from small molecule semiconductors is preferable because of its low material and energy consumption, low cost, and scalability. Here, we show scalable and controllable directed assembly of highly crystalline 2,7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) films via a dip-coating process. Self-aligned stripe patterns with tunable thickness and morphology over a centimeter scale are obtained by adjusting two governing parameters: the pulling speed of a substrate and the solution concentration. OFETs are fabricated using the C8-BTBT films assembled at various conditions. A field-effect hole mobility up to 3.99 cm 2 V -1 s -1 is obtained. Owing to the highly scalable crystalline film formation, the dip-coating directed assembly process could be a great candidate for manufacturing next-generation electronics. Meanwhile, the film formation mechanism discussed in this paper could provide a general guideline to prepare other organic semiconducting films from small molecule solutions.

  18. Tuning charge carrier transport and optical birefringence in liquid-crystalline thin films: A new design space for organic light-emitting diodes.

    PubMed

    Keum, Chang-Min; Liu, Shiyi; Al-Shadeedi, Akram; Kaphle, Vikash; Callens, Michiel Koen; Han, Lu; Neyts, Kristiaan; Zhao, Hongping; Gather, Malte C; Bunge, Scott D; Twieg, Robert J; Jakli, Antal; Lüssem, Björn

    2018-01-15

    Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the liquid-crystalline semiconductor improves charge transport in single charge carrier devices profoundly. Comparing the current-voltage characteristics of single charge carrier devices with simulations shows an excellent agreement and from this an in-depth understanding of single charge carrier transport in two-terminal devices is obtained. Finally, p-i-n type organic light-emitting diodes (OLEDs) compatible with vacuum processing techniques used in state-of-the-art OLEDs are demonstrated employing liquid-crystalline host matrix in the emission layer.

  19. The application of electrospun titania nanofibers in dye-sensitized solar cells.

    PubMed

    Krysova, Hana; Zukal, Arnost; Trckova-Barakova, Jana; Chandiran, Aravind Kumar; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Kavan, Ladislav

    2013-01-01

    Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling. The composite films were sensitized by Ru-bipyridine dye (coded C106) and the solar conversion efficiency was tested in a dye-sensitized solar cell filled with iodide-based electrolyte solution (coded Z960). The solar conversion efficiency of a solar cell with the optimized composite electrode (η = 7.53% at AM 1.5 irradiation) outperforms that of a solar cell with pure nanoparticle film (η = 5.44%). Still larger improvement was found for lower light intensities. At 10% sun illumination, the best composite electrode showed η = 7.04%, referenced to that of pure nanoparticle film (η = 4.69%). There are non-monotonic relations between the film's surface area, dye sorption capacity and solar performance of nanofiber-containing composite films, but the beneficial effect of the nanofiber morphology for enhancement of the solar efficiency has been demonstrated.

  20. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    PubMed Central

    Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638

  1. Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning

    PubMed Central

    Zhang, Xinping; Liu, Feifei; Li, Hongwei

    2016-01-01

    Laser-induced cross-linking in polymeric semiconductors was utilized to achieve micro- and nano-structuring in thin films. Single- and two-photon cross-linking processes led to the reduction in both the refractive index and thickness of the polymer films. The resultant photonic structures combine the features of both relief- and phase-gratings. Selective cross-linking in polymer blend films based on different optical response of different molecular phases enabled “solidification” of the phase-separation scheme, providing a stable template for further photonic structuring. Dielectric and metallic structures are demonstrated for the fabrication methods using cross-linking in polymer films. Selective cross-linking enables direct patterning into polymer films without introducing additional fabrication procedures or additional materials. The diffraction processes of the emission of the patterned polymeric semiconductors may provide enhanced output coupling for light-emitting diodes or distributed feedback for lasers. PMID:28773248

  2. EFFECTS OF LASER RADIATION ON MATTER: Laser damage behaviour of titania coatings

    NASA Astrophysics Data System (ADS)

    Skvortsov, L. A.

    2010-01-01

    A model is proposed for the generation of defects responsible for laser damage in thin titania films during repetitive exposure to nanosecond near-IR laser pulses. The model relies on the hypothesis that there is charge transfer between two point defect centres differing in photoionisation cross section, one of which has an adsorptive nature. The model's predictions agree well with the experimentally determined accumulation curve and the temperature dependence of the damage threshold at low temperatures and clarify the role of protective coatings.

  3. Structural, morphological and mechanical properties of niobium nitride thin films grown by ion and electron beams emanated from plasma

    NASA Astrophysics Data System (ADS)

    Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair

    2016-05-01

    The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.

  4. Preparation of hybrid nano biocomposite κ-carrageenan/cellulose nanocrystal/nanoclay

    NASA Astrophysics Data System (ADS)

    Zakuwan, Siti Zarina; Ahmad, Ishak; Ramli, Nazaruddin

    2013-11-01

    Biodegradable composites film based on κ-carrageenan and nano particles as filler was prepared to study the mechanical strength of carrageenan composites. Solution casting technique was used to prepare_this biocomposite. Preparation of composite film and nano filler involve two stages, preparation of cellulose nanocrystals (CNC) from kenaf with alkali treatment, bleaching, and hydrolysis followed by the preparation of two types of nano composite. Tensile test was carried on the composite film based on κ-carrageenan with the variation percentage of CNC and nano clay to obtain the optimum CNC and nano clay loading. After that hybrid nano-biocomposite film based on κ-carrageenan with the variation percentage of CNC/nano clay (OMMT) according to optimum value of composite carrageenan/CNC and composite carrageenan/nano clay film was prepared. The effect of nano filler on the mechanical properties of carrageenan films was examined. κ-carrageenan biocomposite increased with the optimum at 4% CNC and nano clay composition. Additional improvement of tensile strength with hybridization of CNC and nanoclay indicated better mechanical properties.

  5. Recent progress in mesoporous titania materials: adjusting morphology for innovative applications.

    PubMed

    Vivero-Escoto, Juan L; Chiang, Ya-Dong; Wu, Kevin; Yamauchi, Yusuke

    2012-02-01

    This review article summarizes recent developments in mesoporous titania materials, particularly in the fields of morphology control and applications. We first briefly introduce the history of mesoporous titania materials and then review several synthesis approaches. Currently, mesoporous titania nanoparticles (MTNs) have attracted much attention in various fields, such as medicine, catalysis, separation and optics. Compared with bulk mesoporous titania materials, which are above a micrometer in size, nanometer-sized MTNs have additional properties, such as fast mass transport, strong adhesion to substrates and good dispersion in solution. However, it has generally been known that the successful synthesis of MTNs is very difficult owing to the rapid hydrolysis of titanium-containing precursors and the crystallization of titania upon thermal treatment. Finally, we review four emerging fields including photocatalysis, photovoltaic devices, sensing and biomedical applications of mesoporous titania materials. Because of its high surface area, controlled porous structure, suitable morphology and semiconducting behavior, mesoporous titania is expected to be used in innovative applications.

  6. Investigation of optical properties and local structure of Gd3+ doped nano-crystalline GeSe2

    NASA Astrophysics Data System (ADS)

    Hantour, Hanan Hassan

    2017-04-01

    Pure and Gd-doped nano-crystalline GeSe2 were prepared by the melt-quenching technique. Structure analysis using Rietveld program suggests monoclinic structure for both virgin and doped samples with nano-particle size 41 nm for GeSe2 and 48 nm for Gd-doped sample. A wide optical band gap as estimated from absorbance measurements is 4.1 and 4.8 eV for pure and doped samples in accordance with the confinement effects. Raman spectra show two unresolved components at ˜202 cm-1 with broad line width. Also, well identified low intensity (υ < 145 cm-1) and high intensity (υ > 250 cm-1) bands are detected. For Gd-doped sample, the main band is shifted to lower energies and its full width at half maximum (FWHM) is reduced by ˜50% accompanied by an intensity increase of about ˜17 fold times. The photoluminescence analysis of the pure sample shows a main emission band at ˜604 nm. This band is split into two separated bands with higher intensity. The detected emission bands at wavelength >650 nm are assigned to transmission from 6GJ to the different 6PJ terms.

  7. Donor-Acceptor-Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion.

    PubMed

    Ogawa, Taku; Hosoyamada, Masanori; Yurash, Brett; Nguyen, Thuc-Quyen; Yanai, Nobuhiro; Kimizuka, Nobuo

    2018-06-25

    It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores, and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ~37 nm. Thanks to this high diffusivity, only 0.5 mol% of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9

  8. Synthesis and characterization of CdO nano particles by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  9. Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Gaković, B.; Tsibidis, G. D.; Skoulas, E.; Petrović, S. M.; Vasić, B.; Stratakis, E.

    2017-12-01

    The interaction of ultra-short laser pulses with Titanium/Aluminium (Ti/Al) nano-layered thin film was investigated. The sample composed of alternating Ti and Al layers of a few nanometres thick was deposited by ion-sputtering. A single pulse irradiation experiment was conducted in an ambient air environment using focused and linearly polarized femtosecond laser pulses for the investigation of the ablation effects. The laser induced morphological changes and the composition were characterized using several microscopy techniques and energy dispersive X-ray spectroscopy. The following results were obtained: (i) at low values of pulse energy/fluence, ablation of the upper Ti layer only was observed; (ii) at higher laser fluence, a two-step ablation of Ti and Al layers takes place, followed by partial removal of the nano-layered film. The experimental observations were supported by a theoretical model accounting for the thermal response of the multiple layered structure upon irradiation with ultra-short laser pulses.

  10. Magnetotransport properties of microstructured AlCu2Mn Heusler alloy thin films in the amorphous and crystalline phase

    NASA Astrophysics Data System (ADS)

    Barzola-Quiquia, José; Stiller, Markus; Esquinazi, Pablo D.; Quispe-Marcatoma, Justiniano; Häussler, Peter

    2018-06-01

    We have studied the resistance, magnetoresistance and Hall effect of AlCu2Mn Heusler alloy thin films prepared by flash evaporation on substrates cooled at 4He liquid temperature. The as-prepared samples were amorphous and were annealed stepwise to induce the transformation to the crystalline phase. The amorphous phase is metastable up to above room temperature and the transition to the crystalline phase was observed by means of resistance measurements. Using transmission electron microscopy, we have determined the structure factor S (K) and the pair correlation function g (r) , both results indicate that amorphous AlCu2Mn is an electronic stabilized phase. The X-ray diffraction of the crystallized film shows peaks corresponding to the well ordered L21 phase. The resistance shows a negative temperature coefficient in both phases. The magnetoresistance (MR) is negative in both phases, yet larger in the crystalline state compared to the amorphous one. The magnetic properties were studied further by anomalous Hall effect measurements, which were present in both phases. In the amorphous state, the anomalous Hall effect disappears at temperatures below 175 K and is present up to above room temperature in the case of crystalline AlCu2Mn.

  11. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries.

