Sample records for nano-heterogeneous dentin adhesive

  1. Polymer Nanocarriers for Dentin Adhesion

    PubMed Central

    Osorio, R.; Osorio, E.; Medina-Castillo, A.L.; Toledano, M.

    2014-01-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP-nActive nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days’ immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  2. [Effect of a nano hydroxyapatite desensitizing paste application on dentin bond strength of three self-etch adhesive systems].

    PubMed

    Pei, D D; Liu, S Y; Yang, H Y; Gan, J; Huang, C

    2017-05-09

    Objective: To evaluate a nano-hydroxyapatite (nano-HA) desensitizing paste application on the bond strength of three self-etch adhesives. Methods: Three dentin specimens of about 1 mm thick were cut from two teeth. Scanning electron microscope (SEM) was used to evaluate the dentin surfaces without treatment, after citric acid treatment and after nano-HA treatment. Thirty-six intact third molars extracted for surgical reasons were cut to remove the occlusal enamel with isomet, and then were etched with 1% citric acid for 20 s to simulate the sensitive dentin and divided into two groups randomly using a table of random numbers ( n= 18): the control group (no treatment) and the HA treated group (with nano-HA paste treatment). Each group was divided into three subgroups randomly using a table of random numbers ( n= 6). Subgroup A, B and C was bonded with G-Bond, Clearfil S(3) Bond and FL-Bond Ⅱ according to the manufacture's instruction separately. At 24 h after bonding procedure, and after water storage for 6 months, microtensile bond strength of the specimens was tested and the failure mode was analyzed. Results: SEM obeservation showed that citric acid could open the dentin tubules to set up the sensitive dentin model, and the nano-HA could occlude the dentin tubules effectively. For subgroup A, bonding strength of specimens treated with nano-HA ([41.14±8.91] MPa) was significantly high than that of the control group ([34.27±6.16] MPa) at 24 h after bonding procedure ( P< 0.05). However, after 6 month water ageing, the bonding strength of the control group and the HA treated group showed no significant difference ( P> 0.05). For subgroup B, specimens with nano-HA application showed lower bonding strength ([30.87±6.41] MPa) than that of the control group ([36.73±5.82] MPa) at 24 h after bonding procedure ( P< 0.05), and after 6 month water ageing, the bond strength of nano-HA application ([25.73±6.99] MPa) was also lower than that of the control group ([32.33

  3. Resin-dentin interface of Scotchbond Multi-Purpose dentin adhesive.

    PubMed

    Griffiths, B M; Watson, T F

    1995-08-01

    To evaluate the interface between dentin, Scotchbond Multi-Purpose (SMP), and resin composite (Z100) using confocal fluorescence microscopy. Novel techniques were employed to view and record at video rate the application of the SMP primer and adhesive onto the dentin surface. The subsurface morphology of the dentin/restorative interface was also studied. To facilitate this study, the components of the adhesive system were labeled with fluorescent dyes. In an ideal situation, the primer and adhesive penetrated the dentin tubules, a distinct hybrid zone was formed and a thin layer of adhesive was observed at the interfacial region. However, the primed dentin surface was sensitive to disruption by the adhesive application brush during its placement, so that parts of the primer layer could be incorporated into the adhesive. This disruption could only be seen using confocal microscopy and a fluorescence labeling technique. Delamination of the primer layer was not observed when the adhesive film was thinned by air blowing. The application of an air stream to the cavity surface increased the penetration of the primer and adhesive along the dentin tubules, but also increased the thickness of the adhesive within irregularities on the cavity surface and at the cavity line angle. The cause of the problems in the handling properties of SMP may be the difference in viscosity between the two components (primer and adhesive) at the adhesive interface.

  4. Influence of cavity disinfectant and adhesive systems on the bonding procedure in demineralized dentin - a one-year in vitro evaluation.

    PubMed

    Sacramento, Patrícia A; de Castilho, Aline R; Banzi, Efani C; Puppi-Rontani, Regina Maria

    2012-12-01

    To evaluate the influence of a 2% chlorhexidine solution (CHX) on the bond strength and nano leakage of two self-etching adhesive systems on demineralized dentin over a 12-month period. The middle dentin from sound third molars was exposed and demineralized in vitro. Twelve groups were formed using different adhesive systems (Clearfil Protect Bond [PB], Clearfil SE Bond [SE]) dentin treatment (with or without CHX application), and water-storage times (24 h, 6 and 12 months). Composite resin cylinders were bonded to the prepared dentin, and these specimens underwent microshear bond strength (µSBS) testing and nano leakage evaluation. µSBS data were submitted to a three-way ANOVA and Tukey's test. The failure mode and nano leakage were analyzed descriptively by score. There was a statistically significant interaction only between the adhesive system and CHX, and adhesive system and water-storage times. SE showed the lowest µSBS just at 24 h water-storage time regardless of CHX. A significant decrease in µSBS values after 6 months of water storage occurred in all of the groups and was maintained until 12 months. Adhesive failure increased with storage time. All groups showed nano leakage at the resin/dentin interfaces and an increased silver deposition was noticed after 6 and 12 months of water storage. The highest percentages of nano leakage were found in CHX groups. CHX did not interfere with µSBS values for either self-etching adhesive system, but water storage did. Bond strength decreased for both adhesive systems after 6 and 12 months, regardless of CHX application. Nano leakage increased with water-storage time and with CHX application.

  5. Self-assembled Nano-layering at the Adhesive interface.

    PubMed

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  6. Polymerization contraction stress in dentin adhesives bonded to dentin and enamel.

    PubMed

    Hashimoto, Masanori; de Gee, Anton J; Feilzer, Albert J

    2008-10-01

    In a previous study on of polymerization contraction stress determinations of adhesives bonded to dentin a continuous decline of stress was observed after the adhesives had been light-cured. The decline was ascribed to stress relief caused by diffusion into the adhesive layer of water and/or solvents, left in the impregnated dentin surface after drying and/or evaporation in the application procedure. The purpose of the present study was to test the hypothesis that the contraction stress of adhesives bonded to enamel will not decline after light-curing, based on the assumption that water and/or solvents are more efficiently removed from impregnated enamel surfaces in the drying and/or evaporation step. Contraction stress was determined in a tensilometer for three total-etching adhesives Scotchbond multi-purpose, Single bond and One-step plus and four self-etching adhesives Clearfil SE Bond, Clearfil Protect Bond, AdheSE, and Xeno III. The adhesives were placed in a thin layer between a glass plate and a flat dentin or enamel surface pre-treated with phosphoric acid or self-etching primer and light-cured under constrained conditions. All adhesives bonded to enamel showed a stress decline, but significantly less than for dentin with the exception of two self-etching adhesives. The greatest decline was found for the total-etching adhesive systems bonded to dentin. The presence of hydrophobic monomers in the adhesives had a significant influence on the decline. The experiments indicate that fluids are withdrawn from the resin impregnated tooth structures, which may result in small defects in the tooth-resin interfaces.

  7. [The durability of three self-etch adhesives bonded to dentin].

    PubMed

    Tian, Fu-Cong; Wang, Xiao-Yan; Gao, Xue-Jun

    2013-04-01

    To investigate the durability of self-etch adhesives bonded to dentin in vitro. Forty-two extracted human molars were selected and occlusal dentin surfaces were exposed. The teeth were randomly distributed into three groups based on adhesives applied. The one-step self-etch adhesive B(Adper Prompt) and C(G-Bond) and two-step self-etch adhesive A (Clearfil SE bond) were used. After application of the adhesives to the dentin surfaces, composite crowns were built up, after 24 h water storage, the teeth were sectioned longitudinally into sticks (1.0 mm×1.0 mm bonding area) for microtensile testing or slabs (1 mm thick) for scanning electron microscopec (SEM) observation. Bonding strength (mTBS) and nano-leakage were evaluated immediately after cutting or after 6 months in water. The mTBS was analyzed using one-way ANOVA (SPSS 13.0). The nanoleakage was observed by SEM with a backscattered electron detector. Both adhesives and water storage time affected the mTBS. All adhesives showed decreased bond strength after six-month water aging [A dropped from (40.60 ± 5.76) MPa to (36.04 ± 3.15) MPa; B dropped from (19.06 ± 1.50) MPa to (11.19 ± 1.97) MPa; C dropped from (17.75 ± 1.10) MPa to (9.14 ± 1.15) MPa] (P < 0.05). B and C showed lower mTBS than A after aging (P < 0.05). Compared to A, nanoleakage was more obvious after aging for B and C. All self-etch adhesives tested were probably influenced by water aging, however, the two-step adhesive showed better durability than the one-step adhesives.

  8. Clinical status of ten dentin adhesive systems.

    PubMed

    Van Meerbeek, B; Peumans, M; Verschueren, M; Gladys, S; Braem, M; Lambrechts, P; Vanherle, G

    1994-11-01

    Laboratory testing of dentin adhesive systems still requires corroboration by long-term clinical trials for their ultimate clinical effectiveness to be validated. The objective of this clinical investigation was to evaluate, retrospectively, the clinical effectiveness of earlier-investigated dentin adhesive systems (Scotchbond, Gluma, Clearfil New Bond, Scotchbond 2, Tenure, and Tripton), and to compare their clinical results with those obtained with four modern total-etch adhesive systems (Bayer exp. 1 and 2, Clearfil Liner Bond System, and Scotchbond Multi-Purpose). In total, 1177 Class V cervical lesions in the teeth of 346 patients were restored following two cavity designs: In Group A, enamel was neither beveled nor intentionally etched, as per ADA guidelines; in Group B, adjacent enamel was beveled and conditioned. Clinical retention rates definitely indicated the improved clinical efficacy of the newest dentin adhesives over the earlier systems. With regard to adhesion strategy, adhesive systems that removed the smear layer and concurrently demineralized the dentin surface layer performed clinically better than systems that modified the disorderly layer of smear debris without complete removal. Hybridization by resin interdiffusion into the exposed dentinal collagen layer, combined with attachment of resin tags into the opened dentin tubules, appeared to be essential for reliable dentin bonding but might be insufficient by itself. The additional formation of an elastic bonding area as a polymerization shrinkage absorber and the use of a microfine restorative composite apparently guaranteed an efficient clinical result. The perfect one-year retention recorded for Clearfil Liner Bond System and Scotchbond Multi-Purpose must be confirmed at later recalls.

  9. Adhesive sealing of dentin surfaces in vitro: A review

    PubMed Central

    Abu-Nawareg, Manar M; Zidan, Ahmed Z; Zhou, Jianfeng; Agee, Kelli; Chiba, Ayaka; Tagami, Jungi; Pashley, David H

    2016-01-01

    Purpose The purpose of this review is to describe the evolution of the use of dental adhesives to form a tight seal of freshly prepared dentin to protect the pulp from bacterial products, during the time between crown preparation and final cementum of full crowns. The evolution of these “immediate dentin sealants” follows the evolution of dental adhesives, in general. That is, they began with multiple-step, etch-and-rinse adhesives, and then switched to the use of simplified adhesives. Methods Literature was reviewed for evidence that bacteria or bacterial products diffusing across dentin can irritate pulpal tissues before and after smear layer removal. Smear layers can be solubilized by plaque organisms within 7–10 days if they are directly exposed to oral fluids. It is likely that smear layers covered by temporary restorations may last more than one month. As long as smear layers remain in place, they can partially seal dentin. Thus, many in vitro studies evaluating the sealing ability of adhesive resins use smear layer-covered dentin as a reference condition. Surprisingly, many adhesives do not seal dentin as well as do smear layers. Results Both in vitro and in vivo studies show that resin-covered dentin allows dentinal fluid to cross polymerized resins. The use of simplified single bottle adhesives to seal dentin was a step backwards. Currently, most authorities use either 3-step adhesives such as Scotchbond Multi-Purposea or OptiBond FLb or two-step self-etching primer adhesives, such as Clearfil SEc, Unifil Bondd or AdheSEe, respectfully. PMID:26846037

  10. Adhesion of resin composite core materials to dentin.

    PubMed

    O'Keefe, K L; Powers, J M

    2001-01-01

    This study determined (1) the effect of polymerization mode of resin composite core materials and dental adhesives on the bond strength to dentin, and (2) if dental adhesives perform as well to dentin etched with phosphoric acid as to dentin etched with self-etching primer. Human third molars were sectioned 2 mm from the highest pulp horn and polished. Three core materials (Fluorocore [dual cured], Core Paste [self-cured], and Clearfil Photo Core [light cured]) and two adhesives (Prime & Bond NT Dual Cure and Clearfil SE Bond [light cured]) were bonded to dentin using two dentin etching conditions. After storage, specimens were debonded in microtension and bond strengths were calculated. Scanning electron micrographs of representative bonding interfaces were analyzed. Analysis showed differences among core materials, adhesives, and etching conditions. Among core materials, dual-cured Fluorocore had the highest bond strengths. There were incompatibilities between self-cured Core Paste and Prime & Bond NT in both etched (0 MPa) and nonetched (3.0 MPa) dentin. Among adhesives, in most cases Clearfil SE Bond had higher bond strengths than Prime & Bond NT and bond strengths were higher to self-etched than to phosphoric acid-etched dentin. Scanning electron micrographs did not show a relationship between resin tags and bond strengths. There were incompatibilities between a self-cured core material and a dual-cured adhesive. All other combinations of core materials and adhesives produced strong in vitro bond strengths both in the self-etched and phosphoric acid-etched conditions.

  11. Adhesion of multimode adhesives to enamel and dentin after one year of water storage.

    PubMed

    Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2017-06-01

    This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.

  12. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin.

    PubMed

    Türkmen, Cafer; Durkan, Meral; Cimilli, Hale; Öksüz, Mustafa

    2011-08-01

    The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  13. Influence of caries infiltrant contamination on shear bond strength of different adhesives to dentin.

    PubMed

    Jia, Liuhe; Stawarczyk, Bogna; Schmidlin, Patrick R; Attin, Thomas; Wiegand, Annette

    2013-03-01

    To analyze whether the contamination with a caries infiltrant system impairs the adhesive performance of etch-and-rinse and self-etching adhesives on dentin. Dentin contamination with the caries infiltrant system (Icon, DMG) was simulated by applying either hydrochloric acid (15 % HCl, Icon Etch, 15 s), the resin infiltrant (Icon infiltrant, 4 min), or both prior to the application of the respective adhesives (each group n = 10). In the control groups, the etch-and-rinse adhesive (Optibond FL, Kerr) and the self-etching adhesive (iBOND Self Etch, Hereaus) were applied without former contamination with the infiltrant system. Additionally, the adhesive performance of the resin infiltrant alone was tested. Shear bond strength of a nano-hybrid composite was analyzed after thermocycling (5,000×, 5-55°C) of the specimens and analyzed by ANOVA/Scheffé post hoc tests (p < 0.05) and Weibull statistics. Failure mode was inspected under a stereomicroscope at × 25 magnification. Contamination with the resin infiltrant alone did not impair shear bond strength, while contamination with hydrochloric acid or with hydrochloric acid and the resin infiltrant reduced shear bond strength (MPa) of the adhesives (Optibond FL: 20.5 ± 3.6, iBOND Self Etch: 17.9 ± 2.6) significantly. Hydrochloric acid contamination increased the number of adhesive failures. The adhesive performance of the caries infiltrant system alone was insufficient. The contamination with the caries infiltrant system impaired the shear bond strength of conventional dental adhesives. Contamination of the caries infiltrant system on dentin should be avoided due to the detrimental effect of hydrochloric acid etching.

  14. Bond strength of different adhesives to normal and caries-affected dentins.

    PubMed

    Xuan, Wei; Hou, Ben-xiang; Lü, Ya-lin

    2010-02-05

    Currently, several systems of dentin substrate-reacting adhesives are available for use in the restorative treatment against caries. However, the bond effectiveness and property of different adhesive systems to caries-affected dentin are not fully understood. The objective of this study was to evaluate the bond strength of different adhesives to both normal dentin (ND) and caries-affected dentin (CAD) and to analyze the dentin/adhesive interfacial characteristics. Twenty eight extracted human molars with coronal medium carious lesions were randomly assigned to four groups according to adhesives used. ND and CAD were bonded with etch-and-rinse adhesive Adper Single Bond 2 (SB2) or self-etching adhesives Clearfil SE Bond (CSE), Clearfil S(3) Bond (CS3), iBond GI (IB). Rectangular sticks of resin-dentin bonded interfaces 0.9 mm(2) were obtained. The specimens were subjected to microtensile bond strength (microTBS) testing at a crosshead speed of 1 mm/min. Mean microTBS was statistically analyzed with analysis of variance (ANOVA) and Student-Newman-Keuls tests. Interfacial morphologies were analyzed by Scanning Electron Microscopy (SEM). Etch-and-rinse adhesive Adper(TM) Single Bond 2 yielded high bond strength when applied to both normal and caries-affected dentin. The two-step self-etching adhesive Clearfil SE Bond generated the highest bond strength to ND among all adhesives tested but a significantly reduced strength when applied to CAD. For the one-step self-etching adhesives, Clearfil S(3) Bond and iBond GI, the bond strength was relatively low regardless of the dentin type. SEM interfacial analysis revealed that hybrid layers were thicker with poorer resin tag formation and less resin-filled lateral branches in the CAD than in the ND for all the adhesives tested. The etch-and-rinse adhesive performed more effectively to caries-affected dentin than the self-etching adhesives.

  15. Microtensile bond strength of three simplified adhesive systems to caries-affected dentin.

    PubMed

    Scholtanus, J D; Purwanta, Kenny; Dogan, Nilgun; Kleverlaan, Cees J; Feilzer, Albert J

    2010-08-01

    The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft caries-infected dentin was excavated with the help of caries detector dye. On the remaining hard dentin, a standardized smear layer was created by polishing with 600-grit SiC paper. Teeth were divided into three groups and treated with one of the three tested adhesives: Adper Scotchbond 1 XT (3M ESPE), a 2-step etch-andrinse adhesive, Clearfil S3 Bond (Kuraray), a 1-step self-etching or all-in-one adhesive, and Clearfil SE Bond (Kuraray), a 2-step self-etching adhesive. Five-mm-thick composite buildups (Z-250, 3M ESPE) were built and light cured. After water storage for 24 h at 37ºC, the bonded specimens were sectioned into bars (1.0 x 1.0 mm; n = 20 to 30). Microtensile bond strength of normal dentin specimens and caries-affected dentin specimens was measured in a universal testing machine (crosshead speed = 1 mm/min). Data were analyzed using two-way ANOVA and Tukey's post-hoc test (p < 0.05). No significant differences in bond strength values to normal dentin between the three adhesives were found. Adper Scotchbond 1 XT and Clearfil S3 Bond showed significantly lower bond strength values to caries-affected dentin. For Clearfil SE Bond, bond strength values to normal and caries-affected dentin were not significantly different. All the tested simplified adhesives showed similar bond strength values to normal dentin. For the tested 2-step etch-and-rinse adhesive and the all-in-one adhesive, the bond strength values to caries-affected dentin were lower than to normal dentin.

  16. Prevention of root caries with dentin adhesives.

    PubMed

    Grogono, A L; Mayo, J A

    1994-04-01

    This in vitro investigation determined the feasibility of using dentin adhesives to protect root surfaces against caries. The roots of 22 recently extracted human teeth were all painted with a protective lacquer leaving two unprotected small windows. On each specimen, one window (control) was left untreated and the other window (experimental) was treated using a dentin adhesive (Scotchbond Multi-Purpose). The roots were then immersed in an in vitro acetate/calcium/phosphate demineralization model at pH 4.3. After 70 days, the samples were removed and sectioned through the windows. The undecalcified ground sections were examined under transmitted and polarized light. Lesions characteristic of natural root caries were seen in the untreated control windows. No such lesions were apparent in the experimental windows. The results of this preliminary study suggest that dentin adhesives may provide protection against root caries.

  17. Characterization of Interfacial Chemistry of Adhesive/Dentin Bond Using FTIR Chemical Imaging With Univariate and Multivariate Data Processing

    PubMed Central

    Wang, Yong; Yao, Xiaomei; Parthasarathy, Ranganathan

    2008-01-01

    Fourier transform infrared (FTIR) chemical imaging can be used to investigate molecular chemical features of the adhesive/dentin interfaces. However, the information is not straightforward, and is not easily extracted. The objective of this study was to use multivariate analysis methods, principal component analysis and fuzzy c-means clustering, to analyze spectral data in comparison with univariate analysis. The spectral imaging data collected from both the adhesive/healthy dentin and adhesive/caries-affected dentin specimens were used and compared. The univariate statistical methods such as mapping of intensities of specific functional group do not always accurately identify functional group locations and concentrations due to more or less band overlapping in adhesive and dentin. Apart from the ease with which information can be extracted, multivariate methods highlight subtle and often important changes in the spectra that are difficult to observe using univariate methods. The results showed that the multivariate methods gave more satisfactory, interpretable results than univariate methods and were conclusive in showing that they can discriminate and classify differences between healthy dentin and caries-affected dentin within the interfacial regions. It is demonstrated that the multivariate FTIR imaging approaches can be used in the rapid characterization of heterogeneous, complex structure. PMID:18980198

  18. Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties.

    PubMed

    Barcellos, Daphne Câmara; Fonseca, Beatriz Maria; Pucci, César Rogério; Cavalcanti, Bruno das Neves; Persici, Erasmo De Souza; Gonçalves, Sérgio Eduardo de Paiva

    2016-07-01

    This study assessed a 6 month resin/dentin bond's durability and cytotoxic effect of Zn-doped model dentin adhesives. The mechanical and physicochemical properties were also tested. A model etch-and-rinse single-bottle adhesive was formulated (55wt.% Bis-GMA, 45wt.% HEMA, 0.5wt.% CQ, 0.5wt.% DMAEMA) and Zinc methacrylate (Zn-Mt) or ZnO nanoparticles (ZnOn) were added to the model's adhesive, resulting in three groups: Group Control (control model adhesive); Group Zn-Mt (1wt.% Zn-Mt incorporated to adhesive) and Group ZnOn (1wt.% ZnOn incorporated to adhesive). The microtensile bond strength (mTBS) was assessed after 24h or 6 months in water storage. Mechanical properties (diametral tensile strength/DTS, flexural strength/FS, flexural modulus/FM, resilience modulus/RM, and compressive strength/CS) and physicochemical properties (polymerization shrinkage/PS, contact angle/CA, water sorption/WS, and water solubility/WS) were also tested. Cytotoxicity was evaluated with SRB biochemical assay. No significant difference in the DTS, FS, FM, CS, CA, WS, and WS were found when 1% of ZnOn or Zn-Mt was added to the model dentin adhesive. Group Zn-Mt decreased the RM of adhesive. Groups Zn-Mt and ZnOn decreased the PS of adhesives. Group ZnOn reduced the cytotoxicity of adhesive. Group ZnOn preserved mTBS after 6 months storage without degradation areas as seen by SEM analysis. The 1wt.% ZnOn may preserve the integrity of the hybrid layer and may reduce cytotoxicity and polymerization shrinkage of model dentin adhesive. The addition of Zn-Mt to the adhesive had no beneficial effects. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  19. Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system.

    PubMed

    Sutil, Bruna Gabrielle da Silva; Susin, Alexandre Henrique

    2017-01-01

    To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8) according to Scotchbond Universal Adhesive (SbU) applied in self-etch (SE) and etch-and-rinse (ER) mode, adhesive temperature (20°C or 37°C) and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS). The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin) and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%). Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin.

  20. Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system

    PubMed Central

    Sutil, Bruna Gabrielle da Silva; Susin, Alexandre Henrique

    2017-01-01

    Abstract Objectives: To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Material and Methods: Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8) according to Scotchbond Universal Adhesive (SbU) applied in self-etch (SE) and etch-and-rinse (ER) mode, adhesive temperature (20°C or 37°C) and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS). The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin) and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%). Results: Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Conclusions: Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin. PMID:29069151

  1. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives.

    PubMed

    Choi, An-Na; Lee, Ji-Hye; Son, Sung-Ae; Jung, Kyoung-Hwa; Kwon, Yong Hoon; Park, Jeong-Kil

    2017-10-25

    The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS) testing and confocal laser scanning microscopy (CLSM). Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying), 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey's post hoc tests (α = 0.05). Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed ( p < 0.05). One-way ANOVA showed that All-Bond Universal was the only material influenced by the wetness of the dentin surfaces. Wetness of the dentin surface is a factor influencing the micro-tensile bond strength of universal adhesives.

  2. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives

    PubMed Central

    Lee, Ji-Hye; Son, Sung-Ae; Jung, Kyoung-Hwa; Kwon, Yong Hoon

    2017-01-01

    The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS) testing and confocal laser scanning microscopy (CLSM). Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying), 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey’s post hoc tests (α = 0.05). Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed (p < 0.05). One-way ANOVA showed that All-Bond Universal was the only material influenced by the wetness of the dentin surfaces. Wetness of the dentin surface is a factor influencing the micro-tensile bond strength of universal adhesives. PMID:29068404

  3. Longevity of Self-etch Dentin Bonding Adhesives Compared to Etch-and-rinse Dentin Bonding Adhesives: A Systematic Review.

    PubMed

    Masarwa, Nader; Mohamed, Ahmed; Abou-Rabii, Iyad; Abu Zaghlan, Rawan; Steier, Liviu

    2016-06-01

    A systematic review and meta-analysis were performed to compare longevity of Self-Etch Dentin Bonding Adhesives to Etch-and-Rinse Dentin Bonding Adhesives. The following databases were searched for PubMed, MEDLINE, Web of Science, CINAHL, the Cochrane Library complemented by a manual search of the Journal of Adhesive Dentistry. The MESH keywords used were: "etch and rinse," "total etch," "self-etch," "dentin bonding agent," "bond durability," and "bond degradation." Included were in-vitro experimental studies performed on human dental tissues of sound tooth structure origin. The examined Self-Etch Bonds were of two subtypes; Two Steps and One Step Self-Etch Bonds, while Etch-and-Rinse Bonds were of two subtypes; Two Steps and Three Steps. The included studies measured micro tensile bond strength (μTBs) to evaluate bond strength and possible longevity of both types of dental adhesives at different times. The selected studies depended on water storage as the aging technique. Statistical analysis was performed for outcome measurements compared at 24 h, 3 months, 6 months and 12 months of water storage. After 24 hours (p-value = 0.051), 3 months (p-value = 0.756), 6 months (p-value=0.267), 12 months (p-value=0.785) of water storage self-etch adhesives showed lower μTBs when compared to the etch-and-rinse adhesives, but the comparisons were statistically insignificant. In this study, longevity of Dentin Bonds was related to the measured μTBs. Although Etch-and-Rinse bonds showed higher values at all times, the meta-analysis found no difference in longevity of the two types of bonds at the examined aging times. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Relationship between water status in dentin and interfacial morphology in all-in-one adhesives.

    PubMed

    Yoshida, Eiji; Uno, Sigeru; Nodasaka, Yoshinobu; Kaga, Msayuki; Hirano, Susumu

    2007-05-01

    All-in-one adhesive systems have been recently developed to simplify bonding procedures. The adhesives containing acidic resin monomers generate a relatively thin bonding zone between dentin and composite. This zone may be left acidic and permeable when polymerization is poor. In this study, the effect of water contained in dentin on the quality of the bonding interface was morphologically investigated for all-in-one adhesives. Intact coronal dentin (hydrated dentin), desiccated coronal dentin (dehydrated dentin), caries-affected dentin (CAD) and resin composites were used for adherends to assess the effects of water contained in dentin on the ultra-structures of bonding interfaces created with two all-in-one adhesives and a resin composite. The bonding interfaces were observed under TEM without demineralization. Voids of various sizes were found at the bottom of the adhesive resin layers along the bonding interface of hydrated dentin, while dehydrated dentin, CAD and resin composites did not generate voids. The results showed that the voids were possibly formed by water that had penetrated from the underlying dentin. When the adherend contains little water, the formation of voids will not occur. It was verified that a phenomenon of void formation would not occur in a clinical situation in which caries-affected dentin is mainly subjected to adhesive practices.

  5. Nanoleakage of dentin adhesive systems bonded to Carisolv-treated dentin.

    PubMed

    Kubo, Shisei; Li, Heping; Burrow, Michael F; Tyas, Martin J

    2002-01-01

    The hybrid layer created in caries-affected dentin has not been fully elucidated and may influence bond durability. This study investigated the nanoleakage patterns of caries-affected dentin after excavation with Carisolv or conventional instruments treated with one of three adhesive systems. Flat occlusal dentin surfaces, including carious lesions, were prepared from extracted human molars and finished with wet 600-grit silicon carbide paper. Carious dentin was removed with Carisolv or round steel burs in conjunction with Caries Detector. PermaQuik, Single Bond or One-Up Bond F was bonded to the excavated dentin surfaces and adjacent flat occlusal surfaces and it was covered with Silux Plus resin-based composite. After 24-hour storage in 37 degrees C water, the bonded interfaces were polished to remove flash, and the surrounding tooth surfaces were coated with nail varnish. Specimens were immersed in 50% (w/v) silver nitrate solution for 24 hours, exposed to photo developing solution for eight hours, then sectioned longitudinally through the bonded, excavated dentin or "normal" dentin surfaces. The sectioned surfaces were polished, carbon coated and observed in a Field Emission-SEM using back scattered electrons. Silver deposition occurred along the base of the hybrid layer for all specimens. However, Single Bond showed a greater density of silver deposition in the caries-affected dentin compared with normal dentin. PermaQuik had a thicker hybrid layer in caries-affected dentin than normal dentin. One-Up Bond F exhibited a thin hybrid layer in normal dentin, but the hybrid layer was often difficult to detect in caries-affected dentin.

  6. Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin.

    PubMed

    Taira, Yohsuke; Imai, Yohji

    2014-01-01

    This review, focusing mainly on research related to methyl methacrylate/tributylborane (MMA/TBB) resin, presents the early history of dentin bonding and MMA/TBB adhesive resin, followed by characteristics of resin bonding to dentin. Bond strengths of MMA/TBB adhesive resin to different adherends were discussed and compared with other bonding systems. Factors affecting bond strength (such as conditioners, primers, and medicaments used for dental treatment), bonding mechanism, and polymerization characteristics of MMA/TBB resin were also discussed. This review further reveals the unique adhesion features between MMA/TBB resin and dentin: in addition to monomer diffusion into the demineralized dentin surface, graft polymerization of MMA onto dentin collagen and interfacial initiation of polymerization at the resin-dentin interface provide the key bonding mechanisms.

  7. Micromorphological characterization of adhesive interface of sound dentin and total-etch and self-etch adhesives.

    PubMed

    Drobac, Milan; Stojanac, Igor; Ramić, Bojana; Premović, Milica; Petrović, Ljubomir

    2015-01-01

    The ultimate goal in restorative dentistry has always been to achieve strong and permanent bond between the dental tissues and filling materials. It is not easy to achieve this task because the bonding process is different for enamel and dentin-dentin is more humid and more organic than enamel. It is moisture and organic nature of dentin that make this hard tissue very complex to achieve adhesive bond. One of the first and most widely used tools for examining the adhesive bond between hard dental tissues and composite restorative materials is scanning electron microscopy. The aim of this study was scanning electron microscopy analyzes the interfacial micro morphology of total-etch and self-etch adhesives. Micro morphological characteristics of interface between total-etch adhesive (Prime & Bond NT) in combination with the corresponding composite (Ceram X Mono) were compared with those of self-etching adhesive (AdheSE One) in, combination with the corresponding composite (Tetric EvoCeram). The specimens were observed under 1000 x magnification of scanning electron microscopy (JEOL, JSM-6460 Low Vacuum). Measurement of the thickness of the hybrid layer of the examined com posite systems was performed with the software of the device used (NIH Image Analyser). Micromorphological analysis of interface showed that the hybrid layer in sound dentin was well formed, its average thickness being 2.68 microm, with a large number of resin tags and a large amount of lateral branches for specimens with a composite system Prime & Bond NT-Ceram X Mono. However, the specimens' with composite systems Adhese One-Tetric EvoCeram did not show the presence of hybrid layer and the resin tags were poorly represented. The results of this study suggest that total-etch adhesives bond better with sound dentin than self-etch adhesive.

  8. Solvent composition of one-step self-etch adhesives and dentine wettability.

    PubMed

    Grégoire, Geneviève; Dabsie, Firas; Dieng-Sarr, Farimata; Akon, Bernadette; Sharrock, Patrick

    2011-01-01

    Our aim was to determine the wettability of dentine by four commercial self-etch adhesives and evaluate their spreading rate on the dentine surface. Any correlation with chemical composition was sought, particularly with the amount of solvent or HEMA present in the adhesive. The adhesives used were AdheSE One, Optibond All.In.One, Adper Easy Bond and XenoV. Chemical compositions were determined by proton nuclear magnetic resonance (NMR) spectroscopy of the adhesives dissolved in dimethylsulfoxide. Apparent contact angles for sessile drops of adhesives were measured on dentine slices as a function of time for up to 180s. The water contact angles were determined for fully polymerised adhesives. All adhesives were water-based with total solvent contents ranging from 27% to 73% for HEMA-free adhesives, and averaging 45% for HEMA containing adhesives. The contents in hydrophobic groups decreased as water contents increased. No differences were found in the adhesive contact angles after 180s even though the spreading rates were different for the products tested. Water contact angles differed significantly but were not correlated with HEMA or solvent presence. Manufacturers use different approaches to stabilise acid co-monomer ingredients in self-etch adhesives. Co-solvents, HEMA, or acrylamides without co-solvents are used to simultaneously etch and infiltrate dentine. A large proportion of water is necessary for decalcification action. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Influence of dentin pretreatment on bond strength of universal adhesives.

    PubMed

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea

    2017-01-01

    Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Premio BOND, Peak Universal Bond. The adhesive systems were applied following each manufacturer's instructions. The teeth were randomly assigned to three different dentin surface pretreatments: no pretreatment agent (control), 37% phosphoric acid etching, glycine pretreatment. The specimens were placed in a universal testing machine in order to measure and compare bond strength values. Results: The Kruskal-Wallis analysis of variance and the Mann-Whitney test were applied to assess significant differences among the groups. Dentin pretreatments provided different bond strength values for the adhesives tested, while similar values were registered in groups without dentin pretreatment. Conclusions: In the present report, dentin surface pretreatment did not provide significant differences in shear bond strength values of almost all groups. Acid pretreatment lowered bond strength values of Futurabond and Peak Universal Adhesives, whereas glycine pretreatment increased bond strength values of G Praemio Bond adhesive system.

  10. Influence of dentin pretreatment on bond strength of universal adhesives

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea

    2017-01-01

    Abstract Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Premio BOND, Peak Universal Bond. The adhesive systems were applied following each manufacturer’s instructions. The teeth were randomly assigned to three different dentin surface pretreatments: no pretreatment agent (control), 37% phosphoric acid etching, glycine pretreatment. The specimens were placed in a universal testing machine in order to measure and compare bond strength values. Results: The Kruskal–Wallis analysis of variance and the Mann–Whitney test were applied to assess significant differences among the groups. Dentin pretreatments provided different bond strength values for the adhesives tested, while similar values were registered in groups without dentin pretreatment. Conclusions: In the present report, dentin surface pretreatment did not provide significant differences in shear bond strength values of almost all groups. Acid pretreatment lowered bond strength values of Futurabond and Peak Universal Adhesives, whereas glycine pretreatment increased bond strength values of G Praemio Bond adhesive system. PMID:28642929

  11. Dentinal tubule occluding capability of nano-hydroxyapatite; The in-vitro evaluation.

    PubMed

    Baglar, Serdar; Erdem, Umit; Dogan, Mustafa; Turkoz, Mustafa

    2018-04-29

    In this in-vitro study, the effectiveness of experimental pure nano-hydroxyapatite (nHAP) and 1%, 2%, and 3% F¯ doped nano-HAp on dentine tubule occlusion was investigated. And also, the cytotoxicity of materials used in the experiment was evaluated. Nano-HAp types were synthesized by the precipitation method. Forty dentin specimens were randomly divided into five groups of; 1-no treatment (control), 2-specimens treated with 10% pure nano-HAp and 3, 4, 5 specimens treated with 1%, 2%, and 3% F - doped 10% nano-HAp, respectively. To evaluate the effectiveness of the materials used; pH, FTIR, and scanning electron microscopy evaluations were performed before and after degredation in simulated body fluid. To determine cytotoxicity of the materials, MTT assay was performed. Statistical evaluations were performed with F and t tests. All of the nano-HAp materials used in this study built up an effective covering layer on the dentin surfaces even with plugs in tubules. It was found that this layer had also a resistance to degradation. None of the evaluated nano-HAp types were have toxicity. Fluoride doping showed a positive effect on physical and chemical stability until a critical value of 1% F - . The all evaluated nano-HAp types may be effectively used in dentin hypersensitivity treatment. The formed nano-HAp layers were seem to resistant to hydrolic deletion. The pure and 1% F - doped nano-HAp showed the highest biocompatibility thus it was assessed that pure and 1% F - doped materials may be used as an active ingredient in dentin hypersensitivity agents. © 2018 Wiley Periodicals, Inc.

  12. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives

    PubMed Central

    Tian, F.; Zhou, L.; Zhang, Z.; Niu, L.; Zhang, L.; Chen, C.; Zhou, J.; Yang, H.; Wang, X.; Fu, B.; Huang, C.; Pashley, D.H.; Tay, F.R.

    2015-01-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer’s instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  13. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    PubMed

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  14. The effect of air thinning on dentin adhesive bond strength.

    PubMed

    Hilton, T J; Schwartz, R S

    1995-01-01

    The purpose of this study was to determine if air thinning three dentin adhesives would affect bond strength to dentin. Ninety human molars were mounted in acrylic and the occlusal surfaces ground to expose a flat dentin surface. Thirty teeth were randomly assigned to one of the following dentin bonding agent/composite combinations: A) Universal Bond 3/TPH (Caulk), B) All-Bond 2/Bis-Fil-P (Bisco), and C) Scotchbond Multi-Purpose/Z-100 (3m). The primers were applied following the manufacturers' instructions. The adhesives were applied by two methods. A thin layer of adhesive was applied with a brush to 15 specimens in each group and light cured. Adhesive was brushed on to the remaining 15 teeth in the group, air thinned for 3 seconds, and then polymerized. The appropriate composite was applied in 2 mm increments and light cured utilizing a 5 mm-in-diameter split Teflon mold. Following 3 months of water storage, all groups were shear tested to failure on an Instron Universal Testing Machine. Bond strength was significantly higher in all groups when the dentin bonding agent was painted on without being air thinned. Scotchbond Multi-Purpose had significantly higher bond strength than All-Bond 2, which had significantly higher bond strength than Universal Bond 3.

  15. Shear bond strength of a new one-bottle dentin adhesive.

    PubMed

    Swift, E J; Bayne, S C

    1997-08-01

    To test the shear bond strength of a new adhesive, 3M Single Bond, to dentin surfaces containing different degrees of moisture. Two commercially available one-bottle adhesives (Prime & Bond, One-Step) and a conventional three-step system (Scotchbond Multi-Purpose Plus) were included for comparison. 120 bovine teeth were embedded in acrylic and the labial surfaces were polished to 600 grit to create standardized dentin surfaces for testing. Resin composite was bonded to dentin using a gelatin capsule technique. Four adhesive systems were evaluated with three different degrees of surface moisture (moist, wet, and overwet). Shear bond strengths of adhesives to dentin were determined using a universal testing machine and analyzed by ANOVA and Tukey's post hoc tests. Single Bond had mean shear bond strengths of 19.2, 23.2 and 20.3 MPa to moist, wet, and overwet dentin, respectively. Bond strengths of the three-component system Scotchbond Multi-Purpose Plus ranged from 23.1 to 25.3 MPa, but were not significantly higher than the values for Single Bond. Prime & Bond had bond strengths similar to those of Single Bond, but One-Step had significantly lower bond strengths (P < 0.05) in the wet and overwet conditions.

  16. TEM characterization of a silorane composite bonded to enamel/dentin.

    PubMed

    Mine, Atsushi; De Munck, Jan; Van Ende, Annelies; Cardoso, Marcio Vivan; Kuboki, Takuo; Yoshida, Yasuhiro; Van Meerbeek, Bart

    2010-06-01

    The low-shrinking composite composed of combined siloxane-oxirane technology (Filtek Silorane, 3M ESPE, Seefeld, Germany) required the development of a specific adhesive (Silorane System Adhesive, 3M ESPE), in particular because of the high hydrophobicity of the silorane composite. The purpose of this study was to characterize the interfacial ultra-structure at enamel and dentin using transmission electron microscopy (TEM). Non-demineralized/demineralized 70-90 nm sections were prepared following common TEM specimen processing procedures. TEM revealed a typical twofold build-up of the adhesive resin, resulting in a total adhesive layer thickness of 10-20 microm. At bur-cut enamel, a tight interface without distinct dissolution of hydroxyapatite was observed. At bur-cut dentin, a relatively thin hybrid layer of maximum a few hundreds of nanometer was formed without clear surface demineralization. No clear resin tags were formed. At fractured dentin, the interaction appeared very superficial (100-200 nm). Distinct resin tags were formed due to the absence of smear plugs. Silver-nitrate infiltration showed a varying pattern of both spot- and cluster-like appearance of nano-leakage. Traces of Ag were typically detected along some part of the enamel-adhesive interface and/or between the two adhesive resin layers. Substantially more Ag-infiltration was observed along the dentin-adhesive interface of bur-cut dentin, as compared to that of fractured dentin. The nano-interaction of Silorane System Adhesive should be attributed to its relatively high pH of 2.7. The obtained tight interface at both enamel and dentin indicates that the two-step self-etch adhesive effectively bridged the hydrophilic tooth substrate with the hydrophobic silorane composite. Copyright (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Hardness and elasticity of caries-affected and sound primary tooth dentin bonded with 4-META one-step self-etch adhesives

    PubMed Central

    Hosoya, Yumiko; Tay, Franklin R.; Miyakoshi, Shoichi; Pashley, David H.

    2013-01-01

    Purpose This study evaluated the quality of the interface of sound and carious primary tooth dentin bonded with two 4-META one-step self-etch adhesives. Methods Twelve sound and twelve carious primary molars were bonded with AQ Bond Plus (AQBP; Sun Medical) or Hybrid Bond (HB; Sun Medical) and restored with Clearfil Protect Liner F (Kuraray Medical Inc.). After 24 hours of water immersion, the teeth were sectioned and polished. Resin-dentin interfaces were measured with a nano-indentation tester and hardness and Young’s modulus were calculated. Data were analyzed using one-way or two-ways ANOVA and Fisher’s PLSD test with α=0.05. Resin-dentin interfaces were also observed with SEM and TEM. Ammoniacal silver nitrate was used as a tracer for TEM observation. Results Hardness and Young’s modulus of the interfacial dentin were significantly lower than the underlying intact dentin except for the carious-AQBP group. However, there was no significant difference of hardness and Young's moduli of the interfacial dentin among all groups. TEM revealed extensive interfacial nanoleakage in sound dentin bonded with either AQBP or HB. For the carious teeth, nanoleakage was absent in the hybrid layers bonded with the two adhesives. However, extensive silver deposits were identified from the subsurface, porous caries-affected dentin. PMID:18795517

  18. Bonding effectiveness of self-etch adhesives to dentin after 24 h water storage.

    PubMed

    Sarr, Mouhamed; Benoist, Fatou Leye; Bane, Khaly; Aidara, Adjaratou Wakha; Seck, Anta; Toure, Babacar

    2018-01-01

    This study evaluated the immediate bonding effectiveness of five self-etch adhesive systems bonded to dentin. The microtensile bond strength of five self-etch adhesives systems, including one two-step and four one-step self-etch adhesives to dentin, was measured. Human third molars had their superficial dentin surface exposed, after which a standardized smear layer was produced using a medium-grit diamond bur. The selected adhesives were applied according to their respective manufacturer's instructions for μTBS measurement after storage in water at 37°C for 24 h. The μTBS varied from 11.1 to 44.3 MPa; the highest bond strength was obtained with the two-step self-etch adhesive Clearfil SE Bond and the lowest with the one-step self-etch adhesive Adper Prompt L-Pop. Pretesting failures mainly occurring during sectioning with the slow-speed diamond saw were observed only with the one-step self-etch adhesive Adper Prompt L-Pop (4 out of 18). When bonded to dentin, the self-etch adhesives with simplified application procedures (one-step self-etch adhesives) still underperform as compared to the two-step self-etch adhesive Clearfil SE Bond.

  19. Microtensile bond strength of contemporary adhesives to primary enamel and dentin.

    PubMed

    Marquezan, Marcela; da Silveira, Bruno Lopes; Burnett, Luiz Henrique; Rodrigues, Célia Regina Martins Delgado; Kramer, Paulo Floriani

    2008-01-01

    The purpose of this study was to assess bond strength of three self-etching and two total-etch adhesive systems bonded to primary tooth enamel and dentin. Forty extracted primary human molars were selected and abraded in order to create flat buccal enamel and occlusal dentin surfaces. Teeth were assigned to one of the adhesive systems: Adper Scotch Bond Multi Purpose, Adper Single Bond 2, Adper Prompt L-Pop, Clearfil SE Bond and AdheSE. Immediately to adhesive application, a composite resin (Filtek Z250) block was built up. After 3 months of water storage, each sample was sequentially sectioned in order to obtain sticks with a square cross-sectional area of about 0.72 mm2. The specimens were fixed lengthways to a microtensile device and tested using a universal testing machine with a 50-N load cell at a crosshead speed of 0.5 mm/min. Microtensile bond strength values were recorded in MPa and compared by Analysis of Variance and the post hoc Tukey test (a = 0.05). In enamel, Clearfil SE Bond presented the highest values, followed by Adper Single Bond 2, AdheSE and Adper Scotch Bond Multi Purpose, without significant difference. The highest values in dentin were obtained with Adper Scotch Bond Multi Purpose and all other adhesives did not present significant different values from that, except Adper Prompt L-Pop that achieved the lowest bond strength in both substrates. Adper Scotch Bond Multi Purpose and Adper Single Bond 2 presented significantly lower values in enamel than in dentin although all other adhesives presented similar results in both substrates. contemporary adhesive systems present similar behaviors when bonded to primary teeth, with the exception of the one-step self-etching system; and self-etching systems can achieve bond strength values as good in enamel as in dentin of primary teeth.

  20. Enzyme-catalyzed hydrolysis of dentin adhesives containing a new urethane-based trimethacrylate monomer

    PubMed Central

    Park, Jong-Gu; Ye, Qiang; Topp, Elizabeth M.; Spencer, Paulette

    2009-01-01

    A new trimethacrylate monomer with urethane-linked groups, 1,1,1-tri-[4-(methacryloxyethylamino-carbonyloxy)-phenyl]ethane (MPE), was synthesized, characterized, and used as a co-monomer in dentin adhesives. Dentin adhesives containing 2-hydroxyethyl methacrylate (HEMA, 45% w/w) and 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA, 30% w/w) in addition to MPE (25% w/w) were formulated with H2O at 0 (MPE0), 8 (MPE8) and 16 wt % water (MPE16) to simulate the wet demineralized dentin matrix and compared with controls [HEMA/BisGMA, 45/55 w/w, at 0 (C0), 8 (C8) and 16 wt% water (C16)]. The new adhesive showed a degree of double bond conversion and mechanical properties comparable with control, with good penetration into the dentin surface and a uniform adhesive/dentin interface. On exposure to porcine liver esterase, the net cumulative methacrylic acid (MAA) release from the new adhesives was dramatically (P < 0.05) decreased relative to the control, suggesting that the new monomer improves esterase resistance. PMID:19582843

  1. Adhesive phase separation at the dentin interface under wet bonding conditions.

    PubMed

    Spencer, Paulette; Wang, Yong

    2002-12-05

    Under in vivo conditions, there is little control over the amount of water left on the tooth and, thus, there is the danger of leaving the dentin surface so wet that the bonding resin undergoes physical separation into hydrophobic and hydrophilic-rich phases. The purpose of this study was to investigate phase separation in 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA)-based adhesive using molecular microanalysis and to examine the effect of phase separation on the structural characteristics of the hybrid layer. Model BisGMA/HEMA (hydroxyethl methacrylate) mixtures with/without ethanol and commercial BisGMA-based adhesive (Single Bond) were combined with water at concentrations from 0 to 50 vol%. Macrophase separation in the BisGMA/HEMA/water mixtures was detected using cloud point measurements. In parallel with these measurements, the BisGMA/HEMA and adhesive/water mixtures were cast as films and polymerized. Molecular structure was recorded from the distinct features in the phase-separated adhesive using confocal Raman microspectroscopy (CRM). Human dentin specimens treated with Single Bond were analyzed with scanning electron microscopy (SEM) and CRM mapping across the dentin/adhesive interface. The model BisGMA/HEMA mixtures with ethanol and the commercial BisGMA-based adhesive experienced phase separation at approximately 25 vol% water. Raman spectra collected from the phase-separated adhesive indicated that the composition of the particles and surrounding matrix material was primarily BisGMA and HEMA, respectively. Based on SEM analysis, there was substantial porosity at the adhesive interface with dentin. Micro-Raman spectral analysis of the dentin/adhesive interface indicates that the contribution from the BisGMA component decreases by nearly 50% within the first micrometer. The morphologic results in corroboration with the spectroscopic data suggest that as a result of adhesive phase separation the hybrid layer is not an

  2. Effect of Fluoride-Releasing Adhesive Systems on the Mechanical Properties of Eroded Dentin.

    PubMed

    Guedes, Ana Paula Albuquerque; Moda, Mariana Dias; Suzuki, Thaís Yumi Umeda; Godas, André Gustavo de Lima; Sundfeld, Renato Herman; Briso, André Luiz Fraga; Santos, Paulo Henrique dos

    2016-01-01

    The aim of the study was to evaluate the effect of erosive pH cycling with solutions that simulate dental erosion on Martens hardness (HMV) and elastic modulus (Eit) of dentin restored with fluoride-releasing adhesive systems. Twenty-seven bovine dentin slabs were restored with three adhesive systems: Adper Single Bond 2 total-etch adhesive system, One Up Bond F and Clearfil SE Protect fluoride-containing self-etching adhesive systems. The restorations were made with Filtek Z250. The HMV and Eit values at distances of 10, 30, 50 and 70 µm from the interface were evaluated using a dynamic ultra microhardness tester before and after immersion in deionized water, citric acid and hydrochloric acid (n=9). Data were submitted to repeated-measures ANOVA and Fisher's PLSD tests (=0.05). After erosive cycling, HMV values of dentin decreased in all groups. For dentin restored with Adper Single Bond 2, the lowest values were found closer to the hybrid layer, while for One Up Bond F and Clearfil SE Protect, the values remained unaltered at all distances. For dentin restored with fluoride-releasing adhesive systems, a decrease in Eit was found, but after 30 µm this difference was not significant. The acid substances were able to alter HMV and Eit of the underlying dentin. For fluoride-releasing adhesives, the greater the distance from bonded interface, the lower the Eit values. The fluoride in One Up Bond F and Clearfil SE Protect was able to protect the underlying dentin closer to the materials. In this way, the fluoride from adhesive systems could have some positive effect in the early stages of erosive lesions.

  3. The influence of the energy density and other clinical parameters on bond strength of Er:YAG-conditioned dentin compared to conventional dentin adhesion.

    PubMed

    Gisler, Gottfried; Gutknecht, Norbert

    2014-01-01

    The aim of this in vitro study was to optimise clinical parameters and the energy density of Er:YAG laser-conditioned dentin for class V fillings. Shear tests in three test series were conducted with 24 freshly extracted human third molars as samples for each series. For every sample, two orofacial and two approximal dentin surfaces were prepared. The study design included different laser energies, a thin vs a thick bond layer, the influence of adhesives as well as one-time- vs two-time treatment. The best results with Er:YAG-conditioned dentin were obtained with fluences just above the ablation threshold (5.3 J/cm(2)) in combination with a self-etch adhesive, a thin bond layer and when bond and composite were two-time cured. Dentin conditioned this way reached an averaged bond strength of 23.32 MPa (SD 5.3) and 24.37 MPa (SD 6.06) for two independent test surfaces while showing no statistical significance to conventional dentin adhesion and two-time treatment with averaged bond strength of 24.93 MPa (SD 11.51). Significant reduction of bond strength with Er:YAG-conditioned dentin was obtained when using either a thick bond layer, twice the laser energy (fluence 10.6 J/cm(2)) or with no dentin adhesive. The discussion showed clearly that in altered (sclerotic) dentin, e.g. for class V fillings of elderly patients, bond strengths in conventional dentin adhesion are constantly reduced due to the change of the responsibles, bond giving dentin structures, whereas for Er:YAG-conditioned dentin, the only way to get an optimal microretentive bond pattern is a laser fluence just above the ablation threshold of sclerotic dentin.

  4. Advanced zinc-doped adhesives for high performance at the resin-carious dentin interface.

    PubMed

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; García-Godoy, Franklin; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2016-09-01

    The purpose of this study was to evaluate the remineralization ability of an etch-and-rinse Zn-doped resin applied on caries-affected dentin (CAD). CAD surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5M ethylenediaminetetraacetic acid (EDTA). 10wt% ZnO nanoparticles or 2wt% ZnCl2 were added into the adhesive Single Bond (SB), to create the following groups: PA+SB, PA+SB-ZnO, PA+SB-ZnCl2, EDTA+SB, EDTA+SB-ZnO, EDTA+SB-ZnCl2. Bonded interfaces were submitted to mechanical loading or stored during 24h. Remineralization of the bonded interfaces was studied by AFM nano-indentation (hardness and Young׳s modulus), Raman spectroscopy [mapping with principal component analysis (PCA), and hierarchical cluster analysis (HCA)] and Masson׳s trichrome staining technique. Dentin samples treated with PA+SB-ZnO attained the highest values of nano-mechanical properties. Load cycling increased both mineralization and crystallographic maturity at the interface; this effect was specially noticed when using ZnCl2-doped resin in EDTA-treated carious dentin. Crosslinking attained higher frequencies indicating better conformation and organization of collagen in specimens treated with PA+SB-ZnO, after load cycling. Trichrome staining technique depicted a deeper demineralized dentin fringe that became reduced after loading, and it was not observable in EDTA+SB groups. Multivariate analysis confirmed de homogenizing effect of load cycling in the percentage of variances, traces of centroids and distribution of clusters, especially in specimens treated with EDTA+SB-ZnCl2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bond strength and microleakage of current dentin adhesives.

    PubMed

    Fortin, D; Swift, E J; Denehy, G E; Reinhardt, J W

    1994-07-01

    The purpose of this in vitro study was to evaluate shear bond strengths and microleakage of seven current-generation dentin adhesive systems. Standard box-type Class V cavity preparations were made at the cemento-enamel junction on the buccal surfaces of eighty extracted human molars. These preparations were restored using a microfill composite following application of either All-Bond 2 (Bisco), Clearfil Liner Bond (Kuraray), Gluma 2000 (Miles), Imperva Bond (Shofu), OptiBond (Kerr), Prisma Universal Bond 3 (Caulk), Scotchbond Multi-Purpose (3M), or Scotchbond Dual-Cure (3M) (control). Lingual dentin of these same teeth was exposed and polished to 600-grit. Adhesives were applied and composite was bonded to the dentin using a gelatin capsule technique. Specimens were thermocycled 500 times. Shear bond strengths were determined using a universal testing machine, and microleakage was evaluated using a standard silver nitrate staining technique. Clearfill Liner Bond and OptiBond, adhesive systems that include low-viscosity, low-modulus intermediate resins, had the highest shear bond strengths (13.3 +/- 2.3 MPa and 12.9 +/- 1.5 MPa, respectively). Along with Prisma Universal Bond 3, they also had the least microleakage at dentin margins of Class V restorations. No statistically significant correlation between shear bond strength and microleakage was observed in this study. Adhesive systems that include a low-viscosity intermediate resin produced the high bond strengths and low microleakage. Similarly, two materials with bond strengths in the intermediate range had significantly increased microleakage, and one material with a bond strength in the low end of the spectrum exhibited microleakage that was statistically greater. Thus, despite the lack of statistical correlation, there were observable trends.

  6. Improved degree of conversion of model self-etching adhesives through their interaction with dentin

    PubMed Central

    Zhang, Ying; Wang, Yong

    2011-01-01

    Objective To investigate the correlation of the chemical interaction between model self-etching adhesives and dentin with the degree of conversion (DC) of the adhesives. Methods The model self-etching adhesives contained bis[2-methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA) with a mass ratio of 1/1, and 0-40% water contents, respectively. The adhesives were applied either onto the prepared dentin surface or unreactive substrates (such as glass slides), agitated for 15s, then light-cured for 40s. The DCs of the adhesives were determined using micro-Raman spectral and mapping analysis. Results The DCs of the adhesives cured on the dentin substrate were found to be significantly higher than those on the unreactive glass substrate. Moreover, the DCs of the adhesives displayed a decreasing trend as the distance from the dentin surface became greater. The chemical interaction of the acidic 2MP/HEMA adhesives with the mineral apatite in dentin was proposed to play a significant role for the observations. The chemical interaction could be validated by the spectral comparison in the phosphate regions of 1100 cm−1 and 960 cm−1 in the Raman spectra. The results also revealed a notable influence of water content on the DC of adhesives. The DCs of the adhesive at 10% water content exhibited the highest DC level for both substrates. Conclusions Interaction with dentin dramatically improved the degree of conversion of self-etching adhesives. Our ability to chemically characterize the a/d interface including in situ detection of the DC distribution is very important in understanding self-etching adhesive bonding under in vivo conditions. PMID:22024375

  7. Improved degree of conversion of model self-etching adhesives through their interaction with dentine.

    PubMed

    Zhang, Ying; Wang, Yong

    2012-01-01

    To investigate the correlation of the chemical interaction between model self-etching adhesives and dentine with the degree of conversion (DC) of the adhesives. The model self-etching adhesives contained bis[2-methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA) with a mass ratio of 1/1, and 0-40% water contents, respectively. The adhesives were applied either onto the prepared dentine surface or unreactive substrates (such as glass slides), agitated for 15s, then light-cured for 40s. The DCs of the adhesives were determined using micro-Raman spectral and mapping analysis. The DCs of the adhesives cured on the dentine substrate were found to be significantly higher than those on the unreactive glass substrate. Moreover, the DCs of the adhesives displayed a decreasing trend as the distance from the dentine surface became greater. The chemical interaction of the acidic 2MP/HEMA adhesives with the mineral apatite in dentine was proposed to play a significant role for the observations. The chemical interaction could be validated by the spectral comparison in the phosphate regions of 1100 cm(-1) and 960 cm(-1) in the Raman spectra. The results also revealed a notable influence of water content on the DC of adhesives. The DCs of the adhesive at 10% water content exhibited the highest DC level for both substrates. Interaction with dentine dramatically improved the degree of conversion of self-etching adhesives. Our ability to chemically characterise the a/d interface including in situ detection of the DC distribution is very important in understanding self-etching adhesive bonding under in vivo conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Bonding effectiveness of self-etch adhesives to dentin after 24 h water storage

    PubMed Central

    Sarr, Mouhamed; Benoist, Fatou Leye; Bane, Khaly; Aidara, Adjaratou Wakha; Seck, Anta; Toure, Babacar

    2018-01-01

    Purpose: This study evaluated the immediate bonding effectiveness of five self-etch adhesive systems bonded to dentin. Materials and Methods: The microtensile bond strength of five self-etch adhesives systems, including one two-step and four one-step self-etch adhesives to dentin, was measured. Human third molars had their superficial dentin surface exposed, after which a standardized smear layer was produced using a medium-grit diamond bur. The selected adhesives were applied according to their respective manufacturer's instructions for μTBS measurement after storage in water at 37°C for 24 h. Results: The μTBS varied from 11.1 to 44.3 MPa; the highest bond strength was obtained with the two-step self-etch adhesive Clearfil SE Bond and the lowest with the one-step self-etch adhesive Adper Prompt L-Pop. Pretesting failures mainly occurring during sectioning with the slow-speed diamond saw were observed only with the one-step self-etch adhesive Adper Prompt L-Pop (4 out of 18). Conclusions: When bonded to dentin, the self-etch adhesives with simplified application procedures (one-step self-etch adhesives) still underperform as compared to the two-step self-etch adhesive Clearfil SE Bond. PMID:29674814

  9. Enamel and dentin bond strengths of a new self-etch adhesive system.

    PubMed

    Walter, Ricardo; Swift, Edward J; Boushell, Lee W; Braswell, Krista

    2011-12-01

    statement of problem:  Self-etch adhesives typically are mildly acidic and therefore less effective than etch-and-rinse adhesives for bonding to enamel.   The purpose of this study was to evaluate the enamel and dentin shear bond strengths of a new two-step self-etch adhesive system, OptiBond XTR (Kerr Corporation, Orange, CA, USA).   The labial surfaces of 80 bovine teeth were ground to create flat, 600-grit enamel or dentin surfaces. Composite was bonded to enamel or dentin using the new two-step self-etch system or a three-step etch-and-rinse (OptiBond FL, Kerr), two-step self-etch (Clearfil SE Bond, Kuraray America, Houston, TX, USA), or one-step self-etch adhesive (Xeno IV, Dentsply Caulk, Milford, DE, USA). Following storage in water for 24 hours, shear bond strengths were determined using a universal testing machine. The enamel and dentin data sets were subjected to separate analysis of variance and Tukey's tests. Scanning electron microscopy was used to evaluate the effects of each system on enamel.   Mean shear bond strengths to enamel ranged from 18.1 MPa for Xeno IV to 41.0 MPa for OptiBond FL. On dentin, the means ranged from 33.3 MPa for OptiBond FL to 47.1 MPa for Clearfil SE Bond. OptiBond XTR performed as well as Clearfil SE Bond on dentin and as well as OptiBond FL on enamel. Field emission scanning electron microscope revealed that OptiBond XTR produced an enamel etch pattern that was less defined than that of OptiBond FL (37.5% phosphoric acid) but more defined than that of Clearfil SE Bond or Xeno IV.   The new two-step self-etch adhesive system formed excellent bonds to enamel and dentin in vitro. OptiBond XTR, a new two-step self-etch adhesive system, is a promising material for bonding to enamel as well as to dentin. © 2011 Wiley Periodicals, Inc.

  10. The effect of dentine surface preparation and reduced application time of adhesive on bonding strength.

    PubMed

    Saikaew, Pipop; Chowdhury, A F M Almas; Fukuyama, Mai; Kakuda, Shinichi; Carvalho, Ricardo M; Sano, Hidehiko

    2016-04-01

    This study evaluated the effects of surface preparation and the application time of adhesives on the resin-dentine bond strengths with universal adhesives. Sixty molars were cut to exposed mid-coronal dentine and divided into 12 groups (n=5) based on three factors; (1) adhesive: G-Premio Bond (GP, GC Corp., Tokyo, Japan), Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc., Okayama, Japan) and Scotchbond Universal Adhesive (SB, 3M ESPE, St. Paul, MN, USA); (2) smear layer preparation: SiC paper ground dentine or bur-cut dentine; (3) application time: shortened time or as manufacturer's instruction. Fifteen resin-dentine sticks per group were processed for microtensile bond strength test (μTBS) according to non-trimming technique (1mm(2)) after storage in distilled water (37 °C) for 24h. Data were analyzed by three-way ANOVA and Dunnett T3 tests (α=0.05). Fractured surfaces were observed under scanning electron microscope (SEM). Another 12 teeth were prepared and cut into slices for SEM examination of bonded interfaces. μTBS were higher when bonded to SiC-ground dentine according to manufacturer's instruction. Bonding to bur-cut dentine resulted in significantly lower μTBS (p<0.000). Shortening the application time resulted in significantly lower bond strength for CU on SiC and GP on bur-cut dentine. SEM of fractured surfaces revealed areas with a large amount of porosities at the adhesive resin interface. This was more pronounced when adhesives were bonded with a reduced application time and on bur cut dentine. The performance of universal adhesives can be compromised on bur cut dentine and when applied with a reduced application time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

    PubMed Central

    Spencer, Paulette; Ye, Qiang; Park, Jonggu; Topp, Elizabeth M.; Misra, Anil; Marangos, Orestes; Wang, Yong; Bohaty, Brenda S.; Singh, Viraj; Sene, Fabio; Eslick, John; Camarda, Kyle; Katz, J. Lawrence

    2010-01-01

    Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:20195761

  12. Bonding of universal adhesives to dentine--Old wine in new bottles?

    PubMed

    Chen, C; Niu, L-N; Xie, H; Zhang, Z-Y; Zhou, L-Q; Jiao, K; Chen, J-H; Pashley, D H; Tay, F R

    2015-05-01

    Multi-mode universal adhesives offer clinicians the choice of using the etch-and-rinse technique, selective enamel etch technique or self-etch technique to bond to tooth substrates. The present study examined the short-term in vitro performance of five universal adhesives bonded to human coronal dentine. Two hundred non-carious human third molars were assigned to five groups based on the type of the universal adhesives (Prime&Bond Elect, Scotchbond Universal, All-Bond Universal, Clearfil Universal Bond and Futurabond U). Two bonding modes (etch-and-rinse and self-etch) were employed for each adhesive group. Bonded specimens were stored in deionized water for 24h or underwent a 10,000-cycle thermocycling ageing process prior to testing (N=10). Microtensile bond testing (μTBS), transmission electron microscopy (TEM) of resin-dentine interfaces in non-thermocycled specimens and scanning electron microscopy (SEM) of tracer-infused water-rich zones within hybrid layers of thermocycled specimens were performed. Both adhesive type and testing condition (with/without thermocycling) have significant influences on μTBS. The use of each adhesive in either the etch-and-rinse or self-etch application mode did not result in significantly different μTBS to dentine. Hybrid layers created by these adhesives in the etch-and-rinse bonding mode and self-etch bonding mode were ∼5μm and ≤0.5μm thick respectively. Tracer-infused regions could be identified within the resin-dentine interface from all the specimens prepared. The increase in versatility of universal adhesives is not accompanied by technological advances for overcoming the challenges associated with previous generations of adhesives. Therapeutic adhesives with bio-protective and bio-promoting effects are still lacking in commercialized adhesives. Universal adhesives represent manufacturers' attempt to introduce versatility in product design via adaptation of a single-bottle self-etch adhesive for other application

  13. Influence of previous acid etching on bond strength of universal adhesives to enamel and dentin.

    PubMed

    Torres, Carlos Rocha Gomes; Zanatta, Rayssa Ferreira; Silva, Tatiane Josefa; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler

    2017-01-01

    The objective of this study was to evaluate the effect of acid pretreatment on the bond strength of composite resin bonded to enamel and dentin with 2 different universal self-etching adhesives. The null hypothesis was that the acid treatment performed prior to adhesive application would not significantly change the bond strength to enamel or dentin for either universal adhesive tested. A sample of 112 bovine incisors were selected and embedded in acrylic resin. Half were ground until a flat enamel surface was obtained, and the other half were polished until a 6 × 6-mm area of dentin was exposed, resulting into 2 groups (n = 56). The enamel and dentin groups were divided into 2 subgroups according to the adhesive system applied: Futurabond U or Scotchbond Universal. Each of these subgroups was divided into 2 additional subgroups (n = 14); 1 subgroup received phosphoric acid pretreatment, and 1 subgroup did not. The bond strength was assessed with a microtensile test. Data from enamel and dentin specimens were analyzed separately using 1-way analysis of variance. The acid pretreatment did not significantly change the bond strength of the adhesives tested, either to enamel (P = 0.4161) or to dentin (P = 0.4857). The acid etching pretreatment did not affect the bond strength to dentin and enamel when the tested universal multipurpose adhesive systems were used.

  14. Effect of application mode on interfacial morphology and chemistry between dentin and self-etch adhesives

    PubMed Central

    Zhang, Ying; Wang, Yong

    2012-01-01

    Objective To investigate the influence of application mode on the interfacial morphology and chemistry between dentin and self-etch adhesives with different aggressiveness. Methods The occlusal one-third of the crown was removed from un-erupted human third molars, followed by abrading with 600 grit SiC under water. Rectangular dentin slabs were prepared by sectioning the tooth specimens perpendicular to the abraded surfaces. The obtained dentin slabs were treated with one of the two one-step self-etch adhesives: Adper Easy Bond (AEB, PH~2.5) and Adper Prompt L-Pop (APLP, PH~0.8) with (15s, active application) or without (15s, inactive application) agitation. The dentin slabs were fractured and the exposed adhesive/dentin (A/D) interfaces were examined with micro-Raman spectroscopy and scanning electron microscopy (SEM). Results The interfacial morphology, degree of dentin demineralization (DD) and degree of conversion (DC) of the strong self-etch adhesive APLP showed more significant dependence on the application mode than the mild AEB. APLP exhibited inferior bonding at the A/D interface if applied without agitation, evidenced by debonding from the dentin substrate. The DDs and DCs of the APLP with agitation were higher than those of without agitation in the interface, in contrast to the comparable DD and DC values of two AEB specimen groups with different application modes. Raman spectral analysis revealed the important role of chemical interaction between acid monomers of self-etch adhesives and dentin in the above observations. Conclusion The chemical interaction with dentin is especially important for improving the DC of the strong self-etching adhesive at the A/D interface. Agitation could benefit polymerization efficacy of the strong self-etch adhesive through enhancing the chemical interaction with tooth substrate. PMID:23153573

  15. Tensile bond strength of filled and unfilled adhesives to dentin.

    PubMed

    Braga, R R; Cesar, P F; Gonzaga, C C

    2000-04-01

    To determine the tensile bond strength of three filled and two unfilled adhesives applied to bovine dentin. Fragments of the labial dentin of bovine incisors were embedded in PVC cylinders with self-cure acrylic resin, and ground flat using 200 grit and 600 grit sandpaper. The following adhesive systems were tested (n=10): Prime & Bond NT, Prime & Bond NT dual cure, Prime & Bond 2.1, OptiBond Solo and Single Bond. A 3 mm-diameter bonding surface was delimited using a perforated adhesive tape. After etching with 37% phosphoric acid and adhesive application, a resin-based composite truncated cone (TPH, shade A3) was built. Tensile test was performed after 24 hrs storage in distilled water at 37 degrees C. Failure mode was accessed using a x10 magnification stereomicroscope. Weibull statistical analysis revealed significant differences in the characteristic strength between Single Bond and Prime & Bond NT dual cure, and between Single Bond and Prime & Bond 2.1. The Weibull parameter (m) was statistically similar among the five groups. Single Bond and Prime & Bond NT showed areas of dentin cohesive failure in most of the specimens. For OptiBond Solo, Prime & Bond NT dual cure and Prime & Bond 2.1 failure was predominantly adhesive.

  16. Zinc oxide eugenol paste jeopardises the adhesive bonding to primary dentine.

    PubMed

    Pires, C W; Lenzi, T L; Soares, F Z M; Rocha, R O

    2018-05-12

    This was to evaluate the influence of root canal filling pastes on microshear bond strength (µSBS) of an adhesive system to primary dentine. Human (32) primary molars were randomly assigned into four experimental groups (n = 8): zinc oxide eugenol paste (ZOE); iodoform paste (Guedes-Pinto paste); calcium hydroxide paste thickened with zinc oxide; and no filling paste (control). Flat dentine surfaces were covered with a 1 mm-thick layer of the pastes for 15 min at 37 °C. The pastes were mechanically removed from dentine surfaces, followed by rinsing and drying. After adhesive application (Adper Single Bond 2, 3M ESPE), starch tubes were placed over pre-treated dentine and filled with composite resin (Z250, 3M ESPE). The µSBS test was performed after 24 h of water storage at 37 °C. The failure mode was evaluated using a stereomicroscope. The µSBS values (MPa) were analysed with one-way ANOVA and Tukey post-hoc tests (α = 0.05). The lowest µSBS values were achieved when ZOE was used. No difference was found among other filling pastes compared with control group. All specimens showed adhesive/mixed failures. Zinc oxide eugenol paste negatively influenced the bond strength of adhesive systems to primary dentine. Iodoform-based Guedes-Pinto paste and calcium hydroxide paste thickened with zinc oxide did not influence the microshear bond strength values.

  17. Swelling equilibrium of dentin adhesive polymers formed on the water-adhesive phase boundary: Experiments and micromechanical model

    PubMed Central

    Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Singh, Viraj; Spencer, Paulette

    2013-01-01

    During their application to the wet, oral environment, dentin adhesives can experience phase separation and composition change which can compromise the quality of the hybrid layer formed at the dentin-adhesive interface. The chemical composition of polymer phases formed in the hybrid layer can be represented using a ternary water-adhesive phase diagram. In this paper, these polymer phases have been characterized using a suite of mechanical tests and swelling experiments. The experimental results were evaluated using granular micromechanics based model that incorporates poro-mechanical effects and polymer-solvent thermodynamics. The variation of the model parameters and model-predicted polymer properties has been studied as a function of composition along the phase boundary. The resulting structure-property correlations provide insight into interactions occurring at the molecular level in the saturated polymer system. These correlations can be used for modeling the mechanical behavior of hybrid layer, and are expected to aid in the design and improvement of water-compatible dentin adhesive polymers. PMID:24076070

  18. [The effects of the processing technic on dentinal adhesion].

    PubMed

    Krejci, I; Lutz, F; Perisic, U

    1992-01-01

    In this in vitro study, the effect of application techniques on marginal adaptation of thermal cycled class V restorations restored with an actual dentinal adhesive were quantitated using SEM and dye penetration. Under optimal application conditions, excellent results were generated: though a simple bulk insertion technique was used, no difference was found between enamel and dentin margins before and after thermal loading. On the other hand, contamination of the bonding agent with saliva before composite resin insertion dramatically decreased the percentage of "excellent margin" in dentin and in enamel. Similar effects were found after protecting the bonding agent with an insulating gel. No improvement in marginal adaptation was found after reapplication of the bonding agent. The class V inlay did not show better results than the direct filling technique. However, postcured inlays performed better than their non-postcured counterparts. Without etching enamel with a phosphoric acid gel, but by priming its surface, approximately 80% of "excellent margin" were found in enamel before thermal cycling. This percentage decreased significantly after thermal loading. Restorations totally confined to dentin had slightly lower percentages of "excellent margin" than the mixed class V fillings. The results of this study indicated, that by using dentinal adhesives, little changes and deviations from the correct procedure result in significant alterations in marginal adaptation.

  19. Tensile and bending fatigue of the adhesive interface to dentin.

    PubMed

    Belli, Renan; Baratieri, Luiz Narciso; Braem, Marc; Petschelt, Anselm; Lohbauer, Ulrich

    2010-12-01

    The aim of this study was to evaluate the fatigue limits of the dentin-composite interfaces established either with an etch-and-rinse or an one-step self-etch adhesive systems under tensile and bending configurations. Flat specimens (1.2 mm×5 mm×35 mm) were prepared using a plexiglass mold where dentin sections from human third molars were bonded to a resin composite, exhibiting the interface centrally located. Syntac Classic and G-Bond were used as adhesives and applied according to the manufacturer's instructions. The fluorochrome Rhodamine B was added to the adhesives to allow for fractographic evaluation. Tensile strength was measured in an universal testing machine and the bending strength (n=15) in a Flex machine (Flex, University of Antwerp, Belgium), respectively. Tensile (TFL) and bending fatigue limits (BFL) (n=25) were determined under wet conditions for 10(4) cycles following a staircase approach. Interface morphology and fracture mechanisms were observed using light, confocal laser scanning and scanning electron microscopy. Statistical analysis was performed using three-way ANOVA (mod LSD test, p<0.05). Tensile and bending characteristic strengths at 63.2% failure probability for Syntac were 23.8 MPa and 71.5 MPa, and 24.7 MPa and 72.3 MPa for G-Bond, respectively. Regarding the applied methods, no significant differences were detected between adhesives. However, fatigue limits for G-Bond (TFL=5.9 MPa; BFL=36.2 MPa) were significantly reduced when compared to Syntac (TFL=12.6 MPa; BFL=49.7 MPa). Fracture modes of Syntac were generally of adhesive nature, between the adhesive resin and dentin, while G-Bond showed fracture planes involving the adhesive-dentin interface and the adhesive resin. Cyclic loading under tensile and bending configurations led to a significant strength degradation, with a more pronounced fatigue limit decrease for G-Bond. The greater decrease in fracture strength was observed in the tensile configuration. Copyright © 2010

  20. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin.

    PubMed

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; Moraes, Rafael Ratto de

    2017-01-01

    This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup.

  1. Effectiveness and biological compatibility of different generations of dentin adhesives.

    PubMed

    da Silva, João M F; Rodrigues, José R; Camargo, Carlos H R; Fernandes, Virgilio Vilas Boas; Hiller, Karl-Anton; Schweikl, Helmut; Schmalz, Gottfried

    2014-01-01

    Besides possessing good mechanical properties, dental materials should present a good biological behavior and should not injure the involved tissues. Bond strength and biocompatibility are both highly significant properties of dentin adhesives. For that matter, these properties of four generations of adhesive systems (Multi-Purpose/Single Bond/SE Plus/Easy Bond) were evaluated. Eighty bovine teeth had their dentin exposed (500- and 200-μm thickness). Adhesive was applied on the dentin layer of each specimen. Following that, the microshearing test was performed for all samples. A dentin barrier test was used for the cytotoxicity evaluation. Cell cultures (SV3NeoB) were collected from testing materials by means of 200- or 500-μm-thick dentin slices and placed in a cell culture perfusion chamber. Cell viability was measured 24 h post-exposition by means of a photometrical test (MTT test). The best bonding performance was shown by the single-step adhesive Easy Bond (21 MPa, 200 μm; 27 MPa, 500 μm) followed by Single Bond (15.6 MPa, 200 μm; 23.4 MPa, 500 μm), SE Plus (18.2 MPa, 200 μm; 20 MPa, 500 μm), and Multi-Purpose (15.2 MPa, 200 μm; 17.9 MPa, 500 μm). Regarding the cytotoxicity, Multi-Purpose slightly reduced the cell viability to 92% (200 μm)/93% (500 μm). Single Bond was reasonably cytotoxic, reducing cell viability to 71% (200 μm)/64% (500 μm). The self-etching adhesive Scotchbond SE decreased cell viability to 85% (200 μm)/71% (500 μm). Conversely, Easy Bond did not reduce cell viability in this test, regardless of the dentin thickness. Results showed that the one-step system had the best bond strength performance and was the least toxic to pulp cells. In multiple-step systems, a correct bonding technique must be done, and a pulp capping strategy is necessary for achieving good performance in both properties. The study showed a promising system (one-step self-etching), referring to it as a good alternative for specific cases, mainly due to its

  2. Immediate bonding properties of universal adhesives to dentine.

    PubMed

    Muñoz, Miguel Angel; Luque, Issis; Hass, Viviane; Reis, Alessandra; Loguercio, Alessandro Dourado; Bombarda, Nara Hellen Campanha

    2013-05-01

    To evaluate the dentine microtensile bond strength (μTBS), nanoleakage (NL), degree of conversion (DC) within the hybrid layer for etch-and-rinse and self-etch strategies of universal simplified adhesive systems. forty caries free extracted third molars were divided into 8 groups for μTBS (n=5), according to the adhesive and etching strategy: Clearfil SE Bond [CSE] and Adper Single Bond 2 [SB], as controls; Peak Universal Adhesive System, self-etch [PkSe] and etch-and-rinse [PkEr]; Scotchbond Universal Adhesive, self-etch [ScSe] and etch-and-rinse [ScEr]; All Bond Universal, self-etch [AlSe] and etch-and-rinse [AlEr]. After restorations were constructed, specimens were stored in water (37°C/24h) and then resin-dentine sticks were prepared (0.8mm(2)). The sticks were tested under tension at 0.5mm/min. Some sticks from each tooth group were used for DC determination by micro-Raman spectroscopy or nanoleakage evaluation (NL). The pH for each solution was evaluated using a pH metre. Data were analyzed with one-way ANOVA and Tukey's test (α=0.05). For μTBS, only PkSe and PkEr were similar to the respective control groups (p>0.05). AlSe showed the lowest μTBS mean (p<0.05). For NL, ScEr, ScSe, AlSe, and AlEr showed the lowest NL similar to control groups (p<0.05). For DC, only ScSe showed lower DC than the other materials (p<0.05). Performance of universal adhesives was shown to be material-dependent. The results indicate that this new category of universal adhesives used on dentine as either etch-and-rinse or self-etch strategies were inferior as regards at least one of the properties evaluated (μTBS, NL and DC) in comparison with the control adhesives (CSE for self-etch and SB for etch-and-rinse). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Long-term In Vitro Adhesion of Polyalkenoate-based Adhesives to Dentin.

    PubMed

    Sezinando, Ana; Perdigão, Jorge; Ceballos, Laura

    2017-01-01

    To study the influence of a polyalkenoate copolymer (VCP) on the immediate (24 h) and 6-month dentin bonding stability of VCP-based adhesives, using microtensile bond strength (μTBS), nanoleakage (NL), and ultramorphological analyses (FE-SEM). Eighty-four caries-free molars were randomly assigned to seven adhesives: Clearfil SE Bond (CSE, Kuraray Noritake); Adper Single Bond Plus (SB, 3M ESPE); SB without VCP (SBnoVCP, 3M ESPE); Scotchbond Universal Adhesive applied as a etch-and-rinse adhesive (SBU_ER); SBU without VCP applied as an etch-and-rinse adhesive (SBUnoVCP_ER); SBU applied as a self-etch adhesive (SBU_SE, 3M ESPE); SBU without VCP applied as a self-etch adhesive (SBUnoVCP_SE, 3M ESPE). Half of the beams were tested after 24 h, and the other half was aged in water for 6 months prior to testing. For each tooth/evaluation time, two beams were randomly selected for NL analysis. Statistical analyses of µTBS results were performed using two-way ANOVA, Tukey's post-hoc tests, and Student's t-test for paired data (α = 0.05). Nanoleakage was statistically analyzed using the Kruskal-Wallis and Mann-Whitney tests, with Wilcoxon's test for paired data. For FE-SEM, four caries-free molars were assigned to each of the seven groups. Dentin disks were restored and cross sectioned into halves. One half was observed at 24 h, and the other at 6 months. The highest 6-month mean μTBS was obtained with SBU_SE/SBUnoVCP_SE and SBUnoVCP_ER. SBUnoVCP_SE resulted in greater silver deposition at 6 months. FE-SEM observations showed that CSE and SBU_SE specimens resulted in a submicron hybrid layer without signs of degradation at 6 months. VCP may contribute to the long-term bonding stability of VCP-based adhesives.

  4. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin

    PubMed Central

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; de Moraes, Rafael Ratto

    2017-01-01

    Abstract Objectives: This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Material and methods: Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. Results: In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Conclusion: Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup. PMID:29069150

  5. [The adhesive properties of two bonding systems to tetracycline stained dentin].

    PubMed

    Liu, H L; Liang, K N; Cheng, L; Li, J Y; He, L B

    2016-01-01

    To investigate and compare the bonding properties of Single Bond 2 and SE Bond to tetracycline stained dentin in vitro. Ten extracted tetracycline stained human teeth and ten extracted normal human teeth were collected and the occlusal dentin surfaces of all extracted teeth were exposed. The tetracycline stained teeth and normal teeth were divided into two groups, respectively and randomly, based on the adhesives applied. Total-etch adhesive(Single Bond 2) and self-etch adhesive(SE Bond) were used. After application of the adhesives to the dentin surfaces, composite crowns were built up. After 24 h water storage, the teeth were sectioned longitudinally into sticks(0.9 mm×0.9 mm bonding area) for micro tensile testing or micro Raman spectroscopy detection. Bonding strength(μTBS) and resin conversion rate were analyzed using one-way ANOVA. The tetracycline Single Bond 2 group presented lower bonding strength[(16.17 ± 3.16) MPa] than the tetracycline SE Bond group[(25.82 ± 2.62) MPa], and also demonstrated lower bonding strength than the normal Single Bond 2 group[(29.13 ± 2.44) MPa] and the normal SE Bond group[(24.29±2.83) MPa] (P<0.05) , while there was no statistical differences among the other three groups(P>0.05). The resin conversion rate of tetracycline Single Bond 2 group[(55±6)%] was significantly lower than the tetracycline SE Bond group[(66±3)% ](P<0.05) and also lower than the normal Single Bond 2 group[(64 ± 5)%] and the normal SE Bond group[(65 ± 4)%] (P<0.05). No statistically significant differences were observed among the other three groups(P>0.05). The bonding strength of total-etch adhesive system to the tetracycline stained dentin was significantly lower than that to the normal dentin.

  6. Immediate adhesive properties to dentin and enamel of a universal adhesive associated with a hydrophobic resin coat.

    PubMed

    Perdigão, J; Muñoz, M A; Sezinando, A; Luque-Martinez, I V; Staichak, R; Reis, A; Loguercio, A D

    2014-01-01

    To evaluate the effect of acid etching and application of a hydrophobic resin coat on the enamel/dentin bond strengths and degree of conversion (DC) within the hybrid layer of a universal adhesive system (G-Bond Plus [GB]). A total of 60 extracted third molars were divided into four groups for bond-strength testing, according to the adhesive strategy: GB applied as a one-step self-etch adhesive (1-stepSE); GB applied as in 1-stepSE followed by one coat of the hydrophobic resin Heliobond (2-stepSE); GB applied as a two-step etch-and-rinse adhesive (2-stepER); GB applied as in 2-stepER followed by one coat of the hydrophobic resin Heliobond (3-stepER). There were 40 teeth used for enamel microshear bond strength (μSBS) and DC; and 20 teeth used for dentin microtensile bond strength (μTBS) and DC. After restorations were constructed, specimens were stored in water (37°C/24 h) and then tested at 0.5 mm/min (μTBS) or 1.0 mm/min (μSBS). Enamel-resin and dentin-resin interfaces from each group were evaluated for DC using micro-Raman spectroscopy. Data were analyzed with two-way analysis of variance for each substrate and the Tukey test (α=0.05). For enamel, the use of a hydrophobic resin coat resulted in statistically significant higher mean enamel μSBS only for the ER strategy (3-stepER vs 2-stepER, p<0.0002). DC was significantly improved for the SE strategy (p<0.00002). For dentin, the use of a hydrophobic resin coat resulted in significantly higher dentin mean μTBS only for the SE strategy (2-stepSE vs 1-stepSE, p<0.0007). DC was significantly improved in groups 2-stepSE and 3-stepER when compared with 1-stepSE and 2-stepER, respectively (p<0.0009). The use of a hydrophobic resin coat may be beneficial for the selective enamel etching technique, because it improves bond strengths to enamel when applied with the ER strategy and to dentin when used with the SE adhesion strategy. The application of a hydrophobic resin coat may improve DC in resin-dentin

  7. Halloysite nanotube incorporation into adhesive systems—effect on bond strength to human dentin.

    PubMed

    Alkatheeri, Mohammed S; Palasuk, Jadesada; Eckert, George J; Platt, Jeffrey A; Bottino, Marco C

    2015-11-01

    This study aimed to evaluate the effect of Halloysite® aluminosilicate clay nanotube (HNT) incorporation into a two-step etch-and-rinse (ER) and a one-step self-etch (SE) adhesive on human dentin shear bond strength (SBS). Ten groups (n = 12) were prepared according to the adhesive system (i.e., ER or SE) and amount of HNT incorporated (5-20%, w/v), as follows: commercial control (i.e., the adhesive was used as purchased, 0% HNT); experimental control (i.e., the adhesive was processed through mixing/stirring and sonication similarly to the HNT-incorporated experimental groups, but without HNT); and 5, 10, and 20% HNT. SBS testing was performed after 24 h of storage in deionized water at 37 °C. Failure modes were examined using a stereomicroscope (×40). Scanning electron microscopy (SEM) of the resin-dentin interface of selected specimens was carried out. Two-way ANOVA revealed that incorporation of HNT up to 20% (w/v) in ER and up to 10% (w/v) in SE demonstrated an increased SBS compared to their experimental controls. Compared to the commercial control, SBS of HNT-modified dentin adhesives was not significantly different for ER adhesives (p > 0.05) but was significantly higher with 5% HNT in the SE adhesive (p < 0.05). Failure modes were predominantly adhesive and mixed failures. SEM micrographs of resin-dentin interfaces for ER-commercial control and ER-10% showed a similar morphology. A thicker adhesive layer and the presence of agglomerated HNT on the resin tags were seen in ER-10%. An increased number of short resin tags in SE-5% compared with SE-commercial control were observed. HNT addition up to 20% in ER and up to 10 % in SE showed increased SBS to dentin compared with the experimental control. HNT can be used not only to reinforce adhesive resins but also hold potential for the development of bioactive adhesives by the encapsulation of matrix metalloproteinase (MMP) inhibitors or anticariogenic agents.

