Sample records for nano-meter motion control

  1. The effects of vertical motion on the performance of current meters

    USGS Publications Warehouse

    Thibodeaux, K.G.; Futrell, J. C.

    1987-01-01

    A series of tests to determine the correction coefficients for Price type AA and Price type OAA current meters, when subjected to vertical motion in a towing tank, have been conducted. During these tests, the meters were subjected to vertical travel that ranged from 1.0 to 4.0 ft and vertical rates of travel that ranged from 0.33 to 1.20 ft/sec while being towed through the water at speeds ranging from 0 to 8 ft/sec. The tests show that type AA and type OAA current meters are affected adversely by the rate of vertical motion and the distance of vertical travel. In addition, the tests indicate that when current meters are moved vertically, correction coefficients must be applied to the observed meter velocities to correct for the registration errors that are induced by the vertical motion. The type OAA current meter under-registers and the type AA current meter over-registers in observed meter velocity. These coefficients for the type OAA current meter range from 0.99 to 1.49 and for the type AA current meter range from 0.33 to 1.07. When making current meter measurements from a boat or a cableway, errors in observed current meter velocity will occur when the bobbing of a boat or cableway places the current meter into vertical motion. These errors will be significant when flowing water is < 2 ft/sec and the rate of vertical motion is > 0.3 ft/sec. (Author 's abstract)

  2. Rotation motion of designed nano-turbine.

    PubMed

    Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong

    2014-07-28

    Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called "dragging effect". Moreover, counterintuitively, the ratio of "effective" driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors.

  3. Rotation Motion of Designed Nano-Turbine

    PubMed Central

    Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong

    2014-01-01

    Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called “dragging effect”. Moreover, counterintuitively, the ratio of “effective” driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors. PMID:25068725

  4. Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient

    NASA Astrophysics Data System (ADS)

    Foroutan, Masumeh; Fatemi, S. Mahmood; Esmaeilian, Farshad; Fadaei Naeini, Vahid; Baniassadi, Majid

    2018-05-01

    In the present work, the effect of temperature gradient on the behavior of a water nano-droplet resting on a suspended graphene was studied based on a non-equilibrium molecular dynamics simulation. The acquired results indicate that the applied temperature gradient to the suspended graphene drives the water nano-droplet to the colder region. The droplet accelerates its motion toward the cold reservoir as the temperature gradient is increased. In addition to the translational motion of the nano-droplet, the vortical motion of the water molecules was also observed. Contact angle analysis was also utilized to describe the directional motion of the nano-droplet. The translational motion of the droplet leads to the estimation of contact angle hysteresis through advancing and receding contact angles while the rotational motion resulted in the advancing and receding fronts being switched with one another through the simulation. The average displacement vector of the water molecules shows that parts of the droplet seem to stagnate while other parts rotate around them. The reason behind this particular behavior was studied based on interaction energy contours between a water molecule and the suspended graphene. The obtained data indicate that the rotational motion is in agreement with the migration of the water molecules to low interaction energy regions in order to avoid high interaction energy areas.

  5. Thermal noise in aqueous quadrupole micro- and nano-traps

    DOE PAGES

    Park, Jae; Krstić, Predrag S.

    2012-02-27

    Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuationsmore » as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches.« less

  6. A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection.

    PubMed

    Yu, Xiao-Guang; Li, Yuan-Qing; Zhu, Wei-Bin; Huang, Pei; Wang, Tong-Tong; Hu, Ning; Fu, Shao-Yun

    2017-05-25

    Melamine sponge, also known as nano-sponge, is widely used as an abrasive cleaner in our daily life. In this work, the fabrication of a wearable strain sensor for human motion detection is first demonstrated with a commercially available nano-sponge as a starting material. The key resistance sensitive material in the wearable strain sensor is obtained by the encapsulation of a carbonized nano-sponge (CNS) with silicone resin. The as-fabricated CNS/silicone sensor is highly sensitive to strain with a maximum gauge factor of 18.42. In addition, the CNS/silicone sensor exhibits a fast and reliable response to various cyclic loading within a strain range of 0-15% and a loading frequency range of 0.01-1 Hz. Finally, the CNS/silicone sensor as a wearable device for human motion detection including joint motion, eye blinking, blood pulse and breathing is demonstrated by attaching the sensor to the corresponding parts of the human body. In consideration of the simple fabrication technique, low material cost and excellent strain sensing performance, the CNS/silicone sensor is believed to have great potential in the next-generation of wearable devices for human motion detection.

  7. Motion of single wandering diblock-macromolecules directed by a PTFE nano-fence: real time SFM observations.

    PubMed

    Gallyamov, Marat O; Qin, Shuhui; Matyjaszewski, Krzysztof; Khokhlov, Alexei; Möller, Martin

    2009-07-21

    Using SFM we have observed a peculiar twisting motion of diblock macromolecules pre-collapsed in ethanol vapour during their subsequent spreading in water vapour. The intrinsic asymmetry of the diblock macromolecules has been considered to be the reason for such twisting. Further, friction-deposited PTFE nano-stripes have been employed as nano-trails with the purpose of inducing lateral directed motion of the asymmetric diblock macromolecules under cyclic impact from the changing vapour surroundings. Indeed, some of the macromolecules have demonstrated a certain tendency to orient along the PTFE stripes, and some of the oriented ones have moved occasionally in a directed manner along the trail. However, it has been difficult to reliably record such directed motion at the single molecule level due to some mobility of the PTFE nano-trails themselves in the changing vapour environment. In vapours, the PTFE stripes have demonstrated a distinct tendency towards conjunction. This tendency has manifested itself in efficient expelling of groups of the mobile brush-like molecules from the areas between two PTFE stripes joining in a zip-fastener manner. This different kind of vapour-induced cooperative macromolecular motion has been reliably observed as being directed. The PTFE nano-frame experiences some deformation when constraining the spreading macromolecules. We have estimated the possible force causing such deformation of the PTFE fence. The force has been found to be a few pN as calculated by a partial contribution from every single molecule of the constrained group.

  8. Nano- and Microscale Particles in Vortex Motions in Earth's Atmosphere and Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popel, S. I.; Izvekova, Yu. N.; Shukla, P. K.

    2010-12-14

    Vortex motions in the atmosphere are shown to be closely connected with dynamics of the dust nano- and microscale particles. The mechanism by which nano- and microscale particles are transported from the troposphere into the lower stratosphere by synoptic-scale vortices, simulated by the soliton solutions to the Charney-Obukhov equations (Rossby vortices), is described. Redistribution of dust particles in the ionosphere as a result of vortical motions is discussed. It is shown that excitation of acoustic-gravitational vortices at altitudes of 110-130 km as a result of development of acoustic-gravitational wave instability, associated with nonzero balance of heat fluxes, owing to solarmore » radiation, water vapors condensation, infrared emission of the atmosphere, and thermal conductivity, leads to a substantial transportation of dust particles and their mixing at altitudes of 110-120 km. One of the ways of transportation of dust particles in the ionosphere is shown to be vertical flows (streamers), which are generated by dust vortices as a result of development of parametric instability.« less

  9. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  10. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  11. Active control of nano dimers response using piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  12. Investigation of chaos and its control in a Duffing-type nano beam model

    NASA Astrophysics Data System (ADS)

    Jha, Abhishek Kumar; Dasgupta, Sovan Sundar

    2018-04-01

    The prediction of chaos of a nano beam with harmonic excitation is investigated. Using the Galerkin method the nonlinear lumped model of a clamped-clamped nano beam with nonlinear cubic stiffness is obtained. This is a Duffing system with hardening type of nonlinearity. Based on the energy function and the phase portrait of the system, the resonator dynamics is categorized into four situations in which Using Malnikov function, an analytical criterion for homoclinic intersection in the form of inequality is written in terms of the system parameters. A numerical study including largest lyapunov exponent, Poincare diagram and phase portrait confirm the analytical prediction of chaos and effect of forcing amplitude. Subsequently, a linear velocity feedback controller is introduced into the system to successfully control the chaotic motion of the system at a faster rate at larger value of gain parameter.

  13. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Cheng, Min

    2018-06-01

    This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.

  14. Redundantly piezo-actuated XYθ z compliant mechanism for nano-positioning featuring simple kinematics, bi-directional motion and enlarged workspace

    NASA Astrophysics Data System (ADS)

    Zhu, Wu-Le; Zhu, Zhiwei; To, Suet; Liu, Qiang; Ju, Bing-Feng; Zhou, Xiaoqin

    2016-12-01

    This paper presents a novel redundantly piezo-actuated three-degree-of-freedom XYθ z compliant mechanism for nano-positioning, driven by four mirror-symmetrically configured piezoelectric actuators (PEAs). By means of differential motion principle, linearized kinematics and physically bi-directional motions in all the three directions are achieved. Meanwhile, the decoupled delivering of three-directional independent motions at the output end is accessible, and the essential parallel and mirror symmetric configuration guarantees large output stiffness, high natural frequencies, high accuracy as well as high structural compactness of the mechanism. Accurate kinematics analysis with consideration of input coupling indicates that the proposed redundantly actuated compliant mechanism can generate three-dimensional (3D) symmetric polyhedral workspace envelope with enlarged reachable workspace, as compared with the most common parallel XYθ z mechanism driven by three PEAs. Keeping a high consistence with both analytical and numerical models, the experimental results show the working ranges of ±6.21 μm and ±12.41 μm in X- and Y-directions, and that of ±873.2 μrad in θ z-direction with nano-positioning capability can be realized. The superior performances and easily achievable structure well facilitate practical applications of the proposed XYθ z compliant mechanism in nano-positioning systems.

  15. Suboptimal LQR-based spacecraft full motion control: Theory and experimentation

    NASA Astrophysics Data System (ADS)

    Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.

    2016-05-01

    This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.

  16. Beyond the Schr{umlt o}dinger Equation: Quantum Motion with Traversal Time Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolovski, D.

    1997-12-01

    We study a quantum particle, for which the duration {tau} it spends in some region of space is controlled by a meter, e.g., a Larmor clock. The particle is described by a wave function {Psi}(x,t{vert_bar}{tau}) , with {vert_bar}{Psi}(x,t{vert_bar}{tau}){vert_bar}{sup 2} giving the distribution of the meter{close_quote}s readings at location x . The wave function satisfies the {open_quotes}clocked{close_quotes} Schr{umlt o}dinger equation, which we solve numerically for the cases of bound motion and wave packet scattering. The method is shown to be a natural extension of the conventional quantum mechanics. {copyright} {ital 1997} {ital The American Physical Society}

  17. Robustness of Thirty Meter Telescope primary mirror control

    NASA Astrophysics Data System (ADS)

    Macmynowski, Douglas G.; Thompson, Peter M.; Shelton, Chris; Roberts, Lewis C., Jr.

    2010-07-01

    The primary mirror control system for the Thirty Meter Telescope (TMT) maintains the alignment of the 492 segments in the presence of both quasi-static (gravity and thermal) and dynamic disturbances due to unsteady wind loads. The latter results in a desired control bandwidth of 1Hz at high spatial frequencies. The achievable bandwidth is limited by robustness to (i) uncertain telescope structural dynamics (control-structure interaction) and (ii) small perturbations in the ill-conditioned influence matrix that relates segment edge sensor response to actuator commands. Both of these effects are considered herein using models of TMT. The former is explored through multivariable sensitivity analysis on a reduced-order Zernike-basis representation of the structural dynamics. The interaction matrix ("A-matrix") uncertainty has been analyzed theoretically elsewhere, and is examined here for realistic amplitude perturbations due to segment and sensor installation errors, and gravity and thermal induced segment motion. The primary influence of A-matrix uncertainty is on the control of "focusmode"; this is the least observable mode, measurable only through the edge-sensor (gap-dependent) sensitivity to the dihedral angle between segments. Accurately estimating focus-mode will require updating the A-matrix as a function of the measured gap. A-matrix uncertainty also results in a higher gain-margin requirement for focus-mode, and hence the A-matrix and CSI robustness need to be understood simultaneously. Based on the robustness analysis, the desired 1 Hz bandwidth is achievable in the presence of uncertainty for all except the lowest spatial-frequency response patterns of the primary mirror.

  18. Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum.

    PubMed

    Conangla, Gerard P; Schell, Andreas W; Rica, Raúl A; Quidant, Romain

    2018-05-24

    Levitation optomechanics exploits the unique mechanical properties of trapped nano-objects in vacuum to address some of the limitations of clamped nanomechanical resonators. In particular, its performance is foreseen to contribute to a better understanding of quantum decoherence at the mesoscopic scale as well as to lead to novel ultrasensitive sensing schemes. While most efforts have focused so far on the optical trapping of low-absorption silica particles, further opportunities arise from levitating objects with internal degrees of freedom, such as color centers. Nevertheless, inefficient heat dissipation at low pressures poses a challenge because most nano-objects, even with low-absorption materials, experience photodamage in an optical trap. Here, by using a Paul trap, we demonstrate levitation in vacuum and center-of-mass feedback cooling of a nanodiamond hosting a single nitrogen-vacancy center. The achieved level of motion control enables us to optically interrogate and characterize the emitter response. The developed platform is applicable to a wide range of other nano-objects and represents a promising step toward coupling internal and external degrees of freedom.

  19. Open architecture CMM motion controller

    NASA Astrophysics Data System (ADS)

    Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John

    2001-12-01

    Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.

  20. Molecular controlled of quantum nano systems

    NASA Astrophysics Data System (ADS)

    Paltiel, Yossi

    2014-03-01

    A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.

  1. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    NASA Astrophysics Data System (ADS)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  2. Advanced Metering Infrastructure based on Smart Meters

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi

    By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.

  3. A new telescope control software for the Mayall 4-meter telescope

    NASA Astrophysics Data System (ADS)

    Abareshi, Behzad; Marshall, Robert; Gott, Shelby; Sprayberry, David; Cantarutti, Rolando; Joyce, Dick; Williams, Doug; Probst, Ronald; Reetz, Kristin; Paat, Anthony; Butler, Karen; Soto, Christian; Dey, Arjun; Summers, David

    2016-07-01

    The Mayall 4-meter telescope recently went through a major modernization of its telescope control system in preparation for DESI. We describe MPK (Mayall Pointing Kernel), our new software for telescope control. MPK outputs a 20Hz position-based trajectory with a velocity component, which feeds into Mayall's new servo system over a socket. We wrote a simple yet realistic servo simulator that let us develop MPK mostly without access to real hardware, and also lets us provide other teams with a Mayall simulator as test bed for development of new instruments. MPK has a small core comprised of prioritized, soft real-time threads. Access to the core's services is via MPK's main thread, a complete, interactive Tcl/Tk shell, which gives us the power and flexibility of a scripting language to add any other features, from GUIs, to modules for interaction with critical subsystems like dome or guider, to an API for networked clients of a new instrument (e.g., DESI). MPK is designed for long term maintainability: it runs on a stock computer and Linux OS, and uses only standard, open source libraries, except for commercial software that comes with source code in ANSI C/C++. We discuss the technical details of how MPK combines the Reflexxes motion library with the TCSpk/TPK pointing library to generically handle any motion requests, from slews to offsets to sidereal or non-sidereal tracking. We show how MPK calculates when the servos have reached a steady state. We also discuss our TPOINT modeling strategy and report performance results.

  4. New Worlds Observer Formation Control Design Based on the Dynamics of Relative Motion

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.

    2008-01-01

    The New Worlds Observer (NWO) mission is designed for the direct detection and characterization of extrasolar planets. The NWO mission concept employs a two spacecraft leader-follower formation on a trajectory around the Earth/Moon-Sun L(sub 2) Libration Point. The leader spacecraft is baselined as a 4 meter optical telescope. The follower, Starshade spacecraft, is designed to suppress light from a central body star permitting direct detection of a surrounding exoplanetary system. The current design requires a nominal leader-follower separation range of 72 Megameters. NWO poses many challenges including formation control. NWO cycles between three principal control modes during the nominal mission timeline: science (fine pointing), realignment and transition. This paper examines formation control strategies in the context of dynamics of relative motion for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2)libration point. The paper presents an overview of the equations of relative motion followed by a discussion of each of the control modes. Discussion and analysis characterize control strategies for each of the mission control modes, including requirements, implementation challenges and project fuel budgets.

  5. Tracking 3-D body motion for docking and robot control

    NASA Technical Reports Server (NTRS)

    Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.

    1987-01-01

    An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.

  6. Field Evaluation of Seepage Meters in the Coastal Marine Environment

    NASA Astrophysics Data System (ADS)

    Cable, J. E.; Burnett, W. C.; Chanton, J. P.; Corbett, D. R.; Cable, P. H.

    1997-09-01

    The response of seepage meters was evaluated in a nearshore marine environment where water motion effects are more pronounced than in lake settings, where these meters have been used traditionally. Temporal and spatial variations of seepage, as well as potential artifacts, were evaluated using empty and 1000-ml pre-filled bag measurements. Time-series measurements confirmed earlier observations that anomalously high fluxes occur during the early stages (≤10 min) of collection. As deployment times increased (30-60 min), measured flow rates stabilized at a level thought to represent the actual seepage flux. Pre-filling the plastic measurement bags effectively alleviated this anomalous, short-term influx. Reliable seepage measurements required deployment times sufficient to allow a net volume of at least 150 ml into the collection bag. Control experiments, designed by placing seepage meters inside sand-filled plastic swimming pools, served as indicators of external effects on these measurements, i.e. they served as seepage meter blanks. When winds were under 15 knots, little evidence was found that water motion caused artifacts in the seepage measurements. Tidal cycle influences on seepage rates were negligible in the present study area, but long-term temporal variations (weeks to months) proved substantial. Observed long-term changes in groundwater flux into the Gulf of Mexico correlated with water table elevation at a nearby monitoring well.

  7. Ultimate computing. Biomolecular consciousness and nano Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hameroff, S.R.

    1987-01-01

    The book advances the premise that the cytoskeleton is the cell's nervous system, the biological controller/computer. If indeed cytoskeletal dynamics in the nanoscale (billionth meter, billionth second) are the texture of intracellular information processing, emerging ''NanoTechnologies'' (scanning tunneling microscopy, Feynman machines, von Neumann replicators, etc.) should enable direct monitoring, decoding and interfacing between biological and technological information devices. This in turn could result in important biomedical applications and perhaps a merger of mind and machine: Ultimate Computing.

  8. Mechano-micro/nano systems

    NASA Astrophysics Data System (ADS)

    Horie, Mikio

    2004-10-01

    In recent years, the researches about Micro/Nano Systems are down actively in the bio-medical research fields, DNA research fields, chemical analysis systems fields, etc. In the results, a new materials and new functions in the systems are developed. In this invited paper, Mechano-Micro/Nano Systems, especially, motion systems are introduced. First, the research activities concerning the Mechano-Micro/Nano Systems in the world(MST2003, MEMS2003 and MEMS2004) and in Japan(Researech Projects on Nanotechnology and Materials in Ministry of Education, Culture, Sports, Science and Technology) are shown. Secondary, my research activities are introduced. As my research activities, (1) a comb-drive static actuator for the motion convert mechanisms, (2) a micro-nano fabrication method by use of FAB(Fast Atom Beam) machines, (3) a micro optical mirror manipulator for inputs-outputs optical switches, (4) a miniature pantograph mechanism with large-deflective hinges and links made of plastics are discussed and their performances are explained.

  9. Modeling and analysis of sub-surface leakage current in nano-MOSFET under cutoff regime

    NASA Astrophysics Data System (ADS)

    Swami, Yashu; Rai, Sanjeev

    2017-02-01

    The high leakage current in nano-meter regimes is becoming a significant portion of power dissipation in nano-MOSFET circuits as threshold voltage, channel length, and gate oxide thickness are scaled down to nano-meter range. Precise leakage current valuation and meticulous modeling of the same at nano-meter technology scale is an increasingly a critical work in designing the low power nano-MOSFET circuits. We present a specific compact model for sub-threshold regime leakage current in bulk driven nano-MOSFETs. The proposed logical model is instigated and executed into the latest updated PTM bulk nano-MOSFET model and is found to be in decent accord with technology-CAD simulation data. This paper also reviews various transistor intrinsic leakage mechanisms for nano-MOSFET exclusively in weak inversion, like drain-induced barricade lowering (DIBL), gate-induced drain leakage (GIDL), gate oxide tunneling (GOT) leakage etc. The root cause of the sub-surface leakage current is mainly due to the nano-scale short channel length causing source-drain coupling even in sub-threshold domain. Consequences leading to carriers triumphing the barricade between the source and drain. The enhanced model effectively considers the following parameter dependence in the account for better-quality value-added results like drain-to-source bias (VDS), gate-to-source bias (VGS), channel length (LG), source/drain junction depth (Xj), bulk doping concentration (NBULK), and operating temperature (Top).