    PubMed

    Mattelaer, Felix; Geryl, Kobe; Rampelberg, Geert; Dendooven, Jolien; Detavernier, Christophe

    2017-04-19

    Flexible wearable electronics and on-chip energy storage for wireless sensors drive rechargeable batteries toward thin-film lithium ion batteries. To enable more charge storage on a given surface, higher energy density materials are required, while faster energy storage and release can be obtained by going to thinner films. Vanadium oxides have been examined as cathodes in classical and thin-film lithium ion batteries for decades, but amorphous vanadium oxide thin films have been mostly discarded. Here, we investigate the use of atomic layer deposition, which enables electrode deposition on complex three-dimensional (3D) battery architectures, to obtain both amorphous and crystalline VO 2 and V 2 O 5 , and we evaluate their thin-film cathode performance. Very high volumetric capacities are found, alongside excellent kinetics and good cycling stability. Better kinetics and higher volumetric capacities were observed for the amorphous vanadium oxides compared to their crystalline counterparts. The conformal deposition of these vanadium oxides on silicon micropillar structures is demonstrated. This study shows the promising potential of these atomic layer deposited vanadium oxides as cathodes for 3D all-solid-state thin-film lithium ion batteries.

  12. Pulsed photoinitiated fabrication of inkjet printed titanium dioxide/reduced graphene oxide nanocomposite thin films.

    PubMed

    Bourgeois, Briley; Luo, Sijun; Riggs, Brian; Ji, Yaping; Adireddy, Shiva; Schroder, Kurt; Farnsworth, Stan; Chrisey, Douglas; Escarra, Matthew

    2018-08-03

    This work reports a new technique for scalable and low-temperature processing of nanostructured TiO 2 thin films, allowing for practical manufacturing of TiO 2 -based devices such as perovskite solar cells at low-temperature or on flexible substrates. Dual layers of dense and mesoporous TiO 2 /graphitic oxide nanocomposite films are synthesized simultaneously using inkjet printing and pulsed photonic irradiation. Investigation of process parameters including precursor concentration (10-20 wt%) and exposure fluence (4.5-8.5 J cm -2 ) reveals control over crystalline quality, graphitic oxide phase, film thickness, dendrite density, and optical properties. Raman spectroscopy shows the E g peak, characteristic of anatase phase titania, increases in intensity with higher photonic irradiation fluence, suggesting increased crystallinity through higher fluence processing. Film thickness and dendrite density is shown to increase with precursor concentration in the printed ink. The dense base layer thickness was controlled between 20 and 80 nm. The refractive index of the films is determined by ellipsometry to be 1.92 ± 0.08 at 650 nm. Films exhibit an energy weighted optical transparency of 91.1%, in comparison to 91.3% of a thermally processed film, when in situ carbon materials were removed. Transmission and diffuse reflectance are used to determine optical band gaps of the films ranging from 2.98 to 3.38 eV in accordance with the photonic irradiation fluence and suggests tunability of TiO 2 phase composition. The sheet resistance of the synthesized films is measured to be 14.54 ± 1.11 Ω/□ and 28.90 ± 2.24 Ω/□ for films as-processed and after carbon removal, respectively, which is comparable to high temperature processed TiO 2 thin films. The studied electrical and optical properties of the light processed films show comparable results to traditionally processed TiO 2 while offering the distinct advantages of scalable manufacturing, low-temperature processing

  13. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.

    PubMed

    Shankar, Shiv; Rhim, Jong-Whan

    2016-01-01

    A facile approach has been performed to prepare nanocellulose (NC) from micro-crystalline cellulose (MCC) and test their effect on the performance properties of agar-based composite films. The NC was characterized by STEM, XRD, FTIR, and TGA. The NC was well dispersed in distilled water after sonication and their size was in the range of 100-500nm. The XRD results revealed the crystallinity of NC. The crystallinity index of NC (0.71) was decreased compared to the MCC (0.81). The effect of NC or MCC content (1, 3, 5 and 10wt% based on agar) on the mechanical, water vapor permeability (WVP), and thermal properties of the composites were studied. The NC obtained from MCC can be used as a reinforcing agent for the preparation of biodegradable composites films for their potential use in the development of biodegradable food packaging materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Metal Chloride Induced Formation of Porous Polyhydroxybutyrate (PHB) Films: Morphology, Thermal Properties and Crystallinity

    NASA Astrophysics Data System (ADS)

    Tan, W. L.; Yaakob, N. N.; Zainal Abidin, A.; Abu Bakar, M.; Abu Bakar, N. H. H.

    2016-06-01

    Polyhydroxybutyrate (PHB) films with highly porous structures were synthesized using a one phase system comprising of metal chloride/methanol/PHB/chloroform (MCl2/CH3OH/PHB/CHCl3). SEM analyses confirmed that the MCl2 (where M = Cu2+ or Ni2+) induced porous structures with pore sizes ranging from 0.3 - 2.0 μm. The average pore size increased with the increasing MCl2 content. There existed weak physical interactions between the PHB chains and MCl2 as revealed by FTIR and NMR spectroscopies. The residue of MCl2 in the porous PHB film does not exert significant influence on the thermal stability of PHB. Nevertheless, the crystallinity of the prepared film is enhanced, as MCl2 acts as the nucleation sites to promote the growth of spherullites.

  15. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction.

    PubMed

    Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2012-06-13

    Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.

  16. New organic semiconductor thin film derived from p-toluidine monomer

    NASA Astrophysics Data System (ADS)

    Al-Hossainy, A. F.; Zoromba, M. Sh

    2018-03-01

    p-Toluidine was used as a precursor to synthesize new organic compound [(E)-4-methyl-N1-((E)-4-methyl-6-(p-tolylimino) cyclohex-3-en-1-ylidene)-N2-(p-tolyl) benzene-1,2-diamine] (MBD) by oxidative reaction via potassium dichromate as oxidizing agent at room temperature. Spin coater was used to fabricate nano-size crystalline thin film of the MBD with thickness 73 nm. The characterizations of the MBD powder and thin film have been described by various techniques including Fourier Transform Infrared (FT-IR), Mass Spectra, X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), UV-Visible measurements and Atomic Force Microscope (AFM). The results revealed that the MBD as an organic material is semi-crystalline containing benzenoid (Bensbnd Nsbnd Ben) and quinonoid (Quin = N = Quin) structures. Various optical constants such as refractive index (n), and the absorption index, (k) of the MBD thin film were determined. The effect of temperature on the electrical resistivity of MBD film was studied by a Keithley 6517B electrometer. The energy band gap value of the MBD thin film was found to be 2.24 eV. Thus, MBD is located in the semiconductor materials range. In addition, structural and optical mechanisms of MBD nanostructured thin film were investigated. The obtained results illustrate the possibility of controlling the organic semiconductor MBD thin film for the optoelectronic applications.

  17. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  18. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  19. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  20. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  1. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  2. Sol-gel formed spherical nanostructured titania based liquefied petroleum gas sensor

    NASA Astrophysics Data System (ADS)

    Sabhajeet, S. R.; Yadav, B. C.; Sonker, Rakesh K.

    2018-05-01

    The present work reports the preparation of Titania(TiO2) thin film by sol-gel technique and its Liquefied Petroleum Gas (LPG) sensing. TiO2 exists in numerous phases possessing different structural properties like amorphous, anatase or anatase/rutile mixed phases. The structural analysis confirmed the formation of TiO2 having an average crystallite size 21 nm. SEM showed the regular and porous surface morphology. The band gap of the material was found as 3.65 eV. This film was employed for LPG sensing and variations in resistance with exposure of LPG were observed. Sensor response (S) as a function of time was calculated and its maximum value was found as 2.8 for 4% vol. of LPG with a response and recovery times of 240 sec and 248 sec respectively.

  3. Active anatase (0 0 1)-like surface of hydrothermally synthesized titania nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Mogilevsky, Gregory; Wagner, George W.; Forstater, Jacob; Kleinhammes, Alfred; Wu, Yue

    2009-11-01

    Using 31P and 13C NMR with DFT calculations we demonstrate the exposed surface of titania nanotubes (TiNTs) is a stable, unterminated anatase (0 0 1)-like surface and is catalytically active under ambient conditions. We find that methanol dissociatively adsorbs on the surface of TiNTs agreeing with the predicted activity of surface dissociation of organic molecules on the crystalline (0 0 1)-anatase surface. We further examined the catalytic activity of anatase power, TiNT, and nanosheets in catalytic hydrolysis of S-[2-(diisopropylamino)ethyl]- O-ethyl methylphosphonothioate (VX) via 31P NMR and demonstrate that titanate-like nanosheets are inactive in the reaction owing to their hydroxylated (0 0 1) surface.

  4. Single-Crystalline, Nanoporous Gallium Nitride Films With Fine Tuning of Pore Size for Stem Cell Engineering.

    PubMed

    Han, Lin; Zhou, Jing; Sun, Yubing; Zhang, Yu; Han, Jung; Fu, Jianping; Fan, Rong

    2014-11-01

    Single-crystalline nanoporous gallium nitride (GaN) thin films were fabricated with the pore size readily tunable in 20-100 nm. Uniform adhesion and spreading of human mesenchymal stem cells (hMSCs) seeded on these thin films peak on the surface with pore size of 30 nm. Substantial cell elongation emerges as pore size increases to ∼80 nm. The osteogenic differentiation of hMSCs occurs preferentially on the films with 30 nm sized nanopores, which is correlated with the optimum condition for cell spreading, which suggests that adhesion, spreading, and stem cell differentiation are interlinked and might be coregulated by nanotopography.

  5. Entrapment of Bacteriocin 105B onto Fabric with Titania

    DTIC Science & Technology

    2017-02-09

    to fabricate a multifunctional textile exhibiting an alternative range of antimicrobial activity from that of nisin, by titania encapsulation of...105b onto fabric. The results of these initial studies suggest that both pure preparations and semi-pure preparations of 105b are active when...encapsulated in titania in solution. However, when the pure preparation of 105b is titania encapsulated on fabric, antimicrobial activity is not observed

  6. Prediction Surface Morphology of Nanostructure Fabricated by Nano-Oxidation Technology.

    PubMed

    Huang, Jen-Ching; Chang, Ho; Kuo, Chin-Guo; Li, Jeen-Fong; You, Yong-Chin

    2015-12-04

    Atomic force microscopy (AFM) was used for visualization of a nano-oxidation technique performed on diamond-like carbon (DLC) thin film. Experiments of the nano-oxidation technique of the DLC thin film include those on nano-oxidation points and nano-oxidation lines. The feature sizes of the DLC thin film, including surface morphology, depth, and width, were explored after application of a nano-oxidation technique to the DLC thin film under different process parameters. A databank for process parameters and feature sizes of thin films was then established, and multiple regression analysis (MRA) and a back-propagation neural network (BPN) were used to carry out the algorithm. The algorithmic results are compared with the feature sizes acquired from experiments, thus obtaining a prediction model of the nano-oxidation technique of the DLC thin film. The comparative results show that the prediction accuracy of BPN is superior to that of MRA. When the BPN algorithm is used to predict nano-point machining, the mean absolute percentage errors (MAPE) of depth, left side, and right side are 8.02%, 9.68%, and 7.34%, respectively. When nano-line machining is being predicted, the MAPEs of depth, left side, and right side are 4.96%, 8.09%, and 6.77%, respectively. The obtained data can also be used to predict cross-sectional morphology in the DLC thin film treated with a nano-oxidation process.

  7. Ultrathin Lutetium Oxide Film as an Epitaxial Hole-Blocking Layer for Crystalline Bismuth Vanadate Water Splitting Photoanodes

    DOE PAGES

    Zhang, Wenrui; Yan, Danhua; Tong, Xiao; ...