  8. PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface.

    PubMed

    Priyadarshini, Balasankar Meera; Mitali, Kakran; Lu, Thong Beng; Handral, Harish K; Dubey, Nileshkumar; Fawzy, Amr S

    2017-07-01

    To characterize and deliver fabricated CHX-loaded PLGA-nanoparticles inside micron-sized dentinal-tubules of demineralized dentin-substrates and resin-dentin interface. Nanoparticles fabricated by emulsion evaporation were assessed in-vitro by different techniques. Delivery of drug-loaded nanoparticles to demineralized dentin substrates, interaction with collagen matrix, and ex-vivo CHX-release profiles using extracted teeth connected to experimental setup simulating pulpal hydrostatic pressure were investigated. Furthermore, nanoparticles association/interaction with a commercial dentin-adhesive applied to demineralized dentin substrates were examined. The results showed that the formulated nanoparticles demonstrated attractive physicochemical properties, low cytotoxicity, potent antibacterial efficacy, and slow degradation and gradual CHX release profiles. Nanoparticles delivered efficiently inside dentinal-tubules structure to sufficient depth (>10μm) against the simulated upward pulpal hydrostatic-pressure, even after bonding-resins infiltration and were attached/retained on collagen-fibrils. These results verified the potential significance of this newly introduced drug-delivery therapeutic strategy for future clinical applications and promote for a new era of future dental research. This innovative drug-delivery strategy has proven to be a reliable method for delivering treatments that could be elaborated for other clinical applications in adhesive and restorative dentistry. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Pre-treating dentin with chlorhexadine and CPP-ACP: self-etching and universal adhesive systems

    PubMed Central

    dos Santos, Ricardo Alves; de Lima, Eliane Alves; Montes, Marcos Antônio Japiassu Resende; Braz, Rodivan

    2016-01-01

    Abstract Objective: The aim of the present study was to compare the effect of pre-treating dentin with chlorhexidine, at concentrations of 0.2% and 2%, and remineralizing paste containing CPP-ACP (MI Paste – GC) on the bond strength of adhesive systems. Material and methods: In total, 80 slides of dentin were used. These slides were 2 mm thick and were obtained from bovine incisors. Standard cavities were created using diamond bur number 3131. In the control groups, a Scotchbond Universal Adhesive (SUA) self-etching adhesive system of 3M ESPE and a Clearfil SE Bond (CSE) adhesive system of Kuraray were applied, following the manufacturer’s instructions. In the other groups, dentin was pretreated with chlorhexidine (0.2% and 2%) for 1 min and with MI Paste for 3 min. The cavities were restored with Z350 XT resin (3M ESPE). After 24 h of storage, the push-out test was applied at a speed of 0.5 mm/min. Results: The different dentin pretreatment techniques did not affect the intra-adhesive bond strength. There was a difference between treatment with MI Paste and chlorhexidine 0.2% in favor of the SUA, with values of 15.22 and 20.25 Mpa, respectively. Conclusions: The different pretreatment methods did not alter the immediate bond strength to dentin. Differences were only recorded when comparing the adhesives. PMID:28642915

  10. Pre-treating dentin with chlorhexadine and CPP-ACP: self-etching and universal adhesive systems.

    PubMed

    Dos Santos, Ricardo Alves; de Lima, Eliane Alves; Montes, Marcos Antônio Japiassu Resende; Braz, Rodivan

    2016-12-01

    Objective: The aim of the present study was to compare the effect of pre-treating dentin with chlorhexidine, at concentrations of 0.2% and 2%, and remineralizing paste containing CPP-ACP (MI Paste - GC) on the bond strength of adhesive systems. Material and methods: In total, 80 slides of dentin were used. These slides were 2 mm thick and were obtained from bovine incisors. Standard cavities were created using diamond bur number 3131. In the control groups, a Scotchbond Universal Adhesive (SUA) self-etching adhesive system of 3M ESPE and a Clearfil SE Bond (CSE) adhesive system of Kuraray were applied, following the manufacturer's instructions. In the other groups, dentin was pretreated with chlorhexidine (0.2% and 2%) for 1 min and with MI Paste for 3 min. The cavities were restored with Z350 XT resin (3M ESPE). After 24 h of storage, the push-out test was applied at a speed of 0.5 mm/min. Results: The different dentin pretreatment techniques did not affect the intra-adhesive bond strength. There was a difference between treatment with MI Paste and chlorhexidine 0.2% in favor of the SUA, with values of 15.22 and 20.25 Mpa, respectively. Conclusions: The different pretreatment methods did not alter the immediate bond strength to dentin. Differences were only recorded when comparing the adhesives.

  11. Amalgam shear bond strength to dentin using single-bottle primer/adhesive systems.

    PubMed

    Cobb, D S; Denehy, G E; Vargas, M A

    1999-10-01

    To evaluate the in vitro shear bond strengths (SBS) of a spherical amalgam alloy (Tytin) to dentin using several single-bottle primer/adhesive systems both alone: Single Bond (SB), OptiBond Solo (Sol), Prime & Bond 2.1 (PB), One-Step (OS) and in combination with the manufacturer's supplemental amalgam bonding agent: Single Bond w/3M RelyX ARC (SBX) and Prime & Bond 2.1 w/Amalgam Bonding Accessory Kit (PBA). Two, three-component adhesive systems, Scotchbond Multi-Purpose (SBMP) and Scotchbond Multi-Purpose Plus w/light curing (S + V) and w/o light curing (S+) were used for comparison. One hundred eight extracted human third molars were mounted lengthwise in phenolic rings with acrylic resin. The proximal surfaces were ground to expose a flat dentin surface, then polished to 600 grit silicon carbide paper. The teeth were randomly assigned to 9 groups (n = 12), and dentin surfaces in each group were treated with an adhesive system according to the manufacturer's instructions, except for S + V specimens, where the adhesive was light cured for 10 s before placing the amalgam. Specimens were then secured in a split Teflon mold, having a 3 mm diameter opening and amalgam was triturated and condensed onto the treated dentin surfaces. Twenty minutes after condensation, the split mold was separated. Specimens were placed in distilled water for 24 hrs, then thermocycled (300 cycles, between 5 degrees C and 55 degrees C, with 12 s dwell time). All specimens were stored in 37 degrees C distilled water for 7 days, prior to shear strength testing using a Zwick Universal Testing Machine at a cross-head speed of 0.5 mm/min. The highest to the lowest mean dentin shear bond strength values (MPa) for the adhesive systems tested were: S + V (10.3 +/- 2.3), SBX (10.2 +/- 3.5), PBA, (6.4 +/- 3.6), SOL (5.8 +/- 2.5), SBMP (5.7 +/- 1.8), S+ (4.8 +/- 2.3), PB (2.7 +/- 2.6), SB (2.7 +/- 1.1) and OS (2.5 +/- 1.8). One-way ANOVA and Duncan's Multiple Range Test indicated significant

  12. Shear bond strength of one-step self-etch adhesives to dentin: Evaluation of NaOCl pretreatment.

    PubMed

    Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio; Scribante, Andrea

    2018-02-01

    The aim of this study was to evaluate the influence of dentin pretreatment with NaOCl on shear bond strength of four one-step self-etch adhesives with different pH values. Bovine permanent incisors were used. Four one-step self-etch adhesives were tested: Adper™ Easy Bond, Futurabond NR, G-aenial Bond, Clearfil S3 Bond. One two-step self-etch adhesive (Clearfil SE Bond) was used as control. Group 1- no pretreatment; group 2- pretratment with 5,25 % NaOCl; group 3- pretreatment with 37 % H3PO4 etching and 5,25 % NaOCl. A hybrid composite resin was inserted into the dentin surface. The specimens were tested in a universal testing machine. The examiners evaluated the fractured surfaces in optical microscope to determine failure modes, quantified with adhesive remnant index (ARI). Dentin pretreatment variably influenced bond strength values of the different adhesive systems. When no dentin pretreatment was applied, no significant differences were found ( P >.05) among four adhesives tested. No significant differences were recorded when comparing NaOCl pretreatment with H3PO4 + NaOCl pretreatment for all adhesive tested ( P >.05) except Clearfil S3 Bond that showed higher shear bond strength values when H3PO4 was applied. Frequencies of ARI scores were calculated. The influence of dentin pretreatment with NaOCl depends on the composition of each adhesive system used. There was no difference in bond strength values among self-etch adhesives with different pH values. Key words: Dentin, pretreatment, self-etch adhesives.

  13. Comparison between universal adhesives and two-step self-etch adhesives in terms of dentin bond fatigue durability in self-etch mode.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2017-06-01

    This aim of this study was to compare universal adhesives and two-step self-etch adhesives in terms of dentin bond fatigue durability in self-etch mode. Three universal adhesives - Clearfil Universal, G-Premio Bond, and Scotchbond Universal Adhesive - and three-two-step self-etch adhesives - Clearfil SE Bond, Clearfil SE Bond 2, and OptiBond XTR - were used. The initial shear bond strength and shear fatigue strength of resin composite bonded to adhesive on dentin in self-etch mode were determined. Scanning electron microscopy observations of fracture surfaces after bond strength tests were also made. The initial shear bond strength of universal adhesives was material dependent, unlike that of two-step self-etch adhesives. The shear fatigue strength of Scotchbond Universal Adhesive was not significantly different from that of two-step self-etch adhesives, unlike the other universal adhesives. The shear fatigue strength of universal adhesives differed depending on the type of adhesive, unlike those of two-step self-etch adhesives. The results of this study encourage the continued use of two-step self-etch adhesive over some universal adhesives but suggest that changes to the composition of universal adhesives may lead to a dentin bond fatigue durability similar to that of two-step self-etch adhesives. © 2017 Eur J Oral Sci.

  14. Effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin.

    PubMed

    Singh, Payal; Nagpal, Rajni; Singh, Udai Pratap

    2017-08-01

    This in vitro study evaluated the effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin. Flat coronal dentin surfaces were prepared in 120 extracted human molars. Teeth were randomly divided into 5 groups ( n = 24) according to 5 different surface pre-treatments: No pre-treatment (control); 1M carbodiimide (EDC); 0.1% epigallocatechin-3-gallate (EGCG); 2% minocycline (MI); 10% sodium ascorbate (SA). After surface pre-treatment, adhesive (Adper Single Bond 2 [SB], 3M ESPE) was applied. Composite was applied into transparent plastic tubes (2.5 mm in diameter), which was placed over the bonded dentin surface. From each group, 10 samples were subjected to shear bond strength (SBS) evaluation at 24 hours (immediate) and remaining 10 samples were tested after 6 months (delayed). Additionally, 4 samples per group were subjected to scanning electron microscopic analysis for observation of resin-dentin interface. The data were statistically analysed with Shaperio‑Wilk W test, 2-way analysis of variance (ANOVA), and post hoc Tukey's test. At 24 hours, SBS of all surface pre-treatment groups were comparable with the control group, with significant differences found between EDC and SA groups only ( p = 0.009). After 6 months storage, EDC, EGCG, and MI pre-treatments preserved the resin-dentin bond strength with no significant fall. Dentin pre-treatment with all the dentin biomodifiers except SA resulted in significant preservation of resin-dentin bond over 6 months storage period, without negatively affecting the immediate bond strength of the etch and rinse adhesive tested.

  15. Effect of nano-hydroxyapatite on bone morphogenetic protein-2-induced hard tissue formation and dentin resorption on a dentin surface

    NASA Astrophysics Data System (ADS)

    Tamagawa, Hiroki; Tenkumo, Taichi; Sugaya, Tsutomu; Kawanami, Masamitsu

    2012-12-01

    AimThe purpose of this study was to evaluate the effects of the addition of nano-hydroxyapatite to a collagen membrane-carrier of recombinant human bone morphogenetic protein-2 (rhBMP-2) on hard tissue formation and dentin resorption on dentin surfaces in vivo. Materials and methodsNano-hydroxyapatite collagen composite (nHAC) membranes or collagen (C) membranes were each immersed in either 100 or 400 μg/ml rhBMP-2 and placed on dentin chips that were implanted into rat thigh muscle. The implants were analyzed at 2 or 4 weeks after surgery by histological observation and histomorphometric analysis. ResultsThe percentage of the hard tissue formed by each nHAC group was significantly higher than that formed by any of the C groups, except for that formed by the group loaded with 400 μg/ml rhBMP-2 at 4 weeks after implantation. No significant differences were observed in the percentage of dentin resorption between the nHAC groups and C groups at any stage or at any rhBMP-2 concentration. ConclusionThese findings showed that addition of nano-hydroxyapatite to a collagen membrane accelerated the formation of hard tissue induced by a low dose of rhBMP-2 on dentin surfaces at an early stage after implantation into rat thigh muscle, without increasing dentin resorption.

  16. The effects of ethanol on the size-exclusion characteristics of type I dentin collagen to adhesive resin monomers.

    PubMed

    Chiba, A; Zhou, J; Nakajima, M; Tan, J; Tagami, J; Scheffel, D L S; Hebling, J; Agee, K A; Breschi, L; Grégoire, G; Jang, S S; Tay, F R; Pashley, D H

    2016-03-01

    During dentin bonding with etch-and-rinse adhesive systems, phosphoric acid etching of mineralized dentin solubilizes the mineral crystallites and replaces them with bound and unbound water. During the infiltration phase of dentin bonding, solvated adhesive resin comonomers are supposed to replace all of the unbound collagen water and polymerize into copolymers. A recently published review suggested that dental monomers are too large to enter and displace water from tightly-packed collagen molecules. Conversely, recent work from the authors' laboratory demonstrated that HEMA and TEGDMA freely equilibrate with water-saturated dentin matrices. However, because adhesive blends are solvated in organic solvents, those solvents may remove enough free water to allow collagen molecules to come close enough to exclude adhesive monomer permeation. The present study analyzed the size-exclusion characteristics of dentin collagen, using a gel permeation-like column chromatography technique, filled with dentin powder instead of Sephadex beads as the stationary phase. The elution volumes of different sized test molecules, including adhesive resin monomers, studied in both water-saturated dentin, and again in ethanol-dehydrated dentin powder, showed that adhesive resin monomers can freely diffuse into both hydrated and dehydrated collagen molecules. Under these in vitro conditions, all free and some of the loosely-bound water seems to have been removed by ethanol. These results validate the concept that adhesive resin monomers can permeate tightly-bound water in ethanol-saturated collagen molecules during infiltration by etch-and-rinse adhesives. It has been reported that collagen molecules in dentin matrices are packed too close together to allow permeation of adhesive monomers between them. Resin infiltration, in this view, would be limited to extrafibrillar spaces. Our work suggests that monomers equilibrate with collagen water in both water and ethanol-saturated dentin

  17. Reinforcement of dentin in self-etch adhesive technology: a new concept.

    PubMed

    Waidyasekera, Kanchana; Nikaido, Toru; Weerasinghe, Dinesh S; Ichinose, Shizuko; Tagami, Junji

    2009-08-01

    Characterize the ultramorphology and secondary caries inhibition potential of different dentin adhesive systems in order to find a satisfactory explanation resist to recurrent caries. Human premolar dentin was treated with one of the two self-etching adhesive systems, Clearfil SE Bond, Clearfil Protect Bond or an acid-etching adhesive system, Single Bond. The bonded interface was exposed to an artificial demineralizing solution (pH 4.5) for 90 min and then 5% sodium hypochlorite for 20 min. Transmission electron microscopic observation was performed at the adhesive-dentin interface. The width of the reinforced zone was measured and data were analyzed with univariate analysis of variance under general linear model. In order to identify type of crystallites in the reinforced zone selected area electron diffraction was performed. An acid-base resistant zone (ABRZ) was found adjacent to the hybrid layer in the outer lesion front with only Clearfil SE Bond and Clearfil Protect Bond, while Single Bond was devoid of this protective zone. Crystallite arrangement and the ultramorphology were almost similar in the corresponding regions of Clearfil SE Bond and Clearfil Protect Bond. However, thickness of the ABRZ at the mid portion was 1159(+/-41.91)nm in Clearfil protect Bond, which was significantly thicker than that of Clearfil SE Bond (F=514.84, p<0.001). Selected area electron diffraction confirmed the crystallites in the zone as apatite. The self-etching adhesive systems created a new reinforced acid resistant dentin under the hybrid layer. Difference in the thickness of the zone expressed a different potential for demineralization inhibition.

  18. Effects of acid etching and adhesive treatments on host-derived cysteine cathepsin activity in dentin.

    PubMed

    Zhang, Wenhao; Yang, Weixiang; Wu, Shuyi; Zheng, Kaibin; Liao, Weili; Chen, Boli; Yao, Ke; Liang, Guobin; Li, Yan

    2014-10-01

    To analyze the effects of different processes during bonding on endogenous cysteine cathepsin activity in dentin. Dentin powder, prepared from extracted human third molars, was divided into 10 groups. Two lots of dentin powder were used to detect the effects of the procedure of protein extraction on endogenous cathepsin activity. The others were used to study effects of different acid-etching or adhesive treatments on enzyme activity. Concentrations of 37% phosphoric acid or 10% phosphoric acid, two etch-and-rinse adhesive systems, and two self-etching adhesive systems were used as dentin powder treatments. The untreated mineralized dentin powder was set as the control. After treatment, the proteins of each group were extracted. The total cathepsin activity in the extracts of each group was monitored with a fluorescence reader. In the control group, there were no significant differences in cathepsin activity between the protein extract before EDTA treatment and the protein extract after EDTA treatment (p > 0.05). The cathepsin activities of the three different extracts in the 37% phosphoric acid-treated group were different from each other (p < 0.05). The two acid-etching groups and two etch-and-rinse groups showed significant enzyme activity reduction vs the control group (p < 0.05). There were no significant differences between those four groups (p > 0.05). Treating the dentin powder with any of the two self-etching adhesives resulted in an increase in cathepsin activity (p < 0.05). The activity of cysteine cathepsins can be detected in dentin powder. Treatment with EDTA during protein extraction exerted an influence on cathepsin activity. Acid etching or etch-and-rinse adhesive systems may reduce the activity of endogenous cathepsins in dentin. Self-etching adhesive systems may increase the enzyme activity.

  19. Smear layer-deproteinizing improves bonding of one-step self-etch adhesives to dentin.

    PubMed

    Thanatvarakorn, Ornnicha; Prasansuttiporn, Taweesak; Thittaweerat, Suppason; Foxton, Richard M; Ichinose, Shizuko; Tagami, Junji; Hosaka, Keiichi; Nakajima, Masatoshi

    2018-03-01

    Smear layer deproteinizing was proved to reduce the organic phase of smear layer covered on dentin surface. It was shown to eliminate hybridized smear layer and nanoleakage expression in resin-dentin bonding interface of two-step self-etch adhesive. This study aimed to investigate those effects on various one-step self-etch adhesives. Four different one-step self-etch adhesives were used in this study; SE One (SE), Scotchbond™ Universal (SU), BeautiBond Multi (BB), and Bond Force (BF). Flat human dentin surfaces with standardized smear layer were prepared. Smear layer deproteinizing was carried out by the application of 50ppm hypochlorous acid (HOCl) on dentin surface for 15s followed by Accel ® (p-toluenesulfinic acid salt) for 5s prior to adhesive application. No surface pretreatment was used as control. Microtensile bond strength (μTBS) and nanoleakage under TEM observation were investigated. The data were analyzed by two-way ANOVA and Tukey's post-hoc test and t-test at the significant level of 0.05. Smear layer deproteinizing significantly improved μTBS of SE, SU, and BB (p<0.001). Hybridized smear layer observed in control groups of SE, BB, and BF, and reticular nanoleakage presented throughout the hybridized complex in control groups of BB and BF were eliminated upon the smear layer deproteinizing. Smear layer deproteinizing by HOCl and Accel ® application could enhance the quality of dentin for bonding to one-step self-etch adhesives, resulting in the improving μTBS, eliminating hybridized smear layer and preventing reticular nanoleakage formation in resin-dentin bonding interface. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Defying ageing: An expectation for dentine bonding with universal adhesives?

    PubMed

    Zhang, Zheng-yi; Tian, Fu-cong; Niu, Li-na; Ochala, Kirsten; Chen, Chen; Fu, Bai-ping; Wang, Xiao-yan; Pashley, David H; Tay, Franklin R

    2016-02-01

    The present study evaluated the long-term dentine bonding effectiveness of five universal adhesives in etch-and-rinse or self-etch mode after 12 months of water-ageing. The adhesives evaluated included All-Bond Universal, Clearfil Universal Bond, Futurabond U Prime&Bond Elect and Scotchbond Universal. Microtensile bond strength and transmission electron microscopy of the resin-dentine interfaces created in human coronal dentine were examined after 24h or 12 months. Microtensile bond strength were significantly affected by bonding strategy (etch-and-rinse vs self-etch) and ageing (24h vs 12 months). All subgroups showed significantly decreased bond strength after ageing except for Prime&Bond Elect and Scotchbond Universal used in self-etch mode. All five adhesives employed in etch-and-rinse mode exhibited ultrastructural features characteristic of collagen degradation and resin hydrolysis. A previously-unobserved inside-out collagen degradation pattern was identified in hybrid layers created by 10-MDP containing adhesives (All-Bond Universal, Scotchbond Universal and Clearfil Universal Bond) in the etch-and-rinse mode, producing partially degraded collagen fibrils with intact periphery and a hollow core. In the self-etch mode, all adhesives except for Prime&Bond Elect exhibited degradation of the collagen fibrils along the thin hybrid layers. The three 10-MDP containing universal adhesives did not protect surface collagen fibrils from degradation when bonding was performed in the self-etch mode. Despite the adjunctive conclusion that bonds created by universal adhesives in the self-etch bonding mode are more resistant to decline in bond strength when compared with those bonds created using the etch-and-rinse mode, bonds created by universal adhesives are generally incapable of defying ageing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Does Shortened Application Time Affect Long-Term Bond Strength of Universal Adhesives to Dentin?

    PubMed

    Saikaew, P; Matsumoto, M; Chowdhury, Afma; Carvalho, R M; Sano, H

    2018-04-09

    This study evaluated the effect of shortened application time on long-term bond strength with universal adhesives. Three universal adhesives were used: Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc, Tokyo, Japan), Scotchbond Universal Adhesive (SB, 3M ESPE, St Paul, MN, USA) or G-Premio Bond (GP, GC Corp, Tokyo, Japan). Sixty molars were cut to expose midcoronal dentin and prepared with a regular diamond bur. Each adhesive was applied either according to the manufacturer's instruction or with shortened time. Specimens were stored in distilled water at 37°C for 24 hours and then cut into resin-dentin sticks. Microtensile bond strength (μTBS) was tested after either 24 hours or 1 year of water storage. Data were analyzed by the three-way ANOVA and Duncan tests ( α=0.05). Fracture modes were analyzed under a scanning electron microscope (SEM). One dentin stick per group was selected after fracture mode analysis and further observed using transmission electron microscopy (TEM). Six additional dentin discs were prepared and conditioned with each adhesive under the different application time to observe the adhesive-smear layer interaction by SEM. Shortened application time affected the μTBS ( p<0.001) while storage time did not affect bond strength ( p=0.187). A significant effect of shortened application time on μTBS was observed in the CU at 1 year and in the GP at both storage times. One-year storage time had no effect on the μTBS of universal adhesives to bur-cut dentin. The performance of universal adhesives can be compromised when applied using a shortened application time.

  2. Influence of Er,Cr:YSGG laser treatment on the microtensile bond strength of adhesives to dentin.

    PubMed

    Cardoso, Marcio Vivan; Coutinho, Edurado; Ermis, R Banu; Poitevin, André; Van Landuyt, Kirsten; De Munck, Jan; Carvalho, Rubens C R; Lambrechts, Paul; Van Meerbeek, Bart

    2008-02-01

    In light of the concept of minimally invasive dentistry, erbium lasers have been considered as an alternative technique to the use of diamond burs for cavity preparation. The purpose of this study was to assess the bonding effectiveness of adhesives to Er,Cr:YSGG laser-irradiated dentin using irradiation settings specific for cavity preparation. Fifty-four midcoronal dentin surfaces, obtained from sound human molars, were irradiated with an Er,Cr:YSGG laser or prepared with a diamond bur using a high-speed turbine. One etch-and-rinse (Optibond FL/Kerr) and three self-etching adhesives (Adper Prompt L-Pop/3M ESPE, Clearfil SE Bond/Kuraray, and Clearfil S3 Bond/Kuraray) were used to bond the composite to dentin. The microtensile bond strength (microTBS) was determined after 24 h of storage in water at 37 degrees C. The Kruskal-Wallis test was used to determine pairwise statistical differences (p < 0.05). Prepared dentin surfaces, adhesive interfaces, and failure patterns were analyzed using a stereomicroscope and Field-emission gun Scanning Electron Microscopy (Feg-SEM). Significantly lower microTBS was observed to laser-irradiated than to bur-cut dentin (p < 0.05), irrespective of the adhesive employed. Feg-SEM photomicrographs of lased dentin revealed an imbricate patterned substrate and the presence of microcracks at the dentin surface. Morphological alterations produced by Er,Cr:YSGG laser-irradiation adversely influence the bonding effectiveness of adhesives to dentin.

  3. Fracture toughness of dentin/resin-composite adhesive interfaces.

    PubMed

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p < 0.05) between the dental adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  4. Synthesis and evaluation of novel siloxane-methacrylate monomers used as dentin adhesives.

    PubMed

    Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette

    2014-09-01

    The objectives of this study were to synthesize two new siloxane-methacrylate (SM) monomers for application in dentin adhesives and to investigate the influence of different functionality of the siloxane-containing monomers on the adhesive photopolymerization, water sorption, and mechanical properties. Two siloxane-methacrylate monomers (SM1 and SM2) with four and eight methacrylate groups were synthesized. Dentin adhesives containing BisGMA, HEMA and the siloxane-methacrylate monomers were photo-polymerized. The experimental adhesives were compared with the control adhesive (HEMA/BisGMA, 45/55, w/w) and characterized with regard to degree of conversion (DC), water miscibility of the liquid resin, water sorption and dynamic mechanical analysis (DMA). The experimental adhesives exhibited improved water miscibility as compared to the control. When cured in the presence of 12 wt% water to simulate the wet environment of the mouth, the SM-containing adhesives showed DC comparable to the control. The experimental adhesives showed higher rubbery modulus than the control under dry conditions. Under wet conditions, the mechanical properties of the formulations containing SM monomer with increased functionality were comparable with the control, even with more water sorption. The concentration and functionality of the newly synthesized siloxane-methacrylate monomers affected the water miscibility, water sorption and mechanical properties of the adhesives. The experimental adhesives show improved water compatibility compared with the control. The mechanical properties were enhanced with an increase of the functionality of the siloxane-containing monomers. The results provide critical structure/property relationships and important information for future development of durable, versatile siloxane-containing dentin adhesives. Published by Elsevier Ltd.

  5. Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities.

    PubMed

    Li, Yuncong; Hu, Xiaoyi; Xia, Yang; Ji, Yadong; Ruan, Jianping; Weir, Michael D; Lin, Xiaoying; Nie, Zhihong; Gu, Ning; Masri, Radi; Chang, Xiaofeng; Xu, Hockin H K

    2018-06-20

    A nanoparticle-doped adhesive that can be controlled with magnetic forces was recently developed to deliver drugs to the pulp and improve adhesive penetration into dentin. However, it did not have bactericidal and remineralization abilities. The objectives of this study were to: (1) develop a magnetic nanoparticle-containing adhesive with dimethylaminohexadecyl methacrylate (DMAHDM), amorphous calcium phosphate nanoparticles (NACP) and magnetic nanoparticles (MNP); and (2) investigate the effects on dentin bond strength, calcium (Ca) and phosphate (P) ion release and anti-biofilm properties. MNP, DMAHDM and NACP were mixed into Scotchbond SBMP at 2%, 5% and 20% by mass, respectively. Two types of magnetic nanoparticles were used: acrylate-functionalized iron nanoparticles (AINPs); and iron oxide nanoparticles (IONPs). Each type was added into the resin at 1% by mass. Dentin bonding was performed with a magnetic force application for 3min, provided by a commercial cube-shaped magnet. Dentin shear bond strengths were measured. Streptococcus mutans biofilms were grown on resins, and metabolic activity, lactic acid and colony-forming units (CFU) were determined. Ca and P ion concentrations in, and pH of biofilm culture medium were measured. Magnetic nanoparticle-containing adhesive using magnetic force increased the dentin shear bond strength by 59% over SBMP Control (p<0.05). Adding DMAHDM and NACP did not adversely affect the dentin bond strength (p>0.05). The adhesive with MNP+DMAHDM+NACP reduced the S. mutans biofilm CFU by 4 logs. For the adhesive with NACP, the biofilm medium became a Ca and P ion reservoir. The biofilm culture medium of the magnetic nanoparticle-containing adhesive with NACP had a safe pH of 6.9, while the biofilm medium of commercial adhesive had a cariogenic pH of 4.5. Magnetic nanoparticle-containing adhesive with DMAHDM and NACP under a magnetic force yielded much greater dentin bond strength than commercial control. The novel adhesive

  6. Evaluation of microtensile bond strength of self-etching adhesives on normal and caries-affected dentin.

    PubMed

    Shibata, Shizuma; Vieira, Luiz Clovis Cardoso; Baratieri, Luiz Narciso; Fu, Jiale; Hoshika, Shuhei; Matsuda, Yasuhiro; Sano, Hidehiko

    2016-01-01

    The purpose of this study was to evaluate the µTBS (microtensile bond strength) of currently available self-etching adhesives with an experimental self-etch adhesive in normal and caries-affected dentin, using a portable hardness measuring device, in order to standardize dentin Knoop hardness. Normal (ND) and caries-affected dentin (CAD) were obtained from twenty human molars with class II natural caries. The following adhesive systems were tested: Mega Bond (MB), a 2-step self-etching adhesive; MTB-200 (MTB), an experimental 1-step self-etching adhesive (1-SEA), and two commercially available one-step self-etching systems, G-Bond Plus (GB) and Adper Easy Bond (EB). MB-ND achieved the highest µTBS (p<0.05). The mean µTBS was statistically lower in CAD than in ND for all adhesives tested (p<0.05), and the 2-step self-etch adhesive achieved better overall performance than the 1-step self-etch adhesives.

  7. Mechanisms Regulating the Degradation of Dentin Matrices by Endogenous Dentin Proteases and their Role in Dental Adhesion. A Review

    PubMed Central

    Sabatini, Camila; Pashley, David H.

    2015-01-01

    Purpose This systematic review provides an overview of the different mechanisms proposed to regulate the degradation of dentin matrices bye host-derived dentin proteases, particularly as it relates to their role in dental adhesion. Methods Significant developments have taken place over the last few years that have contributed to a better understanding of all the factors affecting the durability of adhesive resin restorations. The complexity of dentin-resin interfaces mandates a thorough understanding of all the mechanical, physical and biochemical aspects that play a role in the formation of hybrid layers. The ionic and hydrophilic nature of current dental adhesives yields permeable, unstable hybrid layers susceptible to water sorption, hydrolytic degradation and resin leaching. The hydrolytic activity of host-derived proteases also contributes to the degradation of the resin-dentin bonds. Preservation of the collagen matrix is critical to the improvement of resin-dentin bond durability. Approaches to regulate collagenolytic activity of dentin proteases have been the subject of extensive research in the last few years. A shift has occurred from the use of proteases inhibitors to the use of collagen cross-linking agents. Data provided by fifty-one studies published in peer-reviewed journals between January 1999 and December 2013 was compiled in this systematic review. Results Appraisal of the data provided by the studies included in the present review yielded a summary of the mechanisms which have already proven to be clinically successful and those which need further investigation before new clinical protocols can be adopted. PMID:25831604

  8. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    PubMed

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  9. Long-term durability of one-step adhesive-composite systems to enamel and dentin.

    PubMed

    Foxton, Richard M; Melo, Luciana; Stone, David G; Pilecki, Peter; Sherriff, Martin; Watson, Timothy F

    2008-01-01

    This study evaluated the long-term durability of three one-step adhesive-composite systems to ground enamel and dentin. Twenty-seven teeth were randomly divided into three groups of nine. The first group had its crowns sectioned to expose superficial dentin, which was then ground with 600 grit SiC paper. One of three one-step adhesives: a trial bonding agent, OBF-2; i Bond or Adper Prompt L-Pop was applied to the dentin of three teeth and built-up with the corresponding resin composite (Estelite sigma, Venus or Filtek Supreme). The second group of nine teeth had their enamel approximal surfaces ground with wet 600-grit SiC paper, then one of the three one-step adhesives was applied and built-up with resin composite. The bonded specimens were sliced into 0.7 mm-thick slabs. After 24 hours and one year of water storage at 37 degrees C, the slabs were sectioned into beams for the microtensile bond strength test. Failure modes were observed using optical and electron scanning microscopy. The third group of nine teeth had approximal wedge-shaped cavities prepared above the CEJ into dentin. Two-to-three grains of rhodamine B were added to each of the three adhesives prior to restoring the cavities with resin composite. After 24 hours storage, the teeth were sectioned and their interfaces examined with a laser scanning confocal microscope. The bond strengths of the three adhesive-composite systems to both enamel and dentin significantly lessened after one year of water storage, however, there was no significant difference between the materials.

  10. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells.

    PubMed

    Galler, K M; Widbiller, M; Buchalla, W; Eidt, A; Hiller, K-A; Hoffer, P C; Schmalz, G

    2016-06-01

    To evaluate the effect of dentine conditioning on migration, adhesion and differentiation of dental pulp stem cells. Dentine discs prepared from extracted human molars were pre-treated with EDTA (10%), NaOCl (5.25%) or H2 O. Migration of dental pulp stem cells towards pre-treated dentine after 24 and 48 h was assessed in a modified Boyden chamber assay. Cell adhesion was evaluated indirectly by measuring cell viability. Expression of mineralization-associated genes (COL1A1, ALP, BSP, DSPP, RUNX2) in cells cultured on pre-treated dentine for 7 days was determined by RT-qPCR. Nonparametric statistical analysis was performed for cell migration and cell viability data to compare different groups and time-points (Mann-Whitney U-test, α = 0.05). Treatment of dentine with H2 O or EDTA allowed for cell attachment, which was prohibited by NaOCl with statistical significance (P = 0.000). Furthermore, EDTA conditioning induced cell migration towards dentine. The expression of mineralization-associated genes was increased in dental pulp cells cultured on dentine after EDTA conditioning compared to H2 O-pre-treated dentine discs. EDTA conditioning of dentine promoted the adhesion, migration and differentiation of dental pulp stem cells towards or onto dentine. A pre-treatment with EDTA as the final step of an irrigation protocol for regenerative endodontic procedures has the potential to act favourably on new tissue formation within the root canal. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. The effect of double-coating and times on the immediate and 6-month dentin bonding of universal adhesives.

    PubMed

    Pashaev, Diial; Demirci, Mustafa; Tekçe, Neslihan; Tuncer, Safa; Baydemir, Canan

    2017-01-01

    The purpose of this study was to evaluate the effect of double-application coats and times on microtensile bond strength (μTBS) and adhesive-dentin interfaces created by dentin adhesive systems after 6 months of storage in water. Two-hundred sixteen extracted non-carious human third molars were selected for the study. Single-Bond Universal (SU) and All-Bond Universal (AU), Adper Easy One (Eo) Self-Etch adhesive and Adper Single-Bond 2 (Sb) etch-and-rinse adhesive were applied to a flat dentin surface using three methods (1): dentin adhesives were applied as recommended by the manufacturers; (2): two consecutive coats of dentin adhesives were applied before photo-polymerization; and (3): a single coat of adhesive was applied but with twice the manufacturers recommended application time. Microtensile bond strength was determined either immediately or after 6 months of water storage. Data were analyzed using one-way analysis of variance and Tukey's post-hoc tests. At 24 h, groups 1, 2, and 3 exhibited statistically similar results for all dentin adhesive systems. For AU-Er, group 3 showed significantly higher bond strength than all group of AU-Se after 6 months. Universal adhesives seemed more stable against water degradation than traditional two-step etch-and-rinse and all-in-one systems within the 6-month period.

  12. Effects of Different Radiation Doses on the Bond Strengths of Two Different Adhesive Systems to Enamel and Dentin.

    PubMed

    da Cunha, Sandra Ribeiro de Barros; Ramos, Pedro Augusto Minorin Mendes; Haddad, Cecília Maria Kalil; da Silva, João Luis Fernandes; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa

    2016-01-01

    To evaluate the effects of three different radiation doses on the bond strengths of two different adhesive systems to enamel and dentin. Eighty human third molars were randomly divided into four groups (n = 20) according to the radiation dose (control/no radiation, 20 Gy, 40 Gy, and 70 Gy). The teeth were sagittally sectioned into three slices: one mesial and one distal section containing enamel and one middle section containing dentin. The sections were then placed in the enamel and dentin groups, which were further divided into two subgroups (n = 10) according to the adhesive used. Three restorations were performed in each tooth (one per section) using Adper Single Bond 2 (3M ESPE) or Universal Single Bond (3M ESPE) adhesive system and Filtek Z350 XT (3M ESPE) resin composite and subjected to the microshear bond test. Data were analyzed using a two-way ANOVA followed by Tukey's test. Failure modes were examined under a stereoscopic loupe. Radiotherapy did not affect the bond strengths of the adhesives to either enamel or dentin. In dentin, the Universal Single Bond adhesive system showed higher bond strength values when compared with the Adper Single Bond adhesive system. More adhesive failures were observed in the enamel for all radiation doses and adhesives. Radiotherapy did not influence the bond strength to enamel or dentin, irrespective of the adhesive or radiation dose used.

  13. Shear bond strengths of self-etching adhesives to caries-affected dentin on the gingival wall.

    PubMed

    Koyuturk, Alp Erdin; Sengun, Abdulkadir; Ozer, Fusun; Sener, Yagmur; Gokalp, Alparslan

    2006-03-01

    The purpose of this study was to evaluate the bonding ability of five current self-etching adhesives to caries-affected dentin on the gingival wall. Seventy extracted human molars with approximal dentin caries were employed in this study. In order to obtain caries-affected dentin on the gingival wall, grinding was performed under running water. Following which, specimens mounted in acrylic blocks and composite resins of the bonding systems were bonded to dentin with plastic rings and then debonded by shear bond strength. With Clearfil SE Bond, bonding to caries-affected dentin showed the highest bond strength. With Optibond Solo Plus Self-Etch, bonding to caries-affected dentin showed higher shear bond strength than AQ Bond, Tyrian SPE & One-Step Plus, and Prompt-L-Pop (p<0.05). Further, the bond strengths of Clearfil SE Bond and Optibond Solo Plus Self-Etch to sound dentin were higher than those of Prompt-L-Pop, AQ Bond, and Tyrian SPE & One-Step Plus (p<0.05). In conclusion, besides micromechanical interlocking through hybrid layer formation, bond strength of self-etch adhesives to dentin may be increased from additional chemical interaction between the functional monomer and residual hydroxyapatite. The results of this study confirmed that differences in bond strength among self-etching adhesives to both caries-affected and sound dentin were due to chemical composition rather than acidity.

  14. Synthesis and evaluation of novel siloxane-methacrylate monomers used as dentin adhesives

    PubMed Central

    Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette

    2014-01-01

    Objectives The objectives of this study were to synthesize two new siloxane-methacrylate (SM) monomers for application in dentin adhesives and to investigate the influence of different functionality of the siloxane-containing monomers on the adhesive photopolymerization, water sorption, and mechanical properties. Materials and method Two siloxane-methacrylate monomers (SM1 and SM2) with four and eight methacrylate groups were synthesized. Dentin adhesives containing BisGMA, HEMA and the siloxane-methacrylate monomers were photo-polymerized. The experimental adhesives were compared with the control adhesive (HEMA/BisGMA 45/55 w/w) and characterized with regard to degree of conversion (DC), water miscibility of the liquid resin, water sorption and dynamic mechanical analysis (DMA). Results The experimental adhesives exhibited improved water miscibility as compared to the control. When cured in the presence of 12 wt % water to simulate the wet environment of the mouth, the SM-containing adhesives showed DC comparable to the control. The experimental adhesives showed higher rubbery modulus than the control under dry conditions. Under wet conditions, the mechanical properties of the formulations containing SM monomer with increased functionality were comparable with the control, even with more water sorption. Significance The concentration and functionality of the newly synthesized siloxane-methacrylate monomers affected the water miscibility, water sorption and mechanical properties of the adhesives. The experimental adhesives show improved water compatibility compared with the control. The mechanical properties were enhanced with an increase of the functionality of the siloxane-containing monomers. The results provide critical structure/property relationships and important information for future development of durable, versatile siloxane-containing dentin adhesives. PMID:24993811

  15. Influence of degradation conditions on dentin bonding durability of three universal adhesives.

    PubMed

    Sai, Keiichi; Shimamura, Yutaka; Takamizawa, Toshiki; Tsujimoto, Akimasa; Imai, Arisa; Endo, Hajime; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2016-11-01

    This study aims to determine dentin bonding durability of universal adhesives using shear bond strength (SBS) tests under various degradation conditions. G-Premio Bond (GP, GC), Scotchbond Universal (SU, 3M ESPE) and All Bond Universal (AB, Bisco) were compared with conventional two-step self-etch adhesive Clearfil SE Bond (SE, Kuraray Noritake Dental). Bonded specimens were divided into three groups of ten, and SBSs with bovine dentin were determined after the following treatments: 1) Storage in distilled water at 37°C for 24h followed by 3000, 10,000, 20,000 or 30,000 thermal cycles (TC group), 2) Storage in distilled water at 37°C for 3 months, 6 months or 1year (water storage, WS group) and 3) Storage in distilled water at 37°C for 24h (control). SE bonded specimens showed significantly higher SBSs than universal adhesives, regardless of TC or storage periods, although AB specimens showed significantly increased SBSs after 30,000 thermal cycles. In comparisons of universal adhesives under control and degradation conditions, SBS was only reduced in SU after 1year of WS. Following exposure of various adhesive systems to degradation conditions of thermal cycling and long term storage, SBS values of adhesive systems varied primarily with degradation period. Although universal adhesives have lower SBSs than the two-step self-etch adhesive SE, the present data indicate that the dentin bonding durability of universal adhesives in self-etch mode is sufficient for clinical use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of different adhesion strategies on bond strength of resin composite to composite-dentin complex.

    PubMed

    Özcan, M; Pekkan, G

    2013-01-01

    Service life of discolored and abraded resin composite restorations could be prolonged by repair or relayering actions. Composite-composite adhesion can be achieved successfully using some surface conditioning methods, but the most effective adhesion protocol for relayering is not known when the composite restorations are surrounded with dentin. This study evaluated the effect of three adhesion strategies on the bond strength of resin composite to the composite-dentin complex. Intact maxillary central incisors (N=72, n=8 per subgroup) were collected and the coronal parts of the teeth were embedded in autopolymerized poly(methyl tfr54methacrylate) surrounded by a polyvinyl chloride cylinder. Cylindrical cavities (diameter: 2.6 mm; depth: 2 mm) were opened in the middle of the labial surfaces of the teeth using a standard diamond bur, and the specimens were randomly divided into three groups. Two types of resin composite, namely microhybrid (Quadrant Anterior Shine; AS) and nanohybrid (Grandio; G), were photo-polymerized incrementally in the cavities according to each manufacturer's recommendations. The composite-enamel surfaces were ground finished to 1200-grit silicone carbide paper until the dentin was exposed. The surfaces of the substrate composites and the surrounding dentin were conditioned according to one of the following adhesion protocols: protocol 1: acid-etching (dentin) + silica coating (composite) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); protocol 2: silica coating (composite) + acid-etching (dentin) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); and protocol 3: acid-etching (dentin) + primer (dentin) + silanization (composite) + bonding agent (dentin + composite). Applied primer and bonding agents were the corresponding materials of the composite manufacturer. Silica coating (CoJet sand, 30 μm) was achieved using a chairside air-abrasion device (distance: 10 mm; duration

  17. Degradation of Multimode Adhesive System Bond Strength to Artificial Caries-Affected Dentin Due to Water Storage.

    PubMed

    Follak, A C; Miotti, L L; Lenzi, T L; Rocha, R O; Soares, F Z

    The purpose of this study was to evaluate the influence of water storage on bond strength of multimode adhesive systems to artificially induced caries-affected dentin. One hundred twelve sound bovine incisors were randomly assigned to 16 groups (n=7) according to the dentin condition (sound; SND, artificially induced caries-affected dentin; CAD, cariogenic challenge by pH cycling for 14 days); the adhesive system (SU, Scotchbond Universal Adhesive; AB, All-Bond Universal; PB, Prime & Bond Elect; SB, Adper Single Bond 2; and CS, Clearfil SE Bond), and the etching strategy (etch-and-rinse and self-etch). All adhesive systems were applied under manufacturer's instructions to flat dentin surfaces, and a composite block was built up on each dentin surface. After 24 hours of water storage, the specimens were sectioned into stick-shaped specimens (0.8 mm 2 ) and submitted to a microtensile test immediately (24 hours) or after six months of water storage. Bond strength data (MPa) were analyzed using three-way repeated-measures analysis of variance and post hoc Tukey test (α=5%), considering each substrate separately (SND and CAD). The etching strategy did not influence the bond strength of multimode adhesives, irrespective of the dentin condition. Water storage only reduced significantly the bond strength to CAD. The degradation of bond strength due to water storage was more pronounced in CAD, regardless of the etching strategy.

  18. Effects of water storage on bond strength and dentin sealing ability promoted by adhesive systems.

    PubMed

    Cantanhede de Sá, Renata Bacelar; Oliveira Carvalho, Adriana; Puppin-Rontani, Regina Maria; Ambrosano, Glaúcia Maria; Nikaido, Toru; Tagami, Junji; Giannini, Marcelo

    2012-12-01

    To evaluate the dentin bond strength (BS) and sealing ability (SA) promoted by adhesive systems after 24 h or 6 months of water storage. The tested adhesive systems were: one three-step etch-and-rinse adhesive (Adper Scotchbond Multi-Purpose, SBMP) and three single-step self-etching systems (Adper Easy Bond, Bond Force, and G-Bond Plus). Bovine incisors were used for both evaluations, BS (n = 11) and SA (n = 5). To examine BS, the buccal surface was ground with SiC paper to expose a flat dentin surface. After adhesive application, a block of resin composite was incrementally built up over the bonded surface and sectioned into sticks. These bonded specimens were subjected to microtensile bond strength testing after 24 h and 6 months of water storage using a universal testing machine. For SA analysis, enamel was removed from the buccal surfaces. The teeth were connected to a device to measure the initial SA (10 psi), and the second measurement was taken after treating dentin with EDTA. Afterwards, the adhesive systems were applied to dentin and the SA was re-measured for each adhesive after 24 h and 6 months of water storage. The SA was expressed in terms of percentage of dentinal sealing. BS and SA data were submitted to two-way ANOVA and Tukey's test (α = 0.05). All adhesives showed a reduction of SA after 6 months of water storage. The SA promoted by self-etching adhesives was higher than that of SBMP. No adhesive system showed a reduction of the BS after 6 months. Sealing ability was affected by water storage, while no changes in microtensile bond strength were observed after 6 months of water storage. The single-step self-etching systems showed greater sealing ability than did SBMP, even after 6 months of storage in water.

  19. Influence of laser etching on enamel and dentin bond strength of Silorane System Adhesive.

    PubMed

    Ustunkol, Ildem; Yazici, A Ruya; Gorucu, Jale; Dayangac, Berrin

    2015-02-01

    The aim of this in vitro study was to evaluate the shear bond strength (SBS) of Silorane System Adhesive to enamel and dentin surfaces that had been etched with different procedures. Ninety freshly extracted human third molars were used for the study. After the teeth were embedded with buccal surfaces facing up, they were randomly divided into two groups. In group I, specimens were polished with a 600-grit silicon carbide (SiC) paper to obtain flat exposed enamel. In group II, the overlying enamel layer was removed and exposed dentin surfaces were polished with a 600-grit SiC paper. Then, the teeth in each group were randomly divided into three subgroups according to etching procedures: etched with erbium, chromium:yttrium-scandium-gallium-garnet laser (a), etched with 35% phosphoric acid (b), and non-etched (c, control). Silorane System Adhesive was used to bond silorane restorative to both enamel and dentin. After 24-h storage in distilled water at room temperature, a SBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed using two-way ANOVA and Bonferroni tests (p < 0.05). The highest SBS was found after additional phosphoric acid treatment in dentin groups (p < 0.05). There were no statistically significant differences between the laser-etched and non-etched groups in enamel and dentin (p > 0.05). The SBS of self-etch adhesive to dentin was not statistically different from enamel (p > 0.05). Phosphoric acid treatment seems the most promising surface treatment for increasing the enamel and dentin bond strength of Silorane System Adhesive.

  20. Fracture toughness versus micro-tensile bond strength testing of adhesive-dentin interfaces.

    PubMed

    De Munck, Jan; Luehrs, Anne-Katrin; Poitevin, André; Van Ende, Annelies; Van Meerbeek, Bart

    2013-06-01

    To assess interfacial fracture toughness of different adhesive approaches and compare to a standard micro-tensile bond-strength (μTBS) test. Chevron-notched beam fracture toughness (CNB) was measured following a modified ISO 24370 standard. Composite bars with dimensions of 3.0×4.0×25 mm were prepared, with the adhesive-dentin interface in the middle. At the adhesive-dentin interface, a chevron notch was prepared using a 0.15 mm thin diamond blade mounted in a water-cooled diamond saw. Each specimen was loaded until failure in a 4-point bend test setup and the fracture toughness was calculated according to the ISO specifications. Similarly, adhesive-dentin micro-specimens (1.0×1.0×8-10 mm) were stressed in tensile until failure to determine the μTBS. A positive correlation (r(2)=0.64) was observed between CNB and μTBS, which however was only nearly statistically significant, mainly due to the dissimilar outcome of Scotchbond Universal (3M ESPE). While few μTBS specimens failed at the adhesive-dentin interface, almost all CNB specimens failed interfacially at the notch tip. Weibull moduli for interfacial fracture toughness were much higher than for μTBS (3.8-11.5 versus 2.7-4.8, respectively), especially relevant with regard to early failures. Although the ranking of the adhesives on their bonding effectiveness tested using CNB and μTBS corresponded well, the outcome of CNB appeared more reliable and less variable. Fracture toughness measurement is however more laborious and requires specific equipment. The μTBS nevertheless appeared to remain a valid method to assess bonding effectiveness in a versatile way. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Assessment of resin-dentin interfacial morphology of two ethanol-based universal adhesives: A scanning electron microscopy study

    PubMed Central

    Awad, Mohamed Moustafa

    2017-01-01

    Objective: The objective of this study was to assess the resin-dentin interfacial morphology created by two universal adhesives using scanning electron microscopy (SEM). Materials and Methods: The occlusal surfaces of ten (n = 5) molars were reduced to expose a flat surface of dentin. Two universal adhesives, Scotchbond Universal Adhesive and Tetric N-Bond Universal, were independently applied to air-dried dentin. Light-cured resin-based composite restorative materials were used to incrementally build a composite “buildup.” The specimen was sectioned mesiodistally to expose the resin-dentin interface. The inner surfaces of the specimens were polished. Samples were immersed in hydrochloric acid and then rinsed using distilled water. This was followed by immersion of the samples in 1% sodium hypochlorite solution. Then, samples were thoroughly rinsing with distilled water. Dehydration of samples was performed using ascending concentration of ethyl alcohol. Prepared samples were observed SEM at magnifications ×1500 and x4000. Results: Both universal adhesives could penetrate dentin-forming well-defined resin tags, lateral branches as well as a uniform hybrid layer. Conclusions: Two tested universal adhesives applied in self-etch mode can infiltrate into dentin-producing high-quality interfacial morphology. Similar interfacial morphology may be due to the similarity in composition and application mode. PMID:28729794

  2. Grape seed proanthocyanidins increase collagen biodegradation resistance in the dentin/adhesive interface when included in an adhesive.

    PubMed

    Green, Bradley; Yao, Xiaomei; Ganguly, Arindam; Xu, Changqi; Dusevich, Vladimir; Walker, Mary P; Wang, Yong

    2010-11-01

    Contemporary methods of dentin bonding could create hybrid layers (HLs) containing voids and exposed, demineralised collagen fibres. Proanthocyanidins (PA) have been shown to cross-link and strengthen demineralised dentin collagen, but their effects on collagen degradation within the HL have not been widely studied. The purpose of this study was to compare the morphological differences of HLs created by BisGMA/HEMA model adhesives with and without the addition of grape seed extract PA under conditions of enzymatic collagen degradation. Model adhesives formulated with and without 5% PA were bonded to the acid etched dentin. 5-μm-thick sections cut from the bonded specimens were stained with Goldner's trichrome. The specimens were then exposed to 0.1% collagenase solution for 0, 1, or 6 days. Following collagenase treatment, the specimens were analysed with SEM/TEM. Staining did not reveal a difference in the HLs created with the two adhesives. SEM showed the presence of intact collagen fibrils in all collagenase treatment conditions for specimens bonded with adhesive containing PA. These integral collagen fibrils were not observed in the specimens bonded with adhesive without PA after the same collagenase treatment. TEM confirmed that the specimens containing PA still showed normal collagen fibril organisation and dimensions after treatment with collagenase solution. In contrast, disorganised collagen fibrils in the interfacial zone lacked the typical cross-banding of normal collagen after collagenase treatment for specimens without PA. The presence of grape seed extract PA in dental adhesives may inhibit the biodegradation of unprotected collagen fibrils within the HL. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Shear bond strengths of composite to dentin using six dental adhesive systems.

    PubMed

    Triolo, P T; Swift, E J; Barkmeier, W W

    1995-01-01

    The development of adhesive agents for bonding composite to dentin has rapidly evolved in recent years. It is postulated that dentin bond strengths in the range of 17 MPa are sufficient to resist the polymerization shrinkage of composite resins. The purpose of this study was to evaluate the shear bond strengths of the following dentin adhesive systems: All-Bond 2 (Bisco), Imperva Bond (Shofu), Optibond (Kerr), Permagen (Ultradent), ProBond (Caulk/Dentsply), and Scotchbond Multi-Purpose (3M). Sixty human molars (10 per group) were mounted in phenolic rings, and the occlusal surfaces were flat ground in dentin to 600 grit. The prepared dentin bonding sites were treated according to the directions for each of the systems evaluated. A gelatin capsule technique was used to bond Bis-Fil composite cylinders to the teeth. The specimens were stored in water at 37 degrees C for 24 hours. Mean shear bond strengths were as follows: Scotchbond Multi-Purpose: 23.1 +/- 2.6 MPa, All-Bond 2: 21.4 +/- 7.8 MPa, Imperva Bond: 19.8 +/- 6.1 MPa, Optibond: 19.7 +/- 3.6 MPa, ProBond: 16.3 +/- 4.5 MPa, and Permagen: 16.2 +/- 3.0 MPa. There was not a significant difference (P<0.05) in the bond strengths of Scotchbond Multi-Purpose, All-Bond 2, Imperva Bond, and Optibond. The bond strengths of Scotchbond Multi-Purpose and All-Bond 2 were significantly greater (P<0.05) than ProBond and Permagen. Current-generation dentin adhesive systems have approached or exceeded the theoretical threshold value to resist contraction stresses during polymerization of resin materials.

  4. Effect of Adhesive Cementation Strategies on the Bonding of Y-TZP to Human Dentin.

    PubMed

    Alves, Mll; Campos, F; Bergoli, C D; Bottino, M A; Özcan, M; Souza, Roa

    2016-01-01

    This study evaluated the effects of different adhesive strategies on the adhesion of zirconia to dentin using conventional and self-adhesive cements and their corresponding adhesive resins. The occlusal parts of human molars (N=80) were sectioned, exposing the dentin. The teeth and zirconia cylinders (N=80) (diameter=3.4 mm; height=4 mm) were randomly divided into eight groups according to the factors "surface conditioning" and "cement type" (n=10 per group). One conventional cement (CC: RelyX ARC, 3M ESPE) and one self-adhesive cement (SA: RelyX U200, 3M ESPE) and their corresponding adhesive resin (for CC, Adper Single Bond Plus; for SA, Scotchbond Universal Adhesive-SU) were applied on dentin. Zirconia specimens were conditioned either using chairside (CJ: CoJet, 30 μm, 2.5 bar, four seconds), laboratory silica coating (RC: Rocatec, 110 μm, 2.5 bar, four seconds), or universal primer (Single Bond Universal-UP). Nonconditioned groups for both cements acted as the control (C). Specimens were stored in water (37°C, 30 days) and subjected to shear bond strength (SBS) testing (1 mm/min). Data (MPa) were analyzed using two-way analysis of variance and a Tukey test (α=0.05). While surface conditioning significantly affected the SBS values (p=0.0001) (Cadhesive. Air-abrasion and the use of the universal primer improved the bond strength of zirconia to dentin compared to the control group, regardless of the type of resin cement used.

  5. Effects of chlorhexidine-containing adhesives on the durability of resin-dentine interfaces.

    PubMed

    Stanislawczuk, Rodrigo; Pereira, Fabiane; Muñoz, Miguel Angel; Luque, Issis; Farago, Paulo Vitor; Reis, Alessandra; Loguercio, Alessandro D

    2014-01-01

    This study evaluated the effect of addition of diacetate CHX in different concentrations into two simplified etch-and-rinse (ER) adhesive systems (XP Bond [XP] and Ambar {AM}) on the ultimate tensile strength (UTS), degree of conversion (DC), 60-day cumulative water sorption (WS), solubility (SO) and CHX release (CR) as well as the immediate (IM) and 1-year (1Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Ten experimental adhesive systems were formulated according to the addition of CHX diacetate (0 [control], 0.01, 0.05, 0.1 and 0.2%) in the two ER. For UTS and DC, specimens were constructed and tested after 24h. For WS, SO and CR, after specimens build-up, they were stored in water and the properties measured after 60 days. The occlusal enamel of fifty molars was removed and the adhesives were applied in dentine surface after 37% phosphoric acid etching. After composite resin build-ups, specimens were longitudinally sectioned to obtain resin-dentine bonded sticks (0.8mm(2)). Specimens were tested in tension at 0.5mm/min in the IM or 1Y. For NL, 2 bonded sticks from each tooth were prepared and analyzed under SEM. The data were submitted to appropriate statistical analysis (α=0.05). The addition of CHX did not influence UTS, DC, WS and SO (p<0.05). Higher CR was observed in adhesives with higher concentration of CHX (p<0.05). After 1Y, significant reductions of μTBS and increases of NL were observed in the control groups (p<0.05). Reductions of μTBS and increase of NL over time were not observed (AM) for CHX-containing adhesives or it was less pronounced than the control (XP) regardless of the CHX concentration. The addition of CHX diacetate in concentrations until 0.2% in the simplified ER adhesive systems may be an alternative to increase the long-term stability of resin-dentine interfaces, without jeopardizing the adhesives' mechanical properties evaluated. Copyright © 2013. Published by Elsevier Ltd.

  6. Effect of in vitro chewing and bruxism events on remineralization, at the resin-dentin interface.

    PubMed

    Toledano, Manuel; Cabello, Inmaculada; Aguilera, Fátima S; Osorio, Estrella; Osorio, Raquel

    2015-01-02

    The purpose of this study was to evaluate if different in vitro functional and parafunctional habits promote mineralization at the resin-dentin interface after bonding with three different adhesive approaches. Dentin surfaces were subjected to distinct treatments: demineralization by (1) 37% phosphoric acid (PA) followed by application of an etch-and-rinse dentin adhesive, Single Bond (SB) (PA+SB); (2) 0.5 M ethylenediaminetetraacetic acid (EDTA) followed by SB (EDTA+SB); (3) application of a self-etch dentin adhesive, Clearfil SE Bond (SEB). Different loading waveforms were applied: No cycling (I), cycled in sine (II) or square (III) waves, sustained loading hold for 24 h (IV) or sustained loading hold for 72 h (V). Remineralization at the bonded interfaces was assessed by AFM imaging/nano-indentation, Raman spectroscopy and Masson's trichrome staining. In general, in vitro chewing and parafunctional habits, promoted an increase of nano-mechanical properties at the resin-dentin interface. Raman spectroscopy through cluster analysis demonstrated an augmentation of the mineral-matrix ratio in loaded specimens. Trichrome staining reflected a narrow demineralized dentin matrix after loading in all groups except in PA+SB and EDTA+SB samples after sustained loading hold for 72 h, which exhibited a strong degree of mineralization. In vitro mechanical loading, produced during chewing and bruxism (square or hold 24 and 72 h waveforms), induced remineralization at the resin-dentin bonded interface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Improvement of exposure times: effects on adhesive properties and resin-dentin bond strengths of etch-and-rinse adhesives.

    PubMed

    Ferreira, Sabrina Queji; Costa, Thays Regina; Klein-Júnior, Celso Afonso; Accorinte, Maria de; Meier, Márcia Margarete; Loguercio, Alessandro Dourado; Reis, Alessandra

    2011-06-01

    This study evaluated the effect of prolonged polymerization times on the microtensile resin-dentin bond strength (μTBS), degree of conversion of adhesive films (DC) and silver nitrate uptake (SNU) for an ethanol/water- (Adper Single Bond 2, [SB]) and an acetone-based (One Step Plus, [OS]) etch-and-rinse adhesive. Thirty caries-free extracted molars were included in this study. The occlusal enamel of all teeth was removed by wet grinding the occlusal enamel on 180-grit SiC paper. Adhesives were applied according to the manufacturer's instructions, but they were light cured for 10, 20 and 40 s at 600 mW/cm2. Bonded sticks (0.6 mm2) were tested in tension (0.5 mm/min). Two bonded sticks from each tooth were immersed in an ammoniacal solution of silver nitrate (24 h), photodeveloped (8 h), and analyzed by SEM. The DC of the adhesives was evaluated under Fourier Transformed Infra-Red spectroscopy (FTIR). Data for each property were analyzed by two-way ANOVA and Tukey's test (α = 0.05). Statistically higher μTBS and DC were observed for SB and OS when both adhesives were light cured for 40 s in comparison with 10 s. For OS, the μTBS in the 20- and 40-s groups did not differ statistically, while for SB it did. Higher prolonged exposure times did not prevent nanoleakage within the hybrid layer for all groups regardless of the adhesive. This study supports the hypothesis that exposure times longer than those recommended can improve the degree of conversion of adhesive films and the immediate resin-dentin bonds. The prolonged curing times (20 and 40 s) for polymerization of simplified adhesives resulted in an increase in the degree of conversion of the adhesive films and resin-dentin bond strengths but did not reduce the nanoleakage within the hybrid layer.

  8. Inhibition of demineralization around the enamel-dentin/restoration interface after dentin pretreatment with TiF4 and self-etching adhesive systems.

    PubMed

    Bridi, Enrico Coser; do Amaral, Flávia Lucisano Botelho; França, Fabiana Mantovani Gomes; Turssi, Cecilia Pedroso; Basting, Roberta Tarkany

    2016-05-01

    The objective of this study was to evaluate the inhibition of demineralization around enamel-dentin/restoration interface after dentin pretreatment with 2.5% titanium tetrafluoride (TiF4). Forty dental class V cavities at the cementoenamel junction were distributed into four groups (n = 10), according to the presence or absence of TiF4 and to the adhesive system (Clearfil SE Bond/CL and Adper EasyOne/AD), and restored with a resin composite. A dynamic pH cycling model was used to induce the development of artificial caries lesions. After sectioning the dental blocks, Knoop microhardness tests were performed at different depths (20, 40, and 60 μm from the occlusal margin of the restoration) and at different distances (100, 200, and 300 μm from the adhesive interface). Repeated measures three-way analysis of variance (ANOVA) and Tukey's test were used (α = 0.05). For enamel, there were no differences in the microhardness values for CL, AD, and TiF4-AD at depths, regardless of the distances. Considering each depth, there were no significant differences among treatments. For dentin, ANOVA showed no significant interaction among the independent variables treatment*distance*depth (p = 0.994), no significant interaction between treatment*depth (p = 0.722), no significant interaction between treatment*distance (p = 0.265), no significant interaction between depth*distance (p = 0.365), and no significant effect on treatment (p = 0.151), depth (p = 0.067), or distance (p = 0.251). Dentin pretreatment of the cavity walls with TiF4 before self-etching adhesive systems was not effective in inhibiting demineralization around the enamel-dentin/restoration interfaces. The mechanism of incorporating fluoride in enamel and dentin of the cavity walls to inhibit demineralization around restorations seems ineffective when using TiF4 as a dentin pretreatment.

  9. [Curing mode of universal adhesives affects the bond strength of resin cements to dentin].

    PubMed

    Fu, Z R; Tian, F C; Zhang, L; Han, B; Wang, X Y

    2017-02-18

    To determine the effects of curing mode of one-step and two-step universal adhesives on the micro-tensile bond strength (μTBS) of different dual-cure resin cements to dentin. One-step universal adhesive Single Bond Universal (SBU), and two-step universal adhesive OptiBond Versa (VSA) were chosen as the subjects, one-step self-etching adhesive OptiBond All in One (AIO) and two-step self-etching adhesive Clearfil SE Bond (SEB) were control groups, and two dual-cure resin cements RelyX Ultimate (RLX) and Nexus 3 Universal (NX3) were used in this study. In this study, 80 extracted human molars were selected and the dentin surface was exposed using diamond saw. The teeth were divided into 16 groups according to the adhesives (AIO, SBU, SEB, VSA), cure modes of adhesives (light cure, non-light cure) and resin cements (RLX, NX3). The adhesives were applied on the dentin surface following the instruction and whether light cured or not, then the resin cements were applied on the adhesives with 1 mm thickness and light cured (650 mW/cm(2) for 20 s. A resin was built up (5 mm) on the cements and light cured layer by layer. After water storage for 24 h, the specimens were cut into resin-cement-dentin strips with a cross sectional area of 1 mm×1 mm and the μTBS was measured. Regarding one-step universal adhesive (SBU) light cured, the μTBS with RLX [(35.45±7.04) MPa] or NX3 [(26.84±10.39) MPa] were higher than SBU non-light cured with RLX [(17.93±8.93) MPa)] or NX3 [(10.07±5.89) MPa, P<0.001]. Compared with AIO, light-cured SBU combined with RLX presented higher μTBS than AIO group [(35.45±7.04) MPa vs. (24.86±8.42) MPa, P<0.05]. When SBU was not lighted, the μTBS was lower than AIO [(17.93±8.93) MPa vs. (22.28±7.57) MPa, P<0.05]. For two-step universal adhesive (VSA) and control adhesive (SEB), curing mode did not affect the μTBS when used with either RLX or NX3 (25.98-32.24 MPa, P>0.05). Curing mode of one-step universal adhesive may affect the μTBS between

  10. Influence of different etching modes on bond strength and fatigue strength to dentin using universal adhesive systems.

    PubMed

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Berry, Thomas P; Watanabe, Hedehiko; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The purpose of this study was to determine the dentin bonding ability of three new universal adhesive systems under different etching modes using fatigue testing. Prime & Bond elect [PE] (DENTSPLY Caulk), Scotchbond Universal [SU] (3M ESPE), and All Bond Universal [AU] (Bisco) were used in this study. A conventional single-step self-etch adhesive, Clearfil Bond SE ONE [CS] (Kuraray Noritake Dental) was also included as a control. Shear bond strengths (SBS) and shear fatigue strength (SFS) to human dentin were obtained in the total-etch mode and self-etch modes. For each test condition, 15 specimens were prepared for the SBS and 30 specimens for SFS. SEM was used to examine representative de-bonded specimens, treated dentin surfaces and the resin/dentin interface for each test condition. Among the universal adhesives, PE in total-etch mode showed significantly higher SBS and SFS values than in self-etch mode. SU and AU did not show any significant difference in SBS and SFS between the total-etch mode and self-etch mode. However, the single-step self-etch adhesive CS showed significantly lower SBS and SFS values in the etch-and-rinse mode when compared to the self-etch mode. Examining the ratio of SFS/SBS, for PE and AU, the etch-and-rinse mode groups showed higher ratios than the self-etch mode groups. The influence of different etching modes on dentin bond quality of universal adhesives was dependent on the adhesive material. However, for the universal adhesives, using the total-etch mode did not have a negative impact on dentin bond quality. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Comparison of tensile bond strengths of four one-bottle self-etching adhesive systems with Er:YAG laser-irradiated dentin.

    PubMed

    Jiang, Qianzhou; Chen, Minle; Ding, Jiangfeng

    2013-12-01

    This study aimed to investigate the interaction of current one-bottle self-etching adhesives and Er:YAG laser with dentin using a tensile bond strength (TBS) test and scanning electron microscopy (SEM) in vitro. Two hundred and thirteen dentin discs were randomly distributed to the Control Group using bur cutting and to the Laser Group using an Er:YAG laser (200 mJ, VSP, 20 Hz). The following adhesives were investigated: one two-step total-etch adhesive [Prime & Bond NT (Dentsply)] and four one-step self-etch adhesives [G-Bond plus (GC), XENO V (Dentsply), iBond Self Etch (Heraeus) and Adper Easy One (3 M ESPE)]. Samples were restored with composite resin, and after 24-hour storage in distilled water, subjected to the TBS test. For morphological analysis, 12 dentin specimens were prepared for SEM. No significant differences were found between the control group and laser group (p = 0.899); dentin subjected to Prime & Bond NT, XENOV and Adper Easy One produced higher TBS. In conclusion, this study indicates that Er:YAG laser-prepared dentin can perform as well as bur on TBS, and some of the one-step one-bottle adhesives are comparable to the total-etch adhesives in TBS on dentin.

  12. The shear bond strength of self-adhesive resin cements to dentin and enamel: an in vitro study.

    PubMed

    Rodrigues, Raphaela F; Ramos, Carla M; Francisconi, Paulo A S; Borges, Ana Flávia S

    2015-03-01

    Clinicians continue to search for ways to simplify bonding procedures without compromising clinical efficacy. The purpose of this study was to evaluate the shear strength of self-adhesive cements RelyX U100 and RelyX U200, and conventional resin cement RelyX ARC to enamel and dentin after different surface treatments. The crowns of 120 bovine incisor teeth were separated from the roots and embedded in epoxy resin in polyvinyl chloride tubes. In each tooth, the area to be cemented was delimited with central holed adhesive tape. The teeth were distributed into 12 groups (n=10) according to the substrate; etched or not with 37% phosphoric acid; and cement type of enamel-U100, enamel-phosphoric acid-U100, enamel-U200, enamel-phosphoric acid-U200, enamel-ARC, enamel-phosphoric acid-ARC, dentin-U100, dentin-phosphoric acid-U100, dentin-U200, dentin-phosphoric acid-U200, dentin-ARC, and dentin-phosphoric acid-ARC. After 7 days of storage in artificial saliva, shear strength tests were performed by using a universal testing machine (0.5 mm/min). The data were analyzed with 3-way ANOVA and the Tukey test (α=.05). Fracture analysis was performed with a light microscope. Two specimens from each group were analyzed with a scanning electron microscope. In enamel, ARC (9.96 MPa) had higher shear strength (P=.038) than U100 (5.14 MPa); however, after surface etching, U100 (17.81 MPa) and U200 (17.52 MPa) had higher shear strength (P<.001). With dentin, no significant differences were observed (P=.999), except for dentin-ARC (0.34 MPa) (P=.001). Most fractures were of the adhesive type. U200 self-adhesive cement had similar bond strength to the ARC in enamel, but the combination with phosphoric acid had the best bond strength. For dentin, self-adhesive resin cements are equally effective alternatives to conventional resin cement. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin.

    PubMed

    Luque-Martinez, Issis V; Perdigão, Jorge; Muñoz, Miguel A; Sezinando, Ana; Reis, Alessandra; Loguercio, Alessandro D

    2014-10-01

    To evaluate the microtensile bond strengths (μTBS) and nanoleakage (NL) of three universal or multi-mode adhesives, applied with increasing solvent evaporation times. One-hundred and forty caries-free extracted third molars were divided into 20 groups for bond strength testing, according to three factors: (1) Adhesive - All-Bond Universal (ABU, Bisco, Inc.), Prime&Bond Elect (PBE, Dentsply), and Scotchbond Universal Adhesive (SBU, 3M ESPE); (2) Bonding strategy - self-etch (SE) or etch-and-rinse (ER); and (3) Adhesive solvent evaporation time - 5s, 15s, and 25s. Two extra groups were prepared with ABU because the respective manufacturer recommends a solvent evaporation time of 10s. After restorations were constructed, specimens were stored in water (37°C/24h). Resin-dentin beams (0.8mm(2)) were tested at 0.5mm/min (μTBS). For NL, forty extracted molars were randomly assigned to each of the 20 groups. Dentin disks were restored, immersed in ammoniacal silver nitrate, sectioned and processed for evaluation under a FESEM in backscattered mode. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. drying time) for each strategy, and Tukey's test (α=0.05). NL data were computed with non-parametric tests (Kruskal-Wallis and Mann-Whitney tests, α=0.05). Increasing solvent evaporation time from 5s to 25s resulted in statistically higher mean μTBS for all adhesives when used in ER mode. Regarding NL, ER resulted in greater NL than SE for each of the evaporation times regardless of the adhesive used. A solvent evaporation time of 25s resulted in the lowest NL for SBU-ER. Residual water and/or solvent may compromise the performance of universal adhesives, which may be improved with extended evaporation times. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives

    PubMed Central

    Ahn, Joonghee; Jung, Kyoung-Hwa; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon

    2015-01-01

    Objectives This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results In GB, XV and SE (pH ≤ 2), the bond strength was decreased significantly when the dentin was etched (p < 0.05). In BB, AE and SU (pH 2.4 - 2.7), additional etching did not affect the bond strength (p > 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p < 0.05). When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin. PMID:25671215

  15. Influence of temporary cement contamination on the surface free energy and dentine bond strength of self-adhesive cements.

    PubMed

    Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi

    2012-02-01

    The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Influence of different pre-etching times on fatigue strength of self-etch adhesives to dentin.

    PubMed

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Suzuki, Takayuki; Scheidel, Donal D; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-04-01

    The purpose of this study was to use shear bond strength (SBS) and shear fatigue strength (SFS) testing to determine the influence on dentin bonding of phosphoric acid pre-etching times before the application of self-etch adhesives. Two single-step self-etch universal adhesives [Prime & Bond Elect (EL) and Scotchbond Universal (SU)], a conventional single-step self-etch adhesive [G-aenial Bond (GB)], and a two-step self-etch adhesive [OptiBond XTR (OX)] were used. The SBS and SFS values were obtained with phosphoric acid pre-etching times of 3, 10, or 15 s before application of the adhesives, and for a control without pre-etching. For groups with 3 s of pre-etching, SU and EL showed higher SBS values than control groups. No significant difference was observed for GB among the 3 s, 10 s, and control groups, but the 15 s pre-etching group showed significantly lower SBS and SFS values than the control group. No significant difference was found for OX among the pre-etching groups. Reducing phosphoric acid pre-etching time can minimize the adverse effect on dentin bonding durability for the conventional self-etch adhesives. Furthermore, a short phosphoric acid pre-etching time enhances the dentin bonding performance of universal adhesives. © 2016 Eur J Oral Sci.

  17. Fourier transform infrared photoacoustic spectroscopy study of physicochemical interaction between human dentin and etch-&-rinse adhesives in a simulated moist bond technique.

    PubMed

    Ubaldini, Adriana L M; Baesso, Mauro L; Sehn, Elizandra; Sato, Francielle; Benetti, Ana R; Pascotto, Renata C

    2012-06-01

    The purpose of this study was to provide the physicochemical interactions at the interfaces between two commercial etch-&-rinse adhesives and human dentin in a simulated moist bond technique. Six dentin specimens were divided into two groups (n=3) according to the use of two different adhesive systems: (a) 2-hydroxyethylmethacrylate (HEMA) and 4-methacryloxyethyl trimellitate anhydrate (4-META), and (b) HEMA. The Fourier transform infrared photoacoustic spectroscopy was performed before and after dentin treatment with 37% phosphoric acid, with adhesive systems and also for the adhesive systems alone. Acid-conditioning resulted in a decalcification pattern. Adhesive treated spectra subtraction suggested the occurrence of chemical bonding to dentin expressed through modifications of the OH stretching peak (3340 cm(-1)) and symmetric CH stretching (2900 cm(-1)) for both adhesives spectra; a decrease of orthophosphate absorption band (1040 to 970 cm(-1)) for adhesive A and a better resolved complex band formation (1270 to 970 cm(-1)) for adhesive B were observed. These results suggested the occurrence of chemical bonding between sound human dentin and etch-&-rinse adhesives through a clinical typical condition.

  18. Effects of etch-and-rinse and self-etch adhesives on dentin MMP-2 and MMP-9.

    PubMed

    Mazzoni, A; Scaffa, P; Carrilho, M; Tjäderhane, L; Di Lenarda, R; Polimeni, A; Tezvergil-Mutluay, A; Tay, F R; Pashley, D H; Breschi, L

    2013-01-01

    Auto-degradation of collagen matrices occurs within hybrid layers created by contemporary dentin bonding systems, by the slow action of host-derived matrix metalloproteinases (MMPs). This study tested the null hypothesis that there are no differences in the activities of MMP-2 and -9 after treatment with different etch-and-rinse or self-etch adhesives. Tested adhesives were: Adper Scotchbond 1XT (3M ESPE), PQ1 (Ultradent), Peak LC (Ultradent), Optibond Solo Plus (Kerr), Prime&Bond NT (Dentsply) (all 2-step etch-and-rinse adhesives), and Adper Easy Bond (3M ESPE), Tri-S (Kuraray), and Xeno-V (Dentsply) (1-step self-etch adhesives). MMP-2 and -9 activities were quantified in adhesive-treated dentin powder by means of an activity assay and gelatin zymography. MMP-2 and MMP-9 activities were found after treatment with all of the simplified etch-and-rinse and self-etch adhesives; however, the activation was adhesive-dependent. It is concluded that all two-step etch-and-rinse and the one-step self-etch adhesives tested can activate endogenous MMP-2 and MMP-9 in human dentin. These results support the role of endogenous MMPs in the degradation of hybrid layers created by these adhesives.

  19. Effects of Etch-and-Rinse and Self-etch Adhesives on Dentin MMP-2 and MMP-9

    PubMed Central

    Mazzoni, A.; Scaffa, P.; Carrilho, M.; Tjäderhane, L.; Di Lenarda, R.; Polimeni, A.; Tezvergil-Mutluay, A.; Tay, F.R.; Pashley, D.H.; Breschi, L.

    2013-01-01

    Auto-degradation of collagen matrices occurs within hybrid layers created by contemporary dentin bonding systems, by the slow action of host-derived matrix metalloproteinases (MMPs). This study tested the null hypothesis that there are no differences in the activities of MMP-2 and -9 after treatment with different etch-and-rinse or self-etch adhesives. Tested adhesives were: Adper Scotchbond 1XT (3M ESPE), PQ1 (Ultradent), Peak LC (Ultradent), Optibond Solo Plus (Kerr), Prime&Bond NT (Dentsply) (all 2-step etch-and-rinse adhesives), and Adper Easy Bond (3M ESPE), Tri-S (Kuraray), and Xeno-V (Dentsply) (1-step self-etch adhesives). MMP-2 and -9 activities were quantified in adhesive-treated dentin powder by means of an activity assay and gelatin zymography. MMP-2 and MMP-9 activities were found after treatment with all of the simplified etch-and-rinse and self-etch adhesives; however, the activation was adhesive-dependent. It is concluded that all two-step etch-and-rinse and the one-step self-etch adhesives tested can activate endogenous MMP-2 and MMP-9 in human dentin. These results support the role of endogenous MMPs in the degradation of hybrid layers created by these adhesives. PMID:23128110

  20. Influence of pH cycling on the microtensile bond strength of self-etching adhesives containing MDPB and fluoride to dentin and microhardness of enamel and dentin adjacent to restorations.

    PubMed

    Pedrosa, Vivianne Oliveira; Flório, Flávia Martão; Turssi, Cecília Pedroso; Amaral, Flávia Lucisano; Basting, Roberta Tarkany; França, Fabiana Mantovani

    2012-12-01

    To evaluate the influence of pH cycling on microtensile bond strength (µTBS) and fracture pattern of MDPB- and fluoride-containing self-etching adhesive systems to dentin, and on the cross-sectional Knoop microhardness (CSMH) of enamel and dentin adjacent to restorations. The two-step self-etching adhesive Clearfil SE Bond (SE; Kuraray), the two-step MDPBand fluoride-containing adhesive Clearfil Protect Bond (PB; Kuraray), and the one-step fluoride-containing adhesive One-Up Bond F Plus (OU; Tokuyama) were used to bond resin composite to midcoronal dentin surfaces (for µTBS testing) or to Class V cavities (for CSMH testing). µTBS and CSMH tests were performed after a 15-day period of pH cycling or storage in artificial saliva. µTBS to dentin was not affected by pH cycling or storage in artificial saliva; however, µTBS values found for PB were higher than those observed for OU. No difference existed among the µTBS values shown by PB, OU, and SE. The fracture pattern was affected by both pH cycling and adhesive system. In enamel, there was no difference in CSMH values provided by the different adhesive systems and storage media, regardless of the distance and depth from restoration. In dentin, PB and SE showed the highest CSMH values, which differed from those obtained for OU. Significantly higher CSMH values were found 100 µm from the restoration margin for all adhesive systems tested. The bond strength and microhardness in the vicinity of restorations were adhesive dependent, with MDPB and fluoride exerting no effect on the performance of the adhesive systems.

  1. Mini-interfacial Fracture Toughness of a Multimode Adhesive Bonded to Plasma-treated Dentin.

    PubMed

    Ayres, Ana Paula Almeida; Pongprueksa, Pong; De Munck, Jan; Gré, Cristina Parise; Nascimento, Fábio Dupart; Giannini, Marcelo; Van Meerbeek, Bart

    2017-01-01

    To investigate the bonding efficacy of a multimode adhesive to plasma-treated and -untreated (control) dentin using a mini-interfacial fracture toughness (mini-iFT) test. Twenty human molars were used in a split-tooth design (n = 10). The adhesive Scotchbond Universal (SBU; 3M ESPE) was applied in etch-and-rinse (E&R) and self-etch (SE) modes. Mid-coronal dentin was exposed and covered with a standardized smear layer ground to 320 grit. One half of each dentin surface received 15 s of non-thermal atmospheric plasma (NTAP), while the other half was covered with a metallic barrier and kept untreated. Following the E&R mode, dentin was plasma treated immediately after phosphoric acid etching. SBU and a resin-based composite were applied to dentin following the manufacturer's instructions. Six mini-iFT specimens were prepared per tooth (1.5 x 2.0 x 16 to 18 mm), and a single notch was prepared at the adhesive-dentin interface using a 150-μm diamond blade under water cooling. Half of the mini-iFT specimens were immediately loaded until failure in a 4-point bending test, while the other half were first stored in distilled water for 6 months. After testing, the exact dimensions of the notch were measured with a measuring optical microscope, from which ΚIc was determined. Three-way ANOVA revealed higher mini-iFT for SBU applied in E&R than SE mode for both storage times, irrespective of NTAP treatment. Overall, mini-iFT did not decrease for any of the experimental groups upon 6-month aging, while plasma treatment did not show a direct beneficial effect on mini-iFT of SBU applied in either E&R or SE mode.