  10. Fabrication of micro/nano optical fiber by mechano-electrospinning

    NASA Astrophysics Data System (ADS)

    Chen, Qinnan; Wu, Dezhi; Yu, Zhe; Mei, Xuecui; Fang, Ke; Sun, Daoheng

    2017-10-01

    We study a novel fabrication method of micro/nano optical fiber by mechano-electrospinning (MES) direct-written technology. MES process is able to precisely manipulate the position and diameter of the electro-spun micro/nano fiber by adjusting the mechanical drawing force, which through changing the speed of motion stage (substrate). By adjusting the substrate speed, the nozzle-to-substrate distance and the applied voltage, the poly(methyl methacrylate) (PMMA) micro/nano optical fibers (MNOF) with controlled diameter are obtained and the tapered MNOF are fabricated by continuously changing the substrate speed. The transmission characteristics of PMMA micro/nano fiber is experimentally demonstrated, and a PMMA micro/nano fiber based refractive index sensor is designed. Our works shows the new fabrication method of MNOF by MES has the potential in the field of light mode conversion, optical waveguide coupling, refractive index detection and new micro/nano optical fiber components.

  11. An open architecture motion controller

    NASA Technical Reports Server (NTRS)

    Rossol, Lothar

    1994-01-01

    Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.

  12. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  13. The Early Development of Electronic pH Meters

    ERIC Educational Resources Information Center

    Hines, Wallis G.; de Levie, Robert

    2010-01-01

    A 19-year-old undergraduate at the University of Chicago, Kenneth Goode, in 1921 came up with the idea of an electronic pH meter, worked out some of its initial problems, and set in motion an international scientific effort that culminated in the current, wide availability of electronic pH meters. Except for the replacement of vacuum tubes by…

  14. Validation results of specifications for motion control interoperability

    NASA Astrophysics Data System (ADS)

    Szabo, Sandor; Proctor, Frederick M.

    1997-01-01

    The National Institute of Standards and Technology (NIST) is participating in the Department of Energy Technologies Enabling Agile Manufacturing (TEAM) program to establish interface standards for machine tool, robot, and coordinate measuring machine controllers. At NIST, the focus is to validate potential application programming interfaces (APIs) that make it possible to exchange machine controller components with a minimal impact on the rest of the system. This validation is taking place in the enhanced machine controller (EMC) consortium and is in cooperation with users and vendors of motion control equipment. An area of interest is motion control, including closed-loop control of individual axes and coordinated path planning. Initial tests of the motion control APIs are complete. The APIs were implemented on two commercial motion control boards that run on two different machine tools. The results for a baseline set of APIs look promising, but several issues were raised. These include resolving differing approaches in how motions are programmed and defining a standard measurement of performance for motion control. This paper starts with a summary of the process used in developing a set of specifications for motion control interoperability. Next, the EMC architecture and its classification of motion control APIs into two classes, Servo Control and Trajectory Planning, are reviewed. Selected APIs are presented to explain the basic functionality and some of the major issues involved in porting the APIs to other motion controllers. The paper concludes with a summary of the main issues and ways to continue the standards process.

  15. Controlling nitrogen migration through micro-nano networks

    NASA Astrophysics Data System (ADS)

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G.; Chu, Paul K.; Yu, Zengliang

    2014-01-01

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium.

  16. Controlling nitrogen migration through micro-nano networks.

    PubMed

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G; Chu, Paul K; Yu, Zengliang

    2014-01-14

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium.

  17. Controlling nitrogen migration through micro-nano networks

    PubMed Central

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G.; Chu, Paul K.; Yu, Zengliang

    2014-01-01

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium. PMID:24419037

  18. Guaranteeing Isochronous Control of Networked Motion Control Systems Using Phase Offset Adjustment

    PubMed Central

    Kim, Ikhwan; Kim, Taehyoun

    2015-01-01

    Guaranteeing isochronous transfer of control commands is an essential function for networked motion control systems. The adoption of real-time Ethernet (RTE) technologies may be profitable in guaranteeing deterministic transfer of control messages. However, unpredictable behavior of software in the motion controller often results in unexpectedly large deviation in control message transmission intervals, and thus leads to imprecise motion. This paper presents a simple and efficient heuristic to guarantee the end-to-end isochronous control with very small jitter. The key idea of our approach is to adjust the phase offset of control message transmission time in the motion controller by investigating the behavior of motion control task. In realizing the idea, we performed a pre-runtime analysis to determine a safe and reliable phase offset and applied the phase offset to the runtime code of motion controller by customizing an open-source based integrated development environment (IDE). We also constructed an EtherCAT-based motion control system testbed and performed extensive experiments on the testbed to verify the effectiveness of our approach. The experimental results show that our heuristic is highly effective even for low-end embedded controller implemented in open-source software components under various configurations of control period and the number of motor drives. PMID:26076407

  19. A Programmable System for Motion Control

    NASA Technical Reports Server (NTRS)

    Nowlin, Brent C.

    2003-01-01

    The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.

  20. Controlling measures of micro-plastic and nano pollutants: A short review of disposing waste toners.

    PubMed

    Ruan, Jujun; Qin, Baojia; Huang, Jiaxin

    2018-05-31

    Micro-plastic and nano-particle have been the focal pollutants in environmental science. The printer toner is omitted micro-plastic and nano pollutant. It is comprised of micro polyacrylate styrene and nano-Fe 3 O 4 particles. Polyacrylate styrene and nano-metal were proved to be irreversibly toxic to biological cells. Therefore, toners have the potential environmental risk and healthy harm due to include micro plastics and nano-metal. To our knowledge, few studies provided the specific collection and treatment of micro-plastic pollutant. This paper has chosen a kind of micro-plastic and nano pollutant toxic toner and provided technical guidance and inspiration for controlling the micro-plastic and nano pollutants. The method of vacuum-gasification-condensation was adopted for controlling the micro-plastic and nano pollutant toner. We believe this review will open up a potential avenue for controlling micro-plastic and nano pollutants for environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteini, P; Ratto, F; Rossi, F

    2014-07-31

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  2. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE PAGES

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    2018-05-09

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  3. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  4. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  5. Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots.

    PubMed

    Seo, Min-Kyo; Park, Hong-Gyu; Yang, Jin-Kyu; Kim, Ju-Young; Kim, Se-Heon; Lee, Yong-Hee

    2008-06-23

    We propose and demonstrate a scheme that enables spectral tuning of a photonic crystal high-quality resonant mode, in steps finer than 0.2 nm, via electron beam induced deposition of carbonaceous nano-dots. The position and size of a nano-dot with a diameter of <100 nm are controlled to an accuracy on the order of nanometers. The possibility of selective modal tuning is also demonstrated by placing nano-dots at locations pre-determined by theoretical computation. The lasing threshold of a photonic crystal mode tends to increase when a nano-dot is grown at the point of strong electric field, showing the absorptive nature of the nano-dot.

  6. Quantum Control of Light and Matter: From the Macroscopic to the Nano Scale

    DTIC Science & Technology

    2016-02-02

    navigation, and hybrid bio -graphene devices, incorporating enzymes positioned on graphene, for light-driven bio -fuel production with controlled...enzymatic rates. 15. SUBJECT TERMS Light-matter interactions; Quantum control; Slow light; Bose-Einstein condensates; Nano-science; Hybrid bio -nano...precise navigation. They also include hybrid bio -graphene devices incorporating enzymes positioned on graphene for dynamic control of enzymatic

  7. Nano-technology and nano-toxicology.

    PubMed

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  8. Nano-technology and nano-toxicology

    PubMed Central

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021

  9. Automatic control of NASA Langley's 0.3-meter cryogenic test facility

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.; Balakrishna, S.

    1980-01-01

    Experience during the past 6 years of operation of the 0.3-meter transonic cryogenic tunnel at the NASA Langley Research Center has shown that there are problems associated with efficient operation and control of cryogenic tunnels using manual control schemes. This is due to the high degree of process crosscoupling between the independent control variables (temperature, pressure, and fan drive speed) and the desired test condition (Mach number and Reynolds number). One problem has been the inability to maintain long-term accurate control of the test parameters. Additionally, the time required to change from one test condition to another has proven to be excessively long and much less efficient than desirable in terms of liquid nitrogen and electrical power usage. For these reasons, studies have been undertaken to: (1) develop and validate a mathematical model of the 0.3-meter cryogenic tunnel process, (2) utilize this model in a hybrid computer simulation to design temperature and pressure feedback control laws, and (3) evaluate the adequacy of these control schemes by analysis of closed-loop experimental data. This paper will present the results of these studies.

  10. Determining the Cost Effectiveness of Nano-Satellites

    DTIC Science & Technology

    2014-09-01

    program. She helped me talk through a number of issues throughout the entire process. She also went out of her way to give me the time needed to complete...imagery satellites WorldView-2 and GeoEye-2 are both 1.1 meters in diameter( Franklin 2012) and cannot fit into a 0.3 meter 3U CubeSat. Another major...modulated retro-reflectors can enable one- way high speed transfer at a very low power cost to the nano-satellite (Wayne, Lovern and Obukhov 2014). 5

  11. Electrochemical micro/nano-machining: principles and practices.

    PubMed

    Zhan, Dongping; Han, Lianhuan; Zhang, Jie; He, Quanfeng; Tian, Zhao-Wu; Tian, Zhong-Qun

    2017-03-06

    Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the increasing industrial demand for supersmooth surfaces and functional three-dimensional micro/nano-structures (3D-MNS) in ultra-large scale integrated circuits, microelectromechanical systems, miniaturized total analysis systems, precision optics, and so on. Taking advantage of no tool wear, no surface stress, environmental friendliness, simple operation, and low cost, electrochemical micro/nano-machining (EC-MNM) has an irreplaceable role in MNM. This comprehensive review presents the state-of-art of EC-MNM techniques for direct writing, surface planarization and polishing, and 3D-MNS fabrications. The key point of EC-MNM is to confine electrochemical reactions at the micro/nano-meter scale. This review will bring together various solutions to "confined reaction" ranging from electrochemical principles through technical characteristics to relevant applications.

  12. THE VERTICAL PLANAR MOTION MECHANISM; A DYNAMIC TEST APPARATUS FOR EVALUATING CURRENT METERS AND OTHER MARINE INSTRUMENTATION

    EPA Science Inventory

    The overall objective was to provide a dynamic test apparatus that can produce known, controlled high frequency dynamics for the evaluation of current meters and other marine instrumentation. Of primary interest is the establishment of flow sensor measurement capabilities, and he...

  13. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering.

    PubMed

    Liu, Xiuju; Gan, Kang; Liu, Hong; Song, Xiaoqing; Chen, Tianjie; Liu, Chenchen

    2017-09-01

    We aimed to investigate the cytotoxicity and antibacterial properties of nano-silver-coated polyetheretherketone (PEEK) produced through magnetron sputtering and provide a theoretical basis for its use in clinical applications. The surfaces of PEEKs were coated with nano-silver at varying thicknesses (3, 6, 9, and 12nm) through magnetron sputtering technology. The resulting coated PEEK samples were classified into the following groups according to the thickness of the nano-silver coating: PEEK-3 (3nm), PEEK-6 (6nm), PEEK-9 (9nm), PEEK-12 (12nm), and PEEK control group. The surface microstructure and composition of each sample were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive spectrum (EDS) analysis. The water contact angle of each sample was then measured by contact angle meters. A cell counting kit (CCK-8) was used to analyze the cytotoxicity of the mouse fibroblast cells (L929) in the coated groups (n=5) and group test samples (n=6), negative control (polyethylene, PE) (n=6), and positive control group (phenol) (n=6). The antibacterial properties of the samples were tested by co-culturing Streptococcus mutans and Straphylococcus aureus. The bacteria that adhered to the surface of samples were observed by SEM. The antibacterial adhesion ability of each sample was then evaluated. SEM and AFM analysis results showed that the surfaces of control group samples were smooth but compact. Homogeneous silver nano-particles (AgNPs) and nano-silver coating were uniformly distributed on the surface of the coated group samples. Compared with the control samples, the nano-silver coated samples had a significant increase in surface roughness (P<0.05) as the thickness of their nano-silver coating increased. EDS analysis showed that not only C and O but also Ag were present on the surface of the coated samples. Moreover, the water contact angle of modified samples significantly increased after nano-silver coating modification

  14. Controlling high-throughput manufacturing at the nano-scale

    NASA Astrophysics Data System (ADS)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  15. Motion and force control of multiple robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  16. Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost

    PubMed Central

    Wang, Shanlin; Zhang, Wenwen; Yu, Xinquan; Liang, Caihua; Zhang, Youfa

    2017-01-01

    Spontaneous movement of condensed matter provides a new insight to efficiently improve condensation heat transfer on superhydrophobic surface. However, very few reports have shown the jumping behaviors on the sprayable superhydrophobic coatings. Here, we developed a sprayable silica nano-porous coating assembled by fluorinated nano-chains to survey the condensates’ dynamics. The dewdrops were continuously removed by self- and/or trigger-propelling motion due to abundant nano-pores from random multilayer stacking of nano-chains. In comparison, the dewdrops just could be slipped under the gravity effect on lack of nano-pores coatings stacked by silica nano-spheres and nano-aggregates. More interestingly, the spontaneous jumping effect also occurred on micro-scale frost crystals under the defrosting process on nano-chains coating surfaces. Different from self-jumping of dewdrops motion, the propelling force of frost crystals were provided by a sudden increase of the pressure under the frost crystal. PMID:28074938

  17. Voltage-Controlled Switching and Thermal Effects in VO2 Nano-Gap Junctions

    DTIC Science & Technology

    2014-06-09

    Voltage-controlled switching and thermal effects in VO2 nano-gap junctions Arash Joushaghani,1 Junho Jeong,1 Suzanne Paradis,2 David Alain,2 J...2014) Voltage-controlled switching in lateral VO2 nano-gap junctions with different gap lengths and thermal properties was investigated. The effect of...indicate that the VO2 phase transition was likely initiated electroni- cally, which was sometimes followed by a secondary thermally-induced transition

  18. Control of joint motion simulators for biomechanical research

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.

    1992-01-01

    The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.

  19. Animation control of surface motion capture.

    PubMed

    Tejera, Margara; Casas, Dan; Hilton, Adrian

    2013-12-01

    Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.

  20. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    PubMed

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  1. Modeling and control for micro and nano manipulation

    NASA Astrophysics Data System (ADS)

    Wejinya, Uchechukwu C.

    handling and deposition of micro and nano entities such as carbon nanotubes (CNT), DNA, and for droplet control. The novel microfluidic end effector system with force sensing can significantly improve the success rate for handling/depositing micro/nano entities in the case of carbon nanotubes between micro electrodes. The design, calibration, and experimental implementation of the novel microfluidic end effector is carried out in this research. The experimental results show the success rate for carbon nanotube(s) deposition between micro electrodes can reach close to 80%. Furthermore, carbon nanotubes are of particular interest because they are good candidates for many electronics and sensing applications. The interests in using carbon nanotubes to manufacture electronics and sensors have increased in recent years because of the increase need for making electronics smaller, and their excellent electrical and mechanical properties. These potentials can be achieved if CNTs with semiconducting and metallic band structure can be successfully deposited and separated. The use of dielectrophoresis (DEP) has been established as a course towards the efficient deposition and separation of metallic carbon nanotubes from semiconducting carbon nanotubes. For this reason, this research presents a new mathematical model for dielectrophoresis and electrorotation of carbon nanotubes. Simulation results are presented in this research to validate the developed model. The combination of both the micro robotic manipulation system and the atomic force microscopy (AFM) based nano-robotic system will provide a powerful tool for micro and nano manipulation. Additional applications of this research are endless considering the rapid development of micro and nano technologies.

  2. Contrast gain control in first- and second-order motion perception.

    PubMed

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  3. Brownian motion of a nano-colloidal particle: the role of the solvent.

    PubMed

    Torres-Carbajal, Alexis; Herrera-Velarde, Salvador; Castañeda-Priego, Ramón

    2015-07-15

    Brownian motion is a feature of colloidal particles immersed in a liquid-like environment. Usually, it can be described by means of the generalised Langevin equation (GLE) within the framework of the Mori theory. In principle, all quantities that appear in the GLE can be calculated from the molecular information of the whole system, i.e., colloids and solvent molecules. In this work, by means of extensive Molecular Dynamics simulations, we study the effects of the microscopic details and the thermodynamic state of the solvent on the movement of a single nano-colloid. In particular, we consider a two-dimensional model system in which the mass and size of the colloid are two and one orders of magnitude, respectively, larger than the ones associated with the solvent molecules. The latter ones interact via a Lennard-Jones-type potential to tune the nature of the solvent, i.e., it can be either repulsive or attractive. We choose the linear momentum of the Brownian particle as the observable of interest in order to fully describe the Brownian motion within the Mori framework. We particularly focus on the colloid diffusion at different solvent densities and two temperature regimes: high and low (near the critical point) temperatures. To reach our goal, we have rewritten the GLE as a second kind Volterra integral in order to compute the memory kernel in real space. With this kernel, we evaluate the momentum-fluctuating force correlation function, which is of particular relevance since it allows us to establish when the stationarity condition has been reached. Our findings show that even at high temperatures, the details of the attractive interaction potential among solvent molecules induce important changes in the colloid dynamics. Additionally, near the critical point, the dynamical scenario becomes more complex; all the correlation functions decay slowly in an extended time window, however, the memory kernel seems to be only a function of the solvent density. Thus, the

  4. Motion control of 7-DOF arms - The configuration control approach

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Long, Mark K.; Lee, Thomas S.

    1993-01-01

    Graphics simulation and real-time implementation of configuration control schemes for a redundant 7-DOF Robotics Research arm are described. The arm kinematics and motion control schemes are described briefly. This is followed by a description of a graphics simulation environment for 7-DOF arm control on the Silicon Graphics IRIS Workstation. Computer simulation results are presented to demonstrate elbow control, collision avoidance, and optimal joint movement as redundancy resolution goals. The laboratory setup for experimental validation of motion control of the 7-DOF Robotics Research arm is then described. The configuration control approach is implemented on a Motorola-68020/VME-bus-based real-time controller, with elbow positioning for redundancy resolution. Experimental results demonstrate the efficacy of configuration control for real-time control.

  5. Brain-machine interfacing control of whole-body humanoid motion

    PubMed Central

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  6. Active member vibration control for a 4 meter primary reflector support structure

    NASA Technical Reports Server (NTRS)

    Umland, J. W.; Chen, G.-S.

    1992-01-01

    The design and testing of a new low voltage piezoelectric active member with integrated load cell and displacement sensor is described. This active member is intended for micron level vibration and structural shape control of the Precision Segmented Reflector test-bed. The test-bed is an erectable 4 meter diameter backup support truss for a 2.4 meter focal length parabolic reflector. Active damping of the test-bed is then demonstrated using the newly developed active members. The control technique used is referred to as bridge feedback. With this technique the internal sensors are used in a local feedback loop to match the active member's input impedance to the structure's load impedance, which then maximizes vibrational energy dissipation. The active damping effectiveness is then evaluated from closed loop frequency responses.

  7. Motion-mode energy method for vehicle dynamics analysis and control

    NASA Astrophysics Data System (ADS)

    Zhang, Nong; Wang, Lifu; Du, Haiping

    2014-01-01

    Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.