    2018-01-08

    Here a novel ultrathin lutetium oxide (Lu 2O 3) interlayer is integrated with crystalline bismuth vanadate (BiVO4) thin film photoanodes to facilitate carrier transport through atomic-scale interface control. The epitaxial Lu 2O 32O 3

  8. van der Waals epitaxial ZnTe thin film on single-crystalline graphene

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Chen, Zhizhong; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Washington, Morris; Lu, Toh-Ming

    2018-01-01

    Graphene template has long been promoted as a promising host to support van der Waals flexible electronics. However, van der Waals epitaxial growth of conventional semiconductors in planar thin film form on transferred graphene sheets is challenging because the nucleation rate of film species on graphene is significantly low due to the passive surface of graphene. In this work, we demonstrate the epitaxy of zinc-blende ZnTe thin film on single-crystalline graphene supported by an amorphous glass substrate. Given the amorphous nature and no obvious remote epitaxy effect of the glass substrate, this study clearly proves the van der Waals epitaxy of a 3D semiconductor thin film on graphene. X-ray pole figure analysis reveals the existence of two ZnTe epitaxial orientational domains on graphene, a strong X-ray intensity observed from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [10] orientation domain, and a weaker intensity from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [11] orientation domain. Furthermore, this study systematically investigates the optoelectronic properties of this epitaxial ZnTe film on graphene using temperature-dependent Raman spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and fabrication and characterization of a ZnTe-graphene photodetector. The research suggests an effective approach towards graphene-templated flexible electronics.

  9. Uranus moon - Titania

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The terminator region of Titania, one of Uranus' five large moons, was captured in this Voyager 2 image obtained in the early morning hours of Jan. 24, 1986. Voyager was about 500,000 kilometers (300,000 miles) from Titania and inbound toward closest approach. This clear-filter, narrow-angle view is along the terminator -- the line between the sunlit and darkened parts of the moon. The low-angle illumination shows the shape of the surface very clearly. Among the features visible are long linear valleys perhaps 50-100 km (30-60 mi) wide and several hundred km (or mi) long. At least two directions of faulting are visible, as are many circular impact craters attributed to cosmic debris. The resolution of this image is about 9 km (6 mi). The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  10. Fabrication of Si(111) crystalline thin film on graphene by aluminum-induced crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Høiaas, I. M.; Kim, D. C., E-mail: dc.kim@crayonano.com, E-mail: helge.weman@ntnu.no; Weman, H., E-mail: dc.kim@crayonano.com, E-mail: helge.weman@ntnu.no

    2016-04-18

    We report the fabrication of a Si(111) crystalline thin film on graphene by the aluminum-induced crystallization (AIC) process. The AIC process of Si(111) on graphene is shown to be enhanced compared to that on an amorphous SiO{sub 2} substrate, resulting in a more homogeneous Si(111) thin film structure as revealed by X-ray diffraction and atomic force microscopy measurements. Raman measurements confirm that the graphene is intact throughout the process, retaining its characteristic phonon spectrum without any appearance of the D peak. A red-shift of Raman peaks, which is more pronounced for the 2D peak, is observed in graphene after themore » crystallization process. It is found to correlate with the red-shift of the Si Raman peak, suggesting an epitaxial relationship between graphene and the adsorbed AIC Si(111) film with both the graphene and Si under tensile strain.« less

  11. Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously.

    PubMed

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lim, Joo Ho; Yu, Jae Su

    2016-11-09

    We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.

  12. A micro oxygen sensor based on a nano sol-gel TiO2 thin film.

    PubMed

    Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong

    2014-09-03

    An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10(-4) and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.

  13. Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Sujuan; Shi, Binbin; Yao, Guoxing

    2011-10-15

    Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: {yields} Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. {yields} Activity is related to the structure, crystal phase and chemical component of the nanocomposite. {yields} The property of electrolyte affects the electrocatalytic activity. {yields} A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide andmore » titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.« less

  14. Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhifeng; Zhang, Yuantao, E-mail: zhangyt@jlu.edu.cn; Cui, Xijun

    2014-03-31

    Heterojunction light-emitting diodes based on n-ZnO nanowires/ZnO single-crystalline films/p-GaN structure have been demonstrated for an improved electroluminescence performance. A highly efficient ultraviolet emission was observed under forward bias. Compared with conventional n-ZnO/p-GaN structure, high internal quantum efficiency and light extraction efficiency were simultaneously considered in the proposed diode. In addition, the diode can work continuously for ∼10 h with only a slight degradation in harsh environments, indicating its good reliability and application prospect in the future. This route opens possibilities for the development of advanced nanoscale devices in which the advantages of ZnO single-crystalline films and nanostructures can be integrated together.

  15. Rapid assessment of crystal orientation in semi-crystalline polymer films using rotational zone annealing and impact of orientation on mechanical properties

    DOE PAGES

    Ye, Changhuai; Wang, Chao; Wang, Jing; ...

    2017-08-17

    Crystal orientation in semi-crystalline polymers tends to enhance their performance, such as increased yield strength and modulus, along the orientation direction. Zone annealing (ZA) orients the crystal lamellae through a sharp temperature gradient that effectively directs the crystal growth, but the sweep rate (V ZA) of this gradient significantly impacts the extent of crystal orientation. Here in this work, we demonstrate rotational zone annealing (RZA) as an efficient method to elucidate the influence of V ZA on the crystal morphology of thin films in a single experiment using isotactic poly(1-butene), PB-1, as a model semi-crystalline polymer. These RZA results aremore » confirmed using standard, serial linear ZA to tune the structure from an almost unidirectional oriented morphology to weakly oriented spherulites. The overall crystallinity is only modestly changed in comparison to isothermal crystallization (maximum of 55% from ZA vs. 48% for isothermal crystallization). However, the average grain size increases and the spherulites become anisotropic from ZA. Due to these structural changes, the Young's modulus of the oriented films, both parallel and perpendicular to the spherulite orientation direction, is significantly increased by ZA. The modulus does become anisotropic after ZA due to the directionality in the crystal structure, with more than a threefold increase in the modulus parallel to the orientation direction for the highest oriented film in comparison to the modulus from isothermal crystallization. Lastly, RZA enables rapid identification of conditions to maximize orientation of crystals in thin polymer films, which could find utility in determining conditions to improve crystallinity and performance in organic electronics.« less

  16. Rapid assessment of crystal orientation in semi-crystalline polymer films using rotational zone annealing and impact of orientation on mechanical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Changhuai; Wang, Chao; Wang, Jing

    Crystal orientation in semi-crystalline polymers tends to enhance their performance, such as increased yield strength and modulus, along the orientation direction. Zone annealing (ZA) orients the crystal lamellae through a sharp temperature gradient that effectively directs the crystal growth, but the sweep rate (V ZA) of this gradient significantly impacts the extent of crystal orientation. Here in this work, we demonstrate rotational zone annealing (RZA) as an efficient method to elucidate the influence of V ZA on the crystal morphology of thin films in a single experiment using isotactic poly(1-butene), PB-1, as a model semi-crystalline polymer. These RZA results aremore » confirmed using standard, serial linear ZA to tune the structure from an almost unidirectional oriented morphology to weakly oriented spherulites. The overall crystallinity is only modestly changed in comparison to isothermal crystallization (maximum of 55% from ZA vs. 48% for isothermal crystallization). However, the average grain size increases and the spherulites become anisotropic from ZA. Due to these structural changes, the Young's modulus of the oriented films, both parallel and perpendicular to the spherulite orientation direction, is significantly increased by ZA. The modulus does become anisotropic after ZA due to the directionality in the crystal structure, with more than a threefold increase in the modulus parallel to the orientation direction for the highest oriented film in comparison to the modulus from isothermal crystallization. Lastly, RZA enables rapid identification of conditions to maximize orientation of crystals in thin polymer films, which could find utility in determining conditions to improve crystallinity and performance in organic electronics.« less

  17. Fabrication of Titania Nanotubes for Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  18. Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li; Sun, Mei; Shan, Fei-Hu; Wang, Xi-Chang; Jiang, Shuai

    2013-11-01

    A nano/amorphous-composite film was fabricated by laser cladding (LC) of the Co-Ti-B4C-Sb mixed powders on a TA15 alloy. Such film mainly consisted of Ti-Al, Co-Ti, Co-Sb intermetallics, TiC, TiB2, TiB, and the amorphous phases. Experimental results indicated that the crystal systems of TiB2 (hexagonal)/TiC (cubic) and Sb (rhombohedral) played important role on the formation of such film. Due to the mismatch of these crystals systems and mutual immiscibility of the metallic components, Sb was not incorporated in TiB2/TiC, but formed separate nuclei during the film growth. Thus, the growth of TiB2/TiC was stopped by the Sb nucleus in such LC molten pool, so as to form the nanoscale particles.

  19. Growth and characterization of high crystalline quality Co2FeAlxSi1-x Heusler alloy films on MgAl2O4(001) substrates

    NASA Astrophysics Data System (ADS)

    Peters, Brian; Blum, Christian; Woodward, Patrick; Wurmehl, Sabine; Yang, Fengyuan

    2013-03-01

    A number of Heusler alloys have been predicted to be half-metallic and are thus ideal candidates for use in spintronics. Co2FeAlxSi1-x has been predicted and shown to have some of the highest Tc, saturation magnetization and lowest magnetic damping constant among Heusler half-metals. Here we outline the growth and characterization of the highest crystalline quality epitaxial Heusler films using a novel off-axis UHV sputtering technique. We grow these films onto a closely lattice matched MgAl2O4(001) substrate, without the need for a Cr-buffer layer or post annealing, as has been done previously. This eliminates the diffusion of Cr across the interface, thus improving the purity and crystallinity of the films at the interface. X-ray diffraction results demonstrate epitaxial films with distinct Laue oscillations and rocking curves of FWHM as low as 0.0035°, which demonstrates the highest crystalline quality for Heusler films reported to date. Magnetic measurements show highly square hysteresis loops with a remanence of 95-98%, near ideal saturation magnetization, very small coercivities - between 3-8 Oe, pronounced magnetocrystalline anisotropy. Department of Chemistry, The Ohio State University

  20. Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen

    2017-07-01

    Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.

  1. Design and fabrication of highly hydrophobic Mn nano-sculptured thin films and evaluation of surface properties on hydrophobicity

    NASA Astrophysics Data System (ADS)

    Hosseini, Somaye; Savaloni, Hadi; Gholipour-Shahraki, Mehran

    2017-03-01

    The wettability of solid surfaces is important from the aspects of both science and technology. The Mn nano-sculptured thin films were designed and fabricated by oblique angle deposition of Mn on glass substrates at room temperature. The obtained structure was characterized by field emission scanning electron microscopy and atomic force microscopy. The wettability of thin films samples was investigated by water contact angle (WCA). The 4-pointed helical star-shaped structure exhibits hydrophobicity with static WCAs of more than 133° for a 10-mg distilled water droplet. This sample also shows the rose petal effect with the additional property of high adhesion. The Mn nano-sculptured thin films also act as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. Physicochemical property of liquid phase could effectively change the contact angle, and polar solvents in contact with hydrophobic solid surfaces do not necessarily show high contact angle value.