  2. The use of acetone to enhance the infiltration of HA nanoparticles into a demineralized dentin collagen matrix.

    PubMed

    Besinis, Alexandros; van Noort, Richard; Martin, Nicolas

    2016-03-01

    This study investigates the role of acetone, as a carrier for nano-hydroxyapatite (nano-HA) in solution, to enhance the infiltration of fully demineralized dentin with HA nanoparticles (NPs). Dentin specimens were fully demineralized and subsequently infiltrated with two types of water-based nano-HA solutions (one containing acetone and one without). Characterization of the dentin surfaces and nano-HA particles was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface wettability and infiltration capacity of the nano-HA solutions were quantified by means of contact angle measurements and energy dispersive X-ray spectroscopy (EDS), respectively. Contact angle measurements were taken at baseline and repeated at regular intervals to assess the effect of acetone. The P and Ca levels of infiltrated dentin specimens were measured and compared to sound dentin and non-infiltrated controls. The presence of acetone resulted in an eight-fold decrease in the contact angles of the nano-HA solutions recorded on the surface of demineralized dentin compared to nano-HA solutions without acetone (one-way ANOVA, p<0.05). Perfect wetting of the demineralized dentin surface was achieved 5min after the application of the nano-HA solution containing acetone. Infiltration of demineralized dentin with the nano-HA solution containing acetone restored the lost mineral content by 50%, whereas the mean mineralization values for P and Ca in dentin treated with the acetone-free nano-HA solution were less than 6%. Acetone was shown to act as a vehicle to enhance the capacity to infiltrate demineralized dentin with HA NPs. The successful infiltration of dentin collagen with HA NPs provides a suitable scaffold, whereby the infiltrated HA NPs have the potential to act as seeds that may initiate heterogenous mineral growth when exposed to an appropriate mineral-rich environment. Copyright © 2015 Academy of Dental Materials. Published by Elsevier

  3. Adhesive permeability affects coupling of resin cements that utilise self-etching primers to dentine.

    PubMed

    Carvalho, R M; Pegoraro, T A; Tay, F R; Pegoraro, L F; Silva, N R F A; Pashley, D H

    2004-01-01

    To examine the effects of an experimental bonding technique that reduces the permeability of the adhesive layer on the coupling of resin cements to dentine. Extracted human third molars had their mid to deep dentin surface exposed flat by transversally sectioning the crowns. Resin composite overlays were constructed and cemented to the surfaces using either Panavia F (Kuraray) or Bistite II DC (Tokuyama) resin cements mediated by their respective one-step or two-step self-etch adhesives. Experimental groups were prepared in the same way, except that the additional layer of a low-viscosity bonding resin (LVBR, Scotchbond Multi-Purpose Plus, 3M ESPE) was placed on the bonded dentine surface before luting the overlays with the respective resin cements. The bonded assemblies were stored for 24 h in water at 37 degrees C and subsequently prepared for microtensile bond strength testing. Beams of approximately 0.8 mm(2) were tested in tension at 0.5 mm/min in a universal tester. Fractured surfaces were examined under scanning electron microscopy (SEM). Additional specimens were prepared and examined with TEM using a silver nitrate-staining technique. Two-way ANOVA showed significant interactions between materials and bonding protocols (p<0.05). When bonded according to manufacturer's directions, Panavia F produced bond strengths that were significantly lower than Bistite II DC (p<0.05). The placement of an additional layer of a LVBR improved significantly the bond strengths of Panavia F (p<0.05), but not of Bistite II DC (p>0.05). SEM observation of the fractured surfaces in Panavia F showed rosette-like features that were exclusive for specimens bonded according to manufacturer's directions. Such features corresponded well with the ultrastructure of the interfaces that showed more nanoleakage associated with the more permeable adhesive interface. The application of the additional layer of the LVBR reduced the amount of silver impregnation for both adhesives suggesting

  4. Influence of an arginine-containing toothpaste on bond strength of different adhesive systems to eroded dentin.

    PubMed

    Bergamin, Ana Cláudia Pietrobom; Bridi, Enrico Coser; Amaral, Flávia Lucisano Botelho; Turssi, Cecília Pedroso; Basting, Roberta Tarkany; Aguiar, Flávio Henrique Baggio; França, Fabiana Mantovani Gomes

    2016-01-01

    The aim of this study was to evaluate the bond strength of different adhesive systems to eroded dentin following toothbrushing with an arginine-containing toothpaste. Sixty standardized 3 × 3 × 2-mm fragments of root dentin (n = 10) were prepared. After all surfaces except the buccal surfaces were impermeabilized, specimens were subjected to an erosive wear protocol and stored for 24 hours at 37°C. The specimens underwent 1000 toothbrushing cycles with an arginine-containing toothpaste, an arginine-free toothpaste (positive control group), or artificial saliva (negative control group). Following application of a self-etching or an etch-and-rinse adhesive to the buccal surfaces of the specimens, 6-mm-high composite resin blocks were built up in 2-mm increments. After 24 hours' storage in 100% relative humidity, microtensile test specimens with an approximate area of 1 mm² were prepared. The test was performed at a speed of 0.5 mm/min until specimen fracture, and the failure patterns were evaluated using a stereoscopic loupe. Two-way analysis of variance revealed no significant difference between the toothpastes, the adhesive systems, or the interactions between toothpaste and adhesive system in terms of the bond strength to eroded dentin (P > 0.05). The predominant failure pattern was adhesive in all groups. It was concluded that a toothpaste containing arginine did not interfere with the bond between either the self-etching or the etch-and-rinse adhesive system and eroded dentin.

  5. Catechol-Functionalized Synthetic Polymer as a Dental Adhesive to Contaminated Dentin Surface for a Composite Restoration.

    PubMed

    Lee, Sang-Bae; González-Cabezas, Carlos; Kim, Kwang-Mahn; Kim, Kyoung-Nam; Kuroda, Kenichi

    2015-08-10

    This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe(3+) additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe-catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives.

  6. Catechol-Functionalized Synthetic Polymer as a Dental Adhesive to Contaminated Dentin Surface for a Composite Restoration

    PubMed Central

    2015-01-01

    This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe3+ additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe–catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives. PMID:26176305

  7. Dentine bond strength and antimicrobial activity evaluation of adhesive systems.

    PubMed

    André, Carolina Bosso; Gomes, Brenda Paula Figueiredo Almeida; Duque, Thais Mageste; Stipp, Rafael Nobrega; Chan, Daniel Chi Ngai; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2015-04-01

    This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30 min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10 min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  9. EFFECT OF AN ADDITIONAL HYDROPHILIC VERSUS HYDROPHOBIC COAT ON THE QUALITY OF DENTINAL SEALING PROVIDED BY TWO-STEP ETCH-AND-RINSE ADHESIVES

    PubMed Central

    Silva, Safira Marques de Andrade; Carrilho, Marcela Rocha de Oliveira; Marquezini, Luiz; Garcia, Fernanda Cristina Pimentel; Manso, Adriana Pigozzo; Alves, Marcelo Corrêa; de Carvalho, Ricardo Marins

    2009-01-01

    Objective: To test the hypothesis that the quality of the dentinal sealing provided by two-step etch-and-rinse adhesives cannot be altered by the addition of an extra layer of the respective adhesive or the application of a more hydrophobic, non-solvated resin. Material and Methods: full-crown preparations were acid-etched with phosphoric acid for 15 s and bonded with Adper Single Bond (3M ESPE), Excite DSC (Ivoclar/Vivadent) or Prime & Bond NT (Dentsply). The adhesives were used according to the manufacturers' instructions (control groups) or after application to dentin they were a) covered with an extra coat of each respective system or b) coated with a non-solvated bonding agent (Adper Scotchbond Multi-Purpose Adhesive, 3M ESPE). Fluid flow rate was measured before and after dentin surfaces were acid-etched and bonded with adhesives. Results: None of the adhesives or experimental treatments was capable to block completely the fluid transudation across the treated dentin. Application of an extra coat of the adhesive did not reduce the fluid flow rate of adhesive-bonded dentin (p>0.05). Conversely, the application of a more hydrophobic non-solvated resin resulted in significant reductions in the fluid flow rate (p<0.05) for all tested adhesives. Conclusions: The quality of the dentinal sealing provided by etch-and-rinse adhesives can be significantly improved by the application of a more hydrophobic, non-solvated bonding agent. PMID:19466248

  10. Sealing ability and bond strength of four contemporary adhesives to enamel and to dentine.

    PubMed

    Atash, R; Vanden Abbeele, A

    2005-12-01

    To compare the shear bond strength and microleakage of four adhesive systems to the enamel and dentine of primary bovine teeth. 120 bovine primary mandibular incisors were collected and stored in an aqueous 1% chloramine solution at room temperature for no longer than 3 months after extraction (80 for shear bond testing and 40 for microleakage evaluation). The adhesives tested were Clearfil SE bond (SE), Adper Prompt L Pop (LP), Xeno III (XE), and Prime and Bond NT (PB). For shear bond strength testing the specimens were wet ground to 600 grit SiC paper to expose a flat enamel or dentine surface. After bonding and restoration with Dyract AP (DAP), the teeth were subjected to shear stress using a universal testing machine. For microleakage evaluation, facial class V cavities were prepared half in enamel and half in cementum. All cavities were restored with DAP. After thermocycling and immersion in 2% methylene blue, the dye penetration was evaluated under a stereomicroscope. All data were analysed by Chi-square tests or Fisher's tests when adapted in order to determine the significant differences between groups. Results were considered as significant for p < 0.05. Results were analysed with an ANOVA test and a Bonferroni's multiple comparison. The level of significance was p < 0.05. Shear bond strength values (MPa,) ranged from: on enamel 11.06 to 5.34, in decreasing order SE, LP, XE and PB and on dentine 10.47 to 4.74, in decreasing order SE, XE, LP and PB. Differences in bond strengths between the four systems on enamel and dentine were all statistically significant, excepted for XE vs LP (shear bond at dentine). No significant differences were recorded in the microleakage degree between the four adhesive systems on enamel and on dentine (p > 0.0.5). The highest shear bond strength was achieved by Clearfil SE bond and the lowest by Prime and Bond NT. There was no significant difference concerning the sealing ability of the four adhesive systems.

  11. Effect of Storage Time on Bond Strength and Nanoleakage Expression of Universal Adhesives Bonded to Dentin and Etched Enamel.

    PubMed

    Makishi, P; André, C B; Ayres, Apa; Martins, A L; Giannini, M

    2016-01-01

    To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, p<0.05), and no significant differences were found among the adhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.

  12. Hybridization quality and bond strength of adhesive systems according to interaction with dentin.

    PubMed

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-07-01

    To evaluate the hybridization quality and bond strength of adhesives to dentin. Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives - Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems - Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system - Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm(2) in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. SE reached significantly higher μ-TBS (P < 0.05); no significance was found between ADSE and XE (P > 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P < 0.05). The bonding interface of SB showed the most intense silver uptake. SE and ADSE showed more favorable hybridization quality than that observed for ADP and XE. The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin.

  13. Doxycycline-Encapsulated Nanotube-Modified Dentin Adhesives

    PubMed Central

    Feitosa, S.A.; Palasuk, J.; Kamocki, K.; Geraldeli, S.; Gregory, R.L.; Platt, J.A.; Windsor, L.J.; Bottino, M.C.

    2014-01-01

    This article presents details of fabrication, biological activity (i.e., anti–matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)–encapsulated halloysite nanotube (HNT)–modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives—but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels—we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of

  14. Effect of air-drying time of single-application self-etch adhesives on dentin bond strength.

    PubMed

    Chiba, Yasushi; Yamaguchi, Kanako; Miyazaki, Masashi; Tsubota, Keishi; Takamizawa, Toshiki; Moore, B Keith

    2006-01-01

    This study examined the effect of air-drying time of adhesives on the dentin bond strength of several single-application self-etch adhesive systems. The adhesive/resin composite combinations used were: Adper Prompt L-Pop/Filtek Z250 (AP), Clearfil Tri-S Bond/Clearfil AP-X (CT), Fluoro Bond Shake One/Beautifil (FB), G-Bond/Gradia Direct (GB) and One-Up Bond F Plus/Palfique Estelite (OF). Bovine mandibular incisors were mounted in self-curing resin and wet ground with #600 SiC to expose labial dentin. Adhesives were applied according to each manufacturer's instructions followed by air-drying time for 0 (without air-drying), 5 and 10 seconds. After light irradiation of the adhesives, the resin composites were condensed into a mold (phi4x2 mm) and polymerized. Ten samples per test group were stored in 37 degrees C distilled water for 24 hours; they were then shear tested at a crosshead speed of 1.0 mm/minute. One-way ANOVA followed by Tukey's HSD tests (alpha = 0.05) were done. FE-SEM observations of the resin/dentin interface were also conducted. Dentin bond strength varied with the different air drying times and ranged from 5.8 +/- 2.4 to 13.9 +/- 2.8 MPa for AP, 4.9 +/- 1.5 to 17.1 +/- 2.3 MPa for CT, 7.9 +/- 2.8 to 13.8 +/- 2.4 MPa for FB, 3.7 +/- 1.4 to 13.4 +/- 1.2 MPa for GB and 4.6 +/- 2.1 to 13.7 +/- 2.6 MPa for OF. With longer air drying of adhesives, no significant changes in bond strengths were found for the systems used except for OF. Significantly lower bond strengths were obtained for the 10-second air-drying group for OF. From FE-SEM observations, gaps between the cured adhesive and resin composites were observed for the specimens without the air drying of adhesives except for OF. The data suggests that, with four of the single-application self-etch adhesive systems, air drying is essential to obtain adequate dentin bond strengths, but increased drying time does not significantly influence bond strength. For the other system studied, the bond strength

  15. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: A systematic review.

    PubMed

    Dionysopoulos, Dimitrios

    2016-01-01

    This study aimed to systematically review the literature for the effect of digluconate chlorhexidine (CHX) on bond strength between dental adhesive systems and dentin of composite restorations. The electronic databases that were searched to identify manuscripts for inclusion were Medline via PubMed and Google search engine. The search strategies were computer search of the database and review of reference lists of the related articles. Search words/terms were as follows: (digluconate chlorhexidine*) AND (dentin* OR adhesive system* OR bond strength*). Bond strength reduction after CHX treatments varied among the studies, ranging 0-84.9%. In most of the studies, pretreatment CHX exhibited lower bond strength reduction than the control experimental groups. Researchers who previously investigated the effect of CHX on the bond strength of dental adhesive systems on dentin have reported contrary results, which may be attributed to different experimental methods, different designs of the experiments, and different materials investigated. Further investigations, in particular clinical studies, would be necessary to clarify the effect of CHX on the longevity of dentin bonds.

  16. Variations in collagen fibrils network structure and surface dehydration of acid demineralized intertubular dentin: effect of dentin depth and air-exposure time.

    PubMed

    Fawzy, Amr S

    2010-01-01

    The aim was to characterize the variations in the structure and surface dehydration of acid demineralized intertubular dentin collagen network with the variations in dentin depth and time of air-exposure (3, 6, 9 and 12 min). In addition, to study the effect of these variations on the tensile bond strength (TBS) to dentin. Phosphoric acid demineralized superficial and deep dentin specimens were prepared. The structure of the dentin collagen network was characterized by AFM. The surface dehydration was characterized by probing the nano-scale adhesion force (F(ad)) between AFM tip and intertubular dentin surface as a new experimental approach. The TBS to dentin was evaluated using an alcohol-based dentin self-priming adhesive. AFM images revealed a demineralized open collagen network structure in both of superficial and deep dentin at 3 and 6 min of air-exposure. However, at 9 min, superficial dentin showed more collapsed network structure compared to deep dentin that partially preserved the open network structure. Total collapsed structure was found at 12 min for both of superficial and deep dentin. The value of the F(ad) is decreased with increasing the time of air-exposure and is increased with dentin depth at the same time of air-exposure. The TBS was higher for superficial dentin at 3 and 6 min, however, no difference was found at 9 and 12 min. The ability of the demineralized dentin collagen network to resist air-dehydration and to preserve the integrity of open network structure with the increase in air-exposure time is increased with dentin depth. Although superficial dentin achieves higher bond strength values, the difference in the bond strength is decreased by increasing the time of air-exposure. The AFM probed F(ad) showed to be sensitive approach to characterize surface dehydration, however, further researches are recommended regarding the validity of such approach.

  17. Nanomechanical properties of biochemically modified dentin bonded interfaces

    PubMed Central

    dos Santos, Paulo H; Karol, Sachin; Bedran-Russo, Ana Karina B

    2014-01-01

    Summary The effect of biomodification of dentin matrices using collagen cross-linkers, glutaraldehyde (GD) and grape seed extract (GSE), on the reduced modulus of elasticity (Er) and nanohardness (H) of the hybrid layer and underlying dentin was investigated at the dentin-resin bonded interface. The coronal dentin of nine molars were exposed and divided into groups: 5% GD, 6.5% GSE and control. Control samples were etched, bonded with Adper Single Bond Plus and Premise composite. GD and GSE were applied for 1 hour prior to bonding procedures. After 24 hours, samples were sectioned, and resin-dentin beams were either kept in distilled water or exposed to collagenase treatment for 24 hours. Nano-indentations were performed at the hybrid layer and underlying dentin. GD and GSE treatment increased the Er and H of resin-dentin interface structures when compared to the control group (p < 0.05), particularly the hybrid layer, and may be a promising novel approach to strengthen the dentin-resin bonded interface structures when using these adhesive system and resin-based composite. PMID:21058972

  18. Shear Bond Strengths and Morphological Evaluation of Filled and Unfilled Adhesive Interfaces to Enamel and Dentine

    PubMed Central

    Mortazavi, Vajihesadat; Fathi, Mohammadhosein; Ataei, Ebrahim; Khodaeian, Niloufar; Askari, Navid

    2012-01-01

    In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n = 12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP. PMID:23209471

  19. Durable bonds at the adhesive/dentin interface: an impossible mission or simply a moving target?

    PubMed Central

    SPENCER, Paulette; Jonggu PARK, Qiang YE; MISRA, Anil; BOHATY, Brenda S.; SINGH, Viraj; PARTHASARATHY, Ranga; SENE, Fábio; de Paiva GONÇALVES, Sérgio Eduardo; LAURENCE, Jennifer

    2013-01-01

    Composite restorations have higher failure rates, more recurrent caries and increased frequency of replacement as compared to dental amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and failure. The gingival margin of composite restora tions is particularly vulnerable to decay and at this margin, the adhesive and its seal to dentin provides the primary barrier between the prepared tooth and the environment. The intent of this article is to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:24855586

  20. Evaluation of bond strength of self-etching adhesives having different pH on primary and permanent teeth dentin.

    PubMed

    Ozmen, Bilal; Koyuturk, Alp Erdin; Tokay, Ugur; Cortcu, Murat; Sari, Mustafa Erhan

    2015-10-16

    The purpose of this in vitro study was to evaluate the dentin shear bond strength of 4 self-etching adhesives having a different pH on primary and permanent teeth dentin. The occlusal enamel was removed from 60 freshly extracted third molar and 60 primary second molar human teeth, which were randomly separated into 4 groups (n = 15). Four adhesive systems were applied: G-Bond (GC Corporation, Tokyo, Japan, pH: 1.5), Futura Bond M (Voco, Cuxhaver, Germany, pH: 1.4), Adper Prompt L-Pop (3M/ESPE, St Paul, MN, USA, pH: 0.8), and Clearfil S(3) Bond (Kuraray Medical, Tokyo, Japan, pH: 2.7) according to the manufacturer's instructions. After the application of dentin bonding agents, a composite resin material (Z250 Restorative A2, 3M ESPE, St. Paul, MN, USA) for permanent teeth and a compomer resin material (Dyract Extra A2, Dentsply, Konstanz, Germany) for primary teeth was applied onto the prepared dentin surfaces. The data were obtained by using a universal test machine at a crosshead speed of 1 mm/min. The mean values were compared using Tukey's multiple comparison test. Although there was no difference between adhesives on the permanent teeth, Clearfil S3 adhesive showed higher bond (18.07 ± 0.58 MPa) (P>0.05). Lower bond strength values were obtained from primary teeth and especially G-Bond adhesive (9.36 ± 0.48 MPa) (P<0.05). Self-etching adhesives with different pH and solvent types can be used successfully for permanent teeth dentin but adhesives with low pH did not provide greater shear bond strength values.

  1. ADHESIVES WITH DIFFERENT PHS: EFFECT ON THE MTBS OF CHEMICALLY ACTIVATED AND LIGHT-ACTIVATED COMPOSITES TO HUMAN DENTIN

    PubMed Central

    Mallmann, André; de Melo, Renata Marques; Estrela, Verbênia; Pelogia, Fernanda; Campos, Laura; Bottino, Marco Antonio; Valandro, Luiz Felipe

    2007-01-01

    Purpose: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Material and Method: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37°C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm2. Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min−1). Data were analyzed using two-way ANOVA and Tukey’s tests (p<0.05). Results: The anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7±7.1ª; PB+Z100 = 23.8±5.7ª). However, with use of the chemically activated composite (B2B), PB (7.8±3.6b MPa) showed significantly lower dentin bond strengths than OS (32.2±7.6ª). Conclusion: The low pH of the adhesive system can affect the bond of chemically activated composite to dentin. On the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly. PMID:19089142

  2. Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin.

    PubMed

    Naranjo, Jennifer; Ali, Mohsin; Belles, Donald

    2015-11-01

    Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin. With several self-adhesive resin cements currently available, there is confusion about which product and technique is optimal for bonding ceramic restorations to teeth. The objective of this study was to compare the shear bond strength of lithium disilicate cemented to enamel and dentin using 5 adhesive cements. 100 lithium disilicate rods were pretreated with 5% hydrofluoric acid, silane, and cemented to 50 enamel and 50 dentin surfaces using five test cements: Variolink II (etch-and-rinse) control group, Clearfil Esthetic (two step self-etch), RelyX Unicem, SpeedCEM, and BifixSE (self-adhesive). All specimens were stored (37 degrees C, 100% humidity) for 24 hours before testing their shear bond strength using a universal testing machine (Instron). Debonded surfaces were observed under a low-power microscope to assess the location and type of failure. The highest bond strength for both enamel and dentin were recorded for Variolink II, 15.1MPa and 20.4MPa respectively, and the lowest were recorded for BifixSE, 0.6MPa and 0.9MPa respectively. Generally, higher bond strengths were found for dentin (7.4MPa) than enamel (5.3MPa). Tukey's post hoc test showed no significant difference between Clearfil Esthetic and SpeedCem (p = 0.059), Unicem and SpeedCem (p = 0.88), and Unicem and BifixSE (p = 0.092). All cements bonded better to lithium disilicate than to enamel or dentin, as all bond failures occurred at the tooth/adhesive interface except for Variolink II. Bond strengths recorded for self-adhesive cements were very low compared to the control "etch and rinse" and self-etch systems. Further improvements are apparently needed in self-adhesive cements for them to replace multistep adhesive systems. The use of conventional etch and rinse cements such as Veriolink II should be preferred for cementing all ceramic restorations over self-adhesive cements

  3. Influence of chlorhexidine on dentin adhesive interface micromorphology and nanoleakage expression of resin cements.

    PubMed

    Stape, Thiago Henrique Scarabello; Menezes, Murilo De Sousa; Barreto, Bruno De Castro Ferreira; Naves, Lucas Zago; Aguiar, Flávio Henrique Baggio; Quagliatto, Paulo Sérgio; Martins, Luís Roberto Marcondes

    2013-08-01

    This study focused on adhesive interface morphologic characterization and nanoleakage expression of resin cements bonded to human dentin pretreated with 1% chlorhexidine (CHX). Thirty-two non-carious human third molars were ground flat to expose superficial dentin. Resin composite blocks were luted to the exposed dentin using one conventional (RelyX ARC) and one self-adhesive resin cement (RelyX U100), with/without CHX pretreatment. Four groups (n = 8) were obtained: control groups (ARC and U100); experimental groups (ARC/CHX and U100/CHX) were pretreated with 1% CHX prior to the luting process. After storage in water for 24 h, the bonded teeth were sectioned into 0.9 × 0.9 mm(2) sticks producing a minimum of 12 sticks per tooth. Four sticks from each tooth were prepared for hybrid layer evaluation by scanning electron microscope analysis. The remaining sticks were immersed in silver nitrate for 24 h for either nanoleakage evaluation along the bonded interfaces or after rupture. Nanoleakage samples were carbon coated and examined using backscattered electron mode. Well-established hybrid layers were observed in the groups luted with RelyX ARC. Nanoleakage evaluation revealed increase nanoleakage in groups treated with CHX for both resin cements. Group U100/CHX exhibited the most pronouncing nanoleakage expression along with porous zones adjacent to the CHX pretreated dentin. The results suggest a possible incompatibility between CHX and RelyX U100 that raises the concern that the use of CHX with self-adhesive cements may adversely affect resin-dentin bond. Copyright © 2013 Wiley Periodicals, Inc.

  4. Effect of smear layer deproteinization on bonding of self-etch adhesives to dentin: a systematic review and meta-analysis

    PubMed Central

    Alshaikh, Khaldoan H.; Mahmoud, Salah H.

    2018-01-01

    Objectives The aim of this systematic review was to critically analyze previously published studies of the effects of dentin surface pretreatment with deproteinizing agents on the bonding of self-etch (SE) adhesives to dentin. Additionally, a meta-analysis was conducted to quantify the effects of the above-mentioned surface pretreatment methods on the bonding of SE adhesives to dentin. Materials and Methods An electronic search was performed using the following databases: Scopus, PubMed and ScienceDirect. The online search was performed using the following keywords: ‘dentin’ or ‘hypochlorous acid’ or ‘sodium hypochlorite’ and ‘self-etch adhesive.’ The following categories were excluded during the assessment process: non-English articles, randomized clinical trials, case reports, animal studies, and review articles. The reviewed studies were subjected to meta-analysis to quantify the effect of the application time and concentration of sodium hypochlorite (NaOCl) and hypochlorous acid (HOCl) deproteinizing agents on bonding to dentin. Results Only 9 laboratory studies fit the inclusion criteria of this systematic review. The results of the meta-analysis revealed that the pooled average microtensile bond strength values to dentin pre-treated with deproteinizing agents (15.71 MPa) was significantly lower than those of the non-treated control group (20.94 MPa). Conclusions In light of the currently available scientific evidence, dentin surface pretreatment with deproteinizing agents does not enhance the bonding of SE adhesives to dentin. The HOCl deproteinizing agent exhibited minimal adverse effects on bonding to dentin in comparison with NaOCl solutions. PMID:29765895

  5. Effect of air-blowing duration on the bond strength of current one-step adhesives to dentin.

    PubMed

    Fu, Jiale; Saikaew, Pipop; Kawano, Shimpei; Carvalho, Ricardo M; Hannig, Matthias; Sano, Hidehiko; Selimovic, Denis

    2017-08-01

    To evaluate the influence of different air-blowing durations on the micro-tensile bond strength (μTBS) of five current one-step adhesive systems to dentin. One hundred and five caries-free human molars and five current one-step adhesive systems were used: ABU (All Bond Universal, Bisco, Inc.), CUB (CLEARFIL™ Universal Bond, Kuraray), GPB (G-Premio BOND, GC), OBA (OptiBond All-in-one, Kerr) and SBU (Scotchbond Universal, 3M ESPE). The adhesives were applied to 600 SiC paper-flat dentin surfaces according to each manufacturer's instructions and were air-dried with standard, oil-free air pressure of 0.25MPa for either 0s, 5s, 15s or 30s before light-curing. Bond strength to dentin was determined by using μTBS test after 24h of water storage. The fracture pattern on the dentin surface was analyzed by SEM. The resin-dentin interface of untested specimens was visualized by panoramic SEM image. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. air-blowing time), and Games-Howell (a=0.05). Two-way ANOVA revealed a significant effect of materials (p=0.000) and air-blowing time (p=0.000) on bond strength to dentin. The interaction between factors was also significantly different (p=0.000). Maximum bond strength for each system were recorded, OBA/15s (76.34±19.15MPa), SBU/15s (75.18±12.83MPa), CUB/15s (68.23±16.36MPa), GPB/30s (55.82±12.99MPa) and ABU/15s (44.75±8.95MPa). The maximum bond strength of OBA and SUB were significantly higher than that of GPB and ABU (p<0.05). The bond strength of the current one-step adhesive systems is material-dependent (p=0.000), and was influenced by air-blowing duration (p=0.000). For the current one-step adhesive systems, higher bond strengths could be achieved with prolonged air-blowing duration between 15-30s. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Hybridization quality and bond strength of adhesive systems according to interaction with dentin

    PubMed Central

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-01-01

    Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives – Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems – Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system – Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P < 0.05); no significance was found between ADSE and XE (P > 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P < 0.05). The bonding interface of SB showed the most intense silver uptake. SE and ADSE showed more favorable hybridization quality than that observed for ADP and XE. Conclusions: The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin. PMID:24926212

  7. Effect of different evaporation periods on microtensile bond strength of an acetone-based adhesive to dentin.

    PubMed

    Davari, Abdolrahim; Mousvinasab, Majid; Kazemi, Alireza Danesh; Rouzbeh, Reza

    2013-01-01

    Solvent content of a contemporary dental adhesive affect the bonding process, especially in the case of acetone based adhesives. The aim of this study was to evaluate the effect of different air-drying periods on microtensile bond strength (MTBS) of a total-etch adhesive to dentin. Prime & Bond NT (Dentsply-USA) was used with different air-drying periods (0, 2, 5, 10, 30sec) for bonding a composite resin to prepared dentin. The specimens were then subjected to a tensile force until fracture and the MTBSs of the samples were recorded. Failure modes of the fractured samples were also determined using stereomicroscope and scanning electron microscopy. Data were analyzed using ANOVA and Bonferroni tests (P = 0.05). With increasing the air-drying periods, the MTBSs were increased until the 5 second air-blowing; after that, with increasing the air-drying periods, the MTBSs decreased. Both, the most complicated failure and the strongest bond were seen in the 5 sec air-drying group. There is an optimum air-drying time for acetone based adhesives which results in the strongest bond to dentin.

  8. [Influence of thermalcycling on bonding durability of self-etch adhesives with dentin].

    PubMed

    Tian, Fu-cong; Wang, Xiao-yan; Gao, Xue-jun

    2014-04-18

    To investigate influence of thermalcycling on the bonding durability of two one-step products [Adper Prompt (AP) and G-bond (GB)] and one two-step self-etching adhesive [Clearfil SE bond (SE)] with dentin in vitro. Forty-two extracted human molars were selected. The superficial dentin was exposed by grinding off the enamel. The teeth were randomly distributed into six groups with varied bonding protocols. The adhesives were applied to the dentin surface. Composite crowns were built up, then the samples were cut longitudinally into sticks with 1.0 mm×1.0 mm bonding area [for microtensile bond strength (MTBS) testing] or 1.0 mm thick slabs (for nanoleakage observation). Bonding performance was evaluated with or without thermalcyling. For the MTBS testing, the strength values were statistically analysed using One-Way ANOVA. Four slabs in each group were observed for nanoleakage by SEM with a backscattered electron detector. Thermalcycling procedures affected MTBS. In the two one-step groups, the MTBS decreased significantly (P<0.05) after thermalcycling [AP group from (19.06±1.50) MPa to (12.62±2.10) MPa; GB group from (17.75±1.10) MPa to (6.24±0.42)MPa]. But in SE groups, MTBS did not significantly affect [(45.80±2.97) MPa compared with(40.60±5.76) MPa]. As a whole, one-step self-etching adhesives showed lower MTBS than two-step bonding system after aging.For AP and GB, continuous nanoleakage appearance was notable and more obvious than for SE. Thermalcycling can affect the bonding performance of self-etch adhesives including decrease of bond strength and nanoleakage pattern. one-step self-etch adhesives showed more obvious change compared with their two-step counterparts.

  9. Effect of Minocycline on the Durability of Dentin Bonding Produced with Etch-and-Rinse Adhesives.

    PubMed

    Loguercio, A D; Stanislawczuk, R; Malaquias, P; Gutierrez, M F; Bauer, J; Reis, A

    2016-01-01

    To evaluate the effect of minocycline and chlorhexidine pretreatment of acid-etched dentin on the longevity of resin-dentin bond strength (μTBS) and nanoleakage of two-step etch-and-rinse adhesives. Before application of Prime & Bond NT and Adper Single Bond 2 in occlusal dentin, the dentin surfaces were treated with 37% phosphoric acid, rinsed, air-dried, and rewetted with water (control group), 2% minocycline, or 2% chlorexidine digluconate. Composite buildups were constructed incrementally, and specimens were longitudinally sectioned to obtain bonded sticks (0.8 mm 2 ) to be tested in tension (0.5 mm/min) immediately or after 24 months of water storage. For nanoleakage, two specimens of each tooth/period were immersed in the silver nitrate solution, photo-developed, and polished with SiC paper for analysis under energy-dispersive X-ray spectroscopy/scanning electron microscopy. Reductions of the μTBS and increases in the nanoleakage were observed for both adhesives when the rewetting procedure was performed with water. Stable bonds were observed for the 2% minocycline and 2% chlorexidine digluconate groups after 24 months. The use of 2% minocycline as pretreatment of acid-etched dentin is one alternative to retard the degradation of resin-dentin interfaces over a 24-month period as well as 2% chlorexidine digluconate.

  10. Effect of etching on bonding of a self-etch adhesive to dentine affected by amelogenesis imperfecta.

    PubMed

    Epasinghe, Don Jeevanie; Yiu, Cynthia Kar Yung

    2018-02-01

    Dentine affected by amelogenesis imperfecta (AI) is histologically altered due to loss of hypoplastic enamel and becomes hypermineralized. In the present study, we examined the effect of additional acid etching on microtensile bond strength of a self-etch adhesive to AI-affected dentine. Flat coronal dentine obtained from extracted AI-affected and non-carious permanent molars were allocated to two groups: (a) Clearfil SE Bond (control); and (b) Clearfil SE Bond and additional etching with 34% phosphoric acid for 15 seconds. The bonded teeth were sectioned into .8-mm 2 beams for microtensile bond strength testing, and stressed to failure under tension. The bond strength data were analyzed using two-way analysis of variance (dentine type and etching step) and Student-Newman-Keuls multiple comparison test (P<.05). Representative fractured beams from each group were examined under scanning electron microscopy. Both factors, dentine substrate (P<.001) and etching step (P<.05), and their interactions (P<.001), were statistically significant. Additional etching had an adverse effect on the bond strength of Clearfil SE Bond to normal dentine (P<.005), and no significant improvement was found for AI-affected dentine (P=.479). Additional acid etching does not improve the bond strength of a self-etch adhesive to AI-affected dentine. © 2017 John Wiley & Sons Australia, Ltd.

  11. The effect of Er:YAG laser irradiation on the bond stability of self-etch adhesives at different dentin depths.

    PubMed

    Karadas, Muhammet; Çağlar, İpek

    2017-07-01

    The aim of this study was to evaluate the effect of Er:YAG laser irradiation on the micro-shear bond strength of self-etch adhesives to the superficial dentin and the deep dentin before and after thermocycling. Superficial dentin and deep dentin surfaces were prepared by flattening of the occlusal surfaces of extracted human third molars. The deep or superficial dentin specimens were randomized into three groups according to the following surface treatments: group I (control group), group II (Er:YAG laser; 1.2 W), and group III (Er:YAG laser; 0.5 W). Clearfil SE Bond or Clearfil S 3 Bond was applied to each group's dentin surfaces. After construction of the composite blocks on the dentin surface, the micro-shear bond testing of each adhesive was performed at 24 h or after 15,000 thermal cycles. The data were analyzed using a univariate analysis of variance and Tukey's test (p < 0.05). Laser irradiation in superficial dentin did not significantly affect bond strength after thermocycling (p > 0.05). However, deep-dentin specimens irradiated with laser showed significantly higher bond strengths than did control specimens after thermocycling (p < 0.05). Thermocycling led to significant deterioration in the bond strengths of all deep-dentin groups. The stable bond strength after thermocycling was measured for all of the superficial-dentin groups. No significant difference was found between the 0.5 and 1.2 W output power settings. In conclusion, the effect of laser irradiation on the bond strength of self-etch adhesives may be altered by the dentin depth. Regardless of the applied surface treatment, deep dentin showed significant bond degradation.

  12. Effect of Er,Cr:YSGG laser on the microtensile bond strength of two different adhesives to the sound and caries-affected dentin.

    PubMed

    Ergücü, Z; Celik, E U; Unlü, N; Türkün, M; Ozer, F

    2009-01-01

    This study examined the effect of Er,Cr:YSGG laser irradiation on the microtensile bond strength (microTBS) of a three-step etch-and-rinse and a two-step self-etch adhesive to sound and caries-affected dentin. Sixteen freshly extracted human molars with occlusal dentin caries were used. The caries lesion was removed by one of the following methods: conventional treatment with burs or Er,Cr:YSGG laser (Waterlase MD, Biolase). The adhesive systems (AdheSE, Ivoclar Vivadent and Scotchbond Multi Purpose, 3M ESPE) were applied to the entire tooth surface according to the manufacturers' instructions. Resin composites were applied to the adhesive-treated dentin surfaces and light-cured. Each tooth was sectioned into multiple beams with the "non-trimming" version of the microtensile test. The specimens were subjected to microtensile forces (BISCO Microtensile Tester, BISCO). The data was analyzed by three-way ANOVA and independent t-tests (p=0.05). Er,Cr:YSGG laser irradiation exhibited similar microTBS values compared to that of conventional bur treatment, regardless of the adhesive system and type of treated dentin. The self-etch system revealed lower microTBS values, both with conventional and laser treatment techniques, compared to the etch-and-rinse adhesive in sound and caries-affected dentin (p<0.05). Er,Cr:YSGG laser irradiation did not negatively affect the bonding performance of adhesive systems to sound and caries-affected dentin.

  13. What's new in dentine bonding? Self-etch adhesives.

    PubMed

    Burke, F J Trevor

    2004-12-01

    Bonding to dentine is an integral part of contemporary restorative dentistry, but early systems were not user-friendly. The introduction of new systems which have a reduced number of steps--the self-etch adhesives--could therefore be an advantage to clinicians, provided that they are as effective as previous adhesives. These new self-etch materials appear to form hybrid layers as did the previous generation of materials. However, there is a need for further clinical research on these new materials. Advantages of self-etch systems include, no need to etch and rinse, reduced post-operative sensitivity and low technique sensitivity. Disadvantages include, the inhibition of set of self- or dual-cure resin materials and the need to roughen untreated enamel surfaces prior to bonding.

  14. Influence of blood contamination during multimode adhesive application on the microtensile bond strength to dentin.

    PubMed

    Kucukyilmaz, E; Celik, E U; Akcay, M; Yasa, B

    2017-12-01

    The present study evaluated the effects of blood contamination performed at different steps of bonding on the microtensile bond strength (μTBS) of multimode adhesives to dentin when using the self-etch approach. Seventy-five molars were randomly assigned to three adhesive groups comprising 25 specimens each: two multimode adhesives [Single Bond Universal (SBU) and All-Bond Universal (ABU)] and a conventional one-step self-etch adhesive [Clearfil S3 Bond Plus (CSBP)]. Each group was subdivided as follows: (1) uncontaminated (control): bonding application/light curing as a positive control; (2) contamination-1 (cont-1): bonding application/light curing/blood contamination/dry as a negative control; (3) contamination-2 (cont-2): bonding application/light curing/blood contamination/rinse/dry; (4) contamination-3 (cont-3): bonding application/blood contamination/dry/bonding re-application/light curing; and (5) contamination-4 (cont-4): bonding application/blood contamination/rinse/dry/bonding re-application/light curing. Dentin specimens were prepared for μTBS testing after the composite resin application. Data were analyzed with two-way ANOVA and post-hoc tests (α = 0.05). μTBS values were similar in cont-3 groups, and ABU/cont-4 and corresponding control groups, but were significantly lower in the other groups than in their control groups (P < 0.05). Cont-1 groups showed the lowest μTBS values (P < 0.05). Neither decontamination method prevented the decrease in μTBS when contamination occurred after light curing. Drying the blood contaminants and reapplying the adhesive may regain the dentin adhesion when contamination occurs before light curing. Alternatively, rinsing and drying contaminants followed by adhesive re-application may be effective depending on adhesive type.

  15. Adhesives with different pHs: effect on the MTBS of chemically activated and light-activated composites to human dentin.

    PubMed

    Mallmann, André; de Melo, Renata Marques; Estrela, Verbênia; Pelogia, Fernanda; Campos, Laura; Bottino, Marco Antonio; Valandro, Luiz Felipe

    2007-08-01

    To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37 degrees C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm(2). Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm*min-1). Data were analyzed using two-way ANOVA and Tukey's tests (p<0.05). The anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7+/-7.1 feminine; PB+Z100 = 23.8+/-5.7 feminine). However, with use of the chemically activated composite (B2B), PB (7.8+/-3.6b MPa) showed significantly lower dentin bond strengths than OS (32.2+/-7.6 feminine). The low pH of the adhesive system can affect the bond of chemically activated composite to dentin. On the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly.

  16. Effect of Different Protocols in Preconditioning With EDTA in Sclerotic Dentin and Enamel Before Universal Adhesives Applied in Self-etch Mode.

    PubMed

    Martini, E C; Parreiras, S O; Gutierrez, M F; Loguercio, A D; Reis, A

    The aim of this study was to investigate the effect of different protocols of 17% ethylene diamine tetra-acetic acid (EDTA) conditioning on the etching pattern and immediate bond strength of universal adhesives to enamel and sclerotic dentin. Forty bovine teeth with sclerotic dentin and 20 human third molars were randomly divided into eight groups resulting from the combination of the main factors surface treatment (none, two-minute EDTA conditioning manual application, 30-second EDTA manual application, 30-second EDTA sonic application) and adhesives systems (Scotchbond Universal Adhesive [SBU] and Prime & Bond Elect [PBE]). Resin-dentin and enamel-dentin bond specimens were prepared and tested under the microtensile bond strength (μTBS) and microshear bond strength (μSBS) tests, respectively. The etching pattern produced on the unground enamel and the sclerotic dentin surfaces under the different protocols and adhesive systems was evaluated under scanning electron microscopy. For enamel, only the main factor adhesive was significant (p<0.0001), with SBU showing the highest μSBS. In sclerotic dentin, the lowest mean was observed for the group without EDTA application and the highest mean in the group with EDTA application with the sonic device for 30 seconds. Regardless of the EDTA protocol, the highest means of μTBS were observed for SBU (p<0.05). EDTA conditioning improves the bonding performance of universal adhesives in the self-etch mode on sclerotic dentin, mainly when applied for 30 seconds with the aid of a sonic device. EDTA pretreatment also improves the retentive etching pattern of enamel, but it does not result in higher enamel bond strength.

  17. Nanoleakage in Hybrid Layer and Acid-Base Resistant Zone at the Adhesive/Dentin Interface.

    PubMed

    Nikaido, Toru; Nurrohman, Hamid; Takagaki, Tomohiro; Sadr, Alireza; Ichinose, Shizuko; Tagami, Junji

    2015-10-01

    The aim of interfacial nanoleakage evaluation is to gain a better understanding of degradation of the adhesive-dentin interface. The acid-base resistant zone (ABRZ) is recognized at the bonded interface under the hybrid layer (HL) in self-etch adhesive systems after an acid-base challenge. The purpose of this study was to evaluate nanoleakage in HL and ABRZ using three self-etch adhesives; Clearfil SE Bond (SEB), Clearfil SE One (SEO), and G-Bond Plus (GBP). One of the three adhesives was applied on the ground dentin surface and light cured. The specimens were longitudinally divided into two halves. One half remained as the control group. The others were immersed in ammoniacal silver nitrate solution, followed by photo developing solution under fluorescent light. Following this, the specimens were subjected to acid-base challenges with an artificial demineralization solution (pH4.5) and sodium hypochlorite, and prepared in accordance with common procedures for transmission electron microscopy (TEM) examination. The TEM images revealed silver depositions in HL and ABRZ due to nanoleakage in all the adhesives; however, the extent of nanoleakage was material dependent. Funnel-shaped erosion beneath the ABRZ was observed only in the all-in-one adhesive systems; SEO and GBP, but not in the two-step self-etch adhesive system; SEB.

  18. Morphology of the Dentin-resin Interface yielded by Two-step Etch-and-rinse Adhesives with Different Solvents.

    PubMed

    Ferreira, João C; Pires, Patrícia T; de Azevedo, Álvaro F; Arantes-Oliveira, Sofia; Silva, Mário J; de Melo, Paulo R

    2017-10-01

    The study aimed to analyze the morphology of the dentin-resin interface yielded by two-step etch-and-rinse adhesive systems with different solvents and compositions. A total of 32 dentine disks were prepared and randomly assigned to four groups of one-bottle etch-and-rinse adhesive systems containing different solvents: group I, Adper Scotchbond-IXT™ (ethanol/water); group II, XP-Bond™ (tertiary butanol); group III, Prime and Bond NT ® (acetone); and group IV, One Coat bond® (5% water). Adhesive systems were applied onto dentin disks, which were then thermal cycled, divided into two hemi-disks (n = 16), and prepared for field-emission scanning electron microscopy to examine the dentin-resin interdiffusion zone. Microphotographs were scanned and data were processed. Data were compared with analysis of variance multivariant test after Kolmogorov-Smirnov and Shapiro-Wilk tests using Statistic Package for the Social Sciences. The adhesive layer thickness average found was group I: 45.9 ± 13.41 urn, group II: 20.6 ± 16.32 urn, group III: 17.7 ± 11.75 urn, and group IV: 50.7 ± 27.81 urn. Significant differences were found between groups I and IV and groups II and III (p < 0.000). Groups I (3.23 ± 0.53 μm) and II (3.13 ± 0.73 μm) yielded significantly thicker hybrid layers than groups III (2.53 ± 0.50 μm) and IV (1.84 ± 0.27 μm) (p < 0.003). Group III presented a less homogeneous hybrid layer, with some gaps. Tag length average was greater in groups II (111.0 ± 36.92 μm) and IV (128.9 ± 78.38 μm) than in groups I (61.5 ± 18.10 μm) and III (68.6 ± 15.84 μm) (p < 0.008). Adhesives systems with different solvents led to significant differences in the dentin-resin interface morphology. Solvents role in adhesives bond strength should be considered together with the other adhesive system components. The adhesive containing tertiary butanol, in addition, seems to originate a good-quality hybrid layer and long, entangled tags and also appears to have

  19. Effect of radiotherapy, adhesive systems and doxycycline on the bond strength of the dentin-composite interface.

    PubMed

    Freitas Soares, Eveline; Zago Naves, Lucas; Bertolazzo Correr, Américo; Costa, Ana Rosa; Consani, Simonides; Soares, Carlos José; Garcia-Godoy, Franklin; Correr-Sobrinho, Lourenço

    2016-12-01

    To investigate the effect of radiotherapy, doxycycline and adhesive systems on the microtensile bond strength (μTBS) of the dentin-composite interface. 60 human third molars were sectioned to expose middle dentin surface and distributed according to: (1) adhesive system (Adper Scotchbond MP and Clearfil SE Bond) applied, (2) application or not of doxycycline, and (3) submission to 60 Gy total radiation (2 Gy daily doses, 5 days/week for 6 weeks) before restoration procedure (RtRes); after restoration procedure (ResRt) or not submitted to radiotherapy (Control group). Specimens were tested for μTBS and mode of failure were evaluated under optical microscopy. The bonding interface was evaluated with a scanning electron microscope (SEM). Data was submitted to three-way ANOVA and Tukey's test (α= 0.05). There was no significant difference between the μTBS (MPa) of Adper Scotchbond MP (25.5±11.1) and Clearfil SE (27.6±9.1). Control (30.5±10.9) and ResRt (29.2±10.4) presented μTBS significantly higher than RtRes (23.1±7.2). Doxycycline (21.7±7.6) significantly reduced μTBS compared to groups without doxycycline application (33.6±8.6). Dentin cohesive failure mode was predominant for RtRes and mixed failure mode for ResRt. Mixed and adhesive failures were frequently observed in control groups. SEM showed adhesive penetration in dentin tubules in all groups, regardless of the radiotherapy and the application of doxycycline. The radiotherapy before composite restoration procedure decreased the μTBS. No statistical difference was observed between the adhesive systems. The doxycycline reduced μTBS regardless of the other conditions. Composite restoration procedure should be done before radiotherapy, regardless of the adhesive system used.

  20. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives.

    PubMed

    Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam

    2016-01-01

    Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P < 0.05. There were no significant differences for CSEB subgroups with hydrated and dehydrated dentin samples between the three different curing modes (P > 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  1. Quantitative Evaluation of MDP-Ca Salt and DCPD after Application of an MDP-based One-step Self-etching Adhesive on Enamel and Dentin.

    PubMed

    Yokota, Yoko; Fujita, Kou Nakajima; Uchida, Ryoichiro; Aida, Etsuko; Aoki, Naoko Tabei; Aida, Masahiro; Nishiyama, Norihiro

    To investigate the effects of an experimental 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based one-step self-etching adhesive (EX adhesive) applied to enamel and dentin on the production of calcium salt of MDP (MDP-Ca salt) and dicalcium phosphate dehydrate (DCPD) at various periods. The EX adhesive was prepared. Bovine enamel and dentin reactants were prepared by varying the application period of the EX adhesive: 0.5, 1, 5, 30, 60 and 1440 min. Enamel and dentin reactants were analyzed using x-ray diffraction and solid-state phosphorus-31 nuclear magnetic resonance (31P NMR). Curvefitting analyses of corresponding 31P NMR spectra were performed. Enamel and dentin developed several types of MDP-Ca salts and DCPDs with amorphous and crystalline phases throughout the application period. The predominant molecular species of MDP-Ca salt was determined as the monocalcium salt of the MDP monomer. Dentin showed a faster production rate and greater produced amounts of MDP-Ca salt than did enamel, since enamel showed a knee-point in the production rate of the MDP-Ca salt at the application period of 5 min. In contrast, enamel developed greater amounts of DCPD than did dentin and two types of DCPDs with different crystalline phases at application periods > 30 min. The amounts of MDP-Ca salt developed during the 30-s application of the EX adhesive on enamel and dentin were 7.3 times and 21.2 times greater than DCPD, respectively. The MDP-based one-step adhesive yielded several types of MDP-Ca salts and DCPD with an amorphous phase during the 30-s application period on enamel and dentin.

  2. Influence of different conditioning methods on the shear bond strength of novel light-curing nano-ionomer restorative to enamel and dentin.

    PubMed

    Korkmaz, Yonca; Ozel, Emre; Attar, Nuray; Ozge Bicer, Ceren

    2010-11-01

    The purpose of this study was to investigate shear bond strength (SBS) between a light-curing nano-ionomer restorative and enamel or dentin after acid etching, after erbium:yttrium-aluminum-garnet (Er:YAG) laser etching, or after combined treatment. Forty third molars were selected, the crowns were sectioned, and 80 tooth slabs were obtained. The specimens were assigned to two groups, which were divided into four subgroups(n = 10). Group 1 [enamel (e)], treated with 37% phosphoric acid (A) + Ketac nano-primer (K); group 2 [dentin (d)], (A) + (K); group 3(e), Er:YAG laser etching (L) + (A) + (K); group 4(d), (L) + (A) + (K); group 5(e), (L) + (K); group 6(d), (L) + (K); group 7(e), (K); group 8(d), (K). The SBS of the specimens was measured with a universal test machine (1 mm/min). Data were analyzed by independent samples t-test, one-way analysis of variance (ANOVA) and a post-hoc Duncan test (p < 0.05). No difference was determined between groups 3 and 5 (p > 0.05). Group 7 exhibited higher SBS values than those of groups 3 and 5 (p < 0.05). Group 1 showed higher SBSs than those of groups 3, 5 and 7 (p < 0.05). There was no significant difference between groups 4 and 6 (p > 0.05). No difference was observed between groups 2 and 4 (p > 0.05). However, group 2 presented higher SBSs than did group 6 (p < 0.05). Group 8 exhibited the highest SBS values when compared with groups 2, 4 and 6 (p < 0.05). Er:YAG laser adversely affected the adhesion of the light-curing nano-ionomer restorative to both enamel and dentin.

  3. Combined effect of smear layer characteristics and hydrostatic pulpal pressure on dentine bond strength of HEMA-free and HEMA-containing adhesives.

    PubMed

    Mahdan, Mohd Haidil Akmal; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2013-10-01

    This study evaluated the combined effect of smear layer characteristics with hydrostatic pulpal pressure (PP) on bond strength and nanoleakage expression of HEMA-free and -containing self-etch adhesives. Flat dentine surfaces were obtained from extracted human molars. Smear layers were created by grinding with #180- or #600-SiC paper. Three HEMA-free adhesives (Xeno V, G Bond Plus, Beautibond Multi) and two HEMA-containing adhesives (Bond Force, Tri-S Bond) were applied to the dentine surfaces under hydrostatic PP or none. Dentine bond strengths were determined using the microtensile bond test (μTBS). Data were statistically analyzed using three- and two-way ANOVA with Tukey post hoc comparison test. Nanoleakage evaluation was carried out under a scanning electron microscope (SEM). Coarse smear layer preparation and hydrostatic PP negatively affected the μTBS of HEMA-free and -containing adhesives, but there were no significant differences. The combined experimental condition significantly reduced μTBS of the HEMA-free adhesives, while the HEMA-containing adhesives exhibited no significant differences. Two-way ANOVA indicated that for HEMA-free adhesives, there were significant interactions in μTBS between smear layer characteristics and pulpal pressure, while for HEMA-containing adhesives, there were no significant interactions between them. Nanoleakage formation within the adhesive layers of both adhesive systems distinctly increased in the combined experimental group. The combined effect of coarse smear layer preparation with hydrostatic PP significantly reduced the μTBS of HEMA-free adhesives, while in HEMA-containing adhesives, these effects were not obvious. Smear layer characteristics and hydrostatic PP would additively compromise dentine bonding of self-etch adhesives, especially HEMA-free adhesives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effects of blood contamination on microtensile bond strength to dentin of three self-etch adhesives.

    PubMed

    Chang, Seok Woo; Cho, Byeong Hoon; Lim, Ran Yeob; Kyung, Seung Hyun; Park, Dong Sung; Oh, Tae Seok; Yoo, Hyun Mi

    2010-01-01

    This study evaluated the effects of blood contamination and decontamination methods during different steps of bonding procedures on the microtensile bond strength of two-step self-etch adhesives to dentin. Sixty extracted human molars were ground flat to expose occlusal dentin. The 60 molars were randomly assigned to three groups, each treated with a different two-step self-etch adhesive: Clearfil SE Bond, AdheSE and Tyrian SPE. In turn, these groups were subdivided into five subgroups (n = 20), each treated using different experimental conditions as follows: control group-no contamination; contamination group 1-CG1: primer application/ contamination/primer re-application; contamination group 2-CG2: primer application/contamination/wash/dry/primer re-application; contamination group 3-CG3: primer application/adhesive application/light curing/contamination/ adhesive re-application/light curing; contamina- tion group 4-CG4: primer application/adhesive application/light curing/contamination/wash/ dry/adhesive re-application/light curing. Composite buildup was performed using Z250. After 24 hours of storage in distilled water at 37 degrees C, the bonded specimens were trimmed to an hourglass shape and serially sectioned into slabs with 0.6 mm2 cross-sectional areas. Microtensile bond strengths (MTBS) were assessed for each specimen using a universal testing machine. The data were analyzed by two-way ANOVA followed by a post hoc LSD test. SEM evaluations of the fracture modes were also performed. The contaminated specimens showed lower bond strengths than specimens in the control group (p < 0.05), with the exception of CG1 in the Clearfil SE group and CG2 and CG3 in the Tyrian SPE group. Among the three self-etch adhesives, the Tyrian SPE group exhibited a significantly lower average MTBS compared to the Clearfil SE Bond and AdheSE (p < 0.05) groups. Based on the results of the current study, it was found that blood contamination reduced the MTBS of all three self

  5. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms

    PubMed Central

    Zhang, Ke; Melo, Mary Anne S.; Cheng, Lei; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2012-01-01

    Objectives Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. Methods Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). Results Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35 MPa (p > 0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p < 0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. Significance Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a

  6. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms.

    PubMed

    Zhang, Ke; Melo, Mary Anne S; Cheng, Lei; Weir, Michael D; Bai, Yuxing; Xu, Hockin H K

    2012-08-01

    Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35MPa (p>0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p<0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a wide applicability to other dental bonding

  7. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    PubMed Central

    Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam

    2016-01-01

    Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P < 0.05. Results: There were no significant differences for CSEB subgroups with hydrated and dehydrated dentin samples between the three different curing modes (P > 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study. PMID:27041894

  8. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-01-30

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  9. Long-Term Bond Strength of Two Benzalkonium Chloride-Modified Adhesive Systems to Eroded Dentin

    PubMed Central

    Lussi, Adrian; Peutzfeldt, Anne

    2017-01-01

    This study investigated the effect of benzalkonium chloride (BAC) modification of two adhesive systems on long-term bond strength to normal and artificially eroded dentin. A total of 128 extracted human molars were sectioned and the buccal and oral surfaces of each molar were ground until the dentin. One half was left untreated (normal dentin) while the other half underwent artificial erosion. Resin composite was bonded to the buccal or oral surface following treatment with Adper Scotchbond 1XT or OptiBond FL without or with 1% BAC incorporation. Shear bond strength (SBS) was measured after 24 h (100% humidity, 37°C) or 1 year (tap water, 37°C). SBS results were statistically analyzed (α = 0.05). SBS was significantly lower to artificially eroded dentin than to normal dentin (p < 0.001). Storage for 1 year had no effect on SBS to normal dentin but led to a significant decrease in SBS to artificially eroded dentin (p < 0.001). BAC incorporation decreased the 24 h SBS to normal dentin (p = 0.018), increased the 24 h SBS to eroded dentin (p = 0.001), and had no effect on the 1-year SBS for either substrate. Consequently, BAC incorporation did not improve bond durability. PMID:28875148

  10. Bond Stability of a Universal Adhesive System to Eroded/Abraded Dentin After Deproteinization.

    PubMed

    Augusto, M G; Torres, Crg; Pucci, C R; Schlueter, N; Borges, A B

    Erosive/abrasive challenges can potentially compromise bonding to dentin. Aiming to improve the quality and stability of bonding to this substrate, this study investigated the combined effect of erosion and toothbrush abrasion on the microtensile bond strength (μTBS) stability to dentin using a universal adhesive system in total and self-etching modes, associated or not associated with deproteinization. Bovine dentin specimens were divided into five groups according to the organic matrix condition (n=20): control (C); erosion (E); erosion + abrasion (EA); erosion + sodium hypochlorite (EH); erosion + abrasion + sodium hypochlorite (EAH). The groups were further divided (n=10) according to the mode of application (total or self-etching) of a universal adhesive. After the bonding procedure, composite blocks were built up, and the samples were cut to obtain sticks for μTBS testing. For each specimen, one-half of the sticks was immediately tested, and the other one-half was tested after artificial aging (5000 thermocycles, 5°C and 55°C). Three-way analysis of variance (α=5%) showed a significant difference for the triple interaction ( p=0.0007). Higher μTBS means were obtained for the EH and EAH groups compared with the E and EA groups. The control group showed immediate μTBS values similar to that of the E and EA groups for both bond strategies. Erosion and erosion/abrasion did not significantly influence the immediate μTBS to dentin. Artificial aging reduced μTBS values for the groups C, E, and EA using the total-etching mode. Deproteinization maintained the bond stability to artificially aged eroded and eroded/abraded dentin.

  11. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    PubMed

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P < 0.05). In general, improvements in bond strength (MPa) were found in the following order: M10 > C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin.

  12. Effect of different surface treatments on adhesion of In-Ceram Zirconia to enamel and dentin substrates.

    PubMed

    Saker, Samah; Ibrahim, Fatma; Ozcan, Mutlu

    2013-08-01

    Resin bonding of In-Ceram Zirconia (ICZ) ceramics is still a challenge, especially for minimally invasive applications. This study evaluated the adhesion of ICZ to enamel and dentin after different surface treatments of the ceramic. ICZ ceramic specimens (diameter: 6 mm; thickness: 2 mm) (N = 100) were fabricated following the manufacturer's instructions and randomly assigned to 5 groups (n = 20), according to the surface treatment methods applied. The groups were as follows: group C: no treatment; group SB: sandblasting; group SCS-S: CoJet+silane; group SCS-P: CoJet+Alloy Primer; group GE-S: glaze+ hydrofluoric acid etching (9.6%) for 60 s+silane. Each group was randomly divided into two subgroups to be bonded to either enamel or dentin (n = 10 per group) using MDP-based resin cement (Panavia F2.0). All the specimens were subjected to thermocycling (5000x, 5°C-55°C). The specimens were mounted in a universal testing machine and tensile force was applied to the ceramic/cement interface until failure occurred (1 mm/min). After evaluating all the debonded specimens under SEM, the failure types were defined as either "adhesive" with no cement left on the ceramic surface (score 0) or "mixed" with less than 1/2 of the cement left adhered to the surface with no cohesive failure of the substrate (score 1). The data were statistically evaluated using 2-way ANOVA and Tukey's tests (α = 0.05). The highest tensile bond strength for the enamel surfaces was obtained in group GE-S (18.1 ± 2 MPa) and the lowest in group SB (7.1 ± 1.4 MPa). Regarding dentin, group CSC-P showed the highest (12 ± 1.3 MPa) and SB the lowest tensile bond strength (5.7 ± 0.4 MPa). Groups SB, CSC-S, CSC-P, and GE-S did not show significant differences between the different surface treatments on either enamel or dentin surfaces (p < 0.05, p < 0.001, respectively). Groups CSC-P and GE-S presented similar bond strength for both the enamel and dentin substrates (p < 0.8 and p < 0.9), respectively

  13. Effect of high energy X-ray irradiation on the nano-mechanical properties of human enamel and dentine.

    PubMed

    Liang, Xue; Zhang, Jing Yang; Cheng, Iek Ka; Li, Ji Yao

    2016-01-01

    Radiotherapy for malignancies in the head and neck can cause common complications that can result in tooth damage that are also known as radiation caries. The aim of this study was to examine damage to the surface topography and calculate changes in friction behavior and the nano-mechanical properties (elastic modulus, nanohardness and friction coefficient) of enamel and dentine from extracted human third molars caused by exposure to radiation. Enamel and dentine samples from 50 human third molars were randomly assigned to four test groups or a control group. The test groups were exposed to high energy X-rays at 2 Gy/day, 5 days/week for 5 days (10 Gy group), 15 days (30 Gy group), 25 days (50 Gy group), 35 days (70 Gy group); the control group was not exposed. The nanohardness, elastic modulus, and friction coefficient were analyzed using a Hysitron Triboindenter. The nano-mechanical properties of both enamel and dentine showed significant dose-response relationships. The nanohardness and elastic modulus were most variable between 30-50 Gy, while the friction coefficient was most variable between 0-10 Gy for dentine and 30-50 Gy for enamel. After exposure to X-rays, the fracture resistance of the teeth clearly decreased (rapidly increasing friction coefficient with increasing doses under the same load), and they were more fragile. These nano-mechanical changes in dental hard tissue may increase the susceptibility to caries. Radiotherapy caused nano-mechanical changes in dentine and enamel that were dose related. The key doses were 30-50 Gy and the key time points occurred during the 15th-25th days of treatment, which is when application of measures to prevent radiation caries should be considered.

  14. Curing mode affects bond strength of adhesively luted composite CAD/CAM restorations to dentin.

    PubMed

    Lührs, Anne-Katrin; Pongprueksa, Pong; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To determine the effect of curing mode and restoration-surface pre-treatment on the micro-tensile bond strength (μTBS) to dentin. Sandblasted CAD/CAM composite blocks (LAVA Ultimate, 3M ESPE) were cemented to bur-cut dentin using either the etch & rinse composite cement Nexus 3 ('NX3', Kerr) with Optibond XTR ('XTR', Kerr), or the self-etch composite cement RelyX Ultimate ('RXU', 3M ESPE) with Scotchbond Universal ('SBU', 3M ESPE). All experimental groups included different 'curing modes' (light-curing of adhesive and cement ('LL'), light-curing of adhesive and auto-cure of cement ('LA'), co-cure of adhesive through light-curing of cement ('AL'), or complete auto-cure ('AA')) and different 'restoration-surface pre-treatments' of the composite block (NX3: either a silane primer (Kerr), or the XTR adhesive; RXU: either silane primer (RelyX Ceramic Primer, 3M ESPE) and SBU, or solely SBU). After water-storage (7 days, 37°C), the μTBS was measured. Additionally, the degree of conversion (DC) of both cements was measured after 10min and after 1 week, either auto-cured (21°C/37°C) or light-cured (directly/through 3-mm CAD/CAM composite). The linear mixed-effects model (α=0.05) revealed a significant influence of the factors 'curing mode' and 'composite cement', and a less significant effect of the factor 'restoration-surface pre-treatment'. Light-curing 'LL' revealed the highest μTBS, which decreased significantly for all other curing modes. For curing modes 'AA' and 'AL', the lowest μTBS and a high percentage of pre-testing failures were reported. Overall, DC increased with light-curing and incubation time. The curing mode is decisive for the bonding effectiveness of adhesively luted composite CAD/CAM restorations to dentin. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Influence of dentinal regions on bond strengths of different adhesive systems.

    PubMed

    Ozer, F; Unlü, N; Sengun, A

    2003-06-01

    This in vitro study assessed comparatively the shear bond strengths of three composite resins, 3M Valux Plus (3MVP), Herculite (H), Clearfil AP-X (CAP-X), a polyacid modified composite resin Dyract (D), and a resin modified glass-ionomer materials Vitremer (V), to cervical and buccal dentine regions of extracted human molar teeth. Four different bonding systems, 3M ScotchBond Multipurpose (SB), Clearfil Liner Bond 2 (LB2), Opti Bond (OB), and Prime & Bond 2.1 (PB 2.1) were used with the manufacturer's respective composite and compomer materials. One hundred freshly extracted mandibular molar teeth were selected for this study. Flat buccal dentine surfaces were created on 50 teeth and cylindrical rods of the five materials were bonded to the dentine surfaces. For assessment of cervical bond strengths, the materials were bonded to mesial and distal enamel bordered occlusal dentinal surfaces of the remaining 50 teeth. The five groups of restorative procedures were applied as follows; Group 1: SB + 3MVP, Group 2: LB2 + CAP-X, Group 3: OB + H, Group 4: PB2.1 + D, Group 5: Vitremer primer (VP) VP + V. Each restorative procedure thus had 20 specimens (10 buccal + 10 cervical). After 24 h of water storage (37 degrees C), the specimens were tested on a Universal Testing machine in shear with a cross head speed of 0.5 mm min-1. The bond strength values were calculated in MPa and the results were evaluated statistically using Kruskal-Wallis one-way/anova and Mann-Whitney U-tests. It was found that the bond strengths of SB + 3MVP, LB2 + CAP-X and VP + V to buccal dentine surfaces were significantly stronger (P < 0.05) than those to the occluso-cervical dentine floors. When the bond strengths to the occluso-cervical dentine and buccal dentine surface were compared, there was no significant difference between the materials (P > 0.05). Vitremer was found the least successful adhesive material in terms of shear bond strength on both buccal and occluso-cervical dentine surfaces.

  16. The effect of zoledronate-containing primer on dentin bonding of a universal adhesive.

    PubMed

    Zenobi, Walter; Feitosa, Victor Pinheiro; Moura, Maria Elisa Martins; D'arcangelo, Camillo; Rodrigues, Lidiany Karla de Azevedo; Sauro, Salvatore

    2018-01-01

    To evaluate the bonding ability and nanoleakage of a universal adhesive applied to dentin pre-treated using a zoledronate-containing primer (zol-primer) before and after mechanical load cycling. Flat dentin surfaces obtained from human molars were assigned to one of the following adhesion procedures (n=6): 1-Single Bond Universal (SBU) applied in etch-and-rinse mode; 2- SBU applied as etch-and-rinse after the application of zol-primer; 3- SBU applied in self-etch strategy; 4- SBU applied as self-etch after the use of zol-primer. Half of the specimens were processed for microtensile bond strength test after 24h, while the other half part was submitted to 200,000 mechanical cycles. Further specimens were silver-impregnated and assessed for interface nanoleakage by SEM. Data were analyzed with two-way ANOVA and Tukey's test (p<0.05). At 24h evaluation, the four groups presented similar bond strengths, whilst both groups bonded with etch-and-rinse technique showed significant bond strength reduction after mechanical load (p<0.05), with the highest drop in bond strength for the specimens pre-treated with the zol-primer. No negative effects were found for self-etch strategy (p>0.05) in microtensile test. Lower nanoleakage expression was observed for etch-and-rinse specimens treated with zol-primer. However, noteworthy reduction of adhesive layer thickness was observed when combining the zol-primer with the self-etch bonding approach. It can be concluded that zol-primer should not be used along with a universal adhesive in etch-and-rinse mode, but its application before self-etch application may provide less degradation of the resin-dentin interface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of ethanol-wet bonding with hydrophobic adhesive on caries-affected dentine.

    PubMed

    Huang, Xueqing; Li, Li; Huang, Cui; Du, Xijin

    2011-08-01

    Frequently encountered in clinical practice, caries-affected dentine (CAD) is the most challenging bonding substrate. This study evaluated the effect of ethanol-wet bonding with hydrophobic adhesive to sound dentine and to CAD. In the control groups, prepared sound dentine and CAD were bonded with Adper Single Bond 2 using a traditional water-wet bonding technique. In the experimental groups, the specimens were treated as follows: Group 1, rinsed with stepwise ethanol dehydration; Group 2, immersion in 100% ethanol, three times, for 20 s each time; and Group 3, immersion in 100% ethanol for 20 s. Microtensile bond strength (μTBS) testing was used to evaluate the effects of the different protocols on bonding. The microhardness of debonded dentine surfaces was measured to ensure the presence of CAD. Interfacial nanoleakage was evaluated by field-emission scanning electron microscopy. Treatment significantly improved the μTBS in CAD in Groups 1 and 2, but had no effect on Group 3. Conversely, treatment significantly reduced the μTBS in sound dentine in Groups 2 and 3, but had no effect in Group 1. The presence of nanoleakage varied with the ethanol-wet protocol used. In conclusion, ethanol-wet bonding can potentially improve bond efficacy to CAD when an appropriate protocol is used. © 2011 Eur J Oral Sci.

  18. Microtensile bond strength of etch-and-rinse and self-etching adhesives to intrapulpal dentin after endodontic irrigation and setting of root canal sealer.

    PubMed

    Wattanawongpitak, Nipaporn; Nakajima, Masatoshi; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji

    2009-02-01

    To evaluate the effect of endodontic irrigation regimens and calcium hydroxide root canal sealer (Sealapex) on the microtensile bond strengths (muTBS) of dual-curing resin composite (Clearfil DC Core Automix) to the intrapulpal dentin. Forty standardized coronal-half root canal dentin specimens obtained from human premolars were divided into 4 groups: group A, no treatment (control); group B, Sealapex; group C, NaOCl/Sealapex; group D, EDTA/NaOCl/Sealapex. After 7 days of storage in 100% relative humidity, Sealapex was removed. Dentin surfaces were bonded with adhesives, either etch-and-rinse (Single Bond) or self-etching (Clearfil SE Bond), and built up with resin composite. The bonded specimens were trimmed into an hourglass shape with a 1-mm2 cross-sectional area for microtensile testing (n = 20). The muTBS to intrapulpal dentin was analyzed using two-way ANOVA and Dunnett's TC test. Two teeth of each group were prepared for micromorphological analysis of dentin surface. The root canal sealer with or without endodontic irrigation significantly affected the bond strengths of resin composite to intrapulpal dentin compared with the control group (p < 0.05). There were no significant differences in muTBS of each experimental group between etch-and-rinse and self-etching adhesives (p > 0.05). The dentin surface was covered with a mud-like material after sealer application for 7 days. The root canal sealer reduced the muTBS of dual-curing resin composite with etch-and-rinse and self-etching adhesive systems to intrapulpal dentin. Treatment with EDTA followed by NaOCI prior to obturation caused an additional reduction in muTBS of both adhesive systems to intrapulpal dentin.

  19. Effect of salivary contamination and decontamination on bond strength of two one-step self-etching adhesives to dentin of primary and permanent teeth.

    PubMed

    Santschi, Katharina; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-02-01

    To evaluate the effects of human saliva contamination and two decontamination procedures at different stages of the bonding procedure on the bond strength of two one-step self-etching adhesives to primary and permanent dentin. Extracted human primary and permanent molars (210 of each) were ground to mid-coronal dentin. The dentin specimens were randomly divided into 7 groups (n = 15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light curing of the adhesives followed by air drying, rinsing with water spray/air drying, or by rinsing with water spray/air drying/reapplication of the adhesives. Resin composite (Filtek Z250) was applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests. Xeno V+ generated significantly higher SBS than Scotchbond Universal when no saliva contamination occurred. Saliva contamination reduced SBS of Xeno V+, with the reduction being more pronounced when contamination occurred before light curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth. Rinsing with water and air drying followed by reapplication of the adhesive restored bond strength to saliva-contaminated dentin.

  20. Effect of Self-Adhesive and Separate Etch Adhesive Dual Cure Resin Cements on the Bond Strength of Fiber Post to Dentin at Different Parts of the Root.

    PubMed

    Amiri, Ehsan Mohamadian; Balouch, Fariba; Atri, Faezeh

    2017-05-01

    Bonding of fiber posts to intracanal dentin is challenging in the clinical setting. This study aimed to compare the effect of self-adhesive and separate etch adhesive dual cure resin cements on the bond strength of fiber post to dentin at different parts of the root. This in-vitro experimental study was conducted on 20 single-rooted premolars. The teeth were decoronated at 1mm coronal to the cementoenamel junction (CEJ), and the roots underwent root canal treatment. Post space was prepared in the roots. Afterwards, the samples were randomly divided into two groups. In group 1, the fiber posts were cemented using Rely X Unicem cement, while in group 2, the fiber posts were cemented using Duo-Link cement, according to the manufacturer's instructions. The intracanal post in each root was sectioned into three segments of coronal, middle, and apical, and each cross-section was subjected to push-out bond strength test at a crosshead speed of 1mm/minute until failure. Push-out bond strength data were analyzed using independent t-test and repeated measures ANOVA. The bond strength at the middle and coronal segments in separate etch adhesive cement group was higher than that in self-adhesive cement group. However, the bond strength at the apical segment was higher in self-adhesive cement group compared to that in the other group. Overall, the bond strength in separate etch adhesive cement group was significantly higher than that in self-adhesive cement group (P<0.001). Bond strength of fiber post to intracanal dentin is higher after the use of separate etch adhesive cement compared to self-adhesive cement.

  1. The effect of dimethyl sulfoxide (DMSO) on dentin bonding and nanoleakage of etch-and-rinse adhesives.

    PubMed

    Tjäderhane, Leo; Mehtälä, Pekka; Scaffa, Polliana; Vidal, Cristina; Pääkkönen, Virve; Breschi, Lorenzo; Hebling, Josimeri; Tay, Franklin R; Nascimento, Fabio D; Pashley, David H; Carrilho, Marcela R

    2013-10-01

    The objective was to examine the effect of a solvent dimethyl sulfoxide (DMSO) on resin-dentin bond durability, as well as potential functional mechanisms behind the effect. Microtensile bond strength (μTBS) was evaluated in extracted human teeth in two separate experiments. Dentin specimens were acid-etched and assigned to pre-treatment with 0.5mM (0.004%) DMSO as additional primer for 30s and to controls with water pre-treatment. Two-step etch-and-rinse adhesive (Scotchbond 1XT, 3M ESPE) was applied and resin composite build-ups were created. Specimens were immediately tested for μTBS or stored in artificial saliva for 6 and 12 months prior to testing. Additional immediate and 6-month specimens were examined for interfacial nanoleakage analysis under SEM. Matrix metalloproteinase (MMP) inhibition by DMSO was examined with gelatin zymography. Demineralized dentin disks were incubated in 100% DMSO to observe the optical clearing effect. The use of 0.5mM DMSO had no effect on immediate bond strength or nanoleakage. In controls, μTBS decreased significantly after storage, but increased significantly in DMSO-treated group. The control group had significantly lower μTBS than DMSO-group after 6 and 12 months. DMSO also eliminated the increase in nanoleakage seen in controls. 5% and higher DMSO concentrations significantly inhibited the gelatinases. DMSO induced optical clearing effect demonstrating collagen dissociation. DMSO as a solvent may be useful in improving the preservation of long-term dentin-adhesive bond strength. The effect may relate to dentinal enzyme inhibition or improved wetting of collagen by adhesives. The collagen dissociation required much higher DMSO concentrations than the 0.5mM DMSO used for bonding. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Effect of sonic application mode on the resin-dentin bond strength and nanoleakage of simplified self-etch adhesive.

    PubMed

    Mena-Serrano, Alexandra; Garcia, Eugenio Jose; Loguercio, Alessandro Dourado; Reis, Alessandra

    2014-04-01

    This study aims to evaluate the effect of different application modes on the immediate and 6-month resin-dentin bond strength (μTBS) and nanoleakage in the hybrid and adhesive layers. Three 1-step self-etch adhesives (One Coat 7.0 (OC), Clearfil S(3) Bond (CS), and FuturaBond NR (FB)) were applied on a flat superficial dentin surface of 30 human molars under manual mode or sonic vibration at a frequency of 170 Hz (SV). Composite build-ups were constructed incrementally; specimens were sectioned to obtain resin-dentin sticks with cross-sectional area of 0.8 mm(2) and tested in tension (0.5 mm/min) immediately (IM) or after 6 months (6M) of water storage. Two bonded sticks, from each tooth at each storage time, were immersed in a silver nitrate solution, photo-developed, and analyzed under scanning electron microscopy. The amount of nanoleakage was measured using the ImageTool 3.0 software. Data, from each adhesive, were analyzed by two-way ANOVA and Tukey's test (α = 0.05). OC and CS showed higher μTBS and lower nanoleakage in the IM period when applied with SV groups. For FB, no significant difference was observed between the two modes of application. All materials showed lower nanoleakage in the SV groups. Higher nanoleakage was observed after 6M for OC and FB. The sonic application mode at an oscillating frequency of 170 Hz can improve the resin-dentin μTBS, reduce the nanoleakage, and retard the degradation of the resin-dentin μTBS of Clearfil S(3) Bond and One Coat 7.0 adhesives. Sonic application mode at an oscillating frequency of 170 Hz can be helpful and easy to use in dental practice to guaranty long-lasting restorations.

  3. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  4. Remineralization of artificial dentinal caries lesions by biomimetically modified Mineral Trioxide Aggregate

    PubMed Central

    Qi, Yi-pin; Li, Nan; Niu, Li-na; Primus, Carolyn M.; Ling, Jun-Qi; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Fluoride-releasing restorative materials are available for remineralization of enamel and root caries. However, dentin remineralization is more difficult than enamel remineralization due to the paucity of apatite seed crystallites along the lesion surface for heterogeneous crystal growth. Extracellular matrix proteins play critical roles in controlling apatite nucleation/growth in collagenous tissues. This study examined the remineralization efficacy of mineral trioxide aggregate (MTA) in phosphate-containing simulated body fluid (SBF) by incorporating polyacrylic acid and sodium tripolyphosphate as biomimetic analogs of matrix proteins for remineralizing caries-like dentin. Artificial caries-like dentin lesions incubated in SBF were remineralized over a 6-week period using MTA or MTA containing biomimetic analogs in the absence or presence of dentin adhesive application. Lesion depths and integrated mineral loss were monitored with micro-computed tomography. Ultrastructure of baseline and remineralized lesions were examined by transmission electron microscopy. Dentin remineralization was best achieved using MTA containing biomimetic analogs regardless of whether an adhesive was applied; dentinal tubules within the remineralized dentin were occluded by apatite. It is concluded that the MTA version employed in the study may be doped with biomimetic analogs for remineralization of unbonded and bonded artificial caries-like lesions in the presence of SBF. PMID:22085925

  5. Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives

    PubMed Central

    Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L.; Spencer, Paulette

    2013-01-01

    The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant differences were also found for the creep behavior of the model adhesive under dry and wet conditions. A linear viscoelastic model was developed by fitting the adhesive creep behavior. The developed model with 5 Kelvin Voigt elements predicted the apparent elastic moduli measured in the static tests. The model was then utilized to interpret the fatigue test results. It was found that the failure under cyclic loading can be due to creep or fatigue, which has implications for the failure criterion that are applied for these types of tests. Finally, it was found that the adhesive samples tested under dry conditions were more durable than those tested under wet conditions. PMID:20848661

  6. Dentin bond strength and nanoleakage of the adhesive interface after intracoronal bleaching.

    PubMed

    Cavalli, Vanessa; Sebold, Maicon; Shinohara, Mirela Sanae; Pereira, Patrícia Nóbrega Rodrigues; Giannini, Marcelo

    2018-04-01

    This study evaluated dentin bond strength (BS) and nanoleakage of non- and pre-etched dentin immediately (T 0 ,), 7 days (T 7 ), and 14 days (T 14 ) after bleaching. Bovine incisors (150) were selected and half of them submitted to intrapulpal dentin etching (e). Non- and pre-etched dentin were subjected to the following (n = 15): no bleaching/control (C); 35% carbamide peroxide (CP); 35% hydrogen peroxide (35% HP); 25% hydrogen peroxide (25% HP); and sodium perborate (SP). Bleaching agents were applied to the pulp chamber four times within a 72-h interval. Afterwards, pulp chamber dentin was prepared for the BS test at different evaluation times (n = 5): T 0 , T 7 , and T 14 . Composite blocks were built on pulp chamber and sectioned in slices. Slices were reduced to an hour-glass shape with a cross-sectional area of 0.8 mm 2 and submitted to microtensile BS test. Two additional specimens for each group were prepared for nanoleakage evaluation by transmission electron microscopy (TEM). Results were analyzed by ANOVA (two-way) and Dunnett's test (p < .05). BS decreased immediately after intracoronal bleaching for both sound and pre-etched dentin (p < .05). At T 14 , the BS of non-etched bleached dentin increased for all groups, whereas the pre-etched SPe group presented BS similar to the Ce. Nanoleakage within the hybrid layer was perceptible immediately after bleaching, although a decrease in nanoleakage was observed for all groups at T 14 . Adhesive restorations should be performed 7-14 days after bleaching, according to the bleaching agent used. Intracoronal bleaching should be performed preferably with sodium perborate if previous dentin etching is applied. © 2018 Wiley Periodicals, Inc.

  7. Long-term bonding effectiveness of simplified etch-and-rinse adhesives to dentin after different surface pre-treatments

    PubMed Central

    Verma, Radhika; Singh, Udai Pratap; Tyagi, Shashi Prabha; Nagpal, Rajni; Manuja, Naveen

    2013-01-01

    Objective: To evaluate the effect of 2% chlorhexidine (CHX) and 30% proanthocyanidin (PA) application on the immediate and long-term bond strength of simplified etch-and-rinse adhesives to dentin. Materials and Methods: One hundred twenty extracted human molar teeth were ground to expose the flat dentin surface. The teeth were equally divided into six groups according to the adhesives used, either Tetric N Bond or Solobond M and pretreatments given either none, CHX, or PA. Composite cylinder was bonded to each specimen using the respective adhesive technique. Half the samples from each group (n = 10) were then tested immediately. The remaining samples were tested after 6 month storage in distilled water. Results: The mean bond strength of samples was not significantly different upon immediate testing being in the range of 8.4(±0.7) MPa. The bond strength fell dramatically in the control specimens after 6 month storage to around 4.7(±0.33) MPa, while the bond strength was maintained in the samples treated with both CHX and PA. Conclusion: Thirty percent PA was comparable to 2% CHX with respect to preservation of the resin dentin bond over 6 months. PMID:23956543

  8. Evaluation of metal bond strength to dentin and enamel using different adhesives and surface treatments.

    PubMed

    Dundar, Mine; Gungor, Mehmet Ali; Cal, Ebru; Darcan, Alev; Erdem, Adalet

    2007-01-01

    Because adherence of base metal alloys is important for the long-term clinical success of adhesive fixed partial dentures, it has been necessary to improve adhesion to metal substrate by using different surface treatments. This study used different surface conditioning methods and two different luting resins to evaluate the shear bond strength of base metal alloys to dentin and enamel. Sixty noncarious freshly extracted human teeth were mounted in a plastic holder filled with autopolymerized acrylic resin. After the roots were removed and 30 flat enamel and 30 flat dentin surfaces were exposed, the specimens were divided randomly into two main luting cement groups. Sixty nickel chromium (NiCr) metal specimens were fabricated and subjected to three different surface conditioning procedures: sandblasting with 50 microm aluminum oxide, tribochemical silica coating, and a combination of the two. Scanning electron mircoscopy (SEM) evaluations revealed mainly cohesive failures. Self-cure adhesive resulted in higher bond strengths to dental substrates. Higher bond strengths were achieved through a combination of sandblasting and tribochemical silica coating; however, further clinical research is required. A surface treatment that combines sandblasting with tribochemical silica coating can achieve a more effective bond for adhesive restorations with metal substrates.

  9. Resin–dentin bonds to EDTA-treated vs. acid-etched dentin using ethanol wet-bonding

    PubMed Central

    Sauro, Salvatore; Toledano, Manuel; Aguilera, Fatima Sánchez; Mannocci, Francesco; Pashley, David H.; Tay, Franklin R.; Watson, Timothy F.; Osorio, Raquel

    2013-01-01

    Objective To compare resin–dentin bond strengths and the micropermeability of hydrophobic vs. hydrophilic resins bonded to acid-etched or EDTA-treated dentin, using the ethanol wet-bonding technique. Methods Flat dentin surfaces from extracted human third molars were conditioned before bonding with: 37% H3PO4 (15 s) or 0.1 M EDTA (60 s). Five experimental resin blends of different hydrophilicities and one commercial adhesive (SBMP: Scotchbond Multi-Purpose) were applied to ethanol wet-dentin (1 min) and light-cured (20 s). The solvated resins were used as primers (50% ethanol/50% comonomers) and their respective neat resins were used as the adhesive. The resin-bonded teeth were stored in distilled water (24 h) and sectioned in beams for microtensile bond strength testing. Modes of failure were examined by stereoscopic light microscopy and SEM. Confocal tandem scanning microscopy (TSM) interfacial characterization and micropermeability were also performed after filling the pulp chamber with 1 wt% aqueous rhodamine-B. Results The most hydrophobic resin 1 gave the lowest bond strength values to acid-etched dentin and all beams failed prematurely when the resin was applied to EDTA-treated dentin. Resins 2 and 3 gave intermediate bond strengths to both conditioned substrates. Resin 4, an acidic hydrophilic resin, gave the highest bond strengths to both EDTA-treated and acid-etched dentin. Resin 5 was the only hydrophilic resin showing poor resin infiltration when applied on acid-etched dentin. Significance The ethanol wet-bonding technique may improve the infiltration of most of the adhesives used in this study into dentin, especially when applied to EDTA-treated dentin. The chemical composition of the resin blends was a determining factor influencing the ability of adhesives to bond to EDTA-treated or 37% H3PO4 acid-etched dentin, when using the ethanol wet-bonding technique in a clinically relevant time period. PMID:20074787

  10. Laboratory evaluation of the effect of unfilled resin after the use of self-etch and total-etch dentin adhesives on the Shear Bond Strength of composite to dentin.