  8. Sprocket- Chain Simulation: Modelling and Simulation of a Multi Physics problem by sequentially coupling MotionSolve and nanoFluidX

    NASA Astrophysics Data System (ADS)

    Jayanthi, Aditya; Coker, Christopher

    2016-11-01

    In the last decade, CFD simulations have transitioned from the stage where they are used to validate the final designs to the main stream development of products driven by the simulation. However, there are still niche areas of applications liking oiling simulations, where the traditional CFD simulation times are probative to use them in product development and have to rely on experimental methods, which are expensive. In this paper a unique example of Sprocket-Chain simulation will be presented using nanoFluidx a commercial SPH code developed by FluiDyna GmbH and Altair Engineering. The grid less nature of the of SPH method has inherent advantages in the areas of application with complex geometry which pose severe challenge to classical finite volume CFD methods due to complex moving geometries, moving meshes and high resolution requirements leading to long simulation times. The simulations times using nanoFluidx can be reduced from weeks to days allowing the flexibility to run more simulation and can be in used in main stream product development. The example problem under consideration is a classical Multiphysics problem and a sequentially coupled solution of Motion Solve and nanoFluidX will be presented. This abstract is replacing DFD16-2016-000045.

  9. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  10. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  11. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  12. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  13. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  14. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  15. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  16. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  17. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  18. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...

  19. A triple quantum dot based nano-electromechanical memory device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozner, R.; Lifshitz, E.; Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Consideringmore » realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.« less

  20. Spatial redistribution of nano-particles using electrokinetic micro-focuser

    NASA Astrophysics Data System (ADS)

    Garcia, Daniel E.; Silva, Aleidy; Ho, Chih-Ming

    2007-09-01

    Current microfabrication technologies rely on top-down, photolithographic techniques that are ultimately limited by the wavelength of light. While systems for nanofabrication do exist, they frequently suffer from high costs and slow processing times, creating a need for a new manufacturing paradigm. The combination of top-down and bottom-up fabrication approaches in device construction creates a new paradigm in micro- and nano-manufacturing. The pre-requisite for the realization of the manufacturing paradigm relies on the manipulation of molecules in a deterministic and controlled manner. The use of AC electrokinetic forces, such as dielectrophoresis (DEP) and AC electroosmosis, is a promising technology for manipulating nano-sized particle in a parallel fashion. A three-electrode micro-focusing system was designed to expoit this forces in order to control the spatial distribution of nano-particles in different frequency ranges. Thus far, we have demonstrated the ability to concentrate 40 nm and 300 nm diameter particles using a 50 μm diameter focusing system. AC electroosmotic motion of the nano-particles was observed while using low frequencies (in a range of 30 Hz - 1 KHz). By using different frequencies and changing the ground location, we have manipulated the nano-particles into circular band structures with different width, and focused the nanoparticles into circular spots with different diameters. Currently, we are in the progress of optimizing the operation parameters (e.g. frequency and AC voltages) by using the technique of particle image velocimetry (PIV). In the future, design of different electrode geometries and the numerical simulation of electric field distribution will be carried out to manipulate the nano-particles into a variety of geometries.

  1. Controlling the near-field excitation of nano-antennas with phase-change materials.

    PubMed

    Kao, Tsung Sheng; Chen, Yi Guo; Hong, Ming Hui

    2013-01-01

    By utilizing the strongly induced plasmon coupling between discrete nano-antennas and quantitatively controlling the crystalline proportions of an underlying Ge2Sb2Te5 (GST) phase-change thin layer, we show that nanoscale light localizations in the immediate proximity of plasmonic nano-antennas can be spatially positioned. Isolated energy hot-spots at a subwavelength scale can be created and adjusted across the landscape of the plasmonic system at a step resolution of λ/20. These findings introduce a new approach for nano-circuitry, bio-assay addressing and imaging applications.

  2. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content inmore » the spinach plants was increased when the magnetic nano particles was injected in the growing media.« less

  3. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  4. The influence of ship motion of manual control skills

    NASA Technical Reports Server (NTRS)

    Mcleod, P.; Poulton, C.; Duross, H.; Lewis, W.

    1981-01-01

    The effects of ship motion on a range of typical manual control skills were examined on the Warren Spring ship motion simulator driven in heave, pitch, and roll by signals taken from the frigate HMS Avenger at 13 m/s (25 knots) into a force 4 wind. The motion produced a vertical r.m.s. acceleration of 0.024g, mostly between 0.1 and 0.3 Hz, with comparatively little pitch or roll. A task involving unsupported arm movements was seriously affected by the motion; a pursuit tracking task showed a reliable decrement although it was still performed reasonably well (pressure and free moving tracking controls were affected equally by the motion); a digit keying task requiring ballistic hand movements was unaffected. There was no evidence that these effects were caused by sea sickness. The differing response to motion of the different tasks, from virtual destruction to no effect, suggests that a major benefit could come from an attempt to design the man/control interface onboard ship around motion resistant tasks.

  5. Motion and force control for multiple cooperative manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth

    1989-01-01

    The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  6. Characterization and control of self-motions in redundant manipulators

    NASA Technical Reports Server (NTRS)

    Burdick, J.; Seraji, Homayoun

    1989-01-01

    The presence of redundant degrees of freedom in a manipulator structure leads to a physical phenomenon known as a self-motion, which is a continuous motion of the manipulator joints that leaves the end-effector motionless. In the first part of the paper, a global manifold mapping reformulation of manipulator kinematics is reviewed, and the inverse kinematic solution for redundant manipulators is developed in terms of self-motion manifolds. Global characterizations of the self-motion manifolds in terms of their number, geometry, homotopy class, and null space are reviewed using examples. Much previous work in redundant manipulator control has been concerned with the redundancy resolution problem, in which methods are developed to determine, or resolve, the motion of the joints in order to achieve end-effector trajectory control while optimizing additional objective functions. Redundancy resolution problems can be equivalently posed as the control of self-motions. Alternatives for redundancy resolution are briefly discussed.

  7. A Unified Approach to Motion Control of Motion Robots

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1994-01-01

    This paper presents a simple on-line approach for motion control of mobile robots made up of a manipulator arm mounted on a mobile base. The proposed approach is equally applicable to nonholonomic mobile robots, such as rover-mounted manipulators and to holonomic mobile robots such as tracked robots or compound manipulators. The computational efficiency of the proposed control scheme makes it particularly suitable for real-time implementation.

  8. Kinematic Validation of a Multi-Kinect v2 Instrumented 10-Meter Walkway for Quantitative Gait Assessments.

    PubMed

    Geerse, Daphne J; Coolen, Bert H; Roerdink, Melvyn

    2015-01-01

    Walking ability is frequently assessed with the 10-meter walking test (10MWT), which may be instrumented with multiple Kinect v2 sensors to complement the typical stopwatch-based time to walk 10 meters with quantitative gait information derived from Kinect's 3D body point's time series. The current study aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments during the 10MWT against a gold-standard motion-registration system by determining between-systems agreement for body point's time series, spatiotemporal gait parameters and the time to walk 10 meters. To this end, the 10MWT was conducted at comfortable and maximum walking speed, while 3D full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up and the Optotrak motion-registration system (i.e., the gold standard). Between-systems agreement for body point's time series was assessed with the intraclass correlation coefficient (ICC). Between-systems agreement was similarly determined for the gait parameters' walking speed, cadence, step length, stride length, step width, step time, stride time (all obtained for the intermediate 6 meters) and the time to walk 10 meters, complemented by Bland-Altman's bias and limits of agreement. Body point's time series agreed well between the motion-registration systems, particularly so for body points in motion. For both comfortable and maximum walking speeds, the between-systems agreement for the time to walk 10 meters and all gait parameters except step width was high (ICC ≥ 0.888), with negligible biases and narrow limits of agreement. Hence, body point's time series and gait parameters obtained with a multi-Kinect v2 set-up match well with those derived with a gold standard in 3D measurement accuracy. Future studies are recommended to test the clinical utility of the multi-Kinect v2 set-up to automate 10MWT assessments, thereby complementing the time to walk 10 meters with reliable spatiotemporal gait parameters obtained

  9. Kinematic Validation of a Multi-Kinect v2 Instrumented 10-Meter Walkway for Quantitative Gait Assessments

    PubMed Central

    Geerse, Daphne J.; Coolen, Bert H.; Roerdink, Melvyn

    2015-01-01

    Walking ability is frequently assessed with the 10-meter walking test (10MWT), which may be instrumented with multiple Kinect v2 sensors to complement the typical stopwatch-based time to walk 10 meters with quantitative gait information derived from Kinect’s 3D body point’s time series. The current study aimed to evaluate a multi-Kinect v2 set-up for quantitative gait assessments during the 10MWT against a gold-standard motion-registration system by determining between-systems agreement for body point’s time series, spatiotemporal gait parameters and the time to walk 10 meters. To this end, the 10MWT was conducted at comfortable and maximum walking speed, while 3D full-body kinematics was concurrently recorded with the multi-Kinect v2 set-up and the Optotrak motion-registration system (i.e., the gold standard). Between-systems agreement for body point’s time series was assessed with the intraclass correlation coefficient (ICC). Between-systems agreement was similarly determined for the gait parameters’ walking speed, cadence, step length, stride length, step width, step time, stride time (all obtained for the intermediate 6 meters) and the time to walk 10 meters, complemented by Bland-Altman’s bias and limits of agreement. Body point’s time series agreed well between the motion-registration systems, particularly so for body points in motion. For both comfortable and maximum walking speeds, the between-systems agreement for the time to walk 10 meters and all gait parameters except step width was high (ICC ≥ 0.888), with negligible biases and narrow limits of agreement. Hence, body point’s time series and gait parameters obtained with a multi-Kinect v2 set-up match well with those derived with a gold standard in 3D measurement accuracy. Future studies are recommended to test the clinical utility of the multi-Kinect v2 set-up to automate 10MWT assessments, thereby complementing the time to walk 10 meters with reliable spatiotemporal gait parameters

  10. Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering

    NASA Astrophysics Data System (ADS)

    Koehler, Sarah Muraoka

    suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive

  11. MEMS based pumped liquid cooling systems for micro/nano spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; Shakkottai, P.; Sur, T. W.

    2000-01-01

    The electronic and other payload power densities in future micro/nano spacecraft are expected to exceed 25 Watts/cm(sup 2) and require advanced thermal control concepts and technologies to keep their payload within allowable temperature limits. This paper presents background on the need for pumped liquid cooling systems for future micro/nano spacecraft and results from this ongoing experimental investigation.

  12. Seismic and aseismic fault slip in response to fluid injection observed during field experiments at meter scale

    NASA Astrophysics Data System (ADS)

    Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.

    2017-12-01

    During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and

  13. Automatic remote-integration metering center. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philippidis, P.A.; Weinreb, M.; de Gil, B.F.

    1988-11-01

    The report documents a multi-phase program for the development and demonstration of a unique automatic and remote metering system. The system consists of a solid-state meter module to provide electrical consumption data, tamper detection, and load control functions; a central master station to interrogate the meter modules for their data and also to transmit load control signals; and a data display module to be accessible to tenants wishing to obtain their meter readings. The system has the capability to measure and allocate demand and to process time of use rates. It also has a meter accuracy self-test feature. The systemmore » is suitable for both direct metering of multi-family buildings and the sub-metering of master-metered apartment buildings. In addition to describing the system, the report documents the results of a 371-point field trial at Scott Tower, a cooperative apartment building in the Bronx, New York.« less

  14. Knowledge-Based Motion Control of AN Intelligent Mobile Autonomous System

    NASA Astrophysics Data System (ADS)

    Isik, Can

    An Intelligent Mobile Autonomous System (IMAS), which is equipped with vision and low level sensors to cope with unknown obstacles, is modeled as a hierarchy of path planning and motion control. This dissertation concentrates on the lower level of this hierarchy (Pilot) with a knowledge-based controller. The basis of a theory of knowledge-based controllers is established, using the example of the Pilot level motion control of IMAS. In this context, the knowledge-based controller with a linguistic world concept is shown to be adequate for the minimum time control of an autonomous mobile robot motion. The Pilot level motion control of IMAS is approached in the framework of production systems. The three major components of the knowledge-based control that are included here are the hierarchies of the database, the rule base and the rule evaluator. The database, which is the representation of the state of the world, is organized as a semantic network, using a concept of minimal admissible vocabulary. The hierarchy of rule base is derived from the analytical formulation of minimum-time control of IMAS motion. The procedure introduced for rule derivation, which is called analytical model verbalization, utilizes the concept of causalities to describe the system behavior. A realistic analytical system model is developed and the minimum-time motion control in an obstacle strewn environment is decomposed to a hierarchy of motion planning and control. The conditions for the validity of the hierarchical problem decomposition are established, and the consistency of operation is maintained by detecting the long term conflicting decisions of the levels of the hierarchy. The imprecision in the world description is modeled using the theory of fuzzy sets. The method developed for the choice of the rule that prescribes the minimum-time motion control among the redundant set of applicable rules is explained and the usage of fuzzy set operators is justified. Also included in the

  15. Dual-Arm Generalized Compliant Motion With Shared Control

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1994-01-01

    Dual-Arm Generalized Compliant Motion (DAGCM) primitive computer program implementing improved unified control scheme for two manipulator arms cooperating in task in which both grasp same object. Provides capabilities for autonomous, teleoperation, and shared control of two robot arms. Unifies cooperative dual-arm control with multi-sensor-based task control and makes complete task-control capability available to higher-level task-planning computer system via large set of input parameters used to describe desired force and position trajectories followed by manipulator arms. Some concepts discussed in "A Generalized-Compliant-Motion Primitive" (NPO-18134).

  16. Study on Locally Confined Deposition of Si Nanocrystals in High-Aspect-Ratio Si Nano-Pillar Arrays for Nano-Electronic and Nano-Photonic Applications II

    DTIC Science & Technology

    2010-12-03

    photoluminescence characteristics of equivalent-size controlled silicon quantum dots by employing a nano-porous aluminum oxide membrane as the template for growing...synthesis of Si quantum dots (Si-QDs) embedded in low-temperature (500oC) annealed Si-rich SiOx nano-rod deposited in nano-porous anodic aluminum oxide ...characteristics of the equivalent-size controlled Si-QDs by employing the nano-porous AAO membrane as the template for growing Si-rich SiOx nano-rods

  17. Magnetic stage with environmental control for optical microscopy and high-speed nano- and microrheology

    NASA Astrophysics Data System (ADS)

    Aprelev, Pavel; McKinney, Bonni; Walls, Chadwick; Kornev, Konstanin G.

    2017-07-01

    A novel design of a low-field magnetic stage for optical microscopy of droplets and films within a controlled environment is described. The stage consists of five magnetic coils with a 3D magnetic sensor in a feedback control loop, which allows one to manipulate magnetic nano- and microprobes with microtesla fields. A locally uniform time-dependent field within the focal plane of the microscope objective enables one to rotate the probes in a precisely set manner and observe their motion. The probe tracking protocol was developed to follow the probe rotation in real time and relate it with the viscosity of the host liquid. Using this magnetic stage, a method for measuring mPa s-level viscosity of nanoliter droplets and micron thick films in a 10-20 s timeframe is presented and validated. The viscosity of a rapidly changing liquid can be tracked by using only a few visible probes rotating simultaneously. Vapor pressure and temperature around the sample can be controlled to directly measure viscosity as a function of equilibrium vapor pressure; this addresses a significant challenge in characterization of volatile nanodroplets and thin films. Thin films of surfactant solutions undergoing phase transitions upon solvent evaporation were studied and their rheological properties were related to morphological changes in the material.

  18. Minimum-variance Brownian motion control of an optically trapped probe.

    PubMed

    Huang, Yanan; Zhang, Zhipeng; Menq, Chia-Hsiang

    2009-10-20

    This paper presents a theoretical and experimental investigation of the Brownian motion control of an optically trapped probe. The Langevin equation is employed to describe the motion of the probe experiencing random thermal force and optical trapping force. Since active feedback control is applied to suppress the probe's Brownian motion, actuator dynamics and measurement delay are included in the equation. The equation of motion is simplified to a first-order linear differential equation and transformed to a discrete model for the purpose of controller design and data analysis. The derived model is experimentally verified by comparing the model prediction to the measured response of a 1.87 microm trapped probe subject to proportional control. It is then employed to design the optimal controller that minimizes the variance of the probe's Brownian motion. Theoretical analysis is derived to evaluate the control performance of a specific optical trap. Both experiment and simulation are used to validate the design as well as theoretical analysis, and to illustrate the performance envelope of the active control. Moreover, adaptive minimum variance control is implemented to maintain the optimal performance in the case in which the system is time varying when operating the actively controlled optical trap in a complex environment.

  19. Depolarized haze of nano-porous AAO film via porosity and aspect control

    NASA Astrophysics Data System (ADS)

    Tseng, Chun-Wei; Lin, Yung-Hsiang; Cheng, Chih-Hsien; Lin, Gong-Ru

    2018-01-01

    Multiple scattering induced haze and depolarization effects of nano-porous AAO films controlled by detuning the porosity and aspect ratio of the nano holes are investigated. The nano-porous AAO film with its porosity increasing from 12.6% to 19.3% enhances the scattering of the incident laser beam with its maximal scattering angle enlarged from 5° to 8° under TM-mode incidence and from 6° to 10° under TE-mode incidence. Because of multiple scattering within the porous holes of the AAO, the depolarization on the reflected beam by transferring its electric field from horizontal to the vertical such that the polarization ratio is degraded with a randomized haze. The porosity of AAO surface broadens from 12.6% to 19.3% when increasing the bias voltage from 40 to 60 V during the second-step of the electro-chemical anodization process, which essentially adjusts the polarization ratio under TM-mode and TE-mode incidences raise from 0.31 to 0.35 and from 0.32 to 0.48, respectively. The depolarized haze of the nano-porous AAO film is correlated with its porosity and aspect ratio controlled by the pore size and etched depth of the AAO. Under TM-mode incidence, the simulated polarization ratio increases from 0.35 to 0.38, which correlates well with experimental results. In contrast, the experiment result slightly deviates from the theoretical prediction as the TE-mode field interacts more surface area than the TM-mode field does. Such a nano-porous AAO exhibits tunable depolarized haze via the control porosity and aspect ratio, which is particularly suitable to serve as the catalytic buffer for synthesizing the hydrophobic and hazed solar energy converters.

  20. A singlechip-computer-controlled conductivity meter based on conductance-frequency transformation

    NASA Astrophysics Data System (ADS)

    Chen, Wenxiang; Hong, Baocai

    2005-02-01

    A portable conductivity meter controlled by singlechip computer was designed. The instrument uses conductance-frequency transformation method to measure the conductivity of solution. The circuitry is simple and reliable. Another feature of the instrument is that the temperature compensation is realised by changing counting time of the timing counter. The theoretical based and the usage of temperature compensation are narrated.

  1. An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities.

    PubMed

    Chew, Xiongyeu; Zhou, Guangya; Yu, Hongbin; Chau, Fook Siong; Deng, Jie; Loke, Yee Chong; Tang, Xiaosong

    2010-10-11

    Control of photonic crystal resonances in conjunction with large spectral shifting is critical in achieving reconfigurable photonic crystal devices. We propose a simple approach to achieve nano-mechanical control of photonic crystal resonances within a compact integrated on-chip approach. Three different tip designs utilizing an in-plane nano-mechanical tuning approach are shown to achieve reversible and low-loss resonance control on a one-dimensional photonic crystal nanocavity. The proposed nano-mechanical approach driven by a sub-micron micro-electromechanical system integrated on low loss suspended feeding nanowire waveguide, achieved relatively large resonance spectral shifts of up to 18 nm at a driving voltage of 25 V. Such designs may potentially be used as tunable optical filters or switches.

  2. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    NASA Technical Reports Server (NTRS)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  3. Field Evaluation of Miles-Per-Gallon Meters

    DOT National Transportation Integrated Search

    1977-11-01

    One hundred forty fleet automobiles based in Los Angeles were used to determine the influence of miles-per-gallon meters on fuel economy. Seventy cars were instrumented with the meters, and 70 were used without meters for control purposes. Fuel use a...

  4. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or auxiliary lift devices) Forward for flaps up; rearward for flaps down. Trim tabs (or equivalent) Rotate to... and auxiliary controls: (1) Powerplant. Controls Motion and effect Power or thrust Forward to increase...

  5. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or auxiliary lift devices) Forward for flaps up; rearward for flaps down. Trim tabs (or equivalent) Rotate to... and auxiliary controls: (1) Powerplant. Controls Motion and effect Power or thrust Forward to increase...

  6. Magnetic dipole moment estimation and compensation for an accurate attitude control in nano-satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Sako, Nobutada; Nakasuka, Shinichi

    2011-06-01

    Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.