  2. Polyurethane/nano-hydroxyapatite composite films as osteogenic platforms.

    PubMed

    Jackson, Bailey K; Bow, Austin J; Kannarpady, Ganesh; Biris, Alexandru S; Anderson, David E; Dhar, Madhu; Bourdo, Shawn E

    2018-08-01

    A wide variety of biomaterials are utilized in tissue engineering to promote cell proliferations in vitro or tissue growth in vivo. The combination of cells, extracellular matrices, and biocompatible materials may make it possible to grow functional living tissues ranging from bone to nerve cells. In bone regeneration, polymeric scaffolds can be enhanced by the addition of bioactive materials. To this end, this study designed several ratios of polyurethane (PU) and nano-hydroxyapatite (nHA) composites (PU-nHA ratios: 100/0, 90/10, 80/20, 70/30, 60/40 w/w). The physical and mechanical properties of these composites and their relative cellular compatibility in vitro were determined. The chemical composition and crystallinity of the composites were confirmed using X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Atomic force microscopy, nano-indentation, and contact angle measurements were used to evaluate surface properties. The results showed a significant increase in surface roughness and a decrease in contact angle when the nHA concentration increased above 20%, resulting in a significant increase in hydrophilicity. These surface property changes influenced cellular behavior when MC 3T3-E1 cells were seeded on the composites. All composites were cytocompatible. There was a linear increase in cell proliferation on the 80/20 and 70/30 composites only, whereas subjective evaluation demonstrated noticeable clusters or nodules of cells (considered hallmarks of osteogenic differentiation) in the absence of any osteogenic inducers only on the 90/10 and 80/20 composites. Cellular data suggests that the 80/20 composite was an optimal environment for cell adhesion, proliferation, and, potentially, osteogenic differentiation in vitro.

  3. Study of the correlation properties of the surface structure of nc-Si/a-Si:H films with different fractions of the crystalline phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpatov, A. V., E-mail: pgnv@mail.ru; Vikhrov, S. P.; Kazanskii, A. G.

    The correlation properties of the structure of nc-Si/a-Si:H films with different volume fractions of the crystalline phase are studied using 2D detrended fluctuation analysis. Study of the surface relief of experimental samples showed that with increasing in volume fraction of the crystalline phase in the nc-Si/a-Si:H films, the size and number of nanoclusters on their surface grow. The size of Si nanocrystals in the a-Si:H matrix (6–8 nm) indicates the formation of coarse nanoclusters due to the self-organization of Si nanocrystals in groups under laser radiation. According to 2D detrended fluctuation analysis data, the number of correlation vectors (harmonic components)more » in the nc-Si/a-Si:H film structure increased with an increase in the nanocrystal fraction in the films.« less

  4. Electronic properties of crystalline Ge1-xSbxTey thin films

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Volpe, Flavio; Longo, Massimo; Wiemer, Claudia; Salicio, Olivier; Abrutis, Adulfas

    2012-09-01

    Ge1-xSbxTey thin films, grown by metalorganic and hot-wire liquid injection chemical vapor deposition in different crystalline phases, are investigated to determine resistivity, carrier density, and carrier mobility in the 4.2-300 K temperature range. It is found that all these chalcogenides exhibit p-type conduction, high carrier density (>2 . 1020 cm-3), and no carrier freeze-out, regardless of composition. Low-temperature mobility data show that both chemical composition and growth technique affect the defect density and, in turn, the carrier scattering mechanisms. In this regard, charge carrier mobility is analyzed according to semi-empirical scattering models and an interpretation is provided.

  5. Composition- and crystallinity-dependent thermoelectric properties of ternary BixSb2-xTey films

    NASA Astrophysics Data System (ADS)

    Kim, Jiwon; Lim, Jae-Hong; Myung, Nosang V.

    2018-01-01

    BixSb2-xTey films with controlled compositions were synthesized by a simple and cost-effective electrodeposition technique followed by post-annealing, for thermoelectric applications. Tailoring the chemical composition of ternary BixSb2-xTey materials is critical to adjust the carrier concentration and carrier type, which are crucial to determine their thermoelectric performance. Herein, the composition of electrodeposited BixSb2-xTey film was simply tailored by controlling the [Sb]/[Bi] ratio in the electrolytes while maintaining their dense and uniform morphology. Crystallographic properties of the BixSb2-xTey films, such as crystallinity and grain size changes, were confirmed by X-ray diffraction. Room-temperature measurements of electrical conductivity, Hall mobility, and carrier concentration revealed that the substitution of Bi with Sb decreased the carrier concentration, and increased the mobility. The Seebeck coefficient of the ternary BixSb2-xTey films transitioned between p- and n-type characteristics with an increase in the Bi content. Moreover, the mobility-dependent electrical conductivity of the Bi10Sb30Te60 film resulted in a high Seebeck coefficient owing to decreased carrier concentration of the film, leading to a power factor (PF) of ∼490 μW/m K2. This is more than 10 times higher than the PF values of binary nanocrystalline Sb2Te3 films.

  6. Suspension Plasma Spray Fabrication of Nanocrystalline Titania Hollow Microspheres for Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua

    2015-10-01

    Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 μm in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.

  7. Crystal orientation, crystallinity, and thermoelectric properties of Bi0.9Sr0.1CuSeO epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ishizawa, Mamoru; Fujishiro, Hiroyuki; Naito, Tomoyuki; Ito, Akihiko; Goto, Takashi

    2018-02-01

    We have grown Bi0.9Sr0.1CuSeO epitaxial thin films on MgO and SrTiO3 (STO) single-crystal substrates by pulsed laser deposition (PLD) under various growth conditions, and investigated the crystal orientation, crystallinity, chemical composition, and thermoelectric properties of the films. The optimization of the growth conditions was realized in the film grown on MgO at the temperature T s = 573 K and Ar pressure P Ar = 0.01 Torr in this study, in which there was no misalignment apart from the c-axis and no impurity phase. It was clearly found that the higher crystal orientation of the epitaxial film grown at a higher temperature under a lower Ar pressure mainly enhanced the thermoelectric power factor P (= S 2/ρ), where S is the Seebeck coefficient and ρ is the electrical resistivity. However, the thermoelectric properties of the films were lower than those of polycrystalline bulk because of lattice distortion from lattice mismatch, a low crystallinity caused by a lower T s, and Bi and Cu deficiencies in the films.

  8. The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films

    NASA Astrophysics Data System (ADS)

    Šetrajčić, Jovan P.; Ilić, Dušan I.; Jaćimovski, Stevo K.

    2018-04-01

    In this paper, we have analytically investigated how the changes in boundary surface parameters influence the phonon dispersion law in ultrathin films of the simple cubic crystalline structure. Spectra of possible phonon states are analyzed using the method of two-time dependent Green's functions and for the diverse combination of boundary surface parameters, this problem was presented numerically and graphically. It turns out that for certain values and combinations of parameters, displacement of dispersion branches outside of bulk zone occurs, leading to the creation of localized phonon states. This fact is of great importance for the heat removal, electrical conductivity and superconducting properties of ultrathin films.

  9. Oxidant effect of La(NO3)3·6H2O solution on the crystalline characteristics of nanocrystalline ZrO2 films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Nam Khen; Kim, Jin-Tae; Kang, Goru; An, Jong-Ki; Nam, Minwoo; Kim, So Yeon; Park, In-Sung; Yun, Ju-Young

    2017-02-01

    Nanocrystalline ZrO2 films were synthesized by atomic layer deposition method using CpZr[N(CH3)2]3 (Cp = C5H5) as the metal precursor and La(NO3)3·6H2O solution as the oxygen source. La element in the deposited ZrO2 films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO3)3·6H2O solution to conventionally used H2O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO2 films. Specifically, the crystalline structure of the ZrO2 film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO2 films prepared from La(NO3)3·6H2O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H2O oxidant was 142 nm. However, the concentration of La(NO3)3·6H2O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO2 films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  10. Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells.

    PubMed

    Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-05-23

    Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.

  11. Fabrication of PANI/Ag/AgCl/ITO-PET Flexible Film and Its Crystallinity and Electrical Properties

    NASA Astrophysics Data System (ADS)

    Diantoro, M.; Rohmiani, F.; Mustikasari, A. A.; Sunaryono

    2018-05-01

    Abstrak. PANI as one of the conductive polymers which have been widely using in electronics or storage devices such as a supercapacitor. PANI has recently become an option because of its potential for a broad area of application. Protonation or introduce a dopant can control the electrical properties of PANI. However, researcher facing a disadvantage since PANI also active in acidic conditions. To control the conductivity and the stability in an acidic environment, the researcher has introduced Ag/AgCl to PANI. We report the synthesis and analyses of silver nanoparticles (AgNPs), PANI, and PANI/Ag/AgCl/ITO-PET films. PANI was synthesized by chemical polymerization, while AgNPs were synthesized via a reductive chemical method using NaBH4 as an AgNO3 reductor. The resulting PANI was characterized using FTIR to determine the functional group, while to obtain the purity of the Ag phase was checked by using XRD. The preparation of PANi/Ag/AgCl solution was carried out by mixing method with the variation of the mass of AgNO3. The precipitate was carried out by using ITOPET substrate. PANI/Ag/AgCl/ITO-PET films were characterized by using FTIR, XRD, SEMEDX, and capacitance meters. It has was found that crystallinity increases with the addition of Ag films to PANI/Ag/AgCl/ITO-PET. The crystallinity reached 29.85 %. It was also revealed that the dielectric constant decreased with increasing Ag in PANi/Ag/AgCl/ITO-PET films.

  12. Molecular and physiological responses to titanium dioxide ...

    EPA Pesticide Factsheets

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b

  13. Orientation filtering for crystalline films

    DOEpatents

    Smith, Henry I.; Atwater, Harry A.; Thompson, Carl V.; Geis, Michael W.

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations.

  14. Orientation filtering for crystalline films

    DOEpatents

    Smith, H.I.; Atwater, H.A.; Thompson, C.V.; Geis, M.W.

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations. 7 figs.

  15. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted tomore » nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical

  16. Arsenic Sorption on TiO2 Nanoparticles: Size And Crystallinity Effects

    EPA Science Inventory

    Single solute As (III) and As (V) sorption on nano-sized amorphous and crystalline TiO2 was investigated to determine: size and crystallinity effects on arsenic sorption capacities, possible As (III) oxidation, and the nature of surface complexes. Amorphous and cryst...

  17. V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase.

    PubMed

    Peys, Nick; Ling, Yun; Dewulf, Daan; Gielis, Sven; De Dobbelaere, Christopher; Cuypers, Daniel; Adriaensens, Peter; Van Doorslaer, Sabine; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K

    2013-01-28

    An aqueous deposition process for V(6)O(13) films is developed whereby the vanadium oxidation state is continuously controlled throughout the entire process. In the precursor stage, a controlled wet chemical reduction of the vanadium(V) source with oxalic acid is achieved and monitored by (51)Vanadium Nuclear Magnetic Resonance ((51)V-NMR) and Ultraviolet-Visible (UV-Vis) spectroscopy. The resulting vanadium(IV) species in the aqueous solution are identified as mononuclear citrato-oxovanadate(IV) complexes by Electron Paramagnetic Resonance (EPR) and Fourier Transform Infra-Red (FTIR) spectroscopy. This precursor is successfully employed for the deposition of uniform, thin films. The optimal deposition and annealing conditions for the formation of crystalline V(6)O(13), including the control of the vanadium oxidation state, are determined through an elaborate study of processing temperature and O(2) partial pressure. To ensure a sub 100 nm adjustable film thickness, a non-oxidative intermediate thermal treatment is carried out at the end of each deposition cycle, allowing maximal precursor decomposition while still avoiding V(IV) oxidation. The resulting surface hydrophilicity, indispensable for the homogeneous deposition of the next layer, is explained by an increased surface roughness and the increased availability of surface vanadyl groups. Crystalline V(6)O(13) with a preferential (002) orientation is obtained after a post deposition annealing in a 0.1% O(2) ambient for thin films with a thickness of 20 nm.