    PubMed

    Nasseri, Ehsan Baradaran; Majidinia, Sara; Sharbaf, Davood Aghasizadeh

    2017-05-01

    Based on the frequent application of composite resins as tooth-colored fillings, this method is considered a viable alternative to dental amalgam. However, this method has the low bond strength of the composite to dentin. To solve this issue, various dental adhesive systems with different characteristics have been developed by dentistry experts. To assess the effect of an additional layer of unfilled resin in self-etch and total-etch dentin adhesives on the shear bond strength (SBS) of composite to dentin. Moreover, we assessed the effects of sample storage in artificial saliva on the SBS of composite to dentin. Methods: This experimental study was conducted on 160 freshly extracted human first or second premolar teeth, which were randomly divided into 16 groups. The teeth were prepared from Mashhad University of Medical Sciences, Mashhad, Iran (2008-2009). Scotchbond Multi-purpose (SBMP), single bond (SB), Clearfil SE Bond, and Clearfil S3 Bond were applied to dentin surface with or without the placement of hydrophobic resin (Margin Bond) in accordance with the instructions of the manufacturers. To expose the coronal dentin, the teeth were abraded with 600 grit SiC paper. Immediately after restoration, half of the samples were tested in terms of SBS, while the other samples were evaluated in terms of SBS after three months of storage in artificial saliva. SBS rates of dental composites evaluated by universal testing machine and samples were studied by optical stereomicroscopy to verify the failure type. Data analysis was performed in SPSS V.16 using Kolmogorov-Smirnov test, independent-samples t-test, ANOVA, and Duncan's logistic regression test. In this study, a significant reduction was observed in the SBS rates of SB and S3 bond adhesive systems after storage with and without hydrophobic resin (p>0.000). Without storage in normal saline, a significant increase was observed in the SBS rate of the SE bond (p=0.013). In addition, SBS rate of SBMP significantly

  11. Laboratory evaluation of the effect of unfilled resin after the use of self-etch and total-etch dentin adhesives on the Shear Bond Strength of composite to dentin

    PubMed Central

    Nasseri, Ehsan Baradaran; Majidinia, Sara; Sharbaf, Davood Aghasizadeh

    2017-01-01

    Background Based on the frequent application of composite resins as tooth-colored fillings, this method is considered a viable alternative to dental amalgam. However, this method has the low bond strength of the composite to dentin. To solve this issue, various dental adhesive systems with different characteristics have been developed by dentistry experts. Aim To assess the effect of an additional layer of unfilled resin in self-etch and total-etch dentin adhesives on the shear bond strength (SBS) of composite to dentin. Moreover, we assessed the effects of sample storage in artificial saliva on the SBS of composite to dentin. Methods Methods: This experimental study was conducted on 160 freshly extracted human first or second premolar teeth, which were randomly divided into 16 groups. The teeth were prepared from Mashhad University of Medical Sciences, Mashhad, Iran (2008–2009). Scotchbond Multi-purpose (SBMP), single bond (SB), Clearfil SE Bond, and Clearfil S3 Bond were applied to dentin surface with or without the placement of hydrophobic resin (Margin Bond) in accordance with the instructions of the manufacturers. To expose the coronal dentin, the teeth were abraded with 600 grit SiC paper. Immediately after restoration, half of the samples were tested in terms of SBS, while the other samples were evaluated in terms of SBS after three months of storage in artificial saliva. SBS rates of dental composites evaluated by universal testing machine and samples were studied by optical stereomicroscopy to verify the failure type. Data analysis was performed in SPSS V.16 using Kolmogorov-Smirnov test, independent-samples t-test, ANOVA, and Duncan’s logistic regression test. Results In this study, a significant reduction was observed in the SBS rates of SB and S3 bond adhesive systems after storage with and without hydrophobic resin (p>0.000). Without storage in normal saline, a significant increase was observed in the SBS rate of the SE bond (p=0.013). In addition

  12. Effect of the calcium silicate-based sealer removal protocols and time-point of acid etching on the dentin adhesive interface.

    PubMed

    Morais, Jéssika Mayhara Pereira; Victorino, Keli Regina; Escalante-Otárola, Wilfredo Gustavo; Jordão-Basso, Keren Cristina Fagundes; Palma-Dibb, Regina Guenka; Kuga, Milton Carlos

    2018-06-15

    The aim of the study was to evaluate the effects when acid etching on the dentin surface was immediately performed (I) or 7 days (D) after calcium silicate-based sealer (MTA Fillapex) removal, using 95% ethanol (E) or xylol (X). First study, 60 bovine incisor dentin specimens were impregnated with sealer and divided into six groups (n = 10): (EI), E + I; (XI), X + I; (ED), E + D; (XD), X + D, (UN), untreated and (MR), mechanical removal of sealer. Scanning electron microscopy (SEM) images (500×) were obtained from each specimen and scores assessed the sealer residues persistence. Second study, 60 specimens were similarly treated; however, the specimens were restored with composite resin after the removal protocols. Hybrid layer formation was evaluated using confocal laser microscopy (1,024×). Third study, 60 specimens were similarly obtained and subjected to micro-shear test to evaluate the effects of removal protocols on the bond strength of etch-and- rinse adhesive system to dentin. XI showed the highest persistence of sealer residues (p < .05), similar to MR (p > .05). EI showed the greatest hybrid layer extension, except in relation to UN (p < .05). XI and MR presented the lowest bond strength adhesive system to dentin (p < .05). Acid etching immediately after calcium silicate-based endodontic sealer removal using xylol presented the highest residues persistence and negatively affected the adhesive interface between dentin and etch-and-rinse adhesive system. © 2018 Wiley Periodicals, Inc.

  13. Dentin bond strength of an adhesive system irradiated with an Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Ruschel, V. C.; Malta, D. A. M. P.; Monteiro, S., Jr.

    2016-11-01

    The objective of this study was to evaluate the microtensile bond strength of an adhesive system applied to dentin, followed by Nd:YAG laser irradiation. Twenty-two recently extracted third molars were divided into four groups (n  =  5). In the G1 and G2 groups, the adhesive system was applied conventionally, and in groups G3 and G4, the adhesive system was irradiated with an Nd:YAG laser (100 J cm-2). The specimens were stored in distilled water at 37 °C, those in groups G1 and G3 for 24 h, and those in groups G2 and G4 for 3 months. Two teeth from groups G1 and G3 were used for observation of the hybrid layer, using a confocal microscope (n  =  1). The teeth were submitted to a microtensile bond strength test. Analysis of the type of fracture was performed using a stereoscope (40×). The results for microtensile bond strength (MPa) and standard deviation (±SD) were: G1—31.68 (5.14); G2—37.88 (±5.04) G3—35.32 (±8.79) G4—31.53 (±9.01). There were no significant differences among the groups (p  >  0.05). Adhesive failure was predominant in all the groups. The Nd:YAG laser irradiation of the adhesives did not influence dentin bond strength during the periods of 24 h or 3 months of storage in distilled water.

  14. Short communication: pre- and co-curing effect of adhesives on shear bond strengths of composite resins to primary enamel and dentine: an in vitro study.

    PubMed

    Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V

    2011-12-01

    To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (p<0.001). At the same time light curing the adhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.

  15. Effect of dimethyl sulfoxide on dentin collagen.

    PubMed

    Mehtälä, P; Pashley, D H; Tjäderhane, L

    2017-08-01

    Infiltration of adhesive on dentin matrix depends on interaction of surface and adhesive. Interaction depends on dentin wettability, which can be enhanced either by increasing dentin surface energy or lowering the surface energy of adhesive. The objective was to examine the effect of dimethyl sulfoxide (DMSO) on demineralized dentin wettability and dentin organic matrix expansion. Acid-etched human dentin was used for sessile drop contact angle measurement to test surface wetting on 1-5% DMSO-treated demineralized dentin surface, and linear variable differential transformer (LVDT) to measure expansion/shrinkage of dentinal matrix. DMSO-water binary liquids were examined for surface tension changes through concentrations from 0 to 100% DMSO. Kruskal-Wallis and Mann-Whitney tests were used to test the differences in dentin wettability, expansion and shrinkage, and Spearman test to test the correlation between DMSO concentration and water surface tension. The level of significance was p<0.05. Pretreatment with 1-5% DMSO caused statistically significant concentration-dependent increase in wetting: the immediate contact angles decreased by 11.8% and 46.6% and 60s contact angles by 9.5% and 47.4% with 1% and 5% DMSO, respectively. DMSO-water mixtures concentration-dependently expanded demineralized dentin samples less than pure water, except with high (≥80%) DMSO concentrations which expanded demineralized dentin more than water. Drying times of LVDT samples increased significantly with the use of DMSO. Increased dentin wettability may explain the previously demonstrated increase in adhesive penetration with DMSO-treated dentin, and together with the expansion of collagen matrix after drying may also explain previously observed increase in dentin adhesive bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Demonstration of a focused ion-beam cross-sectioning technique for ultrastructural examination of resin-dentin interfaces.

    PubMed

    Van Meerbeek, B; Conn, L J; Duke, E S; Schraub, D; Ghafghaichi, F

    1995-03-01

    focused ion-beam (FIB) etching, commonly used as a cross-sectioning technique for failure analysis of semiconductor devices, has recently been applied to biological tissues to expose their ultrastructure for examination. It was the aim of this investigation to determine the practical utility of FIB to cross-section resin-dentin interfaces in order to morphologically evaluate the completeness of resin penetration into the exposed collagen scaffold at the resin-dentin bond interface. Two representative commercially available dentin adhesive systems were bonded to mid-coronal dentin. After appropriate fixation and dehydration of the resin-bonded dentin samples, a scanned focused ion-beam of a few tens of nano-meters in diameter was used to cross=section the resin-dentin interface. Examination of the interfacial ultrastructure was accomplished using a field-emission SEM. Results indicate possible artifact production at the cross-sectioned interface, hiding its actual ultrastructure, probably due to a heat-effect with possible recrystallization. Further studies of FIB are needed to optimize its usefulness for resin-dentin interface examinations and other biological tissue applications. Complete resin saturation of the demineralized dentin surface-layer has been claimed to be the key factor for a long-lasting resin-dentin bond. A "clean" artifact-free micro-cross-sectioning technique may provide indisputable ultra-structural information about the depth of resin penetration into the demineralized zone. Such a test would be useful in the development of dentin adhesive systems.

  17. NaOCl degradation of a HEMA-free all-in-one adhesive bonded to enamel and dentin following two air-blowing techniques.

    PubMed

    De Munck, Jan; Ermis, R Banu; Koshiro, Kenichi; Inoue, Satoshi; Ikeda, Takatsumi; Sano, Hidehiko; Van Landuyt, Kirsten L; Van Meerbeek, Bart

    2007-01-01

    Phase-separation within HEMA-free all-in-one dental adhesives may result in the entrapment of droplets within the adhesive resin. Strongly air-blowing prior to polymerization, can remove most of these droplets. The objective of this study was to evaluate the effect these droplets may have on the resistance of the adhesive-tooth interface to NaOCl degradation. The micro-tensile bond strength (microTBS) to enamel and dentin was determined when a HEMA-free all-in-one adhesive was applied either following a mild or strong air-blowing technique. The bonds were also exposed to an aqueous sodium hypochlorite (NaOCl) solution for 1h, following a recently introduced methodology to mimic in vivo bond degradation. This study revealed that strong air-blowing of the adhesive only resulted in a significantly higher micro-tensile bond strength (microTBS) to dentin, but not to enamel. Likewise, NaOCl only reduced the microTBS to dentin for both the mild and strong air-blowing technique, but again not the microTBS to enamel. Failure analysis by SEM clearly revealed that strong air-blowing is less effective in droplet removal when the adhesive was applied in small and narrow class-I cavities, as compared to when it was applied to flat surfaces. NaOCl did preferentially dissolve the hybrid layer at dentin, and more for the mild than for the strong air-blowing technique. A strong air-blowing procedure resulted in a more NaOCl-resistant hybrid layer, so that it can be concluded that a HEMA-free one-step adhesive definitely benefits from a strong air-blowing technique.

  18. Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface.

    PubMed

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Medina-Castillo, Antonio Luis; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2017-04-01

    The aim of this study was to evaluate changes in the mechanical and chemical behavior, and bonding ability at dentin interfaces infiltrated with polymeric nanoparticlesstandard deviations and modes of failure are (NPs) prior to resin application. Dentin surfaces were treated with 37% phosphoric acid followed by application of an ethanol suspension of NPs, Zn-NPs or Ca-NPs followed by the application of an adhesive, Single Bond (SB). Bonded interfaces were stored for 24h, submitted to microtensile bond strength test, and evaluated by scanning electron microscopy. After 24h and 21 d of storage, the whole resin-dentin interface adhesive was evaluated using a Nano-DMA. Complex modulus, storage modulus and tan delta (δ) were assessed. AFM imaging and Raman analysis were performed. Bond strength was not affected by NPs infiltration. After 21 d of storage, tan δ generally decreased at Zn-NPs/resin-dentin interface, and augmented when Ca-NPs or non-doped NPs were used. When both Zn-NPs and Ca-NPs were employed, the storage modulus and complex modulus decreased, though both moduli increased at the adhesive and at peritubular dentin after Zn-NPs infiltration. The phosphate and the carbonate peaks, and carbonate substitution, augmented more at interfaces promoted with Ca-NPs than with Zn-NPs after 21 d of storage, but crystallinity did not differ at created interfaces with both ions-doped NPs. Crosslinking of collagen and the secondary structure of collagen improved with Zn-NPs resin-dentin infiltration. Ca-NPs-resin dentin infiltration produced a favorable dissipation of energy with minimal stress concentration trough the crystalline remineralized resin-dentin interface, causing minor damage at this structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The impact of artificially caries-affected dentin on bond strength of multi-mode adhesives

    PubMed Central

    Follak, Andressa Cargnelutti; Miotti, Leonardo Lamberti; Lenzi, Tathiane Larissa; Rocha, Rachel de Oliveira; Maxnuck Soares, Fabio Zovico

    2018-01-01

    Aim: The aim of this study is to evaluate the impact of dentin condition on bond strength of multi-mode adhesive systems (MMAS) to sound and artificially induced caries-affected dentin (CAD). Methods: Flat dentin surfaces of 112 bovine incisors were assigned to 16 subgroups (n = 7) according to the substrate condition (sound and CAD– pH-cycling for 14 days); adhesive systems (Scotchbond Universal, All-Bond Universal, Prime and Bond Elect, Adper Single Bond Plus and Clearfil SE Bond) and etching strategy (etch-and-rinse and self-etch). All systems were applied according to the manufacturer's instructions, and resin composite restorations were built. After 24 h of water storage, specimens were sectioned (0.8 mm2) and submitted to the microtensile test. Statistical Analysis: Data (MPa) were analyzed using three-way analysis of variance and Tukey's test (α = 0.05). Results: MMAS presented similar bond strength values, regardless etching strategy in each substrate condition. Bond strength values were lower when MMAS were applied to CAD in the etch-and-rinse strategy. Conclusion: The etching strategy did not influence the bond strength of MMAS to sound or CAD, considering each substrate separately. However, CAD impact negatively on bond strength of MMAS in etch-and rinse mode. PMID:29674813

  20. Quantitative analysis of aqueous phase composition of model dentin adhesives experiencing phase separation

    PubMed Central

    Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette

    2013-01-01

    There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596

  1. Influence of drying time and temperature on bond strength of contemporary adhesives to dentine.

    PubMed

    Garcia, Fernanda C P; Almeida, Júlio C F; Osorio, Raquel; Carvalho, Ricardo M; Toledano, Manuel

    2009-04-01

    To evaluate the bond strength (microTBS) of self-etching adhesives in different solvent evaporation conditions. Flat dentine surfaces from extracted human third molars were bonded with: (1) 2 two-steps self-etching adhesives (Clearfil SE Bond-CSEB); (Protect Bond-PB) and (2) 2 one-step self-etch systems (Adper Prompt L Pop-ADPLP); (Xeno III-XIII). Bonded dentine surfaces were air-dried for 5s, 20s, 30s or 40s at either 21 degrees C or 38 degrees C. Composite build-ups were constructed incrementally. After storage in water for 24h at 37 degrees C, the specimens were prepared for microtensile bond strength testing. Data were analyzed by two-way ANOVA and Student-Newman-Keuls at alpha=0.05. CSEB and PB performed better at warm temperature with only 20s of air-blowing. The bond strength increased when XIII was performed at warm temperature at 40s air-blowing. Extended air-blowing not affect the performance of ADPLP, except at 30s air-blowing time at warm temperature. The use of a warm air-dry stream seems to be a clinical tool to improve the bond strength to self-etching adhesives.

  2. Effects of different artificial ageing methods on the degradation of adhesive-dentine interfaces.

    PubMed

    Deng, Donglai; Yang, Hongye; Guo, Jingmei; Chen, Xiaohui; Zhang, Weiping; Huang, Cui

    2014-12-01

    To compare the effects of four commonly used artificial ageing methods (water storage, thermocycling, NaOCl storage and pH cycling) on the degradation of adhesive-dentine interfaces. Fifty molars were sectioned parallel to the occlusal plane, polished and randomly divided into two adhesive groups: An etch-and-rinse adhesive Adper SingleBond 2 and a self-etch adhesive G-Bond. After the composite built up, the specimens from each adhesive group were sectioned into beams, which were then assigned to one of the following groups: Group 1 (control), 24h of water storage; Group 2, 6 months of water storage; Group 3, 10,000 runs of thermocycling; Group 4, 1h of 10% NaOCl storage; and Group 5, 15 runs of pH cycling. The microtensile bond strengths were then tested. The failure modes were classified with a stereomicroscope and representative interface was analyzed with a field-emission scanning electron microscopy (FESEM). Nanoleakage expression was evaluated through FESEM in the backscattered mode. The four artificial ageing methods decreased the bonding strength to nearly 50% and increased the nanoleakage expression of both adhesive systems compared with the control treatment. Adhesive failures were the predominant fracture modes in all groups. However, differences in detailed morphology were observed among the different groups. Water storage, thermocycling, NaOCl storage and pH cycling could obtain similar degradation effectiveness through appropriate parameter selection. Each in vitro artificial ageing method had its own mechanisms, characteristics and application scope for degrading the adhesive-dentin interfaces. Water storage is simple, low-cost but time-consuming; thermocycling lacks of a standard agreement; NaOCl storage is time-saving but mainly degrades the organic phase; pH cycling can resemble cariogenic condition but needs further studies. Researchers focusing on bonding durability studies should be deliberate in selecting an appropriate ageing model based on

  3. Shear bond strength of porcelain laminate veneers to enamel, dentine and enamel-dentine complex bonded with different adhesive luting systems.

    PubMed

    Öztürk, Elif; Bolay, Şükran; Hickel, Reinhard; Ilie, Nicoleta

    2013-02-01

    The aim of this study was to evaluate the shear bond strength of porcelain laminate veneers to 3 different surfaces by means of enamel, dentine, and enamel-dentine complex. One hundred thirty-five extracted human maxillary central teeth were used, and the teeth were randomly divided into 9 groups (n=15). The teeth were prepared with 3 different levels for bonding surfaces of enamel (E), dentine (D), and enamel-dentine complex (E-D). Porcelain discs (IPS e.max Press, Ivoclar Vivadent) of 2mm in thickness and 4mm in diameter were luted to the tooth surfaces by using 2 light-curing (RelyX Veneer [RV], 3M ESPE; Variolink Veneer [VV], Ivoclar Vivadent) and a dual-curing (Variolink II [V2], Ivoclar Vivadent) adhesive systems according to the manufacturers' instructions. Shear bond strength test was performed in a universal testing machine at 0.5mm/min until bonding failure. Failure modes were determined under a stereomicroscope, and fracture surfaces were evaluated with a scanning electron microscope. The data were statistically analysed (SPSS 17.0) (p=0.05). Group RV-D exhibited the lowest bond strength value (5.42±6.6MPa). There was statistically no difference among RV-D, V2-D (13.78±8.8MPa) and VV-D (13.84±6.2MPa) groups (p>0.05). Group VV-E exhibited the highest bond strength value (24.76±8.8MPa). The type of tooth structure affected the shear bond strength of the porcelain laminate veneers to the 3 different types of tooth structures (enamel, dentine, and enamel-dentine complex). When dentine exposure is necessary during preparation, enough sound enamel must be protected as much as possible to maintain a good bonding; to obtain maximum bond strength, preparation margins should be on sound enamel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Evaluating the shear bond strength of enamel and dentin with or without etching: A comparative study between dimethacrylate-based and silorane-based adhesives

    PubMed Central

    Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim

    2015-01-01

    Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (P<0.05). However, additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for

  5. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength.

    PubMed

    Song, Minju; Shin, Yooseok; Park, Jeong-Won; Roh, Byoung-Duck

    2015-02-01

    This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S(3) Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  6. Remineralization of artificial dentinal caries lesions by biomimetically modified mineral trioxide aggregate.

    PubMed

    Qi, Yi-pin; Li, Nan; Niu, Li-na; Primus, Carolyn M; Ling, Jun-Qi; Pashley, David H; Tay, Franklin R

    2012-02-01

    Fluoride-releasing restorative materials are available for remineralization of enamel and root caries. However, remineralization of dentin is more difficult than remineralization of enamel due to the paucity of apatite seed crystallites along the lesion surface for heterogeneous crystal growth. Extracellular matrix proteins play critical roles in controlling apatite nucleation/growth in collagenous tissues. This study examined the remineralization efficacy of mineral trioxide aggregate (MTA) in phosphate-containing simulated body fluid (SBF) by incorporating polyacrylic acid and sodium tripolyphosphate as biomimetic analogs of matrix proteins for remineralizing caries-like dentin. Artificial caries-like dentin lesions incubated in SBF were remineralized over a 6 week period using MTA alone or MTA containing biomimetic analogs in the absence or presence of dentin adhesive application. Lesion depths and integrated mineral loss were monitored with microcomputed tomography. The ultrastructure of baseline and remineralized lesions was examined by transmission electron microscopy. Dentin remineralization was best achieved using MTA containing biomimetic analogs regardless of whether an adhesive was applied; dentinal tubules within the remineralized dentin were occluded by apatite. It is concluded that the version of MTA employed in this study may be doped with biomimetic analogs for remineralization of unbonded and bonded artificial caries-like lesions in the presence of SBF. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Effect of Airborne Particle Abrasion on Microtensile Bond Strength of Total-Etch Adhesives to Human Dentin

    PubMed Central

    Piccioni, Chiara; Di Carlo, Stefano; Capogreco, Mario

    2017-01-01

    Aim of this study was to investigate a specific airborne particle abrasion pretreatment on dentin and its effects on microtensile bond strengths of four commercial total-etch adhesives. Midcoronal occlusal dentin of extracted human molars was used. Teeth were randomly assigned to 4 groups according to the adhesive system used: OptiBond FL (FL), OptiBond Solo Plus (SO), Prime & Bond (PB), and Riva Bond LC (RB). Specimens from each group were further divided into two subgroups: control specimens were treated with adhesive procedures; abraded specimens were pretreated with airborne particle abrasion using 50 μm Al2O3 before adhesion. After bonding procedures, composite crowns were incrementally built up. Specimens were sectioned perpendicular to adhesive interface to produce multiple beams, which were tested under tension until failure. Data were statistically analysed. Failure mode analysis was performed. Overall comparison showed significant increase in bond strength (p < 0.001) between abraded and no-abraded specimens, independently of brand. Intrabrand comparison showed statistical increase when abraded specimens were tested compared to no-abraded ones, with the exception of PB that did not show such difference. Distribution of failure mode was relatively uniform among all subgroups. Surface treatment by airborne particle abrasion with Al2O3 particles can increase the bond strength of total-etch adhesives. PMID:29392128

  8. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion.

    PubMed

    Lin, Xuandong; Xie, Fangfang; Ma, Xueling; Hao, Yuhong; Qin, Hejia; Long, Jindong

    2017-06-01

    The occlusion of dentinal tubules is an effective method to alleviate the symptoms of dentin hypersensitivity. In this paper, we successfully modified nano-hydroxyapatite (n-HAP) with carboxyl-terminated polyamidoamine dendrimers by an aqueous-based chemical method and verified by fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). Then the demineralization dentin discs were randomly divided into 4 groups, corresponding to subsequent brushing experiments: deionized water and kept in artificial saliva (AS), dendrimer-functionalized n-HAP and stored in AS, n-HAP and saved in AS, dendrimer-functionalized n-HAP and stored in deionized water. After 7 days of simulated brushing, dentin discs followed the in vitro characterization using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy and microhardness test. These data suggested that dendrimer-functionalized n-HAP could crosslink with collagen fibers and resulted in effective dentinal tubule occlusion. Moreover, the new material can induce the HAP formation with the help of superficial carboxyl and fill the spaces in dentinal tubules furtherly. The microhardness of dendrimer-functionalized n-HAP-treated specimens was significantly higher than others. In summary, dendrimer-functionalized n-HAP can be a new therapeutic material for the treatment of dentin hypersensitivity.

  9. Bond Capability of Universal Adhesive Systems to Dentin in Self-etch Mode after Short-term Storage and Cyclic Loading

    PubMed Central

    Costa, Daniele Morosini; Somacal, Deise Caren; Borges, Gilberto Antonio; Spohr, Ana Maria

    2017-01-01

    Objective: The aim was to evaluate, in vitro, the tensile bond strength to dentin of Scotchbond Universal (SU), All-Bond Universal (AU) and One Coat 7 Universal (OC7) adhesives applied in self-etch mode, after 24 h of storage and after 500,000 loading cycles, using Clearfil SE Bond (SE) as a control. Materials and Methods: The adhesives were applied on the dentin of bovine teeth, followed by the application of a composite resin. Thirty specimens were obtained for each adhesive. Half of the specimens were submitted to cyclic loading for 500,000 cycles. All specimens were submitted to a tensile bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/minute. Results: According to two-way ANOVA and Tukey’s test (α=5%), the interaction between the adhesive and cyclic loading factors was significant (p=0.001). The means followed by the same letter represent no significant difference in the bond strength (MPa) after 24 h: OC7=7.86A (±2.90), SU=6.78AB (±2.03), AU=5.61BC (±2.32), and SE=3.53C (±1.89). After cyclic loading, SE, SU and AU maintained bond strength comparable to 24 h period. There was a significant decrease only for OC7. Conclusion: SU, AU and OC7 had bond strength to dentin comparable to that of SE. Only OC7 had decreased bond strength to dentin after cyclic loading. PMID:28839476

  10. Effect of sonic application mode on the resin-dentin bond strength and dentin permeability of self-etching systems.

    PubMed

    Mena-Serrano, Alexandra; Costa, Thays Regina Ferreira da; Patzlaff, Rafael Tiago; Loguercio, Alessandro Dourado; Reis, Alessandra

    2014-10-01

    To compare manual and sonic adhesive application modes in terms of the permeability and microtensile bond strength of a self-etching adhesive applied in the one-step or two-step protocol. Self-etching All Bond SE (Bisco) was applied as a one- or a two-step adhesive under manual or sonic vibration modes on flat occlusal dentin surfaces of 64 human molars. Half of the teeth were used to measure the hydraulic conductance of dentin at 200 cm H₂O hydrostatic pressure for 5 min immediately after the adhesive application. In the other half, composite buildups (Opallis) were constructed incrementally to create resin-dentin sticks with a cross-sectional area of 0.8 mm² to be tested in tension (0.5 mm/min) immediately after restoration placement. Data were analyzed using a two-way ANOVA and Tukey's test (α = 0.05). The fluid conductance of dentin was significantly reduced by the sonic vibration mode for both adhesives, but no effect on the bond strength values was observed for either adhesive. The sonic application mode at an oscillating frequency of 170 Hz can reduce the fluid conductance of the one- and two-step All Bond SE adhesive when applied on dentin.

  11. Biocompatibility Evaluation of Four Dentin Adhesives Used as Indirect Pulp Capping Materials

    PubMed Central

    Cortés, Olga; Bernabé, Antonia

    2017-01-01

    Background In many cases, the indirect pulp treatment (IPT) is an acceptable treatment for deciduous teeth with reversible pulp inflammation. Various medicaments have been used for IPT, ranging from calcium hydroxide and glass ionomers to dentin adhesives. Objective This in vitro trial aimed to measure cytotoxicity in a cell culture, comparing the following four adhesives: Xeno® V (XE), Excite® F DSC (EX), Adhese® OneF (AD) and Prime & Bond NT (PB). Materials and methods The adhesives were prepared according to the manufacturer’s instructions. After 24 hours of exposure, the cell viability was evaluated using a photometrical test (MTT test). Data were subjected to analysis of variance (ANOVA). Results Adhesives, the main component of which was 2-hydroxyethyl methacrylate (HEMA), were found to be less cytotoxic, while those that included the monomer urethane dimethacrylate (UDMA were the most cytotoxic) in their composition. The effects on cell viability assay varied between the adhesives assayed with statistically significant differences. Conclusions The results may support the argument that Adhese® OneF is the least cytotoxic of the adhesives assayed, and may be considered as an adhesive agent for indirect pulp treatment. However, Prime and Bond NT showed a reduced biocompatibility under the same conditions. PMID:28827848

  12. Pulpo-dentin complex response after direct capping with self-etch adhesive systems.

    PubMed

    Nowicka, Alicja; Parafiniuk, Miroslaw; Lipski, Mariusz; Lichota, Damian; Buczkowska-Radlinska, Jadwiga

    2012-01-01

    The purpose of the present study was to evaluate morphologically the response of feline teeth pulp to direct pulp capping with two different self-etch adhesive systems. Twenty-four cavities in feline teeth were mechanically exposed and assigned to one of two experimental groups: AdheSE + Tetric Ceram (the ASE group), or Adper Prompt L-Pop + Filtek Supreme (the APLP group). There was also a control group Dycal Ca(OH)(2) liner + Amalgam (the CH group eight teeth), and six teeth were used as an intact control group. The animals were sacrificed after 40 days. The teeth were removed and processed for standard histological evaluation, using a scoring system for inflammatory cell response, pulp tissue disorganisation, reparative tissue formation, and the presence of bacteria. Statistical analysis revealed no significant differences between the ASE and APLP self-etching resin systems during the observation period. The majority of the specimens presented inflammatory pulp response with tissue disorganisation and a lack of dentinal bridge formation. CH capping resulted in a significantly smaller inflammatory pulp response and a considerably higher incidence of reparative dentin formation. ASE and APLP were comparably effective as direct pulp capping materials, but their application resulted in significantly greater pulp tissue damage than CH capping. Further in vivo human studies are necessary to determine which adhesive resin systems should be clinically used for direct pulp capping without incurring severe damage to the pulpal tissue.

  13. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies

    PubMed Central

    Daood, Umer; Swee Heng, Chan; Neo Chiew Lian, Jennifer; Fawzy, Amr S

    2015-01-01

    To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength, degree of conversion, along with resin infiltration within the demineralized dentin substrate, an experimental adhesive-system was modified with different concentrations of riboflavin (m/m, 0, 1%, 3%, 5% and 10%). Dentin surfaces were etched with 37% phosphoric acid, bonded with respective adhesives, restored with restorative composite–resin, and sectioned into resin–dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva. Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams. The degree of conversion was evaluated with Fourier transform infrared spectroscopy (FTIR) at different time points along with micro-Raman spectroscopy analysis. Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison. Modification with 1% and 3% riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion (P<0.05). The most predominant failure mode was the mixed fracture among all specimens except 10% riboflavin-modified adhesive specimens where cohesive failure was predominant. Raman analysis revealed that 1% and 3% riboflavin adhesives specimens showed relatively higher resin infiltration. The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3% (m/m) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration. PMID:25257880

  14. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies.

    PubMed

    Daood, Umer; Swee Heng, Chan; Neo Chiew Lian, Jennifer; Fawzy, Amr S

    2015-06-26

    To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength, degree of conversion, along with resin infiltration within the demineralized dentin substrate, an experimental adhesive-system was modified with different concentrations of riboflavin (m/m, 0, 1%, 3%, 5% and 10%). Dentin surfaces were etched with 37% phosphoric acid, bonded with respective adhesives, restored with restorative composite-resin, and sectioned into resin-dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva. Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams. The degree of conversion was evaluated with Fourier transform infrared spectroscopy (FTIR) at different time points along with micro-Raman spectroscopy analysis. Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison. Modification with 1% and 3% riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion (P<0.05). The most predominant failure mode was the mixed fracture among all specimens except 10% riboflavin-modified adhesive specimens where cohesive failure was predominant. Raman analysis revealed that 1% and 3% riboflavin adhesives specimens showed relatively higher resin infiltration. The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3% (m/m) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration.

  15. Nanoleakage for Self-Adhesive Resin Cements used in Bonding CAD/CAD Ceramic Material to Dentin

    PubMed Central

    El-Badrawy, Wafa; Hafez, Randa Mohamed; El Naga, Abeer Ibrahim Abo; Ahmed, Doaa Ragai

    2011-01-01

    Objectives: To determine nanoleakage of CAD/CAM ceramic blocks bonded to dentin with self-adhesive resin cement. Methods: Eighteen sound extracted human molars were sterilized and sectioned into 3 mm-thick dentin sections. Trilux Cerec Vitablocks (Vita) were also sectioned into 3 mm sections, surface-treated using 5% hydrofluoric acid-etchant, and then coated with silane primer (Vita). Trilux and dentin sections were cemented together by means of three resin cements: Rely-X Unicem (3M/ESPE), BisCem (Bisco), and Calibra (Dentsply), according to manufacturers’ recommendations. Calibra was used in conjunction with Prime/Bond-NT adhesive (Dentsply), while the other two are self-adhesive. The bonded specimens were stored for 24h in distilled water at 37°C. Specimens were vertically sectioned into 1 mm-thick slabs, yielding up to six per specimen. Two central slabs were randomly chosen from each specimen making up the cement groups (n=12). Each group was subdivided into two subgroups (n=6), a control and a thermocycled subgroup (5–55°C) for 500 cycles. Slabs were coated with nail polish up to 1 mm from the interface, immersed in a 50% silver nitrate solution for 24h, and tested for nanoleakage using Quanta Environmental SEM and EDAX. Data were statistically analyzed using two-way ANOVA and Tukey’s post-hoc tests. Results: Rely-X Unicem and Calibra groups demonstrated no significant difference in the percentage of silver penetration, while the BisCem group revealed a significantly higher percentage (P≤.05). Thermocycling (500 cycles) did not have a statistically significant effect on the percentage of silver penetration (P>.05). Conclusions: One self-adhesive-resin cement demonstrated a similar sealing ability when compared with a standard resin cement. Thermo-cycling did not significantly increase dye penetration under the test conditions. PMID:21769269

  16. Influence of laboratory degradation methods and bonding application parameters on microTBS of self-etch adhesives to dentin.

    PubMed

    Erhardt, Maria Carolina G; Pisani-Proença, Jatyr; Osorio, Estrella; Aguilera, Fátima S; Toledano, Manuel; Osorio, Raquel

    2011-04-01

    To evaluate the laboratory resistance to degradation and the use of different bonding treatments on resin-dentin bonds formed with three self-etching adhesive systems. Flat, mid-coronal dentin surfaces from extracted human molars were bonded according to manufacturer's directions and submitted to two challenging regimens: (A) chemical degradation with 10% NaOC1 immersion for 5 hours; and (B) fatigue loading at 90 N using 50,000 cycles at 3.0 Hz. Additional dentin surfaces were bonded following four different bonding application protocols: (1) according to manufacturer's directions; (2) acid-etched with 36% phosphoric acid (H3PO4) for 15 seconds; (3) 10% sodium hypochlorite (NaOClaq) treated for 2 minutes, after H3PO4-etching; and (4) doubling the application time of the adhesives. Two one-step self-etch adhesives (an acetone-based: Futurabond/FUT and an ethanol-based: Futurabond NR/FNR) and a two-step self-etch primer system (Clearfil SE Bond/CSE) were examined. Specimens were sectioned into beams and tested for microtensile bond strength (microTBS). Selected debonded specimens were observed under scanning electron microscopy (SEM). Data (MPa) were analyzed by ANOVA and multiple comparisons tests (alpha= 0.05). microTBS significantly decreased after chemical and mechanical challenges (P< 0.05). CSE showed higher microTBS than the other adhesive systems, regardless the bonding protocol. FUT attained the highest microTBS after doubling the application time. H3PO4 and H3PO4 + NaOCl pretreatments significantly decreased bonding efficacy of the adhesives.

  17. [Evaluation of shear bond strengths of self-etching and total-etching dental adhesives to enamel and dentin].

    PubMed

    Yu, Ling; Liu, Jing-Ming; Wang, Xiao-Yan; Gao, Xue-Jun

    2009-03-01

    To evaluate the shear bond strengths of four dental adhesives in vitro. The facial surfaces of 20 human maxillary incisors were prepared to expose fresh enamel and randomly divided into four groups, in each group 5 teeth were bonded with one adhesives: group A (Clearfil Protect Bond, self-etching two steps), group B (Adper( Prompt, self-etching one step), group C (SwissTEC SL Bond, total-etching two steps), group D (Single Bond, total-etching two steps). Shear bond strengths were determined using an universal testing machine after being stored in distilled water for 24 h at 37 degrees C. The bond strengths to enamel and dentin were (25.33 +/- 2.84) and (26.07 +/- 5.56) MPa in group A, (17.08 +/- 5.13) and (17.93 +/- 4.70) MPa in group B, (33.14 +/- 6.05) and (41.92 +/- 6.25) MPa in group C, (22.51 +/- 6.25) and (21.45 +/- 7.34) MPa in group D. Group C showed the highest and group B the lowest shear bond strength to enamel and dentin among the four groups. The two-step self-etching adhesive showed comparable shear bond strength to some of the total-etching adhesives and higher shear bond strength than one-step self-etching adhesive.

  18. The effect of organic solvents on one-bottle adhesives' bond strength to enamel and dentin.

    PubMed

    Reis, André Figueiredo; Oliveira, Marcelo Tavares; Giannini, Marcelo; De Goes, Mário Fernando; Rueggeberg, Frederick A

    2003-01-01

    This study evaluated the microtensile bond strength (pTBS) of ethanol/water- and acetone-based, one-bottle adhesive systems to enamel (E) and dentin (D) in the presence (P) or absence (A) of their respective solvents. Thirty-two freshly extracted third molars were flattened with 600-grit SiC paper and restored with Single Bond (SB) or Prime&Bond 2.1 (PB) according to the manufacturers' instructions and after full solvent elimination. The molars were divided into eight test groups (n = 4): G1-SB-E-P, G2-SB-E-A, G3-PBE-P, G4-PB-E-A, G5-SB-D-P, G6-SB-D-A, G7-PB-D-P and G8-PB-D-A. After applying the adhesive resins, composite crowns of approximately 8 mm were built up with TPH Spectrum composite. After 24-hour water storage, the specimens were serially sectioned bucco-lingually to obtain 0.8 mm slabs that were trimmed to an hourglass shape, approximately 0.8 mm2 at the bonded interface. The specimens were tested in tension using a universal testing machine (0.5 mm/minute). The results were statistically analyzed by ANOVA and Tukey test. The frequency of fracture mode was compared using the Kruskal-Wallis test. There were no statistically significant differences in mean bond strength among the groups restored with or without solvent for enamel. However, the results were significantly different for the dentin groups (MPa): G5-26.2 +/- 8.6a; G7-23.6 +/- 11.3ab; G6-12.8 +/- 2.1bc; G8-6.2 +/- 3.1c. SEM examination indicated that the dentin group failure modes were significantly different from the enamel groups. The results suggest that the presence of organic solvents does not influence microTBS to enamel. However, microTBS to dentin was significantly affected by the absence of solvents in the adhesive system.

  19. In vitro longevity of bonding properties of universal adhesives to dentin.

    PubMed

    Muñoz, M A; Luque-Martinez, I; Malaquias, P; Hass, V; Reis, A; Campanha, N H; Loguercio, A D

    2015-01-01

    To evaluate the immediate and 6-month resin-dentin bond strength (μTBS) and nanoleakage (NL) of universal adhesives that contain or do not contain methacryloyloxydecyl dihydrogen phosphate (MDP) and are used in the etch-and-rinse and self-etch strategies. Forty caries-free extracted third molars were divided into eight groups for μTBS (n=5). The groups were bonded with the Clearfil SE Bond (CSE) and Adper Single Bond 2 (SB) as controls; Peak Universal, self-etch (PkSe) and etch-and rinse (PkEr); Scotchbond Universal Adhesive, self-etch (ScSe) and etch-and-rinse (ScEr); and All Bond Universal, self-etch (AlSe) and etch-and-rinse (AlEr). After composite restorations, specimens were longitudinally sectioned to obtain resin-dentin bonded sticks (0.8 mm(2)). The μTBS of the specimens was tested immediately (IM) or after 6 months of water storage (6M) at 0.5 mm/min. Some sticks at each storage period were immersed in silver nitrate and photo developed, and the NL was evaluated with scanning electron microscopy. Data were analyzed with two-way repeated-measures analysis of variance and Tukey test (α=0.05). At the IM period, PkSe and PkEr showed μTBS similar to the control adhesives (p>0.05) but increased NL pattern and lower μTBS after 6M (p<0.05). ScSe and ScEr showed intermediary μTBS values at the IM period but remained stable after 6 months (p>0.05). AlSe showed the lowest μTBS (p<0.05), but μTBS and NL remained stable after 6M (p>0.05). AlEr showed higher IM μTBS but showed higher degradation after 6M (p<0.05). Universal adhesives that contain MDP showed higher and more stable μTBS with reduced NL at the interfaces after 6 months of water storage.

  20. Effect of double-layer application on dentin bond durability of one-step self-etch adhesives.

    PubMed

    Taschner, M; Kümmerling, M; Lohbauer, U; Breschi, L; Petschelt, A; Frankenberger, R

    2014-01-01

    The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S(3) Bond, XenoV(+), and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S(3) Bond, and XenoV(+) showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.

  1. Surface roughness and bacterial adhesion on root dentin treated with diode laser and conventional desensitizing agents.

    PubMed

    Cury, Maiza S; Silva, Camilla B; Nogueira, Ruchele D; Campos, Michelle G D; Palma-Dibb, Regina G; Geraldo-Martins, Vinicius R

    2018-02-01

    The treatments for dentin hypersensitivity (DH) may change the surface roughness of the root dentin, which can lead to biofilm accumulation, increasing the risk of root caries. The aim was to compare the surface roughness of root dentin after different treatments of DH and the biofilm formation on those surfaces. After initial surface roughness (Sa) assessment, 50 bovine root fragments received the following treatments (n = 10): G 1-no treatment; G2-5% sodium fluoride varnish; G3-professional application of a desensitizing dentifrice; G4-toothbrushing with a desensitizing dentifrice; and G5-diode laser application (908 nm; 1.5 W, 20 s). The Sa was reevaluated after treatments. Afterward, all samples were incubated in a suspension of Streptococcus mutans at 37 °C for 24 h. The colony-forming units (CFU) were counted using a stereoscope, and the results were expressed in CFU/mL. The one-way ANOVA and the Tukey's tests compared the roughness data and the results obtained on the bacterial adhesion test (α = 5%). G2 (2.3 ± 1.67%) showed similar Sa variation than G1 (0.25 ± 0.41%) and G5 (5.69 ± 0.99%), but different from group G3 (9.05 ± 2.39%). Group 4 showed the highest Sa variation (30.02 ± 3.83%; p < 0.05). Bacterial adhesion was higher in G4 (2208 ± 211.9), suggesting that bacterial growth is greater on rougher surfaces. The diode laser and the conventional treatments for DH may change the surface roughness of the root dentin, but only brushing with desensitizing dentifrice induced a higher bacteria accumulation on root dentin surface.

  2. Carbodiimide Inactivation of MMPs and Effect on Dentin Bonding

    PubMed Central

    Mazzoni, A.; Apolonio, F.M.; Saboia, V.P.A.; Santi, S.; Angeloni, V.; Checchi, V.; Curci, R.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Breschi, L.

    2014-01-01

    The use of protein cross-linking agents during bonding procedures has been recently proposed to improve bond durability. This study aimed to use zymography and in situ zymography techniques to evaluate the ability of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linker to inhibit matrix metalloproteinase (MMP) activity. The hypotheses tested were that: (1) bonding procedures increase dentin gelatinolytic activity and (2) EDC pre-treatment prevents this enzymatic activity. The zymographic assay was performed on protein extracts obtained from dentin powder treated with Optibond FL or Scotchbond 1XT with or without 0.3M EDC pre-treatment. For in situ zymography, adhesive/dentin interfaces were created with the same adhesives applied to acid-etched dentin slabs pre-treated or not with EDC conditioner. Zymograms revealed increased expression of dentin endogenous MMP-2 and -9 after adhesive application, while the use of EDC as a primer inactivated dentin gelatinases. Results of in situ zymograpy showed that hybrid layers of tested adhesives exhibited intense collagenolytic activity, while almost no fluorescence signal was detected when specimens were pre-treated with EDC. The correlative analysis used in this study demonstrated that EDC could contribute to inactivate endogenous dentin MMPs within the hybrid layer created by etch-and-rinse adhesives. PMID:24334409

  3. Influence of Er:YAG and Ti:sapphire laser irradiation on the microtensile bond strength of several adhesives to dentin.

    PubMed

    Portillo, M; Lorenzo, M C; Moreno, P; García, A; Montero, J; Ceballos, L; Fuentes, M V; Albaladejo, A

    2015-02-01

    The aim of the present study was to evaluate the influence of erbium:yttrium-aluminum-garnet (Er:YAG) and Ti:sapphire laser irradiation on the microtensile bond strength (MTBS) of three different adhesive systems to dentin. Flat dentin surfaces from 27 molars were divided into three groups according to laser irradiation: control, Er:YAG (2,940 nm, 100 μs, 2.7 W, 9 Hz) and Ti:sapphire laser (795 nm, 120 fs, 1 W, 1 kHz). Each group was divided into three subgroups according to the adhesive system used: two-step total-etching adhesive (Adper Scotchbond 1 XT, from now on XT), two-step self-etching adhesive (Clearfil SE Bond, from now on CSE), and all-in-one self-etching adhesive (Optibond All-in-One, from now on OAO). After 24 h of water storage, beams of section at 1 mm(2) were longitudinally cut from the samples. Each beam underwent traction test in an Instron machine. Fifteen polished dentin specimens were used for the surface morphology analysis by scanning electron microscopy (SEM). Failure modes of representative debonded microbars were SEM-assessed. Data were analyzed by ANOVA, chi-square test, and multiple linear regression (p < 0.05). In the control group, XT obtained higher MTBS than that of laser groups that performed equally. CSE showed higher MTBS without laser than that with laser groups, where Er:YAG attained higher MTBS than ultrashort laser. When OAO was used, MTBS values were equal in the three treatments. CSE obtained the highest MTBS regardless of the surface treatment applied. The Er:YAG and ultrashort laser irradiation reduce the bonding effectiveness when a two-step total-etching adhesive or a two-step self-etching adhesive are used and do not affect their effectiveness when an all-in-one self-etching adhesive is applied.

  4. Effect of Dimethyl Sulfoxide on Bond Strength of a Self-Etch Primer and an Etch and Rinse Adhesive to Surface and Deep Dentin.

    PubMed

    Sharafeddin, Farahnaz; Salehi, Raha; Feizi, Negar

    2016-09-01

    Composite bond to dentin is crucial in many clinical conditions particularly in deep cavities without enamel margins due to insufficient penetration of adhesive into demineralized dentin. The aim of this study was to assess the shear bond strength (SBS) of a methacrylate-based and a silorane-based composite resin to surface and deep dentin after pretreatment with dimethyl sulfoxide (DMSO). Eighty extracted human premolars were randomly divided into two groups of flat occlusal dentin with different cuts as A: surface group (sections just below the dentinoenamel junction (DEJ) and B: deep group (2 mm below DEJ). Each group was randomly assigned to 4 subgroups and their samples were restored with Adper Single bond (ASB) and Filtek Z350 or Silorane system Adhesive (SA) and Filtek P90 composite resins, using a 3×3mm cylindrical plastic mold. following these steps , the subgroups were assigned as SubgroupA 1 : surface dentin+ Silorane System Primer (SSP)+ Silorane System Bonding (SSB)+ P90; Subgroup A 2 : surface dentin+ 37% etchant (E37%) + Adper Single Bond (ASB)+ Z350; Subgroup A 3 : surface dentin+ DMSO+ SSP+ SSB+ P90; Subgroup A 4 : surface dentin+ E37%+ DMSO+ ASB+ Z350; Subgroup B 1 : deep dentin+ SSP+ SSB+ P90; Subgroup B 2 : deep dentin+ E37%+ ASB+ Z350; Subgroup B 3 : deep dentin+ DMSO+ SSP+ SSB+ P90; Subgroup B 4 :dentin +E37% +DMSO +ASB +Z350. The specimens were thermocycled at 5± 2/55± 2°C for 1000 cycles and then tested for SBS. Using DMSO as dentin conditioner increased SBS of ASB to deep dentin (p< 0.001) and SBS of SA to surface dentin (p= 0.003) but had no effect on SBS of SA to deep dentin (p= 1.00). The ability of DMSO to increase SBS of ASB to deep dentin provides a basis for improving bonding of this composite resin in deep cavities.

  5. Effect of saliva contamination and cleansing solutions on the bond strengths of self-etch adhesives to dentin.

    PubMed

    Sheikh, Huma; Heymann, Harald O; Swift, Edward J; Ziemiecki, Thomas L; Ritter, André V

    2010-12-01

    This study determined the effect of saliva contamination and cleansing solutions on microtensile bond strengths of self-etch adhesives to dentin. Seventy-five human molars were ground flat to expose mid-coronal dentin and randomly assigned to five groups (N = 15): no contamination, saliva contamination without cleansing, saliva and cleansing with water, saliva and cleansing with 2% chlorhexidine, and saliva and cleansing with 5% sodium hypochlorite. One-third of the specimens in each group of 15 were bonded with Adper Prompt L-Pop (all-in-one self-etch adhesive; 3M ESPE, St. Paul, MN, USA), one-third with Adper Easy Bond (all-in-one self-etch adhesive; 3M ESPE), and one-third with Clearfil SE Bond (self-etch primer system; Kuraray America, New York, NY, USA). Specimens were restored with composite and processed for microtensile bond strength testing (5-6 rods/tooth). Mean bond strengths ranged from 17.3 MPa for Adper Prompt L-Pop after water cleansing to 69.3 MPa for Clearfil SE Bond after water cleansing. For all three adhesives, there was no statistically significant difference in bond strengths between the saliva contaminated group, the cleansing groups, and the no contamination groups. Neither saliva nor the cleansing solutions adversely affected bond strengths of the self-etch adhesive systems. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.

  6. Compositional design and optimization of dentin adhesive with neutralization capability.

    PubMed

    Song, Linyong; Ye, Qiang; Ge, Xueping; Spencer, Paulette

    2015-09-01

    The objective of this work was to investigate the polymerization behavior, neutralization capability, and mechanical properties of dentin adhesive formulations with the addition of the tertiary amine co-monomer, 2-N-morpholinoethyl methacrylate (MEMA). A co-monomer mixture based on HEMA/BisGMA (45/55, w/w) was used as a control adhesive. Compared with the control formulation, the MEMA-containing adhesive formulations were characterized comprehensively with regard to water miscibility of liquid resin, water sorption and solubility of cured polymer, real-time photopolymerization kinetics, dynamic mechanical analysis (DMA), and modulated differential scanning calorimetry (MDSC). The neutralization capacity was characterized by monitoring the pH shift of 1mM lactic acid (LA) solution, in which the adhesive polymers were soaked. With increasing MEMA concentrations, experimental copolymers showed higher water sorption, lower glass transition temperature and lower crosslinking density compared to the control. The pH values of LA solution gradually increased from 3.5 to about 6.0-6.5 after 90 days. With the increase in crosslinking density of the copolymers, the neutralization rate was depressed. The optimal MEMA concentration was between 20 and 40 wt%. As compared to the control, the results indicated that the MEMA-functionalized copolymer showed neutralization capability. The crosslinking density of the copolymer networks influenced the neutralization rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effect of antioxidants on the dentin interface bond stability of adhesives exposed to hydrolytic degradation.

    PubMed

    Gotti, Valéria B; Feitosa, Victor P; Sauro, Salvatore; Correr-Sobrinho, Lourenço; Leal, Fernanda B; Stansbury, Jeffrey W; Correr, Américo B

    2015-02-01

    This study assessed the effect of antioxidants vitamin C (Vit. C), vitamin E (Vit. E) and quercetin (Querc) on the dentin bonding performance, degree of conversion, and rate of polymerization of three commercial adhesive systems (Adper Single Bond 2 [SB], Clearfil SE Bond [CSE], Adper Easy Bond [EB]). Human premolars were restored using antioxidant-doped adhesives. The samples were stored for 24 h in distilled water or 6 months under simulated pulpal pressure. Teeth were cut into sticks and the microtensile bond strength (μTBS) to dentin was tested in a universal testing machine. Qualitative nanoleakage analysis was performed from a central stick of each restored tooth. Degree of conversion and rate of polymerization of adhesive systems were evaluated in triplicate using real-time FT-IR. Although the inclusion of the antioxidants negatively affected the μTBS over 24 h, the antioxidant-doped adhesives maintained (SB-Vit. C, SB-Vit. E, CSE-Vit. C, EB-Querc) or increased (SB-Querc, CSE-Vit. E, CSE-Querc, EB-Vit. E, and EB-Vit. C) their μTBS during 6 months of storage. Only the μTBS of Adper Single Bond 2 dropped significantly after 6 months among the control groups. Slight changes in the nanoleakage pattern after aging were observed in all groups, except for the EB-control group, which showed a noteworthy increase in nanoleakage after 6 months, and for EB-Vit. C, which presented a remarkable decrease. A lower degree of conversion was obtained with all antioxidants in SB and EB, except for the EB-Vit. E group. Similar degrees of conversion were attained in control and experimental groups for CSE. The rate of polymerization was reduced in antioxidant-doped adhesives. The performance of antioxidants changed according to the adhesive system to which they were added, and antioxidant-doped adhesives appear to have a positive effect on the adhesive interface durability, since their bond strength obtained after 24 h was maintained or increased over time.

  8. Effect of a new desensitizing material on human dentin permeability.

    PubMed

    Rusin, Richard P; Agee, Kelli; Suchko, Michael; Pashley, David H

    2010-06-01

    Resin-modified glass ionomers (RMGI) have demonstrated clinical success providing immediate and long-term relief from root sensitivity. RMGIs have been recently introduced as paste-liquid systems for convenience of clinical usage. The objective of this study was to measure the ability of a new paste-liquid RMGI to reduce fluid flow through human dentin, compared to an established single-bottle nanofilled total etch resin adhesive indicated for root desensitization. Dentin permeability was measured on human crown sections on etched dentin, presenting a model for the exposed tubules typical of root sensitivity, and permitting measurement of the maximum permeability. In the first two groups, the etched dentin was coated with either the RMGI or adhesive, and permeability measured on the coated dentin. In a third group, a smear layer was created on the dentin with sandpaper, then the specimens were coated with the RMGI; permeability was measured on the smeared and coated dentin. Specimens from each group were sectioned and examined via scanning electron microscopy (SEM). Both the resin adhesive and the new paste-liquid RMGI protective material significantly reduced fluid flow through dentin, and exhibited excellent seal on dentin with either open tubules or smear-layer occluded tubules. The RMGI infiltrated the smear layer with resin during placement, penetrated dentin tubules, and formed resin tags. The RMGI was equivalent to the adhesive in its ability to reduce fluid flow and seal dentin. It is therefore concluded that the new RMGI and the adhesive show the potential to offer excellent sensitivity relief on exposed root dentin. Copyright (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Effect of air-blowing variables on bond strength of all-in-one adhesives to bovine dentin.

    PubMed

    Shinkai, Koichi; Suzuki, Shiro; Katoh, Yoshiroh

    2006-12-01

    This study evaluated the effect of air-blowing variables on the microtensile bond strength (microTBS) of two all-in-one adhesives. A bonding agent was applied to the flat dentin surface of extracted bovine teeth, and the surface left undisturbed for 20 seconds. Gentle or intensive air-blowing was applied for five seconds, and the adhesive photopolymerized for 10 seconds. Resin composite paste was placed and cured after each bonding treatment. Specimens were subjected to microTBS test with a crosshead speed of 1.0 mm/min. Data were statistically analyzed using ANOVA, followed by Bonferroni post hoc test. When Clearfil tri-S Bond was bonded to dentin, the microTBS value of specimens applied with intensive air-blowing was significantly higher than that applied with gentle air-blowing (p<0.01). On the other hand, with Fluoro Bond Shake One, the microTBS value of specimens applied with intensive air-blowing was significantly lower than that applied with gentle air-blowing (p<0.01).

  10. Biomimetic remineralization of dentin

    PubMed Central

    Niu, Li-na; Zhang, Wei; Pashley, David H.; Breschi, Lorenzo; Mao, Jing; Chen, Ji-hua; Tay, Franklin R.

    2013-01-01

    Objectives Remineralization of demineralized dentin is important for improving dentin bonding stability and controlling primary and secondary caries. Nevertheless, conventional dentin remineralization strategy is not suitable for remineralizing completely-demineralized dentin within hybrid layers created by etch-and-rinse and moderately aggressive self-etch adhesive systems, or the superficial part of a caries-affected dentin lesion left behind after minimally invasive caries removal. Biomimetic remineralization represents a different approach to this problem by attempting to backfill the demineralized dentin collagen with liquid-like amorphous calcium phosphate nanoprecursor particles that are stabilized by biomimetic analogs of noncollagenous proteins. Methods This paper reviewed the changing concepts in calcium phosphate mineralization of fibrillar collagen, including the recently discovered, non-classical particle-based crystallization concept, formation of polymer-induced liquid- precursors (PILP), experimental collagen models for mineralization, and the need for using phosphate-containing biomimetic analogs for biomimetic mineralization of collagen. Published work on the remineralization of resin-dentin bonds and artificial caries-like lesions by various research groups was then reviewed. Finally, the problems and progress associated with the translation of a scientifically-sound concept into a clinically-applicable approach are discussed. Results and Significance The particle-based biomimetic remineralization strategy based on the PILP process demonstrates great potential in remineralizing faulty hybrid layers or caries-like dentin. Based on this concept, research in the development of more clinically feasible dentin remineralization strategy, such as incorporating poly(anionic) acid-stabilized amorphous calcium phosphate nanoprecursor-containing mesoporous silica nanofillers in dentin adhesives, may provide a promising strategy for increasing of the

  11. Biomimetic remineralization of dentin.

    PubMed

    Niu, Li-Na; Zhang, Wei; Pashley, David H; Breschi, Lorenzo; Mao, Jing; Chen, Ji-Hua; Tay, Franklin R

    2014-01-01

    Remineralization of demineralized dentin is important for improving dentin bonding stability and controlling primary and secondary caries. Nevertheless, conventional dentin remineralization strategy is not suitable for remineralizing completely demineralized dentin within hybrid layers created by etch-and-rinse and moderately aggressive self-etch adhesive systems, or the superficial part of a caries-affected dentin lesion left behind after minimally invasive caries removal. Biomimetic remineralization represents a different approach to this problem by attempting to backfill the demineralized dentin collagen with liquid-like amorphous calcium phosphate nanoprecursor particles that are stabilized by biomimetic analogs of noncollagenous proteins. This paper reviewed the changing concepts in calcium phosphate mineralization of fibrillar collagen, including the recently discovered, non-classical particle-based crystallization concept, formation of polymer-induced liquid-precursors (PILP), experimental collagen models for mineralization, and the need for using phosphate-containing biomimetic analogs for biomimetic mineralization of collagen. Published work on the remineralization of resin-dentin bonds and artificial caries-like lesions by various research groups was then reviewed. Finally, the problems and progress associated with the translation of a scientifically sound concept into a clinically applicable approach are discussed. The particle-based biomimetic remineralization strategy based on the PILP process demonstrates great potential in remineralizing faulty hybrid layers or caries-like dentin. Based on this concept, research in the development of more clinically feasible dentin remineralization strategy, such as incorporating poly(anionic) acid-stabilized amorphous calcium phosphate nanoprecursor-containing mesoporous silica nanofillers in dentin adhesives, may provide a promising strategy for increasing of the durability of resin-dentin bonding and

  12. Indirect resin composite restorations bonded to dentin using self-adhesive resin cements applied with an electric current-assisted method.

    PubMed

    Gotti, Valeria Bisinoto; Feitosa, Victor Pinheiro; Sauro, Salvatore; Correr-Sobrinho, Lourenço; Correr, Americo Bortolazzo

    2014-10-01

    To evaluate the effects of an electric current-assisted application on the bond strength and interfacial morphology of self-adhesive resin cements bonded to dentin. Indirect resin composite build-ups were luted to prepared dentin surfaces using two self-adhesive resin cements (RelyX Unicem and BisCem) and an ElectroBond device under 0, 20, or 40 μA electrical current. All specimens were submitted to microtensile bond strength test and to interfacial SEM analysis. The electric current-assisted application induced no change (P > 0.05) on the overall bond strength, although RelyX Unicem showed significantly higher bond strength (P < 0.05) than BisCem. Similarly, no differences were observed in terms of interfacial integrity when using the electrical current applicator.

  13. Histological evaluation of direct pulp capping of rat pulp with experimentally developed low-viscosity adhesives containing reparative dentin-promoting agents.

    PubMed

    Suzuki, Masaya; Taira, Yoshihisa; Kato, Chikage; Shinkai, Koichi; Katoh, Yoshiroh

    2016-01-01

    This study examines the wound healing process in exposed rat pulp when capped with experimental adhesive resin systems. Experimental adhesive resin system for direct pulp capping was composed of primer-I (PI), -II (PII), and -III (PIII) and an experimental bonding agent (EBA). PI was Clearfil(®) SE Bond(®)/Primer (CSP) containing 5.0 wt% CaCl2, PII was PI containing 10 wt% nanofiller (Aerosil(®) 380), and PIII was CSP containing 5.0 wt% of compounds of equal moles of synthetic peptides (pA and pB) derived from dentin matrix protein 1. EBA was Clearfil(®) SE Bond(®)/Bond (CSB) containing 10 wt% hydroxyapatite powders. Three experimental groups were designed. PI was assigned to experimental Groups 1 and 3. PII was assigned to experimental Groups 2 and 3. PIII and EBA were assigned to all experimental adhesive groups. Control teeth were capped with calcium hydroxide preparation (Dycal(®)), and CSP and CSB were applied to the cavity. The rats were sacrificed after each observation period (14, 28, 56, and 112 days). The following parameters were evaluated: pulp tissue disorganization, inflammatory cell infiltration, reparative dentin formation (RDF), and bacterial penetration. There were no significant differences among all the groups for all parameters and all observation periods (p>0.05, Kruskal-Wallis test). All groups showed initial RDF at 14 days postoperatively and extensive RDF until 112 days postoperatively. Groups 2 and 3 demonstrated higher quantity of mineralized dentin bridge formation compared with Group 1. Addition of nanofillers to the primer was effective in promoting high-density RDF. Experimentally developed adhesive resin systems induce the exposed pulp to produce almost the same quantity of reparative dentin as calcium hydroxide. However, we need further studies to elucidate whether the same results could be obtained in humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Epigallocatechin-3-gallate and Epigallocatechin-3-O-(3-O-methyl)-gallate Enhance the Bonding Stability of an Etch-and-Rinse Adhesive to Dentin.

    PubMed

    Yu, Hao-Han; Zhang, Ling; Yu, Fan; Li, Fang; Liu, Zheng-Ya; Chen, Ji-Hua

    2017-02-15

    This study evaluated epigallocatechin-3-gallate (EGCG) and epigallocatechin-3- O -(3- O -methyl)-gallate (EGCG-3Me) modified etch-and-rinse adhesives (Single Bond 2, SB 2) for their antibacterial effect and bonding stability to dentin. EGCG-3Me was isolated and purified with column chromatography and preparative high performance liquid chromatography. EGCG and EGCG-3Me were incorporated separately into the adhesive SB 2 at concentrations of 200, 400, and 600 µg/mL. The effect of cured adhesives on the growth of Streptococcus mutans ( S. mutans ) was determined with scanning electron microscopy and confocal laser scanning microscopy; the biofilm of bacteria was further quantified via optical density 600 values. The inhibition of EGCG and EGCG-3Me on dentin-originated collagen proteases activities was evaluated with a proteases fluorometric assay kit. The degree of conversion (DC) of the adhesives was tested with micro-Raman spectrum. The immediate and post-thermocycling (5000 cycles) bond strength was assessed through Microtensile Bond Strength (MTBS) test. Cured EGCG/EGCG-3Me modified adhesives inhibit the growth of S. mutans in a concentration-dependent manner. The immediate MTBS of SB 2 was not compromised by EGCG/EGCG-3Me modification. EGCG/EGCG-3Me modified adhesive had higher MTBS than SB 2 after thermocycling, showing no correlation with concentration. The DC of the adhesive system was affected depending on the concentration of EGCG/EGCG-3Me and the depth of the hybrid layer. EGCG/EGCG-3Me modified adhesives could inhibit S. mutans adhesion to dentin-resin interface, and maintain the bonding stability. The adhesive modified with 400 µg/mL EGCG-3Me showed antibacterial effect and enhanced bonding stability without affect the DC of adhesive.

  15. Influence of CVD diamond tips and Er:YAG laser irradiation on bonding of different adhesive systems to dentin.

    PubMed

    da Silva, Melissa Aline; Di Nicolo, Rebeca; Barcellos, Daphne Camara; Batista, Graziela Ribeiro; Pucci, Cesar Rogerio; Rocha Gomes Torres, Carlos; Borges, Alessandra Bühler

    2013-01-01

    The aim of this study was to compare the microtensile bond strength of three adhesive systems, using different methods of dentin preparation. A hundred and eight bovine teeth were used. The dentin from buccal face was exposed and prepared with three different methods, divided in 3 groups: Group 1 (DT)- diamond tip on a high-speed handpiece; Group 2 (CVD)-CVD tip on a ultrasonic handpiece; Group 3 (LA)-Er: YAG laser. The teeth were divided into 3 subgroups, according adhesive systems used: Subgroup 1-Adper Single Bond Plus/3M ESPE (SB) total-etch adhesive; Subgroup 2-Adper Scotchbond SE/3M ESPE (AS) selfetching adhesive; Subgroup 3-Clearfil SE Bond/Kuraray (CS) selfetching adhesive. Blocks of composite (Filtek Z250-3M ESPE) 4 mm high were built up and specimens were stored in deionized water for 24 hours at 37°C. Serial mesiodistal and buccolingual cuts were made and stick-like specimens were obtained, with transversal section of 1.0 mm(2). The samples were submitted to microtensile test at 1 mm/min and load of 10 kg in a universal testing machine. Data (MPa) were subjected to ANOVA and Tukey's tests (p < 0.05). Surface treatment with Diamond or CVD tips associated with Clearfil SE Bond adhesive produced significantly lower bond strength values compared to other groups. Surface treatment with Er: YAG laser associated with Single Bond Plus or Clearfil SE Bond adhesives and surface treatment with CVD tip associated with Adper Scotchbond SE adhesive produced significantly lower bond strength values compared to surface treatment with diamond or CVD tips associated with Single Bond Plus or Adper Scotchbond SE adhesives. Interactions between laser and the CVD tip technologies and the different adhesive systems can produce a satisfactory bonding strength result, so that these associations may be beneficial and enhance the clinical outcomes.

  16. Morphological effects of MMPs inhibitors on the dentin bonding

    PubMed Central

    Li, He; Li, Tianbo; Li, Xiuying; Zhang, Zhimin; Li, Penglian; Li, Zhenling

    2015-01-01

    Matrix metalloproteinases (MMPs) have been studied extensively, and MMP inhibitors have been used as dental pretreatment agents prior to dentin bonding because they reduce collagen fiber degradation and improve bonding strength. However, morphologic characteristics of the collagen network after etching and of the post-adhesive dentin hybrid layers (DHL) after MMP inhibitors pretreatment have not been evaluated. Thus, we investigated demineralized dentin pretreated with chlorhexidine (CHX) and minocycline (MI) in an etch- and -rinse adhesive system with field emission scanning electron microscopy (FESEM) and immuno-gold labeling markers to observe the collagen network and DHL. FESEM revealed after CHX and MI, a demineralized dentin surface and improved collagen network formation, reduced collagen degradation, and distinct gold-labeling signals. Applying adhesive after either MMP inhibitor created a better dentin interface as evidenced by immuno-gold staining, better adhesive penetration, and higher DHL quality. With microtensile bond strength tests (µTBS) we estimated bonding strength using µTBS data. Immediate µTBS was enhanced with MMP inhibitor application to the bonding surface, and the CHX group was significantly different than non-treated etched surfaces, but no significant change was detected in the MI group. Surface micromorphology of the fractured dentin resin restoration showed that the CHX group had a better resin and dentin tube combination. Both MMP inhibitors created uniform resin coverage. Thus, morphologic results and µTBS data suggest that CHX and MI can inhibit MMP activity, improve immediate bonding strength, and enhance dentin bonding stability with an etch- and -rinse adhesive system. PMID:26379873

  17. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  18. Bonding resin thixotropy and viscosity influence on dentine bond strength.

    PubMed

    Niem, Thomas; Schmidt, Alexander; Wöstmann, Bernd

    2016-08-01

    To investigate the influence of bonding resin thixotropy and viscosity on dentine tubule penetration, blister formation and consequently on dentine bond strength as a function of air-blowing pressure (air-bp) intensity. Two HEMA-free, acetone-based, one-bottle self-etch adhesives with similar composition except disparate silica filler contents and different bonding resin viscosities were investigated. The high-filler-containing adhesive (G-Bond) featured a lower viscous bonding resin with inherent thixotropic resin (TR) properties compared to the low-filler-containing adhesive (iBond) exhibiting a higher viscous bonding resin with non-thixotropic resin (NTR) properties. Shear bond strength tests for each adhesive with low (1.5bar; 0.15MPa; n=16) and high (3.0bar; 0.30MPa; n=16) air-bp application were performed after specimen storage in distilled water (24h; 37.0±1.0°C). Results were analysed using a Student's t-test to identify statistically significant differences (p<0.05). Fracture surfaces of TR adhesive specimens were morphologically characterised by SEM. Statistically significant bond strength differences were obtained for the thixotropic resin adhesive (high-pressure: 24.6MPa, low-pressure: 9.6MPa). While high air-bp specimens provided SEM images revealing resin-plugged dentine tubules, resin tags and only marginally blister structures, low air-bp left copious droplets and open dentine tubules. In contrast, the non-thixotropic resin adhesive showed no significant bond strength differences (high-pressure: 9.3MPa, low-pressure: 7.6MPa). A pressure-dependent distinct influence of bonding resin thixotropy and viscosity on dentine bond strength has been demonstrated. Stronger adhesion with high air-bp application is explained by improved resin fluidity and facilitated resin penetration into dentine tubules. Filler particles used in adhesive systems may induce thixotropic effects in bonding resin layers, accounting for improved free-flowing resin properties. In

  19. Comparison of the shear bond strength of self-adhesive resin cements to enamel and dentin with different protocol of application.

    PubMed

    Moghaddas, Mohammad Javad; Hossainipour, Zahra; Majidinia, Sara; Ojrati, Najmeh

    2017-08-01

    The aim of the present study was to determine the shear bond strength of self-adhesive resin cements to enamel and dentin with and without surface treatments, and compare them with conventional resin cement as the control group. In this experimental study, buccal and lingual surface of the thirty sound human premolars were polished in order to obtain a flat surface of enamel (E) in buccal, and dentin (D) in lingual. Sixty feldspathic ceramic blocks (2×3×3 mm) were prepared and randomly divided into six groups (n=10). Each block was cemented to the prepared surface (30 enamel and 30 dentin surface) according to different protocol: E1 and D1; RelyX ARC as control group, E2, D2; RelyX Unicem, E3, D3; acid etching +RelyX Unicem. The specimens were termocycled and subjected to shear forces by a universal testing machine at a cross head speed of 0.5 mm/min. The mode of fracture were evaluated by stereomicroscope. Data were analyzed with descriptive statistical methods using SPSS version 15. One-way ANOVA, and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at α=0.05. Statistical analysis showed no significant differences within the enamel subgroups, but there were significant differences within the dentinal subgroups, and statistically significant differences were found between the groups D1and D3 (p=0.02). Comparison between similar enamel and dentinal subgroups showed that there was a significant difference just between the subgroups E3 and D3 (p=0.01). Elective etching of enamel did not lead to significant increase in the shear bond strength of RelyX Unicem in comparison to RelyX ARC. On the other hand, elective etching of dentin reduces the bond strength of RelyX Unicem with the dentin.

  20. Temperature Rise during Primer, Adhesive, and Composite Resin Photopolymerization of a Low-Shrinkage Composite Resin under Caries-Like Dentin Lesions

    PubMed Central

    Mousavinasab, Sayed-Mostafa; Khoroushi, Maryam; Moharreri, Mohammadreza

    2012-01-01

    Objective. This study evaluated temperature rise of low-shrinkage (LS) self-etch primer (P), LS self-etch adhesive (A), and P90 silorane-based composite resin systems, photopolymerized under normal and artificially demineralized dentin. Methods. Forty 1.5 mm-thick dentin discs were prepared from sound human molars, half of which were demineralized. Temperature rise was measured during photopolymerization using a K-type thermocouple under the discs: 10 s and 40 s irradiation of the discs (controls/groups 1 and 2); 10 s irradiation of primer (P), 10 s irradiation of adhesive (A), 40 s irradiation of P90 without P and A, and 40 s irradiation of P90 with P and A (groups 3 to 6, resp.). The samples were photopolymerized using an LED unit under 550 mW/cm2 light intensity. Data was analyzed using repeated measures ANOVA and paired-sample t-test (α = 0.05). Results. There were no significant differences in temperature rise means between the two dentin samples for each irradiation duration (P > 0.0001), with significant differences between the two irradiation durations (P > 0.0001). Temperature rise measured with 40 s irradiation was significantly higher than that of 10 s duration for undemineralized and demineralized dentin P < 0.0001). Conclusions. Light polymerization of P90 low-shrinkage composite resin resulted in temperature rise approaching threshold value under artificially demineralized and undemineralized dentin. PMID:23320185

  1. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces.

    PubMed

    Gutiérrez, Mario F; Malaquias, Pamela; Hass, Viviane; Matos, Thalita P; Lourenço, Lucas; Reis, Alessandra; Loguercio, Alessandro D; Farago, Paulo Vitor

    2017-06-01

    To evaluate the effect of addition of copper nanoparticles at different concentrations into an etch-and-rinse adhesive (ER) on antimicrobial activity, Knoop microhardness (KHN), in vitro and in situ degree of conversion (DC), as well as the immediate (IM) and 2-year (2Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Seven experimental ER adhesives were formulated according to the amount of copper nanoparticles incorporated into the adhesives (0 [control], 0.0075 to 1wt.%). We tested the antimicrobial activity of adhesives against Streptococcus mutans using agar diffusion assay after IM and 2Y. The Knoop microhardness and in vitro DC were tested after IM and 2Y. The adhesives were applied to flat occlusal dentine surfaces after acid etching. After resin build-ups, specimens were longitudinally sectioned to obtain beam-like resin-dentine specimens (0.8mm 2 ), which were used for evaluation of μTBS and nanoleakage at the IM and 2Y periods. In situ DC was evaluated at the IM period in these beam-like specimens. Data were submitted to appropriate statistical analyses (α=0.05). The addition of copper nanoparticles provided antimicrobial activity to the adhesives only in the IM evaluation and slightly reduced the KHN, the in vitro and in situ DC (copper concentrations of 1wt.%). However, KHN increase for all concentrations after 2Y. After 2Y, no significant reductions of μTBS (0.06 to 1% wt.%) and increases of nanoleakage were observed for copper containing adhesives compared to the control group. Copper nanoparticles addition up to 0.5wt.% may provide antimicrobial properties to ER adhesives and prevent the degradation of the adhesive interface, without reducing the mechanical properties of the formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Shear bond strength of bulk-fill and nano-restorative materials to dentin.

    PubMed

    Colak, Hakan; Ercan, Ertugrul; Hamidi, Mehmet Mustafa

    2016-01-01

    Bulk-fill composite materials are being developed for preparation depths of up to 4 mm in an effort to simplify and improve the placement of direct composite posterior restorations. The aim of our study was to compare shear-bond strength of bulk-fill and conventional posterior composite resins. In this study, 60 caries free extracted human molars were used and sectioned parallel to occlusal surface to expose midcoronal dentin. The specimens were randomly divided into four groups. Total-etch dentine bonding system (Adper Scotchbond 1XT, 3M ESPE) was applied to dentin surface in all the groups to reduce variability in results. Then, dentine surfaces covered by following materials. Group I: SonicFill Bulk-Fill, Group II: Tetric EvoCeram (TBF), Group III: Herculite XRV Ultra, and Group IV: TBF Bulk-Fill, 2 mm × 3 mm cylindrical restorations were prepared by using application apparatus. Shear bond testing was measured by using a universal testing machine. Kruskal-Wallis and Mann-Whitney U-tests were performed to evaluate the data. The highest value was observed in Group III (14.42 ± 4.34) and the lowest value was observed in Group IV (11.16 ± 2.76) and there is a statistically significant difference between these groups (P = 0.046). However, there is no statistically significant difference between the values of other groups. In this study, Group III was showed higher strength values. There is a need for future studies about long-term bond strength and clinical success of these adhesive and bulk-fill systems.

  3. Initial and long-term bond strengths of one-step self-etch adhesives with silane coupling agent to enamel-dentin-composite in combined situation.

    PubMed

    Mamanee, Teerapong; Takahashi, Masahiro; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2015-01-01

    This study evaluated the effect of adding silane coupling agent on initial and long-term bond strengths of one-step self-etch adhesives to enamel-dentin-composite in combined situation. Cervical cavities were prepared on extracted molars and filled with Clearfil AP-X. After water-storage for one-week, the filled teeth were sectioned in halves to expose enamel, dentin and composite surfaces and then enamel-dentin-composite surface was totally applied with one of adhesive treatments (Clearfil SE One, Clearfil SE One with Clearfil Porcelain Bond Activator, Beautibond Multi, Beautibond Multi with Beautibond Multi PR Plus and Scotchbond Universal). After designed period, micro-shear bond strengths (µSBSs) to each substrate were determined. For each period of water-storage, additive silane treatments significantly increased µSBS to composite (p<0.001). On the other hand, they significantly decreased µSBS to dentin (p<0.001), although did not have adverse effect on µSBS to enamel (p>0.05). Moreover, the stability of µSBS was depended on materials and substrates used.

  4. Effect of smear layer thickness and pH of self-adhesive resin cements on the shear bond strength to dentin.

    PubMed

    Ebrahimi Chaharom, Mohammad Esmaeel; Ajami, Amir Ahmad; Bahari, Mahmoud; Rezazadeh, Haleh

    2017-01-01

    There are concerns in relation to the bonding efficacy of self-adhesive resin cements to dentin covered with the smear layer. This study aims to evaluate the effect of smear layer thickness and different pH values of self-adhesive resin cements on the shear bond strength to dentin. The dentin on the buccal and lingual surfaces of 48 sound human premolars were abraded with 60- and 600-grit silicon carbide papers to achieve thick and thin smear layers, respectively. The samples were divided into three groups (n = 16) based on the cement pH: Rely-X Unicem (RXU) (pH < 2); Clearfil SA Luting (CSL) (pH = 3); and Speed CEM (SPC) (pH = 4.5). In each group, composite resin blocks were bonded to the buccal and lingual surfaces. After 24 h, the shear bond strength values were measured in MPa, and the failure modes were evaluated under a stereomicroscope. Data were analyzed with two-way ANOVA and post hoc least significant difference tests (P < 0.05). Cement pH had a significant effect on the shear bond strength (P = 0.02); however, the smear layer thickness had no significant effect on the shear bond strength (P > 0.05). The cumulative effect of these variables was not significant, either (P = 0.11). The shear bond strengths of SPC and CSL self-adhesive resin cements were similar and significantly lower than that of RXU. The smear layer thickness was not a determining factor for the shear bond strength value of self-adhesive resin cements.

  5. Microtensile bond strength analysis of different adhesive systems and dentin prepared with high-speed and Er:YAG laser: a comparative study.

    PubMed

    Oliveira, Denise Cerqueira; Manhães, Lussara Azevedo; Marques, Márcia Martins; Matos, Adriana Bona

    2005-04-01

    The aim of this study was to evaluate the bond strength of two adhesive systems (Single Bond and Clearfil SE Bond) subjected or not to a thermocycling procedure and applied to cavities prepared either with high-speed diamond bur or Er:YAG laser. One of the possible applications of dental lasers includes increasing the quality of bond strength. This in vitro study was carried out using a microtensile test on 16 bovine teeth, divided into eight groups. Cavities were prepared on superficial dentin of the medium portion of the buccal surface. After application of adhesive systems, composite restorations were performed at 5-mm height. After 24 h, four groups of teeth were immersed in water, and the other four were thermocycled. Bonded specimens were sectioned into serial 1x1-mm beams, which were subjected to a microtensile test. Final values of bond strength were measured, expressed in MPa, and statistically analyzed. Results were as follows: G1 (26.281 +/- 5.454 MPa); G2 (10.965 +/- 3.714 MPa); G3 (18.549 +/- 6.113 MPa); G4 (14.295 +/- 3.806 MPa); G5 (18.225 +/- 5.701 MPa); G6 (5.588 +/- 2.211 MPa); G7 (18.256 +/- 3.819 MPa); and G8 (15.423 +/- 4.714 MPa). Self-etching adhesive system (SE) produced more stable bond strength results than the system that indicates total etching (SB). For dentin prepared at high speed, the total etching adhesive system was more indicated, whereas Er:YAG laser-preparation dentin was not influenced by the adhesive system. The thermocycling procedure could negatively affect microtensile bond strength of both adhesive systems, being more deleterious to SB than to SE.

  6. Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology

    PubMed Central

    Gordon, V. D.; O’Halloran, T.J.; Shindell, O.

    2015-01-01

    Membrane adhesion is essential to many vital biological processes. Sites of membrane adhesion are often associated with heterogeneities in the lipid and protein composition of the membrane. These heterogeneities are thought to play functional roles by facilitating interactions between proteins. However, the causal links between membrane adhesion and membrane heterogeneities are not known. Here we survey the state of the field and indicate what we think are understudied areas ripe for development. PMID:25866854

  7. Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology.

    PubMed

    Gordon, V D; O'Halloran, T J; Shindell, O

    2015-06-28

    Membrane adhesion is essential to many vital biological processes. Sites of membrane adhesion are often associated with heterogeneities in the lipid and protein composition of the membrane. These heterogeneities are thought to play functional roles by facilitating interactions between proteins. However, the causal links between membrane adhesion and membrane heterogeneities are not known. Here we survey the state of the field and indicate what we think are understudied areas ripe for development.

  8. Shear bond strength of different types of adhesive systems to dentin and enamel of deciduous teeth in vitro.

    PubMed

    Kensche, A; Dähne, F; Wagenschwanz, C; Richter, G; Viergutz, G; Hannig, C

    2016-05-01

    The present study aimed to evaluate the suitability of self-etch adhesives for restoration of deciduous teeth compared with etch and rinse approaches. One hundred twenty primary teeth were divided into five groups, each being assigned to an adhesive system. Self-etch adhesives XenoV (XV) and Clearfil S(3) Bond (CB), Prime&Bond NT with (PBE)/without preliminary etching (PBN), and Optibond FL (OBFL) as an etch and rinse system were included. Enamel and dentin specimens were prepared (n = 36/group), adhesives applied, and compomer cylinders polymerized. After 24-h storage in 37 °C distilled water and thermo-cycling (1440 cycles, 5/55 °C, 27 s), shear bond tests and fracture mode classification based on SEM investigation were performed. Statistical analysis involved ANOVA and Scheffé procedure with Bonferroni-Holm correction (p ≤ 0.005). High shear bond strengths to primary enamel were determined for PBE (mean [M] = 22.48 ± 7.7 MPa) > OBFL (M = 19.06 ± 5.62 MPa) > CB (M = 17.6 ± 6.55 MPa), and XV (M = 16.85 ± 5.38 MPa) and PBN (M = 8.26 ± 4.46 MPa) formed significantly less reliable enamel-resin interfaces (p ≤ 0.005). PBE generated the highest bond strength on primary dentin (M = 21.97 ± 8.02 MPa); significantly lower values were measured for XV (M = 13.44 ± 5.43 MPa) and OBFL (M = 12.92 ± 4.31 MPa) (p ≤ 0.005). Adhesives requiring preliminary etching ensure optimal bond strength to primary enamel. If separate etching is to be avoided, selected self-etch adhesives obtain acceptable shear bond values on primary enamel and dentin. The treatment of pediatric patients presents a great challenge in dental practice, and optimization of treatment processes is important.