  7. Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator

    NASA Astrophysics Data System (ADS)

    Rehmatullah, Faizan

    In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.

  8. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    NASA Astrophysics Data System (ADS)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input

  9. Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions

    DTIC Science & Technology

    2014-10-09

    problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...linear systems with Brownian motion or a discrete time linear system with a white Gaussian noise and costs 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 stochastic optimal control, fractional Brownian motion , stochastic

  10. Embedded solution for a microwave moisture meter

    USDA-ARS?s Scientific Manuscript database

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter is based on the free-space transmission measurement technique and uses low-intensity microwaves to measure the attenuation and p...

  11. Redundancy, Self-Motion, and Motor Control

    PubMed Central

    Martin, V.; Scholz, J. P.; Schöner, G.

    2011-01-01

    Outside the laboratory, human movement typically involves redundant effector systems. How the nervous system selects among the task-equivalent solutions may provide insights into how movement is controlled. We propose a process model of movement generation that accounts for the kinematics of goal-directed pointing movements performed with a redundant arm. The key element is a neuronal dynamics that generates a virtual joint trajectory. This dynamics receives input from a neuronal timer that paces end-effector motion along its path. Within this dynamics, virtual joint velocity vectors that move the end effector are dynamically decoupled from velocity vectors that do not. Moreover, the sensed real joint configuration is coupled back into this neuronal dynamics, updating the virtual trajectory so that it yields to task-equivalent deviations from the dynamic movement plan. Experimental data from participants who perform in the same task setting as the model are compared in detail to the model predictions. We discover that joint velocities contain a substantial amount of self-motion that does not move the end effector. This is caused by the low impedance of muscle joint systems and by coupling among muscle joint systems due to multiarticulatory muscles. Back-coupling amplifies the induced control errors. We establish a link between the amount of self-motion and how curved the end-effector path is. We show that models in which an inverse dynamics cancels interaction torques predict too little self-motion and too straight end-effector paths. PMID:19718817

  12. Robust, Flexible Motion Control for the Mars Explorer Rovers

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Biesiadecki, Jeffrey

    2007-01-01

    The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.

  13. Venus: Atmospheric motion and structure from Mariner 10 pictures

    USGS Publications Warehouse

    Murray, B.C.; Belton, M.J.S.; Danielson, G. Edward; Davies, M.E.; Gault, D.; Hapke, B.; O'Leary, B.; Strom, R.G.; Suomi, V.; Trask, N.

    1974-01-01

    The Mariner 10 television cameras imaged the planet Venus in the visible and near ultraviolet for a period of 8 days at resolutions ranging from 100 meters to 130 kilometers. The general pattern of the atmospheric circulation in the upper tropospheric/lower stratospheric region is displayed in the pictures. Atmospheric flow is symmetrical between north and south hemispheres. The equatorial motions are zonal (east-west) at approximately 100 meters per second, consistent with the previously inferred 4-day retrograde rotation. Angular velocity increases with latitude. The subsolar region, and the region downwind from it, show evidence of large-scale convection that persists in spite of the main zonal motion. Dynamical interaction between the zonal motion and the relatively stationary region of convection is evidenced by bowlike waves.

  14. A disturbance observer-based adaptive control approach for flexure beam nano manipulators.

    PubMed

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-01-01

    This paper presents a systematic modeling and control methodology for a two-dimensional flexure beam-based servo stage supporting micro/nano manipulations. Compared with conventional mechatronic systems, such systems have major control challenges including cross-axis coupling, dynamical uncertainties, as well as input saturations, which may have adverse effects on system performance unless effectively eliminated. A novel disturbance observer-based adaptive backstepping-like control approach is developed for high precision servo manipulation purposes, which effectively accommodates model uncertainties and coupling dynamics. An auxiliary system is also introduced, on top of the proposed control scheme, to compensate the input saturations. The proposed control architecture is deployed on a customized-designed nano manipulating system featured with a flexure beam structure and voice coil actuators (VCA). Real time experiments on various manipulating tasks, such as trajectory/contour tracking, demonstrate precision errors of less than 1%. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Tip-Enhanced Nano-Spectroscopy, Imaging, and Control: From Single Molecules to van der Waals Materials

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck

    Photon-induced phenomena in molecules and other materials play a significant role in device applications as well as understanding their physical properties. While a range of device applications using organic and inorganic molecules and soft and hard materials have led striking developments in modern technologies, using bulk systems has reached the limit in their functions, performance, and regarding application range. Recently, low-dimensional systems have emerged as appealing resources for the advanced technologies based on their significantly improved functions and properties. Hence, understanding light-matter interactions at their natural length scale is of fundamental significance, in addition to the next generation device applications. This thesis demonstrates a range of new functions and behaviors of low-dimensional materials revealed and controlled by the advanced tip-enhanced near-field spectroscopy and imaging techniques exceeding the current instrumental limits. To understand the behaviors of zero-dimensional (0D) molecular systems in interacting environments, we explore new regimes in tip-enhanced Raman spectroscopy (TERS) and scanning near-field optical microscopy (SNOM), revealing the fundamental nature of single-molecule dynamics and nanoscale spatial heterogeneity of biomolecules on the cell membranes. To gain insight into intramolecular properties and dynamic processes of single molecules, we use TERS at cryogenic temperatures. From temperature-dependent line narrowing and splitting, we investigate and quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of single-molecule. We extend single-molecule spectroscopy study into in situ nano-biomolecular imaging of cancer cells by developing in-liquid SNOM. We use a new mechanical resonance control, achieving a high-Q force sensing of the

  16. Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring

    PubMed Central

    Khan, Hassan; Kottapalli, Ajay; Asadnia, Mohsen

    2018-01-01

    Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride) nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand. PMID:29389851

  17. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Yuecai; Hu Yaozhong; Song Jian, E-mail: jsong2@math.rutgers.edu

    2013-04-15

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need tomore » develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.« less

  18. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  19. Developing an area-wide system for coordinated ramp meter control.

    DOT National Transportation Integrated Search

    2008-12-01

    Ramp metering has been broadly accepted and deployed as an effective countermeasure : against both recurrent and non-recurrent congestion on freeways. However, many current ramp : metering algorithms tend to improve only freeway travels using local d...

  20. Effects of Motion Cues on the Training of Multi-Axis Manual Control Skills

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Mobertz, Xander R. I.

    2017-01-01

    The study described in this paper investigated the effects of two different hexapod motion configurations on the training and transfer of training of a simultaneous roll and pitch control task. Pilots were divided between two groups which trained either under a baseline hexapod motion condition, with motion typically provided by current training simulators, or an optimized hexapod motion condition, with increased fidelity of the motion cues most relevant for the task. All pilots transferred to the same full-motion condition, representing motion experienced in flight. A cybernetic approach was used that gave insights into the development of pilots use of visual and motion cues over the course of training and after transfer. Based on the current results, neither of the hexapod motion conditions can unambiguously be chosen as providing the best motion for training and transfer of training of the used multi-axis control task. However, the optimized hexapod motion condition did allow pilots to generate less visual lead, control with higher gains, and have better disturbance-rejection performance at the end of the training session compared to the baseline hexapod motion condition. Significant adaptations in control behavior still occurred in the transfer phase under the full-motion condition for both groups. Pilots behaved less linearly compared to previous single-axis control-task experiments; however, this did not result in smaller motion or learning effects. Motion and learning effects were more pronounced in pitch compared to roll. Finally, valuable lessons were learned that allow us to improve the adopted approach for future transfer-of-training studies.

  1. 40 CFR 1065.640 - Flow meter calibration calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Flow meter calibration calculations... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter calibration calculations. This section describes the calculations for calibrating various flow meters. After...

  2. Periodic motion planning and control for underactuated mechanical systems

    NASA Astrophysics Data System (ADS)

    Wang, Zeguo; Freidovich, Leonid B.; Zhang, Honghua

    2018-06-01

    We consider the problem of periodic motion planning and of designing stabilising feedback control laws for such motions in underactuated mechanical systems. A novel periodic motion planning method is proposed. Each state is parametrised by a truncated Fourier series. Then we use numerical optimisation to search for the parameters of the trigonometric polynomial exploiting the measure of discrepancy in satisfying the passive dynamics equations as a performance index. Thus an almost feasible periodic motion is found. Then a linear controller is designed and stability analysis is given to verify that solutions of the closed-loop system stay inside a tube around the planned approximately feasible periodic trajectory. Experimental results for a double rotary pendulum are shown, while numerical simulations are given for models of a spacecraft with liquid sloshing and of a chain of mass spring system.

  3. Adaptive Quantum Control of Charge Motion in Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Reitze, David

    1998-05-01

    Quantum control of electronic wavepacket motion and interactions using ultrafast lasers has moved from the conceptual stage to reality, in large part driven by advances in quantum control theory (R. J. Gordon and S. A. Rice, Ann. Rev. Phys. Chem. (1997), in press.) (M. Shapiro and P. Brumer, J. Chem. Soc. Faraday Trans. V93, 1263 (1997).) (D. Neuhauser and H. Rabitz, Acc. Chem. Res. V26, 496 (1993).) and experimental pulse shaping methods (A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science V247, 412 (1990).) (A. Efimov, C. Schaffer, and D. H. Reitze, J. Opt. Soc. Am VB12, 1968 (1995).). Here, we apply these methods to controlling charge motion in semiconductor heterostructures. Control of coherent charge dynamics in heterostructures enjoys an advantage in that spatial potential profiles can be adjusted almost arbitrarily. Thus, control of charge motion can be exerted by tailoring both the temporal and spatial interactions of the charges with the controlling optical and static fields. In this talk, we demonstrate an experimental feedback loop which adaptively shapes fs pulses in a quantum contol pump-probe experiment, apply it to the control of coherent wavepacket motion in DC-biased asymmetric double quantum well(ADQW) structures, and compare to theoretical predictions of quantum control in ADQWs (N. M. Beach, D. H. Reitze, and J. L. Krause, submitted to Opt. Exp.) (J. L. Krause, D. H. Reitze, G. D. Sanders, A. Kuznetsov, and C. J. Stanton, to appear in Phys. Rev. B).

  4. Singular Optimal Controls of Rocket Motion (Survey)

    NASA Astrophysics Data System (ADS)

    Kiforenko, B. N.

    2017-05-01

    Survey of modern state and discussion of problems of the perfection of methods of investigation of variational problems with a focus on mechanics of space flight are presented. The main attention is paid to the enhancement of the methods of solving of variational problems of rocket motion in the gravitational fields, including rocket motion in the atmosphere. These problems are directly connected with the permanently actual problem of the practical astronautics to increase the payload that is orbited by the carrier rockets in the circumplanetary orbits. An analysis of modern approaches to solving the problems of control of rockets and spacecraft motion on the trajectories with singular arcs that are optimal for the motion of the variable mass body in the medium with resistance is given. The presented results for some maneuvers can serve as an information source for decision making on designing promising rocket and space technology

  5. Optimization of motion control laws for tether crawler or elevator systems

    NASA Technical Reports Server (NTRS)

    Swenson, Frank R.; Von Tiesenhausen, Georg

    1988-01-01

    Based on the proposal of a motion control law by Lorenzini (1987), a method is developed for optimizing motion control laws for tether crawler or elevator systems in terms of the performance measures of travel time, the smoothness of acceleration and deceleration, and the maximum values of velocity and acceleration. The Lorenzini motion control law, based on powers of the hyperbolic tangent function, is modified by the addition of a constant-velocity section, and this modified function is then optimized by parameter selections to minimize the peak acceleration value for a selected travel time or to minimize travel time for the selected peak values of velocity and acceleration. It is shown that the addition of a constant-velocity segment permits further optimization of the motion control law performance.

  6. Scientific goals of Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Fujita, Sho; Gouda, Naoteru; Kobayashi, Yukiyasu; Hara, Takuji; Nishi, Ryoichi; Yoshioka, Satoshi; Hozumi, Shunsuke

    2013-02-01

    Nano-JASMINE is an ultrasmall Japanese satellite (with a weight of 35 kg), designed to carry out an astrometric mission. The target accuracy is 3 milliarcseconds (mas) for stars brighter than magnitude 7.5 at zw-band wavelengths of 0.6-1.0 μm. The observational strategy is the same as that of Gaia and Hipparcos. The time span of 20 years since the Hipparcos mission will enable us to update the proper motion data obtained at that time. With the help of these updated measurements, we expect that some stars will be resolved into multiple stars. In addition, taking advantage of the small primary mirror (with a diameter of 5 cm), we can measure bright stars which cannot be observed with Gaia because of saturation limits. The core data reduction for the Nano-JASMINE mission will use Gaia's Astrometric Global Iterative Solution (agis). A collaboration between the Gaia agis and Nano-JASMINE teams was initiated in 2007.

  7. Technical Study on Improvement of Endurance Capability of Limit Short-circuit Current of Charge Control SMART Meter

    NASA Astrophysics Data System (ADS)

    Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.

    2017-10-01

    Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.

  8. In-plane and out-of-plane motions of the human tympanic membrane

    PubMed Central

    Khaleghi, Morteza; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.

    2016-01-01

    Computer-controlled digital holographic techniques are developed and used to measure shape and four-dimensional nano-scale displacements of the surface of the tympanic membrane (TM) in cadaveric human ears in response to tonal sounds. The combination of these measurements (shape and sound-induced motions) allows the calculation of the out-of-plane (perpendicular to the surface) and in-plane (tangential) motion components at over 1 000 000 points on the TM surface with a high-degree of accuracy and sensitivity. A general conclusion is that the in-plane motion components are 10–20 dB smaller than the out-of-plane motions. These conditions are most often compromised with higher-frequency sound stimuli where the overall displacements are smaller, or the spatial density of holographic fringes is higher, both of which increase the uncertainty of the measurements. The results are consistent with the TM acting as a Kirchhoff–Love's thin shell dominated by out-of-plane motion with little in-plane motion, at least with stimulus frequencies up to 8 kHz. PMID:26827009

  9. Do motion controllers make action video games less sedentary? A randomized experiment.

    PubMed

    Lyons, Elizabeth J; Tate, Deborah F; Ward, Dianne S; Ribisl, Kurt M; Bowling, J Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg(-1) · hr(-1)) produced 0.10 kcal · kg(-1) · hr(-1) (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg(-1) · hr(-1), P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior.

  10. Do Motion Controllers Make Action Video Games Less Sedentary? A Randomized Experiment

    PubMed Central

    Lyons, Elizabeth J.; Tate, Deborah F.; Ward, Dianne S.; Ribisl, Kurt M.; Bowling, J. Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg−1 · hr−1) produced 0.10 kcal · kg−1 · hr−1 (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg−1 · hr−1, P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior. PMID:22028959

  11. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    NASA Astrophysics Data System (ADS)

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-06-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars.

  12. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    PubMed Central

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-01-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars. PMID:27353231

  13. The Digital Motion Control System for the Submillimeter Array Antennas

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  14. Metering Plan: Intelligent Operational Strategies Through Enhanced Metering Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Jason E.

    The Sustainability Program at Pacific Northwest National Laboratory (PNNL) has adopted a “triple-bottom-line” approach of environmental stewardship, social responsibility, and economic prosperity to its operations. Metering at PNNL works in support of all three, specifically to measure and inform building energy use and greenhouse gas emissions and minimize water use. The foundation for metering at PNNL is a core goal set, which consists of four objectives: providing accurate data without interruption, analyzing data while it is still new, providing actionable recommendations to operations management, and ensuring PNNL’s compliance with contract metering requirements. These core objectives guide the decisions that wemore » make during annual planning and as we operate throughout the year. This 2016 edition of the Metering Plan conveys the metering practices for and vision of the Sustainability Program. Changes in this plan from the 2015 edition include updated tables and an enhanced discussion on energy tracking systems used at PNNL. This plan also discusses updated benchmarking strategies using PNNL’s graphics and analytics tool, BuildingOS by Lucid Design Group. This plan presents our progress toward the metering goals shared by all federal agencies and highlights our successful completion of metering requirements. Currently, PNNL is fully compliant with the applicable legislative and Executive Order metering requirements. PNNL’s approach to the installation of new meters will be discussed. Perhaps most importantly, this plan details the analysis techniques utilized at PNNL that rely on the endless streams of data newly available as a result of increased meter deployment over the last several years. Previous Metering Plans have documented specific meter connection schemes as PNNL focused on deploying meters in a first step toward managing energy and water use. This plan serves not only to highlight PNNL’s successful completion of agency metering

  15. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  16. Sensing human hand motions for controlling dexterous robots

    NASA Technical Reports Server (NTRS)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  17. Controlling aliased dynamics in motion systems? An identification for sampled-data control approach

    NASA Astrophysics Data System (ADS)

    Oomen, Tom

    2014-07-01

    Sampled-data control systems occasionally exhibit aliased resonance phenomena within the control bandwidth. The aim of this paper is to investigate the aspect of these aliased dynamics with application to a high performance industrial nano-positioning machine. This necessitates a full sampled-data control design approach, since these aliased dynamics endanger both the at-sample performance and the intersample behaviour. The proposed framework comprises both system identification and sampled-data control. In particular, the sampled-data control objective necessitates models that encompass the intersample behaviour, i.e., ideally continuous time models. Application of the proposed approach on an industrial wafer stage system provides a thorough insight and new control design guidelines for controlling aliased dynamics.

  18. Experimental investigation of the tip based micro/nano machining

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Tian, Y.; Liu, X.; Wang, F.; Zhou, C.; Zhang, D.

    2017-12-01

    Based on the self-developed three dimensional micro/nano machining system, the effects of machining parameters and sample material on micro/nano machining are investigated. The micro/nano machining system is mainly composed of the probe system and micro/nano positioning stage. The former is applied to control the normal load and the latter is utilized to realize high precision motion in the xy plane. A sample examination method is firstly introduced to estimate whether the sample is placed horizontally. The machining parameters include scratching direction, speed, cycles, normal load and feed. According to the experimental results, the scratching depth is significantly affected by the normal load in all four defined scratching directions but is rarely influenced by the scratching speed. The increase of scratching cycle number can increase the scratching depth as well as smooth the groove wall. In addition, the scratching tests of silicon and copper attest that the harder material is easier to be removed. In the scratching with different feed amount, the machining results indicate that the machined depth increases as the feed reduces. Further, a cubic polynomial is used to fit the experimental results to predict the scratching depth. With the selected machining parameters of scratching direction d3/d4, scratching speed 5 μm/s and feed 0.06 μm, some more micro structures including stair, sinusoidal groove, Chinese character '田', 'TJU' and Chinese panda have been fabricated on the silicon substrate.

  19. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.

    PubMed

    Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel

    2016-03-22

    The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem.

  20. Comparison of Different Control Schemes for Strategic Departure Metering

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Shen, Ni; Saraf, Aditya; Bertino, Jason; Zelinski, Shannon

    2016-01-01

    Airports and their terminal airspaces are key choke points in the air transportation system causing major delays and adding to pollution. A solution aimed at mitigating these chokepoints integrates the scheduling of runway operations, flight release from the gates and ramp into the airport movement area, and merging with other traffic competing for downstream airspace points. Within this integrated concept, we present a simulation-based analysis of the departure metering process, which delays the release of flights into the airport movement area while balancing two competing objectives: (1) maintaining large enough queues at the airport resources to maximize throughput and (2) absorbing excess delays at the gates or in ramp areas to save on fuel consumption, emissions, noise, and passenger discomfort. Three metering strategies are compared which respectively attempt to control the number of flights that (1) left the gate but did not take off, (2) left the ramp but did not take off, and (3) spent their unimpeded transit time to the runway but did not take off. It was observed that under deterministic and demand uncertainty conditions, the first strategy performed better than the other two strategies in terms of maintaining the runway throughput while transferring a significant average delay of two minutes to the gate. On the other hand, under uncertainties of flight transit time and runway service rate, all the strategies struggled to delay flights at the gate without a significant impact on the runway throughput.

  1. Validation of the Leap Motion Controller using markered motion capture technology.

    PubMed

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond

    NASA Astrophysics Data System (ADS)

    Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.

    2015-10-01

    Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.

  3. Prediction based active ramp metering control strategy with mobility and safety assessment

    NASA Astrophysics Data System (ADS)

    Fang, Jie; Tu, Lili

    2018-04-01

    Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.