  18. Single-crystalline monolayer and multilayer graphene nano switches

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jing, Gaoshan; Zhang, Bo; Sando, Shota; Cui, Tianhong

    2014-03-01

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  19. Single-crystalline monolayer and multilayer graphene nano switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Cui, Tianhong, E-mail: tcui@me.umn.edu; Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455

    2014-03-17

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  20. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures

    PubMed Central

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-01-01

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121

  1. Characteristic of Nano-Cu Film Prepared by Energy Filtrating Magnetron Sputtering Technique and Its Optical Property

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyong; Hu, Xing; Yao, Ning

    2015-03-01

    At the optimized deposition parameters, Cu film was deposited by the direct current magnetron sputtering (DMS) technique and the energy filtrating magnetron sputtering (EFMS) technique. The nano-structure was charactered by x-ray diffraction. The surface morphology of the film was observed by atomic force microscopy. The optical properties of the film were measured by spectroscopic ellipsometry. The refractive index, extinction coefficient and the thickness of the film were obtained by the fitted spectroscopic ellipsometry data using the Drude-Lorentz oscillator optical model. Results suggested that a Cu film with different properties was fabricated by the EFMS technique. The film containing smaller particles is denser and the surface is smoother. The average transmission coefficient, the refractive index and the extinction coefficients are higher than those of the Cu film deposited by the DMS technique. The average transmission coefficient (400-800 nm) is more than three times higher. The refractive index and extinction coefficient (at 550 nm) are more than 36% and 14% higher, respectively.

  2. The correlation between nano-hardness and elasticity and fullerene-like clusters in hydrogenated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Wang, Qi; Zhang, Junyan

    2018-01-01

    Fullerene-like hydrogenated carbon films have outstanding mechanical and frictional properties, but their structures have never enjoyed elaboration. In this study, we investigate the relation between nano-hardness and elasticity and fullerene-like clusters by changing energy supply form (direct current and pulse) and H2 concentration in the feedstock. It is found that the films have a network of H-rich amorphous carbon and H-poor or -deficient fullerene-like carbon, and the network change can affect hardness and elastic recovery. This is due to the energy minimization process of the film growing system in a very short pulse period at low temperature.

  3. The rapid growth of 3 µm long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    NASA Astrophysics Data System (ADS)

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala; Schmidt-Mende, L.; MacManus-Driscoll, J. L.

    2010-02-01

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na2SO4 plus 5 wt% NH4F with pH 7. At this pH, after 30 min of anodization, 3 µm length nanotubular titania arrays with top diameters of ~50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH4F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 °C for 1 h in air. Annealing at temperatures above 500 °C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti4+ leading to excessive growth and the nanotubular structure diminishes.

  4. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres.

    PubMed

    Wu, Hong; Liang, Yanpeng; Shi, Jiafu; Wang, Xiaoli; Yang, Dong; Jiang, Zhongyi

    2013-04-01

    In this study, a novel approach combing the chelation and covalent binding was explored for facile and efficient enzyme immobilization. The unique capability of titania to chelate with catecholic derivatives at ambient conditions was utilized for titania surface functionalization. The functionalized titania was then used for enzyme immobilization. Titania submicrospheres (500-600 nm) were synthesized by a modified sol-gel method and functionalized with carboxylic acid groups through a facile chelation method by using 3-(3,4-dihydroxyphenyl) propionic acid as the chelating agent. Then, catalase (CAT) was covalently immobilized on these functionalized titania submicrospheres through 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The immobilized CAT retained 65% of its free form activity with a loading capacity of 100-150 mg/g titania. The pH stability, thermostability, recycling stability and storage stability of the immobilized CAT were evaluated. A remarkable enhancement in enzyme stability was achieved. The immobilized CAT retained 90% and 76% of its initial activity after 10 and 16 successive cycles of decomposition of hydrogen peroxide, respectively. Both the Km and the Vmax values of the immobilized CAT (27.4 mM, 13.36 mM/min) were close to those of the free CAT (25.7 mM, 13.46 mM/min). Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Dye sensitized solar cell applications of CdTiO3-TiO2 composite thin films deposited from single molecular complex

    NASA Astrophysics Data System (ADS)

    Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy; Huang, Nay Ming; Arifin, Zainudin; Mazhar, Muhammad

    2015-10-01

    A heterobimetallic complex [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO3-TiO2 composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO3-TiO2 composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application.

  6. Hierarchical Micro/Nano Structures by Combined Self-Organized Dewetting and Photopatterning of Photoresist Thin Films.

    PubMed

    Sachan, Priyanka; Kulkarni, Manish; Sharma, Ashutosh

    2015-11-17

    Photoresists are the materials of choice for micro/nanopatterning and device fabrication but are rarely used as a self-assembly material. We report for the first time a novel interplay of self-assembly and photolithography for fabrication of hierarchical and ordered micro/nano structures. We create self-organized structures by the intensified dewetting of unstable thin (∼10 nm to 1 μm) photoresist films by annealing them in an optimal solvent and nonsolvent liquid mixture that allows spontaneous dewetting to form micro/nano smooth dome-like structures. The density, size (∼100 nm to millimeters), and curvature/contact angle of the dome/droplet structures are controlled by the film thickness, composition of the dewetting liquid, and time of annealing. Ordered dewetted structures are obtained simply by creating spatial variation of viscosity by ultraviolet exposure or by photopatterning before dewetting. Further, the structures thus fabricated are readily photopatterned again on the finer length scales after dewetting. We illustrate the approach by fabricating several three-dimensional structures of varying complexity with secondary and tertiary features.

  7. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties.

    PubMed

    Dey, Arjun; Nayak, Manish Kumar; Esther, A Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A K; Bera, Parthasarathi; Barshilia, Harish C; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D Raghavendra; Sridhara, N; Sharma, Anand Kumar

    2016-11-17

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V 2 O 5 , V 2 O 3 and VO 2 along with MoO 3 . Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10 -5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  8. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties

    NASA Astrophysics Data System (ADS)

    Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar

    2016-11-01

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10-5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  9. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties

    PubMed Central

    Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar

    2016-01-01

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21–475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45–50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10−5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films. PMID:27853234

  10. Low intrinsic c-axis thermal conductivity in PVD grown epitaxial Sb2Te3 films

    NASA Astrophysics Data System (ADS)

    Rieger, F.; Kaiser, K.; Bendt, G.; Roddatis, V.; Thiessen, P.; Schulz, S.; Jooss, C.

    2018-05-01

    Accurate determination and comprehensive understanding of the intrinsic c-axis thermal conductivity κc of thermoelectric layered Sb2Te3 is of high importance for the development of strategies to optimize the figure of merit in thin film devices via heterostructures and defect engineering. We present here high precision measurements of κc of epitaxial Sb2Te3 thin films on Al2O3 substrates grown by physical vapor deposition in the temperature range of 100 K to 300 K. The Kapitza resistances of the involved interfaces have been determined and subtracted from the film data, allowing access to the intrinsic thermal conductivity of single crystalline Sb2Te3. At room temperature, we obtain κc = 1.9 W/m K, being much smaller than the in-plane thermal conductivity of κa b = 5 W/m K and even lower than the thermal conductivity of nano crystalline films of κnc ≈ 2.0-2.6 W/m K published by Park et al. [Nanoscale Res. Lett. 9, 96 (2014)]. High crystallinity and very low defect concentration of the films were confirmed by x-ray diffraction and high resolution transmission electron microscopy. Our data reveal that the phonon mean free path lm f p(" separators="|T ) is not limited by defect scattering and is of intrinsic nature, i.e., due to phonon-phonon scattering similar to other soft van der Waals type bonded layered systems.

  11. Development of an electron paramagnetic resonance methodology for studying the photo-generation of reactive species in semiconductor nano-particle assembled films

    NASA Astrophysics Data System (ADS)

    Twardoch, Marek; Messai, Youcef; Vileno, Bertrand; Hoarau, Yannick; Mekki, Djamel E.; Felix, Olivier; Turek, Philippe; Weiss, Jean; Decher, Gero; Martel, David

    2018-06-01

    An experimental approach involving electron paramagnetic resonance is proposed for studying photo-generated reactive species in semiconductor nano-particle-based films deposited on the internal wall of glass capillaries. This methodology is applied here to nano-TiO2 and allows a semi-quantitative analysis of the kinetic evolutions of radical production using a spin scavenger probe.

  12. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials.

    PubMed

    Fox-Rabinovich, G; Kovalev, A; Veldhuis, S; Yamamoto, K; Endrino, J L; Gershman, I S; Rashkovskiy, A; Aguirre, M H; Wainstein, D L

    2015-03-05

    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment.

  13. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials

    PubMed Central

    Fox-Rabinovich, G.; Kovalev, A.; Veldhuis, S.; Yamamoto, K.; Endrino, J. L.; Gershman, I. S.; Rashkovskiy, A.; Aguirre, M. H.; Wainstein, D. L.

    2015-01-01

    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment. PMID:25740153

  14. A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film

    PubMed Central

    Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong

    2014-01-01

    An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required. PMID:25192312

  15. Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung

    2013-06-13

    Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C,more » with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.« less

  16. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    PubMed

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  17. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    PubMed

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  18. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties.

    PubMed

    Dastjerdi, Roya; Montazer, Majid

    2010-08-01

    Textiles can provide a suitable substrate to grow micro-organisms especially at appropriate humidity and temperature in contact to human body. Recently, increasing public concern about hygiene has been driving many investigations for anti-microbial modification of textiles. However, using many anti-microbial agents has been avoided because of their possible harmful or toxic effects. Application of inorganic nano-particles and their nano-composites would be a good alternative. This review paper has focused on the properties and applications of inorganic nano-structured materials with good anti-microbial activity potential for textile modification. The discussed nano-structured anti-microbial agents include TiO(2) nano-particles, metallic and non-metallic TiO(2) nano-composites, titania nanotubes (TNTs), silver nano-particles, silver-based nano-structured materials, gold nano-particles, zinc oxide nano-particles and nano-rods, copper nano-particles, carbon nanotubes (CNTs), nano-clay and its modified forms, gallium, liposomes loaded nano-particles, metallic and inorganic dendrimers nano-composite, nano-capsules and cyclodextrins containing nano-particles. This review is also concerned with the application methods for the modification of textiles using nano-structured materials. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Emission Behavior of Crystalline 1,4-Bis(4-phenylthiophene-2-yl)benzene Film Under Optical Excitation with Ultra Short Pulses.

    PubMed

    Mochizuki, Hiroyuki; Kawaguchi, Yoshizo; Sasaki, Fumio; Hotta, Shu

    2016-04-01

    We evaluated emission behaviors of crystallized films of 1,4-bis(5-phenylthiophene-2-yl)benzene (AC5) in detail which was a representative thiophene/phenylene co-oligomer. The crystallized AC5 films were prepared by vapor deposition onto a substrate and thermal treatment. The AC5 films consisted of a crystalline domain with the size of several tens of micrometers. We used femtosecond laser pulses for the excitation of the AC5 films. As a result, the femtosecond laser pulses did not induce re-absorption above excitation energy densities of their laser threshold. The obtained gain value for AC5 crystallized film was large, over 150 cm-1. Furthermore, the emission cross section of the crystallized AC5 film was nearly 10(-16) cm2.