  9. ADHESION OF AN ENDODONTIC SEALER TO DENTIN AND GUTTA-PERCHA: SHEAR AND PUSH-OUT BOND STRENGTH MEASUREMENTS AND SEM ANALYSIS

    PubMed Central

    Teixeira, Cleonice Silveira; Alfredo, Edson; Thomé, Luis Henrique de Camargo; Gariba-Silva, Ricardo; Silva-Sousa, Yara T. Correa; Sousa, Manoel Damião

    2009-01-01

    The use of an adequate method for evaluation of the adhesion of root canal filling materials provides more reliable results to allow comparison of the materials and substantiate their clinical choice. The aims of this study were to compare the shear bond strength (SBS) test and push-out test for evaluation of the adhesion of an epoxy-based endodontic sealer (AH Plus) to dentin and guttapercha, and to assess the failure modes on the debonded surfaces by means of scanning electron microscopy (SEM). Three groups were established (n=7): in group 1, root cylinders obtained from human canines were embedded in acrylic resin and had their canals prepared and filled with sealer; in group 2, longitudinal sections of dentin cylinders were embedded in resin with the canal surface smoothed and turned upwards; in group 3, gutta-percha cylinders were embedded in resin. Polyethylene tubes filled with sealer were positioned on the polished surface of the specimens (groups 2 and 3). The push-out test (group 1) and the SBS test (groups 2 and 3) were performed in an Instron universal testing machine running at crosshead speed of 1 mm/min. Means (±SD) in MPa were: G1 (8.8±1.13), G2 (5.9±1.05) and G3 (3.8±0.55). Statistical analysis by ANOVA and Student's t-test (α=0.05) revealed statistically significant differences (p<0.01) among the groups. SEM analysis showed a predominance of adhesive and mixed failures of AH Plus sealer. The tested surface affected significantly the results with the sealer reaching higher bond strength to dentin than to guttapercha with the SBS test. The comparison of the employed methodologies showed that the SBS test produced significantly lower bond strength values than the push-out test, was skilful in determining the adhesion of AH Plus sealer to dentin and gutta-percha, and required specimens that could be easily prepared for SEM, presenting as a viable alternative for further experiments. PMID:19274399

  10. Dentin-Composite Bond Strength Measurement Using the Brazilian Disk Test

    PubMed Central

    Carrera, Carola A.; Chen, Yung-Chung; Li, Yuping; Rudney, Joel; Aparicio, Conrado; Fok, Alex

    2016-01-01

    Objectives This study presents a variant of the Brazilian disk test (BDT) for assessing the bond strength between composite resins and dentin. Methods Dentin-composite disks (φ 5 mm × 2 mm) were prepared using either Z100 or Z250 (3M ESPE) in combination with one of three adhesives, Adper Easy Bond (EB), Adper Scotchbond Multi-Purpose (MP) and Adper Single Bond (SB), and tested under diametral compression. Acoustic emission (AE) and digital image correlation (DIC) were used to monitor debonding of the composite from the dentin ring. A finite element (FE) model was created to calculate the bond strengths using the failure loads. Fracture modes were examined by scanning electron microscopy (SEM). Results Most specimens fractured along the dentin-resin composite interface. DIC and AE confirmed interfacial debonding immediately before fracture of the dentin ring. Results showed that the mean bond strength with EB (14.9±1.9 MPa) was significantly higher than with MP (13.2±2.4 MPa) or SB (12.9±3.0 MPa) (p<0.05); no significant difference was found between MP and SB (p>0.05). Z100 (14.5±2.3 MPa) showed higher bond strength than Z250 (12.7±2.5 MPa) (p<0.05). Majority of specimens (91.3%) showed an adhesive failure mode. EB failed mostly at the dentin-adhesive interface, whereas MP at the composite-adhesive interface; specimens with SB failed at the composite-adhesive interface and cohesively in the adhesive. Conclusions The BDT variant showed to be a suitable alternative for measuring the bond strength between dentin and composite, with zero premature failure, reduced variability in the measurements, and consistent failure at the dentin-composite interface. PMID:27395367

  11. Effects of Nano-Aluminum Nitride on the Performance of an Ultrahigh-Temperature Inorganic Phosphate Adhesive Cured at Room Temperature

    PubMed Central

    Ma, Chengkun; Chen, Hailong; Wang, Chao; Zhang, Jifeng; Qi, Hui; Zhou, Limin

    2017-01-01

    Based on the optimal proportion of resin and curing agent, an ultrahigh-temperature inorganic phosphate adhesive was prepared with aluminum dihydric phosphate, aluminium oxide (α-Al2O3), etc. and cured at room temperature (RT). Then, nano-aluminum nitride (nano-AlN), nano-Cupric oxide (nano-CuO), and nano-titanium oxide (nano-TiO2) were added into the adhesive. Differential scanning calorimetry was conducted using the inorganic phosphate adhesive to analyze the phosphate reactions during heat treatment, and it was found that 15 wt % nano-AlN could clearly decrease the curing temperature. Scanning electron microscopy was used to observe the microphenomenon of the modified adhesive at ultrahigh-temperature. The differential thermal analysis of the inorganic phosphate adhesive showed that the weight loss was approximately 6.5 wt % when the mass ratio of resin to curing agent was 1:1.5. An X-ray diffraction analysis of the adhesive with 10% nano-AlN showed that the phase structure changed from AlPO4(11-0500) to the more stable AlPO4(10-0423) structure after heat treatment. The shear strength of the adhesive containing 10% nano-AlN reached 7.3 MPa at RT due to the addition of nano-AlN, which promoted the formation of phosphate and increased the Al3+. PMID:29099812

  12. No-waiting dentine self-etch concept-Merit or hype.

    PubMed

    Huang, Xue-Qing; Pucci, César R; Luo, Tao; Breschi, Lorenzo; Pashley, David H; Niu, Li-Na; Tay, Franklin R

    2017-07-01

    A recently-launched universal adhesive, G-Premio Bond, provides clinicians with the alternative to use the self-etch technique for bonding to dentine without waiting for the adhesive to interact with the bonding substrate (no-waiting self-etch; Japanese brochure), or after leaving the adhesive undisturbed for 10s (10-s self-etch; international brochure). The present study was performed to examine in vitro performance of this new universal adhesive bonded to human coronal dentine using the two alternative self-etch modes. One hundred and ten specimens were bonded using two self-etch application modes and examined with or without thermomechanical cycling (10,000 thermal cycles and 240,000 mechanical cycles) to simulate one year of intraoral functioning. The bonded specimens were sectioned for microtensile bond testing, ultrastructural and nanoleakage examination using transmission electron microscopy. Changes in the composition of mineralised dentine after adhesive application were examined using Fourier transform infrared spectroscopy. Both reduced application time and thermomechanical cycling resulted in significantly lower bond strengths, thinner hybrid layers, and significantly more extensive nanoleakage after thermomechanical cycling. Using the conventional 10-s application time improved bonding performance when compared with the no-waiting self-etch technique. Nevertheless, nanoleakage was generally extensive under all testing parameters employed for examining the adhesive. Although sufficient bond strength to dentine may be achieved using the present universal adhesive in the no-waiting self-etch mode that does not require clinicians to wait prior to polymerisation of the adhesive, this self-etch concept requires further technological refinement before it can be recommended as a clinical technique. Although the surge for cutting application time to increase user friendliness remains the most frequently sought conduit for advancement of dentine bonding

  13. Effect of simulated pulpal pressure on all-in-one adhesive bond strengths to dentine.

    PubMed

    Hosaka, Keiichi; Nakajima, Masatoshi; Yamauti, Monica; Aksornmuang, Juthatip; Ikeda, Masaomi; Foxton, Richard M; Pashley, David H; Tagami, Junji

    2007-03-01

    To evaluate the durability of all-in-one adhesive systems bonded to dentine with and without simulated hydrostatic pulpal pressure (PP). Flat dentine surfaces of extracted human molars were prepared. Two all-in-one adhesive systems, One-Up Bond F (OBF) (Tokuyama Corp., Tokyo, Japan), and Fluoro Bond Shake One (FBS) (Shofu Co., Kyoto, Japan) were applied to the dentine surfaces under either a PP of 0 or 15cm H(2)O. Then, resin composite build-ups were made. The specimens bonded under pressure were stored in 37 degrees C water for 24h, 1 and 3 months under 15cm H(2)O PP. Specimens not bonded under pressure were stored under zero PP. After storage, the specimens were sectioned into slabs that were trimmed to hourglass shapes and subjected to micro-tensile bond testing (muTBS). The data were analysed using two-way ANOVA and Holm-Sidak HSD multiple comparison tests (alpha=0.05). The muTBS of OBF fell significantly (p<0.05) when PP was applied during bonding and storage, regardless of storage time. In contrast, although the muTBS of OBF specimens bonded and stored without hydrostatic pressure storage fell significantly over the 3 months period, the decrease was less than half as much as specimens stored under PP. In FBS bonded specimens, although there was no significant difference between the muTBS with and without hydrostatic pulpal pressure at 24h, by 1 and 3 months of storage under PP, significant reductions were seen compared with the control group without PP. The muTBS of OBF bonded specimens was lowered more by simulated PP than by storage time; specimens bonded with FBS were not sensitive to storage time in the absence of PP, but showed lower bond strengths at 1 and 3 months in the presence of PP.

  14. Adhesive performance of a multi-mode adhesive system: 1-year in vitro study.

    PubMed

    Marchesi, Giulio; Frassetto, Andrea; Mazzoni, Annalisa; Apolonio, Fabianni; Diolosà, Marina; Cadenaro, Milena; Di Lenarda, Roberto; Pashley, David H; Tay, Franklin; Breschi, Lorenzo

    2014-05-01

    The aim of this study was to investigate the adhesive stability over time of a multi-mode one-step adhesive applied using different bonding techniques on human coronal dentine. The hypotheses tested were that microtensile bond strength (μTBS), interfacial nanoleakage expression and matrix metalloproteinases (MMPs) activation are not affected by the adhesive application mode (following the use of self-etch technique or with the etch-and-rinse technique on dry or wet dentine) or by ageing for 24h, 6 months and 1year in artificial saliva. Human molars were cut to expose middle/deep dentine and assigned to one of the following bonding systems (N=15): (1) Scotchbond Universal (3M ESPE) self-etch mode, (2) Scotchbond Universal etch-and-rinse technique on wet dentine, (3) Scotchbond Universal etch-and-rinse technique on dry dentine, and (4) Prime&Bond NT (Dentsply De Trey) etch-and-rinse technique on wet dentine (control). Specimens were processed for μTBS test in accordance with the non-trimming technique and stressed to failure after 24h, 6 months or 1 year. Additional specimens were processed and examined to assay interfacial nanoleakage and MMP expression. At baseline, no differences between groups were found. After 1 year of storage, Scotchbond Universal applied in the self-etch mode and Prime&Bond NT showed higher μTBS compared to the other groups. The lowest nanoleakage expression was found for Scotchbond Universal applied in the self-etch mode, both at baseline and after storage. MMPs activation was found after application of each tested adhesive. The results of this study support the use of the self-etch approach for bonding the tested multi-mode adhesive system to dentine due to improved stability over time. Improved bonding effectiveness of the tested universal adhesive system on dentine may be obtained if the adhesive is applied with the self-etch approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Comparison of the shear bond strength of self-adhesive resin cements to enamel and dentin with different protocol of application

    PubMed Central

    Moghaddas, Mohammad Javad; Hossainipour, Zahra; Majidinia, Sara; Ojrati, Najmeh

    2017-01-01

    Aim The aim of the present study was to determine the shear bond strength of self-adhesive resin cements to enamel and dentin with and without surface treatments, and compare them with conventional resin cement as the control group. Methods In this experimental study, buccal and lingual surface of the thirty sound human premolars were polished in order to obtain a flat surface of enamel (E) in buccal, and dentin (D) in lingual. Sixty feldspathic ceramic blocks (2×3×3 mm) were prepared and randomly divided into six groups (n=10). Each block was cemented to the prepared surface (30 enamel and 30 dentin surface) according to different protocol: E1 and D1; RelyX ARC as control group, E2, D2; RelyX Unicem, E3, D3; acid etching +RelyX Unicem. The specimens were termocycled and subjected to shear forces by a universal testing machine at a cross head speed of 0.5 mm/min. The mode of fracture were evaluated by stereomicroscope. Data were analyzed with descriptive statistical methods using SPSS version 15. One-way ANOVA, and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at α=0.05. Results Statistical analysis showed no significant differences within the enamel subgroups, but there were significant differences within the dentinal subgroups, and statistically significant differences were found between the groups D1and D3 (p=0.02). Comparison between similar enamel and dentinal subgroups showed that there was a significant difference just between the subgroups E3 and D3 (p=0.01). Conclusion Elective etching of enamel did not lead to significant increase in the shear bond strength of RelyX Unicem in comparison to RelyX ARC. On the other hand, elective etching of dentin reduces the bond strength of RelyX Unicem with the dentin. PMID:28979732

  16. Effect of Casein Phosphopeptide-amorphous Calcium Phosphate Treatment on Microtensile Bond Strength to Carious Affected Dentin Using Two Adhesive Strategies

    PubMed Central

    Bahari, Mahmoud; Savadi Oskoee, Siavash; Kimyai, Soodabeh; Pouralibaba, Firoz; Farhadi, Farrokh; Norouzi, Marouf

    2014-01-01

    Background and aims. The aim was to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on microtensile bond strength (μTBS) to carious affected dentin (CAD) using etch-and-rinse and self-etch adhesive systems. Materials and methods. The occlusal surface of 32 human molars with moderate occlusal caries was removed. Infected dentin was removed until reaching CAD and the teeth were randomly divided into two groups based on the Single Bond (SB) and Clearfil SE Bond (CSE) adhesive systems. Before composite resin bonding, each group was subdivided into three subgroups of ND, CAD and CPP-ACP-treated CAD (CAD-CPP) based on the dentin substrate. After dissecting samples to l-mm-thick cross-sections (each subgroup: n = 13), μTBS was measured at a strain rate of 0.5 mm/min. Data was analyzed using two-way ANOVA, independent samples t-test and post-hoc Tukey tests (α=0.05). Results. Bond strength of both adhesive systems to ND was significantly higher than that to CAD (P <0.001) and CAD/CPP (P < 0.001). There were no significant differences between the μTBS of SB to CAD and CAD-CPP (P > 0.05).μTBS of CSE to CAD-CPP was higher than that to CAD; however, the difference was not significant (P > 0.05). Significant differences were found between SB and CSE systems only with CAD substrate (P < 0.001). Conclusion. Regardless of the adhesive system used, surface treatment of CAD with CPP-ACP did not have a significant effect on bond strength. However, bond strength to CAD was higher with SB rather than with CSE. PMID:25346832

  17. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentin bond properties

    PubMed Central

    Zhang, Ke; Cheng, Lei; Imazato, Satoshi; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Bai, Yuxing; Xu, Hockin H. K.

    2013-01-01

    Objectives The objective of this study was to investigate the effects of dentin primer containing dual antibacterial agents, namely, 12-methacryloyloxydodecylpyridinium bromide (MDPB) and nanoparticles of silver (NAg), on dentin bond strength, dental plaque microcosm biofilm response, and fibroblast cytotoxicity for the first time. Methods Scotchbond Multi-Purpose (SBMP) was used as the parent bonding agent. Four primers were tested: SBMP primer control (referred to as “P”), P+5%MDPB, P+0.05%NAg, and P+5%MDPB+0.05%NAg. Dentin shear bond strengths were measured using extracted human teeth. Biofilms from the mixed saliva of 10 donors were cultured to investigate metabolic activity, colony-forming units (CFU), and lactic acid production. Human fibroblast cytotoxicity of the four primers was tested in vitro. Results Incorporating MDPB and NAg into primer did not reduce dentin bond strength compared to control (p>0.1). SEM revealed well-bonded adhesive-dentin interfaces with numerous resin tags. MDPB or NAg each greatly reduced biofilm viability and acid production, compared to control. Dual agents MDPB+NAg had a much stronger effect than either agent alone (p<0.05), increasing inhibition zone size and reducing metabolic activity, CFU and lactic acid by an order of magnitude, compared to control. There was no difference in cytotoxicity between commercial control and antibacterial primers (p>0.1). Conclusions The method of using dual agents MDPB+NAg in the primer yielded potent antibacterial properties. Hence, this method may be promising to combat residual bacteria in tooth cavity and invading bacteria at the margins. The dual agents MDPB+NAg may have wide applicability to other adhesives, composites, sealants and cements to inhibit biofilms and caries. PMID:23402889

  18. Effects of attrition, prior acid-etching, and cyclic loading on the bond strength of a self-etching adhesive system to dentin.

    PubMed

    Shinkai, Koichi; Ebihara, Takashi; Shirono, Manabu; Seki, Hideaki; Wakaki, Suguru; Suzuki, Masaya; Suzuki, Shiro; Katoh, Yoshiroh

    2009-03-01

    The purpose of this study was to evaluate the effects of dentin attrition, phosphoric acid etching, and cyclic loading on the microtensile bond strength (microTBS) of a self-etching adhesive system to dentin. Flat dentin surfaces of human molars were assigned to eight experimental groups based on those with or without attrition, prior acid-etching, and cyclic loading. Resin composite paste was placed and polymerized after the bonding procedure according to manufacturer's instructions. The specimens were subjected to microTBS testing at a crosshead speed of 0.5 mm/min. Results showed that the minimum mean value of microTBS was 14.9 MPa in the group without attrition and acid-etching but with loading, while the maximum mean value of microTBS was 40.0 MPa in the group without attrition and loading but with acid etching. Therefore, the value of microTBS to dentin without attrition was significantly decreased by cyclic loading but that to dentin with attrition was not affected.

  19. Evaluation of the adhesion on the nano-scaled polymeric film systems.

    PubMed

    Park, Tae Sung; Park, Ik Keun; Yoshida, Sanichiro

    2017-04-01

    We applied scanning acoustic microscopy known as the V(z) curve technique to photoresist thin-film systems for the evaluation of the adhesive strength at the film-substrate interface. Through the measurement of the SAW (Surface Acoustic Wave) velocity, the V(z) curve analysis allows us to quantify the stiffness of the film-substrate interface. In addition, we conducted a nano-scratch test to quantify the ultimate strength of the adhesion through the evaluation of the critical load. To vary the adhesive conditions, we prepared thin-film specimens with three different types of pre-coating surface treatments, i.e., oxygen-plasma bombardment, HMDS (Hexametyldisilazane) treatment and untreated. The magnitudes of the quantified stiffness and ultimate strength are found consistent with each other for all the specimens tested, indicating that the pre-coating surface treatment can strengthen both the stiffness and ultimate strength of the adhesion. The results of this study demonstrate the usefulness of the V(Z) analysis as a nondestructive method to evaluate the adhesion strength of nano-structured thin-film systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Polymerization Behavior of Hydrophilic-Rich Phase of Dentin Adhesive

    PubMed Central

    Abedin, F.; Parthasarathy, R.; Misra, A.; Spencer, P.

    2015-01-01

    The 2-fold objectives of this study were 1) to understand whether model hydrophobic- and hydrophilic-rich phase mimics of dentin adhesive polymerize similarly and 2) to determine which factor, the dimethacrylate component, bisphenol A glycerolate dimethacrylate (BisGMA) or photoinitiator concentration, has greater influence on the polymerization of the hydrophilic-rich phase mimic. Current dentin adhesives are sensitive to moisture, as evidenced by nanoleakage in the hybrid layer and phase separation into hydrophobic- and hydrophilic-rich phases. Phase separation leads to limited availability of the cross-linkable dimethacrylate monomer and hydrophobic photoinitiators within the hydrophilic-rich phase. Model hydrophobic-rich phase was prepared as a single-phase solution by adding maximum wt% deuterium oxide (D2O) to HEMA/BisGMA neat resins containing 45 wt% 2-hydroxyethyl methacrylate (HEMA). Mimics of the hydrophilic-rich phase were prepared similarly but using HEMA/BisGMA neat resins containing 95, 99, 99.5, and 100 wt% HEMA. The hydrophilic-rich mimics were prepared with standard or reduced photoinitiator content. The photoinitiator systems were camphorquinone (CQ)/ethyl 4-(dimethylamino)benzoate (EDMAB) with or without [3-(3, 4-dimethyl-9-oxo-9H-thioxanthen-2-yloxy)-2-hydroxypropyl]trimethylammonium chloride (QTX). The polymerization kinetics was monitored using a Fourier transform infrared spectrophotometer with a time-resolved collection mode. The hydrophobic-rich phase exhibited a significantly higher polymerization rate compared with the hydrophilic-rich phase. Postpolymerization resulting in the secondary rate maxima was observed for the hydrophilic-rich mimic. The hydrophilic-rich mimics with standard photoinitiator concentration but varying cross-linker (BisGMA) content showed postpolymerization and a substantial degree of conversion. In contrast, the corresponding formulations with reduced photoinitiator concentrations exhibited lower polymerization and

  1. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries

    PubMed Central

    Zhang, Ke; Li, Fang; Imazato, Satoshi; Cheng, Lei; Liu, Huaibing; Arola, Dwayne D.; Bai, Yuxing; Xu, Hockin H. K.

    2013-01-01

    Dental resins containing 12-methacryloyloxydodecylpyridinium bromide (MDPB) showed potent antibacterial functions. Recent studies developed antibacterial resins containing nanoparticles of silver (NAg). The objectives of this study were to develop an adhesive containing dual agents of MDPB and NAg for the first time, and to investigate the combined effects of antibacterial adhesive and primer on biofilm viability, metabolic activity, lactic acid, dentin bond strength, and fibroblast cytotoxicity. MDPB and NAg were incorporated into Scotchbond Multi-Purpose (SBMP) adhesive “A” and primer “P”. Five systems were tested: SBMP adhesive A; A+MDPB; A+NAg; A+MDPB+NAg; P+MDPB+NAg together with A+MDPB+NAg. Dental plaque microcosm biofilms were cultured using mixed saliva from ten donors. Metabolic activity, colony-forming units, and lactic acid production of biofilms were investigated. Human fibroblast cytotoxicity of bonding agents was determined. MDPB+NAg in adhesive/primer did not compromise dentin bond strength (p>0.1). MDPB or NAg alone in adhesive substantially reduced the biofilm activities. Dual agents MDPB+NAg in adhesive greatly reduced the biofilm viability compared to each agent alone (p<0.05). The greatest inhibition of biofilms was achieved when both adhesive and primer contained MDPB+NAg. Fibroblast viability of groups with dual antibacterial agents was similar to control using culture medium without resin eluents (p>0.1). In conclusion, this study showed for the first time that the antibacterial potency of MDPB adhesive could be substantially enhanced via NAg. Adding MDPB+NAg into both primer and adhesive achieved the strongest anti-biofilm efficacy. The dual agent (MDPB+NAg) method could have wide applicability to other adhesives, sealants, cements and composites to inhibit biofilms and caries. PMID:23529901

  2. Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model.

    PubMed

    Reher, David; Klink, Barbara; Deutsch, Andreas; Voss-Böhme, Anja

    2017-08-11

    Cancer cell invasion, dissemination, and metastasis have been linked to an epithelial-mesenchymal transition (EMT) of individual tumour cells. During EMT, adhesion molecules like E-cadherin are downregulated and the decrease of cell-cell adhesion allows tumour cells to dissociate from the primary tumour mass. This complex process depends on intracellular cues that are subject to genetic and epigenetic variability, as well as extrinsic cues from the local environment resulting in a spatial heterogeneity in the adhesive phenotype of individual tumour cells. Here, we use a novel mathematical model to study how adhesion heterogeneity, influenced by intrinsic and extrinsic factors, affects the dissemination of tumour cells from an epithelial cell population. The model is a multiscale cellular automaton that couples intracellular adhesion receptor regulation with cell-cell adhesion. Simulations of our mathematical model indicate profound effects of adhesion heterogeneity on tumour cell dissemination. In particular, we show that a large variation of intracellular adhesion receptor concentrations in a cell population reinforces cell dissemination, regardless of extrinsic cues mediated through the local cell density. However, additional control of adhesion receptor concentration through the local cell density, which can be assumed in healthy cells, weakens the effect. Furthermore, we provide evidence that adhesion heterogeneity can explain the remarkable differences in adhesion receptor concentrations of epithelial and mesenchymal phenotypes observed during EMT and might drive early dissemination of tumour cells. Our results suggest that adhesion heterogeneity may be a universal trigger to reinforce cell dissemination in epithelial cell populations. This effect can be at least partially compensated by a control of adhesion receptor regulation through neighbouring cells. Accordingly, our findings explain how both an increase in intra-tumour adhesion heterogeneity and the

  3. ON THE DURABILITY OF RESIN-DENTIN BONDS: IDENTIFYING THE WEAKEST LINKS

    PubMed Central

    Zhang, Zihou; Beitzel, Dylan; Mutluay, Mustafa; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Fatigue of resin-dentin adhesive bonds is critical to the longevity of resin composite restorations. Objectives The objectives were to characterize the fatigue and fatigue crack growth resistance of resin-dentin bonds achieved using two different commercial adhesives and to identify apparent “weak-links”. Methods Bonded interface specimens were prepared using Adper Single Bond Plus (SB) or Adper Scotchbond Multi-Purpose (SBMP) adhesives and 3M Z100 resin composite according to the manufacturers instructions. The stress-life fatigue behavior was evaluated using the twin bonded interface approach and the fatigue crack growth resistance was examined using bonded interface Compact Tension (CT) specimens. Fatigue properties of the interfaces were compared to those of the resin-adhesive, resin composite and coronal dentin. Results The fatigue strength of the SBMP interface was significantly greater than that achieved by SB (p≤0.01). Both bonded interfaces exhibited significantly lower fatigue strength than that of the Z100 and dentin. Regarding the fatigue crack growth resistance, the stress intensity threshold (ΔKth) of the SB interface was significantly greater (p≤0.01) than that of the SBMP, whereas the ΔKth of the interfaces was more than twice that of the parent adhesives. Significance Collagen fibril reinforcement of the resin adhesive is essential to the fatigue crack growth resistance of resin-dentin bonds. Resin tags that are not well hybridized into the surrounding intertubular dentin and/or poor collagen integrity are detrimental to the bonded interface durability. PMID:26169318

  4. [The influence of the chemo-mechanical removal of the smear-layer and the use of a dentin adhesive on microleakage of composite resin restorations].

    PubMed

    de la Macorra García, J C; Gómez Martínez, A; Gutiérrez Argumosa, B

    1989-02-01

    We present an "in vitro" study of microfiltration in composite resin restorations with a perimetral seal placed totally in cement. We compare the sealing capability of a dentin adhesive (ScotchBond I) used in two ways: habitual, without conditioning dentin and conditioning it by means of the Caridex system. This produced no increasing of sealing capability under the study conditions.

  5. Effects of antibacterial primers with quaternary ammonium and nano-silver on S. mutans impregnated in human dentin blocks

    PubMed Central

    Cheng, Lei; Zhang, Ke; Weir, Michael D.; Liu, Huaibing; Zhou, Xuedong; Xu, Hockin H. K.

    2013-01-01

    Objectives Recent studies developed antibacterial bonding agents and composites containing a quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg). The objectives of this study were to investigate: (1) the effect of antibacterial primers containing QADM and NAg on the inhibition of Streptococcus mutans (S. mutans) impregnated into dentin blocks for the first time, and (2) the effect of QADM or NAg alone or in combination, and the effect of NAg mass fraction, on S. mutans viability in dentin. Methods Scotchbond Multi-Purpose (SBMP) bonding agent was used. QADM and NAg were incorporated into SBMP primer. Six primers were tested: SBMP primer control, control + 10% QADM (mass %), control + 0.05% NAg, control + 10% QADM + 0.05% NAg, control + 0.1% NAg, and control + 10% QADM + 0.1% NAg. S. mutans were impregnated into dentin blocks, then a primer was applied. The viable colony-forming units (CFU) were then measured by harvesting the bacteria in dentin using a sonication method. Results Control + 10% QADM + 0.1% NAg had bacteria inhibition zone 8-fold that of control (p < 0.05). The sonication method successfully harvested bacteria from dentin blocks. Control + 10% QADM + 0.1% NAg inhibited S. mutans in dentin blocks, reducing the viable CFU in dentin by three orders of magnitude, compared to control dentin without primer. Using QADM+NAg was more effective than QADM alone. Higher NAg content increased the potency. Dentin shear bond strength was similar for all groups (p > 0.1). Significance Antibacterial primer with QADM and NAg were shown to inhibit the S. mutans impregnated into dentin blocks for the first time. Bonding agent containing QADM and NAg is promising to eradicate bacteria in tooth cavity and inhibit caries. The QADM and NAg may have applicability to other adhesives, cements, sealants and composites. PMID:23422420

  6. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives

    PubMed Central

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred. PMID:26539520

  7. The importance of size-exclusion characteristics of type I collagen in bonding to dentin matrices

    PubMed Central

    M, Takahashi; M, Nakajima; J, Tagami; DLS, Scheffel; RM, Carvalho; A, Mazzoni; M, Carrilho; A, Tezvergil-Mutluay; L, Breschi; L, Tjäderhane; SS, Jang; FR, Tay; KA, Agee; DH, Pashley

    2013-01-01

    The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than about 1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives. PMID:23928333

  8. [Adhesion of sealer cements to dentin with and without smear layer].

    PubMed

    Gettleman, B H; Messer, H H; ElDeeb, M E

    1991-01-01

    The influence of a smear layer on the adhesion of sealer cements to dentin was assessed in recently extracted human anterior teeth. A total of 120 samples was tested, 40 per sealer; 20 each with and without the smear layer. The teeth were split longitudinally, and the internal surfaces were ground flat. One-half of each tooth was left with the smear layer intact, while the other half had the smear removed by washing for 3 min with 17% EDTA followed by 5.25% NaOCI. Evidence of the ability to remove the smear layer was verified by scanning electron microscopy. Using a specially designed jig, the sealer was placed into a 4-mm wide x 4 mm deep well which was then set onto the tooth.

  9. Dentin moisture conditions affect the adhesion of root canal sealers.

    PubMed

    Nagas, Emre; Uyanik, M Ozgur; Eymirli, Ayhan; Cehreli, Zafer C; Vallittu, Pekka K; Lassila, Lippo V J; Durmaz, Veli

    2012-02-01

    The purpose of this study was to evaluate the effects of intraradicular moisture conditions on the push-out bond strength of root canal sealers. Eighty root canals were prepared using rotary instruments and, thereafter, were assigned to 4 groups with respect to the moisture condition tested: (1) ethanol (dry): excess distilled water was removed with paper points followed by dehydration with 95% ethanol, (2) paper points: the canals were blot dried with paper points with the last one appearing dry, (3) moist: the canals were dried with low vacuum by using a Luer adapter for 5 seconds followed by 1 paper point for 1 second, and (4) wet: the canals remained totally flooded. The roots were further divided into 4 subgroups according to the sealer used: (1) AH Plus (Dentsply-Tulsa Dental, Tulsa, OK), (2) iRoot SP (Innovative BioCeramix Inc, Vancouver, Canada), (3) MTA Fillapex (Angelus Indústria de Produtos Odontológicos S/A, Londrina, Brasil), and (4) Epiphany (Pentron Clinical Technologies, Wallingford, CT). Five 1-mm-thick slices were obtained from each root sample (n = 25 slices/group). Bond strengths of the test materials to root canal dentin were measured using a push-out test setup at a cross-head speed of 1 mm/min. The data were analyzed statistically by two-way analysis of variance and Tukey tests at P = .05. Irrespective of the moisture conditions, iRoot SP displayed the highest bond strength to root dentin. Statistical ranking of bond strength values was as follows: iRoot SP > AH Plus > Epiphany ≥ MTA Fillapex. The sealers displayed their highest and lowest bond strengths under moist (3) and wet (4) conditions, respectively. The degree of residual moisture significantly affects the adhesion of root canal sealers to radicular dentin. For the tested sealers, it may be advantageous to leave canals slightly moist before filling. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Biofunctionalized 3-D Carbon Nano-Network Platform for Enhanced Fibroblast Cell Adhesion

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. K. M. Rezaul Haque; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2017-03-01

    Carbon nanomaterials have been investigated for various biomedical applications. In most cases, however, these nanomaterials must be functionalized biologically or chemically due to their biological inertness or possible cytotoxicity. Here, we report the development of a new carbon nanomaterial with a bioactive phase that significantly promotes cell adhesion. We synthesize the bioactive phase by introducing self-assembled nanotopography and altered nano-chemistry to graphite substrates using ultrafast laser. To the best of our knowledge, this is the first time that such a cytophilic bio-carbon is developed in a single step without requiring subsequent biological/chemical treatments. By controlling the nano-network concentration and chemistry, we develop platforms with different degrees of cell cytophilicity. We study quantitatively and qualitatively the cell response to nano-network platforms with NIH-3T3 fibroblasts. The findings from the in vitro study indicate that the platforms possess excellent biocompatibility and promote cell adhesion considerably. The study of the cell morphology shows a healthy attachment of cells with a well-spread shape, overextended actin filaments, and morphological symmetry, which is indicative of a high cellular interaction with the nano-network. The developed nanomaterial possesses great biocompatibility and considerably stimulates cell adhesion and subsequent cell proliferation, thus offering a promising path toward engineering various biomedical devices.

  11. Resin-dentin bonds to EDTA-treated vs. acid-etched dentin using ethanol wet-bonding. Part II: Effects of mechanical cycling load on microtensile bond strengths.

    PubMed

    Sauro, Salvatore; Toledano, Manuel; Aguilera, Fatima Sánchez; Mannocci, Francesco; Pashley, David H; Tay, Franklin R; Watson, Timothy F; Osorio, Raquel

    2011-06-01

    To compare microtensile bond strengths (MTBS) subsequent to load cycling of resin bonded acid-etched or EDTA-treated dentin using a modified ethanol wet-bonding technique. Flat dentin surfaces were obtained from extracted human molars and conditioned using 37% H(3)PO(4) (PA) (15s) or 0.1M EDTA (60s). Five experimental adhesives and one commercial bonding agent were applied to the dentin and light-cured. Solvated experimental resins (50% ethanol/50% comonomers) were used as primers and their respective neat resins were used as the adhesives. The resin-bonded teeth were stored in distilled water (24h) or submitted to 5000 loading cycles of 90N. The bonded teeth were then sectioned in beams for MTBS. Modes of failure were examined by scanning electron microscopy. The most hydrophobic resin 1 gave the lowest bond strength values to both acid and EDTA-treated dentin. The hydrophobic resin 2 applied to EDTA-treated dentin showed lower bond strengths after cycling load but this did not occur when it was bonded to PA-etched dentin. Resins 3 and 4, which contained hydrophilic monomers, gave higher bond strengths to both EDTA-treated or acid-etched dentin and showed no significant difference after load cycling. The most hydrophilic resin 5 showed no significant difference in bond strengths after cycling loading when bonded to EDTA or phosphoric acid treated dentin but exhibited low bond strengths. The presence of different functional monomers influences the MTBS of the adhesive systems when submitted to cyclic loads. Adhesives containing hydrophilic comonomers are not affected by cycling load challenge especially when applied on EDTA-treated dentin followed by ethanol wet bonding. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Bacteria as living patchy colloids: Phenotypic heterogeneity in surface adhesion

    PubMed Central

    Hermes, Michiel; Schwarz-Linek, Jana; Poon, Wilson C. K.

    2018-01-01

    Understanding and controlling the surface adhesion of pathogenic bacteria is of urgent biomedical importance. However, many aspects of this process remain unclear (for example, microscopic details of the initial adhesion and possible variations between individual cells). Using a new high-throughput method, we identify and follow many single cells within a clonal population of Escherichia coli near a glass surface. We find strong phenotypic heterogeneities: A fraction of the cells remain in the free (planktonic) state, whereas others adhere with an adhesion strength that itself exhibits phenotypic heterogeneity. We explain our observations using a patchy colloid model; cells bind with localized, adhesive patches, and the strength of adhesion is determined by the number of patches: Nonadherers have no patches, weak adherers bind with a single patch only, and strong adherers bind via a single or multiple patches. We discuss possible implications of our results for controlling bacterial adhesion in biomedical and other applications. PMID:29719861

  13. Effect of Cigarette Smoke on Resin Composite Bond Strength to Enamel and Dentin Using Different Adhesive Systems.

    PubMed

    Theobaldo, J D; Catelan, A; Rodrigues-Filho, U; Marchi, G M; Lima, Danl; Aguiar, Fhb

    2016-01-01

    To evaluate the microshear bond strength of composite resin restorations in dental blocks with or without exposure to cigarette smoke. Eighty bovine dental blocks were divided into eight groups (n=10) according to the type of adhesive (Scotchbond Multi-Purpose, 3M ESPE, St Paul, MN, USA [SBMP]; Single Bond 2, 3M ESPE [SB]; Clearfil SE Bond, Kuraray Medical Inc, Okayama, Japan [CSEB]; Single Bond Universal, 3M ESPE [SBU]) and exposure to smoke (no exposure; exposure for five days/20 cigarettes per day). The adhesive systems were applied to the tooth structure, and the blocks received a composite restoration made using a matrix of perforated pasta. Data were statistically analyzed using analysis of variance and Tukey test (α<0.05). For enamel, there was no difference between the presence or absence of cigarette smoke (p=0.1397); however, there were differences among the adhesive systems (p<0.001). CSEB showed higher values and did not differ from SBU, but both were statistically different from SB. The SBMP showed intermediate values, while SB demonstrated lower values. For dentin, specimens subjected to cigarette smoke presented bond strength values that were lower when compared with those not exposed to smoke (p<0.001). For the groups without exposure to cigarette smoke, CSEB showed higher values, differing from SBMP. SB and SBU showed intermediary values. For the groups with exposure to cigarette smoke, SBU showed values that were higher and statistically different from SB and CSEB, which presented lower values of bond strength. SBMP demonstrated an intermediate value of bond strength. The exposure of dentin to cigarette smoke influenced the bonding strength of adhesives, but no differences were noted in enamel.

  14. Bond strength durability of self-etching adhesives and resin cements to dentin.

    PubMed

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    To evaluate the microtensile bond strength (microTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37 degrees C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm(2) cross-sectional area, which were subjected to microTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The microTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (alpha= 0.05). The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001). All eight experimental means (MPa) were compared by the Tukey's test (p<0.05) and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4+/-7.3); Tyrian-One Step Plus /Variolink II/24 h (39.4+/-11.6); Xeno III/C&B/24 h (40.3+/-12.9); Xeno III/Variolink II/24 h (25.8+/-10.5); Tyrian-One Step Plus /C&B/90 d (22.1+/-12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2+/-14.2); Xeno III/C&B/90 d (27.0+/-13.5); Xeno III/Variolink II/90 d (33.0+/-8.9). Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.

  15. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    PubMed Central

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001). All eight experimental means (MPa) were compared by the Tukey's test (p<0.05) and the following results were obtained: Tyrian-One Step Plus/C&B/24 h (22.4±7.3); Tyrian-One Step Plus/Variolink II/24 h (39.4±11.6); Xeno III/C&B/24 h (40.3±12.9); Xeno III/Variolink II/24 h (25.8±10.5); Tyrian-One Step Plus/C&B/90 d (22.1±12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2); Xeno III/C&B/90 d (27.0±13.5); Xeno III/Variolink II/ 90 d (33.0±8.9). Conclusions: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  16. Adhesion to root canal dentine using one and two-step adhesives with dual-cure composite core materials.

    PubMed

    Foxton, R M; Nakajima, M; Tagami, J; Miura, H

    2005-02-01

    The regional tensile bond strengths of two dual-cure composite resin core materials to root canal dentine using either a one or two-step self-etching adhesive were evaluated. Extracted premolar teeth were decoronated and their root canals prepared to a depth of 8 mm and a width of 1.4 mm. In one group, a one-step self-etching adhesive (Unifil Self-etching Bond) was applied to the walls of the post-space and light-cured for 10 s. After which, the post-spaces were filled with the a dual-cure composite resin (Unifil Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. In the second group, a self-etching primer (ED Primer II) was applied for 30 s, followed by an adhesive resin (Clearfil Photo Bond), which was light-cured for 10 s. The post-spaces were filled with a dual-cure composite resin (DC Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. Chemical-cure composite resin was placed on the outer surfaces of all the roots, which were then stored in water for 24 h. They were serially sliced perpendicular to the bonded interface into 8, 0.6 mm-thick slabs, and then transversely sectioned into beams, approximately 8 x 0.6 x 0.6 mm, for the microtensile bond strength test (muTBS). Data were divided into two (coronal/apical half of post-space) and analysed using three-way anova and Scheffe's test (P < 0.05). Failure modes were observed under an scanning electron microscope (SEM) and statistically analysed. Specimens for observation of the bonded interfaces were prepared in a similar manner as for bond strength testing, cut in half and embedded in epoxy resin. They were then polished to a high gloss, gold sputter coated, and after argon ion etching, observed under an SEM. For both dual-cure composite resins and curing strategies, there were no significant differences in muTBS between the coronal and apical regions (P > 0.05). In addition, both dual

  17. The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols.

    PubMed

    Fatemeh, Koohpeima; Mohammad Javad, Mokhtari; Samaneh, Khalafi

    2017-01-01

    The purpose of this study was to investigate the effect of silver nanoparticles on composite shear bond strength using one etch and rinse and one self-etch adhesive systems. Silver nanoparticles were prepared. Transmission electron microscope and X-ray diffraction were used to characterize the structure of the particles. Nanoparticles were applied on exposed dentin and then different adhesives and composites were applied. All samples were tested by universal testing machine and shear bond strength was assesed. Particles with average diameter of about 20 nm and spherical shape were found. Moreover, it was shown that pretreatment by silver nanoparticles enhanced shear bond strength in both etch and rinse, and in self-etch adhesive systems (p≤0.05). Considering the positive antibacterial effects of silver nanoparticles, using them is recommended in restorative dentistry. It seems that silver nanoparticles could have positive effects on bond strength of both etch-and-rinse and self-etch adhesive systems. The best results of silver nanoparticles have been achieved with Adper Single Bond and before acid etching.

  18. Bonding strategies for MIH-affected enamel and dentin.

    PubMed

    Krämer, Norbert; Bui Khac, Ngoc-Han Nana; Lücker, Susanne; Stachniss, Vitus; Frankenberger, Roland

    2018-02-01

    Aim of the present study was to evaluate resin composite adhesion to dental hard tissues affected by molar incisor hypomineralisation (MIH). 94 freshly extracted human molars and incisors (53 suffering MIH) were used. 68 teeth (35 with MIH) were used for μ-TBS tests in enamel and dentin, 26 (18 with MIH) for qualitative evaluation. Specimens were bonded with Clearfil SE Bond, Scotchbond Universal, and OptiBond FL. For MIH affected enamel, additional OptiBond FL groups with NaOCl and NaOCl+Icon were investigated. Beside fractographic analysis, also qualitative evaluations were performed using SEM at different magnifications as well as histological sectioning. Highest μ-TBS values were recorded with dentin specimens (ANOVA, mod. LSD, p<0.05). Results were independent of adhesive and dentin substrate (p>0.05). Pre-test failures did not occur in dentin specimens. Sound enamel specimens exhibited significantly higher μ-TBS values than MIH enamel (p<0.05). The two-step self-etch adhesive (Clearfil SE Bond) and the two-step etch-and-rinse adhesive (Scotchbond Universal) showed the lowest values in affected enamel specimens (p<0.05) with most pre-test failures (p<0.05). OptiBond FL on affected enamel showed better results than Clearfil SE Bond (p<0.05). An additional pre-treatment of affected enamel with NaOCl or NaOCl and Icon did not enhance enamel bonding (p>0.05), however, it caused less pre-test failures (p<0.05). Micromorphological analyses revealed that conventional phosphoric acid etching produces a much less pronounced etching pattern in affected enamel and a porous structure as weak link for the resin-enamel bond was identified. Bonding to porous hypomineralized MIH enamel is the limiting factor in adhesion to MIH teeth. MIH-affected dentin may be bonded conventionally. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Epigallocatechin-3-gallate and Epigallocatechin-3-O-(3-O-methyl)-gallate Enhance the Bonding Stability of an Etch-and-Rinse Adhesive to Dentin

    PubMed Central

    Yu, Hao-Han; Zhang, Ling; Yu, Fan; Li, Fang; Liu, Zheng-Ya; Chen, Ji-Hua

    2017-01-01

    This study evaluated epigallocatechin-3-gallate (EGCG) and epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG-3Me) modified etch-and-rinse adhesives (Single Bond 2, SB 2) for their antibacterial effect and bonding stability to dentin. EGCG-3Me was isolated and purified with column chromatography and preparative high performance liquid chromatography. EGCG and EGCG-3Me were incorporated separately into the adhesive SB 2 at concentrations of 200, 400, and 600 µg/mL. The effect of cured adhesives on the growth of Streptococcus mutans (S. mutans) was determined with scanning electron microscopy and confocal laser scanning microscopy; the biofilm of bacteria was further quantified via optical density 600 values. The inhibition of EGCG and EGCG-3Me on dentin-originated collagen proteases activities was evaluated with a proteases fluorometric assay kit. The degree of conversion (DC) of the adhesives was tested with micro-Raman spectrum. The immediate and post-thermocycling (5000 cycles) bond strength was assessed through Microtensile Bond Strength (MTBS) test. Cured EGCG/EGCG-3Me modified adhesives inhibit the growth of S. mutans in a concentration-dependent manner. The immediate MTBS of SB 2 was not compromised by EGCG/EGCG-3Me modification. EGCG/EGCG-3Me modified adhesive had higher MTBS than SB 2 after thermocycling, showing no correlation with concentration. The DC of the adhesive system was affected depending on the concentration of EGCG/EGCG-3Me and the depth of the hybrid layer. EGCG/EGCG-3Me modified adhesives could inhibit S. mutans adhesion to dentin–resin interface, and maintain the bonding stability. The adhesive modified with 400 µg/mL EGCG-3Me showed antibacterial effect and enhanced bonding stability without affect the DC of adhesive. PMID:28772546

  20. Heterogeneity of Focal Adhesions and Focal Contacts in Motile Fibroblasts.

    PubMed

    Gladkikh, Aleena; Kovaleva, Anastasia; Tvorogova, Anna; Vorobjev, Ivan A

    2018-01-01

    Cell-extracellular matrix (ECM) adhesion is an important property of virtually all cells in multicellular organisms. Cell-ECM adhesion studies, therefore, are very significant both for biology and medicine. Over the last three decades, biomedical studies resulted in a tremendous advance in our understanding of the molecular basis and functions of cell-ECM adhesion. Based on morphological and molecular criteria, several different types of model cell-ECM adhesion structures including focal adhesions, focal complexes, fibrillar adhesions, podosomes, and three-dimensional matrix adhesions have been described. All the subcellular structures that mediate cell-ECM adhesion are quite heterogeneous, often varying in size, shape, distribution, dynamics, and, to a certain extent, molecular constituents. The morphological "plasticity" of cell-ECM adhesion perhaps reflects the needs of cells to sense, adapt, and respond to a variety of extracellular environments. In addition, cell type (e.g., differentiation status, oncogenic transformation, etc.) often exerts marked influence on the structure of cell-ECM adhesions. Although molecular, genetic, biochemical, and structural studies provide important maps or "snapshots" of cell-ECM adhesions, the area of research that is equally valuable is to study the heterogeneity of FA subpopulations within cells. Recently time-lapse observations on the FA dynamics become feasible, and behavior of individual FA gives additional information on cell-ECM interactions. Here we describe a robust method of labeling of FA using plasmids with fluorescent markers for paxillin and vinculin and quantifying the morphological and dynamical parameters of FA.

  1. Effect of different adhesive strategies on microtensile bond strength of computer aided design/computer aided manufacturing blocks bonded to dentin.

    PubMed

    Roperto, Renato; Akkus, Anna; Akkus, Ozan; Lang, Lisa; Sousa-Neto, Manoel Damiao; Teich, Sorin; Porto, Thiago Soares

    2016-01-01

    The aim of this study was to determine the microtensile bond strength (μTBS) of ceramic and composite computer aided design-computer aided manufacturing (CAD-CAM) blocks bonded to dentin using different adhesive strategies. In this in vitro study, 30 crowns of sound freshly extracted human molars were sectioned horizontally 3 mm above the cementoenamel junction to produce flat dentin surfaces. Ceramic and composite CAD/CAM blocks, size 14, were sectioned into slices of 3 mm thick. Before bonding, CAD/CAM block surfaces were treated according to the manufacturer's instructions. Groups were created based on the adhesive strategy used: Group 1 (GI) - conventional resin cement + total-etch adhesive system, Group 2 (GII) - conventional resin cement + self-etch adhesive system, and Group 3 (GIII) - self-adhesive resin cement with no adhesive. Bonded specimens were stored in 100% humidity for 24h at 37΀C, and then sectioned with a slow-speed diamond saw to obtain 1 mm × 1 mm × 6 mm microsticks. Microtensile testing was then conducted using a microtensile tester. μTBS values were expressed in MPa and analyzed by one-way ANOVA with post hoc (Tukey) test at the 5% significance level. Mean values and standard deviations of μTBS (MPa) were 17.68 (±2.71) for GI/ceramic; 17.62 (±3.99) for GI/composite; 13.61 (±6.92) for GII/composite; 12.22 (±4.24) for GII/ceramic; 7.47 (±2.29) for GIII/composite; and 6.48 (±3.10) for GIII/ceramic; ANOVA indicated significant differences among the adhesive modality and block interaction (P < 0.05), and no significant differences among blocks only, except between GI and GII/ceramic. Bond strength of GIII was consistently lower (P < 0.05) than GI and GII groups, regardless the block used. Cementation of CAD/CAM restorations, either composite or ceramic, can be significantly affected by different adhesive strategies used.

  2. Imperfect hybrid layers created by an aggressive one-step self-etch adhesive in primary dentin are amendable to biomimetic remineralization in vitro

    PubMed Central

    Kim, Jongryul; Vaughn, Ryan M.; Gu, Lisha; Rockman, Roy A.; Arola, Dwayne D.; Schafer, Tara E.; Choi, Kyungkyu; Pashley, David H.; Tay, Franklin R.

    2009-01-01

    Degradation of hybrid layers created in primary dentin occurs as early as 6 months in vivo. Biomimetic remineralization utilizes “bottom-up” nanotechnology principles for interfibrillar and intrafibrillar remineralization of collagen matrices. This study examined whether imperfect hybrid layers created in primary dentin can be remineralized. Coronal dentin surfaces were prepared from extracted primary molars and bonded using Adper Prompt L-Pop and a composite. One millimeter-thick specimen slabs of the resin-dentin interface were immersed in a Portland cement-based remineralization medium that contained two biomimetic analogs to mimic the sequestration and templating functions of dentin noncollagenous proteins. Specimens were retrieved after 1–6 months. Confocal laser scanning microscopy was employed for evaluating the permeability of hybrid layers to Rhodamine B. Transmission electron microscopy was used to examine the status of remineralization within hybrid layers. Remineralization at different locations of the hybrid layers corresponded with quenching of fluorescence within similar locations of those hybrid layers. Remineralization was predominantly intrafibrillar in nature as interfibrillar spaces were filled with adhesive resin. Biomimetic remineralization of imperfect hybrid layers in primary human dentin is a potential means for preserving bond integrity. The success of the current proof-of-concept, laterally-diffusing remineralization protocol warrants development of a clinically-applicable biomimetic remineralization delivery system. PMID:19768792

  3. Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin.

    PubMed

    Kishen, Anil; Sum, Chee-Peng; Mathew, Shibi; Lim, Chwee-Teck

    2008-07-01

    Enterococcus faecalis is frequently associated with post-treatment endodontic infections. Because adherence of bacteria to a substrate is the earliest stage in biofilm formation, eliciting the factors that links adherence of this bacterium to dentin would help in understanding its association with treatment-failed root canals. This investigation aimed to study the effects of endodontic irrigants on the adherence of E. faecalis to dentin. The bacteria adherence assay was conducted by using fluorescence microscopy, and the adhesion force was measured by using atomic force microscopy. There were significant increases in adherence and adhesion force after irrigation of dentin with ethylenediaminetetraacetic acid (EDTA), whereas sodium hypochlorite (NaOCl) reduced it. With the use of chlorhexidine (CHX), the force of adhesion increased, but the adherence assay showed a reduction in the number of adhering bacteria. The irrigation regimen of EDTA, NaOCl, and CHX resulted in the least number of adhering E. faecalis cells. This study highlighted that chemicals that alter the physicochemical properties of dentin will influence the nature of adherence, adhesion force, and subsequent biofilm formation of E. faecalis to dentin.

  4. Morphological Analysis of Dentin Surface after Conditioning with Two Different methods: Chemical and Mechanical.

    PubMed

    Rafael, Caroline Freitas; Quinelato, Valquíria; Morsch, Carolina Schaffer; DeDeus, Gustavo; Reis, Claudia Mendonca

    2016-01-01

    Alternative pretreatment strategies of dentin and adhesionare constantly being developed and studied with the goal of improving the adhesion of resin restorative materials with this tissue. The objectives of the present study were to evaluate the ability of airborne-particle abrasion (APA) with aluminum oxide on dentin to remove the smear layer and the effects produced on the dentin microstructure. The phosphoric acid (PA) was used for a comparison. For that, 20 human third molars were randomly allocated into two experimental groups, according to the dentin pretreatment method used: G1 (N = 10) - PA, G2 (N = 10) -APA. For dentin surface analyses, an environmental scanning electron microscope (ESEM) was employed to observe dentin surfaces before and after the procedures. Before pretreatment, the specimens of both groups were smear covered. After pretreatment, the G1 images revealed dentin tubule orifices opened, enlarged and some erosive effects. (G2) exposed tubule orifices without enlargement, but crack-like alterations were observed on the surfaces. In this way, APA with aluminum oxide was able to remove the smear layer. The influences of the dentin roughness on adhesion and the consequences on dentin integrity and hardness need further investigations. A good conditioning of the dentin before cementation is necessary in order to obtain a satisfactory rehabilitation in adhesive dentistry. So, it is necessary to know all methods to do it.

  5. In-vitro transdentinal diffusion of monomers from adhesives.

    PubMed

    Putzeys, Eveline; Duca, Radu Corneliu; Coppens, Lieve; Vanoirbeek, Jeroen; Godderis, Lode; Van Meerbeek, Bart; Van Landuyt, Kirsten L

    2018-06-01

    Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp. Accurate knowledge of the quantity of monomers reaching the pulp is important to determine potential side effects. The aim of this study was to assess the transdentinal diffusion of residual monomers from dental adhesive systems using an in-vitro pulp chamber model. Dentin disks with a thickness of 300 µm were produced from human third molars. These disks were fixed between two open-ended glass tubes, representing an in-vitro pulp chamber. The etch-and-rinse adhesive OptiBond FL and the self-etch adhesive Clearfil SE Bond were applied to the dentin side of the disks, while on in the pulpal side, the glass tube was filled with 600 µL water. The transdentinal diffusion of different monomers was quantified using ultra-performance liquid chromatography-tandem mass spectrometry. The monomers HEMA, CQ, BisGMA, GPDM, 10-MDP and UDMA eluted from the dental materials and were able to diffuse through the dentin disks to a certain extent. Compounds with a lower molecular weight (uncured group: HEMA 7850 nmol and CQ 78.2 nmol) were more likely to elute and diffuse compared to monomers with a higher molecular weight (uncured group: BisGMA 0.42 nmol). When the adhesives were left uncured, diffusion was up to 10 times higher compared to the cured conditions. This in-vitro research resulted in the quantification of various monomers able to diffuse through dentin and therefore contributes to a more detailed understanding about the potential exposure of the dental pulp to monomers from dental adhesives. Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp, where tubular density and diameter are greatest. Copyright © 2018. Published by Elsevier Ltd.

  6. In Vitro Adhesion of Streptococcus sanguinis to Dentine Root Surface After Treatment with Er:Yag Laser, Ultrasonic System, or Manual Curette

    PubMed Central

    Martins, Fernanda L.; Giorgetti, Ana Paula O.; de Freitas, Patrícia M.; Duarte, Poliana M.

    2009-01-01

    Abstract Objective: The purpose of this in vitro study was to evaluate the dentine root surface roughness and the adherence of Streptococcus sanguinis (ATCC 10556) after treatment with an ultrasonic system, Er:YAG laser, or manual curette. Background Data: Bacterial adhesion and formation of dental biofilm after scaling and root planing may be a challenge to the long-term stability of periodontal therapy. Materials and Methods: Forty flattened bovine roots were randomly assigned to one of the following groups: ultrasonic system (n = 10); Er:YAG laser (n = 10); manual curette (n = 10); or control untreated roots (n = 10). The mean surface roughness (Ra, μm) of the specimens before and after exposure to each treatment was determined using a surface profilometer. In addition, S. sanguinis was grown on the treated and untreated specimens and the amounts of retained bacteria on the surfaces were measured by culture method. Results: All treatments increased the Ra; however, the roughest surface was produced by the curettes. In addition, the specimens treated with curettes showed the highest S. sanguinis adhesion. There was a significant positive correlation between roughness values and bacterial cells counts. Conclusion: S. sanguinis adhesion was the highest on the curette-treated dentine root surfaces, which also presented the greatest surface roughness. PMID:19712018

  7. In Vitro Evaluation of Shear Bond Strength of Nanocomposites to Dentin

    PubMed Central

    Vellanki, Vinay Kumar; Shetty, Vikram K; Kushwah, Sudhanshu; Goyal, Geeta; Chandra, S.M. Sharath

    2015-01-01

    Aims: To compare the shear bond strength of nanocomposites to dentin using three different types of adhesive systems; and to test few specimens under Scanning Electron Microscope (SEM) for analysing whether the bond failure is adhesive or cohesive. Materials and Methods: Sixty human premolar teeth were selected and were randomly grouped, with 20 specimens in each group: group 1 - fluoride releasing dentin bonding agent; group 2 - antibacterial containing dentin bonding agent; and group 3 - one step conventional self etch adhesive. Each group was treated with its respective bonding agents, composite resin build up was done, and shear bond strengths were tested using Instron Universal testing machine. Few of the specimens were tested under SEM. Results: The results were statistically analysed using One-way ANOVA and paired t-test. It was observed that group 3 has the highest shear bond strength followed by group 2, and then group 1. Adhesive failures and mixed failures were most frequent types of failures as seen under SEM. Conclusion: Addition of antimicrobial agent decreases the bond strength of dentin bonding agent and addition of fluoride further decreases the bond strength. From SEM results it can be concluded that the zone of failure could not be defined and also that the failure mode was independent of the dentin bonding agent used. PMID:25738077

  8. Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins

    PubMed Central

    Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela R.; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.

    2012-01-01

    Objectives Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Results The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. Significance Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future. PMID:22901826

  9. Microtensile bond strength of etch and rinse versus self-etch adhesive systems.

    PubMed

    Hamouda, Ibrahim M; Samra, Nagia R; Badawi, Manal F

    2011-04-01

    The aim of this study was to compare the microtensile bond strength of the etch and rinse adhesive versus one-component or two-component self-etch adhesives. Twelve intact human molar teeth were cleaned and the occlusal enamel of the teeth was removed. The exposed dentin surfaces were polished and rinsed, and the adhesives were applied. A microhybride composite resin was applied to form specimens of 4 mm height and 6 mm diameter. The specimens were sectioned perpendicular to the adhesive interface to produce dentin-resin composite sticks, with an adhesive area of approximately 1.4 mm(2). The sticks were subjected to tensile loading until failure occurred. The debonded areas were examined with a scanning electron microscope to determine the site of failure. The results showed that the microtensile bond strength of the etch and rinse adhesive was higher than that of one-component or two-component self-etch adhesives. The scanning electron microscope examination of the dentin surfaces revealed adhesive and mixed modes of failure. The adhesive mode of failure occurred at the adhesive/dentin interface, while the mixed mode of failure occurred partially in the composite and partially at the adhesive/dentin interface. It was concluded that the etch and rinse adhesive had higher microtensile bond strength when compared to that of the self-etch adhesives. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. The effect of warm air-blowing on the microtensile bond strength of one-step self-etch adhesives to root canal dentin.

    PubMed

    Taguchi, Keita; Hosaka, Keiichi; Ikeda, Masaomi; Kishikawa, Ryuzo; Foxton, Richard; Nakajima, Masatoshi; Tagami, Junji

    2018-02-01

    The use of warm air-blowing to evaporate solvents of one-step self-etch adhesive systems (1-SEAs) has been reported to be a useful method. The purpose of this study was to evaluate the effect of warm air-blowing on root canal dentin. Four 1-SEAs (Clearfil Bond SE ONE, Unifil Core EM self-etch bond, Estelink, BeautiDualbond EX) were used. Each 1-SEA was applied to root canal dentin according to the manufacturers' instructions. After the adhesives were applied, solvent was evaporated using either normal air (23±1°C) or warm air (80±1°C) for 20s, and resin composite was placed in the post spaces. The air from the dryer, which could be used in normal- or hot-air-mode, was applied at a distance of 5cm above the root canal cavity in the direction of tooth axis. The temperature of the stream of air from the dryer in the hot-air-mode was 80±1°C, and in the normal mode, 23±1°C. After water storage of the specimens for 24h, the μTBS were evaluated at the coronal and apical regions. The μTBSs were statistically analyzed using three-way ANOVA and Student's t-test with Bonferroni correction (α=0.05). The warm air-blowing significantly increased the μTBS of all 1-SEAs at the apical regions, and also significantly increased the μTBS of two adhesives (Estelink and BeautiDualBond EX) at coronal regions. The μTBS of 1-SEAs to root canal dentin was improved by using warm air-blowing. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films.

    PubMed

    Ranjan, Ashwini; Webster, Thomas J

    2009-07-29

    The success of synthetic vascular grafts is largely determined by their ability to promote vital endothelial cell functions such as adhesion, alignment, proliferation, and extracellular matrix (ECM) deposition. Developing such biomaterials requires the design and fabrication of materials that mimic select properties of native extracellular matrices. Furthermore, cells of the native endothelium have elongated and aligned morphology in the direction of blood flow, yet few materials promote this type of morphology initially, but rather rely on blood flow to orient endothelial cells. Therefore, the objective of this in vitro study was to design a biomaterial that mimics the conditions of the micro- and nano-environment of vascular intima tissue suitable for endothelial cell adhesion and elongation to improve the efficacy of small synthetic vascular grafts. Towards this end, patterned poly(dimethylsiloxane) (PDMS) films consisting of periodic arrays of nano-grooves (500 nm), with spacings ranging from 22 to 80 microm, and alternating nano- and micron roughness were fabricated using a novel electron beam physical vapor deposition method followed by polymer casting. By varying pattern spacing, the area of micron- and nano-rough surface was controlled. In vitro rat aortic endothelial cell adhesion and elongation studies indicated that endothelial cell function was enhanced on patterned PDMS surfaces with the widest spacing and greatest surface area of nano-roughness, as compared to more narrow pattern spacings and non-patterned PDMS surfaces. Specifically, endothelial cells adherent on PDMS patterned films of the widest spacing (greatest nano-rough area) displayed almost twice as much elongation as cells on non-patterned surfaces. For these reasons, the present study highlighted design criteria (the use of micron patterns of nano-features on PDMS) that may contribute to the intelligent design of new-generation vascular grafts.

  12. Potential role of surface wettability on the long-term stability of dentin bonds after surface biomodification

    PubMed Central

    Leme, Ariene A.; Vidal, Cristina M. P.; Hassan, Lina Saleh; Bedran-Russo, Ana K.

    2015-01-01

    Degradation of the adhesive interface contributes to the failure of resin composite restorations. The hydrophilicity of the dentin matrix during and after bonding procedures may result in an adhesive interface that is more prone to degradation over time. This study assessed the effect of chemical modification of dentin matrix on the wettability and the long-term reduced modulus of elasticity (Er) of the adhesive interfaces. Human molars were divided into groups according to the priming solutions: distilled water (control), 6.5% Proanthocyanidin-rich grape seed extract (PACs), 5.75% 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/1.4% n-hydroxysuccinimide (EDC/NHS) and 5% Glutaraldehyde (GA). The water-surface contact angle was verified before and after chemical modification of the dentin matrix. The demineralized dentin surface was treated with the priming solutions and restored with One Step Plus (OS) and Single Bond Plus (SB) and resin composite. The Er of the adhesive, hybrid layer and underlying dentin was evaluated after 24 h and 30 months in artificial saliva. The dentin hydrophilicity significantly decreased after application of the priming solutions. Aging significantly decreased the Er in the hybrid layer and underlying dentin of control groups. The Er of GA groups remained stable over time at the hybrid layer and underlying dentin. Significant higher Er was observed for PACs and EDC/NHS groups at the hybrid layer after 24 h. The decreased hydrophilicity of the modified dentin matrix likely influence the immediate mechanical properties of the hybrid layer. Dentin biomodification prevented substantial aging at the hybrid layer and underlying dentin after 30 months storage. PMID:25869721

  13. Anti-proteolytic capacity and bonding durability of proanthocyanidin-biomodified demineralized dentin matrix

    PubMed Central

    Liu, Rui-Rui; Fang, Ming; Zhang, Ling; Tang, Cheng-Fang; Dou, Qi; Chen, Ji-Hua

    2014-01-01

    Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin (PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immediate resin–dentin bond strength. The present study sought to evaluate the ability of PA biomodification to reduce collagenase-induced biodegradation of demineralized dentin matrix and dentin/adhesive interfaces in a clinically relevant manner. The effects of collagenolytic and gelatinolytic activity on PA-biomodified demineralized dentin matrix were analysed by hydroxyproline assay and gelatin zymography. Then, resin-/dentin-bonded specimens were prepared and challenged with bacterial collagenases. Dentin treated with 2% chlorhexidine and untreated dentin were used as a positive and negative control, respectively. Collagen biodegradation, the microtensile bond strengths of bonded specimens and the micromorphologies of the fractured interfaces were assessed. The results revealed that both collagenolytic and gelatinolytic activity on demineralized dentin were notably inhibited in the PA-biomodified groups, irrespective of PA concentration and biomodification duration. When challenged with exogenous collagenases, PA-biomodified bonded specimens exhibited significantly less biodegradation and maintained higher bond strengths than the untreated control. These results suggest that PA biomodification was effective at inhibiting proteolytic activity on demineralized dentin matrix and at stabilizing the adhesive/dentin interface against enzymatic degradation, is a new concept that has the potential to improve bonding durability. PMID:24810807

  14. Enamel and dentin bond strength following gaseous ozone application.

    PubMed

    Cadenaro, Milena; Delise, Chiara; Antoniollo, Francesca; Navarra, Ottavia Chiara; Di Lenarda, Roberto; Breschi, Lorenzo

    2009-08-01

    To evaluate the effects of gaseous ozone application on enamel and dentin bond strength produced by two self-etching adhesive systems. The shear bond strength test was conducted to assess adhesion on enamel (protocol 1), while the microtensile bond strength test was performed on dentin (protocol 2). Protocol 1: 96 bovine incisors were randomly divided into 4 groups, and enamel surfaces were bonded in accordance with the following treatments: (1E) ozone + Clearfil Protect Bond; (2E) Clearfil Protect Bond (control); (3E) ozone + Xeno III; (4E) Xeno III (control). Ozone gas was applied for 80 s. Shear bond strength was measured with a universal testing machine. Protocol 2: 40 noncarious human molars were selected. Middle/deep dentin was exposed and bonded in accordance with the following treatments: (1D) ozone+Clearfil Protect Bond; (2D) Clearfil Protect Bond (control); (3D) ozone+Xeno III (4D) Xeno III (control). Four-mm-thick buildups were built on the adhesives, then specimens were sectioned in accordance with the nontrimming technique. Specimens were stressed until failure occurred, and failure modes were analyzed. Shear bond and microtensile bond strength data were analyzed using two-way ANOVA and Tukey's post-hoc test. No statistical differences were found between ozone treated specimens and controls, neither on enamel nor on dentin irrespective of the tested adhesive. Clearfil Protect Bond showed higher bond strength to enamel than Xeno III, irrespective of the ozone treatment (p < 0.05). The use of ozone gas to disinfect the cavity before placing a restoration had no influence on immediate enamel and dentin bond strength.

  15. Six-month evaluation of adhesives interface created by a hydrophobic adhesive to acid-etched ethanol-wet bonded dentine with simplified dehydration protocols.

    PubMed

    Sadek, Fernanda T; Mazzoni, Annalisa; Breschi, Lorenzo; Tay, Franklin R; Braga, Roberto R

    2010-04-01

    To evaluate the efficacy of simplified dehydration protocols, in the absence of tubular occlusion, on bond strength and interfacial nanoleakage of a hydrophobic experimental adhesive blend to acid-etched, ethanol-dehydrated dentine immediately and after 6 months. Molars were randomly assigned to 6 treatment groups (n=5). Under pulpal pressure simulation, dentine crowns were acid-etched with 35% H(3)PO(4) and rinsed with water. Adper Scotchbond Multi-Purpose was used for the control group. The remaining groups had their dentine surface dehydrated with ethanol solutions: group 1=50%, 70%, 80%, 95% and 3x100%, 30s for each application; group 2 the same ethanol sequence with 15s for each solution; groups 3, 4 and 5 used 100% ethanol only, applied in seven, three or one 30s step, respectively. After dehydration, a primer (50% BisGMA+TEGDMA, 50% ethanol) was used, followed by the neat comonomer adhesive application. Resin composite build-ups were then prepared using an incremental technique. Specimens were stored for 24h, sectioned into beams and stressed to failure after 24h or after 6 months of artificial ageing. Interfacial silver leakage evaluation was performed for both storage periods (n=5 per subgroup). Group 1 showed higher bond strengths at 24h or after 6 months of ageing (45.6+/-5.9(a)/43.1+/-3.2(a)MPa) and lower silver impregnation. Bond strength results were statistically similar to control group (41.2+/-3.3(ab)/38.3+/-4.0(ab)MPa), group 2 (40.0+/-3.1(ab)/38.6+/-3.2(ab)MPa), and group 3 at 24h (35.5+/-4.3(ab)MPa). Groups 4 (34.6+/-5.7(bc)/25.9+/-4.1(c)MPa) and 5 (24.7+/-4.9(c)/18.2+/-4.2(c)MPa) resulted in lower bond strengths, extensive interfacial nanoleakage and more prominent reductions (up to 25%) in bond strengths after 6 months of ageing. Simplified dehydration protocols using one or three 100% ethanol applications should be avoided for the ethanol-wet bonding technique in the absence of tubular occlusion, as they showed decreased bond strength, more

  16. Effect of saliva contamination on the microshear bond strength of one-step self-etching adhesive systems to dentin.

    PubMed

    Yoo, H M; Oh, T S; Pereira, P N R

    2006-01-01

    This study evaluated the effect of saliva contamination and decontamination methods on the dentin bond strength of one-step self-etching adhesive systems. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt) and one resin composite (Filtek Z-250) were used. Third molars stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to contamination methods: no contamination, which was the control (C); contamination of the adhesive surface with fresh saliva before light curing (A) and contamination of the adhesive surface with fresh saliva after light curing (B). Each contamination group was further subdivided into three subgroups according to the decontamination method: A1-Saliva was removed by a gentle air blast and the adhesive was light-cured; A2-Saliva was rinsed for 10 seconds, gently air-dried and the was adhesive light-cured; A3-Saliva was rinsed and dried as in A2, then the adhesive was re-applied to the dentin surface and light-cured; B1-Saliva was removed with a gentle air blast; B2-Saliva was rinsed and dried; B3-Saliva was rinsed, dried and the adhesive was re-applied and light cured. Tygon tubes filled with resin composite were placed on each surface and light cured. All specimens were stored in distilled water at 37 degrees C for 24 hours. Microshear bond strength was measured using a universal testing machine (EZ test), and data were analyzed by one-way ANOVA followed by the Duncan test to make comparisons among the groups (p<0.05). After debonding, five specimens were selected and examined in a scanning electron microscope to evaluate the modes of fracture. The A2 subgroup resulted in the lowest bond strength. For One Up Bond F and Adper Prompt, there was no significant difference between subgroup A1 and the control, and subgroup A3 and the control (p>0.05). Bond

  17. The Effect of SnCl2/AmF Pretreatment on Short- and Long-Term Bond Strength to Eroded Dentin

    PubMed Central

    Zumstein, Katrin; Peutzfeldt, Anne; Lussi, Adrian

    2018-01-01

    This study investigated the effect of SnCl2/AmF pretreatment on short- and long-term bond strength of resin composite to eroded dentin mediated by two self-etch, MDP-containing adhesive systems. 184 dentin specimens were produced from extracted human molars. Half the specimens (n = 92) were artificially eroded, and half were left untreated. For both substrates, half the specimens were pretreated with SnCl2/AmF, and half were left untreated. The specimens were treated with Clearfil SE Bond or Scotchbond Universal prior to application of resin composite. Microtensile bond strength (μTBS) was measured after 24 h or 1 year. Failure mode was detected and EDX was performed. μTBS results were statistically analyzed (α = 0.05). μTBS was significantly influenced by the dentin substrate (eroded < noneroded dentin) and storage time (24 h > 1 year; p < 0.0001) but not by pretreatment with SnCl2/AmF or adhesive system. The predominant failure mode was adhesive failure at the dentin-adhesive interface. The content of Sn was generally below detection limit. Pretreatment with SnCl2/AmF did not influence short- and long-term bond strength to eroded dentin. Bond strength was reduced after storage for one year, was lower to eroded dentin than to noneroded dentin, and was similar for the two adhesive systems.

  18. [Effect of three aging challenges on the bonding stability of resin-dentin interface using an etch-and-rinse adhesive].

    PubMed

    Xu, Shuai; Zhang, Ling; Li, Fang; Zhou, Wei; Chen, Yujiang; Chen, Jihua

    2014-06-01

    To systematically investigate the aging effect of thermocycling, water storage and bacteria aggression on the stability of resin-dentin bonds. Forty molars were sectioned perpendicularly to the axis of the teeth to expose the middle-coronal dentin surfaces. The dentin surfaces were then treated with Single Bond 2 and made a core build-up. According to random digits table, the bonding specimens were divided into four groups (n = 10) as follows: immediate control group, aging group with thermocycling for 5 000 times, aging group with artificial saliva storage for 6 months and aging group with bacteria aggression for 14 days. The specimens in each group were then subjected to microtensile bond strengths (µTBS) testing and nanoleakage evaluation respectively. After aging treatments, the three aging groups showed significantly lower µTBS than the immediate control group [(44.24 ± 12.75) MPa, P < 0.05]. The immediate control group also showed the lowest value of nanoleakage. The µTBS of aging group with bacteria aggression [(25.53 ± 7.39) MPa] was significantly lower than those of the other aging groups with artificial saliva storage[(29.72 ± 6.51) MPa] and thermocycling [(31.92 ± 11.87) MPa, P < 0.05]. There were no differences in the nanoleakage values among the three aging groups (P > 0.05). All the aging treatments with artificial saliva storage, thermocycling and bacteria aggression could accelerate the degradation of bonding interfaces between an etch-and-rinse adhesive and dentin. Bacteria aggression showed the most impairing effect on the stability of resin-dentin bonds.

  19. Importance of Age on the Dynamic Mechanical Behavior of Intertubular and Peritubular Dentin

    PubMed Central

    Ryou, Heonjune; Romberg, Elaine; Pashley, David H.; Tay, Franklin R.; Arola, Dwayne

    2014-01-01

    An experimental evaluation of human coronal dentin was performed using nanoscopic Dynamic Mechanical Analysis (nanoDMA). The primary objectives were to quantify any unique changes in mechanical behavior of intertubular and peritubular dentin with age, and to evaluate the microstructure and mechanical behavior of the mineral deposited within the lumens. Specimens of coronal dentin were evaluated by nanoDMA using single indents and in scanning mode via scanning probe microscopy. Results showed that there were no significant differences in the storage modulus or complex modulus between the two age groups (18–25 versus 54–83 yrs) for either the intertubular or peritubular tissue. However, there were significant differences in the dampening behavior between the young and old dentin, as represented in the loss modulus and tanδ responses. For both the intertubular and peritubular components, the capacity for dampening was significantly lower in the old group. Scanning based nanoDMA showed that the tubules of old dentin exhibit a gradient in elastic behavior, with decrease in elastic modulus from the cuff to the center of tubules filled with newly deposited mineral. PMID:25498296

  20. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation

    PubMed Central

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming

    2016-01-01

    Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone

  1. Multiscale characterization of partially demineralized superficial and deep dentin surfaces.

    PubMed

    Pelin, Irina M; Trunfio-Sfarghiu, Ana-Maria; Farge, Pierre; Piednoir, Agnes; Pirat, Christophe; Ramos, Stella M M

    2013-08-01

    The objective of this study was to address the following question: 'Which properties are modified in partially demineralized surfaces, compared with non-demineralized dentin surfaces, following orthophosphoric acid-etching as performed in clinical procedures?'. For this purpose, the complementary techniques atomic force microscopy/spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and contact angle measurements were used to provide a multiscale characterization of the dentin substrate undergoing the acidic preconditioning designed to enhance wetting. Special attention was given to the influence of the etching pretreatment on the nanomechanical properties at different levels of dentin surfaces, in both dry and hydrated conditions. The four-sided pyramid model (extended Hertz contact model) proved to be accurate for calculating the apparent Young's modulus, offering new information on the elasticity of dentin. The modulus value notably decreased following etching and surface hydration. This study underlines that after the acid etching pretreatment the contribution of the nanomechanical, morphological, and physicochemical modifications has a strong influence on the dentin adhesion properties and thus plays a significant role in the coupling of the adhesive-resin composite build-up material at the dentin surface. © 2013 Eur J Oral Sci.

  2. Mechanical properties of components of the bonding interface in different regions of radicular dentin surfaces.

    PubMed

    Suzuki, Thaís Yumi Umeda; Gomes-Filho, João Eduardo; Gallego, Juno; Pavan, Sabrina; Dos Santos, Paulo Henrique; Fraga Briso, André Luiz

    2015-01-01

    The mechanical properties of the adhesive materials used in intraradicular treatments could vary according to the interaction between the restorative material and dentin substrate. An evaluation of these properties is essential to determine the success of the luting procedures performed on glass-fiber posts. The purpose of this study was to evaluate the mechanical properties of dentin adhesives, resin cements, and the dentin that underlies the bonding interface in different thirds of intraradicular dentin. Forty extracted, single-rooted human teeth were used in this study. After the endodontic treatment of the post spaces, the teeth were divided into 5 groups (n=8): Adper Single Bond 2 + RelyX ARC, Excite DSC + RelyX ARC, Adper SE Plus + RelyX ARC, RelyX Unicem, and Set. The hardness and elastic modulus values were measured at the adhesive interface in different thirds of the radicular dentin by using an ultramicrohardness tester. The data were subjected to 2-way ANOVA and the Fisher protected least significant difference test (α=.05). In the underlying dentin, the highest Martens hardness values were found in the apical region for all groups; the exceptions were the groups with the self-etching adhesive. In the adhesive layer, the highest Martens hardness values were obtained for the Adper SE Plus + RelyX ARC group; further, no statistical differences were found among the different regions for this group. RelyX ARC had the lowest Martens hardness and elastic modulus values in the apical regions when used with Adper Single Bond 2 and Adper SE Plus. No differences were found in the Martens hardness and elastic modulus values for the self-adhesive resin cement in the regions investigated. The mechanical properties of adhesive materials and the underlying dentin are influenced by the interaction between the two as well as by the depth of the analyzed intraradicular area. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by

  3. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement.

    PubMed

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC(®) Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink(®) II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus(®) (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Combination of CEREC(®) Blocs PC and Variolink(®) II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Variolink(®) II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used.

  4. Adhesion of Porphyromonas gingivalis and Tannerella forsythia to dentin and titanium with sandblasted and acid etched surface coated with serum and serum proteins - An in vitro study.

    PubMed

    Eick, Sigrun; Kindblom, Christian; Mizgalska, Danuta; Magdoń, Anna; Jurczyk, Karolina; Sculean, Anton; Stavropoulos, Andreas

    2017-03-01

    To evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins. Dentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4h and 24h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured. Coating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24h (p=0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24h (p=0.026 uncoated, p=0.009 with serum). The present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Marginal adaptation of composite resins under two adhesive techniques.

    PubMed

    Dačić, Stefan; Veselinović, Aleksandar M; Mitić, Aleksandar; Nikolić, Marija; Cenić, Milica; Dačić-Simonović, Dragica

    2016-11-01

    In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek Ultimate-ASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy One-AEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self-etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p < .001), and in dentin-22.6% (p < .05). In the first technique, microretention was composed of adhesive and hybrid layers as well as resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied. © 2016 Wiley Periodicals, Inc.

  6. In vitro dentin barrier cytotoxicity testing of some dental restorative materials.

    PubMed

    Jiang, R D; Lin, H; Zheng, G; Zhang, X M; Du, Q; Yang, M

    2017-03-01

    To investigate the cytotoxicity of four dental restorative materials in three-dimensional (3D) L929 cell cultures using a dentin barrier test. The cytotoxicities of light-cured glass ionomer cement (Vitrebond), total-etching adhesive (GLUMA Bond5), and two self-etching adhesives (GLUMA Self Etch and Single Bond Universal) were evaluated. The permeabilities of human dentin disks with thicknesses of 300, 500, and 1000μm were standardized using a hydraulic device. Test materials and controls were applied to the occlusal side of human dentin disks. The 3D-cell scaffolds were placed beneath the dentin disks. After a 24-h contact with the dentin barrier test device, cell viabilities were measured by performing MTT assays. Statistical analysis was performed using the Mann-Whitney U test. The mean (SD) permeabilities of the 300-μm, 500-μm, and 1000-μm dentin disks were 0.626 (0.214), 0.219 (0.0387) and 0.089 (0.028) μlmin -1 cm -2 cm H 2 O -1 . Vitrebond was severely cytotoxic, reducing the cell viability to 10% (300-μm disk), 17% (500μm), and 18% (1000μm). GLUMA Bond5 reduced the cell viability to 40% (300μm), 83% (500μm), and 86% (1000μm), showing moderate cytotoxicity (300-μm) and non-cytotoxicity (500-μm and 1000-μm). Single Bond Universal and GLUMA Self Etch did not significantly reduce cell viability, regardless of the dentin thicknesses, which characterized them as non-cytotoxic. Cytotoxicity varied with the materials tested and the thicknesses of the dentin disks. The tested cytotoxicity of materials applied on 300-, 500-, and 1000-μm dentin disks indicates that the clinical use of the test materials (excepting self-etching adhesives) in deep cavities poses a potential risk of damage to the pulp tissues to an extent, depending on the thickness of the remaining dentin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Current dental adhesives systems. A narrative review.

    PubMed

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  8. Effect of blood contamination with 1-step self-etching adhesives on microtensile bond strength to dentin.

    PubMed

    Yoo, H M; Pereira, P N R

    2006-01-01

    This study evaluated the effect of blood contamination and decontamination methods on the microtensile bond strength of 1-step self-etching adhesive systems to dentin contaminated after adhesive application and light curing. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt L-Pop) and 1 resin composite (Clearfil AP-X) were used. Third molars that had been stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to the 3 adhesive systems. The adhesive systems were used under 3 conditions: no contamination, which was the control (C); contamination of the light-cured adhesive surface with blood and reapplication of adhesive (Contamination 1) and contamination of the light-cured adhesive surface with blood, then washing, drying and reapplication of the adhesive (Contamination 2). Following light curing of the adhesive, the resin composite was placed in 3 increments up to a 5-mm-thick layer on the bonded surface. All specimens were stored in distilled water at 37 degrees C for 24 hours. The microtensile bond strength was measured using a universal testing machine (EZ test), and data were analyzed by 1-way ANOVA followed by the Duncan test to make comparisons among the groups (p=0.05). After debonding, 5 specimens were selected from each group and examined in a scanning electron microscope to evaluate the modes of fracture. For all adhesives, contamination groups showed lower bond strength than the control (p<0.05). There was no statistically significant difference among the control groups (p>0.05). For Xeno III and Adper Prompt L-Pop, contamination group #2 showed the lowest bond strength among the groups (p<0.05). For One Up Bond F, contamination group #2 showed higher bond strength than contamination group #1 but showed no statistical significance between them (p>0.05).

  9. Specific Adhesion of Lipid Membranes Can Simultaneously Produce Two Types of Lipid and Protein Heterogeneities

    NASA Astrophysics Data System (ADS)

    Shindell, Orrin; Micah, Natalie; Ritzer, Max; Gordon, Vernita

    2015-03-01

    Living cells adhere to one another and their environment. Adhesion is associated with re-organization of the lipid and protein components of the cell membrane. The resulting heterogeneities are functional structures involved in biological processes. We use artificial lipid membranes that contain a single type of binding protein. Before adhesion, the lipid, protein, and dye components in the membrane are well-mixed and constitute a single disordered-liquid phase (Ld) . After adhesion, two distinct types of heterogeneities coexist in the adhesion zone: a central domain of ordered lipid phase that excludes both binding proteins and membrane dye, and a peripheral domain of disordered lipid phase that is densely packed with adhesion proteins and enriched in membrane dye relative to the non-adhered portion of the vesicle. Thus, we show that adhesion that is mediated by only one type of protein can organize the lipid and protein components of the membranes into heterogeneities that resemble those found in biology, for example the immune synapse.

  10. Bond Strength of a Novel One Bottle Multi-mode Adhesive to Human Dentin After Six Months of Storage

    PubMed Central

    Manfroi, Fernanda Borguetti; Marcondes, Maurem Leitão; Somacal, Deise Caren; Borges, Gilberto Antonio; Júnior, Luiz Henrique Burnett; Spohr, Ana Maria

    2016-01-01

    Objective: The aim of the study was to evaluate the microtensile bond strength (µTBS) of Scotchbond Universal to dentin using the etch-and-rinse or the self-etch technique after 24 h and 6 months of storage. Materials and Methods: Flat dentin surfaces were obtained in 24 third molars. The teeth were divided into four groups: G1 – Scotchbond Universal applied in the etch-and-rinse mode; G2 – Scotchbond Universal applied in the self-etch mode; G3 – Scotchbond Multi-Purpose; G4 – Clearfil SE Bond. A block of composite was built on the adhesive area. The tooth/resin sets were cut parallel to the long axis to obtain 40 beams (~0.8 mm2) for each group. Twenty specimens were immediately submitted to the µTBS test, and the remaining 20 were stored in water for 6 months. Failures and the adhesive interface were analyzed by SEM. Results: According to two-way ANOVA, the interaction between adhesive and storage time was significant (p=0.015).The µTBS (MPa) means were the following: 24 h – G1 (39.37±10.82), G2 (31.02±13.76), G3 (35.09±14.03) and G4 (35.84±11.06); 6 months – G1 (36.99±8.78), G2 (40.58±8.07), G3 (32.44±6.07) and G4 (41.75±8.25). Most failures were mixed. Evidence of hybrid layer and numerous resin tags were noted for Scotchbond Universal applied with the etch-and-rinse mode and Scotchbond Multi-Purpose. A thinner hybrid layer and fewer resin tags were noted for Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond. Conclusion: The results indicate that the µTBS for Scotchbond Universal is comparable to the gold-standard adhesives. Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond revealed higher bond stability compared to the etch-and-rinse mode. PMID:27347230

  11. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    PubMed

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno(®) V [self-etching adhesive system]) and BOND-1(®) SF (solvent-free self-etching adhesive system) in conjunction with Artiste(®) Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey's post hoc tests (P≤0.05). The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage.

  12. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    PubMed Central

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    Objective The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Methods Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno® V [self-etching adhesive system]) and BOND-1® SF (solvent-free self-etching adhesive system) in conjunction with Artiste® Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey’s post hoc tests (P≤0.05). Results The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Conclusion Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage. PMID:25848318

  13. Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin.

    PubMed

    Yoshihara, Kumiko; Nagaoka, Noriyuki; Hayakawa, Satoshi; Okihara, Takumi; Yoshida, Yasuhiro; Van Meerbeek, Bart

    2018-04-28

    Although the functional monomer glycero-phosphate dimethacrylate (GPDM) has since long been used in several dental adhesives and more recently in self-adhesive composite cements and restoratives, its mechanism of chemical adhesion to hydroxyapatite (HAp) is still unknown. We therefore investigated the chemical interaction of GPDM with HAp using diverse chemical analyzers and ultra-structurally characterized the interface of a GPDM-based primer formulation with dentin. HAp particles were added to a GPDM solution for various periods, upon which they were thoroughly washed with ethanol and water prior to being air-dried. As control, 10-methacryloyloxydecyl dihydrogen phosphate (MDP) was used. The molecular interaction of GPDM with HAp was analyzed using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (NMR) spectroscopy. Crystal formation upon application of GPDM onto dentin was analyzed using thin-film XRD (TF-XRD). Its hydrophobicity was measured using contact-angle measurement. The interaction of GPDM with dentin was characterized using transmission electron microscopy (TEM). XRD revealed the deposition of dicalcium phosphate dihydrate (DCPD: CaHPO 4 ·2H 2 O) on HAp after 24h. NMR confirmed the adsorption of GPDM onto HAp. However, GPDM was easily removed after washing with water, unlike MDP that remained adhered to HAp. Dentin treated with GPDM appeared more hydrophilic compared to dentin treated with MDP. TEM disclosed exposed collagen in the hybrid layer produced by the GPDM-based primer formulation. Although GPDM adsorbed to HAp, it did not form a stable calcium salt. The bond between GPDM and HAp was weak, unlike the strong bond formed by MDP to HAp. Due to its high hydrophilicity, GPDM might be an adequate monomer for an etch-and-rinse adhesive, but appears less appropriate for a 'mild' self-etch adhesive that besides micro-retention ionically interacts with HAp, or for a self-adhesive restorative material. Copyright © 2018 The Academy of

  14. Universal adhesives: the next evolution in adhesive dentistry?

    PubMed

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  15. Effects of potassium oxalate on knoop hardness of etch-and-rinse adhesives.