  4. Motion control of the rabbit ankle joint with a flat interface nerve electrode.

    PubMed

    Park, Hyun-Joo; Durand, Dominique M

    2015-12-01

    A flat interface nerve electrode (FINE) has been shown to improve fascicular and subfascicular selectivity. A recently developed novel control algorithm for FINE was applied to motion control of the rabbit ankle. A 14-contact FINE was placed on the rabbit sciatic nerve (n = 8), and ankle joint motion was controlled for sinusoidal trajectories and filtered random trajectories. To this end, a real-time controller was implemented with a multiple-channel current stimulus isolator. The performance test results showed good tracking performance of rabbit ankle joint motion for filtered random trajectories and sinusoidal trajectories (0.5 Hz and 1.0 Hz) with <10% average root-mean-square (RMS) tracking error, whereas the average range of ankle joint motion was between -20.0 ± 9.3° and 18.1 ± 8.8°. The proposed control algorithm enables the use of a multiple-contact nerve electrode for motion trajectory tracking control of musculoskeletal systems. © 2015 Wiley Periodicals, Inc.

  5. Motion cue effects on human pilot dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.

    1977-01-01

    Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.

  6. Real-time simulation of hand motion for prosthesis control

    PubMed Central

    Blana, Dimitra; Chadwick, Edward K.; van den Bogert, Antonie J.; Murray, Wendy M.

    2016-01-01

    Individuals with hand amputation suffer substantial loss of independence. Performance of sophisticated prostheses is limited by the ability to control them. To achieve natural and simultaneous control of all wrist and hand motions, we propose to use real-time biomechanical simulation to map between residual EMG and motions of the intact hand. Here we describe a musculoskeletal model of the hand using only extrinsic muscles to determine whether real-time performance is possible. Simulation is 1.3 times faster than real time, but the model is locally unstable. Methods are discussed to increase stability and make this approach suitable for prosthesis control. PMID:27868425

  7. Controlled crystallization and granulation of nano-scale β-Ni(OH) 2 cathode materials for high power Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    He, Xiangming; Li, Jianjun; Cheng, Hongwei; Jiang, Changyin; Wan, Chunrong

    A novel synthesis of controlled crystallization and granulation was attempted to prepare nano-scale β-Ni(OH) 2 cathode materials for high power Ni-MH batteries. Nano-scale β-Ni(OH) 2 and Co(OH) 2 with a diameter of 20 nm were prepared by controlled crystallization, mixed by ball milling, and granulated to form about 5 μm spherical grains by spray drying granulation. Both the addition of nano-scale Co(OH) 2 and granulation significantly enhanced electrochemical performance of nano-scale Ni(OH) 2. The XRD and TEM analysis shown that there were a large amount of defects among the crystal lattice of as-prepared nano-scale Ni(OH) 2, and the DTA-TG analysis shown that it had both lower decomposition temperature and higher decomposition reaction rate, indicating less thermal stability, as compared with conventional micro-scale Ni(OH) 2, and indicating that it had higher electrochemical performance. The granulated grains of nano-scale Ni(OH) 2 mixed with nano-scale Co(OH) 2 at Co/Ni = 1/20 presented the highest specific capacity reaching its theoretical value of 289 mAh g -1 at 1 C, and also exhibited much improved electrochemical performance at high discharge capacity rate up to 10 C. The granulated grains of nano-scale β-Ni(OH) 2 mixed with nano-scale Co(OH) 2 is a promising cathode active material for high power Ni-MH batteries.

  8. Integrating an embedded system in a microwave moisture meter

    USDA-ARS?s Scientific Manuscript database

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  9. Hummingbirds control hovering flight by stabilizing visual motion.

    PubMed

    Goller, Benjamin; Altshuler, Douglas L

    2014-12-23

    Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.

  10. Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system

    NASA Astrophysics Data System (ADS)

    Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min

    2017-08-01

    Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.

  11. Control strategies for planetary rover motion and manipulator control

    NASA Technical Reports Server (NTRS)

    Trautwein, W.

    1973-01-01

    An unusual insect-like vehicle designed for planetary surface exploration is made the occasion for a discussion of control concepts in path selection, hazard detection, obstacle negotiation, and soil sampling. A control scheme which actively articulates the pitching motion between a single-loop front module and a dual loop rear module leads to near optimal behavior in soft soil; at the same time the vehicle's front module acts as a reliable tactile forward probe with a detection range much longer than the stopping distance. Some optimal control strategies are discussed, and the photos of a working scale model are displayed.

  12. Inside NanoSail-D: A Tiny Satellite with Big Ideas

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Agasid, Elwood; Casas, Joseph; Adams, Charles; O'Brien, Sue; Laue, Greg; Kitts, Chris

    2011-01-01

    "Small But Mighty" certainly describes the NanoSail-D experiment and mission. Its unique goals and designs were simple, but the implications of this technology are far reaching. From a tiny 3U CubeSat, NanoSail-D deployed a 10 square meter solar sail. This was the first sail vehicle to orbit the earth and was only the second time a sail was unfurled in space. The NanoSail-D team included: two NASA centers, Marshall and Ames, the universities of Alabama in Huntsville and Santa Clara in California, the Air Force Research Laboratory and many contractors including NeXolve, Gray Research and several others. The collaborative nature was imperative to the success of this project. In addition, the Army Space and Missile Defense Command, the Von Braun Center for Science and Innovation and Dynetics Inc. jointly sponsored the NanoSail-D project. This paper presents in-depth insight into the NanoSail-D development. Its design was a combination of left over space hardware coupled with cutting edge technology. Since this NanoSail-D mission was different from the first, several modifications were necessary for the second NanoSail-D unit. Unforeseen problems arose during refurbishment of the second unit and the team had to overcome these obstacles. Simple interfaces, clear responsibilities and division of effort allowed the team members to work independently on the common goal. This endeavor formed working relationships lasting well beyond the end of this mission. NanoSail-D pushed the technology envelop with future applications for all classes of satellites. NanoSail-D is truly a small but mighty satellite, which may cast a very big shadow for years to come.

  13. Visual Features Involving Motion Seen from Airport Control Towers

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Liston, Dorion

    2010-01-01

    Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.

  14. Development of excavator training simulator using leap motion controller

    NASA Astrophysics Data System (ADS)

    Fahmi, F.; Nainggolan, F.; Andayani, U.; Siregar, B.

    2018-03-01

    Excavator is a heavy machinery that is used for many industries purposes. Controlling the excavator is not easy. Its operator has to be trained well in many skills to make sure it is safe, effective, and efficient while using the excavator. In this research, we proposed a virtual reality excavator simulator supported by a device called Leap Motion Controller that supports finger and hand motions as an input. This prototype will be developed than in the virtual reality environment to give a more real sensing to the user.

  15. Decentralized digital adaptive control of robot motion

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.

  16. A planar nano-positioner driven by shear piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Dong, W.; Li, H.; Du, Z.

    2016-08-01

    A planar nano-positioner driven by the shear piezoelectric actuators is proposed in this paper based on inertial sliding theory. The performance of the nano-positioner actuated by different driving signals is analyzed and discussed, e.g. the resolution and the average velocity which depend on the frequency, the amplitude and the wave form of the driving curves. Based on the proposed design, a prototype system of the nano-positioner is developed by using a capacitive sensor as the measurement device. The experiment results show that the proposed nano-positioner is capable of outputting two-dimensional motions within an area of 10 mm × 10 mm at a maximum speed of 0.25 mm/s. The corresponding resolution can be as small as 21 nm. The methodology outlined in this paper can be employed and extended to shear piezoelectric actuators involved in high precision positioning systems.

  17. Oil Motion Control by an Extra Pinning Structure in Electro-Fluidic Display.

    PubMed

    Dou, Yingying; Tang, Biao; Groenewold, Jan; Li, Fahong; Yue, Qiao; Zhou, Rui; Li, Hui; Shui, Lingling; Henzen, Alex; Zhou, Guofu

    2018-04-06

    Oil motion control is the key for the optical performance of electro-fluidic displays (EFD). In this paper, we introduced an extra pinning structure (EPS) into the EFD pixel to control the oil motion inside for the first time. The pinning structure canbe fabricated together with the pixel wall by a one-step lithography process. The effect of the relative location of the EPS in pixels on the oil motion was studied by a series of optoelectronic measurements. EPS showed good control of oil rupture position. The properly located EPS effectively guided the oil contraction direction, significantly accelerated switching on process, and suppressed oil overflow, without declining in aperture ratio. An asymmetrically designed EPS off the diagonal is recommended. This study provides a novel and facile way for oil motion control within an EFD pixel in both direction and timescale.

  18. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    PubMed

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Neural network-based motion control of an underactuated wheeled inverted pendulum model.

    PubMed

    Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong

    2014-11-01

    In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.

  20. Physiochemical properties of experimental nano-hybrid MTA

    PubMed Central

    Akhavan Zanjani, V; Tabari, K; Sheikh-Al-Eslamian, SM; Abrandabadi, AN

    2017-01-01

    Introduction: Development of new pulp capping agents has paved the way towards the preservation of pulp vitality, which is an important goal in restorative dentistry. This study sought to assess the calcium ion release, pH and setting of mineral trioxide aggregate (MTA) Angelus, an experimental formulation of nano-hybrid MTA containing nano-SiO2, nano-Al2O3 and nano-TiO2 and MTA Angelus plus nano-oxides. Methods: In this experimental study, five specimens from each material were placed in polypropylene tubes and immersed in a flask containing deionized distilled water. The quantity of calcium ions released into the solution from each material was measured at 15 minutes, one hour, and 24 hours by using atomic absorption spectroscopy. The pH of the solutions was measured by using a pH meter at the respective time points. The setting time was also assessed by using a Gilmore needle. Data were analyzed by using repeated measure ANOVA. Results: The quantity of released calcium ions was not significantly different among the groups (P=0.060). All materials were alkaline and the pH at 24 hours was significantly higher than the other two time points in all groups (P<0.001). The experimental group had the shortest and the MTA Angelus had the longest setting time. All materials were alkaline and capable of releasing calcium. Addition of nanoparticles to MTA Angelus significantly decreased the setting time but had no effect on the release of calcium ions or pH. Abbreviations: MTA = mineral trioxide aggregate, VPT = vital pulp therapy PMID:29075348

  1. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration.

    PubMed

    Martínez-Calderon, M; Manso-Silván, M; Rodríguez, A; Gómez-Aranzadi, M; García-Ruiz, J P; Olaizola, S M; Martín-Palma, R J

    2016-11-02

    The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials.

  2. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration

    PubMed Central

    Martínez-Calderon, M.; Manso-Silván, M.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J. P.; Olaizola, S. M.; Martín-Palma, R. J.

    2016-01-01

    The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials. PMID:27805063

  3. Integrating an Embedded System within a Microwave Moisture Meter

    USDA-ARS?s Scientific Manuscript database

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  4. Human motion planning based on recursive dynamics and optimal control techniques

    NASA Technical Reports Server (NTRS)

    Lo, Janzen; Huang, Gang; Metaxas, Dimitris

    2002-01-01

    This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.

  5. Controlled gas-liquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro; Hatakeyama, Rikizo

    2018-01-01

    Plasmas generated in contact with a liquid have been recognized to be a novel reactive field in nano-bio-carbon conjugate creation because several new chemical reactions have been yielded at the gas-liquid interface, which were induced by the physical dynamics of non-equilibrium plasmas. One is the ion irradiation to a liquid, which caused the spatially selective dissociation of the liquid and the generation of additive reducing and oxidizing agents, resulting in the spatially controlled synthesis of nanostructures. The other is the electron irradiation to a liquid, which directly enhanced the reduction action at the plasma-liquid interface, resulting in temporally controlled nanomaterial synthesis. Using this novel reaction field, gold nanoparticles with controlled interparticle distance were synthesized using carbon nanotubes as a template. Furthermore, nanoparticle-biomolecule conjugates and nanocarbon-biomolecule conjugates were successfully synthesized by an aqueous-solution contact plasma and an electrolyte plasma, respectively, which were rapid and low-damage processes suitable for nano-bio-carbon conjugate materials.

  6. Flow chemistry to control the synthesis of nano and microparticles for biomedical applications.

    PubMed

    Hassan, Natalia; Oyarzun-Ampuero, Felipe; Lara, Pablo; Guerrero, Simón; Cabuil, Valérie; Abou-Hassan, Ali; Kogan, Marcelo J

    2014-03-01

    In this article we review the flow chemistry methodologies for the controlled synthesis of different kind of nano and microparticles for biomedical applications. Injection mechanism has emerged as new alternative for the synthesis of nanoparticles due to this strategy allows achieving superior levels of control of self-assemblies, leading to higher-ordered structures and rapid chemical reactions. Self-assembly events are strongly dependent on factors such as the local concentration of reagents, the mixing rates, and the shear forces, which can be finely tuned, as an example, in a microfluidic device. Injection methods have also proved to be optimal to elaborate microsystems comprising polymer solutions. Concretely, extrusion based methods can provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. We provide an update of synthesis of nano and microparticles such as core/shell, Janus, nanocrystals, liposomes, and biopolymeric microgels through flow chemistry, its potential bioapplications and future challenges in this field are discussed.

  7. Current-controlled unidirectional edge-meron motion

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-11-01

    In order to address many of the challenges and bottlenecks currently experienced by traditional charge-based technologies, various alternatives are being actively explored to provide potential solutions of device miniaturization and scaling in the post-Moore's-law era. Amongst these alternatives, spintronic physics and devices have recently attracted rapidly increasing interest by exploiting the additional degree of electrons-spin. For example, magnetic domain-wall racetrack-memory and logic devices have been realized via manipulating domain-wall motion. As compared to domain-wall-based devices, magnetic skyrmions have the advantages of ultrasmall size (typically 5-100 nm in diameter), facile current-driven motion, topological stability, and peculiar emergent electrodynamics, promising for next-generation electronics applications in the post-Moore's-law regime. Here, a magnetic meron device, which behaves similarly to a PN-junction diode, is demonstrated for the first time, by tailoring the current-controlled unidirectional motion of edge-merons (i.e., fractional skyrmions) in a nanotrack with interfacial Dzyaloshinskii-Moriya interaction. The working principles of the meron device, theoretically predicted from the Thiele equation for topological magnetic objects, are further verified using micromagnetic simulations. The present study has revealed the topology-independent transport property of different magnetic objects and is expected to open the vista toward integrated composite circuitry (with unified data storage and processing) based on a single magnetic chip, as the meron device can be used, either as a building block to develop complex logic components or as a signal controller to interconnect skyrmion, domain-wall, and even spin-wave devices.

  8. Resolved motion rate and resolved acceleration servo-control of wheeled mobile robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, P.F.; Neuman, C.P.; Carnegie-Mellon Univ., Pittsburgh, PA

    1989-01-01

    Accurate motion control of wheeled mobile robots (WMRs) is required for their application to autonomous, semi-autonomous and teleoperated tasks. The similarities between WMRs and stationary manipulators suggest that current, successful, model-based manipulator control algorithms may be applied to WMRs. Special characteristics of WMRs including higher-pairs, closed-chains, friction and unactuated and unsensed joints require innovative modeling methodologies. The WMR modeling challenge has been recently overcome, thus enabling the application of manipulator control algorithms to WMRs. This realization lays the foundation for significant technology transfer from manipulator control to WMR control. We apply two Cartesian-space manipulator control algorithms: resolved motion rate (kinematics-based)more » and resolved acceleration (dynamics-based) control to WMR servo-control. We evaluate simulation studies of two exemplary WMRs: Uranus (a three degree-of-freedom WMR constructed at Carnegie Mellon University), and Bicsun-Bicas (a two degree-of-freedom WMR being constructed at Sandia National Laboratories) under the control of these algorithms. Although resolved motion rate servo-control is adequate for the control of Uranus, resolved acceleration servo-control is required for the control of the mechanically simpler Bicsun-Bicas because it exhibits more dynamic coupling and nonlinearities. Successful accurate motion control of these WMRs in simulation is driving current experimental research studies. 18 refs., 7 figs., 5 tabs.« less

  9. Behavioral methods of alleviating motion sickness: effectiveness of controlled breathing and a music audiotape.

    PubMed

    Yen Pik Sang, Fleur D; Billar, Jessica P; Golding, John F; Gresty, Michael A

    2003-01-01

    Behavioral countermeasures for motion sickness would be advantageous because of the side effects of antiemetic drugs, but few alternative treatments are available. The objective of this study was to compare the effectiveness of controlling breathing and listening to a music audiotape designed to reduce motion sickness symptoms, on increasing tolerance to motion-induced nausea. Twenty-four healthy subjects were exposed to nauseogenic Coriolis stimulation on a rotating turntable under three conditions: whilst focusing on controlling breathing; listening to a music audiotape; or without intervention (control). The three conditions were performed by each subject according to a replicated factorial design at 1-week intervals at the same time of day. Ratings of motion sickness were obtained every 30 seconds. Once a level of mild nausea was reached subjects commenced controlling breathing or listened to the music audiotape. Motion was stopped after the onset of moderate nausea. Mean (+/- SD) motion exposure time in minutes tolerated before the onset of moderate nausea was significantly longer (p <.01) for controlling breathing (10.7 +/- 5.6 min) and longer (p <.01) for music (10.4 +/- 5.6 min) compared with control (9.2 +/- 5.9 min). Both controlling breathing and the music audiotape provided significant protection against motion sickness and with similar effectiveness. These nonpharmacologic countermeasures are only half as effective as standard doses of anti-motion sickness drugs, such as oral scopolamine; however, they are easy to implement and free of side effects.

  10. An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.

    PubMed

    Rañó, Iñaki

    2012-07-01

    Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.

  11. Research on NC motion controller based on SOPC technology

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  12. Compensated count-rate circuit for radiation survey meter

    DOEpatents

    Todd, Richard A.

    1981-01-01

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  13. Compensated count-rate circuit for radiation survey meter

    DOEpatents

    Todd, R.A.

    1980-05-12

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  14. Weather Impact on Airport Arrival Meter Fix Throughput

    NASA Technical Reports Server (NTRS)

    Wang, Yao

    2017-01-01

    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  15. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Yuan, Z. H.; Wu, J.

    2006-10-01

    At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next

  16. Analysis of the accuracy and robustness of the leap motion controller.

    PubMed

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-05-14

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  17. 69. (Credit JTL) View beneath marble meter bench showing hydraulic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. (Credit JTL) View beneath marble meter bench showing hydraulic lines leading to water valve hydraulic control cylinders from control handles in bench; strings and pulleys activate meters. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  18. Measuring the effectiveness of ramp metering strategies on I-12.

    DOT National Transportation Integrated Search

    2013-10-01

    Ramp metering is one of the successful traffic control strategies in the area of active traffic and demand management. This study evaluates the : effectiveness of a fixed time ramp metering control on the day to day operation of traffic over two segm...

  19. Barriers to Patient Use of Control Solution for Glucose Meters: Surveys of Patients, Pharmacists, and Providers in a Metropolitan Area.

    PubMed

    Johnson, Jeremy L; O'Neal, Katherine S; Pack, Christopher C; Carter, Sandra M

    2017-05-01

    An important factor in controlling diabetes is self-monitoring of blood glucose. Manufacturers of glucose meters recommend routine use of control solution to ensure accuracy. Previous studies have demonstrated that glucose meters vary in accuracy and that patients are not using control solution as recommended. The purpose of this study is to identify potential barriers to control solution use from multiple perspectives including patient, pharmacist, and provider. This study was a prospective, observational survey design. First, 25 randomly selected chain and independent pharmacies in the Tulsa metropolitan area were audited for control solution accessibility. These pharmacies were then used to survey pharmacists, via telephone, regarding control solution inventory and perception of importance of use. Next, providers were electronically surveyed on their routine practice recommendations, while 60 patients with diabetes were randomly selected for telephone survey on use and perceptions of control solution. Twenty-five pharmacies were audited and 23 pharmacists, 60 patients, and 29 providers were surveyed. Only 39% of pharmacies stated they supplied control solution, however, only 1 pharmacy visibly stocked it. The only patient factor that appeared to have an impact on control solution usage was having type 1 versus type 2 diabetes (38% vs 15%). Providers are aware of what control solution is (62%), but only half felt it should be routine practice with 44% of those never recommending it. This study raises awareness for the need to educate patients, providers, and pharmacists about use of control solution to ensure glucose meter accuracy.