  20. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  1. Plasma-enhanced pulsed-laser deposition of single-crystalline M o2C ultrathin superconducting films

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Zhi; Wang, Huichao; Chan, Cheuk Ho; Chan, Ngai Yui; Chen, Xin Xin; Dai, Ji-Yan

    2017-08-01

    Transition-metal carbides (TMCs) possess many intriguing properties and inspiring application potentials, and recently the study of a two-dimensional form of TMCs has attracted great attention. Herein, we report successful fabrication of continuous M o2C ultrathin single-crystalline films at 700 ∘C with an approach of plasma-enhanced pulsed-laser deposition. By sophisticated structural analyses, the M o2C films are characterized as single crystal with a rarely reported face-centered cubic structure. In further electrical transport measurements, superconductivity observed in the M o2C films demonstrates a typical two-dimensional feature, which is consistent with Berezinskii-Kosterlitz-Thouless transitions. Besides, large upper critical magnetic fields are discovered in this system. Our work offers an approach to grow large-area and high-quality TMCs at relatively low temperatures. This study may stimulate more related investigations on the synthesis, characterizations, and applications of two-dimensional TMCs.

  2. Molecularly imprinted titania nanoparticles for selective recognition and assay of uric acid

    NASA Astrophysics Data System (ADS)

    Mujahid, Adnan; Khan, Aimen Idrees; Afzal, Adeel; Hussain, Tajamal; Raza, Muhammad Hamid; Shah, Asma Tufail; uz Zaman, Waheed

    2015-06-01

    Molecularly imprinted titania nanoparticles are su ccessfully synthesized by sol-gel method for the selective recognition of uric acid. Atomic force microscopy is used to study the morphology of uric acid imprinted titania nanoparticles with diameter in the range of 100-150 nm. Scanning electron microscopy images of thick titania layer indicate the formation of fine network of titania nanoparticles with uniform distribution. Molecular imprinting of uric acid as well as its subsequent washing is confirmed by Fourier transformation infrared spectroscopy measurements. Uric acid rebinding studies reveal the recognition capability of imprinted particles in the range of 0.01-0.095 mmol, which is applicable in monitoring normal to elevated levels of uric acid in human blood. The optical shift (signal) of imprinted particles is six times higher in comparison with non-imprinted particles for the same concentration of uric acid. Imprinted titania particles have shown substantially reduced binding affinity toward interfering and structurally related substances, e.g. ascorbic acid and guanine. These results suggest the possible application of titania nanoparticles in uric acid recognition and quantification in blood serum.

  3. Semi-crystalline morphologies of linear and cyclic poly(ɛ-caprolactones) in the diffusion-limited film thickness regime

    NASA Astrophysics Data System (ADS)

    Kelly, Giovanni; Bergeson, Amelia; Haque, Farihah; Grayson, Scott; Albert, Julie

    Thin and ultrathin films of semi-crystalline polymers have been studied for decades due to their far-reaching applications including opto-electronic materials and biological studies of drug delivery and cell adhesion. This body of work has focused on every aspect of crystallization, from the fundamental thermodynamics and kinetics of crystal growth to methods for affecting crystalline morphologies via blending with other polymers. Due to significant synthetic challenges, one area where progress has lagged behind is the study of non-linear architectures, especially ring polymers. However, pioneering work by polymer chemists around the world has closed that gap, and we are beginning to observe important differences between ring and linear polymers in bulk materials. As a complement to those advances, this work aims to compare the morphologies of linear and cyclic poly(ɛ-caprolactones) (PCL) observed in heavily-confined ultrathin films where crystal growth is diffusion-limited. Understanding how confinement effects alter morphology will provide invaluable insight into differences in crystal growth as a function of molecular architecture.

  4. Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm.

    PubMed

    Xu, Gang; Yamada, Teppei; Otsubo, Kazuya; Sakaida, Shun; Kitagawa, Hiroshi

    2012-10-10

    The preparation of crystalline, ordered thin films of metal-organic frameworks (MOFs) will be a critical process for MOF-based nanodevices in the future. MOF thin films with perfect orientation and excellent crystallinity were formed with novel nanosheet-structured components, Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin], by a new "modular assembly" strategy. The modular assembly process involves two steps: a "modularization" step is used to synthesize highly crystalline "modules" with a nanosized structure that can be conveniently assembled into a thin film in the following "assembly" step. With this method, MOF thin films can easily be set up on different substrates at very high speed with controllable thickness. This new approach also enabled us to prepare highly oriented crystalline thin films of MOFs that cannot be prepared in thin-film form by traditional techniques.

  5. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  6. Structural and magnetic properties on the Fe-B-P-Cu-W nano-crystalline alloy system

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Yaocen; Makino, Akihiro

    2018-04-01

    In the present article, the structural and soft magnetic properties of Fe-B-P-Cu alloy system with W addition have been studied as well as the annealing configurations required for magnetic softness. It is found that the substitution of B by W deteriorates the soft magnetic properties after annealing. The reason of such impact with W addition may lie in the insufficient bonding strength between W and B so that the addition of W is not effective enough to suppress grain growth against the high concentration and high crystallization tendency of Fe during annealing. The addition of 4 at.% W is also found to reduce the saturation magnetization of the nano-crystalline alloy by 14%. It is also found that the addition of P in the Fe-based alloys could help reduce the coercivity upon annealing with high heating rate. The existence of P could also help slightly increase the overall saturation magnetization by enhancing the electron transfer away from Fe in the residual amorphous structure.

  7. Sintered magnetic cores of high Bs Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy with a lamellar microstructure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Sharma, Parmanand; Makino, Akihiro

    2014-05-01

    Fabrication of bulk cores of nano-crystalline Fe84.3Si4B8P3Cu0.7 alloy with a lamellar type of microstructure is reported. Amorphous ribbon flakes of size ˜1.0-2.0 mm were compacted in the bulk form by spark plasma sintering technique at different sintering temperatures. High density (˜96.4%) cores with a uniform nano-granular structure made from α-Fe (˜31 nm) were obtained. These cores show excellent mechanical and soft magnetic properties. The lamellar micro-structure is shown to be important in achieving significantly lower magnetic core loss than the non-oriented silicon steel sheets, commercial powder cores and even the core made of the same alloy with finer and randomly oriented powder particles.

  8. Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films.

    PubMed

    Chang, Chia Min; Chu, Cheng Hung; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping

    2011-05-09

    Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a thin-film gold electrode, are investigated for the purpose of understanding the local electrical conductivity of recorded marks under the influence of focused laser beam. Being amorphous, the as-deposited chalcogenide films have negligible electrical conductivity. With the aid of a focused laser beam, however, we have written on these films micron-sized crystalline marks, ablated holes surrounded by crystalline rings, and other multi-ring structures containing both amorphous and crystalline zones. Within these structures, nano-scale regions of superior local conductivity have been mapped and probed using our high-resolution, high-sensitivity conductive-tip atomic force microscope (C-AFM). Scanning electron microscopy and energy-dispersive spectrometry have also been used to clarify the origins of high conductivity in and around the recorded marks. When the Ge(2)Sb(2)Te(5) layer is sufficiently thin, and when laser crystallization/ablation is used to define long isolated crystalline stripes on the samples, we find the C-AFM-based method of extracting information from the recorded marks to be superior to other forms of microscopy for this particular class of materials. Given the tremendous potential of chalcogenides as the leading media candidates for high-density memories, local electrical characterization of marks recorded on as-deposited amorphous Ge(2)Sb(2)Te(5) films provides useful information for furthering research and development efforts in this important area of modern technology. © 2011 Optical Society of America

  9. Template-mediated nano-crystallite networks in semiconducting polymers.

    PubMed

    Kwon, Sooncheol; Yu, Kilho; Kweon, Kyoungchun; Kim, Geunjin; Kim, Junghwan; Kim, Heejoo; Jo, Yong-Ryun; Kim, Bong-Joong; Kim, Jehan; Lee, Seoung Ho; Lee, Kwanghee

    2014-06-18

    Unlike typical inorganic semiconductors with a crystal structure, the charge dynamics of π-conjugated polymers (π-CPs) are severely limited by the presence of amorphous portions between the ordered crystalline regions. Thus, the formation of interconnected pathways along crystallites of π-CPs is desired to ensure highly efficient charge transport in printable electronics. Here we report the formation of nano-crystallite networks in π-CP films by employing novel template-mediated crystallization (TMC) via polaron formation and electrostatic interaction. The lateral and vertical charge transport of TMC-treated films increased by two orders of magnitude compared with pristine π-CPs. In particular, because of the unprecedented room temperature and solution-processing advantages of our TMC method, we achieve a field-effect mobility of 0.25 cm(2) V(-1) s(-1) using a plastic substrate, which corresponds to the highest value reported thus far. Because our findings can be applied to various π-conjugated semiconductors, our approach is universal and is expected to yield high-performance printable electronics.

  10. Fabrication and Characterization of Fully Transparent ZnO Thin-Film Transistors and Self-Switching Nano-Diodes

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ashida, K.; Sasaki, S.; Koyama, M.; Maemoto, T.; Sasa, S.; Kasai, S.; Iñiguez-de-la-Torre, I.; González, T.

    2015-10-01

    Fully transparent zinc oxide (ZnO) based thin-film transistors (TFTs) and a new type of rectifiers calls self-switching nano-diodes (SSDs) were fabricated on glass substrates at room temperature by using low resistivity and transparent conducting Al- doped ZnO (AZO) thin-films. The deposition conditions of AZO thin-films were optimized with pulsed laser deposition (PLD). AZO thin-films on glass substrates were characterized and the transparency of 80% and resistivity with 1.6*10-3 Ωcm were obtained of 50 nm thickness. Transparent ZnO-TFTs were fabricated on glass substrates by using AZO thin-films as electrodes. A ZnO-TFT with 2 μm long gate device exhibits a transconductance of 400 μS/mm and an ON/OFF ratio of 2.8*107. Transparent ZnO-SSDs were also fabricated by using ZnO based materials and clear diode-like characteristics were observed.

  11. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    PubMed

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  12. Sol-gel preparation of silica and titania thin films

    NASA Astrophysics Data System (ADS)

    Thoř, Tomáš; Václavík, Jan

    2016-11-01

    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  13. Competitive concurrence of surface wrinkling and dewetting of liquid crystalline polymer films on non-wettable substrates.

    PubMed

    Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J

    2017-11-01

    Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.

  14. Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range.

    PubMed

    Tanaka, Shunsuke; Nogami, Daisuke; Tsuda, Natsuki; Miyake, Yoshikazu

    2009-06-15

    Monodisperse titania spheres with particle diameters in the range 380-960 nm were successfully synthesized by hydrolysis and condensation of titanium tetraisopropoxide. The preparation was performed using ammonia or dodecylamine (DDA) as a catalyst in methanol/acetonitrile co-solvent at room temperature. The samples were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and nitrogen sorption measurement. The use of DDA was effective for the synthesis of monodisperse titania spheres with low coefficient of variation. When the titania spherical particles with coefficient of variation less than 4% were obtained, the colloidal crystallization easily occurred simply by centrifugation. The monodispersity was maintained even after crystallization of the particles by high temperature annealing. The titania particles prepared using DDA had mesopores near the surface of the spheres, providing high pore accessibility to the sphere from the surface-air interface. The particle size uniformity and photocatalytic reactivity of the titania prepared using DDA were higher than those of the titania prepared using ammonia.