    PubMed

    Silva, S M A; Malacarne-Zanon, J; Carvalho, R M; Alves, M C; De Goes, M F; Anido-Anido, A; Carrilho, M R

    2012-01-01

    The objective of this study was to determine whether the hardness of etch-and-rinse adhesives may be affected by the pretreatment of acid-etched dentin with potassium oxalate desensitizer. Unerupted human third molars were cut into crown segments by removing the occlusal enamel and roots. The pulp chamber of these crown segments was connected to a syringe barrel filled with phosphate-buffered saline so that the moisture of dentin was maintained during the bonding procedures. Three etch-and-rinse adhesives-two two-step systems (Adper Single Bond 2 [SB], One-Step [OS]) and one three-step system (Adper Scotchbond Multi-Purpose [MP])-were applied to acid-etched dentin that had been treated (experimental groups) or not (control groups) with potassium oxalate (BisBlock). The Knoop hardness (KHN) of adhesives was taken at different sites of the outer surface of the adhesive-bonded dentin. The KHN of the three tested adhesives applied to acid-etched dentin treated with potassium oxalate was significantly lower than that exhibited by the respective controls (not treated with oxalate; p<0.05). Regardless of the adhesive, the treatment with potassium oxalate reduced the adhesives' KHN (p<0.05), with the OS system exhibiting the lowest KHN compared with the MP and SB systems.

  16. Technique sensitivity in bonding to enamel and dentin.

    PubMed

    Powers, John M; Farah, John W

    2010-09-01

    Bonding to enamel and dentin has been among the most significant advancements in dentistry in the last five decades; extensive research and product development have resulted in more adhesive options. However, bonding to enamel and dentin still proves to be challenging, and selecting the correct product for a clinical application can be confusing. An incorrect choice can lead to insufficient bond strength. Day-to-day clinical factors, such as the presence of enamel, superficial dentin, or carious dentin, as well as contamination by saliva, blood, or bleaching agents, can cause bonding agents to be technique sensitive-they may fail prematurely if steps are not followed meticulously. This article attempts to simplify the selection process for enamel and dentinal bonding and summarize clinically relevant bonding information that will help produce consistently successful results.

  17. Laser fluorescence of dentin caries covered with a novel nano-filled sealant.

    PubMed

    Braun, Andreas; Beisel, Christian; Brede, Olivier; Krause, Felix

    2013-01-01

    The aim of the present study was to assess the possibility to measure caries-induced laser fluorescence underneath a novel nano-filled fissure sealant. Sixty freshly extracted human teeth with occlusal dentine carious lesions were horizontally divided, exposing the respective lesion. Teeth were randomly assigned to three groups: (I) white fissure sealant with filler particles (Fissurit F, Voco), (II) clear fissure sealant without filler particles (Fissurit, Voco) and (III) novel experimental fissure sealant with nano-filler particles (Voco). Starting with a sealant thickness of 3 mm, laser fluorescence measurements (DIAGNOdent, KaVo) were performed after finishing the sealant surfaces with polishing papers, reducing the material at intervals of 0.5 mm until the sealant was removed completely. Evaluating a thickness of 0.5 mm, both the clear (83 % of the baseline fluorescence after fine grit polishing) and the white sealant (25 %) did not allow to measure baseline fluorescence (p < 0.05) with no fluorescence reduction in the experimental sealant group (p > 0.05). With increasing sealer thickness, fluorescence was influenced even by the experimental material (89 % of the baseline value at 1 mm). However, by using the experimental material, statistically significant higher fluorescence values than those for the other materials under study (p < 0.05) were obtained. Thicker sealant layers and coarse grit polishing caused a decrease of laser fluorescence in all groups (p < 0.05). Employing the experimental nano-filled sealant, laser fluorescence measurements for caries detection can be performed through thicker sealant layers compared to conventional sealant materials. Thus, it might be possible to use this material to assess a caries progression underneath the sealant and administer an appropriate therapy in due time.

  18. Prevention of water-contamination of ethanol-saturated dentin and hydrophobic hybrid layers

    PubMed Central

    Sauro, Salvatore; Watson, Timothy F; Mannocci, Francesco; Tay, Franklin R; Pashley, David H

    2013-01-01

    SUMMARY Purpose This in vitro study evaluated the amount and the distribution of outward fluid flow that occurred when an experimental etch-and-rinse hydrophobic adhesive was applied to ethanol-saturated dentin before and after oxalate pretreatment. Materials and methods Measurements of dentin permeability were performed under a constant pulpal pressure of 20 cm H2O in deep and middle dentin. A lucifer yellow solution was placed in the pulp chamber to determine the distribution of the water contamination of the hybrid layers. Results The distribution of fluorescence in dentin specimens that were not pretreated with oxalate revealed that the dye permeated around the resin tags and filled the hybrid layer. Dentin specimens pretreated with oxalate prior to resin bonding, showed 80–83% less (p<0.05) water contamination compared to controls. The dentin permeability results obtained before and after oxalate pretreatment showed that oxalate decreased dentin permeability by 98% (p<0.05) compared to acid-etched controls. This prevented outward fluid movement during bonding resulting in better resin sealing of dentin due to the formation of a double seal of resin tags over calcium oxalate crystals in the tubules. Conclusion Outward dentinal fluid flow may contaminate hybrid layers during adhesive bonding procedures. Pretreatment of acid-etched dentin with 3% oxalic acid prior to bonding procedures can prevent outward fluid flow during bonding and water contamination of the hydrophobic hybrid layers. PMID:19701507

  19. Three-year clinical effectiveness of four total-etch dentinal adhesive systems in cervical lesions.

    PubMed

    Van Meerbeek, B; Peumans, M; Gladys, S; Braem, M; Lambrechts, P; Vanherle, G

    1996-11-01

    A 3-year follow-up clinical trial of two experimental Bayer total-etch adhesive systems and two commercial total-etch systems. Clearfil Liner Bond System and Scotchbond Multi-Purpose, was conducted to evaluate their clinical effectiveness in Class V cervical lesions. Four hundred twenty abrasion-erosion lesions were restored randomly using the four adhesive systems. There were two experimental cavity designs, in which the adjacent enamel margins either were or were not beveled and acid etched. Clearfil Liner Bond System and Scotchbond Multi-Purpose demonstrated high retention rates in both types of cavity design at 3 years. The two experimental Bayer systems scored much lower retention rates in both cavity designs at 3 years. None of the systems guaranteed margins free of microleakage for a long time. At 3 years, superficial, localized marginal discolorations were observed, the least for Clearfil Liner Bond System, followed by Scotchbond Multi-Purpose and the two experimental systems. Small marginal defects were recorded at the cervical dentin and the incisal enamel margin. Retention of Clearfil Liner Bond and Scotchbond Multi-Purpose appears to be clearly improved over earlier systems, but marginal sealing remains problematic. The two Bayer systems were found to be clinically unreliable.

  20. Effect of intrinsic wetness and regional difference on dentin bond strength.

    PubMed

    Pereira, P N; Okuda, M; Sano, H; Yoshikawa, T; Burrow, M F; Tagami, J

    1999-01-01

    The aim of this investigation was to determine the influence of intrinsic wetness on regional bond strengths of adhesive resins to dentin. Human caries-free third molars were randomly divided into three groups for bonding: Group 1--no pulpal pressure; Group 2--pulpal pressure of 15 cm H2O; and Group 3--dentin dried overnight in a desiccator. Clearfil Liner Bond II (Kuraray) or One Step (Bisco) adhesive resins systems were applied to the flat dentin surfaces and the teeth were restored with APX resin composite (Kuraray). After 24 h in water at 37 degrees C, the specimens were sectioned into 0.7 mm thick slabs and divided into three regional subgroups according to the remaining dentin thickness and visual criteria: pulp horn, center, and periphery. The slabs were then trimmed for the micro-tensile bond test and subjected to a tensile force and crosshead of 1 mm/min. The data were analyzed with ANOVA and Fisher's PLSD test at a confidence level of 95%. The fracture modes were determined under a scanning electron microscope (JXA-840, JEOL, Japan). No significant regional difference was observed for the Group 1 and 2 specimens restored with Clearfil Liner Bond II (p > 0.05). However, bond strengths significantly decreased at the pulp horn region of the Group 1 and 2 specimens restored with One Step (p > 0.01). All bond strengths of Group 3 decreased significantly and regional differences were not evident (p > 0.05). The dentin adhesive system should be chosen according to the substrate and region to be bonded, since bond strengths can vary according to the intrinsic wetness, region, and the adhesive system.

  1. Effect of evaporation on the shelf life of a universal adhesive.

    PubMed

    Pongprueksa, P; Miletic, V; De Munck, J; Brooks, N R; Meersman, F; Nies, E; Van Meerbeek, B; Van Landuyt, K L

    2014-01-01

    The purpose of this study was to evaluate how evaporation affects the shelf life of a one-bottle universal adhesive. Three different versions of Scotchbond Universal (SBU, 3M ESPE, Seefeld, Germany) were prepared using a weight-loss technique. SBU0 was left open to the air until maximal weight loss was obtained, whereas SBU50 was left open until 50% of evaporation occurred. In contrast, SBU100 was kept closed and was assumed to contain the maximum concentration of all ingredients. The degree of conversion (DC) was determined by using Fourier transform infrared spectroscopy on different substrates (on dentin or glass plate and mixed with dentin powder); ultimate microtensile strength and microtensile bond strength to dentin were measured as well. DC of the 100% solvent-containing adhesive (SBU100) was higher than that of the 50% (SBU50) and 0% (SBU0) solvent-containing adhesives for all substrates. DC of the adhesive applied onto glass and dehydrated dentin was higher than that applied onto dentin. Even though the ultimate microtensile strength of SBU0 was much higher than that of SBU50 and SBU100, its bond strength to dentin was significantly lower. Evaporation of adhesive ingredients may jeopardize the shelf life of a one-bottle universal system by reducing the degree of conversion and impairing bond strength. However, negative effects only became evident after more than 50% evaporation.

  2. Comparative bonding ability to dentin of a universal adhesive system and monomer conversion as functions of extended light curing times and storage.

    PubMed

    Sampaio, Paula Costa Pinheiro; Kruly, Paula de Castro; Ribeiro, Clara Cabral; Hilgert, Leandro Augusto; Pereira, Patrícia Nóbrega Rodrigues; Scaffa, Polliana Mendes Candia; Di Hipólito, Vinicius; D'Alpino, Paulo Henrique Perlatti; Garcia, Fernanda Cristina Pimentel

    2017-11-01

    The purpose of this in vitro study was to evaluate the bonding ability and monomer conversion of a universal adhesive system applied to dentin as functions of different curing times and storage. The results were compared among a variety of commercial adhesives. Flat superficial dentin surfaces were exposed on human molars and assigned into one of the following adhesives (n = 15): total-etch Adper Single Bond 2 (SB) and Optibond Solo Plus (OS), self-etch Optibond All in One (OA) and Clearfil SE Bond (CSE), and Scotchbond Universal Adhesive in self-etch mode (SU). The adhesives were applied following the manufacturers' instructions and cured for 10, 20, or 40s. Specimens were processed for the microtensile bond strength (µTBS) test in accordance with the non-trimming technique and tested after 24h and 2 years. The fractured specimens were classified under scanning electron microscopy (SEM). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=5). Data were analyzed by 2-way ANOVA/Tukey's tests (α = 0.05). At 24-h evaluation, OA and CSE presented similar bond strength means irrespective of the curing time, whereas SB and SU exhibited significantly higher means when cured for 40s as did OS when cured for 20 or 40s (p < 0.05). At 2-year evaluation, only OA exhibited significantly higher bond strength when cured for 20 and 40s (p < 0.05). When the evaluation times were compared, OA also exhibited the same bonding ability when cured for longer periods of time (20 and 40s). All of the adhesives tested exhibited significantly lower monomer conversion when photoactivated according to the manufacturers' instructions (10s). Higher monomer conversions obtained with longer light exposure allow only higher immediate bond strength for most of the adhesives tested. After 2-year storage, only the self-etching adhesive Optibond All-In-One exhibited the same

  3. The incorporation of chlorhexidine in a two-step self-etching adhesive preserves dentin bond in vitro.

    PubMed

    Zhou, Jianfeng; Tan, Jianguo; Chen, Li; Li, Deli; Tan, Yao

    2009-10-01

    To investigate whether the incorporation of chlorhexidine in a two-step self-etching adhesive can preserve dentin bond strengths. Different amounts of 20% chlorhexidine digluconate were added directly to the primer of Clearfil SE Bond to prepare mixtures of four different concentrations of chlorhexidine: 0.05%, 0.1%, 0.5% and 1.0%. Sixteen extracted third molars were randomly divided into 4 groups. Each group corresponded to one of the four chlorhexidine concentrations. Each of the 16 teeth was sectioned into two halves. One half was bonded with Clearfil SE Bond without chlorhexidine, and the other half was bonded with Clearfil SE Bond containing different concentrations of chlorhexidine. Specimens were stored in 0.9% NaCl containing 0.02% sodium azide at 37 degrees C. Microtensile bond strengths were tested 24h after specimen preparation or 12 months later. The modes of fractures were examined under a stereomicroscope. Twelve-month storage resulted in significant bond strength reduction of all control groups (p<0.05). When incorporated in SE Bond primer, chlorhexidine preserved dentin bond in the 0.1%, 0.5% and 1.0% chlorhexidine group (p<0.05); in the 0.05% group, there is no statistical difference of bond strength between control group and experimental group tested at the 12-month period (p>0.05). When incorporated in the primer of Clearfil SE Bond, chlorhexidine can preserve dentin bond as long as the concentration of chlorhexidine in the primer is higher than or equal to 0.1%.

  4. Sodium Hypochlorite Irrigation and Its Effect on Bond Strength to Dentin

    PubMed Central

    Abuhaimed, Tariq S.

    2017-01-01

    Effective shaping and cleaning of root canals are essential for the success of endodontic treatment. Due to the complex anatomy of root canal spaces, the use of various instrumentation techniques alone is not effective in producing bacteria-free root canal spaces. Irrigation, disinfectants, rinses, and intervisit medications are used in conjunction with the mechanical instrumentation to ensure the success of endodontic treatment. Sodium hypochlorite (NaOCl), a halogenated compound, is routinely used to irrigate the root canal during endodontic treatments. NaOCl has been known for its antibacterial action, proteolytic and dissolution capacity, and debridement properties. NaOCl, however, can alter the composition of dentin and hence its interaction with the adhesive resins used to bond the restorative materials to treated dentin. This review therefore covers in depth the action of NaOCl on dentin-adhesive resin bond strength including both enhancement and reduction, then mechanisms proposed for such action, and finally how the adverse action of NaOCl on dentin can be reversed. PMID:28904947

  5. Sodium Hypochlorite Irrigation and Its Effect on Bond Strength to Dentin.

    PubMed

    Abuhaimed, Tariq S; Abou Neel, Ensanya A

    2017-01-01

    Effective shaping and cleaning of root canals are essential for the success of endodontic treatment. Due to the complex anatomy of root canal spaces, the use of various instrumentation techniques alone is not effective in producing bacteria-free root canal spaces. Irrigation, disinfectants, rinses, and intervisit medications are used in conjunction with the mechanical instrumentation to ensure the success of endodontic treatment. Sodium hypochlorite (NaOCl), a halogenated compound, is routinely used to irrigate the root canal during endodontic treatments. NaOCl has been known for its antibacterial action, proteolytic and dissolution capacity, and debridement properties. NaOCl, however, can alter the composition of dentin and hence its interaction with the adhesive resins used to bond the restorative materials to treated dentin. This review therefore covers in depth the action of NaOCl on dentin-adhesive resin bond strength including both enhancement and reduction, then mechanisms proposed for such action, and finally how the adverse action of NaOCl on dentin can be reversed.

  6. Mechanical characterization of proanthocyanidin-dentin matrix interaction

    PubMed Central

    Castellan, Carina Strano; Pereira, Patricia Nobrega; Grande, Rosa Helena Miranda; Bedran-Russo, Ana Karina

    2010-01-01

    Objectives To characterize the properties of dentin matrix treated with two proanthocyanidin rich cross-linking agents and their effect on dentin bonded interfaces. Methods Sound human molars were cut into 0.5 mm thick dentin slabs, demineralized and either treated with one of two cross-linking agents (grape seed - GSE and cocoa seed - COE extracts) or left untreated. The modulus of elasticity of demineralized dentin was assessed after 10 or 60 min and the swelling ratio after 60 min treatment. Bacterial collagenase was also used to assess resistance to enzymatic degradation of samples subjected to ultimate tensile strength. The effect of GSE or COE on the resin-dentin bond strength was evaluated after 10 or 60 min of exposure time. Data were statistically analyzed at a 95% confidence interval. Results Both cross-linkers increased the elastic modulus of demineralized dentin as exposure time increased. Swelling ratio was lower for treated samples when compared to control groups. No statistically significant changes to the UTS indicate that collagenase had no effect on dentin matrix treated with either GSE or COE. Dentin-resin bonds significantly increased following treatment with GSE regardless of the application time or adhesive system used. Significance Increased mechanical properties and stability of dentin matrix can be achieved by the use of PA-rich collagen cross-linkers most likely due to the formation of a PA-collagen complex. The short term dentin-resin bonds can be improved after 10 minutes dentin treatment. PMID:20650510

  7. Microtensile dentin bond strength of fifth with five seventh-generation dentin bonding agents after thermocycling: An in vitro study

    PubMed Central

    Poptani, Bruhvi; Gohil, K. S.; Ganjiwale, Jaishree; Shukla, Manisha

    2012-01-01

    Objectives: The objective of this in vitro study was to compare the microtensile dentin bond strength (μTBS) of five seventh-generation dentin bonding agents (DBA) with fifth-generation DBA before and after thermocycling. Materials and Methods: Ten extracted teeth were assigned to fifth generation control group (optibond solo) and each of the five experimental groups namely, Group I (G-Bond) ,Group II (S3 Clearfil), Group III (One Coat 7.0), Group IV (Xeno V), and Group V (Optibond all in one). The crown portions of the teeth were horizontally sectioned below the central groove to expose the dentin. The adhesive resins from all groups were bonded to the teeth with their respective composites. Specimens of sizes 1 × 1 × 6 mm3 were obtained. Fifty specimens that bonded to dentin from each group were selected. Twenty-five of the specimens were tested for debonding without thermocycling and the remaining were subjected to thermocycling followed by μTBS testing. The data were analyzed with one-way ANOVA and Dunnett's-test for comparison with the reference group(Vth Generation). Results: There was no significant difference (P > 0.05) between the fifth- and seventh-generation adhesives before and after thermocycling. The results of our study showed significantly higher value (P < 0.05) of μTBS of seventh-generation Group II (Clearfil S3) compared to the fifth-generation before and after thermocycling. Conclusion: The study demonstrated that the Clearfil S3 bond had the highest μTBS values. In addition, of the five tested seventh-generation adhesive resins were comparable to the fifth-generation DBA. PMID:23230355

  8. The role of adhesive materials and oral biofilm in the failure of adhesive resin restorations.

    PubMed

    Pinna, Roberto; Usai, Paolo; Filigheddu, Enrica; Garcia-Godoy, Franklin; Milia, Egle

    2017-10-01

    To critically discuss adhesive materials and oral cariogenic biofilm in terms of their potential relevance to the failures of adhesive restorations in the oral environment. The literature regarding adhesive restoration failures was reviewed with particular emphasis on the chemistry of adhesive resins, weakness in dentin bonding, water fluids, cariogenic oral biofilm and the relations that influence failures. Particular attention was paid to evidence derived from clinical studies. There was much evidence that polymerization shrinkage is one of the main drawbacks of composite formulations. Stress results in debonding and marginal leakage into gaps with deleterious effects in bond strength, mechanical properties and the whole stability of restorations. Changes in resins permit passage of fluids and salivary proteins with a biological breakdown of the restorations. Esterases enzymes in human saliva catalyze exposed ester groups in composite producing monomer by-products, which can favor biofilm accumulation and secondary caries. Adhesive systems may not produce a dense hybrid layer in dentin. Very often this is related to the high viscous solubility and low wettability in dentin of the hydrophobic BisGMA monomer. Thus, dentin hybrid layer may suffer from hydrolysis using both the Etch&Rinse and Self-Etching adhesive systems. In addition, exposed and non-resin enveloped collagen fibers may be degraded by activation of the host-derived matrix metalloproteinase. Plaque accumulation is significantly influenced by the surface properties of the restorations. Biofilm at the contraction gap has demonstrated increased growth of Streptococcus mutans motivated by the chemical hydrolysis of the adhesive monomers at the margins. Streptococcus mutans is able to utilize some polysaccharides from the biofilm to increase the amount of acid in dental plaque with an increase in virulence and destruction of restorations. Stability of resin restorations in the oral environment is highly

  9. Bonding of fibre-reinforced composite post to root canal dentin.

    PubMed

    Bell, Anna-Maria Le; Lassila, Lippo V J; Kangasniemi, Ilkka; Vallittu, Pekka K

    2005-08-01

    The aim of this study was to determine bonding properties of two types of fibre-reinforced composite (FRC) posts cemented into root canals of molars. Serrated titanium posts served as reference. Prefabricated carbon/graphite FRC posts with cross-linked polymer matrix and individually formed glass FRC posts with interpenetrating polymer network (IPN) polymer matrix were compared. The crowns of extracted third molars were removed and post space (diameter: 1.5mm) was drilled, etched and bonded. The posts were treated with dimethacrylate adhesive resin, light-polymerized and cemented with a dual-polymerizing composite resin luting cement. After thermocycling (6000x) the samples were cut into discs of thicknesses: 1, 2 and 4mm (n=12/group). Push-out force was measured by pushing the post from one end. Assessment of failure mode was made under a stereomicroscope (1, adhesive failure between post and cement; 2, cohesive failure of post-system; 3, adhesive failure between cement and dentin). The push-out force increased with increased height of dentin disc in all groups (ANOVA, p<0.001). In the 4mm thick dentin discs the individually formed glass FRC posts showed highest push-out force and the difference to that of the titanium posts was significant (ANOVA, p<0.001). The other differences were not statistically significant. None of the individually formed glass FRC posts showed adhesive failures between the post and the cement. Contrary to the other posts, there were no adhesive (post-cement) failures with the individually formed glass FRC posts, suggesting better interfacial adhesion of cement to these posts.

  10. Bond strengths of Scotchbond Multi-Purpose to moist dentin and enamel.

    PubMed

    Swift, E J; Triolo, P T

    1992-12-01

    This in vitro study tested the shear bond strengths of the Scotchbond Multi-Purpose adhesive system to moist and dry enamel and dentin. After the tooth was etched, the surface was either dried with compressed air or blotted with tissue paper, leaving the surface visibly moist. Primer and adhesive were applied according to the manufacturer's directions. Resin composite posts were applied, and the specimens were thermocycled. Shear bond strengths were determined using an Instron universal testing machine. For both enamel and dentin, mean shear bond strengths were higher when the surface was left visibly moist after etching. Bond strengths to moist and dry dentin were 21.8 and 17.8 MPa, respectively. Enamel bond strengths were slightly lower, with values of 17.0 and 14.2 MPa to moist and dry enamel, respectively.

  11. Bond Strength and Interfacial Morphology of Different Dentin Adhesives in Primary Teeth

    PubMed Central

    Vashisth, Pallavi; Mittal, Mudit; Goswami, Mousumi; Chaudhary, Seema; Dwivedi, Swati

    2014-01-01

    Objective: To evaluate the interfacial morphology and the bond strength produced by the three-step, two-step and single-step bonding systems in primary teeth. Materials and Methods: Occlusal surfaces of 72 extracted human deciduous teeth were ground to expose the dentin. The teeth were divided into four groups: (a) Scotchbond Multipurpose (3M, ESPE), (b) Adh Se (Vivadent), (d) OptiBond All-in-One (Kerr) and (e)Futurabond NR (VOCO, Cuxhaven, Germany). The adhesives were applied to each group following the manufacturer’s instructions. Then, teeth from each group were divided into two groups: (A) For viewing interfacial morphology (32 teeth), with 8 teeth in each group, and (B) For measurement of bond strength (40 teeth), with 10 teeth in each group. All the samples were prepared for viewing under SEM. The statistical analysis was done using SPSS version 15.0 software. Results: Observational measurement of tag length in different adhesives revealed that Scotchbond had the most widely spread values with a range from 12.20 to 89.10μm while OptiBond AIO had the narrowest range (0 to 22.50). The bond strength of Scotchbond Multipurpose was significantly higher (7.4744±1.88763) (p<0.001) as compared to Futurabond NR (3.8070±1.61345), Adhe SE (4.4478 ± 1.3820) and OptiBond-all-in-one (4.4856±1.07925). Conclusion: The three-step bonding system showed better results as compared to simplified studied bonding systems PMID:24910694

  12. Microtensile bond strength analysis of adhesive systems to Er:YAG and Er,Cr:YSGG laser-treated dentin.

    PubMed

    Ramos, Thaysa Monteiro; Ramos-Oliveira, Thayanne Monteiro; Moretto, Simone Gonçalves; de Freitas, Patricia Moreira; Esteves-Oliveira, Marcella; de Paula Eduardo, Carlos

    2014-03-01

    The aim of this in vitro study was to evaluate the effect of different surface treatments (control, diamond bur, erbium-doped yttrium aluminum garnet (Er:YAG) laser, and erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser) on sound dentin surface morphology and on microtensile bond strength (μTBS). Sixteen dentin fragments were randomly divided into four groups (n = 4), and different surface treatments were analyzed by scanning electron microscopy. Ninety-six third molars were randomly divided into eight groups (n = 12) according to type of surface treatment and adhesive system: G1 = Control + Clearfil SE Bond (SE); G2 = Control + Single Bond (SB); G3 = diamond bur (DB) + SE; G4 = DB + SB, G5 = Er:YAG laser (2.94 μm, 60 mJ, 2 Hz, 0.12 W, 19.3 J/cm(2)) + SE; G6 = Er:YAG + SB, G7 = Er,Cr:YSGG laser (2.78 μm, 50 mJ, 30 Hz, 1.5 W, 4.5 J/cm(2)) + SE; and G8 = Er,Cr:YSGG + SB. Composite blocks were bonded to the samples, and after 24-h storage in distilled/deionized water (37 °C), stick-shaped samples were obtained and submitted to μTBS test. Bond strength values (in megapascal) were analyzed by two-way ANOVA and Tukey tests (α = 0.05). G1 (54.69 ± 7.8 MPa) showed the highest mean, which was statistically significantly higher than all the other groups (p < 0.05). For all treatments, SE showed higher bond strength than SB, except only for Er,Cr:YSGG treatment, in which the systems did not differ statistically from each other. Based on the irradiation parameters considered in this study, it can be concluded that Er:YAG and Er,Cr:YSGG irradiation presented lower values than the control group; however, their association with self-etching adhesive does not have a significantly negative effect on sound dentin (μTBS values of >20 MPa).

  13. Chlorhexidine stabilizes the adhesive interface: a 2 year in vitro study

    PubMed Central

    Breschi, Lorenzo; Mazzoni, Annalisa; Nato, Fernando; Carrilho, Marcela; Visintini, Erika; Tjäderhane, Leo; Ruggeri, Alessandra; Tay, Franklin R; De Stefano Dorigo, Elettra; Pashley, David H

    2013-01-01

    Objectives This study evaluated the role of endogenous dentin MMPs in auto-degradation of collagen fibrils within adhesive-bonded interfaces. The null hypotheses tested were that adhesive blends or chlorhexidine digluconate (CHX) application does not modify dentin MMPs activity and that CHX used as therapeutic primer does not improve the stability of adhesive interfaces over time. Methods Zymograms of protein extracts from human dentin powder incubated with Adper Scotchbond 1XT (SB1XT) on untreated or 0.2–2% CHX treated dentin were obtained to assay dentin MMPs activity. Microtensile bond strength and interfacial nanoleakage expression of SB1XT bonded interfaces (with or without CHX pre-treatment for 30s on the etched surface) were analyzed immediately and after 2 yr of storage in artificial saliva at 37°C. Results Zymograms showed that application of SB1XT to human dentin powder increases MMP-2 activity, while CHX pre-treatment inhibited all dentin gelatinolytic activity, irrespective from the tested concentration. CHX significantly lowered the loss of bond strength and nanoleakage seen in acid-etched resin-bonded dentin artificially aged for 2 yr. Significance The study demonstrates the active role of SB1XT in dentin MMP-2 activation and the efficacy of CHX inhibition of MMPs even if used at low concentration (0.2%). PMID:20045177

  14. Effects of solvent drying time on micro-shear bond strength and mechanical properties of two self-etching adhesive systems.

    PubMed

    Sadr, Alireza; Shimada, Yasushi; Tagami, Junji

    2007-09-01

    The all-in-one adhesives are simplified forms of two-step self-etching adhesive systems that must be air dried to remove solvent and water before curing. It was investigated whether those two systems perform equally well and if their performance is affected by air-drying of the solvent containing agent. Two adhesive systems (both by Kuraray Medical) were evaluated; Clearfil Tri-S bond (TS) and Clearfil SE bond (SE). Micro-shear bond strengths to human dentin after solvent air-drying times of 2, 5 or 10 s for each group were measured (n=10). The indentation creep and hardness of the bonding layer were also determined for each group. The lowest micro-shear bond strength, nano-indentation hardness and creep stress exponents were obtained for 2 s air dried specimens of each material. After 10 s air blowing, SE showed superior properties compared to TS groups (p<0.05). When properly handled, two step self-etching material performs better than the all-in-one adhesive. Air-drying is a crucial step in the application of solvent containing adhesives and may affect the overall clinical performance of them, through changes in the bond strength and altering nano-scale mechanical properties.

  15. Improved reactive nanoparticles to treat dentin hypersensitivity.

    PubMed

    Toledano-Osorio, Manuel; Osorio, Estrella; Aguilera, Fátima S; Luis Medina-Castillo, Antonio; Toledano, Manuel; Osorio, Raquel

    2018-05-01

    The aim of this study was to evaluate the effectiveness of different nanoparticles-based solutions for dentin permeability reduction and to determine the viscoelastic performance of cervical dentin after their application. Four experimental nanoparticle solutions based on zinc, calcium or doxycycline-loaded polymeric nanoparticles (NPs) were applied on citric acid etched dentin, to facilitate the occlusion and the reduction of the fluid flow at the dentinal tubules. After 24 h and 7 d of storage, cervical dentin was evaluated for fluid filtration. Field emission scanning electron microscopy, energy dispersive analysis, AFM and Nano-DMA analysis were also performed. Complex, storage, loss modulus and tan delta (δ) were assessed. Doxycycline-loaded NPs impaired tubule occlusion and fluid flow reduction trough dentin. Tubules were 100% occluded in dentin treated with calcium-loaded NPs or zinc-loaded NPs, analyzed at 7 d. Dentin treated with both zinc-NPs and calcium-NPs attained the highest reduction of dentinal fluid flow. Moreover, when treating dentin with zinc-NPs, complex modulus values attained at intertubular and peritubular dentin were higher than those obtained after applying calcium-NPs. Zinc-NPs are then supposed to fasten active dentin remodeling, with increased maturity and high mechanical properties. Zinc-based nanoparticles are then proposed for effective dentin remineralization and tubular occlusion. Further research to finally prove for clinical benefits in patients with dentin hypersensitivity using Zn-doped nanoparticles is encouraged. Erosion from acids provokes dentin hypersensitivity (DH) which presents with intense pain of short duration. Open dentinal tubules and demineralization favor DH. Nanogels based on Ca-nanoparticles and Zn-nanoparticles produced an efficient reduction of fluid flow. Dentinal tubules were filled by precipitation of induced calcium-phosphate deposits. When treating dentin with Zn-nanoparticles, complex modulus

  16. The influence of salivary contamination on shear bond strength of dentin adhesive systems.

    PubMed

    Park, Jeong-won; Lee, Kyung Chae

    2004-01-01

    This study evaluated the influence of salivary contamination during dentin bonding procedures on shear bond strength and investigated the effect of contaminant-removing treatments on the recovery of bond strength for two dentin bonding agents. One hundred and ten human molars were embedded in cylindrical molds with self-curing acrylic resin. The occlusal dentin surface was exposed by wet grinding with #800 silicon carbide abrasive paper. The teeth were divided into five groups for One-step (OS) (BISCO, Inc) and six groups for Clearfil SE Bond (SE) (Kuraray Co, Ltd, Osaka, Japan). For One-step, the grinding surface was treated with 32% phosphoric acid; BAC (BISCO Inc) and divided into five groups: OS control group (uncontaminated), OS I (salivary contamination, blot dried), OS II (salivary contamination, completely dried), OS III (salivary contamination, wash and blot dried) and OS IV (salivary contamination, re-etching for 10 seconds, wash and blot dried). For SE bond, the following surface treatments were done: SE control group (primer applied to the fresh dentin surface), SE I (after salivary contamination, primer applied), SE II (primer, salivary contamination, dried), SE III (primer, salivary contamination, wash and dried), SE IV (after procedure of SE II, re-application of primer) and SE V (after procedure of SE III, re-application of primer). Each bonding agent was applied and light cured for 10 seconds. Clearfil AP-X (Kuraray Co, Ltd) composite was packed into the Ultradent mount jig mold and light cured for 40 seconds. The bonded specimens were stored for 24 hours in a 37 degrees C waterbath. The shear bond strengths were measured using an Instron testing machine (Model 4202, Instron Corp). The data for each group were subjected to one-way ANOVA followed by the Newman-Keuls test to make comparisons among the groups. The results were as follows: In the One-step groups, the OS II group showed statistically significant lower shear bond strength than the OS

  17. Bond strength of universal adhesives: A systematic review and meta-analysis.

    PubMed

    Rosa, Wellington Luiz de Oliveira da; Piva, Evandro; Silva, Adriana Fernandes da

    2015-07-01

    A systematic review was conducted to determine whether the etch-and-rinse or self-etching mode is the best protocol for dentin and enamel adhesion by universal adhesives. This report followed the PRISMA Statement. A total of 10 articles were included in the meta-analysis. Two reviewers performed a literature search up to October 2014 in eight databases: PubMed, Web of Science, Scopus, BBO, SciELO, LILACS, IBECS and The Cochrane Library. In vitro studies evaluating the bond strength of universal adhesives to dentin and/or enamel by the etch-and-rinse and self-etch strategies were eligible to be selected. Statistical analyses were conducted using RevMan 5.1 (The Cochrane Collaboration, Copenhagen, Denmark). A global comparison was performed with random-effects models at a significance level of p<0.05. The analysis of dentin micro-tensile bond strength showed no statistically significant difference between the etch-and-rinse and self-etch strategies for mild universal adhesives (p≥0.05). However, for the ultra-mild All-Bond Universal adhesive, the etch-and-rinse strategy was significantly different than the self-etch mode in terms of dentin micro-tensile bond strength, as well as in the global analysis of enamel micro-tensile and micro-shear bond strength (p≤0.05). The enamel bond strength of universal adhesives is improved with prior phosphoric acid etching. However, this effect was not evident for dentin with the use of mild universal adhesives with the etch-and-rinse strategy. Selective enamel etching prior to the application of a mild universal adhesive is an advisable strategy for optimizing bonding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of dimethyl sulfoxide wet-bonding technique on hybrid layer quality and dentin bond strength.

    PubMed

    Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Marques, Marcelo Rocha; Aguiar, Flávio Henrique Baggio; Martins, Luís Roberto Marcondes

    2015-06-01

    This study examined the effect of a dimethyl sulfoxide (DMSO) wet bonding technique on the resin infiltration depths at the bonded interface and dentin bond strength of different adhesive systems. Flat dentin surfaces of 48 human third molars were treated with 50% DMSO (experimental groups) or with distilled water (controls) before bonding using an etch-and-rinse (SBMP: Scotchbond Multi-Purpose, 3M ESPE) or a self-etch (Clearfil: Clearfil SE Bond, Kuraray) adhesive system. The restored crown segments (n=12/group) were stored in distilled water (24h) and sectioned for interfacial analysis of exposed collagen using Masson's Trichrome staining and for microtensile bond strength testing. The extent of exposed collagen was measured using light microscopy and a histometric analysis software. Failure modes were examined by SEM. Data was analyzed by two-way ANOVA followed by Tukey Test (α=0.05). The interaction of bonding protocol and adhesive system had significant effects on the extension of exposed collagen matrix (p<0.0001) and bond strength (p=0.0091). DMSO-wet bonding significantly reduced the extent of exposed collagen matrix for SBMP and Clearfil (p<0.05). Significant increase in dentin bond strength was observed on DMSO-treated specimens bonded with SBMP (p<0.05), while no differences were observed for Clearfil (p>0.05). DMSO-wet bonding was effective to improve the quality of resin-dentin bonds of the tested etch-and-rinse adhesives by reducing the extent of exposed collagen matrix at the base of the resin-dentin biopolymer. The improved penetration of adhesive monomers is reflected as an increase in the immediate bond strength when the DMSO-wet bonding technique is used with a water-based etch-and-rinse adhesive. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. A feasible method to eliminate nanoleakage in dentin hybrid layers.

    PubMed

    Chen, Ji-Hua; Liu, Yan; Niu, Li-Na; Lu, Shuai; Tay, Franklin R; Gao, Yu

    2014-10-01

    To determine whether high-pressure air blowing during adhesive application affects the infiltration of resin comonomers and nanoleakage manifestation in the resin/dentin interface under simulated pulpal pressure. Thirty mid-coronal dentin surfaces were bonded with an etch-and-rinse adhesive (Adper Single Bond 2) under simulated pulpal pressure. In the control group, the adhesive was thinned by ordinary air blowing with a pressure of 0.2 MPa, while in the experimental group, a high-pressure air blowing technique (pressure: 0.4 MPa) was used. All other procedures followed the manufacturer's instructions. Resin tag formation and nanoleakage in the bonding interface were evaluated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When adhesive was thinned with high pressure air blowing, longer and more homogeneous resin tags were formed. The bonding interface demonstrated good overall morphology and integrity. Almost perfect infiltration of resin and no obvious nanoleakage were observed. Thinning of adhesive with high-pressure air blowing provides a clinically feasible adjunctive procedure for better resin infiltration.

  20. Nano Enabled Thermo-Mechanical Materials in Adhesive Joints: A New Paradigm to Materials Functionality (Preprint)

    DTIC Science & Technology

    2006-12-01

    interface as well as to minimize the interface contact resistance. There is an on- going effort by numerous researchers of dispersing conductive nano...constituents (single wall carbon nanotube (SWCNT), multi wall carbon nano tube ( MWCNT )) in polymers (adhesive) to enhance its thermal conductivity [1...propose to use vertically aligned MWCNT in joints to enhance through-thickness conductivity [10] because of its known high thermal conductivity

  1. Evaluation of the bond strength of resin cements used to lute ceramics on laser-etched dentin.

    PubMed

    Giray, Figen Eren; Duzdar, Lale; Oksuz, Mustafa; Tanboga, Ilknur

    2014-07-01

    The purpose of this study was to investigate the shear bond strength (SBS) of two different adhesive resin cements used to lute ceramics on laser-etched dentin. Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation has been claimed to improve the adhesive properties of dentin, but results to date have been controversial, and its compatibility with existing adhesive resin cements has not been conclusively determined. Two adhesive cements, one "etch-and-rinse" [Variolink II (V)] and one "self-etch" [Clearfil Esthetic Cement (C)] luting cement, were used to lute ceramic blocks (Vita Celay Blanks, Vita) onto dentin surfaces. In total, 80 dentin specimens were distributed randomly into eight experimental groups according to the dentin surface-etching technique used Er,Cr:YSGG laser and Er:YAG laser: (1) 37% orthophosphoric acid+V (control group), (2) Er,Cr:YSGG laser+V, (3) Er,Cr:YSGG laser+acid+V, (4) Er:YAG laser+V, (5) Er:YAG laser+acid+V, (6) C, (7) Er,Cr:YSGG laser+C, and (8) Er:YAG laser+C. Following these applications, the ceramic discs were bonded to prepared surfaces and were shear loaded in a universal testing machine until fracture. SBS was recorded for each group in MPa. Shear test values were evaluated statistically using the Mann-Whitney U test. No statistically significant differences were evident between the control group and the other groups (p>0.05). The Er,Cr:YSGG laser+A+V group demonstrated significantly higher SBS than did the Er,Cr:YSGG laser+V group (p=0.034). The Er,Cr:YSGG laser+C and Er:YAG laser+C groups demonstrated significantly lower SBS than did the C group (p<0.05). Dentin surfaces prepared with lasers may provide comparable ceramic bond strengths, depending upon the adhesive cement used.

  2. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer.

    PubMed

    Coutinho, E; Cardoso, M V; De Munck, J; Neves, A A; Van Landuyt, K L; Poitevin, A; Peumans, M; Lambrechts, P; Van Meerbeek, B

    2009-11-01

    Glass-ionomers (GIs) exhibit excellent clinical bonding effectiveness, but still have shortcomings such as polishability and general aesthetics. The aims of this study were (1) to determine the micro-tensile bond strength (microTBS) to enamel and dentin of a nano-filled resin-modified GI (nano-RMGI; Ketac N100, 3M-ESPE), and (2) to characterize its interfacial interaction with enamel and dentin using transmission electron microscopy (TEM). The nano-RMGI was used both with and without its primer, while a conventional RMGI restorative material (conv-RMGI; Fuji II LC, GC) and a packable conventional GI cement (conv-GI; Fuji IX GP, GC) were used as controls. After bonding to freshly extracted human third molars, microspecimens of the interfaces were machined into a cylindrical hourglass shape and tested to failure in tension. Non-demineralized TEM sections were prepared and examined from additional teeth. The microTBS to both enamel and dentin of nano-RMGI and conv-GI were not statistically different; the microTBS of non-primed nano-RMGI was significantly lower, while that of conv-RMGI was significantly higher than that of all other groups. TEM of nano-RMGI disclosed a tight interface at enamel and dentin without surface demineralization and hybrid-layer formation. A thin filler-free zone (<1 microm) was formed at dentin. A high filler loading and effective filler distribution were also evident, with localized areas exhibiting nano-filler clustering. The nano-RMGI bonded as effectively to enamel and dentin as conv-GI, but bonded less effectively than conv-RMGI. Its bonding mechanism should be attributed to micro-mechanical interlocking provided by the surface roughness, most likely combined with chemical interaction through its acrylic/itaconic acid copolymers.

  3. [Nanoleakage at the resin-dental interface of four self-etching adhesives].

    PubMed

    Liao, Zhi-qing; Ouyang, Yong; Yang, Jian-zhen

    2011-09-01

    To evaluate the nanoleakage and ultramorphology of four self-etching adhesives. Sixteen freshly extracted, caries-free human third molars were selected. A flat dentin surface was exposed by removing occlusal enamel. All teeth were randomly divided into four groups acorrding to four different self-etch adhesive: Adper Prompt (A), iBond (B), Xeno III (C) and SE Bond (D). The dentin were bonded with dentin adhesive system according to manufacturer's directions. Composite layers were built up incrementally. The specimens were sectioned longitudinally across the resin-dentin interface into 4.0 mm×0.9 mm sticks and then traced with ammoniacal silver solution. Epoxy resin-embedded sections were prepared for transmission electron microscope (TEM) to observe nanoleakage. The images were qualitatively compared by NIH software, and data was analyzed by SPSS. Different thickness of hybrid layer and adhesives layer were observed for each adhesive. The hybrid layer of A, C was thicker than that of B, D, and adhesive layer of D was thicker than the others. The extent of nanoleakage varied among different adhesives: A (45.02 ± 9.49), B (43.97 ± 8.55), C (27.02 ± 10.86), D (12.94 ± 2.07). D presented significantly less silver deposition than any of the others did (P < 0.05). The thickness of hybrid layer and adhesive layer vary among the four adhesives. The shape and extent of nanoleakage of each adhesive are also different. Two-step system shows less nanoleakage than one-step systems do.

  4. Effect of EDTA Conditioning and Carbodiimide Pretreatment on the Bonding Performance of All-in-One Self-Etch Adhesives

    PubMed Central

    Singh, Shipra; Nagpal, Rajni; Tyagi, Shashi Prabha; Manuja, Naveen

    2015-01-01

    Objective. This study evaluated the effect of ethylenediaminetetraacetic acid (EDTA) conditioning and carbodiimide (EDC) pretreatment on the shear bond strength of two all-in-one self-etch adhesives to dentin. Methods. Flat coronal dentin surfaces were prepared on one hundred and sixty extracted human molars. Teeth were randomly divided into eight groups according to two different self-etch adhesives used [G-Bond and OptiBond-All-In-One] and four different surface pretreatments: (a) adhesive applied following manufacturer's instructions; (b) dentin conditioning with 24% EDTA gel prior to application of adhesive; (c) EDC pretreatment followed by application of adhesive; (d) application of EDC on EDTA conditioned dentin surface followed by application of adhesive. Composite restorations were placed in all the samples. Ten samples from each group were subjected to immediate and delayed (6-month storage in artificial saliva) shear bond strength evaluation. Data collected was subjected to statistical analysis using three-way ANOVA and post hoc Tukey's test at a significance level of p < 0.05.  Results and Conclusion. EDTA preconditioning as well as EDC pretreatment alone had no significant effect on the immediate and delayed bond strengths of either of the adhesives. However, EDC pretreatment on EDTA conditioned dentin surface resulted in preservation of resin-dentin bond strength of both adhesives with no significant fall over six months. PMID:26557850

  5. Resin-dentin bond stability and physical characterization of a two-step self-etching adhesive system associated with TiF4.

    PubMed

    Torres, Gabriele Barbosa; da Silva, Tânia Mara; Basting, Rosanna Tarkany; Bridi, Enrico Coser; França, Fabiana Mantovani Gomes; Turssi, Cecilia Pedroso; do Amaral, Flávia Lucisano Botelho; de Paiva Gonçalves, Sérgio Eduardo; Basting, Roberta Tarkany

    2017-10-01

    To evaluate the bond strength to superficial (SD) and deep (DD) dentin after the use of 2.5% (T2.5%) or 4% (T4%) titanium tetrafluoride (TiF 4 ) in aqueous solution as a dentin pretreatment, or when incorporated into the primer (T2.5%P and T4%P) of an adhesive system (Clearfil SE Bond/CL). Degree of conversion (DC), particle size (PS), polydispersity index (PI) and zeta potential (ZP) of the solutions were evaluated. Fifty molars were sectioned longitudinally to obtain two slices of each tooth, which were demarcated into SD and DD. Treatments were applied (n=10): CL; T2.5%; T4%; T2.5%P; T4%P. After 24h or 180days storage, microshear bond strength tests were performed. The DC values of T2.5%P and T4%P were evaluated by FTIR. PS, PI and ZP were measured using dynamic light scattering. Analysis of mixed models showed significant effect of concentration of TiF 4 * solution * storage time (p=0.0075). There were higher bond strength values in SD than in DD (p=0.0105) for all treatments in both times. The failure mode showed adhesive failures in the majority of groups, irrespective of depth and time (p=0.3746). The bond strength values were not affected by treatments. Lower average particle size was observed for T2.5%P and T4%P at baseline. T2.5% and T4% showed a trend towards agglomeration. Higher bond strength values were achieved at SD for all treatments and times. The failure modes observed were adhesive. TiF 4 incorporation did not affect DC. T2.5%P and T4%P presented excellent stability over time. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Bonding performance of experimental bioactive/biomimetic self-etch adhesives doped with calcium-phosphate fillers and biomimetic analogs of phosphoproteins.

    PubMed

    Abuna, Gabriel; Feitosa, Victor P; Correr, Americo Bortolazzo; Cama, Giuseppe; Giannini, Marcelo; Sinhoreti, Mario A; Pashley, David H; Sauro, Salvatore

    2016-09-01

    This study examined the bonding performance and dentin remineralization potential of an experimental adhesive containing calcium-phosphate (Ca/P) micro-fillers, and self-etching primers doped with phosphoprotein biomimetic analogs (polyacrylic acid-(PAA) and/or sodium trimetaphosphate-(TMP)). Experimental self-etching primers doped with biomimetic analogs (PAA and/or TMP), and an adhesive containing Ca(2+), PO4(-3)-releasing micro-fillers (Ca/P) were formulated. Sound human dentin specimens were bonded and cut into sticks after aging (24h or 6 months) under simulated pulpal pressure (20cm H2O), and tested for microtensile bond strength (μTBS). Results were analyzed using two-way ANOVA and Tukey's test (p<0.05). Interfacial silver nanoleakage was assessed using SEM. Remineralization of EDTA-demineralized dentin was assessed through FTIR and TEM ultrastructural analysis. Application of the Ca/P-doped adhesive with or without dentin pre-treatments with the primer containing both biomimetic analogs (PAA and TMP) promoted stable μTBS over 6 months. Conversely, μTBS of the control primer and filler-free adhesive significantly decreased after 6 months. Nanoleakage decreased within the resin-dentin interfaces created using the Ca/P-doped adhesives. EDTA-demineralized dentin specimens treated the Ca/P-doped adhesive and the primer containing PAA and TMP showed phosphate uptake (FTIR analysis), as well as deposition of needle-like crystallites at intrafibrillar level (TEM analysis). The use of Ca/P-doped self-etching adhesives applied in combination with analogs of phosphoproteins provides durable resin-dentin bonds. This approach may represent a suitable bonding strategy for remineralization of intrafibrillar dentin collagen within the resin-dentin interface. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lab-based x-ray nanoCT imaging

    NASA Astrophysics Data System (ADS)

    Müller, Mark; Allner, Sebastian; Ferstl, Simone; Dierolf, Martin; Tuohimaa, Tomi; Pfeiffer, Franz

    2017-03-01

    Due to the recent development of transmission X-ray tubes with very small focal spot sizes, laboratory-based CT imaging with sub-micron resolutions is nowadays possible. We recently developed a novel X-ray nanoCT setup featuring a prototype nanofocus X-ray source and a single-photon counting detector. The system is based on mere geometrical magnification and can reach resolutions of 200 nm. To demonstrate the potential of the nanoCT system for biomedical applications we show high resolution nanoCT data of a small piece of human tooth comprising coronal dentin. The reconstructed CT data clearly visualize the dentin tubules within the tooth piece.

  8. Influence of preheating the bonding agent of a conventional three-step adhesive system and the light activated resin cement on dentin bond strength

    PubMed Central

    Holanda, Daniel Brandão Vilela; França, Fabiana Mantovani Gomes; do Amaral, Flávia Lucisano Botelho; Flório, Flávia Martão; Basting, Roberta Tarkany

    2013-01-01

    Aims: to evaluate the influence of preheating the bonding agent (Scotchbond Multipurpose Adhesive/3M ESPE) and the light-activated resin cement (RelyX Venner/3M ESPE) on dentin microtensile bond strength. Materials and Methods: The exposed flat dentin surface of 40 human third molars were randomly distributed into four groups for cementation (SR Adoro/Ivoclar Vivadent) (n = 10): G1-bond and resin cement, both at room temperature (22°C), G2-bond preheated to 58°C and cement at room temperature (22°C), G3-bond at room temperature (22°C) and the cement preheated to 58°C, G4-bond preheated to 58°C and cement preheated to 58°C. Sticks of dentin/block set measuring approximately 1 mm2 were obtained and used for the microtensile bond strength test. All sticks had their failure mode classified. Statistical analysis used: Factorial analysis of variance was applied, 2 × 2 (bond × cement) (P < 0.05). Results: Preheating the bonding agent (P = 0.8411) or the cement (P = 0.7155), yielded no significant difference. The interaction bond × cement was not significant (P = 0.9389). Conclusions: Preheating the bond and/or the light-activated resin cement did not influence dentin bond strength or fracture failure mode. PMID:24347889

  9. An In Vitro Evaluation of Leakage of Two Etch and Rinse and Two Self-Etch Adhesives after Thermocycling

    PubMed Central

    Geerts, Sabine; Bolette, Amandine; Seidel, Laurence; Guéders, Audrey

    2012-01-01

    Our experiment evaluated the microleakage in resin composite restorations bonded to dental tissues with different adhesive systems. 40 class V cavities were prepared on the facial and lingual surfaces of each tooth with coronal margins in enamel and apical margins in cementum (root dentin). The teeth were restored with Z100 resin composite bonded with different adhesive systems: Scotchbond Multipurpose (SBMP), a 3-step Etch and Rinse adhesive, Adper Scotchbond 1 XT (SB1), a 2-step Etch and Rinse adhesive, AdheSE One (ADSE-1), a 1-step Self-Etch adhesive, and AdheSE (ADSE), a 2-step Self-Etch adhesive. Teeth were thermocycled and immersed in 50% silver nitrate solution. When both interfaces were considered, SBMP has exhibited significantly less microleakage than other adhesive systems (resp., for SB1, ADSE-1 and ADSE, P = 0.0007, P < 0.0001 and P < 0.0001). When enamel and dentin interfaces were evaluated separately, (1) for the Self-Etch adhesives, microleakage was found greater at enamel than at dentin interfaces (for ADSE, P = 0.024 and for ADSE-1, P < 0.0001); (2) for the Etch and Rinse adhesive systems, there was no significant difference between enamel and dentin interfaces; (3) SBMP was found significantly better than other adhesives both at enamel and dentin interfaces. In our experiment Etch and Rinse adhesives remain better than Self-Etch adhesives at enamel interface. In addition, there was no statistical difference between 1-step (ADSE-1) and 2-step (ADSE) Self-Etch adhesives. PMID:22675358

  10. Rationale behind the design and comparative evaluation of an all-in-one self-etch model adhesive.

    PubMed

    Kanehira, Masafumi; Finger, Werner J; Ishihata, Hiroshi; Hoffmann, Marcus; Manabe, Atsufumi; Shimauchi, Hidetoshi; Komatsu, Masashi

    2009-06-01

    To investigate and compare bonding and dentin sealing efficacy of a marketed all-in-one and an experimental model adhesive with minimum effective amounts of acidic monomer and water. Composition of model adhesive (NAD) in mass%: UDMA (45), 4-META (20), H2O (7.5), and acetone (27.5). For characterization of a reasonable NAD application procedure shear bond strengths (SBS, n=8) were determined on human enamel and dentin. Clearfil S3 Bond (TSB; Kuraray) served as reference. SBSs were evaluated after 10 min, 1 and 7 days, and 1 month, marginal adaptation (n=8) was assessed in cylindrical butt-joint dentin cavities. Diffusive and convective water fluxes through 1mm thick adhesive-coated dentin disks (n=6) were qualitatively and quantitatively analyzed. SBSs proved that application of NAD in one coat with 20s agitated dwell time was > or =20 MPa, enamel SBSs (24h) were 25 MPa, p>0.05. Dentin SBSs for TSB and NAD were not different (p>0.05) at the four stages (means: 18.9, 23.5, 25.4, and 23.6 MPa). Five and seven of the eight bonded restorations with TSB and NAD were gap-free (p>0.05). Dentin disks treated with EDTA from both sides or one side only were highly permeable for liquid, whereas adhesive-coated dentin disks showed no permeability at 0 and 2.5 kPa water pressure. Within the limitations of this study the model adhesive tested represents a promising basic composition for all-in-one adhesives, eliminating common problems encountered with single step adhesives such as phase separation and permeability.

  11. Influence of a hydrophobic resin coating on the immediate and 6-month dentin bonding of three universal adhesives.

    PubMed

    Sezinando, Ana; Luque-Martinez, Issis; Muñoz, Miguel Angel; Reis, Alessandra; Loguercio, Alessandro D; Perdigão, Jorge

    2015-10-01

    To test the influence of a hydrophobic resin coating (HC) on the immediate (24h) and 6-month (6m) microtensile dentin bond strengths (μTBS) and nanoleakage (NL) of three universal adhesives applied in self-etch (SE) or in etch-and-rinse (ER) mode. Sixty caries-free extracted third molars were assigned to 12 experimental groups resulting from the combination of the factors "adhesive system" (Scotchbond Universal Adhesive [SBU], 3M ESPE; All-Bond Universal [ABU], Bisco Inc.; and G-Bond Plus [GBP], GC Corporation); "adhesive strategy" (SE or ER); "hydrophobic resin coating" [HC] (with or without Heliobond, Ivoclar Vivadent); and "storage time" (24h or 6m). Specimens were prepared for μTBS testing - (24h) half of the beams were immediately tested under tension; and (6m) the other half was stored in distilled water (37°C) for 6m prior to testing. For each tooth, two beams were randomly selected for NL evaluation for both evaluation times. Data were analyzed for each adhesive system using three-way ANOVA and Tukey's post-hoc test (α=0.05). μTBS: (24h): In SE mode, HC resulted in statistically greater mean μTBS for all adhesives. (6m): When HC was not used the mean μTBS for SBU/ER, ABU/ER, GBP/ER and SBU/SE decreased significantly. NL: (24h): SBU/ER, ABU/ER and GBP/SE resulted in a significant reduction in NL when HC was applied. (6m): No significant reduction was observed for SBU/ER or for SBU/SE regardless of the use of HC. The application of a hydrophobic resin coating improved the 24h and the 6m performances of all three adhesives systems in SE mode. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Influence of light intensity on surface free energy and dentin bond strength of core build-up resins.

    PubMed

    Shimizu, Y; Tsujimoto, A; Furuichi, T; Suzuki, T; Tsubota, K; Miyazaki, M; Platt, J A

    2015-01-01

    We examined the influence of light intensity on surface free energy characteristics and dentin bond strength of dual-cure direct core build-up resin systems. Two commercially available dual-cure direct core build-up resin systems, Clearfil DC Core Automix with Clearfil Bond SE One and UniFil Core EM with Self-Etching Bond, were studied. Bovine mandibular incisors were mounted in acrylic resin and the facial dentin surfaces were wet ground on 600-grit silicon carbide paper. Adhesives were applied to dentin surfaces and cured with light intensities of 0 (no irradiation), 200, 400, and 600 mW/cm(2). The surface free energy of the adhesives (five samples per group) was determined by measuring the contact angles of three test liquids placed on the cured adhesives. To determine the strength of the dentin bond, the core build-up resin pastes were condensed into the mold on the adhesive-treated dentin surfaces according to the methods described for the surface free energy measurement. The resin pastes were cured with the same light intensities as those used for the adhesives. Ten specimens per group were stored in water maintained at 37°C for 24 hours, after which they were shear tested at a crosshead speed of 1.0 mm/minute in a universal testing machine. Two-way analysis of variance (ANOVA) and a Tukey-Kramer test were performed, with the significance level set at 0.05. The surface free energies of the adhesive-treated dentin surfaces decreased with an increase in the light intensity of the curing unit. Two-way ANOVA revealed that the type of core build-up system and the light intensity significantly influence the bond strength, although there was no significant interaction between the two factors. The highest bond strengths were achieved when the resin pastes were cured with the strongest light intensity for all the core build-up systems. When polymerized with a light intensity of 200 mW/cm(2) or less, significantly lower bond strengths were observed. CONClUSIONS: The

  13. Nano-scale surface morphology, wettability and osteoblast adhesion on nitrogen plasma-implanted NiTi shape memory alloy.

    PubMed

    Liu, X M; Wu, S L; Chu, Paul K; Chung, C Y; Chu, C L; Chan, Y L; Lam, K O; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K

    2009-06-01

    Plasma immersion ion implantation (PIII) is an effective method to increase the corrosion resistance and inhibit nickel release from orthopedic NiTi shape memory alloy. Nitrogen was plasma-implanted into NiTi using different pulsing frequencies to investigate the effects on the nano-scale surface morphology, structure, wettability, as well as biocompatibility. X-ray photoelectron spectroscopy (XPS) results show that the implantation depth of nitrogen increases with higher pulsing frequencies. Atomic force microscopy (AFM) discloses that the nano-scale surface roughness increases and surface features are changed from islands to spiky cones with higher pulsing frequencies. This variation in the nano surface structures leads to different surface free energy (SFE) monitored by contact angle measurements. The adhesion, spreading, and proliferation of osteoblasts on the implanted NiTi surface are assessed by cell culture tests. Our results indicate that the nano-scale surface morphology that is altered by the implantation frequencies impacts the surface free energy and wettability of the NiTi surfaces, and in turn affects the osteoblast adhesion behavior.

  14. Antibacterial activity of resin adhesives, glass ionomer and resin-modified glass ionomer cements and a compomer in contact with dentin caries samples.

    PubMed

    Herrera, M; Castillo, A; Bravo, M; Liébana, J; Carrión, P

    2000-01-01

    A total of 103 clinical samples of carious dentin were used to study the antibacterial action of different dental resin adhesive materials (Gluma 2000, Syntac, Prisma Universal Bond 3, Scotchbond Multi-Purpose and Prime&Bond 2.0) glass ionomer cements (Ketac-Cem, Ketac-Bond, Ketac-Silver, Ketac-Fil) resin-modified glass ionomer cements (Fuji II LC, Vitremer and Vitrebond) and a compomer (Dyract). The agar plate diffusion method was used for the microbial cultures and a chlorhexidine control. The growth of the caries-producing microorganisms was effectively inhibited by the Vitremer and Vitrebond cements, and to a lesser extent by the Scotchbond Multi-Purpose adhesive system. Overall, there were statistically significant differences in the antibacterial activity of the products tested.

  15. Influence of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires

    NASA Astrophysics Data System (ADS)

    Asiry, Moshabab A.; AlShahrani, Ibrahim; Almoammar, Salem; Durgesh, Bangalore H.; Kheraif, Abdulaziz A. Al; Hashem, Mohamed I.

    2018-02-01

    Aim. To investigate the effect of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires Methods. Three different coated (Epoxy, polytetrafluoroethylene (PTFE) and rhodium) and one uncoated Ni-Ti archwires were evaluated in the present study. Surface roughness (Ra) was assessed using a non-contact surface profilometer. The mechanical properties (nano-hardness and elastic modulus) were measured using a nanoindenter. Bacterial adhesion assays were performed using Streptococcus mutans (MS) and streptococcus sobrinus (SS) in an in-vitro set up. The data obtained were analyzed using analyses of variance, Tukey’s post hoc test and Pearson’s correlation coefficient test. Result. The highest Ra values (1.29 ± 0.49) were obtained for epoxy coated wires and lowest Ra values (0.29 ± 0.16) were obtained for the uncoated wires. No significant differences in the Ra values were observed between the rhodium coated and uncoated archwires (P > 0.05). The highest nano-hardness (3.72 ± 0.24) and elastic modulus values (61.15 ± 2.59) were obtained for uncoated archwires and the lowest nano-hardness (0.18 ± 0.10) and elastic modulus values (4.84 ± 0.65) were observed for epoxy coated archwires. No significant differences in nano-hardness and elastic modulus values were observed between the coated archwires (P > 0.05). The adhesion of Streptococcus mutans (MS) to the wires was significantly greater than that of streptococcus sobrinus (SS). The epoxy coated wires demonstrated an increased adhesion of MS and SS and the uncoated wires demonstrated decreased biofilm adhesion. The Spearman correlation test showed that MS and SS adhesion was positively correlated with the surface roughness of the wires. Conclusion. The different surface coatings significantly influence the roughness, nano-mechanical properties and biofilm adhesion parameters of the archwires. The

  16. Salivary contamination during bonding procedures with a one-bottle adhesive system.

    PubMed

    Fritz, U B; Finger, W J; Stean, H

    1998-09-01

    The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.

  17. The influence of temporary cements on dental adhesive systems for luting cementation.

    PubMed

    Ribeiro, José C V; Coelho, Paulo G; Janal, Malvin N; Silva, Nelson R F A; Monteiro, André J; Fernandes, Carlos A O

    2011-03-01

    This study tested the hypothesis that bond strength of total- and self-etching adhesive systems to dentine is not affected by the presence of remnants from either eugenol-containing (EC) or eugenol-free (EF) temporary cements after standardized cleaning procedures. Thirty non-carious human third molars were polished flat to expose dentine surfaces. Provisional acrylic plates were fabricated and cemented either with EC, EF or no temporary cements. All specimens were incubated for 7 days in water at 37°C. The restorations were then taken out and the remnants of temporary cements were mechanically removed with a dental instrument. The dentine surfaces were cleaned with pumice and treated with either total-etching (TE) or self-etching (SE) dental adhesive systems. Atomic force microscopy was used to examine the presence of remnants of temporary cements before and after dentine cleaning procedures. Composite resin build-ups were fabricated and cemented to the bonded dentine surfaces with a resin luting cement. The specimens were then sectioned to obtain 0.9mm(2) beams for microtensile bond strength testing. Fractographic analysis was performed by optical and scanning electron microscopy. ANOVA showed lower mean microtensile bond strength in groups of specimens treated with EC temporary cement than in groups treated with either no cement or an EF cement (p<0.05). Mean microtensile bond strength was lower in groups employing the SE rather than the TE adhesive system (p<0.001). SE samples were also more likely to fail during initial processing of the samples. There was no evidence of interaction between cement and adhesive system effects on tensile strength. Fractographic analysis indicated different primary failure modes for SE and TE bonding systems, at the dentine-adhesive interface and at the resin cement-resin composite interface, respectively. The use of eugenol-containing temporary cements prior to indirect bonding restorations reduce, to a statistically similar

  18. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate

    PubMed Central

    Melo, Mary Anne S.; Cheng, Lei; Zhang, Ke; Weir, Michael D.; Rodrigues, Lidiany K. A.; Xu, Hockin H. K.

    2012-01-01

    Objectives Secondary caries is the main reason for restoration failure, and replacement of the failed restorations accounts for 50–70% of all restorations. Antibacterial adhesives could inhibit residual bacteria in tooth cavity and invading bacteria along the margins. Calcium (Ca) and phosphate (P) ion release could remineralize the lesions. The objectives of this study were to incorporate nanoparticles of silver (NAg) and nanoparticles of amorphous calcium phosphate (NACP) into adhesive for the first time, and to investigate the effects on dentin bond strength and plaque microcosm biofilms. Methods Scotchbond Multi-Purpose adhesive was used as control. NAg were added into primer and adhesive at 0.1% by mass. NACP were mixed into adhesive at 10%, 20%, 30% and 40%. Microcosm biofilms were grown on disks with primer covering the adhesive on a composite. Biofilm metabolic activity, colony-forming units (CFU) and lactic acid were measured. Results Human dentin shear bond strengths (n=10) ranged from 26 to 34 MPa; adding NAg and NACP into adhesive did not decrease the bond strength (p > 0.1). SEM examination revealed resin tags from well-filled dentinal tubules. Numerous NACP infiltrated into the dentinal tubules. While NACP had little antibacterial effect, NAg in bonding agents greatly reduced the biofilm viability and metabolic activity, compared to the control (p < 0.05). CFU for total microorganisms, total streptococci, and mutans streptococci on bonding agents with NAg were an order of magnitude less than those of the control. Lactic acid production by biofilms for groups containing NAg was 1/4 of that of the control. Significance Dental plaque microcosm biofilm viability and acid production were greatly reduced on bonding agents containing NAg and NACP, without compromising dentin bond strength. The novel method of incorporating dual agents (remineralizing agent NACP and antibacterial agent NAg) may have wide applicability to other dental bonding systems. PMID

  19. Evaluation of cytotoxic effects of six self-etching adhesives with direct and indirect contact tests.

    PubMed

    Kusdemir, Mahmut; Gunal, Solen; Ozer, Fusun; Imazato, Satoshi; Izutani, Naomi; Ebisu, Shigeyuki; Blatz, Markus B

    2011-01-01

    This study evaluated the cytotoxicity of self-etching primers/adhesives by direct contact and dentin barrier tests. The three two-step self-etching systems Clearfil SE Bond (CSE), Clearfil Protect Bond (CPB), Prime&Bond NT/NRC (PB) and one-step self-etching systems Reactmer Bond (RB), Clearfil Tri-S Bond (CTS), and Adper Prompt L-Pop (AP) were examined. In direct contact tests, L929 cells were cultured in the presence of diluted solutions (50, 20, 10, and 1%) of primer/conditioner of adhesive systems. For dentin barrier tests, each system was applied onto 0.5 or 1.5 mm thick human dentin assembled in a simple pulp chamber device and incubated for 24 h at 37°C to make the diffusive components contact the L929 cells placed at the bottom of the chamber. The cytotoxic effects were assessed by MTT assay. Cell culture without application of any primers/adhesives served as the control for both tests. One-way ANOVA and Tukey HSD tests were used for statistical analyses. The direct contact tests demonstrated that CSE and CPB were less toxic than the other materials at all dilutions. In the dentin barrier tests, toxic effects of materials were reduced with an increase in thickness of intervening dentin. CSE and CPB showed less cytotoxicity than the other adhesives (p<0.05) when applied to 0.5 mm-thick dentin, and CSE was the least toxic in the 1.5 mm-dentin group (p<0.05). Dentin thickness positively affected biocompatibility of the tested bonding systems. Two-step self-etching systems with HEMA-based primers were more biocompatible than other self-etching adhesives.

  20. Nano-anisotropic surface coating based on drug immobilized pendant polymer to suppress macrophage adhesion response.

    PubMed

    Kaladhar, K; Renz, H; Sharma, C P

    2015-04-01

    Exploring drug molecules for material design, to harness concepts of nano-anisotropy and ligand-receptor interactions, are rather elusive. The aim of this study is to demonstrate the bottom-up design of a single-step and bio-interactive polymeric surface coating, based on drug based pendant polymer. This can be applied on to polystyrene (PS) substrates, to suppress macrophage adhesion and spreading. The drug molecule is used in this coating for two purposes. The first one is drug as a "pendant" group, to produce nano-anisotropic properties that can enable adhesion of the coatings to the substrate. The second purpose is to use the drug as a "ligand", to produce ligand-receptor interaction, between the bound ligand and receptors of albumin, to develop a self-albumin coat over the surface, by the preferential binding of albumin in biological environment, to reduce macrophage adhesion. Our in silico studies show that, diclofenac (DIC) is an ideal drug based "ligand" for albumin. This can also act as a "pendant" group with planar aryl groups. The combination of these two factors can help to harness, both nano-anisotropic properties and biological functions to the polymeric coating. Further, the drug, diclofenac (DIC) is immobilized to the polyvinyl alcohol (PVA), to develop the pendant polymer (PVA-DIC). The interaction of bound DIC with the albumin is a ligand-receptor based interaction, as per the studies by circular dichroism, differential scanning calorimetry, and SDS-PAGE. The non-polar π-π* interactions are regulating; the interactions between PVA bound DIC-DIC interactions, leading to "nano-anisotropic condensation" to form distinct "nano-anisotropic segments" inside the polymeric coating. This is evident from, the thermo-responsiveness and uniform size of nanoparticles, as well as regular roughness in the surface coating, with similar properties as that of nanoparticles. In addition, the hydrophobic DIC-polystyrene (PS) interactions, between the PVA

  1. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words

  2. Is chlorhexidine-methacrylate as effective as chlorhexidine digluconate in preserving resin dentin interfaces?

    PubMed

    Abu Nawareg, Manar; Elkassas, Dina; Zidan, Ahmed; Abuelenain, Dalia; Abu Haimed, Tariq; Hassan, Ali H; Chiba, Ayaka; Bock, Thorsten; Agee, Kelli; Pashley, David H

    2016-02-01

    The aim of the current study was to evaluate the effect of 2% CHX and 2% CHX-methacrylate compared to the resin-dentin bonds created by a two-step etch-and-rinse adhesive system after 24h, 6min and 12min. Microtensile bond strengths and interfacial nanoleakage within resin-dentin interfaces created by Adper Single Bond 2, with or without CHX or CHX-methacrylate pre-treatment for 30s on acid-etched dentin surfaces, were evaluated after 24h, 6min and 12min of storage in distilled water at 37°C. Twelve months of storage resulted in a significant decrease in microtensile bond strength in the control group, and significant increases in silver nanoleakage. In contrast, Single Bond 2+CHX, and to a greater extent CHX-methacrylate, significantly reduced the rate of deterioration of resin-dentin interfaces over the 12min water storage period, in terms of bond strength. Similar to Single Bond 2+CHX, Single Bond+CHX-methacrylates reduced the degradation of resin-bonded interfaces over a 12 month storage period. Thus it can be concluded that Single Bond 2+CHX-methacrylate may be important to improve durability of bonded interfaces and therefore, prolong the life span of adhesive restorations. Although CHX primers have been shown to enhance the durability of etch-and-rinse adhesives, that protection is lost after 2h. The use of CHX-methacrylate should last much longer since it may copolymerize with adhesive monomers, unlike CHX. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation.

    PubMed

    Keivani, F; Shokrollahi, P; Zandi, M; Irani, S; F Shokrolahi; Khorasani, S C

    2016-11-01

    Polycaprolactone (PCL)/hydroxyapatite nano-composites are among the best candidates for tissue engineering. However, interactions between nHAp and PCL are difficult to control leading to inhomogeneous dispersion of the bio-ceramic particles. Grafting of polymer chains at high density/chain length while promotes the phase compatibility may result in reduced HAp exposed surface area and therefore, bioactivity is compromised. This issue is addressed here by grafting PCL chains onto HAp nano-particles through ring opening polymerization of ε-caprolactone (PCL-g-HAp). FTIR and TGA analysis showed that PCL (6.9wt%), was successfully grafted on the HAp. PCL/PCL-g-HAp nano-fibrous scaffold showed up to 10 and 33% enhancement in tensile strength and modulus, respectively, compared to those of PCL/HAp. The effects of HAp on the in vitro HAp formation were investigated for both the PCL/HAp and PCL/PCL-g-HAp scaffolds. Precipitation of HAp on the nano-composite scaffolds observed after 15days incubation in simulated body fluid (SBF), as confirmed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Human fibroblasts were seeded on PCL, PCL/HAp and PCL/PCL-g-HAp scaffolds. According to MTT assay, the highest cell proliferation was recorded for PCL/PCL-g-HAp nano-composite, at all time intervals (1-21days, P<0.001). Fluorescent microscopy (of DAPI stained samples) and electron microscopy images showed that all nano-fibrous scaffolds (PCL, PCL/HAp, and PCL/PCL-g-HAp), were non-toxic against cells, while more cell adhesion, and the most uniform cell distribution observed on the PCL/PCL-g-HAp. Overall, grafting of relatively short chains of PCL on the surface of HAp nano-particles stimulates fibroblasts adhesion and proliferation on the PCL/PCL-g-HAp nano-composite. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    PubMed

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Self-etch and etch-and-rinse adhesive systems in clinical dentistry.

    PubMed

    Ozer, Fusun; Blatz, Markus B

    2013-01-01

    Current adhesive systems follow either an "etch-and-rinse" or "self-etch" approach, which differ in how they interact with natural tooth structures. Etch-and-rinse systems comprise phosphoric acid to pretreat the dental hard tissues before rinsing and subsequent application of an adhesive. Self-etch adhesives contain acidic monomers, which etch and prime the tooth simultaneously. Etch-and-rinse adhesives are offered as two- or three-step systems, depending on whether primer and bonding are separate or combined in a single bottle. Similarly, self-etch adhesives are available as one- or two-step systems. Both etch-and-rinse and self-etch systems form a hybrid layer as a result of resins impregnating the porous enamel or dentin. Despite current trends toward fewer and simpler clinical application steps, one-step dentin bonding systems exhibit bonding agent lower bond strengths and seem less predictable than multi-step etch-and-rinse and self-etch systems. The varying evidence available today suggests that the choice between etch-and-rinse and self-etch systems is often a matter of personal preference. In general, however, phosphoric acid creates a more pronounced and retentive etching pattern in enamel. Therefore, etch-and-rinse bonding systems are often preferred for indirect restorations and when large areas of enamel are still present. Conversely, self-etch adhesives provide superior and more predictable bond strength to dentin and are, consequently, recommended for direct composite resin restorations, especially when predominantly supported by dentin.

  6. The evaluation of dentinal tubule occlusion by desensitizing agents: a real-time measurement of dentinal fluid flow rate and scanning electron microscopy.

    PubMed

    Kim, S Y; Kim, E J; Kim, D S; Lee, I B

    2013-01-01

    The aims of this study were to examine changes in dentinal fluid flow (DFF) during the application of a desensitizing agent and to compare the permeability reduction levels among different types of desensitizing agents. A cervical cavity was prepared for the exposure of cervical dentin on an extracted human premolar connected to a subnanoliter fluid flow measuring device under 20 cm of water pressure. The cavity was acid-etched with 32% phosphoric acid to make dentin highly permeable. The different types of desensitizing agents that were applied on the cavity were Seal&Protect as the light-curing adhesive type, SuperSeal and BisBlock as oxalate types, Gluma Desensitizer as the protein-precipitation type, and Bi-Fluoride 12 as the fluoride type. DFF was measured from the time before the application of the desensitizing agent throughout the application procedure to five minutes after the application. The characteristics of dentinal tubule occlusion of each desensitizing agent were examined by scanning electron microscopy. The DFF rate after each desensitizing agent application was significantly reduced when compared to the initial DFF rate before application for all of the desensitizing agents (p<0.05). Seal&Protect showed a greater reduction in the DFF rate when compared to Gluma Desensitizer and Bi-Fluoride 12 (p<0.05). SuperSeal and BisBlock exhibited a greater reduction in DFF rate when compared to Bi-Fluoride 12 (p<0.05). The dentin hypersensitivity treatment effects of the employed desensitizing agents in this study were confirmed through real-time measurements of DFF changes. The light-curing adhesive and oxalate types showed greater reduction in the DFF rate than did the protein-precipitation and fluoride types.

  7. Nano- and microcrystalline diamond deposition on pretreated WC-Co substrates: structural properties and adhesion

    NASA Astrophysics Data System (ADS)

    Fraga, M. A.; Contin, A.; Rodríguez, L. A. A.; Vieira, J.; Campos, R. A.; Corat, E. J.; Trava Airoldi, V. J.

    2016-02-01

    Many developments have been made to improve the quality and adherence of CVD diamond films onto WC-Co hard metal tools by the removing the cobalt from the substrate surface through substrate pretreatments. Here we compare the efficiency of three chemical pretreatments of WC-Co substrates for this purpose. First, the work was focused on a detailed study of the composition and structure of as-polished and pretreated substrate surfaces to characterize the effects of the substrate preparation. Considering this objective, a set of WC-9% Co substrates, before and after pretreatment, was analyzed by FEG-SEM, EDS and x-ray diffraction (XRD). The second stage of the work was devoted to the evaluation of the influence of seeding process, using 4 nm diamond nanoparticles, on the morphology and roughness of the pretreated substrates. The last and most important stage was to deposit diamond coatings with different crystallite sizes (nano and micro) by hot-filament CVD to understand fully the mechanism of growth and adhesion of CVD diamond films on pretreated WC-Co substrates. The transition from nano to microcrystalline diamond was achieved by controlling the CH4/H2 gas ratio. The nano and microcrystalline samples were grown under same time at different substrate temperatures 600 °C and 800 °C, respectively. The different substrate temperatures allowed the analysis of the cobalt diffusion from the bulk to the substrate surface during CVD film growth. Furthermore, it was possible to evaluate how the coating adhesion is affected by the diffusion. The diamond coatings were characterized by Raman spectroscopy, XRD, EDS, FEG-SEM, atomic force microscope and 1500 N Rockwell indentation to evaluate the adhesion.

  8. Mapping large extensions of flat dentin through digital microscopy: introduction to the method and possible applications.

    PubMed

    Reis, Claudia; De-Deus, Gustavo; Marins, Juliana; Fidel, Sandra; Fidel, Rivail; Paciornik, Sidnei

    2012-08-01

    To introduce a mapping method to characterize large dentin surfaces using digital microscopy and to discuss the advantages and possible applications of the method. Twenty unerupted third molars were sectioned transversally exposing coronal dentin surfaces. The microscopic mosaic method was used to generate a large field image with the resolution necessary to measure characteristics of dentin tubules. The AxioVision 4.7 software was used to control a motorized optical microscope and the process of acquiring approximately 400 small images to generate each dentin mosaic. An image analysis routine measured the number of tubules (NT) and the ratio between the total area of tubules and the area of the mosaic - the area fraction (AF) - of each mosaic. An automatic procedure transformed the mosaic image into a color map, providing a direct visual representation of tubule density through colors. The dentin maps were used for a comparative qualitative analysis of tubule density distribution of each sample. The results for NT (92450 to 196029 tubules/sample) and AF (4.12% to 11.10%) demonstrated a wide variation among dentin samples. The maps confirmed the microstructure variety, also revealing strong local variations in tubule density within each sample. The mapping method was able to perform dentin morphology characterization and is a valuable tool for producing a baseline for dentin adhesion studies. The method could be also useful in determining the real contribution of dentin structures to the final adhesion quality.

  9. Influence of water storage on fatigue strength of self-etch adhesives.

    PubMed

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Scheidel, Donal D; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2015-12-01

    The purpose of this study was to determine enamel and dentin bond durability after long-term water storage using self-etch adhesives. Two single step self-etch adhesives (SU, Scotchbond Universal and GB, G-ӕnial Bond) and a two-step self-etch adhesive (OX, OptiBond XTR) were used. The shear bond strength (SBS) and shear fatigue strength (FS) of the enamel and dentin were obtained with and without phosphoric acid pre-etching prior to application of the adhesives. The specimens were stored in distilled water at 37 °C for 24 h, 6 months, and one year. A staircase method was used to determine the FS using a frequency of 10 Hz for 50,000 cycles or until failure occurred. The SBS and FS of enamel bonds were significantly higher with pre-etching, when compared to no pre-etching for the same water storage period. The FS of dentin bonds with pre-etching tended to decrease relative to no pre-etching at the same storage period. For the one year storage period, SU and GB with pre-etching showed significantly lower FS values than the groups without pre-etching. The influence of water storage on FS of the self-etch adhesives was dependent on the adhesive material, storage period and phosphoric acid pre-etching of the bonding site. Phosphoric acid pre-etching of enamel improves the effectiveness of self-etch adhesive systems. Inadvertent contact of phosphoric acid on dentin appears to reduce the ability of self-etch adhesives to effectively bond resin composite materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Nano-hydroxyapatite-coated metal-ceramic composite of iron-tricalcium phosphate: Improving the surface wettability, adhesion and proliferation of mesenchymal stem cells in vitro.

    PubMed

    Surmeneva, Maria A; Kleinhans, Claudia; Vacun, Gabriele; Kluger, Petra Juliane; Schönhaar, Veronika; Müller, Michaela; Hein, Sebastian Boris; Wittmar, Alexandra; Ulbricht, Mathias; Prymak, Oleg; Oehr, Christian; Surmenev, Roman A

    2015-11-01

    Thin radio-frequency magnetron sputter deposited nano-hydroxyapatite (HA) films were prepared on the surface of a Fe-tricalcium phosphate (Fe-TCP) bioceramic composite, which was obtained using a conventional powder injection moulding technique. The obtained nano-hydroxyapatite coated Fe-TCP biocomposites (nano-HA-Fe-TCP) were studied with respect to their chemical and phase composition, surface morphology, water contact angle, surface free energy and hysteresis. The deposition process resulted in a homogeneous, single-phase HA coating. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells (hMSCs) was studied using biological short-term tests in vitro. The surface of the uncoated Fe-TCP bioceramic composite showed an initial cell attachment after 24h of seeding, but adhesion, proliferation and growth did not persist during 14 days of culture. However, the HA-Fe-TCP surfaces allowed cell adhesion, and proliferation during 14 days. The deposition of the nano-HA films on the Fe-TCP surface resulted in higher surface energy, improved hydrophilicity and biocompatibility compared with the surface of the uncoated Fe-TCP. Furthermore, it is suggested that an increase in the polar component of the surface energy was responsible for the enhanced cell adhesion and proliferation in the case of the nano-HA-Fe-TCP biocomposites. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Characterization of hydrophilic-rich phase mimic in dentin adhesive and computer-aided molecular design of water compatible visible light initiators

    NASA Astrophysics Data System (ADS)

    Abedin, Farhana

    The clinical lifetime of moderate-to-large dental composite restorations is lower than dental amalgam restorations. With the imminent and significant reduction in the use and availability of dental amalgam, the application of composite for the restoration of teeth will increase. Since composite has a higher failure rate, the increased use of composite will translate to an increase in the frequency of dental restoration replacement, overall cost for dental health and discomfort for patients. The composite is too viscous to bond directly to the tooth and thus, a low viscosity adhesive is used to form the bond between the composite and tooth. The bond at the adhesive/tooth is intended to form an impervious seal that protects the restored tooth from acids, oral fluids and bacteria that will undermine the composite restoration. The integrity of the adhesive/tooth bond (the exposed tooth structure is largely composed of enamel and dentin) plays an important role in preventing secondary caries which undermine the composite restoration. This study focuses on the durability of etch-and-rinse dental adhesives. As the adhesive infiltrates the demineralized dentin matrix, it undergoes phase separation into hydrophobic- and hydrophilic-rich phases. The hydrophilic-rich phase contains the conventional hydrophobic photo-initiator system (camphorquinone/ethyl 4-(dimethylamino)benzoate) and cross-linker both in inadequate concentrations. This may compromise the polymerization reaction and the cross-linking density of this phase, making it vulnerable to failure. The goal of this study is to characterize the hydrophilic-rich phase of the dental adhesive by monitoring its polymerization kinetics and glass transition temperature under the presence of an iodonium salt (reaction accelerator), and varying water concentration, photo-initiator concentration and light intensity. The final goal is to develop a computational framework for designing water compatible visible light

  12. Micro-shear bond strengths of adhesive resins to coronal dentin versus the floor of the pulp chamber.

    PubMed

    Toba, Shigemitsu; Veerapravati, Weeraporn; Shimada, Yasushi; Nikaido, Toru; Tagami, Junji

    2003-09-01

    To evaluate the micro-shear bond strengths to superficial coronal dentin and the floor of the pulp chamber using two dentin bonding systems and to compare the ultrastructure of the resin-dentin interface of the two regions. 30 non-carious molars were used to obtain 2 mm thick slabs of coronal dentin and dentin at the pulp chamber. The specimens in each region were divided into three sub-groups to be bonded as follows; Clearfil SE Bond was used according to the manufacturer's instructions, Single Bond was applied to either wet dentin (Blot dry Group) or air-dried dentin (Dry Group) after phosphoric acid etching. A resin composite cylinder 0.5 mm high and 0.75 mm in diameter formed using a vinyl tube was bonded to the dentin. Specimens were stored at 37 degrees C for 24 hours in water and then stressed in shear at a crosshead speed of 1 mm/minute. The data were analyzed with one-way ANOVA and Fisher's PLSD test at the 5% level of significance. In addition, the ultrastructure of cross-sectioned dentin surfaces, the conditioned dentin surface and the resin dentin interfaces were observed by SEM. The bond strengths of Clearfil SE Bond and the Single Bond Blot dry group were approximately 40 MPa in coronal dentin and 30 MPa in the dentin at the floor of the pulp chamber respectively. However, the bond strengths of Single Bond were significantly lower in the Dry condition (MPa) (P < 0.05). SEM observations revealed the thickness of the hybrid layer created by Clearfil SE Bond in coronal dentin and at the floor of the pulp chamber were less than 1.0 microm thick. For Single Bond, a 3-4 microm hybrid layer was created in coronal dentin, while a thinner hybrid layer was observed in the floor of the pulp chamber. Morphological and structural variations in dentin may have influenced the bond strengths of the bonding systems to the floor of the pulp chamber.