  20. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    PubMed Central

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678

  1. H∞ controller design for a 4-meter direct-drive azimuth axis

    NASA Astrophysics Data System (ADS)

    Chen, Li-Yan; Zhang, Zhen-Chao; Song, Xiao-Li; Wang, Da-Xing

    2015-11-01

    To pursue a higher imaging resolution for exploring more details in the information conveyed by the Universe, the next generation of optical telescopes based on a direct drive widely employ the extremely large aperture structure, which also introduces more disturbances and uncertain factors to the control system. Facing this new challenge, the PID control method in main-axis control systems of traditional astronomical telescopes cannot suffice for the requirement of the tracking precision and disturbance sensitivity in angular velocity. To overcome this shortcoming, we establish a dynamic model and propose an H∞ controller for a 4-meter azimuth direct drive control system that consists of a revolving platform (azimuth axis), a three-phase torque motor, a motor drive, an encoder, a data acquisition card and a small computers. Simulations are carried out to analyze the model and guide the real experiments. Experimental results show that the proposed H∞ controller reduces the tracking error by a maximum of 80.69% (average 57.8%) and the disturbance sensitivity by a maximum of 82.3% (average 50.96%) compared with the traditional tuned PI controller; furthermore, the order of the model describing the proposed controller can be reduced to three, thus its feasibility in real systems is guaranteed.

  2. Analysis of achievable disturbance attenuation in a precision magnetically-suspended motion control system

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander V.; Holmes, Michael L.; Behrouzjou, Roxana; Trumper, David L.

    1994-01-01

    The results of the analysis of the achievable disturbance attenuation to get an Angstrom motion control resolution and macroscopic travel in a precision magnetically-suspended motion control system are presented in this paper. Noise sources in the transducers, electronics, and mechanical vibrations are used to develop the control design.

  3. Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling.

    PubMed

    Ko, Sunho; Nakazawa, Atsushi; Kurose, Yusuke; Harada, Kanako; Mitsuishi, Mamoru; Sora, Shigeo; Shono, Naoyuki; Nakatomi, Hirofumi; Saito, Nobuhito; Morita, Akio

    2017-05-01

    OBJECTIVE Advanced and intelligent robotic control is necessary for neurosurgical robots, which require great accuracy and precision. In this article, the authors propose methods for dynamically and automatically controlling the motion-scaling ratio of a master-slave neurosurgical robotic system to reduce the task completion time. METHODS Three dynamic motion-scaling modes were proposed and compared with the conventional fixed motion-scaling mode. These 3 modes were defined as follows: 1) the distance between a target point and the tip of the slave manipulator, 2) the distance between the tips of the slave manipulators, and 3) the velocity of the master manipulator. Five test subjects, 2 of whom were neurosurgeons, sutured 0.3-mm artificial blood vessels using the MM-3 neurosurgical robot in each mode. RESULTS The task time, total path length, and helpfulness score were evaluated. Although no statistically significant differences were observed, the mode using the distance between the tips of the slave manipulators improves the suturing performance. CONCLUSIONS Dynamic motion scaling has great potential for the intelligent and accurate control of neurosurgical robots.

  4. Enhancement of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  5. Flow Meter

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Hedland Flow Meters manufactures a complete line of flow meters used in industrial operations to monitor the flow of oil, water or other liquids, air and other compressed gases, including caustics or corrosive liquids/gases. The company produces more than 1,000 types of flow meters featuring rugged construction, simplicity of installation and the ability to operate in any position.

  6. What Is Being Done to Control Motion Sickness?

    NASA Technical Reports Server (NTRS)

    Hall, Y. D.

    1985-01-01

    AFT (Autogenic Feedback Training) involves practicing a series of mental exercises to speed up or slow down the control of autonomic activity. This produces a reduced tendency for autonomic activity levels to diverge from baseline (at rest) under stressful motion-sickness-inducing conditions. Subjects conditions. Subjects engaged in applying AFT exercises are required to closely monitor their own bodily sensations during motion-sickness-eliciting tests. These tests include the Coriolis Sickness Susceptibility Index (CSSI), which consists of sitting a subject into a rotating chair that moves at various speeds while a visual background turns at differing speeds and directions, and the Vertical Acceleration Rotation Device (VARD) test, which involves the placing of a subject in a drum that moves in an upward and downward motion until he or she is sick, while simultaneously monitoring the subject's vital signs. These tests provide investigators with evidence of slight changes in autonomic activities such as increases in heart rate, skin temperature, and sweat. All of these symptoms occur in subjects that experience bodily weakness or discomfort with the onset of motion sickness.

  7. Bifurcation Analysis of an Electrostatically Actuated Nano-Beam Based on Modified Couple Stress Theory

    NASA Astrophysics Data System (ADS)

    Rezaei Kivi, Araz; Azizi, Saber; Norouzi, Peyman

    2017-12-01

    In this paper, the nonlinear size-dependent static and dynamic behavior of an electrostatically actuated nano-beam is investigated. A fully clamped nano-beam is considered for the modeling of the deformable electrode of the NEMS. The governing differential equation of the motion is derived using Hamiltonian principle based on couple stress theory; a non-classical theory for considering length scale effects. The nonlinear partial differential equation of the motion is discretized to a nonlinear Duffing type ODE's using Galerkin method. Static and dynamic pull-in instabilities obtained by both classical theory and MCST are compared. At the second stage of analysis, shooting technique is utilized to obtain the frequency response curve, and to capture the periodic solutions of the motion; the stability of the periodic solutions are gained by Floquet theory. The nonlinear dynamic behavior of the deformable electrode due to the AC harmonic accompanied with size dependency is investigated.

  8. Design and Simulation of a PID Controller for Motion Control Systems

    NASA Astrophysics Data System (ADS)

    Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab

    2018-04-01

    Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.

  9. Evaluation of a fuzzy logic ramp metering algorithm : a comparative study among three ramp metering algorithms used in the greater Seattle area

    DOT National Transportation Integrated Search

    2000-02-01

    A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. Two multiple-ramp study sites were evaluted by comparing the fuzzy logic controller (FLC) to the other two ramp metering algorithms in operation at those ...

  10. Five training sessions improves 3000 meter running performance.

    PubMed

    Riiser, A; Ripe, S; Aadland, E

    2015-12-01

    The primary aim of the present study was to evaluate the effect of two weeks of endurance training on 3000-meter running performance. Secondary we wanted to assess the relationship between baseline running performance and change in running performance over the intervention period. We assigned 36 military recruits to a training group (N.=28) and a control group. The training group was randomly allocated to one of three sub-groups: 1) a 3000 meter group (test race); 2) a 4x4-minutes high-intensity interval group; 3) a continuous training group. The training group exercised five times over a two-week period. The training group improved its 3000 meter running performance with 50 seconds (6%) compared to the control group (P=0.003). Moreover, all sub-groups improved their performance by 37 to 73 seconds (4-8%) compared to the control group (P<0.037). There was a significant relationship between pretest performance and improvement from pre- to post-test (ρ=-0.65, P<0.001) in the training group. We conclude that five endurance training sessions improved 3000 meter running performance and the slowest runners achieved the greatest improvement in running performance.

  11. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Raw exhaust flow meter. 1065.230... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.230 Raw exhaust flow meter. (a) Application. You may use measured raw exhaust flow, as follows: (1) Use the actual...

  12. System Design for Nano-Network Communications

    NASA Astrophysics Data System (ADS)

    ShahMohammadian, Hoda

    The potential applications of nanotechnology in a wide range of areas necessities nano-networking research. Nano-networking is a new type of networking which has emerged by applying nanotechnology to communication theory. Therefore, this dissertation presents a framework for physical layer communications in a nano-network and addresses some of the pressing unsolved challenges in designing a molecular communication system. The contribution of this dissertation is proposing well-justified models for signal propagation, noise sources, optimum receiver design and synchronization in molecular communication channels. The design of any communication system is primarily based on the signal propagation channel and noise models. Using the Brownian motion and advection molecular statistics, separate signal propagation and noise models are presented for diffusion-based and flow-based molecular communication channels. It is shown that the corrupting noise of molecular channels is uncorrelated and non-stationary with a signal dependent magnitude. The next key component of any communication system is the reception and detection process. This dissertation provides a detailed analysis of the effect of the ligand-receptor binding mechanism on the received signal, and develops the first optimal receiver design for molecular communications. The bit error rate performance of the proposed receiver is evaluated and the impact of medium motion on the receiver performance is investigated. Another important feature of any communication system is synchronization. In this dissertation, the first blind synchronization algorithm is presented for the molecular communication channels. The proposed algorithm uses a non-decision directed maximum likelihood criterion for estimating the channel delay. The Cramer-Rao lower bound is also derived and the performance of the proposed synchronization algorithm is evaluated by investigating its mean square error.

  13. Transformer and Meter Tester

    NASA Technical Reports Server (NTRS)

    Stoms, R. M.

    1984-01-01

    Numerically-controlled 5-axis machine tool uses transformer and meter to determine and indicate whether tool is in home position, but lacks built-in test mode to check them. Tester makes possible test, and repair of components at machine rather then replace them when operation seems suspect.

  14. Reduction of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  15. Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants.

    PubMed

    Tan, Wenjuan; Du, Wenchao; Barrios, Ana C; Armendariz, Raul; Zuverza-Mena, Nubia; Ji, Zhaoxia; Chang, Chong Hyun; Zink, Jeffrey I; Hernandez-Viezcas, Jose A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2017-03-01

    Little is known about the effects of surface coating on the interaction of engineered nanoparticles (ENPs) with plants. In this study, basil (Ocimum basilicum) was cultivated for 65 days in soil amended with unmodified, hydrophobic (coated with aluminum oxide and dimethicone), and hydrophilic (coated with aluminum oxide and glycerol) titanium dioxide nanoparticles (nano-TiO 2 ) at 125, 250, 500, and 750 mg nano-TiO 2 kg -1 soil. ICP-OES/MS, SPAD meter, and UV/Vis spectrometry were used to determine Ti and essential elements in tissues, relative chlorophyll content, carbohydrates, and antioxidant response, respectively. Compared with control, hydrophobic and hydrophilic nano-TiO 2 significantly reduced seed germination by 41% and 59%, respectively, while unmodified and hydrophobic nano-TiO 2 significantly decreased shoot biomass by 31% and 37%, respectively (p ≤ 0.05). Roots exposed to hydrophobic particles at 750 mg kg -1 had 87% and 40% more Ti than the pristine and hydrophilic nano-TiO 2 ; however, no differences were found in shoots. The three types of particles affected the homeostasis of essential elements: at 500 mg kg - 1 , unmodified particles increased Cu (104%) and Fe (90%); hydrophilic increased Fe (90%); while hydrophobic increased Mn (339%) but reduced Ca (71%), Cu (58%), and P (40%). However, only hydrophobic particles significantly reduced root elongation by 53%. Unmodified, hydrophobic, and hydrophilic particles significantly reduced total sugar by 39%, 38%, and 66%, respectively, compared with control. Moreover, unmodified particles significantly decreased reducing sugar (34%), while hydrophobic particles significantly reduced starch (35%). Although the three particles affected basil plants, coated particles impacted the most its nutritional quality, since they altered more essential elements, starch, and reducing sugars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Frequency response of portable PEF meters.

    PubMed

    Hankinson, J L; Das, M K

    1995-08-01

    Peak expiratory flow (PEF) is a dynamic parameter and therefore requires a measuring device with a high-frequency response. This study evaluated the frequency-response characteristics of eight commercially available PEF meters, using simulated forced-expiratory maneuvers with a computer-controlled mechanical pump. Three different PEF levels were used (200, 400, and 600 L/min) at six levels of harmonic-frequency content similar to those observed in human subjects. For waveforms with higher frequency content (at the high end or above the physiologic range), the Assess, Vitalograph, Pocket Peak, and Spir-O-Flow PEF meters all overread PEF (greater than 15% difference from target values) at all three PEF levels. These results suggest that the frequency response of PEF meters is an important consideration in the selection of such meters and should be included in device requirements. The current practice of using various levels of American Thoracic Society (ATS) waveform 24 with its low-frequency content may not adequately evaluate the frequency characteristics of PEF meters. An upper range (5% of the fundamental frequency) of 12 Hz, within the range observed in normal subjects, appears to be more practical than an upper limit of 20 Hz.

  17. Stress Drop and Depth Controls on Ground Motion From Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Rubinstein, J. L.; Terra, F. M.; Hanks, T. C.; Herrmann, R. B.

    2015-12-01

    Induced earthquakes in the central United States pose a risk to local populations, but there is not yet agreement on how to portray their hazard. A large source of uncertainty in the hazard arises from ground motion prediction, which depends on the magnitude and distance of the causative earthquake. However, ground motion models for induced earthquakes may be very different than models previously developed for either the eastern or western United States. A key question is whether ground motions from induced earthquakes are similar to those from natural earthquakes, yet there is little history of natural events in the same region with which to compare the induced ground motions. To address these problems, we explore how earthquake source properties, such as stress drop or depth, affect the recorded ground motion of induced earthquakes. Typically, due to stress drop increasing with depth, ground motion prediction equations model shallower events to have smaller ground motions, when considering the same absolute hypocentral distance to the station. Induced earthquakes tend to occur at shallower depths, with respect to natural eastern US earthquakes, and may also exhibit lower stress drops, which begs the question of how these two parameters interact to control ground motion. Can the ground motions of induced earthquakes simply be understood by scaling our known source-ground motion relations to account for the shallow depth or potentially smaller stress drops of these induced earthquakes, or is there an inherently different mechanism in play for these induced earthquakes? We study peak ground-motion velocity (PGV) and acceleration (PGA) from induced earthquakes in Oklahoma and Kansas, recorded by USGS networks at source-station distances of less than 20 km, in order to model the source effects. We compare these records to those in both the NGA-West2 database (primarily from California) as well as NGA-East, which covers the central and eastern United States and Canada

  18. Catalytic micromotor generating self-propelled regular motion through random fluctuation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa

    2013-07-01

    Most of the current studies on nano/microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.

  19. Molecular origin of contact line stick-slip motion during droplet evaporation

    PubMed Central

    Wang, FengChao; Wu, HengAn

    2015-01-01

    Understanding and controlling the motion of the contact line is of critical importance for surface science studies as well as many industrial engineering applications. In this work, we elucidate the molecular origin of contact line stick-slip motion during the evaporation of liquid droplets on flexible nano-pillared surfaces using molecular dynamics simulations. We demonstrate that the evaporation-induced stick-slip motion of the contact line is a consequence of competition between pinning and depinning forces. Furthermore, the tangential force exerted by the pillared substrate on the contact line was observed to have a sawtooth-like oscillation. Our analysis also establishes that variations in the pinning force are accomplished through the self-adaptation of solid-liquid intermolecular distances, especially for liquid molecules sitting directly on top of the solid pillar. Consistent with our theoretical analysis, molecular dynamics simulations also show that the maximum pinning force is quantitatively related to both solid-liquid adhesion strength and liquid-vapor surface tension. These observations provide a fundamental understanding of contact line stick-slip motion on pillared substrates and also give insight into the microscopic interpretations of contact angle hysteresis, wetting transitions and dynamic spreading. PMID:26628084

  20. Method for neural network control of motion using real-time environmental feedback

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1997-01-01

    A method of motion control for robotics and other automatically controlled machinery using a neural network controller with real-time environmental feedback. The method is illustrated with a two-finger robotic hand having proximity sensors and force sensors that provide environmental feedback signals. The neural network controller is taught to control the robotic hand through training sets using back- propagation methods. The training sets are created by recording the control signals and the feedback signal as the robotic hand or a simulation of the robotic hand is moved through a representative grasping motion. The data recorded is divided into discrete increments of time and the feedback data is shifted out of phase with the control signal data so that the feedback signal data lag one time increment behind the control signal data. The modified data is presented to the neural network controller as a training set. The time lag introduced into the data allows the neural network controller to account for the temporal component of the robotic motion. Thus trained, the neural network controlled robotic hand is able to grasp a wide variety of different objects by generalizing from the training sets.

  1. Motion control system of MAX IV Laboratory soft x-ray beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se

    2016-07-27

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to runmore » the scans.« less

  2. Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL.

    PubMed

    Kawamoto, Hiroaki; Kadone, Hideki; Sakurai, Takeru; Sankai, Yoshiyuki

    2015-01-01

    As one of several characteristics of hemiplegic patients after stroke, compensatory gait caused by affected limb is often seen. The purpose of this research is to apply a symmetry-based controller of a wearable type lower limb robot, Hybrid Assistive Limb (HAL) to hemiplegic patients with compensatory gait, and to investigate improvement of gait symmetry. The controller is designed respectively for swing phase and support phase according to characteristics of hemiplegic gait pattern. The controller during swing phase stores the motion of the unaffected limb and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. Moreover, the controller during support phase provides motion to extend hip and knee joints to support wearer's body. Clinical tests were conducted in order to assess the modification of gait symmetry. Our case study involved participation of one chronic stroke patient who performs abnormally-compensatory gait for both of the affected and unaffected limbs. As a result, the patient's gait symmetry was improved by providing motion support during the swing phase on the affected side and motion constraint during the support phase on the unaffected side. The study showed promising basis for the effectiveness of the controller for the future clinical study.

  3. Magnetic high throughput screening system for the development of nano-sized molecularly imprinted polymers for controlled delivery of curcumin.

    PubMed

    Piletska, Elena V; Abd, Bashar H; Krakowiak, Agata S; Parmar, Anitha; Pink, Demi L; Wall, Katie S; Wharton, Luke; Moczko, Ewa; Whitcombe, Michael J; Karim, Kal; Piletsky, Sergey A

    2015-05-07

    Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.

  4. NanoStringNormCNV: pre-processing of NanoString CNV data.

    PubMed

    Sendorek, Dorota H; Lalonde, Emilie; Yao, Cindy Q; Sabelnykova, Veronica Y; Bristow, Robert G; Boutros, Paul C

    2018-03-15

    The NanoString System is a well-established technology for measuring RNA and DNA abundance. Although it can estimate copy number variation, relatively few tools support analysis of these data. To address this gap, we created NanoStringNormCNV, an R package for pre-processing and copy number variant calling from NanoString data. This package implements algorithms for pre-processing, quality-control, normalization and copy number variation detection. A series of reporting and data visualization methods support exploratory analyses. To demonstrate its utility, we apply it to a new dataset of 96 genes profiled on 41 prostate tumour and 24 matched normal samples. NanoStringNormCNV is implemented in R and is freely available at http://labs.oicr.on.ca/boutros-lab/software/nanostringnormcnv. paul.boutros@oicr.on.ca. Supplementary data are available at Bioinformatics online.

  5. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  6. Using Nonlinearity and Contact Lines to Control Fluid Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Perlin, M.; Schultz, W. W.; Bian, X.; Agarwal, M.

    2002-01-01

    Slug flows in a tube are affected by surface tension and contact lines, especially under microgravity. Numerical analyses and experiments are conducted of slug flows in small-diameter tubes with horizontal, inclined and vertical orientations. A PID-controlled, meter-long platform capable of following specified motions is used. An improved understanding of the contact line boundary condition for steady and unsteady contact-line motion is expected. Lastly, a direct fluid-handling method using nonlinear oscillatory motion of a tube is presented.

  7. Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters

    NASA Technical Reports Server (NTRS)

    Monje, O. A.; Bugbee, B.

    1992-01-01

    Two types of nondestructive chlorophyll meters were compared with a standard, destructive chlorophyll measurement technique. The nondestructive chlorophyll meters were 1) a custom built, single-wavelength meter, and 2) the recently introduced, dual-wavelengh, chlorophyll meter from Minolta (model SPAD-502). Data from both meters were closely correlated with destructive measurements of chlorophyll (r2 = 0.90 and 0.93; respectively) for leaves with chlorophyll concentrations ranging from 100 to 600 mg m-2, but both meters consistently overestimated chlorophyll outside this range. Although the dual-wavelength meter was slightly more accurate than the single-wavelength meter (higher r2), the light-scattering properties of leaf cells and the nonhomogeneous distribution of chlorophyll in leaves appear to limit the ability of all meters to estimate in vivo chlorophyll concentration.