  15. A facile strategy to fabricate plasmonic Cu modified TiO{sub 2} nano-flower films for photocatalytic reduction of CO{sub 2} to methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Enzhou; Qi, Lulu; Bian, Juanjuan

    Graphical abstract: Photoreduction of CO{sub 2} to CH{sub 3}OH over plasmonic Cu/TiO{sub 2} film. - Highlights: • Cu nanoparticles modified TiO{sub 2} nano-flower film was prepared by a facile strategy. • Cu nanoparticles can enhance the light absorption and the Raman scattering of TiO{sub 2}. • Cu nanoparticles can effectively restrain the recombination of the charge carriers. • A synergistic mechanism is proposed for photocatalytic reduction of CO{sub 2} on Cu/TiO{sub 2} film. - Abstract: Cu nanoparticles (NPs) deposited TiO{sub 2} nano-flower films were fabricated using a combination of a hydrothermal method and a microwave-assisted reduction process. The investigations indicatedmore » that Cu NPs and TiO{sub 2} film both exhibit visible light harvesting properties based on localized surface plasmon resonance (LSPR) of Cu NPs and unique nanostructures of TiO{sub 2} film. Fluorescence quenching was observed because the recombination of charge carriers was effectively suppressed by Cu NPs deposition. The experimental results indicate that Cu/TiO{sub 2} films exhibit better activity for the photocatalytic reduction of CO{sub 2} due to the charge transfer property and LSPR effect of Cu NPs. The CH{sub 3}OH production rate reached 1.8 μmol cm{sup −2} h{sup −1} (energy efficiency was 0.8%) over 0.5 Cu/TiO{sub 2} film under UV and visible light irradiation, which was 6.0 times higher than that observed over pure TiO{sub 2} film. In addition, a tentative photocatalytic mechanism is proposed to understand the experimental results over the Cu modified TiO{sub 2} nano-flower films.« less

  16. Biodegradable nano-films for capture and non-invasive release of circulating tumor cells.

    PubMed

    Li, Wei; Reátegui, Eduardo; Park, Myoung-Hwan; Castleberry, Steven; Deng, Jason Z; Hsu, Bryan; Mayner, Sarah; Jensen, Anne E; Sequist, Lecia V; Maheswaran, Shyamala; Haber, Daniel A; Toner, Mehmet; Stott, Shannon L; Hammond, Paula T

    2015-10-01

    Selective isolation and purification of circulating tumor cells (CTCs) from whole blood is an important capability for both clinical medicine and biological research. Current techniques to perform this task place the isolated cells under excessive stresses that reduce cell viability, and potentially induce phenotype change, therefore losing valuable information about the isolated cells. We present a biodegradable nano-film coating on the surface of a microfluidic chip, which can be used to effectively capture as well as non-invasively release cancer cell lines such as PC-3, LNCaP, DU 145, H1650 and H1975. We have applied layer-by-layer (LbL) assembly to create a library of ultrathin coatings using a broad range of materials through complementary interactions. By developing an LbL nano-film coating with an affinity-based cell-capture surface that is capable of selectively isolating cancer cells from whole blood, and that can be rapidly degraded on command, we are able to gently isolate cancer cells and recover them without compromising cell viability or proliferative potential. Our approach has the capability to overcome practical hurdles and provide viable cancer cells for downstream analyses, such as live cell imaging, single cell genomics, and in vitro cell culture of recovered cells. Furthermore, CTCs from cancer patients were also captured, identified, and successfully released using the LbL-modified microchips. Published by Elsevier Ltd.

  17. Titania nanospheres from supercritical fluids.

    PubMed

    Darr, J A; Kellici, S; Rehman, I U

    2005-06-01

    Surfactant-coated amorphous titania nanospheres have been synthesised using templating 'water-in-supercritical carbon dioxide' emulsion droplets; the process represents a clean and controlled method for the manufacture of high-purity nanoparticles.

  18. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. <100> single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  19. Surface science studies on titania for solar fuel applications

    NASA Astrophysics Data System (ADS)

    Hadsell, Courtney Sara Mathews

    Titanium dioxide (titania) is a well-studied material for various applications including but not limited to, paint, sunscreen, pharmaceuticals and solar cell applications (photocatalysis.) It can be found in three main crystal forms; rutile, anatase, and brookite and this work will focus on the anatase form which has been heavily studied for its potential in dye sensitized solar cells (DSSCs.) I propose that aqueous and photo dye stability can be improved by taking special care to the exposed surface of anatase. Additionally, the theoretical maximum open circuit voltage of a DSSC is dependent upon which surface is exposed to the electrolyte. Previous works in this area have not been rigorous with respect to the surface and morphology of titania being used. Standard synthesis techniques of anatase lead to a crystal that generally has 94% of the titania (101) surface exposed, and the other 6% is the higher energy (001) surface. The (101) surface has 5 & 6-fold coordinated titania whereas the (001) surface only has 5-fold (under) coordinated titania. This under-coordination leads to enhanced reactivity of the (001) surface which has been demonstrated by dissassociative adsorption of water, and catalysis applications. Much theoretical work has focused on the minority (001) surface because up until recently synthesizing anatase with enhanced exposure of the (001) surface has been difficult. The initial materials for this study will be multilayer titania nanotubes (TiNTs) and nanosheets (TiNS) which have been previously characterized by my predecessor. The TiNTs and TiNS have 100% exposed (001)-like surface. Both of these materials show enhanced stability of phosphonated dye binding as compared to the current standard of anatase nanoparticles (NPs) however, due to their limited thermal stability the potential of incorporating the TiNTs and TiNSs into devices has been eliminated in this study. To overcome the device limitations I will synthesis a novel titania nanotile

  20. Effect of the out-of-plane stress on the properties of epitaxial SrTiO3 films with nano-pillar array on Si-substrate

    NASA Astrophysics Data System (ADS)

    Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei

    2015-08-01

    A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO3 films similar to PZT and other lead-based ferroelectrics can be expected.

  1. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    PubMed Central

    Wang, Fang-Hsing; Chen, Kun-Neng; Hsu, Chao-Ming; Liu, Min-Chu; Yang, Cheng-Fu

    2016-01-01

    In this study, Ga2O3-doped ZnO (GZO) thin films were deposited on glass and flexible polyimide (PI) substrates at room temperature (300 K), 373 K, and 473 K by the radio frequency (RF) magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002) peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS) was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared. PMID:28335216

  2. Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol.

    PubMed

    Zhang, Binjia; Xie, Fengwei; Zhang, Tianlong; Chen, Ling; Li, Xiaoxi; Truss, Rowan W; Halley, Peter J; Shamshina, Julia L; McNally, Tony; Rogers, Robin D

    2016-08-01

    The focus of this study was on the effects of plasticisers (the ionic liquid 1-ethyl-3-methylimidazolium acetate, or [Emim][OAc]; and glycerol) on the changes of starch structure on multiple length scales, and the variation in properties of plasticised starch-based films, during ageing. The films were prepared by a simple melt compression moulding process, followed by storage at different relative humidity (RH) environments. Compared with glycerol, [Emim][OAc] could result in greater homogeneity in [Emim][OAc]-plasticised starch-based films (no gel-like aggregates and less molecular order (crystallites) on the nano-scale). Besides, much weaker starch-starch interactions but stronger starch-[Emim][OAc] interactions at the molecular level led to reduced strength and stiffness but increased flexibility of the films. More importantly, [Emim][OAc] (especially at high content) was revealed to more effectively maintain the plasticised state during ageing than glycerol: the densification (especially in the amorphous regions) was suppressed; and the structural characteristics especially on the nano-scale were stabilised (especially at a high RH), presumably due to the suppressed starch molecular interactions by [Emim][OAc] as confirmed by Raman spectroscopy. Such behaviour contributed to stabilised mechanical properties. Nonetheless, the crystallinity and thermal stability of starch-based films with both plasticisers were much less affected by ageing and moisture uptake during storage (42 days), but mostly depended on the plasticiser type and content. As starch is a typical semi-crystalline bio-polymer containing abundant hydroxyl groups and strong hydrogen bonding, the findings here could also be significant in creating materials from other similar biopolymers with tailored sensitivity and properties to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  4. Growth, structure and stability of sputter-deposited MoS2 thin films.

    PubMed

    Kaindl, Reinhard; Bayer, Bernhard C; Resel, Roland; Müller, Thomas; Skakalova, Viera; Habler, Gerlinde; Abart, Rainer; Cherevan, Alexey S; Eder, Dominik; Blatter, Maxime; Fischer, Fabian; Meyer, Jannik C; Polyushkin, Dmitry K; Waldhauser, Wolfgang

    2017-01-01

    Molybdenum disulphide (MoS 2 ) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS 2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD) of MoS 2 films by magnetron sputtering. MoS 2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO 2 /Si and reticulated vitreous carbon (RVC) substrates. Samples deposited at room temperature (RT) and at 400 °C were compared. The deposited MoS 2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS 2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS 2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS 2 thin films are discussed. A potential application for such conductive nanostructured MoS 2 films could be as catalytically active electrodes in (photo-)electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS 2 films.

  5. Growth, structure and stability of sputter-deposited MoS2 thin films

    PubMed Central

    Bayer, Bernhard C; Resel, Roland; Müller, Thomas; Skakalova, Viera; Habler, Gerlinde; Abart, Rainer; Cherevan, Alexey S; Eder, Dominik; Blatter, Maxime; Fischer, Fabian; Meyer, Jannik C; Polyushkin, Dmitry K; Waldhauser, Wolfgang

    2017-01-01

    Molybdenum disulphide (MoS2) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD) of MoS2 films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC) substrates. Samples deposited at room temperature (RT) and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS2 thin films are discussed. A potential application for such conductive nanostructured MoS2 films could be as catalytically active electrodes in (photo-)electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS2 films. PMID:28685112

  6. SWS grating for UV band filter by nano-imprint

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Shian; Liao, Ke-Hao; Chen, Chang-Tai; Lai, Chieh-Lung; Ko, Cheng-Hao

    2009-05-01

    Regarding to researches on manufacturing process, the fabrication of nano structures on SWS (subwavelength structured) grating are mainly produced by photo lithography. We find that UV light transmission efficiency of PET film significantly drops 50% when we put nano structures on the surface of material. In this paper, we add nano structures on the surface of PET film and create a UV band filter. Decent optical filtering effects can be achieved by combining the characteristics of PET materials with nano structures on their surfaces.

  7. Giant dielectric constant in titania nanoparticles embedded in conducting polymer matrix.

    PubMed

    Dey, Ashis; De, Sukanta; De, Amitabha; De, S K

    2006-05-01

    Complex impedance and dielectric permittivity of titania-polypyrrole nanocomposites have been investigated as a function of frequency and temperature at different compositions. A very large dielectric constant of about 13,000 at room temperature has been observed. The colossal dielectric constant is mainly dominated by interfacial polarization due to Maxwell-Wagner relaxation effect. Two completely separate groups of dielectric relaxation have been observed. The low frequency dielectric relaxation arises from surface defect states of titania nanoparticles. The broad peak at high frequency region is attributed to Maxwell-Wagner type polarization originating from the inhomogeneous property of nanocomposite. An abrupt change in grain boundary conductivity and dielectric relaxation associated with titania was observed at around 150 K. Anomalous behavior in conductivity and dielectric relaxation is qualitatively explained by band tail structure of titania nanoparticle.