  13. Evaluation of sub-surface penetration and bonding durability of self-etching primer systems to Er:YAG laser treated cervical dentin.

    PubMed

    He, Zhengdi; Chen, Lingling; Shimada, Yasushi; Tagami, Junji; Ruan, Shuangchen

    2017-03-31

    This study aimed to investigate self-etching bonding systems penetrating in sub-surface dentin layer after Er:YAG laser irradiation and micro-shear bonding durability over a period of 1 year. Dentin slices obtained from extracted human third molars were prepared. Two self-etching adhesive systems were evaluated: Clearfil SE Bond and Clearfil Tri-S Bond. Specimens were tested for micro-shear bond strength with one of the following treatments: Er:YAG laser irradiation and 600-grit silicon paper polishing at 24 h, 7 days, 6 months and 1 year. The adhesive interfaces between bonding agents and lased cervical dentin were studied. No hybrid layer could be observed for lased dentin. The slim resin tags could be seen penetrating through the lased subsurface layer. Bond strength to lased dentin after 6 months and 1 year were significantly decreased (p<0.05).

  14. Effect of double-layer application on bond quality of adhesive systems.

    PubMed

    Fujiwara, Satoshi; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Imai, Arisa; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Nakatsuka, Toshiyuki; Miyazaki, Masashi

    2018-01-01

    The aim of this study was to determine the effect of double-layer application of universal adhesives on the bond quality and compare to other adhesive systems. Two universal adhesives used were in this study: Scotchbond Universal (SU), [3M ESPE] and Prime & Bond elect (PE), [Dentsply Caulk]. The conventional single-step self-etch adhesives G-ӕnial Bond (GB), [GC Corporation.] and BeautiBond (BB), [Shofu Inc.], and a two-step self-etch adhesive, Optibond XTR (OX), [Kerr Corporation], were used as comparison adhesives. Shear bond strengths (SBS) and shear fatigue strengths (SFS) to human enamel and dentin were measured in single application mode and double application mode. For each test condition, 15 specimens were prepared for SBS testing and 30 specimens for SFS testing. Enamel and dentin SBS of the universal adhesives in the double application mode were significantly higher than those of the single application mode. In addition, the universal adhesives in the double application mode had significantly higher dentin SFS values than those of the single application mode. The two-step self-etch adhesive OX tended to have lower bond strengths in the double application mode, regardless of the test method or adherent substrate. The double application mode is effective in enhancing SBS and SFS of universal adhesives, but not conventional two-step self-etch adhesives. These results suggest that, although the double application mode may enhance the bonding quality of a universal adhesive, it may be counter-productive for two-step self-etch adhesives in clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Development of a multifunctional adhesive system for prevention of root caries and secondary caries

    PubMed Central

    Zhang, Ning; Melo, Mary A. S.; Chen, Chen; Liu, Jason; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2015-01-01

    Objectives The objectives of this study were to: (1) develop a novel adhesive for prevention of tooth root caries and secondary caries by possessing a combination of protein-repellent, antibacterial, and remineralization capabilities for the first time; and (2) investigate the effects of 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM), and nanoparticles of amorphous calcium phosphate (NACP) on dentine bond strength, protein-repellent properties, and dental plaque microcosm biofilm response. Methods MPC, DMAHDM and NACP were added into Scotchbond Multi-Purpose primer and adhesive. Dentine shear bond strengths were measured. Adhesive coating thickness, surface texture and dentine-adhesive interfacial structure were examined. Protein adsorption onto adhesive resin surface was determined by the micro bicinchoninic acid method. A human saliva microcosm biofilm model was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, and lactic acid production. Results The resin with 7.5% MPC + 5% DMAHDM + 30% NACP did not adversely affect dentine shear bond strength (p > 0.1). The resin with 7.5% MPC + 5% DMAHDM + 30% NACP produced a coating on root dentine with a thickness of approximately 70 μm and completely sealed all the dentinal tubules. The resin with 7.5% MPC + 5% DMAHDM + 30% NACP had 95% reduction in protein adsorption, compared to SBMP control (p < 0.05). The resin with 7.5% MPC + 5% DMAHDM + 30% NACP was strongly antibacterial, with biofilm CFU being four orders of magnitude lower than that of SBMP control. Significance The novel multifunctional adhesive with strong protein-repellent, antibacterial and remineralization properties is promising to coat tooth roots to prevent root caries and secondary caries. The combined use of MPC, DMAHDM and NACP may have wide applicability to bonding agents, cements, sealants and composites to inhibit caries. PMID:26187532

  16. Attenuated total reflection fourier transform infrared spectroscopy towards disclosing mechanism of bacterial adhesion on thermally stabilized titanium nano-interfaces.

    PubMed

    Gopal, Judy; Chun, Sechul; Doble, Mukesh

    2016-08-01

    Titanium is widely used as medical implant material and as condenser material in the nuclear industry where its integrity is questioned due to its susceptibility to bacterial adhesion. A systematic investigation on the influence of thermally (50-800 °C) stabilized titanium (TS-Ti) nano oxide towards bacterial adhesion was carried out. The results showed that below 350 °C significant bacterio-phobicity was observed, while above 500 °C significant affinity towards bacterial cells was recorded. Conventional characterization tools such as HR-TEM and XRD did not provide much insight on the changes occurring on the oxide film with heat treatment, however, attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) of the surface showed significant changes in the spectral pattern as a function of increasing heat treatment. It was observed that elevated OH, N-H and C=O groups and rutile titania on the TS-Ti oxide films led to higher affinity for bacterial adhesion. On the other hand low temperature TS-Ti nanooxide films (<350 °C) showed high C-H groups and decreased OH groups on their surface, which possibly contributed towards their bacterio-phobicity. The TS-Ti nanooxide film grown at 50 °C was observed to be the most efficient anti-bacterial adhesion interface, while the 800 °C interface was the one showing highest affinity towards bacterial adhesion. This study confirms the successful application of ATR-FTIR technique for nano-oxide film characterization and towards understanding the variations in bacterial interaction of such nano interfaces.

  17. Influence of chlorhexidine digluconate concentration and application time on resin-dentin bond strength durability.

    PubMed

    Loguercio, Alessandro D; Stanislawczuk, Rodrigo; Polli, Luceli G; Costa, Jully A; Michel, Milton D; Reis, Alessandra

    2009-10-01

    Although it is known that chlorhexidine application may preserve resin-dentin bonds from degradation, the lowest optimal concentration and application time have yet to be established. This study evaluated the effects of different concentrations of chlorhexidine digluconate and different application times on the preservation of resin-dentin bonds formed using two etch-and-rinse adhesives. In experiment 1, after acid etching, the occlusal demineralized dentin was rewetted either with water or with 0.002, 0.02, 0.2, 2, or 4% chlorhexidine for 60 s. In experiment 2, the surfaces were rewetted with water, or with 0.002% or 2% chlorhexidine for 15 or 60 s. After this, both adhesives and composite resin were applied and light-cured. Bonded sticks (0.8 mm(2)) were tested under tension (0.5 mm min(-1)) immediately or after 6 months of storage in water. Two bonded sticks from each tooth were immersed in silver nitrate and analyzed quantitatively using scanning electron microscopy. Reductions in microtensile bond strengths and higher silver nitrate uptake were observed for both adhesives when the rewetting procedure was performed with water. Stable bonds were maintained for up to 6 months under all chlorhexidine conditions tested, irrespective of the chlorhexidine concentration and application time. The use of 0.002% chlorhexidine for 15 s seems to be sufficient to preserve resin-dentin interfaces over a 6-month period.

  18. Comparison of the effect of resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on surface hardness and streptococcus mutans adhesion to artificial enamel lesions.

    PubMed

    Aziznezhad, Mahdiye; Alaghemand, Homayoon; Shahande, Zahra; Pasdar, Nilgoon; Bijani, Ali; Eslami, Abdolreza; Dastan, Zohre

    2017-03-01

    Dental caries is a major public health problem, and Streptococcus mutans is considered the main causal agent of dental caries. This study aimed to compare the effect of three re-mineralizing materials: resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on the surface hardness and adhesion of Streptococcus mutans as noninvasive treatments for initial enamel lesions. This experimental study was conducted from December 2015 through March 2016 in Babol, Iran. Artificial enamel lesions were created on 60 enamel surfaces, which were divided into two groups: Group A and Group B (30 subjects per group). Group A was divided into three subgroups (10 samples in each subgroup), including fluoride varnish group, nano-hydroxy apatite paste group (Nano P paste), and resin infiltrant group (Icon-resin). In Group A, the surface hardness of each sample was measured in three stages: First, on an intact enamel (baseline); second, after creating artificial enamel lesions; third, after application of re-mineralizing materials. In Group B, the samples were divided into five subgroups, including intact enamel, demineralized enamel, demineralized enamel treated with fluoride varnish, Nano P paste, and Icon-resin. In Group B, standard Streptococcus mutans bacteria adhesion (PTCC 1683) was examined and reported in terms of colony forming units (CFU/ml). Then, data were analyzed using ANOVA, Kruskal-Wallis, Mann-Whitney, and post hoc tests. In Group A, after treatment with re-mineralizing materials, the Icon-resin group had the highest surface hardness among the studied groups, then the Nano P paste group and fluoride varnish group, respectively (p = 0.035). In Group B, in terms of bacterial adhesion, fluoride varnish group had zero bacterial adhesion level, and then the Nano P paste group, Icon-resin group, intact enamel group, and the de-mineralized enamel group showed bacterial adhesion increasing in order (p < 0.001). According to the study among the examined materials

  19. Influence of air-powder polishing on bond strength and surface-free energy of universal adhesive systems.

    PubMed

    Tamura, Yukie; Takamizawa, Toshiki; Shimamura, Yutaka; Akiba, Shunsuke; Yabuki, Chiaki; Imai, Arisa; Tsujimoto, Akimasa; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2017-11-29

    The influences of air-powder polishing with glycine or sodium bicarbonate powders on shear bond strengths (SBS) and surface-free energies of universal adhesives were examined. Scotchbond Universal Adhesive (SU, 3M ESPE), G-Premio Bond (GP, GC), Adhese Universal (AU, Ivoclar Vivadent), and All-Bond Universal (AB, Bisco) were used in this study. Bovine dentin surfaces were air polished with glycine or sodium bicarbonate powders prior to the bonding procedure, and resin pastes were bonded to the dentin surface using universal adhesives. SBSs were determined after 24-h storage in distilled water at 37°C. Surface-free energy was then determined by measuring contact angles using three test liquids on dentin surfaces. Significantly lower SBSs were observed for dentin that was air-powder polished and surface-free energies were concomitantly lowered. This study indicated that air-powder polishing influences SBSs and surface-free energies. However, glycine powder produced smaller changes in these surface parameters than sodium bicarbonate.

  20. Bonding Strength Properties of Adhesively-Timber Joint with Thixotropic and Room Temperature Cured Epoxy Based Adhesive Reinforced with Nano- and Micro-particles

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Ansell, M. P.; Smedley, D.

    2011-02-01

    This research work is concerned with in situ bonded-in timber connection using pultruded rod; where the manufacturing of such joint requires adhesive which can produce thick glue-lines and does not allow any use of pressure and heat. Four types of thixotropic (for ease application) and room temperature cured epoxy based were used namely CB10TSS (regarded as standards adhesive), Nanopox (modification of CB10TSS with addition of nanosilica), Albipox (modification of CB10TSS with addition of liquid rubber) and Timberset (an epoxy-based adhesive with addition of micro-size ceramic particles). The quality of the adhesive bonds was accessed using block shear test in accordance with ASTM D905. The bond strength depends on how good the adhesive wet the timber surface. Therefore the viscosity and contact angle was also measured. The nano- and microfiller additions increased the bond strength significantly. The viscosity correlates well with contact angle measurements where lower viscosities are associated with lower contact angles. However contact angle contradicts with measured strength and wettability.

  1. Evaluation of Shear Bond Strength of Total- and Self-etching Adhesive Systems after Application of Chlorhexidine to Dentin Contaminated with a Hemostatic Agent

    PubMed Central

    Sharafeddin, Farahnaz; Farhadpour, Hajar

    2015-01-01

    Statement of the Problem Hemostatic agents may influence the bond strength of different bonding agents. Also, chlorhexidine has shown positive effects on bond strength values and their combination effect has not been reported yet. Purpose The aim of this study was to evaluate the effect of contamination with a hemostatic agent on shear bond strength (SBS) of total- and self-etching adhesive systems and the effect of chlorhexidine application after removal of the hemostatic agent. Materials and Method In this experimental study, the occlusal enamel of each sixty caries-free mandibular molars was removed and their midcoronal dentin was exposed. The specimens were then mounted in auto-polymerizing resin 1mm apical to CEJ. Then, the specimens were divided into 6 groups (n=10) based on contamination with a hemostatic agent (H), application of chlorhexidine (CHX) and the adhesive system used; and then were classified as Group 1: Adper Single Bond (ASB); Group 2: H+ASB; Group 3: H+0.2% CHX+ASB; Group 4: Clearfil SE Bond (CSB); Group 5: H+CSB; Group 6: H+0.2% CHX+CSB. Then, composite resin rods (4×2 mm) were built up on the dentin surfaces and after thermocycling, the SBS (MPa) was evaluated. Statistical analysis was performed using two-way ANOVA and post hoc Tukey tests (p< 0.05). Results There were statistically significant differences between bond strength values of group 1 (ASB) and group 2 (H+ASB) (p< 0.001) and group 1 (ASB) and group 3 (H+CHX+ASB) (p< 0.001). Similarly, significant differences were seen between group 4 (CSB) and group 5 (H+CSB) (p< 0.001) and between group 4 (CSB) and group 6 (H+CHX+CSB) (p< 0.001). Conclusion Contamination with hemostatic agent reduced the SBS of both total- and self-etching adhesive systems. In addition, application of chlorhexidine after the removal of hemostatic agent had a negative effect on SBS of total- and self-etching adhesive systems. PMID:26331146

  2. Changes in deciduous and permanent dentinal tubules diameter after several conditioning protocols: In vitro study.

    PubMed

    de Los Angeles Moyaho-Bernal, María; Contreras-Bulnes, Rosalía; Rodríguez-Vilchis, Laura Emma; Rubio-Rosas, Efraín

    2018-05-08

    Innovators conditioning protocols are emerged in permanent dentin, however for deciduous dentin the information is limited; the aim of this study was to evaluate in vitro diameter of deciduous and permanent dentinal tubules after several conditioning protocols. Eighty dentin samples were distributed in sixteen groups (n = 5 p/g) and dentin surface was conditioned as follow: G1D/G1P acid etching; G2D/G2P, self-etch adhesive; G3D/G3P, G4D/G4P, Er: YAG laser irradiation at 200 mJ-25.5 J/cm 2 and 300 mJ-38.2 J/cm 2 , at 10 Hz under water spray respectively; G5D/G5P, G6D/G6P, G7D/G7P, and G8D/G8P were irradiated under the same energy densities followed phosphoric acid or self-etch adhesive conditioning. The sample dentin of deciduous and permanent teeth was analyzed with scanning electron microscopy and tubule diameter was evaluated by Image Tools Scandium program. Data were subjected to one-way analysis ANOVA to compare among groups with a level of significance at p ≤ .05. For deciduous dentin, diameters were from 1.52 ± 0.32 µm in G3D to 3.88 ± 0.37 µm in G1D; narrowest and widest diameter, respectively (p < .000). While permanent dentin tubules exhibited diameters from 1.16 ± 0.16/1.19 ± 0.12 µm in G7P/G8P to 2.76 ± 0.28 µm in G6P; narrowest and widest diameter, respectively (p < .000). All dentin conditioning protocols produced more open dentin tubules (diameter size) in deciduous dentin than permanent, specific conditioning protocols are required for each tissue (deciduous or permanent dentin), since same protocol produced stronger effects on primary dentin, which is important for dental clinical success in children and adolescents. © 2018 Wiley Periodicals, Inc.

  3. The effect of three variables on shear bond strength when luting a resin inlay to dentin.

    PubMed

    Lee, Jae-Ik; Park, Sung-Ho H

    2009-01-01

    The current study evaluated the effects of three variables on the shear bond strength of indirect composite restorations to human dentin. The three variables examined included immediate dentin sealing (IDS), the thinning of dentin adhesives by air-blowing before cementation and light-curing the dentin adhesive before cementation. One-hundred and eighty cylinder composite inlays, 2 mm in diameter and 3 mm in length, were made using a Tescera ATL system (BISCO Inc). Tooth disks 2-mm thick were obtained from 90 freshly-extracted human premolars. Two indirect composite cylinders were assigned to a single tooth disk. The discs were randomly divided into six groups according to the luting methods. AdheSE (Ivoclar Vivadent) was used as the dentin-bonding agent (DBA) for all groups. In Groups 1, 2 and 3, the dentin was sealed with AdheSE before taking the impression. After priming, the adhesive was lightly air-blown, then light-cured. On the other hand, the dentin was not sealed before taking the impression in Groups 4, 5 and 6. Regarding the application of DBA before cementation, it was gently air-blown and light-cured before cementation in Groups 1 and 4; whereas, it was heavily air-blown and light-cured in Groups 2 and 5 and gently air-blown but not light-cured in Groups 3 and 6. Z-250 and Duo-Link were used as luting materials. After 24-hours of storage, the bonded inlays were subjected to a shear bond test. For each luting material, one-way ANOVA and Duncan's Multiple Range Test were used to compare the shear bond strength. Paired t-tests were also performed to compare the shear strength between the two luting materials. All the statistical tests were carried out at the 95% confidence level. In Z-250, the results of the shear bond strength were as follows: Group 1(14.90MPa) > Group 2(12.22MPa), Group 4(12.16MPa) Group 5(9.61MPa), Group 3(9.60MPa) Group 6(3.54MPa)(p<0.05). In Duo-Link, the following shear bond strengths were obtained: Group 1(14.65MPa) > Group 2

  4. Inhibition of endogenous human dentin MMPs by Gluma

    PubMed Central

    Sabatini, Camila; Scheffel, Débora L.S.; Scheffel, Régis H.; Agee, Kelli A.; Rouch, Katelyn; Takahashi, Masahiro; Breschi, Lorenzo; Mazzoni, Annalisa; Tjäderhane, Leo; Tay, Franklin R.; Pashley, David H.

    2014-01-01

    Objective The objective of this study was to determine if Gluma dentin desensitizer (5.0% glutaraldehyde and 35% HEMA in water) can inhibit the endogenous MMPs of dentin matrices in 60 sec. and to evaluate its effect on dentin matrix stiffness and dry mass weight. Methods Dentin beams of 2×1×6 mm were obtained from extracted human third molars coronal dentin. To measure the influence of Gluma treatment time on total MMP activity of dentin, beams were dipped in 37% phosphoric acid (PA) for 15 sec. and rinsed in water. The acid-etched beams were then dipped in Gluma for 5, 15, 30 or 60 sec., rinsed in water and incubated into SensoLyte generic MMP substrate (AnaSpec, Inc.) for 60 min. Controls were dipped in water for 60 sec. Additional beams of 1×1×6 mm were completely demineralized in 37% PA for 18 h, rinsed and used to evaluate changes on the dry weight and modulus of elasticity (E) after 60 sec. of Gluma treatment followed by incubation in simulated body fluid buffer for zero, one or four weeks. E was measured by 3-pt flexure. Results Gluma treatment inhibited total MMP activity of acid-etched dentin by 44, 50, 84, 86 % after 5, 15, 30 or 60 sec. of exposure, respectively. All completely demineralized dentin beams lost stiffness after one and four weeks, with no significant differences between the control and Gluma-treated dentin. Gluma treatment for 60 sec. yielded significantly less dry mass loss than the control after four weeks. Significance The use of Gluma may contribute to the preservation of adhesive interfaces by its cross-linking and inhibitory properties of endogenous dentin MMPs. PMID:24846803

  5. The effects of dentin and intaglio indirect ceramic optimized polymer restoration surface treatment on the shear bond strength of resin cement

    NASA Astrophysics Data System (ADS)

    Puspitarini, A.; Suprastiwi, E.; Usman, M.

    2017-08-01

    Ceramic optimized polymer (ceromer) bonds to the tooth substrate through resin cements. The bond strength between dentin, resin cement, and ceromer depends on the applied surface treatment. To analyze the effects of dentin and intaglio ceromer surface treatment on the shear bond strength self-adhesive resin cement. Forty-five dentin premolar and ceromer specimens were bonded with resin cement and divided into three groups as follows: in group 1, no treatment was applied; in group 2, dentin surface treatment was carried out with acid etching and a bonding agent; and in group 3, dentin surface treatment was carried out with acid etching, a bonding agent, and intaglio ceromer surface treatment with etching and silane. All specimens were incubated at 37 °C for 24 hours, and the shear bond strength was measured using a universal testing machine. Group 3 showed the highest shear bond strength, followed by group 2. The surface treatment of dentin and intaglio ceromer showed significantly improved shear bond strength in the group comparison. Dentin and intaglio ceromer surface treatment can improved the shear bond strength self-adhesive resin cement.

  6. Water interaction and bond strength to dentin of dye-labelled adhesive as a function of the addition of rhodamine B.

    PubMed

    Wang, Linda; Bim, Odair; Lopes, Adolfo Coelho de Oliveira; Francisconi-Dos-Rios, Luciana Fávaro; Maenosono, Rafael Massunari; D'Alpino, Paulo Henrique Perlatti; Honório, Heitor Marques; Atta, Maria Teresa

    2016-01-01

    This study investigated the effect of the fluorescent dye rhodamine B (RB) for interfacial micromorphology analysis of dental composite restorations on water sorption/solubility (WS/WSL) and microtensile bond strength to dentin (µTBS) of a 3-step total etch and a 2-step self-etch adhesive system. The adhesives Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) were mixed with 0.1 mg/mL of RB. For the WS/WSL tests, cured resin disks (5.0 mm in diameter x 0.8 mm thick) were prepared and assigned into four groups (n=10): MP, MP-RB, SE, and SE-RB. For µTBS assessment, extracted human third molars (n=40) had the flat occlusal dentin prepared and assigned into the same experimental groups (n=10). After the bonding and restoration procedures, specimens were sectioned in rectangular beams, stored in water and tested after seven days or after 12 months. The failure mode of fractured specimens was qualitatively evaluated under optical microscope (x40). Data from WS/WSL and µTBS were assessed by one-way and three-way ANOVA, respectively, and Tukey's test (α=5%). RB increased the WSL of MP and SE. On the other hand, WS of both MP and SE was not affected by the addition of RB. No significance in µTBS between MP and MP-RB for seven days or one year was observed, whereas for SE a decrease in the µTBS means occurred in both storage times. RB should be incorporated into non-simplified DBSs with caution, as it can interfere with their physical-mechanical properties, leading to a possible misinterpretation of bonded interface.

  7. Tensile bond strength of different adhesive systems to primary dentin treated by Er:YAG laser and conventional high-speed drill

    NASA Astrophysics Data System (ADS)

    Marques, Barbara A.; Navarro, Ricardo S.; Silvestre, Fellipe D.; Pinheiro, Sergio L.; Freitas, Patricia M.; Imparato, Jose Carlos P.; Oda, Margareth

    2005-03-01

    The aim of this study was to evaluate the tensile strength of different adhesive systems to primary tooth dentin prepared by high-speed drill and Er:YAG laser (2.94μm). Buccal surfaces of 38 primary canines were ground and flattened with sand paper disks (#120-600 grit) and distributed into five groups (n=15): G1: diamond bur in high-speed drill (HD)+ 35% phosphoric acid (PA)+Single Bond (SB); G2: HD+self-etching One Up Bond F (OUB);G3: Er:YAG laser (KaVo 3- LELO-FOUSP)(4Hz, 80mJ, 25,72J/cm2) (L)+PA+SB, G4: L+SB, G5: L+OUB. The inverted truncated cone samples built with Z-100 composite resin after storage in water (37°C/24h) were submitted to tensile bond strength test on Mini Instron 4442 (0.5mm/min, 500N). The data were analyzed with ANOVA and Tukey Test (p<0.05). The mean (MPa) were: G1-3.18(+/-1.24) G2-1.79(+/-0.73) G3-3.17(+/-0.44) G4-8.29(+/-1.86) G5-7.11(+/-2.07). The data analyzed with ANOVA and Tukey Test showed that Laser associated with PA+SB, SB or OUB lead to increased bonding values when compared to HD+PA+SB and HD+OUB (p=0.000), L+SB showed higher values than L+PA+SB and L+OUB (p=0.0311). Er:YAG laser radiation promoted significant increase of bond strength of different adhesive systems evaluated in the dentin of primary teeth.

  8. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres.

    PubMed

    Yang, Wenguang; Yu, Haibo; Li, Gongxin; Wang, Yuechao; Liu, Lianqing

    2016-12-01

    Poly(ethylene glycol) diacrylate (PEGDA) is a common hydrogel that has been actively investigated for various tissue engineering applications owing to its biocompatibility and excellent mechanical properties. However, the native PEGDA films are known for their bio-inertness which can hinder cell adhesion, thereby limiting their applications in tissue engineering and biomedicine. Recently, nano composite technology has become a particularly hot topic, and has led to the development of new methods for delivering desired properties to nanomaterials. In this study, we added polystyrene nano-spheres (PS) into a PEGDA solution to synthesize a nano-composite film and evaluated its characteristics. The experimental results showed that addition of the nanospheres to the PEGDA film not only resulted in modification of the mechanical properties and surface morphology but further improved the adhesion of cells on the film. The tensile modulus showed clear dependence on the addition of PS, which enhanced the mechanical properties of the PEGDA-PS film. We attribute the high stiffness of the hybrid hydrogel to the formation of additional cross-links between polymeric chains and the nano-sphere surface in the network. The effect of PS on cell adhesion and proliferation was evaluated in L929 mouse fibroblast cells that were seeded on the surface of various PEGDA-PS films. Cells density increased with a larger PS concentration, and the cells displayed a spreading morphology on the hybrid films, which promoted cell proliferation. Impressively, cellular stiffness could also be modulated simply by tuning the concentration of nano-spheres. Our results indicate that the addition of PS can effectively tailor the physical and biological properties of PEGDA as well as the mechanical properties of cells, with benefits for biomedical and biotechnological applications.

  9. Effect of 2% Chlorhexidine Digluconate on the Bond Strength to Normal versus Caries-Affected Dentin

    PubMed Central

    Komori, Paula C. P.; Pashley, David H.; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; de Goes, Mario Fernando; Wang, Linda; Carrilho, Marcela R.

    2013-01-01

    SUMMARY This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. Flat surfaces of two types of dentin (i.e. ND and CAD) were prepared with a water-cooled high speed diamond disc, and then acid-etched, rinsed and air-dried. In control groups, dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or a two-step (Single Bond 2-SB) etch-and-rinse adhesive. In experimental groups, dentin was re-hydrated with 2% CHX (60 s), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. Specimens were prepared for microtensile bond testing in accordance with the non-trimming technique and then tested either immediately or after 6-month storage in artificial saliva. Data were analyzed by ANOVA/Bonferroni tests (α = 0.05). CHX did not affect the immediate bond strength to ND or CAD (p>0.05). CHX treatment significantly lowered the loss of bond strength after 6 months seen in control bonds for ND (p<0.05), but it did not alter the bond strength of CAD (p>0.05). Application of MP on CHX-treated ND or CAD produced bonds that did not change over 6 months of storage. PMID:19363971

  10. Effect of 2% chlorhexidine digluconate on the bond strength to normal versus caries-affected dentin.

    PubMed

    Komori, Paula C P; Pashley, David H; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; de Goes, Mario Fernando; Wang, Linda; Carrilho, Marcela R

    2009-01-01

    This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. The flat surfaces of two types of dentin (ND and CAD) were prepared with a water-cooled high-speed diamond disc, then acid-etched, rinsed and air-dried. In the control groups, the dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or two-step (Single Bond 2-SB) etch-and-rinse adhesive. In the experimental groups, the dentin was rehydrated with 2% CHX (60 seconds), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. The specimens were prepared for microtensile bond testing in accordance with the non-trimming technique, then tested either immediately or after six-months storage in artificial saliva. The data were analyzed by ANOVA/Bonferroni tests (alpha = 0.05). CHX did not affect the immediate bond strength to ND or CAD (p > 0.05). CHX treatment significantly lowered the loss of bond strength after six months as seen in the control bonds for ND (p < 0.05), but it did not alter the bond strength of CAD (p > 0.05). The application of MP on CHX-treated ND or CAD produced bonds that did not change over six months of storage.

  11. Push-out bond strengths of two fiber post types bonded with different dentin bonding agents.

    PubMed

    Topcu, Fulya Toksoy; Erdemir, Ugur; Sahinkesen, Gunes; Mumcu, Emre; Yildiz, Esra; Uslan, Ibrahim

    2010-05-01

    The aim of this study was to evaluate the regional push-out bond strengths for two fiber-reinforced post types using three different dentin bonding agents. Sixty single-rooted extracted human first premolar teeth were sectioned below the cemento-enamel junction, and the roots were endodontically treated. Following standardized post space preparations, the roots were divided into two fiber-post groups (Glassix and Carbopost), and further divided into three subgroups of 10 specimens each for the bonding systems self-etching dentin bonding agents (Clearfil SE Bond and Optibond all-in-one), and total-etching dentin bonding agent (XP Bond). A dual-cure resin luting cement (Maxcem) was then placed in the post spaces and posts were then seated into the root canals polymerized through the cervical portion. The roots were then cut into 3-mm thick sections. Push-out tests were performed at a crosshead speed of 0.5 mm/min. The data were analyzed with multivariate ANOVA (alpha = 0.05). The morphology of interface between different dentin bonding agents from the cervical sections were analyzed with SEM. Glass fiber-reinforced posts demonstrated significantly higher push-out bond strengths than carbon fiber-reinforced posts (p < 0.001). Bond strength values decreased significantly from the cervical to the apical root canal regions (p < 0.001). Self-etching dentin adhesive Clearfil SE Bond and total-etching dentin adhesive XP Bond demonstrated similar bond strengths values and this was significantly higher compared with the Optibond all-in-one in cervical root canal region. In conclusion, in all root segments, the glass fiber-reinforced posts provided significantly increased post retention than the carbon fiber-reinforced posts, regardless of the adhesive used. (c) 2010 Wiley Periodicals, Inc.

  12. Viscoelastic Properties of Collagen-Adhesive Composites under Water Saturated and Dry Conditions

    PubMed Central

    Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Spencer, Paulette

    2014-01-01

    To investigate the time and rate dependent mechanical properties of collagen-adhesive composites, creep and monotonic experiments are performed under dry and wet conditions. The composites are prepared by infiltration of dentin adhesive into a demineralized bovine dentin. Experimental results show that for small stress level under dry conditions, both the composite and neat adhesive have similar behavior. On the other hand, in wet conditions, the composites are significantly soft and weak compared to the neat adhesives. The behavior in the wet condition is found to be affected by the hydrophilicity of both the adhesive and collagen. Since the adhesive-collagen composites area part of the complex construct that forms the adhesive-dentin interface, their presence will affect the overall performance of the restoration. We find that Kelvin-Voigt model with at least 4-elements is required to fit the creep compliance data, indicating that the adhesive-collagen composites are complex polymers with several characteristics time-scales whose mechanical behavior will be significantly affected by loading rates and frequencies. Such mechanical properties have not been investigated widely for these types of materials. The derived model provides an additional advantage that it can be exploited to extract other viscoelastic properties which are, generally, time consuming to obtain experimentally. The calibrated model is utilized to obtain stress relaxation function, frequency-dependent storage and loss modulus, and rate dependent elastic modulus. PMID:24753362

  13. Influence of intraoral temperature and relative humidity on the dentin bond strength: an in situ study.

    PubMed

    Saraiva, Letícia O; Aguiar, Thaiane R; Costa, Leonardo; Cavalcanti, Andrea N; Giannini, Marcelo; Mathias, Paula

    2015-01-01

    The effect of the intraoral environment during adhesive restorative procedures remains a concern, especially in the absence of rubber dam isolation. To evaluate the temperature and relative humidity (RH) at anterior and posterior intraoral sites and their effects on the dentin bond strength of two-step etch-and-rinse adhesive systems. Sixty human molars were assigned to six groups according to the adhesive systems (Adper Single Bond Plus and One Step Plus) and intraoral sites (incisor and molar sites). The room condition was used as a control group. Dentin fragments were individually placed in custom-made acetate trays and direct composite restorations were performed. The intraoral temperature and RH were recorded during adhesive procedures. Then, specimens were removed from the acetate trays and sectioned to obtain multiple beams for the microtensile bond strength test. In addition, the adhesive interface morphology was evaluated through scanning electron microscopy. Intraoral conditions were statistically analyzed by paired Students' t-tests and the bond strength data by two-way analysis of variance and Tukey test (α = 0.05). The posterior intraoral site showed a significant increase in the temperature and RH when compared with the anterior site. However, both intraoral sites revealed higher temperatures and RH than the room condition. In regards to the adhesive systems, the intraoral environment did not affect the bond strength, and the One Step Plus system showed the highest bond strength means. Despite the fact that remarkable changes in the intraoral conditions were observed for both anterior and posterior sites, the intraoral environment was not able to compromise the immediate dentin bond strength. Some conditions of intraoral temperature and relative humidity may not impair the dentin bond strength of two-step etch-and-rinse adhesive systems. Thus, an adequate relative isolation seems to be a good alternative under the specific clinical conditions in

  14. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong

    2015-11-01

    We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge-discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  15. Effect of dentin etching and chlorhexidine application on metalloproteinase-mediated collagen degradation

    PubMed Central

    Raquel, Osorio; Mónica, Yamauti; Estrella, Osorio; Estrella, Ruiz-Requena María; David, Pashley; Franklin, Tay; Manuel, Toledano

    2013-01-01

    Dentin matrix metalloproteinases (MMPs) are involved in collagen degradation of resin-dentin interfaces. This study evaluated if collagen degradation can be prevented by chlorhexidine after different dentin demineralization procedures. Human dentin demineralization was performed with phosphoric acid (PA), EDTA, or acidic monomers (ClearfilSEBond and XENOV). Specimens were stored (24 h, 1 wk or 3 wk) in the presence or absence of chlorhexidine. In half of the groups, active MMP-2 was incorporated into the storing solution. C-terminal telopeptide determination (ICTP) was performed in the supernatants. Collagen degradation was higher in PA and EDTA-demineralized dentin. Chlorhexidine reduced collagen degradation in these groups only for 24 h. When dentin was demineralized with SEBond or Xeno, collagen degradation was reduced up to 30%, but addition of exogenous MMP-2 significantly increased collagen degradation. In self-etchant treated dentin the inhibitory effect of chlorhexidine on MMPs lasted up to 3 wk. Treating dentin with EDTA, PA or self-etching agents produces enough demineralization to permit cleavage of the exposed collagen. Monomers infiltration may exert protection on demineralized collagen, probably through immobilization of MMPs. The partial inhibitory action of CHX on MMP activity produced by self-etching adhesives was prolonged compared to the short-acting in PA or EDTA-treated dentin. PMID:21244516

  16. Effect of Phosphoric Acid Pre-etching on Fatigue Limits of Self-etching Adhesives.

    PubMed

    Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D D; Erickson, R L; Latta, M A; Miyazaki, M

    2015-01-01

    The purpose of this study was to use shear bond strength (SBS) and shear fatigue limit (SFL) testing to determine the effect of phosphoric acid pre-etching of enamel and dentin prior to application of self-etch adhesives for bonding resin composite to these substrates. Three self-etch adhesives--1) G- ænial Bond (GC Corporation, Tokyo, Japan); 2) OptiBond XTR (Kerr Corp, Orange, CA, USA); and 3) Scotchbond Universal (3M ESPE Dental Products, St Paul, MN, USA)--were used to bond Z100 Restorative resin composite to enamel and dentin surfaces. A stainless-steel metal ring with an inner diameter of 2.4 mm was used to bond the resin composite to flat-ground (4000 grit) tooth surfaces for determination of both SBS and SFL. Fifteen specimens each were used to determine initial SBS to human enamel/dentin, with and without pre-etching with a 35% phosphoric acid (Ultra-Etch, Ultradent Products Inc, South Jordan, UT, USA) for 15 seconds prior to the application of the adhesives. A staircase method of fatigue testing (25 specimens for each test) was then used to determine the SFL of resin composite bonded to enamel/dentin using a frequency of 10 Hz for 50,000 cycles or until failure occurred. A two-way analysis of variance and Tukey post hoc test were used for analysis of SBS data, and a modified t-test with Bonferroni correction was used for the SFL data. Scanning electron microscopy was used to examine the area of the bonded restorative/tooth interface. For all three adhesive systems, phosphoric acid pre-etching of enamel demonstrated significantly higher (p<0.05) SBS and SFL with pre-etching than it did without pre-etching. The SBS and SFL of dentin bonds decreased with phosphoric acid pre-etching. The SBS and SFL of bonds using phosphoric acid prior to application of self-etching adhesives clearly demonstrated different tendencies between enamel and dentin. The effect of using phosphoric acid, prior to the application of the self-etching adhesives, on SBS and SFL was

  17. Classification review of dental adhesive systems: from the IV generation to the universal type

    PubMed Central

    Sofan, Eshrak; Sofan, Afrah; Palaia, Gaspare; Tenore, Gianluca; Romeo, Umberto; Migliau, Guido

    2017-01-01

    Summary Adhesive dentistry has undergone great progress in the last decades. In light of minimal-invasive dentistry, this new approach promotes a more conservative cavity design, which relies on the effectiveness of current enamel-dentine adhesives. Adhesive dentistry began in 1955 by Buonocore on the benefits of acid etching. With changing technologies, dental adhesives have evolved from no-etch to total-etch (4th and 5th generation) to self-etch (6th, 7th and 8th generation) systems. Currently, bonding to dental substrates is based on three different strategies: 1) etch-and-rinse, 2) self-etch and 3) resin-modified glass-ionomer approach as possessing the unique properties of self-adherence to the tooth tissue. More recently, a new family of dentin adhesives has been introduced (universal or multi-mode adhesives), which may be used either as etch-and-rinse or as self-etch adhesives. The purpose of this article is to review the literature on the current knowledge for each adhesive system according to their classification that have been advocated by many authorities in most operative/restorative procedures. As noted by several valuable studies that have contributed to understanding of bonding to various substrates helps clinicians to choose the appropriate dentin bonding agents for optimal clinical outcomes. PMID:28736601

  18. Influence of Different Dentin Substrate (Caries-Affected, Caries-Infected, Sound) on Long-Term μTBS.

    PubMed

    Costa, Ana Rosa; Garcia-Godoy, Franklin; Correr-Sobrinho, Lourenço; Naves, Lucas Zago; Raposo, Luís Henrique Araújo; Carvalho, Fabíola Galbiatti de; Sinhoreti, Mário Alexandre Coelho; Puppin-Rontani, Regina Maria

    2017-01-01

    The aim of this study was to evaluate the μTBS in different dentin substrates and water-storage periods. Twenty-four dentin blocks obtained from sound third molars were randomly divided into 3 groups: Sound dentin (Sd), Caries-affected dentin (Ca) and Caries-infected dentin (Ci). Dentin blocks from Ca and Ci groups were subjected to artificial caries development (S. mutans biofilm). The softest carious tissue was removed using spherical drills under visual inspection with Caries Detector solution (Ca group). It was considered as Ci (softer and deeply red stained dentin) and Ca (harder and slightly red stained dentin). The Adper Single Bond 2 adhesive system was applied and Z350 composite blocks were built in all groups. Teeth were stored in deionized water for 24 h at 37 ºC and sectioned into beams (1.0 mm2 section area). The beams from each tooth were randomly divided into three storages periods: 24 h, 6 months or 1 year. Specimens were submitted to µTBS using EZ test machine at a crosshead speed of 1.0 mm/min. Failure mode was examined by SEM. Data from µTBS were submitted to split plot two-way ANOVA and Tukey's HSD tests (a=0.05). The µTBS (MPa) of Sd (41.2) was significantly higher than Ca (32.4) and Ci (27.2), regardless of storage. Ca and Ci after 6 months and 1 year, presented similar µTBS. Mixed and adhesive failures predominated in all groups. The highest µTBS values (48.1±9.1) were found for Sd at 24 h storage. Storage of specimens decreased the µTBS values for all conditions.

  19. Tooth surface treatment strategies for adhesive cementation

    PubMed Central

    2017-01-01

    PURPOSE The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one self-adhesive cement (Panavia SA plus) were included in this study. The interface of the cement and the tooth surface with the different pre-treatments was analyzed using SEM. pH values of the cements and primers were measured. RESULTS The highest bond strength values for all cements were achieved with etching and primer on enamel (25.6 ± 5.3 - 32.3 ± 10.4 MPa). On dentin, etching and priming produced the highest bond strength values for all cements (8.6 ± 2.9 - 11.7 ± 3.5 MPa) except for Panavia V5, which achieved significantly higher bond strengths when pre-treated with primer only (15.3 ± 4.1 MPa). Shear bond strength values were correlated with the micro-retentive surface topography of enamel and the tag length on dentin except for Panavia V5, which revealed the highest bond strength with primer application only without etching, resulting in short but sturdy tags. CONCLUSION The highest bond strength can be achieved for Panavia F 2.0, Permaflo DC, and Panavia SA plus when the tooth substrate is previously etched and the respective primer is applied. The new cement Panavia V5 displayed low technique-sensitivity and attained significantly higher adhesion of all tested cements to dentin when only primer was applied. PMID:28435616

  20. Sealing properties of a self-etching primer system to normal caries-affected and caries-infected dentin.

    PubMed

    Lee, Kwang-Won; Son, H-H; Yoshiyama, Masatoshi; Tay, Franklin R; Carvalho, Ricardo M; Pashley, David H

    2003-09-01

    To compare the ability of an experimental antibacterial self-etching primer adhesive system to seal exposure sites in normal, caries-affected and caries-infected human dentin. 30 extracted human third molars were used within 1 month of extraction. 10 intact normal teeth comprised the normal group. 20 teeth with occlusal caries that radiographically extended halfway to the pulp were excavated using caries-detector solution (CDS) and a #4 round carbide bur in a slowspeed handpiece. Half of those teeth were fully excavated free of CDS-stained material without exposing the pulp, and were designated as the caries-affected dentin group. The remaining 10 teeth were excavated as close to the pulp as possible without obtaining an exposure, but whose dentin continued to stain red with CDS; this group was designated as the caries-infected dentin group. The remaining dentin thickness in all of the specimens in the other two groups was then reduced to the same extent as the caries-infected group. Direct exposures of the pulp chamber were made with a 1/4 round bur in the normal dentin or a 25 gauge needle in the other two groups. After measuring the fluid flow through the exposure, the sites were then sealed with an experimental antibacterial fluoride-containing self-etching primer adhesive systems (ABF). Fluid conductance was remeasured every week for 16 weeks. The fluid conductance through the exposure fell 99% in all groups following resin sealing. The seals of normal and caries-affected dentin remained relatively stable over the 16 weeks, while the seals of caries-infected dentin gradually deteriorated, reaching significance at 8 weeks. TEM examination revealed very thin (ca. 0.5 mm) hybrid layers in normal dentin, 3-4 microm thick hybrid layers in caries-affected dentin and 40 microm thick hybrid layers in caries-infected dentin. The tubules of caries-infected dentin were enlarged and filled with bacteria. Resin tags passed around these bacteria in the top 20-40 microm

  1. Monomer-to-polymer conversion and micro-tensile bond strength to dentine of experimental and commercial adhesives containing diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide or a camphorquinone/amine photo-initiator system.

    PubMed

    Miletic, Vesna; Pongprueksa, Pong; De Munck, Jan; Brooks, Neil R; Van Meerbeek, Bart

    2013-10-01

    To compare the degree of conversion (DC) of adhesives initiated by diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) or a camphorquinone/tertiary amine system (CQ/Amine) as well as their 'immediate' micro-tensile bond strength (μTBS) to bur-cut dentine. DC of Scotchbond Universal ('SBU'; 3M ESPE), its experimental counterpart containing TPO as photo-initiator system, an experimental G-aenial Bond ('Ga-B'; GC) adhesive formulation, and an experimental LUB-102 adhesive formulation ('LUB', Kuraray Noritake), containing as photo-initiatior system either 2wt% CQ along with 2wt% tertiary amine ('SBU_CQ/Amine'; 'Ga-B_CQ/Amine'; 'LUB_CQ/Amine'), or 2wt% TPO ('SBU_TPO'; 'Ga-B_TPO'; 'LUB_TPO'), was determined using Fourier-transform infrared spectroscopy (FTIR), after being cured with a dual-wavelength light-curing unit (bluephase 20i, Ivoclar Vivadent). The same adhesive formulations were applied to bur-cut mid-coronal dentine of intact human molars, and subjected to a μTBS test after 1-week water storage. Besides being applied following a self-etch (SE) application mode, the adhesive formulations SBU_CQ/Amine and SBU_TPO were also applied following an etch-and-rinse (E&R) mode, this both for DS and μTBS measurement. No significant difference in DC was found for any of the adhesive formulations, except for SBU_CQ/Amine_SE and SBU_TPO_SE. For both SBU formulations, a significantly higher DC was reached for the E&R than the SE approach. Regarding μTBS, no significant differences were recorded, except for the significantly higher μTBS measured for SBU_CQ/Amine_E&R and SBU_TPO_E&R. In self-etch adhesives, the photo-initiator TPO may be used instead of CQ/Amine. The curing and 'immediate' bonding efficiency depended on the application protocol (E&R versus SE), but not on the photo-initiator system. The photo-initiator TPO may be used in self-etch adhesives instead of CQ/Amine with similar curing and 'immediate' bonding efficiency. Copyright © 2013 Elsevier Ltd. All

  2. Water interaction and bond strength to dentin of dye-labelled adhesive as a function of the addition of rhodamine B

    PubMed Central

    WANG, Linda; BIM, Odair; LOPES, Adolfo Coelho de Oliveira; FRANCISCONI-DOS-RIOS, Luciana Fávaro; MAENOSONO, Rafael Massunari; D’ALPINO, Paulo Henrique Perlatti; HONÓRIO, Heitor Marques; ATTA, Maria Teresa

    2016-01-01

    ABSTRACT Objective This study investigated the effect of the fluorescent dye rhodamine B (RB) for interfacial micromorphology analysis of dental composite restorations on water sorption/solubility (WS/WSL) and microtensile bond strength to dentin (µTBS) of a 3-step total etch and a 2-step self-etch adhesive system. Material and Methods The adhesives Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) were mixed with 0.1 mg/mL of RB. For the WS/WSL tests, cured resin disks (5.0 mm in diameter x 0.8 mm thick) were prepared and assigned into four groups (n=10): MP, MP-RB, SE, and SE-RB. For µTBS assessment, extracted human third molars (n=40) had the flat occlusal dentin prepared and assigned into the same experimental groups (n=10). After the bonding and restoration procedures, specimens were sectioned in rectangular beams, stored in water and tested after seven days or after 12 months. The failure mode of fractured specimens was qualitatively evaluated under optical microscope (x40). Data from WS/WSL and µTBS were assessed by one-way and three-way ANOVA, respectively, and Tukey’s test (α=5%). Results RB increased the WSL of MP and SE. On the other hand, WS of both MP and SE was not affected by the addition of RB. No significance in µTBS between MP and MP-RB for seven days or one year was observed, whereas for SE a decrease in the µTBS means occurred in both storage times. Conclusions RB should be incorporated into non-simplified DBSs with caution, as it can interfere with their physical-mechanical properties, leading to a possible misinterpretation of bonded interface. PMID:27556201

  3. Effect of Saliva on the Tensile Bond Strength of Different Generation Adhesive Systems: An In-Vitro Study.

    PubMed

    Gupta, Nimisha; Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti

    2015-07-01

    Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva.

  4. Effect of Mucoprotein on the Bond Strength of Resin Composite to Human Dentin

    PubMed Central

    Pinzon, Lilliam M; Powers, John M; O'Keefe, Kathy; Dusevish, Vladimir; Spencer, Paulette; Marshall, Grayson W

    2010-01-01

    The purpose of this study was to test the bond strength and analyze the morphology of the dentin-adhesive interface of two etch and rinse and two self-etch adhesive systems with two kinds of artificial saliva (with and without 450 mg/L mucin) contamination under different conditions of decontaminating the interface. Bonded specimens were sectioned perpendicularly to the bonded surface in 1-mm thick slabs. These 1-mm thick slabs were remounted in acrylic blocks and sectioned in sticks perpendicular to the bonding interfaces with a 1-mm2 area. Nine specimens from each condition were tested after 24 hours on a testing machine (Instron) at a speed of 0.5 mm/min for a total of 360 specimens. Means and standard deviations of bond strength (MPa) were calculated. ANOVA showed significant differences as well as Fisher's PLSD intervals (p<0.05). Different groups results ranges: Control group 34-60 MPa, saliva without mucin 0-52 MPa, and saliva with mucin 0-57 MPa. Failure sites were mixed, adhesive failure was common for the low bond strength results. P&BNT with ideal conditions and following the manufacturer's instructions (control) had the highest bond strengths and the dentin-adhesive interface exhibited an ideal morphology of a etch and rinse system. SEM gave complementary visual evidence of the effect in the dentin/adhesive interface structure with some contaminated conditions compared to their respective control groups. This in-vitro artificial saliva model with and without mucin showed that an organic component of saliva could increase or decrease the bond strength depending on the specific bonding agent and decontamination procedure. PMID:14505182

  5. Effect of reducing acid etching time on bond strength to noncarious and caries-affected primary and permanent dentin.

    PubMed

    Scheffel, Débora Lopes Salles; Ricci, Hérica Adad; de Souza Costa, Carlos Alberto; Pashley, David Henry; Hebling, Josimeri

    2013-01-01

    The purpose was to evaluate the effect of acid etching time on the bond strength of a simplified etch-and-rinse adhesive system to noncarious and caries-affected dentin of primary and permanent teeth. Twenty-four extracted primary and permanent teeth were divided into three groups, according to the acid etching time. Four teeth from each group were exposed to a microbiological caries-inducing protocol. After caries removal, noncarious and caries-affected dentin surfaces were etched with 37 percent phosphoric acid for five, 10, or 15 seconds prior to the application of Prime & Bond NT adhesive. Crowns were restored with resin composite and prepared for microtensile testing. Data were submitted to Kruskal-Wallis and Mann-Whitney tests (α=0.05). Higher bond strengths were obtained for noncarious dentin vs. caries-affected dentin for both primary and permanent teeth. Reducing the acid etching time from 15 to five seconds did not affect the bond strength to caries-affected or noncarious dentin in primary teeth. For permanent teeth, lower bond strength values were observed when the noncarious dentin was etched for five seconds, while no difference was seen between 10 and 15 seconds. For Prime & Bond NT, the etching of dentin for five seconds could be recommended for primary teeth, while 10 seconds would be the minimum time for permanent teeth.

  6. Microtensile bond strength of indirect resin composite to resin-coated dentin: interaction between diamond bur roughness and coating material.

    PubMed

    Kameyama, Atsushi; Oishi, Takumi; Sugawara, Toyotarou; Hirai, Yoshito

    2009-02-01

    This aim of this study was to determine the effect of type of bur and resin-coating material on microtensile bond strength (microTBS) of indirect composite to dentin. Dentin surfaces were first ground with two types of diamond bur and resin-coated using UniFil Bond (UB) or Adper Single Bond (SB), and then bonded to a resin composite disc for indirect restoration with adhesive resin cement. After storage for 24 hr in distilled water at 37 degrees C, microTBS was measured (crosshead speed 1 mm/min). When UB was applied to dentin prepared using the regular-grit diamond bur, microTBS was significantly lower than that in dentin prepared using the superfine-grit bur. In contrast, no significant difference was found between regular-grit and superfine-grit bur with SB. However, more than half of the superfine-grit specimens failed before microTBS testing. These results indicate that selection of bur type is important in improving the bond strength of adhesive resin cement between indirect resin composite and resin-coated dentin.

  7. Effect of root canal sealer and artificial accelerated aging on fibreglass post bond strength to intraradicular dentin.

    PubMed

    Santana, Fernanda-Ribeiro; Soares, Carlos-José; Ferreira, Josemar-Martins; Valdivi, Andréa-Dolores-Correia-Miranda; Souza, João-Batista-de; Estrela, Carlos

    2014-10-01

    To evaluate the effect of root canal sealers (RCS) and specimen aging on the bond strength of fibre posts to bovine intraradicular dentin. 80 teeth were used according the groups - Sealapextm, Sealer 26®, AH Plus® and specimens aging - test with no aging and with aging. The canals prepared were filled using one of each RCS. The posts were cemented. Roots were cross-sectioned to obtain two slices of each third. Samples were submitted to push-out test. Failure mode was evaluated under a confocal microscope. The data were analysed by ANOVA, Tukey's, and Dunnet tests (α = 0.05). No significant difference was detected among RCS. Aged control presented higher bond strength than immediate control. The aging did not result significant difference. Adhesive cement-dentin failure was prevalent in all groups. RCS interfered negatively with bonding of fibreglass posts cemented with self-adhesive resin cement to intraradicular dentin. Key words:Fibreglass post, bond strength, root dentin, endodontic sealer, aging.

  8. Assessment of post-contamination treatments affecting different bonding stages to dentin

    PubMed Central

    Elkassas, Dina; Arafa, Abla

    2016-01-01

    Objectives: To assess the effect of cleansing treatments following saliva and blood contamination at different bonding stages to dentin. Materials and Methods: Labial surfaces of 168 permanent maxillary central incisors were ground flat exposing superficial dentin. Specimens were divided into: uncontaminated control (A), contamination after etching (B), contamination after adhesive application (C), contamination after adhesive polymerization (D). Groups were further subdivided according to cleansing treatments into: rinsing (B1, C1, D1), re-etching (B2, D3), sodium hypochlorite application (B3), ethyl alcohol application (C2), acetone application (C3), rinsing and rebonding (D2), re-etching and rebonding (D4). Composite microcylinders were bonded to treated substrates and shear loaded micro-shear bond strength (μSBS) until failure and treated surfaces were examined with scanning electron microscope. Debonded surfaces were classified as adhesive, cohesive or mixed failure. The data were analyzed using one-way ANOVA and Tukey's post hoc test. Results: The μSBS values were ranked as follow; Group B: A > B3 > B2 > B1 > B, Group C: A > C3 > C2 > C1 > C, Group D: A > D4 > D1 = D2 ≥ D3. Debonded surfaces showed adhesive failure in Group B while cohesive failure in Groups C and D. Conclusions: Cleansing treatments differ according to bonding step; re-etching then rebonding suggested if etched substrate or polymerized adhesive were contaminated while acetone application decontaminated affected unpolymerized adhesive. PMID:27403048

  9. Effects of dentin surface treatments on shear bond strength of glass-ionomer cements

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Lombardini, Marco

    2014-01-01

    Summary Aim The aim of this in vitro study was to evaluate the effect of different surface treatments on shear bond strength of a conventional glass-ionomer cement (GIC) and a resin-modified glass-ionomer cement (RMGIC) to dentin. Materials and methods 80 bovine permanent incisors were used. 40 cylindrical specimens of a GIC (Fuji IX GP Extra) and 40 cylindrical specimens of a RMGIC (Fuji II LC) were attached to the dentin. The teeth were then randomly assigned to 8 groups of equal size (n=10), 4 for every type of glass-ionomer cement, corresponding to type of dentin surface treatments. Group 1: GC Cavity Conditioner; Group 2: 37% phosphoric acid gel; Group 3: Clearfil SE Bond; Group 4: no dentin conditioning (control). The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA) and subsequently tested for shear bond strength (MPa). Results ANOVA showed the presence of significant differences among the various groups. Post hoc Tukey test showed different values of shear bond strength for Fuji IX GP Extra and for Fuji II LC. The different conditioners variably influence the adhesion of the glass-ionomer cements tested. Conclusions. RMGIC shear bond to dentin was higher than GIC. The use of a Self-etch adhesive system improved the shear bond strength values of RMGIC and lowered the shear bond strength values of GIC significantly. PMID:24753797

  10. Can 1% chlorhexidine diacetate and ethanol stabilize resin-dentin bonds?

    PubMed Central

    Manso, Adriana Pigozzo; Grande, Rosa Helena Miranda; Bedran-Russo, Ana Karina; Reis, Alessandra; Loguercio, Alessandro D.; Pashley, David Henry; Carvalho, Ricardo Marins

    2014-01-01

    Objectives To examine the effects of the combined use of chlorhexidine and ethanol on the durability of resin-dentin bonds. Methods Forty-eight flat dentin surfaces were etched (32% phosphoric acid), rinsed (15 s) and kept wet until bonding procedures. Dentin surfaces were blot-dried with absorbent paper and re-wetted with water (Water, control), 1% chlorhexidine diacetate in water (CHD/Water), 100% ethanol (Ethanol), or 1% chlorhexidine diacetate in ethanol (CHD/Ethanol) solutions for 30 s. They were then bonded with All Bond 3 (AB3, Bisco) or Excite (EX, Ivoclar-Vivadent) using a smooth, continuous rubbing application (10 s), followed by 15 s gentle air stream to evaporate solvents. The adhesives were light-cured (20 s) and resin composite build-ups constructed for the microtensile method. Bonded beams were obtained and tested after 24-hours, 6-months and 15-months of water storage at 37°C. Storage water was changed every month. Effects of treatment and testing periods were analyzed (ANOVA, Holm-Sidak, p<0.05) for each adhesive. Results There were no interactions between factors for both etch-and-rinse adhesives. AB3 was significantly affected only by storage (p = 0.003). Excite was significantly affected only by treatments (p = 0.048). AB3 treated either with ethanol or CHD/ethanol resulted in reduced bond strengths after 15 months. The use of CHD/ethanol resulted in higher bond strengths values for Excite. Conclusions Combined use of ethanol/1% chlorhexidine diacetate did not stabilize bond strengths after 15 months. PMID:24815823

  11. Novel protein-repellent dental adhesive containing 2-methacryloyloxyethyl phosphorylcholine

    PubMed Central

    Zhang, Ning; Melo, Mary Anne S.; Bai, Yuxing; Xu, Hockin H. K.

    2015-01-01

    Objectives Biofilms at tooth-restoration margins can produce acids and cause secondary caries. A protein-repellent adhesive resin can potentially inhibition bacteria attachment and biofilm growth. However, there has been no report on protein-repellent dental resins. The objectives of this study were to develop a protein-repellent bonding agent incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC), and to investigate its resistance to protein adsorption and biofilm growth for the first time. Methods MPC was incorporated into Scotchbond Multi-Purpose (SBMP) at 0%, 3.75%, 7.5%, 11.25%, and 15% by mass. Extracted human teeth were used to measure dentin shear bond strengths. Protein adsorption onto resins was determined by a micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to measure biofilm metabolic activity and colony-forming unit (CFU) counts. Results Adding 7.5% MPC into primer and adhesive did not decrease the dentin bond strength, compared to control (p > 0.1). Incorporation of 7.5% of MPC achieved the lowest protein adsorption, which was 20-fold less than that of control. Incorporation of 7.5% of MPC greatly reduced bacterial adhesion, yielding biofilm total microorganism, total streptococci, and mutans streptococci CFU that were an order of magnitude less than control. Conclusions A protein-repellent dental adhesive resin was developed for the first time. Incorporation of MPC into primer and adhesive at 7.5% by mass greatly reduced the protein adsorption and bacterial adhesion, without compromising the dentin bond strength. The novel protein-repellent primer and adhesive are promising to inhibit biofilm formation and acid production, to protect the tooth-restoration margins and prevent secondary caries. PMID:25234652

  12. Water permeability, hybrid layer long-term integrity and reaction mechanism of a two-step adhesive system.

    PubMed

    Grégoire, Geneviève; Dabsie, Firas; Delannée, Mathieu; Akon, Bernadette; Sharrock, Patrick

    2010-07-01

    Our aim was to investigate the reaction mechanism of formation of the hybrid layer by a HEMA-containing self-etch adhesive and to study fluid filtration, contact angle and interfacial ultrastructure by SEM following a 1 year ageing period. Acidic behaviour and chemical interactions between Silorane System Adhesive and dentine were studied by potentiometric titrations, atomic absorption spectroscopy and infrared spectroscopy. The hydrophilicity of the adhesive was evaluated using the sessile drop method and dentine permeability by hydraulic conductance. The morphological study of the dentine/adhesive system interface was conducted using SEM. The Silorane System Adhesive behaved as a multi-acid with several different pK(a) values. When the adhesive was in contact with dentine, the acid was progressively consumed and calcium ions were released. The acrylate substituted phosphonate bound strongly to apatite crystals. The polyacrylic acid copolymer reacted with calcium ions and formed an interpenetrating polymer network (IPN). Water contact angle measurements showed rapid spreading on primer (angles reached 15 degrees at 30s) and larger contact angles when the Silorane bonding layer was added (from over 60 degrees to 44 degrees ). A thick, homogeneous hybrid layer was observed both initially and after 1 year of ageing, with a corresponding hydraulic conductance of -48.50% initially and -52.07% at 12 months. The Silorane System Adhesive is capable of both dissolving calcium ions and binding to apatite surfaces. The results showed the hydrophilicity of the adhesive, which formed an IPN-like hybrid layer that conserved adequate impermeability over a 1-year period. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Long-term stability of dental adhesive incorporated by boron nitride nanotubes.

    PubMed

    Degrazia, Felipe Weidenbach; Leitune, Vicente Castelo Branco; Visioli, Fernanda; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2018-03-01

    The aim of this study was to evaluate physicochemical properties, long-term microtensile bond strength and cytotoxicity of methacrylate-based adhesive containing boron nitride nanotubes (BNNTs) as fillers. A dental adhesive was formulated using BisGMA/HEMA, 66/33wt% (control). Inorganic BNNT fillers were incorporated into the adhesive at different concentrations (0.05, 0.075, 0.1 and 0.15wt%). Analyses of degree of conversion (DC), polymerization rate [Rp.(s -1 )], contact angle (CA) on dentin, after 24h and 6 months microtensile bond strength (μTBS-24h and 6 months) were assessed. Cytotoxicity was performed through viability of fibroblast cells (%) by sulforhodamine B (SRB) colorimetry. DC and max. polymerization rate increased (p<0.05) after incorporating 0.075 and 0.1wt% BNNT. The contact angle on dentin increased (p<0.05) after incorporating 0.15wt% BNNT. The μTBS-24h showed no changes (p>0.05) after incorporating up to 0.15wt% BNNT comparing to control. After 6 months, μTBS decreased (p<0.05) for control and 0.15wt% BNNT and BNNT groups up to 0.15wt% showed higher μTBS than control (p<0.05). No difference of fibroblast growth was found among adhesives (p>0.05) and up to 19% of cell viability was found comparing 0.05wt% BNNT to positive control group (100%). Incorporating boron nitride nanotubes up to 0.1wt% into dental adhesive increased the long-term stability to dentin without decreasing viability of fibroblast cell growth. Thus, the use of BNNTs as filler may decrease failure rate of current dentinal adhesives. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Optimization of the etch-and-rinse technique: New perspectives to improve resin-dentin bonding and hybrid layer integrity by reducing residual water using dimethyl sulfoxide pretreatments.

    PubMed

    Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Abuna, Gabriel; Sinhoreti, Mário Alexandre Coelho; Martins, Luís Roberto Marcondes; Tezvergil-Mutluay, Arzu

    2018-04-13

    To determine whether bonding effectiveness and hybrid layer integrity on acid-etched dehydrated dentin would be comparable to the conventional wet-bonding technique through new dentin biomodification approaches using dimethyl sulfoxide (DMSO). Etched dentin surfaces from extracted sound molars were randomly bonded in wet or dry conditions (30s air drying) with DMSO/ethanol or DMSO/H 2 O as pretreatments using a simplified (Scotchbond Universal Adhesive, 3M ESPE: SU) and a multi-step (Adper Scotchbond Multi-Purpose, 3M ESPE: SBMP) etch-and-rinse adhesives. Untreated dentin surfaces served as control. Bonded teeth (n=8) were stored in distilled water for 24h and sectioned into resin-dentin beams (0.8mm 2 ) for microtensile bond strength test and quantitative interfacial nanoleakage analysis (n=8) under SEM. Additional teeth (n=2) were prepared for micropermeability assessment by CFLSM under simulated pulpar pressure (20cm H 2 O) using 5mM fluorescein as a tracer. Microtensile data was analyzed by 3-way ANOVA followed by Tukey Test and nanoleakage by Kruskal-Wallis and Dunn-Bonferroni multiple comparison test (α=0.05). While dry-bonding of SBMP produced significantly lower bond strengths than wet-bonding (p<0.05), DMSO/H 2 O and DMSO/ethanol produced significantly higher bond strengths for SBMP irrespective of dentin condition (p<0.05). SU presented significantly higher nanoleakage levels (p<0.05) and micropermeability than SBMP. Improvement in hybrid layer integrity occurred for SBMP and SU for both pretreatments, albeit most pronouncedly for DMSO/ethanol regardless of dentin moisture. DMSO pretreatments may be used as a new suitable strategy to improve bonding of water-based adhesives to demineralized air-dried dentin beyond conventional wet-bonding. Less porous resin-dentin interfaces with higher bond strengths on air-dried etched dentin were achieved; nonetheless, overall efficiency varied according to DMSO's co-solvent and adhesive type. DMSO pretreatments

  15. Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen.

    PubMed

    Chen, Chaoqun; Mao, Caiyun; Sun, Jian; Chen, Yi; Wang, Wei; Pan, Haihua; Tang, Ruikang; Gu, Xinhua

    2016-10-01

    The purpose of this study was to induce a biomimetic remineralization process by using glutaraldehyde (GA) to reconstruct the mechanical properties and biostability of demineralized collagen. Demineralized dentin disks (35% phosphoric acid, 10s) were pretreated with a 5% GA solution for 3min and then cultivated in a calcium phosphate remineralization solution. The remineralization kinetics and superstructure of the remineralization layer were evaluated by Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and nanoindentation tests. The biostability was examined by enzymatic degradation experiments. A significant difference was found in dentin remineralization process between dentin with and without GA pretreating. GA showed a specific affinity to dentin collagen resulting in the formation of a cross-linking superstructure. GA pretreating could remarkably shorten remineralization time from 7days to 2days. The GA-induced remineralized collagen fibrils were well encapsulated by newly formed hydroxyapatite mineral nanocrystals. With the nano-hydroxyapatite coating, both the mechanical properties (elastic modulus and hardness) and the biostability against enzymatic degradation of the collagen were significantly enhanced, matching those of natural dentin. The results indicated that GA cross-linking of dentin collagen could promote dentin biomimetic remineralization, resulting in an improved mechanical properties and biostability. It may provide a promising tissue-engineering technology for dentin repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluating EDTA as a substitute for phosphoric acid-etching of enamel and dentin.

    PubMed

    Imbery, Terence A; Kennedy, Matthew; Janus, Charles; Moon, Peter C

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes released when dentin is acid-etched. The enzymes are capable of destroying unprotected collagen fibrils that are not encapsulated by the dentin adhesive. Chlorhexidine applied after etching inhibits the activation of released MMPs, whereas neutral ethylenediamine tetra-acetic acid (EDTA) prevents the release of MMPs. The purpose of this study was to determine if conditioning enamel and dentin with EDTA can be a substitute for treating acid-etching enamel and dentin with chlorhexidine. A column of composite resin was bonded to enamel and dentin after conditioning. Shear bond strengths were evaluated after 48 hours and after accelerated aging for three hours in 12% sodium hypochlorite. Shear bond strengths ranged from 15.6 MP a for accelerated aged EDTA enamel specimens to 26.8 MPa for dentin conditioned with EDTA and tested after 48 hours. A three-way ANOVA and a Tukey HSD test found statistically significant differences among the eight groups and the three independent variables (P < 0.05). EDTA was successfully substituted for phosphoric acid-etched enamel and dentin treated with chlorhexidine. Interactions of conditioning agent and aging were significant for dentin but not for enamel. In an effort to reduce the detrimental effects of MMPs, conditioning enamel and dentin with EDTA is an alternative to treating acid-etched dentin and enamel with chlorhexidine.

  17. In vitro evaluation of benzalkonium chloride in the preservation of adhesive interfaces.

    PubMed

    Sabatini, C; Kim, J H; Ortiz Alias, P

    2014-01-01

    Inhibition of endogenous dentin matrix metalloproteinases (MMPs) by benzalkonium chloride (BAC) decreases collagen solubilization and may help improve resin-dentin bond stability. This study evaluated the resin-dentin bond stability of experimental adhesive blends containing BAC and the stability of dentin matrices by assessing the mass loss and collagen solubilization from dentin beams pretreated with BAC. Twenty-five healthy molars were used for the bond strength evaluation of a two-step etch-and-rinse adhesive (Adper Single Bond Plus, SB) modified with BAC or not. The following groups were tested: 1) SB with no inhibitor (control); 2) topical 2.0% chlorhexidine + SB; 3) 1.0% BAC etchant + SB; 4) 0.5% BAC-SB; and 5) 1.0% BAC-SB. Microtensile bond strength (μTBS) and failure mode distribution under standard error of the mean were evaluated after 24 hours and six months of storage in artificial saliva (AS). A two-way analysis of variance and Tukey test with a significance level of p<0.05 was used for data analysis. In addition, 30 completely demineralized dentin beams from human molars were either dipped in deionized water (DW, control) or dipped in 0.5% and 1.0% BAC for 60 seconds, and then incubated in AS. Collagen solubilization was assessed by evaluating the dry mass loss and quantifying the amount of hydroxyproline (HYP) released from hydrolyzed specimens after four weeks of incubation. The control group demonstrated lower μTBS than some of the experimental groups containing BAC at 24 hours and six months (p<0.05). When BAC was incorporated into the adhesive blend in concentrations of 0.5% and 1.0%, no reduction in dentin bond strength was observed after six months (p<0.05). Less mass loss and HYP release was seen for dentin matrices pretreated with BAC relative to the control pretreated with DW (p<0.05). This in vitro study demonstrates that BAC contributes to the preservation of resin-dentin bonds by reducing collagen degradation.

  18. Effect of bacterial collagenase on resin-dentin bonds degradation.

    PubMed

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Aguilera, Fátima S; Yamauti, Monica; Pashley, David H; Tay, Franklin

    2007-12-01

    The objective of this study is to evaluate the effect of a bacterial collagenase on the degradation of resin-dentin bonds. Human dentin surfaces were bonded with: an etch-&-rinse self-priming adhesive (SB), a two-step self-etching primer/adhesive (SEB), and a 1-step self-etching adhesive (OUB). Composite build-ups were constructed. The bonded teeth were stored (24 h, 3 months, 1 year) in distilled water or in a buffered bacterial collagenase solution. Half of the specimens were stored as intact bonded teeth (Indirect Exposure/IE). The other half were sectioned into beams prior to storage (Direct Exposure/DE). After storage the intact teeth were sectioned into beams and all specimens were tested for microtensile bond strengths (MTBS). ANOVA and multiple comparisons tests were performed. Fractographic analysis was performed by scanning electron microscopy. The inclusion of bacterial collagenase in the storing solution did not lower the MTBS values over those seen in specimens stored in water. SB and SEB bonds strength were equal, and were superior to OUB. After 3 months of DE, SB and OUB bonded specimens showed decreases in MTBS; similar reductions required 1 year for SEB/DE. MTBS did not decrease in IE specimens except for OUB. Resin and collagen dissolution were evident in DE groups after storing.

  19. Self-etching aspects of a three-step etch-and-rinse adhesive.

    PubMed

    Bahillo, Jose; Roig, Miguel; Bortolotto, Tissiana; Krejci, Ivo

    2013-11-01

    The purpose of this study is to assess the marginal adaptation of cavities restored with a three-step etch-and-rinse adhesive, OptiBond FL (OFL) under different application protocols. Twenty-four class V cavities were prepared with half of the margins located in enamel and half in dentin. Cavities were restored with OFL and a microhybrid resin composite (Clearfil AP-X). Three groups (n = 8) that differed in the etching technique were tested with thermomechanical loading, and specimens were subjected to quantitative marginal analysis before and after loading. Micromorphology of etching patters on enamel and dentin were observed with SEM. Data was evaluated with Kruskal-Wallis and Bonferroni post hoc test. Significantly lower percent CM (46.9 ± 19.5) were found after loading on enamel in group 3 compared to group 1 (96.5 ± 5.1) and group 2 (93.1 ± 8.1). However, no significant differences (p = 0.30) were observed on dentin margins. Etching enamel with phosphoric acid but avoiding etching dentin before the application of OFL, optimal marginal adaptation could be obtained, evidencing a self-etching primer effect. A reliable adhesive interface was attained with the application of the three-step etch-and-rinse OFL adhesive with a selective enamel etching, representing an advantage on restoring deep cavities.

  20. Dentin bond optimization using the dimethyl sulfoxide-wet bonding strategy: A 2-year in vitro study.

    PubMed

    Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Tezvergil-Mutluay, Arzu; Yanikian, Cristiane Rumi Fujiwara; Szesz, Anna Luiza; Loguercio, Alessandro Dourado; Martins, Luís Roberto Marcondes

    2016-12-01

    This study evaluated a new approach, named dimethyl sulfoxide (DMSO)-wet bonding, to produce more desirable long-term prospects for the ultrafine interactions between synthetic polymeric biomaterials and the inherently hydrated dentin substrate. Sound third molars were randomly restored with/without DMSO pretreatment using a total-etch (Scocthbond Multipurpose: SBMP) and a self-etch (Clearfil SE Bond: CF) adhesive systems. Restored teeth (n=10)/group were sectioned into sticks and submitted to different analyses: micro-Raman determined the degree of conversion inside the hybrid layer (DC); resin-dentin microtensile bond strength and fracture pattern analysis at 24h, 1year and 2 years of aging; and nanoleakage evaluation at 24h and 2 years. DMSO-wet bonding produced significantly higher 24h bond strengths for SBMP that were sustained over the two-year period, with significantly less adhesive failures. Similarly, DMSO-treated CF samples presented significantly higher bond strength than untreated samples at two years. Both adhesives had significant less adhesive failures at 2 years with DMSO. DMSO had no effect on DC of SBMP, but significantly increased the DC of CF. DMSO-treated SBMP samples presented reduced silver uptake compared to untreated samples after aging. Biomodification of the dentin substrate by the proposed strategy using DMSO is a suitable approach to produce more durable hybrid layers with superior ability to withstand hydrolytic degradation over time. Although the active role of DMSO on dentin bond improvement may vary according to monomer composition, its use seems to be effective on both self-etch and etch-and-rinse bonding mechanisms. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Influence of Nd:YAG laser on the bond strength of self-etching and conventional adhesive systems to dental hard tissues.

    PubMed

    Marimoto, A K; Cunha, L A; Yui, K C K; Huhtala, M F R L; Barcellos, D C; Prakki, A; Gonçalves, S E P

    2013-01-01

    The aim of this study was to investigate the influence of Nd:YAG laser on the shear bond strength to enamel and dentin of total and self-etch adhesives when the laser was applied over the adhesives, before they were photopolymerized, in an attempt to create a new bonding layer by dentin-adhesive melting. One-hundred twenty bovine incisors were ground to obtain flat surfaces. Specimens were divided into two substrate groups (n=60): substrate E (enamel) and substrate D (dentin). Each substrate group was subdivided into four groups (n=15), according to the surface treatment accomplished: X (Xeno III self-etching adhesive, control), XL (Xeno III + laser Nd:YAG irradiation at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental), S (acid etching + Single Bond conventional adhesive, Control), and SL (acid etching + Single Bond + laser Nd:YAG at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental). The bonding area was delimited with 3-mm-diameter adhesive tape for the bonding procedures. Cylinders of composite were fabricated on the bonding area using a Teflon matrix. The teeth were stored in water at 37°C/48 h and submitted to shear testing at a crosshead speed of 0.5 mm/min in a universal testing machine. Results were analyzed with three-way analysis of variance (ANOVA; substrate, adhesive, and treatment) and Tukey tests (α=0.05). ANOVA revealed significant differences for the substrate, adhesive system, and type of treatment: lased or unlased (p<0.05). The mean shear bond strength values (MPa) for the enamel groups were X=20.2 ± 5.61, XL=23.6 ± 4.92, S=20.8 ± 4.55, SL=22.1 ± 5.14 and for the dentin groups were X=14.1 ± 7.51, XL=22.2 ± 6.45, S=11.2 ± 5.77, SL=15.9 ± 3.61. For dentin, Xeno III self-etch adhesive showed significantly higher shear bond strength compared with Single Bond total-etch adhesive; Nd:YAG laser irradiation showed significantly higher shear bond strength compared with control (unlased). Nd:YAG laser application

  2. The Hydrophobicity and Adhesion of Heterogeneous Surfaces of Dual Nanometer and Micron Scale Structures

    DTIC Science & Technology

    2011-04-11

    scale post geometry. superhydrophobic , surface modification, adhesion, contact angle, Cassie, Wenzel, PDMS, CYTOP, Teflon AF, roll-off angle U U U U SAR...width > 1, the micro-scale features dominated the wetting state regardless of the nano-scale post geometry., KEYWORDS superhydrophobic , surface... superhydrophobicity can be routinely found in nature. Fo~ example, many plant leaves1.2, bird feathers3, insect wings and insect legs4 take advantage of

  3. Shear bond strength of one-step self-etch adhesives: pH influence

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  4. Hydrolytic degradation of the resin-dentine interface induced by the simulated pulpal pressure, direct and indirect water ageing.

    PubMed

    Feitosa, Victor P; Leme, Ariene A; Sauro, Salvatore; Correr-Sobrinho, Lourenço; Watson, Timothy F; Sinhoreti, Mário A; Correr, Américo B

    2012-12-01

    The aim of this study was to compare the hydrolytic effects induced by simulated pulpal pressure, direct or indirect water exposure within the resin-dentine interfaces created with three "simplified" resin bonding systems (RBSs). A two-step/self-etching (CSE: Clearfil SE Bond), one-step/self-etching (S3: Clearfil S3) and etch-and-rinse/self-priming (SB: Single-bond 2) adhesives were applied onto dentine and submitted to three different prolonged (6 or 12 months) ageing strategies: (i) Simulated Pulpal Pressure (SPP); (ii) Indirect Water Exposure (IWE: intact bonded-teeth); (iii) Direct Water Exposure (DWE: resin-dentine sticks). Control and aged specimens were submitted to microtensile bond strength (μTBS) and nanoleakage evaluation. Water sorption (WS) survey was also performed on resin disks. Results were analysed with two-way ANOVA and Tukey's test (p < 0.05). The μTBS of CS3 and SB dropped significantly (p < 0.05) after 6 months of SPP and DWE. CSE showed a significant μTBS reduction only after 12 months of DWE (p = 0.038). IWE promoted no statistical change in μTBS (p > 0.05) and no evident change in nanoleakage. Conversely, SPP induced a clear formation of "water-trees" in CS3 and SB. WS outcomes were CS3 > SB = CSE. The hydrolytic degradation of resin-dentine interfaces depend upon the type of the in vitro ageing strategy employed in the experimental design. Direct water exposure remains the quickest method to age the resin-dentine bonds. However, the use of SPP may better simulate the in vivo scenario. However, the application of a separate hydrophobic solvent-free adhesive layer may reduce the hydrolytic degradation and increase the longevity of resin-dentine interfaces created with simplified adhesives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Histological evaluation of direct pulp capping with all-in-one adhesives in rat teeth.

    PubMed

    Shinkai, Koichi; Taira, Yoshihisa; Kawashima, Satoki; Suzuki, Shiro; Suzuki, Masaya

    2017-05-31

    The aim of this study was to histologically evaluate direct pulp capping using different all-in-one adhesives in rat teeth. Five all-in-one adhesives and a control material (MTA) were used. Each material was applied on the exposed pulp, and each cavity was subsequently restored with the resin composite. Rats were sacrificed 14 days after the surgical procedure. Serial stained sections were histologically evaluated for examining pulp tissue disorganization (PTD), inflammatory cell infiltration (ICI), dentin bridge formation (DBF), and bacterial penetration (BP). We found that rat pulps, which were direct capped with all-in-one adhesives, showed various degrees of PTD, ICI, and DBF depending on the material, and that there were no complete dentin bridges. In contrast, rat pulps capped with MTA showed no PTD and ICI, and there were complete dentin bridges in all, but one specimen. No BP was observed in any specimen.

  6. Quantitative measurement of adhesion of ink on plastic films with a Nano Indenter and a Scanning Probe Microscope

    NASA Astrophysics Data System (ADS)

    Shen, Weidian

    2005-03-01

    Plastic film packaging is widely used these days, especially in the convenience food industry due to its flexibility, boilability, and microwavability. Almost every package is printed with ink. The adhesion of ink on plastic films merits increasing attention to ensure quality packaging. However, inks and plastic films are polymeric materials with complicated molecular structures. The thickness of the jelly-like ink is only 500nm or less, and the thickness of the soft and flexible film is no more than 50μm, which make the quantitative measurement of their adhesion very challenging. Up to now, no scientific quantitative measurement method for the adhesion of ink on plastic films has been documented. We have tried a technique, in which a Nano-Indenter and a Scanning Probe Microscope were used to evaluate the adhesion strength of ink deposited on plastic films, quantitatively, as well as examine the configurations of adhesion failure. It was helpful in better understanding the adhesion mechanism, thus giving direction as to how to improve the adhesion.

  7. Effect of temporary cements on the microtensile bond strength of self-etching and self-adhesive resin cement.

    PubMed

    Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José

    2014-11-01

    The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p < 0.0003). The presence of temporary cements reduced the bond strength to Panavia self-etching resin cements only (p < 0.05). Fracture occurred predominantly at the dentin-adhesive interface. The presence of eugenol-containing temporary cements did not interfere in the bond strength to dentin of self-adhesive resin cements.

  8. Novel priming and crosslinking systems for use with isocyanatomethacrylate dental adhesives.

    PubMed

    Chappelow, C C; Power, M D; Bowles, C Q; Miller, R G; Pinzino, C S; Eick, J D

    2000-11-01

    (a) to design, formulate and evaluate prototype primers and a crosslinking agent for use with isocyanatomethacrylate-based comonomer adhesives and (b) to establish correlations between bond strength and solubility parameter differences between the adhesives and etched dentin, and the permeability coefficients of the adhesives. Equimolar mixtures of 2-isocyanatoethyl methacrylate (IEM) and a methacrylate comonomer were formulated with tri-n-butyl borane oxide (TBBO) as the free radical initiator to have cure times of 6-10 min. Shear bond strengths to dentin were determined for each adhesive mixture (n = 7) using standard testing protocols. Shear bond strengths for the three systems were also determined after application of "reactive primers" to the dentin surface. The "reactive primers" contained 10-20 parts by weight of the respective comonomer mixture and 3.5 parts by weight TBBO in acetone. Solubility parameters difference values (delta delta) and permeability coefficients (P) were approximated for each adhesive system and correlated with shear bond strength values. Additionally, a crosslinking agent was prepared by bulk reaction of an equimolar mixture containing IEM and a methacrylate comonomer. The effects of crosslinker addition on: (a) the setting time of IEM; and (b) the setting times and initiator requirements of selected IEM/comonomer mixtures were determined. Shear bond strength values (MPa): IEM/HEMA 13.6 +/- 2.0 (no primer), 20.1 +/- 2.0 (with primer); IEM/HETMA 9.3 +/- 3.3 (no primer), 20.8 +/- 8.1 (with primer); IEM/AAEMA 13.6 +/- 1.9 (no primer), 17.3 +/- 3.2 (with primer). Also, approximated permeability coefficients showed a significant correlation (r = +0.867, p < 0.001) with shear bond strength values. Crosslinker addition studies with IEM/4-META: (a) at 5-9 mol% reduced the setting time of IEM polymerization by 79%; and (b) at 6 mol% reduced initiator level requirements 60-70% to achieve a comparable setting time, and decreased setting times by

  9. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity

    PubMed Central

    Li, Fang; Weir, Michael D.; Chen, Jihua; Xu, Hockin H. K.

    2013-01-01

    Objective Antibacterial primer and adhesive are promising to help combat biofilms and recurrent caries. The objectives of this study were to compare novel bonding agent containing quaternary ammonium dimethacrylate (QADM) with bonding agent containing nanoparticles of silver (NAg) in antibacterial activity, contact-inhibition vs. long-distance inhibition, glucosyltransferases (gtf) gene expressions, and cytotoxicity for the first time. Methods QADM and NAg were incorporated into Scotchbond Multi-Purpose adhesive and primer. Microtensile dentin bond strength was measured. Streptococcus mutans (S. mutans) biofilm on resin surface (contact-inhibition) as well as S. mutans in culture medium away from the resin surface (long-distance inhibition) were tested for metabolic activity, colony-forming units (CFU), lactic acid production, and gtf gene expressions. Eluents from cured primer/adhesive samples were used to examine cytotoxicity against human gingival fibroblasts. Results Bonding agent with QADM greatly reduced CFU and lactic acid of biofilms on the resin surface (p < 0.05), while having no effect on S. mutans in culture medium away from the resin surface. In contrast, bonding agent with NAg inhibited not only S. mutans on the resin surface, but also S. mutans in culture medium away from the resin surface. Bonding agent with QADM suppressed gtfB, gtfC and gtfD gene expressions of S. mutans on its surface, but not away from its surface. Bonding agent with NAg suppressed S. mutans gene expressions both on its surface and away from its surface. Bonding agents with QADM and NAg did not adversely affect microtensile bond strength or fibroblast cytotoxicity, compared to control (p > 0.1). Significance QADM-containing adhesive had contact-inhibition and inhibited bacteria on its surface, but not away from its surface. NAg-containing adhesive had long-distance killing capability and inhibited bacteria on its surface and away from its surface. The novel antibacterial

  10. Dental adhesives and strategies for displacement of water/solvents from collagen fibrils.

    PubMed

    Matuda, Larissa Sgarbosa de Araújo; Marchi, Giselle Maria; Aguiar, Thaiane Rodrigues; Leme, Ariene Arcas; Ambrosano, Gláucia M B; Bedran-Russo, Ana Karina

    2016-06-01

    To evaluate the influence of temperature of evaporation in adhesive systems with different solvents on the apparent modulus of elasticity and mass change of macro-hybrid layers modified by proanthocyanidins (PACs). Adhesive resin beams (A) from Single Bond Plus (SB), Excite (EX) and One Step Plus (OS) were prepared after solvent evaporation at 23°C or 40°C (n=12). Macro-hybrid layers (M) (n=12) were prepared using demineralized dentin beams sectioned from extracted human third molars. The demineralized dentin specimens were infiltrated with each one of the three adhesive systems at 23°C or 40°C; with or without prior dentin treatment with PACs for 10min. The apparent modulus of elasticity (E) and mass change (Wmc, %) of adhesives beams and resin-infiltrated specimens were assessed in dry and wet conditions after immersion in water (24h, 1, 3 and 6 months). The E was statistically analyzed by Tukey-Kramer test and the Wmc, % by Kruskal Wallis, and Dunn (α=0.05). Solvent evaporation at 40°C resulted in higher E values for adhesive resin beams at all storage conditions, regardless of the adhesive system (p<0.05). Increased mass loss (3 months: -0.01%; 6 months: -0.05%) was observed in One Step resin beams (p≤0.05). In the macro-hybrid layer models the pretreatment with PACs along with solvent evaporation at 40°C increased E and decreased the Wmc, % (3 months: -2.5; 6 months: 2.75%) for adhesives evaluated over time (p<0.05). No significant differences in ratio (resin/dentin) were found for the macro-hybrid layers (p>0.05). Improved solvent evaporation at higher temperature, and increased collagen cross-linking induced by PACs, enhanced the mechanical properties resulting in highly stable macro-hybrid layers over 6 months storage. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.