  8. An intelligent control scheme for precise tip-motion control in atomic force microscopy.

    PubMed

    Wang, Yanyan; Hu, Xiaodong; Xu, Linyan

    2016-01-01

    The paper proposes a new intelligent control method to precisely control the tip motion of the atomic force microscopy (AFM). The tip moves up and down at a high rate along the z direction during scanning, requiring the utilization of a rapid feedback controller. The standard proportional-integral (PI) feedback controller is commonly used in commercial AFMs to enable topography measurements. The controller's response performance is determined by the set of the proportional (P) parameter and the integral (I) parameter. However, the two parameters cannot be automatically altered simultaneously according to the scanning speed and the surface topography during continuors scanning, leading to an inaccurate measurement. Thus a new intelligent controller combining the fuzzy controller and the PI controller is put forward in the paper. The new controller automatically selects the most appropriate PI parameters to achieve a fast response rate on basis of the tracking errors. In the experimental setup, the new controller is realized with a digital signal process (DSP) system, implemented in a conventional AFM system. Experiments are carried out by comparing the new method with the standard PI controller. The results demonstrate that the new method is more robust and effective for the precise tip motion control, corresponding to the achievement of a highly qualified image by shortening the response time of the controller. © Wiley Periodicals, Inc.

  9. [Blood-sugar self control. A means for the diabetic of controlling his metabolic management. Quality control of a battery-run pocket size reflectometer (glucose-meter)].

    PubMed

    Leidinger, F; Jörgens, V; Chantelau, E; Berchtold, P; Berger, M

    1980-07-26

    Home blood glucose monitoring by diabetic patients has recently been advocated as an effective means to improve metabolic control. The Glucocheck apparatus, a pocket-size battery-driven reflectance-meter (in Germany commercially available under the name Glucose-meter), has been evaluated for accuracy and practicability. In 450 blood glucose measurements, the variance between the values obtained using the Glucocheck apparatus and routine clinical laboratory procedures was +/- 11.7%. Especially in the low range of blood glucose concentrations, the Glucocheck method was very reliable. The quantitative precision of the Glucocheck method depends, however, quite considerably on the ability of the patient to use the apparatus correctly. In order to profit from Glucocheck in clinical practice, particular efforts to educate the patients in its use are necessary.

  10. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  11. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  12. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  13. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  14. Microstructures and fatigue life of SnAgCu solder joints bearing Nano-Al particles in QFP devices

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Fan, Xi-ying; Guo, Yong-huan; He, Cheng-wen

    2014-05-01

    Microstructures and fatigue life of SnAgCu and SnAgCu bearing nano-Al particles in QFP (Quad flat package) devices were investigated, respectively. Results show that the addition of nano-Al particles into SnAgCu solder can refine the microstructures of matrix microstructure. Moreover, the nano-Al particles present in the solder matrix, act as obstacles which can create a back stress, resisting the motion of dislocations. In QFP device, it is found that the addition of nano-Al particles can increase the fatigue life by 32% compared with the SnAgCu solder joints during thermal cycling loading.

  15. Coordinating robot motion, sensing, and control in plans. LDRD project final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, P.G.; Brown, R.G.; Watterberg, P.A.

    1997-08-01

    The goal of this project was to develop a framework for robotic planning and execution that provides a continuum of adaptability with respect to model incompleteness, model error, and sensing error. For example, dividing robot motion into gross-motion planning, fine-motion planning, and sensor-augmented control had yielded productive research and solutions to individual problems. Unfortunately, these techniques could only be combined by hand with ad hoc methods and were restricted to systems where all kinematics are completely modeled in planning. The original intent was to develop methods for understanding and autonomously synthesizing plans that coordinate motion, sensing, and control. The projectmore » considered this problem from several perspectives. Results included (1) theoretical methods to combine and extend gross-motion and fine-motion planning; (2) preliminary work in flexible-object manipulation and an implementable algorithm for planning shortest paths through obstacles for the free-end of an anchored cable; (3) development and implementation of a fast swept-body distance algorithm; and (4) integration of Sandia`s C-Space Toolkit geometry engine and SANDROS motion planer and improvements, which yielded a system practical for everyday motion planning, with path-segment planning at interactive speeds. Results (3) and (4) have either led to follow-on work or are being used in current projects, and they believe that (2) will eventually be also.« less

  16. Motion Controlled Gait Enhancing Mobile Shoe for Rehabilitation

    PubMed Central

    Handzic, Ismet; Vasudevan, Erin V.; Reed, Kyle B.

    2011-01-01

    Walking on a split-belt treadmill, which has two belts that can be run at different speeds, has been shown to improve walking patterns post-stroke. However, these improvements are only temporarily retained once individuals transition to walking over ground. We hypothesize that longer-lasting effects would be observed if the training occurred during natural walking over ground, as opposed to on a treadmill. In order to study such long-term effects, we have developed a mobile and portable device which can simulate the same gait altering movements experienced on a split-belt treadmill. The new motion controlled gait enhancing mobile shoe improves upon the previous version’s drawbacks. This version of the GEMS has motion that is continuous, smooth, and regulated with on-board electronics. A vital component of this new design is the Archimedean spiral wheel shape that redirects the wearer’s downward force into a horizontal backward motion. The design is passive and does not utilize any motors. Its motion is regulated only by a small magnetic particle brake. Further experimentation is needed to evaluate the long-term after-effects. PMID:22275620

  17. Discuss the testing problems of ultraviolet irradiance meters

    NASA Astrophysics Data System (ADS)

    Ye, Jun'an; Lin, Fangsheng

    2014-09-01

    Ultraviolet irradiance meters are widely used in many areas such as medical treatment, epidemic prevention, energy conservation and environment protection, computers, manufacture, electronics, ageing of material and photo-electric effect, for testing ultraviolet irradiance intensity. So the accuracy of value directly affects the sterile control in hospital, treatment, the prevention level of CDC and the control accuracy of curing and aging in manufacturing industry etc. Because the display of ultraviolet irradiance meters is easy to change, in order to ensure the accuracy, it needs to be recalibrated after being used period of time. By the comparison with the standard ultraviolet irradiance meters, which are traceable to national benchmarks, we can acquire the correction factor to ensure that the instruments working under accurate status and giving the accurate measured data. This leads to an important question: what kind of testing device is more accurate and reliable? This article introduces the testing method and problems of the current testing device for ultraviolet irradiance meters. In order to solve these problems, we have developed a new three-dimensional automatic testing device. We introduce structure and working principle of this system and compare the advantages and disadvantages of two devices. In addition, we analyses the errors in the testing of ultraviolet irradiance meters.

  18. Controlling the motion of multiple objects on a Chladni plate

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville

    2016-09-01

    The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts.

  19. Energy efficient motion control of the electric bus on route

    NASA Astrophysics Data System (ADS)

    Kotiev, G. O.; Butarovich, D. O.; Kositsyn, B. B.

    2018-02-01

    At present, the urgent problem is the reduction of energy costs of urban motor transport. The article proposes a method of solving this problem by developing an energy-efficient law governing the movement of an electric bus along a city route. To solve this problem, an algorithm is developed based on the dynamic programming method. The proposed method allows you to take into account the constraints imposed on the phase coordinates, control action, as well as on the time of the route. In the course of solving the problem, the model of rectilinear motion of an electric bus on a horizontal reference surface is considered, taking into account the assumptions that allow it to be adapted for the implementation of the method. For the formation of a control action in the equations of motion dynamics, an algorithm for changing the traction / braking torque on the wheels of an electric bus is considered, depending on the magnitude of the control parameter and the speed of motion. An optimal phase trajectory was obtained on a selected section of the road for the prototype of an electric bus. The article presents the comparison of simulation results obtained with the optimal energy efficient control law with the results obtained by a test driver. The comparison proved feasibility of the energy efficient control law for the automobile city electric transport.

  20. Microcomputer based controller for the Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1989-01-01

    Flow control of the Langley 0.3-meter Transonic Cryogenic Tunnel (TCT) is a multivariable nonlinear control problem. Globally stable control laws were generated to hold tunnel conditions in the presence of geometrical disturbances in the test section and precisely control the tunnel states for small and large set point changes. The control laws are mechanized as four inner control loops for tunnel pressure, temperature, fan speed, and liquid nitrogen supply pressure, and two outer loops for Mach number and Reynolds number. These integrated control laws have been mechanized on a 16-bit microcomputer working on DOS. This document details the model of the 0.3-m TCT, control laws, microcomputer realization, and its performance. The tunnel closed loop responses to small and large set point changes were presented. The controller incorporates safe thermal management of the tunnel cooldown based on thermal restrictions. The controller was shown to provide control of temperature to + or - 0.2K, pressure to + or - 0.07 psia, and Mach number to + or - 0.002 of a given set point during aerodynamic data acquisition in the presence of intrusive geometrical changes like flexwall movement, angle-of-attack changes, and drag rake traverse. The controller also provides a new feature of Reynolds number control. The controller provides a safe, reliable, and economical control of the 0.3-m TCT.

  1. Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence

    NASA Astrophysics Data System (ADS)

    Yang, Liusai; Li, Guangshe; Zhao, Minglei; Zheng, Jing; Guan, Xiangfeng; Li, Liping

    2012-06-01

    Chemically tailoring microstructures for an optimum red luminescence is a subject at the forefront of many disciplines, which still remains a challenge due to a poor knowledge about the roles of defects in structures. In this work, GdVO4 :Eu3+ nano/microstructures of different morphologies, including tomato-like, cookie-circle-like, and ellipsoidal-like nanoparticles, and microspheroids were synthesized via a simple hydrothermal route using trisodium citrate as a capping agent. During the growth processes, the types of vanadyl ions were adjusted by varying pH value to control the morphologies and nano/microstructures with the help of trisodium citrate. The possible mechanisms for the growth processes into diverse morphologies are presented. Further, a systematic study on defect characteristics pertinent to these diverse morphologies has been explored to achieve an optimum red luminescence. The ability is clearly shown to generate different nano/microstructures of diverse morphologies and varied defect concentrations, which provides a great opportunity for morphological control in tailoring the red luminescence property for many technological applications.

  2. Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence.

    PubMed

    Yang, Liusai; Li, Guangshe; Zhao, Minglei; Zheng, Jing; Guan, Xiangfeng; Li, Liping

    2012-06-22

    Chemically tailoring microstructures for an optimum red luminescence is a subject at the forefront of many disciplines, which still remains a challenge due to a poor knowledge about the roles of defects in structures. In this work, GdVO(4) :Eu(3+) nano/microstructures of different morphologies, including tomato-like, cookie-circle-like, and ellipsoidal-like nanoparticles, and microspheroids were synthesized via a simple hydrothermal route using trisodium citrate as a capping agent. During the growth processes, the types of vanadyl ions were adjusted by varying pH value to control the morphologies and nano/microstructures with the help of trisodium citrate. The possible mechanisms for the growth processes into diverse morphologies are presented. Further, a systematic study on defect characteristics pertinent to these diverse morphologies has been explored to achieve an optimum red luminescence. The ability is clearly shown to generate different nano/microstructures of diverse morphologies and varied defect concentrations, which provides a great opportunity for morphological control in tailoring the red luminescence property for many technological applications.

  3. The 4-meter lunar engineering telescope

    NASA Technical Reports Server (NTRS)

    Peacock, Keith; Giannini, Judith A.; Kilgus, Charles C.; Bely, Pierre Y.; May, B. Scott; Cooper, Shannon A.; Schlimm, Gerard H.; Sounder, Charles; Ormond, Karen; Cheek, Eric

    1991-01-01

    The 16-meter diffraction limited lunar telescope incorporates a primary mirror with 312 one-meter segments; 3 nanometer active optics surface control with laser metrology and hexapod positioners; a space frame structure with one-millimeter stability; and a hexapod mount for pointing. The design data needed to limit risk in this development can be obtained by building a smaller engineering telescope on the moon with all of the features of the 16-meter design. This paper presents a 4.33-meter engineering telescope concept developed by the Summer 1990 Student Program of the NASA/JHU Space Grant Consortium Lunar Telescope Project. The primary mirror, made up of 18 one-meter hexagonal segments, is sized to provide interesting science as well as engineering data. The optics are configured as a Ritchey-Chretien with a coude relay to the focal plane beneath the surface. The optical path is continuously monitored with 3-nanometer precision interferometrically. An active optics processor and piezoelectric actuators operate to maintain the end-to-end optical configuration established by wave front sensing using a guide star. The mirror segments, consisting of a one-centimeter thick faceplate on 30-cm deep ribs, maintain the surface figure to a few nanometers under lunar gravity and thermal environment.

  4. On Motion Planning and Control of Multi-Link Lightweight Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Cetinkunt, Sabri

    1987-01-01

    A general gross and fine motion planning and control strategy is needed for lightweight robotic manipulator applications such as painting, welding, material handling, surface finishing, and spacecraft servicing. The control problem of lightweight manipulators is to perform fast, accurate, and robust motions despite the payload variations, structural flexibility, and other environmental disturbances. Performance of the rigid manipulator model based computed torque and decoupled joint control methods are determined and simulated for the counterpart flexible manipulators. A counterpart flexible manipulator is defined as a manipulator which has structural flexibility, in addition to having the same inertial, geometric, and actuation properties of a given rigid manipulator. An adaptive model following control (AMFC) algorithm is developed to improve the performance in speed, accuracy, and robustness. It is found that the AMFC improves the speed performance by a factor of two over the conventional non-adaptive control methods for given accuracy requirements while proving to be more robust with respect to payload variations. Yet there are clear limitations on the performance of AMFC alone as well, which are imposed by the arm flexibility. In the search to further improve speed performance while providing a desired accuracy and robustness, a combined control strategy is developed. Furthermore, the problem of switching from one control structure to another during the motion and implementation aspects of combined control are discussed.

  5. 40 CFR 1065.640 - Flow meter calibration calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter...: Table 2 of § 1065.640—C fCFV versus β and γ for CFV Flow Meters C fCFV β γ exh =1.385 γ dexh = γ air = 1...

  6. 40 CFR 1065.640 - Flow meter calibration calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter... Flow Meters C fCFV b g exh =1.385 g dexh = g air = 1.399 0.000 0.6822 0.6846 0.400 0.6857 0.6881 0.500...

  7. 40 CFR 1065.640 - Flow meter calibration calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter...: Table 2 of § 1065.640—C fCFV versus β and γ for CFV Flow Meters C fCFV β γ exh =1.385 γ dexh = γ air = 1...

  8. 40 CFR 1065.640 - Flow meter calibration calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter... Flow Meters C fCFV β γ exh =1.385 γ dexh = γ air = 1.399 0.000 0.6822 0.6846 0.400 0.6857 0.6881 0.500...

  9. Stepping-Motion Motor-Control Subsystem For Testing Bearings

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1992-01-01

    Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).

  10. On the Motions of an Oscillating System Under the Influence of Flip-Flop Controls

    NASA Technical Reports Server (NTRS)

    Fluegge-Lotz, I.; Klotter, K.

    1949-01-01

    So-called flip-flop controls (also called "on-off-course controls") are frequently preferred to continuous controls because of their simple construction. Thus they are used also for the steering control of airplanes. Such a body possesses-even if one thinks, for instance, only of the symmetric longitudinal motion - three degrees of freedom so that a study of its motions under the influence of an intermittent control is at least lengthy. Thus, it is suggested that an investigation of the basic effect of such a control first be made on a system with one degree of freedom. Furthermore, we limit ourselves in the resent report to the investigation of an "ideal" control where the control surface immediately obeys the command given by the "steering control function". Thus the oscillation properties of the control surface and the defects in linkage, sensing element, and mixing device are, at first, neglected. As long as the deviations from the "ideal" control may be neglected in practice, also the motion of the control surface takes place at the heat of the motion of the principal system. The aim of our investigation is to obtain a survey of the influence of the system and control coefficients on the damping behavior which is to be attained.

  11. Differences in kinematic control of ankle joint motions in people with chronic ankle instability.

    PubMed

    Kipp, Kristof; Palmieri-Smith, Riann M

    2013-06-01

    People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Measuring the effectiveness of ramp metering strategies on I-12 : [tech summary].

    DOT National Transportation Integrated Search

    2013-10-01

    In recent years, more emphasis has been placed on Active Traffi c Management (ATM) strategies such as speed harmonization, managed lanes, and : ramp metering. Ramp metering is one of the successful active traffi c control strategies, controlling the ...

  13. A Digital Motion Control System for Large Telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.

    2001-05-01

    We have designed and programmed a digital motion control system for large telescopes, in particular, the 6-meter antennas of the Submillimeter Array on Mauna Kea. The system consists of a single robust, high-reliability microcontroller board which implements a two-axis velocity servo while monitoring and responding to critical safety parameters. Excellent tracking performance has been achieved with this system (0.3 arcsecond RMS at sidereal rate). The 24x24 centimeter four-layer printed circuit board contains a multitude of hardware devices: 40 digital inputs (for limit switches and fault indicators), 32 digital outputs (to enable/disable motor amplifiers and brakes), a quad 22-bit ADC (to read the motor tachometers), four 16-bit DACs (that provide torque signals to the motor amplifiers), a 32-LED status panel, a serial port to the LynxOS PowerPC antenna computer (RS422/460kbps), a serial port to the Palm Vx handpaddle (RS232/115kbps), and serial links to the low-resolution absolute encoders on the azimuth and elevation axes. Each section of the board employs independent ground planes and power supplies, with optical isolation on all I/O channels. The processor is an Intel 80C196KC 16-bit microcontroller running at 20MHz on an 8-bit bus. This processor executes an interrupt-driven, scheduler-based software system written in C and assembled into an EPROM with user-accessible variables stored in NVSRAM. Under normal operation, velocity update requests arrive at 100Hz from the position-loop servo process running independently on the antenna computer. A variety of telescope safety checks are performed at 279Hz including routine servicing of a 6 millisecond watchdog timer. Additional ADCs onboard the microcontroller monitor the winding temperature and current in the brushless three-phase drive motors. The PID servo gains can be dynamically changed in software. Calibration factors and software filters can be applied to the tachometer readings prior to the application of

  14. Chemical energy powered nano/micro/macromotors and the environment.

    PubMed

    Moo, James Guo Sheng; Pumera, Martin

    2015-01-02

    The rise of miniaturized artificial self-powered devices, demonstrating autonomous motion, has brought in new considerations from the environmental perspective. This review addresses the interplay between these nano/micro/macromotors and the environment, recent advances, and their applications in pollution management. Such self-propelled devices are able to actuate chemical energy into mechanical motion in situ, adding another powerful dimension towards solving environmental problems. Use of synthetic nano/micro/macromotors has demonstrated potential in environmental remediation, both in pollutant removal and contaminant degradation, owing to motion-induced mixing. At the same time, the chemical environment exerts influence on the locomotion of the motors. These sensitized self-powered devices demonstrate capabilities for being deployed as sensors and their chemotactic behaviors show efficacy to act as first responders towards a chemical leakage. Thus, the notion of a self-propelling entity also entails further investigation into its inherent toxicity and possible implications as a pollutant. Future challenges and outlook of the use of these miniaturized devices are discussed, with specific regard to the fields of environmental remediation and monitoring, as we move towards their wider acceptance. We believe that these tiny machines will stand up to the task as solutions for environmental sustainability in the 21st century. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Research and development of a control system for multi axis cooperative motion based on PMAC

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu

    2017-10-01

    Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.

  16. Is there a suitable point-of-care glucose meter for tight glycemic control? Evaluation of one home-use and four hospital-use meters in an intensive care unit.