  8. Temperature induced CuInSe2 nanocrystal formation in the Cu2Se-In3Se2 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Rajesh, S.

    2017-04-01

    The paper deals with the impact of annealing on Cu2Se-In3Se2 multilayer structure and discusses the quantum confinements. Thermal evaporation technique was used to prepare multilayer films over the glass substrates. The films were annealed at different temperatures (150 °C-350 °C) under vacuum atmosphere. The XRD pattern reveals that the films exhibit (112) peaks with CuInSe2 Chalcopyrite structure and upon annealing crystallinity improved. The grain size comes around 13-19 nm. The optical band gap value was found to be 2.21 to 2.09 eV and band gap splitting was observed for higher annealing temperatures. The increase in the band gap is related to quantum confinement effect. SEM image shows nano crystals spread over the entire surface for higher annealing temperatures. Optical absorption and PL spectra shows the blue shift during annealing. The HR-TEM shows the particle size in the nano range and which confirms the CuInSe2 nanocrystal formation. AFM image shows the rough surface with homogenous grains for the as deposited films and smooth surface for annealed films.

  9. Optimization of mechanical strength of titania fibers fabricated by direct drawing

    NASA Astrophysics Data System (ADS)

    Hanschmidt, Kelli; Tätte, Tanel; Hussainova, Irina; Part, Marko; Mändar, Hugo; Roosalu, Kaspar; Chasiotis, Ioannis

    2013-11-01

    Nanostructured polycrystalline titania (TiO2) microfibers were produced by direct drawing from visco-elastic alkoxide precursors. The fiber crystallinity and grain size were shown to depend on post-treatment calcination temperature. Tensile tests with individual fibers showed strong sensitivity of the elastic modulus and the tensile strength to microstructural details of the fibers. The elastic modulus of as-fabricated fibers increased about 10 times after calcination at 700 ∘C, while the strain at failure remained almost the same at ˜1.4 %. The highest tensile strength of more than 800 MPa was exhibited by nanoscale grained fibers with a bimodal grain size distribution consisting of rutile grains embedded into an anatase matrix. This structure is believed to have reduced the critical defect size, and thus increased the tensile strength. The resultant fibers showed properties that were appropriate for reinforcement of different matrixes.

  10. Positron Annihilation Spectroscopy as a Novel Interfacial Probe for Thin Polymeric Films and Nano-Composites

    NASA Astrophysics Data System (ADS)

    Awad, Somia; Chen, Hongmin; Maina, Grace; Lee, L. James; Gu, Xiaohong; Jean, Y. C.

    2010-03-01

    Positron annihilation spectroscopy (PAS) has been developed as a novel probe to characterize the sub-nanometer defect, free volume, profile from the surface, interfaces, and to the bulk in polymeric materials when a variable mono-energy slow positron beam is used. Free-volume hole sizes, fractions, and distributions are measurable as a function of depth at the high precision. PAS has been successfully used to study the interfacial properties of polymeric nanocomposites at different chemical bonding. In nano-scale thin polymeric films, such as in PS/SiO2, and PU/ZnO, significant variations of Tg as a function of depth and of wt% oxide are observed. Variations of Tg are dependent on strong or weak interactions between polymers and nano-scale oxides surfaces.

  11. Laser marking on microcrystalline silicon film.

    PubMed

    Park, Min Gyu; Choi, Se-Bum; Ruh, Hyun; Hwang, Hae-Sook; Yu, Hyunung

    2012-07-01

    We present a compact dot marker using a CW laser on a microcrystalline silicon (Si) thin film. A laser annealing shows a continuous crystallization transformation from nano to a large domain (> 200 nm) of Si nanocrystals. This microscale patterning is quite useful since we can manipulate a two-dimentional (2-D) process of Si structural forms for better and efficient thin-film transistor (TFT) devices as well as for photovoltaic application with uniform electron mobility. A Raman scattering microscope is adopted to draw a 2-D mapping of crystal Si film with the intensity of optical-phonon mode at 520 cm(-1). At a 300-nm spatial resolution, the position resolved the Raman scattering spectra measurements carried out to observe distribution of various Si species (e.g., large crystalline, polycrystalline and amorphous phase). The population of polycrystalline (poly-Si) species in the thin film can be analyzed with the frequency shift (delta omega) from the optical-phonon line since poly-Si distribution varies widely with conditions, such as an irradiated-laser power. Solid-phase crystallization with CW laser irradiation improves conductivity of poly-Si with micropatterning to develop the potential of the device application.

  12. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  13. Grayscale photomask fabricated by laser direct writing in metallic nano-films.

    PubMed

    Guo, Chuan Fei; Cao, Sihai; Jiang, Peng; Fang, Ying; Zhang, Jianming; Fan, Yongtao; Wang, Yongsheng; Xu, Wendong; Zhao, Zhensheng; Liu, Qian

    2009-10-26

    The grayscale photomask plays a key role in grayscale lithography for creating 3D microstructures like micro-optical elements and MEMS structures, but how to fabricate grayscale masks in a cost-effective way is still a big challenge. Here we present novel low cost grayscale masks created in a two-step method by laser direct writing on Sn nano-films, which demonstrate continuous-tone gray levels depended on writing powers. The mechanism of the gray levels is due to the coexistence of the metal and the oxides formed in a laser-induced thermal process. The photomasks reveal good technical properties in fabricating 3D microstructures for practical applications.

  14. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    NASA Astrophysics Data System (ADS)

    Han, Jinhua; Wang, Wei; Ying, Jun; Xie, Wenfa

    2014-01-01

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.

  15. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven; Weber, William J.

    2015-10-01

    Nano-engineered 3C-SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. The resultant strain field probably contributes to the enhancement of radiation tolerance of this material.

  16. Wafer-size free-standing single-crystalline graphene device arrays

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jing, Gaoshan; Zhang, Bo; Sando, Shota; Cui, Tianhong

    2014-08-01

    We report an approach of wafer-scale addressable single-crystalline graphene (SCG) arrays growth by using pre-patterned seeds to control the nucleation. The growth mechanism and superb properties of SCG were studied. Large array of free-standing SCG devices were realized. Characterization of SCG as nano switches shows excellent performance with life time (>22 000 times) two orders longer than that of other graphene nano switches reported so far. This work not only shows the possibility of producing wafer-scale high quality SCG device arrays but also explores the superb performance of SCG as nano devices.

  17. Effect of tungsten (W) on structural and magnetic properties of electroplated NiFe thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Devaki, P.; Premkumar, P. S.; Selvambikai, M.

    2018-04-01

    Electrodeposition of nanocrystalline NiFe and NiFeW thin films were carried out from ammonium citrate bath at a constant current density and controlled pH of 8 by varying the bath temperature from 40 °C to 70 °C. The surface morphology and chemical composition of the electrodeposited NiFe and NiFeW soft magnetic thin films were studied by using SEM and EDAX. The SEM micrographs of the films coated at higher electrodeposited bath temperature have no micro cracks and also the films have more uniform surface morphology. The existence of crystalline nature of the coated films were analysed by XRD. The presence of predominant peaks in x-ray diffraction pattern (compared with JCPDS data) reveal that the average crystalline size was in the order of few tens of nano meters. The magnetic properties such as coercivity, saturation magnetization and magnetic flux density have been calculated from vibrating sample magnetometer analysis. The VSM result shows that the NiFeW thin film synthesised at 70 °C exhibit the lower coercivity with higher saturation magnetization. The hardness and adhesion of the electroplated films have been investigated. Reasons for variation in magnetic properties and structural characteristics are also discussed. The electroplated NiFe and NiFeW thin films can be used for Micro Electro Mechanical System (MEMS) applications due to their excellent soft magnetic behaviour.

  18. Branched Crystalline Patterns of Poly(ε-caprolactone) and Poly(4-hydroxystyrene) Blends Thin Films.

    PubMed

    Hou, Chunyue; Yang, Tianbo; Sun, Xiaoli; Ren, Zhongjie; Li, Huihui; Yan, Shouke

    2016-01-14

    The chain organization of poly(ε-caprolactone) (PCL) in its blend with poly(4-hydroxystyrene) (PVPh) in thin films (130 ± 10 nm) has been revealed by grazing incident infrared (GIIR) spectroscopy. It can be found that PCL chains orient preferentially in the surface-normal direction and crystallization occurs simultaneously. The morphology of the PCL/PVPh blends films can be identified by optical microscopy (OM). When crystallized at 35 °C, the blends film shows a seaweed-like structure and becomes more open with increasing PVPh content. In contrast, when crystallized at higher temperatures, i.e., 40 and 45 °C, dendrites with apparent crystallographically favored branches can be observed. This characteristic morphology indicates that the diffusion-limited aggregation (DLA) process controls the crystal growth in the blends films. The detailed lamellar structure can be revealed by the height images of atomic force microscopy (AFM), i.e., the crystalline branches are composed of overlayered flat-on lamellae. The branch width has been found to be dependent on the supercooling and PVPh content. This result differs greatly from pure PCL, in which case the crystal patterns controlled by DLA process developed in ultrathin film or monolayers of several nanometers. In the PCL/PVPh blends case, the strong intermolecular interactions and the dilution effect of PVPh should contribute to these results. That is to say, the mobility of PCL chains can be retarded and diffusion of them to the crystal growth front slows down greatly, even though the film thickness is far more than the lamellar thickness of PCL.

  19. Novel Organic Field Effect Transistors via Nano-Modification

    DTIC Science & Technology

    2005-07-01

    mobility by using two kinds of nano-scale films. One is to apply the photoalignment method on a nano-scale film to control the orientation of pentacene ...scale film (polymer electrolyte) to control moving of ions in/out an active semiconducor, pentacene or conducting polymer, for improving carrier...mobility. In this project, pentacene or a series of conducting polymers, such as the derivatives of PANI and P3HT will be patterned and manufactured in

  20. Bioinspired Hierarchical Nanofibrous Silver-Nanoparticle/Anatase-Rutile-Titania Composite as an Anode Material for Lithium-Ion Batteries.

    PubMed

    Luo, Yan; Li, Jiao; Huang, Jianguo

    2016-11-29

    A new bioinspired hierarchical nanofibrous silver-nanoparticle/anatase-rutile-titania (Ag-NP/A-R-titania) composite was fabricated by employing a natural cellulose substance (e.g., commercial laboratory cellulose filter paper) as the structural scaffold template, which was composed of anatase-phase titania (A-titania) nanotubes with rutile-phase titania (R-titania) nanoneedles grown on the surfaces and further silver nanoparticles (AgNPs) immobilized thereon. As it was employed as an anode material for lithium-ion batteries (LIBs), high reversible capacity, enhanced rate performance, and excellent cycling stability were achieved as compared with those of the corresponding cellulose-substance-derived nanotubular A-titania, R-titania, heterogeneous anatase/rutile titania (A-R-titania) composite, and commercial P25 powder. This benefited from its unique porous cross-linked three-dimensional structure inherited from the initial cellulose substance scaffold, which enhances the sufficient electrode/electrolyte contact, relieves the severe volume change upon cycling, and improves the amount of lithium-ion storage; moreover, the high loading content of the silver component in the composite improves the electrical conductivity of the electrode. The structural integrity of the composite was maintained upon long-term charge/discharge cycling, indicating its significant stability.