    PubMed

    Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim

    2016-01-01

    The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p < 0.001) and the groups cooled to 4 °C exhibited the lowest MSBS (p < 0.001). The CSE showed higher MSBS than the other adhesives (p < 0.001). This study concludes that preheating of composite resins may be an alternative way to increase the MSBS of composites on dentin. © Wiley Periodicals, Inc.

  12. Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model

    PubMed Central

    Li, Fang; Wang, Ping; Weir, Michael D.; Fouad, Ashraf F.; Xu, Hockin H. K.

    2014-01-01

    Antibacterial and remineralizing dental composites and adhesives were recently developed to inhibit biofilm acids and combat secondary caries. It is not clear what effect these materials will have on dental pulps in vivo. The objectives of this study were to investigate the antibacterial and remineralizing restorations in a rat tooth cavity model, and determine pulpal inflammatory response and tertiary dentin formation. Nanoparticles of amorphous calcium phosphate (NACP) and antibacterial dimethylaminododecyl methacrylate (DMADDM) were synthesized and incorporated into a composite and an adhesive. Occlusal cavities were prepared in the first molars of rats and restored with four types of restoration: Control composite and adhesive; control plus DMADDM; control plus NACP; and control plus both DMADDM and NACP. At 8 or 30 days (d), rat molars were harvested for histological analysis. For inflammatory cell response, regardless of time periods, NACP group and DMADDM+NACP group showed lower scores (better biocompatibility) than control group (p = 0.014 for 8 d, p = 0.018 for 30 d). For tissue disorganization, NACP and DMADDM+NACP had better scores than control (p = 0.027) at 30 d. At 8 d, restorations containing NACP had tertiary dentin thickness (TDT) that was 5-6 fold that of control. At 30 d, restorations containing NACP had TDT that was 4-6 fold that of control. In conclusion, novel antibacterial and remineralizing restorations were tested in rat teeth in vivo for the first time. Composite and adhesive containing NACP and DMADDM exhibited milder pulpal inflammation and much greater tertiary dentin formation, than control adhesive and composite. Therefore, the novel composite and adhesive containing NACP and DMADDM are promising as a new therapeutic restorative system to not only combat oral pathogens and biofilm acids as shown previously, but also facilitate the healing of the dentin-pulp complex. PMID:24583320

  13. Evaluation of cell responses toward adhesives with different photoinitiating systems.

    PubMed

    Van Landuyt, Kirsten L; Krifka, Stephanie; Hiller, Karl-Anton; Bolay, Carola; Waha, Claudia; Van Meerbeek, Bart; Schmalz, Gottfried; Schweikl, Helmut

    2015-08-01

    The photoinitiator diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) is more reactive than a camphorquinone/amine (CQ) system, and TPO-based adhesives obtained a higher degree of conversion (DC) with fewer leached monomers. The hypothesis tested here is that a TPO-based adhesive is less toxic than a CQ-based adhesive. A CQ-based adhesive (SBU-CQ) (Scotchbond Universal, 3M ESPE) and its experimental counterpart with TPO (SBU-TPO) were tested for cytotoxicity in human pulp-derived cells (tHPC). Oxidative stress was analyzed by the generation of reactive oxygen species (ROS) and by the expression of antioxidant enzymes. A dentin barrier test (DBT) was used to evaluate cell viability in simulated clinical circumstances. Unpolymerized SBU-TPO was significantly more toxic than SBU-CQ after a 24h exposure, and TPO alone (EC50=0.06mM) was more cytotoxic than CQ (EC50=0.88mM), EDMAB (EC50=0.68mM) or CQ/EDMAB (EC50=0.50mM). Cultures preincubated with BSO (l-buthionine sulfoximine), an inhibitor of glutathione synthesis, indicated a minor role of glutathione in cytotoxic responses toward the adhesives. Although the generation of ROS was not detected, a differential expression of enzymatic antioxidants revealed that cells exposed to unpolymerized SBU-TPO or SBU-CQ are subject to oxidative stress. Polymerized SBU-TPO was more cytotoxic than SBU-CQ under specific experimental conditions only, but no cytotoxicity was detected in a DBT with a 200μm dentin barrier. Not only DC and monomer-release determine the biocompatibility of adhesives, but also the cytotoxicity of the (photo-)initiator should be taken into account. Addition of TPO rendered a universal adhesive more toxic compared to CQ; however, this effect could be annulled by a thin dentin barrier. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles

    PubMed Central

    Melo, Mary Anne S.; Cheng, Lei; Weir, Michael D.; Hsia, Ru-ching; Rodrigues, Lidiany K. A.; Xu, Hockin H. K.

    2013-01-01

    Secondary caries remains the main reason for dental restoration failure. Replacement of failed restorations accounts for 50-70% of all restorations performed. Antibacterial adhesives could inhibit biofilm acids at tooth-restoration margins, and calcium phosphate (CaP) ions could remineralize tooth lesions. The objectives of this study were to: (1) incorporate nanoparticles of silver (NAg), quaternary ammonium dimethacrylate (QADM), and nanoparticles of amorphous calcium phosphate (NACP) into bonding agent; and (2) investigate their effects on dentin bonding and microcosm biofilms. An experimental primer was made with pyromellitic glycerol dimethacrylate (PMGDM) and 2-hydroxyethyl methacrylate (HEMA). An adhesive was made with bisphenol-A-glycerolate dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA). NAg was incorporated into primer at 0.1wt%. The adhesive contained 0.1% NAg and 10% QADM, and 0-40% NACP. Incorporating NAg into primer and NAg-QADM-NACP into adhesive did not adversely affect dentin bond strength (p>0.1). SEM showed numerous resin tags, and TEM revealed NAg and NACP in dentinal tubules. Viability of human saliva microcosm biofilms on primer/adhesive/composite disks was substantially reduced via NAg and QADM. Metabolic activity, lactic acid, and colony-forming units of biofilms were much lower on the new bonding agents than control (p<0.05). In conclusion, novel dental bonding agents containing NAg, QADM and NACP were developed with the potential to kill residual bacteria in the tooth cavity and inhibit the invading bacteria along tooth-restoration margins, with NACP to remineralize tooth lesions. The novel method of combining antibacterial agents (NAg and QADM) with remineralizing agent (NACP) may have wide applicability to other adhesives for caries inhibition. PMID:23281264

  15. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    PubMed

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-07-18

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  16. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    PubMed Central

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  17. In vitro Comparative Evaluation of Tensile Bond Strength of 6(th), 7(th) and 8(th) Generation Dentin Bonding Agents.

    PubMed

    Kamble, Suresh S; Kandasamy, Baburajan; Thillaigovindan, Ranjani; Goyal, Nitin Kumar; Talukdar, Pratim; Seal, Mukut

    2015-05-01

    Newer dentin bonding agents were developed to improve the quality of composite restoration and to reduce time consumption in its application. The aim of the present study was to evaluate tensile bond strength of 6(th), 7(th) and 8(th) generation bonding agents by in vitro method. Selected 60 permanent teeth were assigned into 20 in each group (Group I: 6(th) generation bonding agent-Adper SE plus 3M ESPE, Group II: 7(th) generation bonding agent-G-Bond GC Corp Japan and Group III: 8(th) generation dentin adhesives-FuturaBond, DC, Voco, Germany). With high-speed diamond disc, coronal dentin was exposed, and selected dentin bonding agents were applied, followed by composite restoration. All samples were saved in saline for 24 h and tensile bond strength testing was done using a universal testing machine. The obtained data were tabulated and statistically analyzed using ANOVA test. The tensile bond strength readings for 6(th) generation bonding agent was 32.2465, for 7(th) generation was 31.6734, and for 8(th)-generation dentine bonding agent was 34.74431. The highest tensile bond strength was seen in 8(th) generation bonding agent compared to 6(th) and 7(th) generation bonding agents. From the present study it can be conclude that 8(th) generation dentine adhesive (Futura DC, Voco, Germany) resulted in highest tensile bond strength compared to 6(th) (Adper SE plus, 3M ESPE) and 7(th) generation (G-Bond) dentin bonding agents.

  18. Limitations in Bonding to Dentin and Experimental Strategies to Prevent Bond Degradation

    PubMed Central

    Liu, Y.; Tjäderhane, L.; Breschi, L.; Mazzoni, A.; Li, N.; Mao, J.; Pashley, D.H.; Tay, F.R.

    2011-01-01

    The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding. PMID:21220360

  19. The comparison between two irrigation regimens on the dentine wettability for an epoxy resin based sealer by measuring its contact angle formed to the irrigated dentine.

    PubMed

    Mohan, Rayapudi Phani; Pai, Annappa Raghavendra Vivekananda

    2015-01-01

    The aim was to assess the influence of two irrigation regimens having ethylenediaminetetraacetic acid (EDTA) and ethylenediaminetetraacetic acid with cetrimide (EDTAC) as final irrigants, respectively, on the dentine wettability for AH Plus sealer by comparing its contact angle formed to the irrigated dentine. Study samples were divided into two groups (n = 10). The groups were irrigated with 3% sodium hypochlorite (NaOCl) solution followed by either 17% EDTA or 17% EDTAC solution. AH Plus was mixed, and controlled volume droplet (0.1 mL) of the sealer was placed on the dried samples. The contact angle was measured using a Dynamic Contact Angle Analyzer and results were analyzed using SPSS 21.0 and 2 sample t-test. There was a significant difference in the contact angle of AH Plus formed to the dentine irrigated with the above two regimens. AH Plus showed significantly lower contact angle with the regimen having EDTAC as a final irrigant than the one with EDTA (P < 0.05). An irrigation regimen consisting of NaOCl with either EDTA or EDTAC solution as a final irrigant influences the dentine wettability and contact angle of a sealer. EDTAC as a final irrigant facilitates better dentin wettability than EDTA for AH Plus to promote its better flow and adhesion.

  20. Expression and purification recombinant human dentin sialoprotein in Escherichia coli and its effects on human dental pulp cells.

    PubMed

    Yun, Ye-Rang; Kim, Hae-Won; Kang, Wonmo; Jeon, Eunyi; Lee, Sujin; Lee, Hye-Young; Kim, Cheol-Hwan; Jang, Jun-Hyeog

    2012-05-01

    Dentin sialoprotein (DSP) is cleaved from dentin sialophosphoprotein (DSPP) and most abundant dentinal non-collagenous proteins in dentin. DSP is believed to participate in differentiation and mineralization of cells. In this study, we first constructed recombinant human DSP (rhDSP) in Escherichia coli (E. coli) and investigated its odontoblastic differentiation effects on human dental pulp cells (hDPCs). Cell adhesion activity was measured by crystal violet assay and cell proliferation activity was measured by MTT assay. To assess mineralization activity of rhDSP, Alizarin Red S staining was performed. In addition, the mRNA levels of collagen type І (Col І), alkaline phosphatase (ALP), and osteocalcin (OCN) were measured due to their use as mineralization markers for odontoblast-/osteoblast-like differentiation of hDPCs. The obtained rhDSP in E. coli was approximately identified by SDS-PAGE and Western blot. Initially, rhDSP significantly enhanced hDPCs adhesion activity and proliferation (p<0.05). In Alizarin Red S staining, stained hDPCs increased in a time-dependent manner. This odontoblastic differentiation activity was also verified through mRNA levels of odontoblast-related markers. Here, we first demonstrated that rhDSP may be an important regulatory ECM in determining the hDPCs fate including cell adhesion, proliferation, and odontoblastic differentiation activity. These findings indicate that rhDSP can induce growth and differentiation on hDPCs, leading to improve tooth repair and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Effect of Instrumentation Techniques, Irrigant Solutions and Artificial accelerated Aging on Fiberglass Post Bond Strength to Intraradicular Dentin.

    PubMed

    Santana, Fernanda Ribeiro; Soares, Carlos José; Silva, Júlio Almeida; Alencar, Ana Helena Gonçalves; Renovato, Sara Rodrigues; Lopes, Lawrence Gonzaga; Estrela, Carlos

    2015-07-01

    To evaluate the effect of instrumentation techniques, irrigant solutions and specimen aging on fiberglass posts bond strength to intraradicular dentine. A total of 120 bovine teeth were prepared and randomized into control and experimental groups resulting from three study factors (instrumentation techniques, irrigant solutions, specimen aging). Posts were cemented with RelyX U100. Samples were submitted to push-out test and failure mode was evaluated under a confocal microscope. In specimens submitted to water artificial aging, nickel-titanium rotary instruments group presented higher bond strength values in apical third irrigated with NaOCl or chlorhexi-dine. Irrigation with NaOCl resulted in higher bond strength than ozonated water. Artificial aging resulted in significant bond strength increase. Adhesive cement-dentin failure was prevalent in all the groups. Root canal preparation with NiTi instruments associated with NaOCl irrigation and ethylenediaminetetra acetic acid (EDTA) increased bond strength of fiberglass posts cemented with self-adhesive resin cement to intraradicular dentine. Water artificial aging significantly increased post-Clinical significance: The understanding of factors that may influence the optimal bond between post-cement and cement-dentin are essential to the success of endodontically treated tooth restoration.

  2. Polymerization- and Solvent-Induced Phase Separation in Hydrophilic-rich Dentin Adhesive Mimic

    PubMed Central

    Abedin, Farhana; Ye, Qiang; Good, Holly J; Parthasarathy, Ranganathan; Spencer, Paulette

    2014-01-01

    Current dental resin undergoes phase separation into hydrophobic-rich and hydrophilic-rich phases during infiltration of the over-wet demineralized collagen matrix. Such phase separation undermines the integrity and durability of the bond at the composite/tooth interface. This study marks the first time that the polymerization kinetics of model hydrophilic-rich phase of dental adhesive has been determined. Samples were prepared by adding varying water content to neat resins made from 95 and 99wt% hydroxyethylmethacrylate (HEMA) and 5 and 1wt% (2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl1]-propane (BisGMA) prior to light curing. Viscosity of the formulations decreased with increased water content. The photo-polymerization kinetics study was carried out by time-resolved FTIR spectrum collector. All of the samples exhibited two-stage polymerization behavior which has not been reported previously for dental resin formulation. The lowest secondary rate maxima were observed for water content of 10-30%wt. Differential scanning calorimetry (DSC) showed two glass transition temperatures for the hydrophilic-rich phase of dental adhesive. The DSC results indicate that the heterogeneity within the final polymer structure decreased with increased water content. The results suggest a reaction mechanism involving both polymerization-induced phase separation (PIPs) and solvent-induced phase separation (SIPs) for the model hydrophilic-rich phase of dental resin. PMID:24631658

  3. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin

    PubMed Central

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822

  4. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin.

    PubMed

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion.

  5. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    PubMed

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  6. Mechanical properties and molecular structure analysis of subsurface dentin after Er:YAG laser irradiation.

    PubMed

    He, Zhengdi; Chen, Lingling; Hu, Xuejuan; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Ruan, Shuangchen

    2017-10-01

    The purpose of this study was to evaluate the chemical and mechanical modifications in subsurface dentin layer after Er: YAG (Erbium-Yttrium Aluminium Garnet) laser irradiation, as the guidance of new dental restorative materials specific for laser irradiated dentin. Dentin disks obtained from extracted human molars were prepared and exposed to a single pulse Er:YAG laser irradiation at 80mJ/pulse. After laser irradiation the mechanical and chemical characteristics of intertubular dentin in subsurface layer were studied using nanoindentation tester and micro-Raman spectromy (μ-RS). The dentin 5-50µm depth beneath the lased surface was determined as testing area. Two-way analysis of variance (ANOVA) were used to compare the mechanical values between lased and untreated subsurface dentin (P = 0.05). A laser affected subsurface dentin layer after Er:YAG laser treatment is present. The laser irradiation is considered to decrease the mechanical properties in the superficial subsurface layer (<15µm deep). There was no significant difference in nanohardness and Young's modulus between lased subsurface dentin and untreated dentin (p > 0.05) under the depth of 15µm. However, the dentin at 5µm and 10µm depth beneath the lased surface exhibited significantly lower (~ 47.8% and ~ 33.6% respectively) hardness (p < 0.05). Er:YAG laser irradiation affected both mineral and organic components in subsurface dentin layer, a higher degree of crystallinity and reduced organic compounds occurred in the lased subsurface dentin. Under the tested laser parameters, Er:YAG laser irradiation causes lower mechanical values and reduction of organic components in subsurface dentin, which has deleterious effects on resin adhesion to this area. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Bacterial leakage in root canals filled with AH Plus and dentine bonding agents.

    PubMed

    Navarro-Escobar, Esther; Baca, Pilar; Ruiz-Linares, Matilde; Arias-Moliz, Maria Teresa; Perez-Heredia, Mercedes; Ferrer-Luque, Carmen Maria

    2014-11-01

    The aim of this study was to compare the efficacy of different dentine adhesives in delaying the coronal bacterial leakage of Enterococcus faecalis in filled root canals. Materials and methods. Ninety-five lower incisors of patients >65 years of age were instrumented using the ProTaper system and were irrigated with 1 mL of 2.5% sodium hypochlorite (NaOCl) alternated with 1 mL 17% EDTA between each file change. Final irrigation was performed with 5 mL of 17% EDTA and then flushed with 5 mL of distilled water. The teeth were randomly divided into five experimental groups (n = 15/group) and one of the following dentine adhesives was applied: (1) AdheSE; (2) Excite DSC; (3) Clearfil Protect Bond; (4) One Coat 7.0; or (5) Control group without adhesive. After filling the root canals, the samples were mounted on a double chamber device to evaluate the bacterial filtration of E. faecalis during a period of 240 days. The results underwent non-parametric Kaplan-Meier survival analysis and comparisons among groups were done using the Log-Rank test. At 240 days, E. faecalis was detected in samples of all groups in the lower chamber. The highest survival value was obtained by One Coat 7.0, giving statistically significant differences from the other groups, whereas Clearfil Protect Bond, AdheSE and Excite DSC showed similar behaviours, likewise similar to the Control group. One Coat 7.0 adhesive system provides the longest survival value to delay E. faecalis coronal leakage in filled root canals.

  8. A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers.

    PubMed

    Ikemura, Kunio; Tay, Franklin R; Endo, Takeshi; Pashley, David H

    2008-05-01

    This paper reviews our recent studies on fluoride-releasing adhesives and the related studies in this field based on information from original research papers, reviews, and patent literatures. A revolutionary PRG (pre-reacted glass ionomer) filler technology--where fillers were prepared by the acid-base reaction of a fluoroaluminosilicate glass with polyalkenoic acid in water, was newly developed, and a new category as "Giomer" was introduced into the market. On fluoride release capability, SIMS examination revealed in vitro fluoride ion uptake by dentin substrate from the PRG fillers in dental adhesive. On bonding durability, it was found that the improved durability of resin-dentin bonds might be achieved not only via the strengthened dentin due to fluoride ion uptake from the PRG-Ca fillers, but also due to retention of relatively insoluble 4-AETCa formed around remnant apatite crystallites within the hybrid layer in 4-AET-containing self-etching adhesives. On ultramorphological study of the resin-dentin interface, TEM images of the PRG-Ca fillers revealed that the dehydrated hydrogel was barely distinguishable from normal glass fillers, if not for the concurrent presence of remnant, incompletely reacted glass cores. In conclusion, it was expected that uptake of fluoride ions with cariostatic effect from PRG-Ca fillers would endow dentin substrates with the benefit of secondary caries prevention, together with an effective and durable adhesion to dentin.

  9. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    PubMed

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  10. Mounting ground sections of teeth: Cyanoacrylate adhesive versus Canada balsam.

    PubMed

    Vangala, Manogna Rl; Rudraraju, Amrutha; Subramanyam, R V

    2016-01-01

    Hard tissues can be studied by either decalcification or by preparing ground sections. Various mounting media have been tried and used for ground sections of teeth. However, there are very few studies on the use of cyanoacrylate adhesive as a mounting medium. The aim of our study was to evaluate the efficacy of cyanoacrylate adhesive (Fevikwik™) as a mounting medium for ground sections of teeth and to compare these ground sections with those mounted with Canada balsam. Ground sections were prepared from twenty extracted teeth. Each section was divided into two halves and mounted on one slide, one with cyanoacrylate adhesive (Fevikwik™) and the other with Canada balsam. Scoring for various features in the ground sections was done by two independent observers. Statistical analysis using Student's t-test (unpaired) of average scores was performed for each feature observed. No statistically significant difference was found between the two for most of the features. However, cyanoacrylate was found to be better than Canada balsam for observing striae of Retzius (P < 0.0205), enamel lamellae (P < 0.036), dentinal tubules (P < 0.0057), interglobular dentin (P < 0.0001), sclerotic dentin - transmitted light (P < 0.00001), sclerotic dentin - polarized light (P < 0.0002) and Sharpey's fibers (P < 0.0004). This initial study shows that cyanoacrylate is better than Canada balsam for observing certain features of ground sections of teeth. However, it remains to be seen whether it will be useful for studying undecalcified sections of carious teeth and for soft tissue sections.

  11. Mounting ground sections of teeth: Cyanoacrylate adhesive versus Canada balsam

    PubMed Central

    Vangala, Manogna RL; Rudraraju, Amrutha; Subramanyam, RV

    2016-01-01

    Introduction: Hard tissues can be studied by either decalcification or by preparing ground sections. Various mounting media have been tried and used for ground sections of teeth. However, there are very few studies on the use of cyanoacrylate adhesive as a mounting medium. Aims: The aim of our study was to evaluate the efficacy of cyanoacrylate adhesive (Fevikwik™) as a mounting medium for ground sections of teeth and to compare these ground sections with those mounted with Canada balsam. Materials and Methods: Ground sections were prepared from twenty extracted teeth. Each section was divided into two halves and mounted on one slide, one with cyanoacrylate adhesive (Fevikwik™) and the other with Canada balsam. Scoring for various features in the ground sections was done by two independent observers. Statistical Analysis Used: Statistical analysis using Student's t-test (unpaired) of average scores was performed for each feature observed. Results: No statistically significant difference was found between the two for most of the features. However, cyanoacrylate was found to be better than Canada balsam for observing striae of Retzius (P < 0.0205), enamel lamellae (P < 0.036), dentinal tubules (P < 0.0057), interglobular dentin (P < 0.0001), sclerotic dentin – transmitted light (P < 0.00001), sclerotic dentin – polarized light (P < 0.0002) and Sharpey's fibers (P < 0.0004). Conclusions: This initial study shows that cyanoacrylate is better than Canada balsam for observing certain features of ground sections of teeth. However, it remains to be seen whether it will be useful for studying undecalcified sections of carious teeth and for soft tissue sections. PMID:27194857

  12. Adhesion of Dental Materials to Tooth Structure

    NASA Astrophysics Data System (ADS)

    Mitra, Sumita B.

    2000-03-01

    The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.

  13. Adaptation of adhesive post and cores to dentin after in vitro occlusal loading: evaluation of post material influence.

    PubMed

    Dietschi, Dider; Ardu, Stefano; Rossier-Gerber, Anne; Krejci, Ivo

    2006-12-01

    Fatigue resistance of post and cores is critical to the long term behavior of restored nonvital teeth. The purpose of this in vitro trial was to evaluate the influence of the post material's physical properties on the adaptation of adhesive post and core restorations after cyclic mechanical loading. Composite post and cores were made on endodontically treated deciduous bovine teeth using 3 anisotropic posts (made of carbon, quartz, or quartz-and-carbon fibers) and 3 isotropic posts (zirconium, stainless steel, titanium). Specimens were submitted to 3 successive loading phases--250,000 cycles at 50 N, 250,000 at 75 N, and 500,000 at 100 N--at a rate of 1.5 Hz. Restoration adaptation was evaluated under SEM, before and during loading (margins) and after test completion (margins and internal interfaces). Six additional samples were fabricated for the characterization of interface micromorphology using confocal microscopy. Mechanical loading increased the proportion of marginal gaps in all groups; carbon fiber posts presented the lowest final gap proportion (7.11%) compared to other stiffer metal-ceramic or softer fiber posts (11.0% to 19.1%). For internal adaptation, proportions of debonding between dentin and core or cement varied from 21.69% (carbon post) to 47.37% (stainless steel post). Debonding at the post-cement interface occurred only with isotropic materials. Confocal microscopy observation revealed that gaps were generally associated with an incomplete hybrid layer and reduced resin tags. Regardless of their rigidity, metal and ceramic isotropic posts proved less effective than fiber posts at stabilizing the post and core structure in the absence of the ferrule effect, due to the development of more interfacial defects with either composite or dentin.

  14. Durability of bonds and clinical success of adhesive restorations

    PubMed Central

    Carvalho, Ricardo M.; Manso, Adriana P.; Geraldeli, Saulo; Tay, Franklin R.; Pashley, David H.

    2013-01-01

    Resin-dentin bond strength durability testing has been extensively used to evaluate the effectiveness of adhesive systems and the applicability of new strategies to improve that property. Clinical effectiveness is determined by the survival rates of restorations placed in non-carious cervical lesions (NCCL). While there is evidence that the bond strength data generated in laboratory studies somehow correlates with the clinical outcome of NCCL restorations, it is questionable whether the knowledge of bonding mechanisms obtained from laboratory testing can be used to justify clinical performance of resin-dentin bonds. There are significant morphological and structural differences between the bonding substrate used in in vitro testing versus the substrate encountered in NCCL. These differences qualify NCCL as a hostile substrate for bonding, yielding bond strengths that are usually lower than those obtained in normal dentin. However, clinical survival time of NCCL restorations often surpass the durability of normal dentin tested in the laboratory. Likewise, clinical reports on the long-term survival rates of posterior composite restorations defy the relatively rapid rate of degradation of adhesive interfaces reported in laboratory studies. This article critically analyzes how the effectiveness of adhesive systems is currently measured, to identify gaps in knowledge where new research could be encouraged. The morphological and chemical analysis of bonded interfaces of resin composite restorations in teeth that had been in clinical service for many years, but were extracted for periodontal reasons, could be a useful tool to observe the ultrastructural characteristics of restorations that are regarded as clinically acceptable. This could help determine how much degradation is acceptable for clinical success. PMID:22192252

  15. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion.

    PubMed

    Brassard, J D; Sarkar, D K; Perron, J; Audibert-Hayet, A; Melot, D

    2015-06-01

    Thin films of zinc have been deposited on steel substrates by electrodeposition process and further functionalized with ultra-thin films of commercial silicone rubber, in order to obtain superhydrophobic properties. Morphological feature, by scanning electron microscope (SEM), shows that the electrodeposited zinc films are composed of micro-nano rough patterns. Furthermore, chemical compositions of these films have been analyzed by X-ray diffraction (XRD) and infra-red (IRRAS). An optimum electrodeposition condition, based on electrical potential and deposition time, has been obtained which provides superhydrophobic properties with a water contact angle of 155±1°. The corrosion resistance properties, in artificial seawater, of the superhydrophobic zinc coated steel are found to be superior to bare steel. Similarly, the measured ice adhesion strength on superhydrophobic surfaces, using the centrifugal adhesion test (CAT), is found to be 6.3 times lower as compared to bare steel. This coating has promising applications in offshore environment, to mitigate corrosion and reduce ice adhesion. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Arola, Dwayne D.; Zhou, Xuedong; Xu, Hockin H. K.

    2013-01-01

    Objectives The main reason for restoration failure is secondary caries caused by biofilm acids. Replacing the failed restorations accounts for 50–70% of all operative work. The objectives of this study were to incorporate a new quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) and nanoparticles of silver (NAg) into a primer and an adhesive, and to investigate their effects on antibacterial and dentin bonding properties. Methods Scotchbond Multi-Purpose (SBMP) served as control. DMADDM was synthesized and incorporated with NAg into primer/adhesive. A dental plaque microcosm biofilm model with human saliva was used to investigate metabolic activity, colony-forming units (CFU), and lactic acid. Dentin shear bond strengths were measured. Results Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the new DMADDM were orders of magnitude lower than those of a previous quaternary ammonium dimethacrylate (QADM). Uncured primer with DMADDM had much larger inhibition zones than QADM (p<0.05). Cured primer/adhesive with DMADDM-NAg greatly reduced biofilm metabolic activity (p<0.05). Combining DMADDM with NAg in primer/adhesive resulted in less CFU than DMADDM alone (p<0.05). Lactic acid production by biofilms was reduced by 20-fold via DMADDM-NAg, compared to control. Incorporation of DMADDM and NAg into primer/adhesive did not adversely affect dentin bond strength. Conclusions A new antibacterial monomer DMADDM was synthesized and incorporated into primer/adhesive for the first time. The bonding agents are promising to combat residual bacteria in tooth cavity and invading bacteria at tooth-restoration margins to inhibit caries. DMADDM and NAg are promising for use into a wide range of dental adhesive systems and restoratives. PMID:23353068

  17. [Effect of nano-silica coating on bonding strength of zirconia ceramics to dentin].

    PubMed

    Zhang, Xian-Fang; Zheng, Hu; Han, Dong-Wei

    2009-04-01

    To investigate the effect of silica coating by sol-gel process on bonding strength of zirconia ceramics to dentin. Blocks of sintered zirconia ceramics were cut and randomly divided into 4 groups,16 slices in each group. Each group was subject to one of the 4 kinds of surface treatment (control group, sandblasting, sandblasting +silicone, sandblasting + silica coating + silicone) and then bonded to dentin with resin cement. After preservation in 37 degrees centigrade distilled water for 24 hours, the shear bonding strength of these specimens was tested and the data was analyzed with SAS6.12 software package for analysis of variance. The surface modality of the ceramics was observed under scanning electron microscopy (SEM). The group of sandblasting+ silica coating + silicone attained the highest shear bonding strength, which was significantly different from the other groups(P=0.000);There was no significant difference between the sandblasting and sandblasting + silicone group (P=0.827), which was significantly different from the control group(P=0.001). Silica coating by sol-gel process, coupled with silicone, can significantly increase the bonding strength of zirconia ceramics to dentin.

  18. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    PubMed Central

    BRIANEZZI, Leticia Ferreira de Freitas; MAENOSONO, Rafael Massunari; BIM, Odair; ZABEU, Giovanna Speranza; PALMA-DIBB, Regina Guenka; ISHIKIRIAMA, Sérgio Kiyoshi

    2017-01-01

    Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups – no laser irradiation) and SB-L and SU-L [SB and SU laser (L) – irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Results Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility. PMID:28877276

  19. Bond strength of etch-and-rinse and self-etch adhesive systems to enamel and dentin irradiated with a novel CO2 9.3 μm short-pulsed laser for dental restorative procedures.

    PubMed

    Rechmann, Peter; Bartolome, N; Kinsel, R; Vaderhobli, R; Rechmann, B M T

    2017-12-01

    The objective of this study was to evaluate the influence of CO 2 9.3 μm short-pulsed laser irradiation on the shear bond strength of composite resin to enamel and dentin. Two hundred enamel and 210 dentin samples were irradiated with a 9.3 µm carbon dioxide laser (Solea, Convergent Dental, Inc., Natick, MA) with energies which either enhanced caries resistance or were effective for ablation. OptiBond Solo Plus [OptiBondTE] (Kerr Corporation, Orange, CA) and Peak Universal Bond light-cured adhesive [PeakTE] (Ultradent Products, South Jordan, UT) were used. In addition, Scotchbond Universal [ScotchbondSE] (3M ESPE, St. Paul, MN) and Peak SE self-etching primer with Peak Universal Bond light-cured adhesive [PeakSE] (Ultradent Products) were tested. Clearfil APX (Kuraray, New York, NY) was bonded to the samples. After 24 h, a single plane shear bond test was performed. Using the caries preventive setting on enamel resulted in increased shear bond strength for all bonding agents except for self-etch PeakSE. The highest overall bond strength was seen with PeakTE (41.29 ± 6.04 MPa). Etch-and-rinse systems achieved higher bond strength values to ablated enamel than the self-etch systems did. PeakTE showed the highest shear bond strength with 35.22 ± 4.40 MPa. OptiBondTE reached 93.8% of its control value. The self-etch system PeakSE presented significantly lower bond strength. The shear bond strength to dentin ranged between 19.15 ± 3.49 MPa for OptiBondTE and 43.94 ± 6.47 MPa for PeakSE. Etch-and-rinse systems had consistently higher bond strength to CO 2 9.3 µm laser-ablated enamel. Using the maximum recommended energy for dentin ablation, the self-etch system PeakSE reached the highest bond strength (43.9 ± 6.5 MPa).

  20. Interfacial micromorphological differences in hybrid layer formation between water- and solvent-based dentin bonding systems.

    PubMed

    Gregoire, Geneviève L; Akon, Bernadette A; Millas, Arlette

    2002-06-01

    Many dentin bonding systems of different compositions, and in particular containing different solvents, have been introduced to the market. Their effect on the quality of the interface requires clarification by means of comparative trials. This study investigated micromorphological differences in hybrid layer formation with a variety of commercially available water- or solvent-based dentin bonding products and their recommended compomers. Five bonding systems were used on groups of 10 teeth each as follows: group I, acetone-based system used with 36% phosphoric acid; group II, a different acetone-based system containing nano-sized particles for filler loading and used with a non-rinsing conditioner containing maleic acid; group III, the acetone-based system of group II used with 36% phosphoric acid (the only difference in the treatment for groups II and III was the acid etching system); group IV, a mixed-solvent-based system (water/ethanol) used with 37% phosphoric acid; and group V, a water-based system used with 37% phosphoric acid. Each bonding system was covered with the recommended compomer. Class I occlusal preparations were made in extracted teeth and restored with one of the above systems. Five specimens of each group were studied with optical microscopy after staining. Scanning electron microscopy was used to examine the interface of the bonding system/dentin of the other 5 teeth in each group. The optical microscopy measurements were made with a 10 x 10 reticle. A micron mark with scale was used for the scanning electron microscope. All measurements were made in microm. The following criteria were used to define a good interface: absence of voids between the different parts of the interface, uniformity of the hybrid layer, good opening of the tubuli orifices, and tag adherence to the tubuli walls. Morphological differences were found at the interface depending on dentin treatment and adhesive composition. The acetone-containing systems were associated

  1. Dentinal permeation modeling

    NASA Astrophysics Data System (ADS)

    Trunina, Natalia; Derbov, Vladimir; Tuchin, Valery; Altshuler, Gregory

    2008-06-01

    Dentinal permeation is of interest in a wide context of tooth care and treatment, in particular, tooth color improvement using combination of chemical whitening agents and light activation. A simple model of dentinal permeation accounting for the morphology of human tooth dentine and including dentinal tubules, more dense and homogeneous peritubular dentine, and less dense and less homogeneous intertubular dentin is proposed. Calculation of permeability of dentine layer is carried out for H IIO and H IIO II versus the tubule diameter and tubule density taken from the microphotograph analysis. This opens the possibility to calculate the distribution of permeability over the tooth surface taking into account the variations of tubule diameter and density as well as those of the diffusion coefficients and layer thickness

  2. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles.

    PubMed

    Gutiérrez, M F; Malaquias, P; Matos, T P; Szesz, A; Souza, S; Bermudez, J; Reis, A; Loguercio, A D; Farago, P V

    2017-03-01

    To evaluate the effect of addition of copper nanoparticles (CN) at different concentrations into a two-step etch-and-rinse (2-ER) adhesive on antimicrobial activity (AMA), copper release (CR), ultimate tensile strength (UTS), degree of conversion (DC), water sorption (WS), solubility (SO), as well as the immediate (IM) and 1-year resin-dentin bond strength (μTBS) and nanoleakage (NL). Seven adhesives were formulated according to the addition of CN (0, 0.0075, 0.015, 0.06, 0.1, 0.5 and 1wt%) in adhesive. The AMA was evaluated against Streptococcus mutans using agar diffusion assay. For CR, WS and SO, specimens were constructed and tested for 28 days. For UTS, specimens were tested after 24h and 28 days. For DC, specimens were constructed and tested after 24h by FTIR. After enamel removal, the ER was applied to dentin. After composite resin build-ups, specimens were sectioned to obtain resin-dentin sticks. For μTBS and NL, specimens were tested after 24h and 1-year periods. All data were submitted to statistical analysis (α=0.05). The addition of CN provided AMA to the adhesives at all concentrations. Higher CR was observed in adhesives with higher concentration of CN. UTS, DC, WS and SO were not influenced. For μTBS an increase was observed in 0.1 and 0.5% copper group. For NL, a significant decrease was observed in all groups in comparison with control group. After 1-year, no significant reductions of μTBS and no significant increases of NL were observed for copper containing adhesives compared to the control group. The addition of CN in concentrations up to 1wt% in the 2-ER adhesive may be an alternative to provide AMA and preserve the bonding to dentin, without reducing adhesives' mechanical properties evaluated. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Evaluation of dentin tubule occlusion after laser irradiation and desensitizing agent application.

    PubMed

    Kim, Min-Ho; Kim, Ryan Jin-Young; Lee, Woo-Cheol; Lee, In-Bog

    2015-10-01

    To evaluate the effects of lasers (Nd:YAG and Er:YAG) and of topical desensitizing agents on dentin tubule occlusion by measuring real-time dentin fluid flow (DFF). 32 molars were prepared with V-shape cavity at the cervical area, acid-etched, water rinsed, blotted dry, and treated with (1) Nd:YAG laser; (2) Er:YAG laser; (3) SuperSeal, a desensitizing agent; (4) ClinproXT, a resin-modified glass-ionomer (RMGI) varnish (n = 8 each). A real-time fluid flow measuring instrument (nano-Flow) was used to measure the DFF throughout the procedures. The DFF rates before and after the treatment were compared. Moreover, the surface topography of dentin tubules after each desensitizing method was examined using SEM. DFF varied among the groups. The DFF rate was significantly reduced after laser irradiation/application of the desensitizing agents (P < 0.05). ClinproXT showed the greatest reduction of DFF rate (71.9%), followed by the SuperSeal (34.8%) and laser groups (P< 0.05). However, there was no significant difference between the Nd:YAG (24.1%) and Er:YAG (20.6%) groups (P > 0.05). In SEM images, narrowed dentin tubules were observed in both lased groups and SuperSeal group. In the ClinproXT group, the occluded dentin tubules by the RMGI covering were observed.

  4. Immediate performance of self-etching versus system adhesives with multiple light-activated restoratives.

    PubMed

    Irie, M; Suzuki, K; Watts, D C

    2004-11-01

    The purpose of this study was to evaluate the performance of both single and double applications of (Adper Prompt L-Pop) self-etching dental adhesive, when used with three classes of light-activated restorative materials, in comparison to the performance of each restorative system adhesive. Evaluation parameters to be considered for the adhesive systems were (a) immediate marginal adaptation (or gap formation) in tooth cavities, (b) free setting shrinkage-strain determined by the immediate marginal gap-width in a non-bonding Teflon cavity, and (c) their immediate shear bond-strengths to enamel and to dentin. The maximum marginal gap-width and the opposing-width (if any) in the tooth cavities and in the Teflon cavities were measured immediately (3 min) after light-activation. The shear bond-strengths to enamel and to dentin were also measured at 3 min. For light-activated restorative materials during early setting (<3 min), application of Adper Prompt L-Pop exhibited generally superior marginal adaptation to most system adhesives. But there was no additional benefit from double application. The marginal-gaps in tooth cavities and the marginal-gaps in Teflon cavities were highly correlated (r = 0.86-0.89, p < 0.02-0.01). For enamel and dentin shear bond-strengths, there were no significant differences between single and double applications, for all materials tested except Toughwell and Z 250 with enamel. Single application of a self-etch adhesive was a feasible and beneficial alternative to system adhesives for several classes of restorative. Marginal gap-widths in tooth cavities correlated more strongly with free shrinkage-strain magnitudes than with bond-strengths to tooth structure.

  5. Bond strength to dentin with artificial carious lesions: influence of caries detecting dye.

    PubMed

    Palma, R G; Turbino, M L; Matson, E; Powers, J M

    1998-06-01

    To evaluate the influence of dyes for caries detection on tensile bond strength of adhesive materials to artificial carious dentin. Buccal and lingual enamel of human molars were removed leaving intact dentin surfaces. The entire surface of each specimen was covered with nail varnish, keeping a window area of 4 x 4 mm. Artificial carious lesions were induced with acidified gel. Three dyes (0.5% basic fuchsin; Caries Finder and Cari-D-Tect) were used according to manufacturers' recommendations. Specimens were etched with 35% phosphoric acid for 20 s, washed and dried, leaving a wet dentin surface. The adhesive system (Prime & Bond 2.0) was applied in two layers and light-cured. Restorative materials (TPH Spectrum, Dyract, Advance) were bonded using a 3-mm diameter inverted-cone mold. Control groups were made without dye. Eight samples were tested for each group. After 24 hrs of storage in distilled water, the samples were debonded using a testing machine at 0.5 mm/min crosshead speed. ANOVA and Tukey-Kramer test showed that TPH Spectrum (0.73 MPa) and Dyract (0.74 MPa) had similar bond strengths, and both were higher than Advance (0.0 MPa), which was statistically different (P < 0.01). The use of the dyes did not cause any changes in tensile bond strength for any tested materials.

  6. The Probable Effect of Irrigation Solution and Time on Bond Strength to Coronal Dentin: An In Vitro Evaluation.

    PubMed

    Mokhtari, Fatemeh; Anvar, Ehsan; Mirshahpanah, Mostafa; Hemati, Hamidreza; Danesh Kazemi, Alireza

    2017-01-01

    The aim of this study was to evaluate the effect of root canal irrigants on the microtensile bond strength of 2-step self-etch adhesive to dentin. n this study 36 sound extracted human third molars were used. After grinding 3 mm of occlusal surface, teeth were randomly divided into 6 groups based on irrigation material naming normal saline, 5.25% sodium hypochlorite (NaOCl) and 2% chlorhexidine (CHX) and also irrigation time (5 or 30 min). Next, teeth were restored with Clearfil SE bond adhesive resin system and Z250 composite. The teeth were then thermo cycled by thermo cycling machine, for 500 cycles between 5 º and 55 º C with 60 sec dwell time and 12 sec transfer time. All samples were sectioned into bucco-lingual slabs. The sections were submitted to the micro tensile testing machine at a crosshead speed of 0.5 mm/min until fracture. Data was analyzed using the one-way ANOVA test with the level of significance set at 0.05. Irrigation with normal saline, 5.25% NaOCl and 2% CHX for 5 or 30 min did not significantly change the microtensile bond strength of adhesive to dentin ( P =0.729 for time and P =0.153 for material). However the maximum and minimum microtensile bond strength was attributed to normal saline (44.13 N) and NaOCl (31.29 N) groups, respectively. Iirrigation solution and time have no influence on microtensile bond strength of two-step self-etch adhesive to coronal dentin.

  7. The Probable Effect of Irrigation Solution and Time on Bond Strength to Coronal Dentin: An In Vitro Evaluation

    PubMed Central

    Mokhtari, Fatemeh; Anvar, Ehsan; Mirshahpanah, Mostafa; Hemati, Hamidreza; Danesh Kazemi, Alireza

    2017-01-01

    Introduction: The aim of this study was to evaluate the effect of root canal irrigants on the microtensile bond strength of 2-step self-etch adhesive to dentin. Methods and Materials: n this study 36 sound extracted human third molars were used. After grinding 3 mm of occlusal surface, teeth were randomly divided into 6 groups based on irrigation material naming normal saline, 5.25% sodium hypochlorite (NaOCl) and 2% chlorhexidine (CHX) and also irrigation time (5 or 30 min). Next, teeth were restored with Clearfil SE bond adhesive resin system and Z250 composite. The teeth were then thermo cycled by thermo cycling machine, for 500 cycles between 5º and 55ºC with 60 sec dwell time and 12 sec transfer time. All samples were sectioned into bucco-lingual slabs. The sections were submitted to the micro tensile testing machine at a crosshead speed of 0.5 mm/min until fracture. Data was analyzed using the one-way ANOVA test with the level of significance set at 0.05. Results: Irrigation with normal saline, 5.25% NaOCl and 2% CHX for 5 or 30 min did not significantly change the microtensile bond strength of adhesive to dentin (P=0.729 for time and P=0.153 for material). However the maximum and minimum microtensile bond strength was attributed to normal saline (44.13 N) and NaOCl (31.29 N) groups, respectively. Conclusion: Iirrigation solution and time have no influence on microtensile bond strength of two-step self-etch adhesive to coronal dentin. PMID:29225638

  8. Fracture mechanics analysis of the dentine-luting cement interface.

    PubMed

    Ryan, A K; Mitchell, C A; Orr, J F

    2002-01-01

    The objectives of this study were to determine the fracture toughness of adhesive interfaces between dentine and clinically relevant, thin layers of dental luting cements. Cements tested included a conventional glass-ionomer, F (Fuji 1), a resin-modified glass-ionomer, FP (Fuji Plus) and a compomer cement, D (DyractCem). Ten miniature short-bar chevron notch specimens were manufactured for each cement, each comprising a 40 microm thick chevron of lute, between two 1.5 mm thick blocks of bovine dentine, encased in resin composite. The interfacial K(IC) results (MN/m3/2) were median (range): F; 0.152 (0.14-0.16), FP; 0.306 (0.27-0.37), D; 0.351 (0.31-0.37). Non-parametric statistical analysis showed that the fracture toughness of F was significantly lower (p <0.05) than those of FP or D, and all were significantly lower than values for monolithic cement specimens. Scanning electron microscopy of the specimens suggested crack propagation along the interface. However, energy dispersive X-ray analysis indicated that failure was cohesive within the cement. It is concluded that the fracture toughness of luting cement was lowered by cement-dentine interactions.

  9. [Bond strengths of absorbable polylactic acid root canal post with three different adhesives].

    PubMed

    Pan, Hui; Cheng, Can; Hu, Jia; Liu, He; Sun, Zhi-hui

    2015-12-18

    To find absorbable adhesives with suitable bonding properties for the absorbable polylactic acid root canal post. To test and compare the bond strengths of absorbable polylactic acid root canal post with three different adhesives. The absorbable polylactic acid root canal posts were used to restore the extracted teeth, using 3 different adhesives: cyanoacrylates, fibrin sealant and glass ionomer cement. The teeth were prepared into slices for micro-push-out test. The bond strength was statistically analyzed using ANOVA. The specimens were examined using microscope and the failure mode was divided into four categories: cohesive failure between absorbable polylactic acid root canal posts and adhesives, cohesive failure between dentin and adhesives, failure within the adhesives and failure within the absorbable polylactic acid root canal posts. The bond strength of cyanoacrylates [(16.83 ± 6.97) MPa] and glass ionomer cement [(12.10 ± 5.09) MPa] were significantly higher than fibrin sealant [(1.17 ± 0.50) MPa], P<0.001. There was no significant difference between cyanoacrylates and glass ionomer cement (P=0.156). In the group of cyanoacrylates, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 25.0%, the cohesive failure between the dentin and the adhesives was 16.7%, the failure within the adhesives was 33.3%, and the failure within the absorbable polylactic acid root canal posts was 25.0%. In the group of fibrin sealant, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 66.7%, the cohesive failure between the dentin and the adhesives was 22.2%, the failure within the adhesives was 11.1%. In the group of glass ionomer cement, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 87.5%, the failure within the adhesives was 12.5%. The major failure mode in fibrin sealant and glass ionomer cement was the cohesive failure

  10. [Effect of nano-hydroxyapatite to glass ionomer cement].

    PubMed

    Mu, Ya-Bing; Zang, Guang-Xiang; Sun, Hong-Chen; Wang, Cheng-Kun

    2007-12-01

    To investigate the mechanical character, microleakage and mineralizing potential of nano-hydroxyapatite (nano-HAP)-added glass ionomer cement(GIC). 8% nano-HAP were incorporated into GIC as composite, and pure GIC as control. Both types of material were used to make 20 cylinders respectively in order to detect three-point flexural strength and compressive strength. Class V cavities were prepared in 120 molars extracted for orthodontic treatment, then were filled by two kinds of material. The microleakage at the composite-dentine interface was observed with confocal laser scanning microscope (CLSM) after stained with 1% rhodamin-B-isothiocyanate for 24 hours. Class V cavities were prepared in the molars of 4 healthy dogs, filled with composite, and the same molars in the other side were filled with GIC as control. The teeth were extracted to observe the mineralizing property with polarimetric microscope in 8 weeks after filling. Three-point flexural strength and compressive of nano-HAP-added GIC were increased compared with pure GIC (P < 0.001, P < 0.05). The nanoleakages and microleakages appeared at the material-dentine interface in the two groups, but there were more microleakages in control group than in experiment group (P = 0.004). New crystals of hydroxyapatite were formed into a new mineralizing zone at the interface of tooth and nano-HAP-added GIC, while there was no hydroxyapatite crystals formed at the interface of tooth and pure GIC. 8% nano-HAP-added GIC can tightly fill tooth and have mineralizing potential, and can be used as liner or filling material for prevention.

  11. Sodium Thiosulfate for Recovery of Bond Strength to Dentin Treated with Sodium Hypochlorite.

    PubMed

    Pimentel Corrêa, Ana Carolina; Cecchin, Doglas; de Almeida, José Flávio Affonso; Gomes, Brenda Paula Figueiredo de Almeida; Zaia, Alexandre Augusto; Ferraz, Caio Cezar Randi

    2016-02-01

    The aim of this study was to evaluate the efficacy of sodium thiosulfate (Na2S2O3) for restoring adhesion to pulp chamber dentin treated with sodium hypochlorite (NaOCl) and EDTA. Sixty-three crowns of bovine incisors were cut to expose the dentin pulp chamber. The specimens were polished and randomly distributed into 9 groups (n = 7) according to the following protocols used: 0.9% sodium chloride for 30 minutes (negative control), 5.25% NaOCl for 30 minutes, 17% EDTA for 3 minutes, and 5.25% NaOCl for 1 minute (positive control). The other groups, after treatments with NaOCl and EDTA, were immersed in 0.5% or 5% Na2S2O3 for 1, 5, and 10 minutes or just immersed in an inert solution for 10 minutes (0.9% sodium chloride). After drying the specimens, Scotchbond Multi-Purpose (3M ESPE, St Paul, MN) was applied to the pulp chamber dentin followed by Filtek Z250 composite (3M ESPE). Six rectangular slabs were obtained from each specimen, and the dentin/resin interface was tested by using a universal testing machine. The resulting data were submitted to 1-way analysis of variance and the Duncan test (P = .05). There was a significant decrease in bond strength regarding NaOCl and EDTA (P < .05). When 5% Na2S2O3 was used for 10 minutes, the bond strength was found to be statistically equal to the negative control and higher than the positive control (P < .05). The use of Na2S2O3 can significantly increase the bond strength of composite resin to NaOCl/EDTA-treated dentin, allowing adhesive restorations to be immediately applied after endodontic treatment. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules

    DOE PAGES

    He, Peng; Wei, Biao; Wang, Steve; ...

    2013-01-01

    Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in amore » theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.« less

  13. Comparing the effect of a desensitizing material and a self-etch adhesive on dentin sensitivity after periodontal surgery: a randomized clinical trial

    PubMed Central

    Hajizadeh, Hila; Majidinia, Sara; Moeintaghavi, Amir; Ghavamnasiri, Marjaneh

    2017-01-01

    Objectives This double-blind randomized placebo-controlled clinical trial evaluated the ability of a desensitizing agent and a self-etch adhesive on cervical dentin sensitivity (CDS) after periodontal surgery. Materials and Methods Ninety hypersensitive teeth of 13 subjects were included in the study. After periodontal surgery, the teeth of each posterior sextant treated with one of the following materials: G1: Clearfil S3 Bond (Kuraray Dental), G2: Gluma Desensitizer (Heraeus Kulzer), and G3: placebo (water). The sensitivity was assessed using evaporative stimuli before treatment (baseline, T0), 1 day after treatment (T1), after 1 week (T2), and after 1 month (T3) according to visual analog scale (VAS). Results Following the treatment, all the 3 groups showed significant reduction of CDS in T1 compared to T0. Reduction of CDS between T1 and T2 was observed only in G1 but there was no significant difference between T2 and T3 in this group. Although we observed a significant difference in T3 compared to T1 and T2 in G2 and G3, comparison of treatment groups in each assessment time showed a significant difference only in T3. According to paired comparison, this was due to the difference between G2 and G3. Conclusions Dentin sensitivity following periodontal surgery will decrease spontaneously over time, but treating the sensitive teeth with Gluma Desensitizer and Clearfil S3 Bond can have some benefits. PMID:28808633

  14. Cytotoxicity Evaluation of Self Adhesive Composite Resin Cements by Dentin Barrier Test on 3D Pulp Cells.

    PubMed

    Ulker, Hayriye Esra; Sengun, Abdulkadir

    2009-04-01

    The aim of this study was to evaluate the effects of five self-etch dental composite resin cements on the cell viability of bovine dental papilla-derived cells. The cytotoxicity of composite resin cements (Rely X Unicem Clicker, 3M ESPE; MaxCem; KERR, Panavia F 2.0; Kuraray, BisCem; Bisco and Bistite II DC; Tokuyama) was analyzed in a dentin barrier test device using three-dimensional (3D) pulp cell cultures. A commercially available cell culture perfusion chamber was separated into two compartments by 500 mum dentin disc. The three dimensional cultures placed on a dentin disk held in place by a special biocompatible stainless-steel holder. Test materials were introduced into the upper compartment in direct contact with the cavity side of the dentin disks according to the manufacturer's instructions. Subsequently, the pulpal part of the perfusion chamber containing the cell cultures was perfused with medium (2 ml/h). After an exposure period of 24 h, the cell survival was determined by the MTT assay. Statistical analyses were performed using the Mann-Whitney U-test. In dentin barrier test, cell survival was similar with Maxcem and negative control group (P>.05), and all other tested materials were cytotoxic for the three dimensional cell cultures (P>.05). The significance of composite resin cements is being more important in dentistry. The cytotoxic potencies demonstrated by these materials might be of clinical relevance. Some composite resin cements include biologically active ingredients and may modify pulp cell metabolism when the materials are used in deep cavities or directly contact pulp tissue.

  15. Residual interface tensile strength of ceramic bonded to dentin after cyclic loading and aging.

    PubMed

    Hernandez, Alfredo I; Roongruangphol, Thasanai; Katsube, Noriko; Seghi, Robert R

    2008-03-01

    To guard against the potential risk of cusp fracture, esthetic onlay restorations have been advocated for teeth with large restorations. The influence of the adhesive resin cement is believed to play a role in strengthening these restorations. The durability of this tooth/adhesive/ceramic interface is critical to ensure clinical longevity. The purpose of this study was to assess the effects of cyclic loading and environmental aging on the residual interface strength of a ceramic bonded to dentin structure. Eighteen simple trilayer specimens were fabricated, consisting of a 1.5-mm-thick ceramic plate (ProCAD) bonded to a flattened human molar tooth with exposed coronal dentin. The ceramic plates were bonded using resin cement (Nexus 2) and manufacturer-recommended bonding techniques. The specimens were divided into 3 equal groups and were stored in water at 37 degrees C for 10 weeks as a control group (CT), 9 months as an aging group (AG), or placed in water at 37 degrees C while being subjected to 10 million vertical loading cycles between 20 N to 200 N, as a fatigue group (FG). After the specimens were subjected to the experimental conditions, they were sectioned perpendicular to the flat ceramic surface into 1 x 1-mm sticks. The mean residual interface microtensile bond (MTB) strength was determined for each specimen using only those sticks which contained ceramic bonded to dentin. The MTB strength data were analyzed using Weibull analysis methods to determine differences between groups. All subsequent failed specimen surfaces were evaluated under a stereomicroscope at x10 magnification to determine the apparent failure modes. Some specimens were selected from each failure mode category for surface evaluation under a scanning electron microscope (SEM). The characteristic Weibull means for the 3 groups were CT, 19.2, FG, 14.7, and AG, 11.7. The bond strength of group CT was significantly greater than both AG (P=.007) and FG (P=.014). Light microscopic

  16. Thin and thick layers of resin-based sealer cement bonded to root dentine compared: Adhesive behaviour.

    PubMed

    Pane, Epita S; Palamara, Joseph E A; Messer, Harold H

    2015-12-01

    This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P < 0.05. The thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers. © 2015 Australian Society of Endodontology.

  17. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?

    PubMed

    Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen

    2010-02-01

    The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P < 0.05) and group 3 (nano-ionomer, mean: 6.14 +/- 2.12 MPa; P < 0.001). No significant differences in debond locations were found among the three groups. Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.

  18. Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes.

    PubMed

    Borodin, Oleg; Suo, Liumin; Gobet, Mallory; Ren, Xiaoming; Wang, Fei; Faraone, Antonio; Peng, Jing; Olguin, Marco; Schroeder, Marshall; Ding, Michael S; Gobrogge, Eric; von Wald Cresce, Arthur; Munoz, Stephen; Dura, Joseph A; Greenbaum, Steve; Wang, Chunsheng; Xu, Kang

    2017-10-24

    Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous. Due to such percolation networks, superconcentrated aqueous electrolytes are characterized by a high lithium-transference number (0.73), which is key to supporting an assortment of battery chemistries at high rate. The in-depth understanding of this transport mechanism establishes guiding principles to the tailored design of future superconcentrated electrolyte systems.

  19. Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells.

    PubMed

    Gong, Weiyu; Huang, Zhiwei; Dong, Yanmei; Gan, Yehua; Li, Shenglin; Gao, Xuejun; Chen, Xiaofeng

    2014-01-01

    This study aimed to investigate the effects of a novel nano-sized 58S bioactive glass (nano-58S BG) on the odontogenic differentiation and mineralization of human dental pulp cells (hDPCs) in vitro. Extractions were prepared by incubating nano-58S BG, 45S5 BG, or 58S BG particulates in Dulbecco modified Eagle medium at 1% w/v for 24 hours and were filtrated through 0.22-μm filters. The supernatants were used as BG extractions. The hDPCs were cultured in nano-58S BG, 45S5 BG, and 58S BG extractions. The proliferation of hDPCs was evaluated using the methylthiazol tetrazolium assay. Odontogenic differentiation was evaluated based on the real-time polymerase chain reaction of differentiation- and mineralization-related genes, namely, alkaline phosphatase (ALP), collagen type I, dentin sialophosphoprotein (DSPP), and dentin matrix protein 1. The gene expressions were verified using ALP activity assessment, immunocytochemistry staining of osteocalcin and DSPP, and mineralization assay using alizarin red S stain. All BG extractions up-regulated the expression of odontogenic genes, and the most significant enhancement was in the nano-58S BG group. All BG extractions, especially nano-58S, increased ALP activity, osteocalcin and DSPP protein production, and mineralized nodules formation. Compared with regular BG, the novel nano-58S BG can induce the differentiation and mineralization of hDPCs more efficiently and might be a better potential candidate for dentin-pulp complex regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Posterior indirect adhesive 
restorations: updated indications 
and the Morphology Driven 
Preparation Technique.

    PubMed

    Veneziani, Marco

    The aim of this article is to identify the indications for adhesively cemented restorations and to provide a correct step-by-step protocol for clinicians. New cavity preparation principles are based on morphological considerations in terms of geometry (maximum profile line and inclination of cusp lines), and structure (dentin concavity and enamel convexity). In this article, we discuss previous preparation concepts that were not designed purely for adhesive restorations and were therefore not conservative enough or suitable for adhesive procedures. The novel cavity shape consists of continuous inclined plane cavity margins (hollow chamfer or concave bevel) on axial walls, whenever they are coronal to the equatorial tooth line. A 1.2 mm-thick butt-joint preparation is performed in the interproximal box and on the axial walls when the margins are apical to the equatorial line. The occlusal surface is anatomically prepared, free of slots and angles. The author's suggestion is to avoid shoulder finish line preparation around cusps, occlusal slots, and pins, as they are less conservative, incompatible with adhesive procedures, and involve unnecessary dentin exposure. The clinical advantages of this new "anatomic" preparation design are 1) improving adhesion quality (optimizing the cutting of enamel prisms, and increasing the available enamel surface); 2) minimizing dentin exposure; 3) maximizing hard tissue preservation (the cavity being designed for cementation with reinforced composite resins, improvement of flow, and removal of excess material); 4) optimization of esthetic integration due to the inclined plane design, which permits a better blending at the transition area between tooth and restoration. These preparation principles may be effectively used for all adhesively cemented restorations, both according to traditional concepts (inlay, onlay, overlay) and new ones (additional overlay, occlusal-veneer, overlay-veneer, long-wrap overlay, adhesive crown). Thus, a

  1. Scanning electron microscopic observations of fibrous structure of cemento-dentinal junction in healthy teeth.

    PubMed

    Pratebha, B; Jaikumar, N D; Sudhakar, R

    2014-01-01

    The cemento-dentinal junction (CDJ) is a structural and biologic link between cementum and dentin present in the roots of teeth. Conflicting reports about the origin, structure and composition of this layer are present in literature. The width of this junctional tissue is reported to be about 2-4 μm with adhesion of cementum and dentin by proteoglycans and by collagen fiber intermingling. The objective of this study is to observe and report the fibrous architecture of the CDJ of healthy tooth roots. A total of 15 healthy teeth samples were collected, sectioned into halves, demineralized in 5% ethylenediaminetetraacetic acid, processed using NaOH maceration technique and observed under a scanning electron microscope. The CDJ appeared to be a fibril poor groove with a width of 2-4 µm. Few areas of collagen fiber intermingling could be appreciated. A detailed observation of these tissues has been presented.

  2. Can Degradation of Adhesive Interfaces Due to Water Storage Affect Stress Distributions? A Finite-Element Stress Analysis Study.

    PubMed

    Belli, Sema; Eraslan, Oğuz; Eskitaşcıoğlu, Gürcan

    The aim of this finite-element stress analysis (FEA) was to determine the effect of degradation due to water storage on stress distributions in root-filled premolar models restored with composite using either a self-etch (SE) or an etch-and-rinse (E&R) adhesive. Four premolar FEA models including root filling, MOD cavity, and composite restorations were created. The cavities were assumed to be treated by SE or E&R adhesives and stored in water for 18 months. The elastic properties of the adhesive-dentin interface after 24-h and 18-month water storage were obtained from the literature and applied to the FEA models. A 300-N load was applied on the functional cusps of the models. The SolidWorks/Cosmosworks structural analysis program was used and the results were presented considering the von Mises stresses. Stresses in the cervical region increased over time on the load-application side of the main tooth models (SE: 84.11 MPa to 87.51 MPa; E&R: 100.24 MPa to 120.8 MPa). When the adhesive interfaces (hybrid layer, adhesive layer) and dentin were evaluated separately, the stresses near the root canal orifices increased over time in both models; however, this change was more noticeable in the E&R models. Stresses at the cavity corners decreased in the E&R model (within the adhesive layer), while SE models showed the opposite (within the hybrid layer). Change in the elastic modulus of the adhesive layer, hybrid layer, and dentin due to water storage has an effect on stresses in root-filled premolar models. The location and the level of the stresses differed depending on the adhesive used.

  3. Comparison of temperature change among different adhesive resin cement during polymerization process.

    PubMed

    Alkurt, Murat; Duymus, Zeynep Yesil; Gundogdu, Mustafa; Karadas, Muhammet

    2017-01-01

    The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200) were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change ( n = 7). The temperature data were recorded (0.0001 sensible) and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute) were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05). Significant differences were found among the time points and resin cements ( P < 0.05). Temperature values of the Pan SA group were significantly higher than Pan F and RelyX ( P < 0.05). Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  4. Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Hack, Gary; Fouad, Ashraf F.; Xu, Hockin H. K.

    2015-01-01

    Objectives The tooth-resin bond is the weak link of restoration, with secondary caries as a main reason for failure. Calcium phosphate-containing resins are promising for remineralization; however, calcium (Ca) and phosphate (P) ion releases last only a couple of months. The objectives of this study were to develop the first rechargeable CaP bonding agent and investigate the key factors that determine CaP ion recharge and re-release. Methods Nanoparticles of amorphous calcium phosphate (NACP) were synthesized. Pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol-A dimethacrylate (EBPADMA), 2-hydroxyethyl methacrylate (HEMA), and bisphenol-A glycidyl dimethacrylate (BisGMA) were used to synthesize three adhesives (denoted PE, PEH and PEHB). NACP were mixed into adhesive at 0–30% by mass. Dentin shear bond strengths were measured. Adhesive specimens were tested for Ca and P initial ion release. Then the ion-exhausted specimens were immersed in Ca and P solution to recharge the specimens, and the recharged specimens were then used to measure ion re-release for 7 days as one cycle. Then these specimens were again recharged and the re-release was measured for 7 days as the second cycle. Three recharge/re-release cycles were tested. Results PEHB had the highest dentin bond strength (p<0.05). Increasing NACP content from 0 to 30% did not affect dentin bond strength (p>0.1), but increased CaP release and re-release (p<0.05). PEHB-NACP had the greatest recharge/re-release, and PE-NACP had the least (p<0.05). Ion release remained high and did not decrease with increasing the number of recharge/re-release cycles (p>0.1). After the third cycle, specimens without further recharge had continuous CaP ion release for 2–3 weeks. Significance Rechargeable CaP bonding agents were developed for the first time to provide long-term Ca and P ions to promote remineralization and reduce caries. Incorporation of NACP into adhesive had no negative effect on dentin bond

  5. Bond Strength of Methacrylate-Based Composite to Dentin using a Silorane Adhesive

    DTIC Science & Technology

    2013-06-06

    the smear layer is not removed, and the interaction with dentin is superficial, and the residual hydroxyapatite remains available for chemical...interaction. This chemical interaction is more stable in an aqueous environment, and occurs between specific monomers and the calcium of hydroxyapatite ...between the monomer and the calcium of the hydroxyapatite (HAp) crystal (Van Meerbeek et al., 9 2010). Van Meerbeek suggests that monomers such as

  6. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate

    PubMed Central

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  7. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    PubMed

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-03-25

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  8. Adhesion energy of single wall carbon nanotube loops on various substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianjun; Department of Physics, Shaoxing University, 508 Huancheng West Rd., Shaoxing 312000; Ayari, Anthony

    2015-04-28

    The physics of adhesion of one-dimensional nano structures such as nanotubes, nano wires, and biopolymers on different substrates is of great interest for the study of biological adhesion and the development of nano electronics and nano mechanics. In this paper, we present force spectroscopy experiments of individual single wall carbon nanotube loops using a home-made interferometric atomic force microscope. Characteristic force plateaus during the peeling process allow the quantitative measurement of the adhesion energy per unit length on various substrates: graphite, mica, platinum, gold, and silicon. Moreover, using a time-frequency analysis of the deflection of the cantilever, we estimate themore » dynamic stiffness of the contact, providing more information on the nanotube configurations and its intrinsic mechanical properties.« less

  9. Longevity of bond strength of resin cements to root dentine after radiation therapy.

    PubMed

    Yamin, P A; Pereira, R D; Lopes, F C; Queiroz, A M; Oliveira, H F; Saquy, P C; Sousa-Neto, M D

    2018-05-04

    To evaluate the bond strength and adhesive interface between several resin cements and root dentine immediately and 6 months after radiotherapy. Sixty maxillary canines were selected and randomly assigned to two groups (n = 30): one group was not irradiated and the other one was subjected to a cumulative radiation dose of 60 Gy. The teeth were sectioned to obtain roots 16 mm long and the canals were prepared with the Reciproc system (R50) and filled using a lateral condensation technique with an epoxy resin sealer. Each group was divided into three subgroups (n = 10) according to the resin cement used for fibreglass fibre post cementation: RelyX-U200, Panavia-F2.0 and RelyX ARC. The posts were cemented in accordance with the manufacturer's recommendations. Three 1-mm-thick dentine slices were then obtained from each root third. The first two slices in the crown-apex direction of each third were selected for the push-out test. The failure mode after debonding was determined with a stereo microscope. The third slice from each root third was selected for scanning electron microscopy (SEM) analyses to examine the resin cement-dentine interface with 100, 1000, 2000 and 4000× magnification. Bond strength data were analysed by anova and Tukey's test (α = 0.05). Significantly lower bond strength (P < 0.0001) was obtained after irradiation compared to nonirradiated teeth. RelyX-U200 cemented fibre posts had the higher bond strength (15.17 ± 5.89) compared with RelyX ARC (P < 0.001) and Panavia-F2.0 (P < 0.001). The evaluation after 6 months revealed lower bond strength values compared to the immediate values (P < 0.001) for irradiated and nonirradiated teeth. Cohesive failures occurred in the irradiated dentine. SEM revealed fractures, microfractures and fewer collagen fibres in irradiated root dentine. RelyX-U200 and Panavia-F2.0 were associated with a juxtaposed interface of the cement with the radicular dentine in irradiated and nonirradiated teeth

  10. Effect of conditioning solutions containing ferric chloride on dentin bond strength and collagen degradation.

    PubMed

    Rodrigues, Raquel Viana; Giannini, Marcelo; Pascon, Fernanda Miori; Panwar, Preety; Brömme, Dieter; Manso, Adriana Pigozzo; Carvalho, Ricardo Marins

    2017-10-01

    To investigate the effects of conditioning solutions containing ferric chloride (FeCl 3 ) on resin-dentin bond strength; on protection of dentin collagen against enzymatic degradation and on cathepsin-K (CT-K) activity. Conditioning solutions were prepared combining citric acid (CA) and anhydrous ferric chloride (FeCl 3 ) in different concentrations. The solutions were applied to etch flat dentin surfaces followed by bonding with adhesive resin. Phosphoric acid (PA) gel etchant was used as control. The microtensile bond strength (μTBS) was tested after 24h of storage in water and after 9 months of storage in phosphate buffer saline. Dentin slabs were demineralized in 0.5M EDTA, pre-treated or not with FeCl 3 and incubated with CT-K. The collagenase activity on dentin collagen matrix was examined and characterized by SEM. Additional demineralized dentin slabs were treated with the conditioning solutions, and the amount of Fe bound to collagen was determined by EDX. The activity of CT-K in the presence of FeCl 3 was monitored fluorimetrically. Data were analyzed by ANOVA followed by post-hoc tests as required (α=5%). Slightly higher bond strengths were obtained when dentin was conditioned with 5% CA/0.6% FeCl 3 and 5% CA-1.8%FeCl 3 regardless of storage time. Bond strengths reduced significantly for all tested conditioners after 9 months of storage. Treating dentin with 1.8% FeCl 3 was effective to preserve the structure of collagen against CT-K. EDX analysis revealed binding of Fe-ions to dentin collagen after 15s immersion of demineralized dentin slabs into FeCl 3 solutions. FeCl 3 at concentration of 0.08% was able to suppress CT-K activity. This study shows that FeCl 3 binds to collagen and offers protection against Cat-K degradation. Mixed solutions of CA and FeCl 3 may be used as alternative to PA to etch dentin in resin-dentin bonding with the benefits of preventing collagen degradation. Copyright © 2017 The Academy of Dental Materials. Published by

  11. Clinical evaluation of the efficacy of fluoride adhesive tape (F-PVA) in reducing dentin hypersensitivity.

    PubMed

    Lee, Sang-Ho; Lee, Nan-Young; Lee, In-Hwa

    2013-06-01

    To evaluate the in vivo effectiveness of an experimental 2.26% fluoride polyvinyl alcohol (F-PVA) tape in reducing dentin hypersensitivity. 30 healthy men and women (total of 79 teeth) in their third decade of life with dentin hypersensitivity were enrolled in this study. The subjects were divided into four groups: three experimental groups were treated with fluoride agents (F-PVA tape, Vanish varnish, and ClinPro XT varnish), and a control group was treated with gelatin as a placebo. Each fluoride agent was applied according to the manufacturer's instructions. Stimulation was applied to the subjects' teeth using compressed air and ice sticks before applying the agent, as well as at 3 days and 4, 8, and 12 weeks after applying the agent. The degree of pain was measured using a visual analogue scale (VAS). The VAS scores were significantly (P < 0.05) decreased at 3 days and at 4, 8, and 12 weeks from baseline in both the air stream and ice stick tests. The reduction in the VAS scores for the three fluoride agents was decreased 8 weeks after their application. The F-PVA tape was found to be more effective for dentin hypersensitivity than the Vanish varnish and ClinPro XT varnish at 4 and 8 weeks of the examination period.

  12. New adhesives and bonding techniques. Why and when?

    PubMed

    Scotti, Nicola; Cavalli, Giovanni; Gagliani, Massimo; Breschi, Lorenzo

    Nowadays, adhesive dentistry is a fundamental part of daily clinical work. The evolution of adhesive materials and techniques has been based on the need for simplicity in the step-by-step procedures to obtain long-lasting direct and indirect restorations. For this reason, recently introduced universal multimode adhesives represent a simple option for creating a hybrid layer, with or without the use of phosphoric acid application. However, it is important to understand the limitations of this latest generation of adhesive systems as well as how to use them on coronal and radicular dentin. Based on the findings in the literature, universal multimode adhesives have shown promising results, even if the problem of hybrid layer degradation due to the hydrolytic activity of matrix metalloproteinases (MMPs) still exists. Studies are therefore required to help us understand how to reduce this degradation.

  13. Effect of time on tensile bond strength of resin cement bonded to dentine and low-viscosity composite.

    PubMed

    Duarte, Rosângela Marques; de Goes, Mario Fernando; Montes, Marcos Antonio Japiassú Resende

    2006-01-01

    The purpose of this study was to evaluate the tensile bond strength (TBS) of Panavia F resin cement (PF) applied on dentine pre-treated with ED Primer (ED) and Clearfil Liner Bond 2V (CLB) coated with a layer of low-viscosity composite Protect Liner F (PLF) at 10 min, 24 h and 12 months after curing. The labial surfaces of 60 bovine lower incisors were ground to obtain a flat dentine surface, allowing a demarcation of a 4.0 mm-diameter area with adhesive tape. The teeth were randomly divided in six groups; ED was applied in groups A I, A II and A III and CLB was applied, followed by PLF, in groups B I, B II and B III. A resin composite rod with a wire loop was luted directly to the prepared surface of each group with PF. The specimens of groups A I and B I were submitted to TBS test after 10 min. Groups A II and B II were submitted to TBS test after 24 h storage and groups A III and B III were submitted to TBS test after 12 months storage. Each specimen was inspected by SEM and classified according to the failure mode. Additionally, two representative specimens of each failure mode were sectioned for a composite/dentine interface SEM evaluation. No significant statistical differences were observed among the groups at 10 min and 24 h. Groups A III and B III presented the lowest TBS values (p<0.05) after 12 months storage. PF on resin-coated dentin (PLF) showed the highest TBS values and was statistically different to PF on dentine for all the groups. The fracture pattern was generally cohesive on the adhesive/hybrid layer for groups A I, A II and A III and cohesive on composite resin for B I, B II and B III. The use of a less hydrophilic self-etching system to pre-treat dentine, coating with a low-viscosity composite layer prior luting with resin cement, may provide a protection of the hybridised complex, allowing a dentine seal during the 12 months storage period.

  14. A three-year clinical evaluation of two-bottle versus one-bottle dentin adhesives.

    PubMed

    Aw, Tar C; Lepe, Xavier; Johnson, Glen H; Mancl, Lloyd A

    2005-03-01

    The authors conducted an in vivo investigation to compare the clinical performance of two commercial one-bottle adhesives and a two-bottle adhesive for restoration of noncarious cervical lesions (NCCLs). The patient pool consisted of 57 patients and 171 teeth (three teeth per patient), with one NCCL per tooth. Each patient received three resin-based composite restorations, each with a different adhesive: one tooth with a two-bottle, water-based adhesive as the control; another tooth with a one-bottle, ethanol-based adhesive; and a third tooth with a one-bottle, solvent-free adhesive. The authors assessed restorations in terms of retention, marginal integrity, margin discoloration and air sensitivity at baseline, six months, one year, two years and three years after initial placement. The retention rates at 36 months were 88 percent for the first adhesive, 81 percent for the second adhesive and 90 percent for the third adhesive. No statistically significant differences in retention rates could be shown, with 86 percent of restorations retained overall. Measures of marginal integrity, marginal discoloration and sensitivity also had no statistically significant differences between the three adhesives (P > .05). All three adhesives performed with acceptable outcomes after a 36-month period, with small differences between the one- and two-bottle systems and between the various solvents. Retention rate was moderately high and air sensitivity was markedly reduced; however, superficial marginal discoloration and marginal degradation was notable. Certain lesion, tooth and patient characteristics may predispose restorations to retention failure. The type of solvent may not be a major factor in retention of Class V restorations in NCCLs. Both single-bottle adhesives and conventional two-bottle adhesives performed acceptably.

  15. Long-term stability of dentin matrix following treatment with various natural collagen cross-linkers

    PubMed Central

    Castellan, Carina Strano; Bedran-Russo, Ana Karina; Karol, Sachin; Rodrigues Pereira, Patrícia Nóbrega

    2011-01-01

    Objectives Collagen disorganization is one of the main degradation patterns found in unsuccessful adhesive restorations. The hypothesis of this study was that pretreatment using natural collagen cross-linking agents rich in proanthocyanidin (PA) would improve mechanical properties and stability over time of the dentin collagen and, thus, confer a more resistant and lasting substrate for adhesive restorations. Methods PA-based extracts, from grape seed (GSE), cocoa seed (CSE), cranberry (CRE), cinnamon (CNE) and açaí berry (ACE) were applied over the demineralized dentin. The apparent elastic modulus (E) of the treated dentin collagen was analyzed over a 12 months period. Specimens were immersed in the respective solution and E values were obtained by a micro-flexural test at baseline, 10, 30, 60, 120 and 240 min. Samples were stored in artificial saliva and re-tested after 3, 6 and 12 months. Data was analyzed using ANOVA and Tukey test. Results GSE and CSE extracts showed a time-dependant effect and were able to improve [240 min (MPa): GSE=108.96±56.08; CSE=59.21±24.87] and stabilize the E of the organic matrix [12 months (MPa): GSE=40.91±19.69; CSE= 42.11±13.46]. CRE and CNE extracts were able to maintain the E of collagen matrices constant over 12 months [CRE=11.17±7.22; CNE= 9,96±6.11; MPa]. ACE (2.64±1.22 MPa) and control groups immersed in neat distilled water (1.37±0.69 MPa) and ethanol water (0.95±0.33MPa) showed no effect over dentin organic matrix and enable their degradation and reduction of mechanical properties. Significance Some PA-based extracts were capable of improving and stabilizing collagen matrices through exogenous cross-links induction. PMID:21783144

  16. The effect of prophylaxis method on microtensile bond strength of indirect restorations to dentin.

    PubMed

    Soares, C J; Pereira, J C; Souza, S J B; Menezes, M S; Armstrong, S R

    2012-01-01

    The aim of this study was to evaluate the effect of different materials used for dentin prophylaxis on the microtensile bond strengths (μTBS) of adhesively cemented indirect composite restorations. Sixty bovine incisors had the buccal surface ground with wet #600-grit silicon carbide abrasive paper to obtain a flat exposed superficial dentin and were submitted to different prophylaxis protocols, as follows: 3% hydrogen peroxide (HydP); 0.12% chlorhexidine (Chlo); sodium bicarbonate jet (SodB); 50-μm aluminum oxide air abrasion (AirA); pumice paste (PumP), and control group-water spray (Cont). After prophylaxis protocols a resin composite block (3.0 mm × 5.0 mm × 5.0 mm) was adhesively cemented using dual resin cement (Rely X ARC). After 24 hours of water storage, specimens were serially sectioned perpendicular to the bonded interface into 1-mm-thick slices. Each specimen was trimmed with a diamond bur to an hourglass shape with a cross-sectional area of approximately 1.0 mm(2) at the bonded area. Specimens were tested (μTBS) at 0.5 mm/min using a universal testing machine. Scanning electron microscopy was used to examine the effects of prophylaxis techniques on dentin. Bond strength data (MPa) were analyzed by one-way analysis of variance and failure mode by Fisher test (α=0.05). μTBS data, means (SD), were (different superscripted letters indicate statistically significant differences): AirA, 25.2 (7.2)(a); PumP, 24.1 (7.8)(a); Chlo, 21.5 (5.6)(a); Cont, 20.6 (8.1)(a); HydP(,) 15.5 (7.6)(b); and SodB(,) 11.5 (4.4)(c). The use of aluminum oxide air abrasion, pumice paste, and chlorhexidine before acid etching did not significantly affect μTBS to dentin; however, the use of hydrogen peroxide and sodium bicarbonate jet significantly reduced μTBS.

  17. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    NASA Astrophysics Data System (ADS)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  18. Pulpal reaction to a dental adhesive in deep human cavities.

    PubMed

    Torstenson, B

    1995-08-01

    In the last years several dental adhesives have been developed. They are supposed to chemically adhere to dentin and a liner to protect the pulp is not used. The aim of this study was to compare the short-term pulpal reaction, in an intra-toothpair study, between a dental adhesive, Scotchbond 2, and a lining system, Tubulitec, in combination with P-50 in surface-sealed cavities. Deep buccal cavities in 16 human pairs of premolars, 32 teeth, were restored in vivo with a light cured composite resin, P-50. To minimize bacterial contamination all cavities were treated with a cleanser, Tubulicid, and the cavities were surface-sealed with temporary cement, Coltosol. One tooth in each pair, the test, was treated with Scotchprep Dentin Primer and Scotchbond 2 Light Cure Dental Adhesive. In the other tooth in the pair, the control, Tubulitec Primer and Liner were used. The teeth were extracted after 6-14 days. The sections were evaluated for degree of inflammation and the presence of bacteria. Irrespective of treatment of dentin the majority of teeth, 23, including one pulpal exposure, revealed no inflammation or a few inflammatory cells. In four test teeth, including one pulpal exposure, and two controls, growth of bacteria was found on the cavity walls and slight or moderate inflammation was seen in the corresponding pulps. In one test and two control teeth slight inflammation was seen but no bacteria could be detected. In the absence of bacteria Scotchbond 2 did not seem to irritate the pulp.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Mechanical loading influences the viscoelastic performance of the resin-carious dentin complex.

    PubMed

    Toledano, Manuel; Osorio, Raquel; López-López, Modesto T; Aguilera, Fátima S; García-Godoy, Franklin; Toledano-Osorio, Manuel; Osorio, Estrella

    2017-04-04

    The aim of this study was to evaluate the changes in the mechanical behavior and bonding capability of Zn-doped resin-infiltrated caries-affected dentin interfaces. Dentin surfaces were treated with 37% phosphoric acid (PA) followed by application of a dentin adhesive, single bond (SB) (PA+SB) or by 0.5 M ethylenediaminetetraacetic acid (EDTA) followed by SB (EDTA+SB). ZnO microparticles of 10 wt. % or 2 wt. % ZnCl 2 was added into SB, resulting in the following groups: PA+SB, PA+SB-ZnO, PA+SB-ZnCl 2 , EDTA+SB, EDTA+SB-ZnO, EDTA+SB-ZnCl 2 . Bonded interfaces were stored for 24 h, and tested or submitted to mechanical loading. Microtensile bond strength was assessed. Debonded surfaces were evaluated by scanning electron microscopy and elemental analysis. The hybrid layer, bottom of the hybrid layer, and peritubular and intertubular dentin were evaluated using a nanoindenter. The load/displacement responses were used for the nanodynamic mechanical analysis III to estimate complex modulus, tan delta, loss modulus, and storage modulus. The modulus mapping was obtained by imposing a quasistatic force setpoint to which a sinusoidal force was superimposed. Atomic force microscopy imaging was performed. Load cycling decreased the tan delta at the PA+SB-ZnCl 2 and EDTA+SB-ZnO interfaces. Tan delta was also diminished at peritubular dentin when PA+SB-ZnO was used, hindering the dissipation of energy throughout these structures. Tan delta increased at the interface after using EDTA+SB-ZnCl 2 , lowering the energy for recoil or failure. After load cycling, loss moduli at the interface decreased when using ZnCl 2 as doping agent, increasing the risk of fracture; but when using ZnO, loss moduli was dissimilarly affected if dentin was EDTA-treated. The border between intertubular and peritubular dentin attained the highest discrepancy in values of viscoelastic properties, meaning a risk for cracking and breakdown of the resin-dentin interface. PA used on dentin provoked

  20. Novel durable bio-photocatalyst purifiers, a non-heterogeneous mechanism: accelerated entrapped dye degradation into structural polysiloxane-shield nano-reactors.

    PubMed

    Dastjerdi, Roya; Montazer, Majid; Shahsavan, Shadi; Böttcher, Horst; Moghadam, M B; Sarsour, Jamal

    2013-01-01

    This research has designed innovative Ag/TiO(2) polysiloxane-shield nano-reactors on the PET fabric to develop novel durable bio-photocatalyst purifiers. To create these very fine nano-reactors, oppositely surface charged multiple size nanoparticles have been applied accompanied with a crosslinkable amino-functionalized polysiloxane (XPs) emulsion. Investigation of photocatalytic dye decolorization efficiency revealed a non-heterogeneous mechanism including an accelerated degradation of entrapped dye molecules into the structural polysiloxane-shield nano-reactors. In fact, dye molecules can be adsorbed by both Ag and XPs due to their electrostatic interactions and/or even via forming a complex with them especially with silver NPs. The absorbed dye and active oxygen species generated by TiO(2) were entrapped by polysiloxane shelter and the presence of silver nanoparticles further attract the negative oxygen species closer to the adsorbed dye molecules. In this way, the dye molecules are in close contact with concentrated active oxygen species into the created nano-reactors. This provides an accelerated degradation of dye molecules. This non-heterogeneous mechanism has been detected on the sample containing all of the three components. Increasing the concentration of Ag and XPs accelerated the second step beginning with an enhanced rate. Further, the treated samples also showed an excellent antibacterial activity. Copyright © 2012 Elsevier B.V. All rights reserved.