    PubMed

    Gijzen, Karlijn; Moolenaar, David L J; Weusten, Jos J A M; Pluim, Hendrik J; Demir, Ayse Y

    2012-11-01

    Implementation of tight glycemic control (TGC) and avoidance of hypoglycemia in intensive care unit (ICU) patients require frequent analysis of blood glucose. This can be achieved by accurate point-of-care (POC) hospital-use glucose meters. In this study one home-use and four different hospital-use POC glucose meters were evaluated in critically ill ICU patients. All patients (n = 80) requiring TGC were included in this study. For each patient three to six glucose measurements (n = 390) were performed. Blood glucose was determined by four hospital-use POC glucose meters, Roche Accu-Check Inform II System, HemoCue Glu201DM, Nova StatStrip, Abbott Precision Xceed Pro, and one home-use POC glucose meter, Menarini GlucoCard Memory PC. The criteria described in ISO 15197, Dutch TNO quality guideline and in NACB/ADA-2011 were applied in the comparisons. According to the ISO 15197, the percentages of the measured values that fulfilled the criterion were 99.5% by Roche, 95.1% by HemoCue, 91.0% by Nova, 96.6% by Abbott, and 63.3% by Menarini. According to the TNO quality guideline these percentages were 96.1% , 91.0% , 81.8% , 94.2% , and 47.7% , respectively. Application of the NACB/ADA guideline resulted in percentages of 95.6%, 89.2%, 77.9%, 93.4%, and 45.4%, respectively. When ISO 15197 was applied, Roche, HemoCue and Abbott fulfilled the criterion in this patient population, whereas Nova and Menarini did not. However, when TNO quality guideline and NACB/ADA 2011 guideline were applied only Roche fulfilled the criteria.

  17. Synthesis of a controller for stabilizing the motion of a rigid body about a fixed point

    NASA Astrophysics Data System (ADS)

    Zabolotnov, Yu. M.; Lobanov, A. A.

    2017-05-01

    A method for the approximate design of an optimal controller for stabilizing the motion of a rigid body about a fixed point is considered. It is assumed that rigid body motion is nearly the motion in the classical Lagrange case. The method is based on the common use of the Bellman dynamic programming principle and the averagingmethod. The latter is used to solve theHamilton-Jacobi-Bellman equation approximately, which permits synthesizing the controller. The proposed method for controller design can be used in many problems close to the problem of motion of the Lagrange top (the motion of a rigid body in the atmosphere, the motion of a rigid body fastened to a cable in deployment of the orbital cable system, etc.).

  18. Motion sickness: Can it be controlled

    NASA Technical Reports Server (NTRS)

    Carnes, David

    1988-01-01

    NASA is one of the few research centers concerned with motion sickness. Since the physiology of man has been developed in the one-gravity field Earth, the changes experienced by man in space are unique, and often result in symptoms that resemble motion sickness on Earth. NASA is concerned with motion sickness because it is very uncomfortable for the astronauts. Another concern of NASA is the possibility of a motion sickness astronaut regurgitating while he or she is sealed in an airtight space suit. This could be fatal. Motivated by these reasons, NASA spent thousands of dollars in research and development for a drug or technique for combating motion sickness. Several different treatments were developed for this disorder. Three of the most effective ways of combatting motion sickness are discussed.

  19. The Las Vegas Valley Seismic Response Project: Ground Motions in Las Vegas Valley from Nuclear Explosions at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A; Tkalcic, H; McCallen, D

    2005-03-18

    Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recordedmore » at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites

  20. Robust independent modal space control of a coupled nano-positioning piezo-stage

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Yang, Fufeng; Rui, Xiaoting

    2018-06-01

    In order to accurately control a coupled 3-DOF nano-positioning piezo-stage, this paper designs a hybrid controller. In this controller, a hysteresis observer based on a Bouc-Wen model is established to compensate the hysteresis nonlinearity of the piezoelectric actuator first. Compared to hysteresis compensations using Preisach model and Prandt-Ishlinskii model, the compensation method using the hysteresis observer is computationally lighter. Then, based on the proposed dynamics model, by constructing the modal filter, a robust H∞ independent modal space controller is designed and utilized to decouple the piezo-stage and deal with the unmodeled dynamics, disturbance, and hysteresis compensation error. The effectiveness of the proposed controller is demonstrated experimentally. The experimental results show that the proposed controller can significantly achieve the high-precision positioning.

  1. Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins

    PubMed Central

    Arvola, René M.

    2017-01-01

    ABSTRACT Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control. PMID:28318367

  2. Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins.

    PubMed

    Arvola, René M; Weidmann, Chase A; Tanaka Hall, Traci M; Goldstrohm, Aaron C

    2017-11-02

    Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control.

  3. Fiber-optic extrinsic Fabry-Perot vibration-isolated interferometer for use in absolute gravity meters.

    PubMed

    Canuteson, E L; Zumberge, M

    1996-07-01

    In an absolute gravity meter, a laser interferometer measures the position of a test mass that is falling ina vacuum. The calculated value of gravity is the average acceleration of the mass during a set ofdrops. Since systematic accelerations of the optical system will bias the measured value of gravity,various interferometer geometries have been implemented in the past to isolate the optical system fromground motion. We have developed and tested a low-finesse fiber-optic extrinsic Fabry-Perotinterferometer that is fixed to the mass of a critically damped seismometer in which the effects ofsystematic ground motion and acoustic vibrations are reduced.

  4. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Toscano, W. B.

    2000-01-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p < 0.00003) or 50 mg (p < 0.00001) of promethazine. The control and promethazine groups did not differ. AFTE subjects reported fewer or no symptoms at higher rotational velocities than subjects in the control or promethazine groups. The primary physiological effect of promethazine was an inhibition of skin conductance level. The AFTE group showed significantly less heart rate and skin conductance variability during motion sickness tests

  5. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms.

    PubMed

    Cowings, P S; Toscano, W B

    2000-10-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p < 0.00003) or 50 mg (p < 0.00001) of promethazine. The control and promethazine groups did not differ. AFTE subjects reported fewer or no symptoms at higher rotational velocities than subjects in the control or promethazine groups. The primary physiological effect of promethazine was an inhibition of skin conductance level. The AFTE group showed significantly less heart rate and skin conductance variability during motion sickness tests

  6. Local vertical motions and kinetic temperature from AE-C as evidence for aurora-induced gravity waves

    NASA Technical Reports Server (NTRS)

    Spencer, N. W.; Theis, R. F.; Wharton, L. E.; Carignan, G. R.

    1976-01-01

    In situ measurements of local vertical neutral particle motions have been made using the Neutral Atmosphere Temperature Instrument (NATE) on Atmosphere Explorer-C from observations of the direction of flow of neutral particles into the antechamber of the sensor (mass spectrometer). Values ranging from a few to more than 80 meters per second have been observed. The data show vertical motions greater than a few meters per second to be present most of the time, the magnitude being a function of many factors including magnetic activity, location, and magnetic storm history. In a specific case, it is concluded that the observed vertical motions and kinetic temperature are evidence of a travelling disturbance originating as a gravity wave in the auroral zone.

  7. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    PubMed

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  8. Experimental study of the quasi 1d motion of a ``robot bacterium'' within a tube

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Jiao, Yusheng; Li, Shutong; Ding, Yang; Xu, Xinliang; Complex Fluids Team

    2017-11-01

    Understanding how solid boundary influences the motion of a micro-swimmer can be quite important. Here we experimentally study the problem with a system of centi-meter size ``robot bacterium'' immersed in the solvent silicon oil. Equipped with build-in battery and motor, the robot mimics a free swimmer and the overall Reynolds number of the system is kept very small as we use silicon oil with very high viscosity. The motion of centi-meter size ``robot bacterium'' within cylindrical tube is experimentally studied in detail. Our results show that robot bacteria with different shapes respond very different to the solid boundary. For certain shapes the swimmers actually swim much faster within a tube, when compared to their motions without any confinement, in good agreement with our numerical evaluations of the hydrodynamics of the system.

  9. Steps Towards the Integration of Conflict Resolution with Metering and Scheduling

    NASA Technical Reports Server (NTRS)

    McNally, B. David; Edwards, Thomas (Technical Monitor)

    1998-01-01

    NASA Ames Research Center is developing decision support tool technology for air traffic controllers to improve the efficiency and capacity of National Airspace System. The goal is to provide technology, tools and procedures that result in the highest possible level of user preferred trajectories whenever possible with safe and efficient traffic management when necessary. The work is being conducted under the NASA Advanced Air Transportation Technology Program in cooperation with the FAA through the Inter-Agency Integrated Product Team. The objective is to develop technology and procedures that lead towards a seamless integration of conflict resolution with metering and scheduling for arrival aircraft and en route aircraft that are under metering restrictions. A requirement is that the integration incorporate user preferred trajectories. The ultimate goal is the implementation and validation of the Descent Advisor (DA) concept which provides clearance advisories to a sector controller that simultaneously meet metering constraints, are conflict free, incorporate a user preferred (e.g., minimum fuel) descent profile, and generally require no further corrective clearance as the aircraft transitions from en route cruise into the TRACON. The DA concept may also be applied to en route aircraft under metering constraints, e.g., miles-in-trail. To achieve the DA concept a stepwise development and field evaluation is anticipated. This paper addresses the initial steps towards implementation of the DA. The Traffic Management Advisor (TMA) computes arrival time sequence and required delay information for display to the sector controller during periods when arrivals must be metered due to landing rate restrictions at the airport. The Initial Conflict Probe (ICP) compares trajectory predictions for all aircraft and alerts the controller when any two aircraft are predicted to violate separation standards (5 mi. and 2000 ft. in en route airspace). ICP also includes a trial

  10. Dance and Music in “Gangnam Style”: How Dance Observation Affects Meter Perception

    PubMed Central

    Lee, Kyung Myun; Barrett, Karen Chan; Kim, Yeonhwa; Lim, Yeoeun; Lee, Kyogu

    2015-01-01

    Dance and music often co-occur as evidenced when viewing choreographed dances or singers moving while performing. This study investigated how the viewing of dance motions shapes sound perception. Previous research has shown that dance reflects the temporal structure of its accompanying music, communicating musical meter (i.e. a hierarchical organization of beats) via coordinated movement patterns that indicate where strong and weak beats occur. Experiments here investigated the effects of dance cues on meter perception, hypothesizing that dance could embody the musical meter, thereby shaping participant reaction times (RTs) to sound targets occurring at different metrical positions.In experiment 1, participants viewed a video with dance choreography indicating 4/4 meter (dance condition) or a series of color changes repeated in sequences of four to indicate 4/4 meter (picture condition). A sound track accompanied these videos and participants reacted to timbre targets at different metrical positions. Participants had the slowest RT’s at the strongest beats in the dance condition only. In experiment 2, participants viewed the choreography of the horse-riding dance from Psy’s “Gangnam Style” in order to examine how a familiar dance might affect meter perception. Moreover, participants in this experiment were divided into a group with experience dancing this choreography and a group without experience. Results again showed slower RTs to stronger metrical positions and the group with experience demonstrated a more refined perception of metrical hierarchy. Results likely stem from the temporally selective division of attention between auditory and visual domains. This study has implications for understanding: 1) the impact of splitting attention among different sensory modalities, and 2) the impact of embodiment, on perception of musical meter. Viewing dance may interfere with sound processing, particularly at critical metrical positions, but embodied

  11. Comparison of a few recording current meters in San Francisco Bay, CA

    USGS Publications Warehouse

    Cheng, R.T.

    1978-01-01

    A team of research scientists in the U.S. Geological Survey uses San Francisco Bay, California, as an outdoor laboratory to study complicated interactions of physical, chemical, and biological processes which take place in an estuarine environment. A current meter comparison study was conceived because of the need to select a suitable current meter to meet field requirements for current measurements in the Bay. The study took place in south San Francisco Bay, California, in the spring of 1977. An instrument tower which was designed to support instruments free from the conventional mooring line motions was constructed and emplaced in south San Francisco Bay. During a period of two months, four types of recording current meters have been used in the tests. The four types were: (1) Aanderaa, (2) tethered shroud-impeller, (3) drag-inclinometer, and (4) electromagnetic current meters. With the exception of the electromagnetic current meter, one of each type was mounted on the instrument tower, and one of each type was deployed on moorings near the instrument tower. In addition, a wind anemometer and a recording tide gauge were also installed on the tower. This paper discusses the characteristics of each instrument and the accuracy that each instrument can provide when used in an estuarine environment. We pay special attention to our experiences in the field operation with respect to handling of the instruments and to our experiences working up the raw data in the post-deployment data analysis.

  12. Complex motion of a vehicle through a series of signals controlled by power-law phase

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2017-07-01

    We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.

  13. Autogenic-Feedback Training for the Control of Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, W. B.

    1994-01-01

    This paper presents case-studies of 9 shuttle crewmembers (prime and alternates) and one U.S. Navy F-18 pilot, as they participated in all preflight training and testing activities in support of a life sciences flight experiment aboard Spacelab-J, and Spacelab-3. The primary objective of the flight experiment was to determine if Autogenic-feedback training (AFT), a physiological self-regulation training technique would be an effective treatment for motion sickness and space motion sickness in these crewmembers. Additional objectives of this study involved the examining human physiological responses to motion sickness on Earth and in space, as well as developing predictive criteria for susceptibility to space motion sickness based on ground-based data. Comparisons of these crewmembers are made to a larger set of subjects from previous experiments (treatment and "test-only" controls subjects). This paper describes all preflight methods, results and proposed changes for future tests.

  14. The Entry of Nano-dust Particles into the Terrestrial Magnetosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Juhasz, A.

    2016-12-01

    Nano-dust particles have been suggested to be responsible for spurious antenna signals on several spacecraft near 1 AU. Most of these tiny motes are generated in the solar vicinity where the collision-rate between larger inward migrating dust particles increases generating copious amounts of smaller dust grains. The vast majority of the dust grains is predicted to be lost to the Sun, but a fraction of them can be expelled by radiation pressure, and the solar wind plasma flow. Particles in the nano-meter size range can be incorporated in the solar wind, and arrive near 1 AU with characteristic speeds of approximately 400 km/s. Larger, but still submicron sized particles, that are expelled by radiation pressure, represent the so-called beta-meteoroid population. Both of these populations of dust particles can be detected by dedicated dust instruments near 1 AU. A fraction of these particles can also penetrate the terrestrial magnetosphere and possibly bombard spacecraft orbiting the Earth. This talk will explore the dynamics of nano-grains and beta-meteoroids entering the magnetosphere, and predict their spatial, mass and speed distributions as function of solar wind conditions.

  15. Evaluation of the leap motion controller as a new contact-free pointing device.

    PubMed

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-12-24

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  16. Nanoscale Resolution 3D Printing with Pin-Modified Electrified Inkjets for Tailorable Nano/Macrohybrid Constructs for Tissue Engineering.

    PubMed

    Kim, Jeong In; Kim, Cheol Sang

    2018-04-18

    Cells respond to their microenvironment, which is of a size comparable to that of the cells. The macroscale features of three-dimensional (3D) printing struts typically result in whole cell contact guidance (CCG). In contrast, at the nanoscale, where features are of a size similar to that of receptors of cells, the response of cells is more complex. The cell-nanotopography interaction involves nanoscale adhesion localized structures, which include cell adhesion-related particles that change in response to the clustering of integrin. For this reason, it is necessary to develop a technique for manufacturing tailorable nano/macrohybrid constructs capable of freely controlling the cellular activity. In this study, a hierarchical 3D nano- to microscale hybrid structure was fabricated by combinational processing of 3D printing and electrified inkjet spinning via pin motions. This method overcomes the disadvantages of conventional 3D printing, providing a novel combinatory technique for the fabrication of 3D hybrid constructs with excellent cell proliferation. Through a pin-modified electrified inkjet spinning, we have successfully fabricated customizable nano-/microscale hybrid constructs in a fibrous or mesh form, which can control the cell fate. We have conducted this study of cell-topography interactions from the fabrication approach to accelerate the development of next-generation 3D scaffolds.

  17. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    PubMed

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the

  18. Analysing Smart Metering Systems from a Consumer Perspective

    NASA Astrophysics Data System (ADS)

    Yesudas, Rani

    Many countries are deploying smart meters and Advanced Metering Infrastructure systems as part of demand management and grid modernisation efforts. Several of these projects are facing consumer resistance. The advertised benefits to the consumer appear mainly monetary but detailed analysis shows that financial benefits are hard to realise since the fixed services charges are high. Additionally, the data collected from smart meters have security and privacy implications for the consumer. These projects failed to consider end-users as an important stakeholder group during planning stages resulting in the design and roll-out of expensive systems, which do not demonstrate clear consumer benefits. The overall goal of the research reported in this thesis was to improve the smart metering system to deliver consumer benefits that increase confidence and acceptance of these projects. The smart metering system was examined from an end-user perspective for realistic insights into consumer concerns. Processes from Design Science Research methodology were utilised to conduct this research due to the utilitarian nature of the objective. Consumer segmentation was central to the proposed measures. Initially, a consumer-friendly risk analysis framework was devised, and appropriate requirement elicitation techniques were identified. Control options for smart meter data transfer and storage were explored. Various scenarios were analysed to determine consumer-friendly features in the smart metering system, including control options for smart meter data transfer and storage. Proposed functionalities (billing choices, feedback information and specific configurations to match the needs of different user segments) were studied using the Australian smart metering system. Smart meters vary in capabilities depending on the manufacturer, mode and place of deployment. The research showed that features proposed in this thesis are implementable in smart meters, by examining their applicability

  19. An Open-Access Educational Tool for Teaching Motion Dynamics in Multi-Axis Servomotor Control

    ERIC Educational Resources Information Center

    Rivera-Guillen, J. R.; de Jesus Rangel-Magdaleno, J.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R. A.; Guevara-Gonzalez, R. G.

    2012-01-01

    Servomotors are widely used in computerized numerically controlled (CNC) machines, hence motion control is a major topic covered in undergraduate/graduate engineering courses. Despite the fact that several syllabi include the motion dynamics topic in their courses, there are neither suitable tools available for designing and simulating multi-axis…

  20. Colloidal crystal grain boundary formation and motion

    PubMed Central

    Edwards, Tara D.; Yang, Yuguang; Beltran-Villegas, Daniel J.; Bevan, Michael A.

    2014-01-01

    The ability to assemble nano- and micro- sized colloidal components into highly ordered configurations is often cited as the basis for developing advanced materials. However, the dynamics of stochastic grain boundary formation and motion have not been quantified, which limits the ability to control and anneal polycrystallinity in colloidal based materials. Here we use optical microscopy, Brownian Dynamic simulations, and a new dynamic analysis to study grain boundary motion in quasi-2D colloidal bicrystals formed within inhomogeneous AC electric fields. We introduce “low-dimensional” models using reaction coordinates for condensation and global order that capture first passage times between critical configurations at each applied voltage. The resulting models reveal that equal sized domains at a maximum misorientation angle show relaxation dominated by friction limited grain boundary diffusion; and in contrast, asymmetrically sized domains with less misorientation display much faster grain boundary migration due to significant thermodynamic driving forces. By quantifying such dynamics vs. compression (voltage), kinetic bottlenecks associated with slow grain boundary relaxation are understood, which can be used to guide the temporal assembly of defect-free single domain colloidal crystals. PMID:25139760

  1. Nanorobotic System iTRo for Controllable 1D Micro/nano Material Twisting Test.

    PubMed

    Lu, Haojian; Shang, Wanfeng; Wei, Xueyong; Yang, Zhan; Fukuda, Toshio; Shen, Yajing

    2017-06-08

    In-situ micro/nano characterization is an indispensable methodology for material research. However, the precise in-situ SEM twisting of 1D material with large range is still challenge for current techniques, mainly due to the testing device's large size and the misalignment between specimen and the rotation axis. Herein, we propose an in-situ twist test robot (iTRo) to address the above challenges and realize the precise in-situ SEM twisting test for the first time. Firstly, we developed the iTRo and designed a series of control strategies, including assembly error initialization, triple-image alignment (TIA) method for rotation axis alignment, deformation-based contact detection (DCD) method for sample assembly, and switch control for robots cooperation. After that, we chose three typical 1D material, i.e., magnetic microwire Fe 74 B 13 Si 11 C 2 , glass fiber, and human hair, for twisting test and characterized their properties. The results showed that our approach is able to align the sample to the twisting axis accurately, and it can provide large twisting range, heavy load and high controllability. This work fills the blank of current in-situ mechanical characterization methodologies, which is expected to give significant impact in the fundamental nanomaterial research and practical micro/nano characterization.

  2. Utilities bullish on meter-reading technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, W.L.

    1995-01-15

    By the end of 1996, the 400,000 customers of Kansas City Power & Light Company (KCPL) will have their electric meters read by a real-time wireless network that will relay electrical consumption readings back to computers at the utility`s customer service office. KCPL`s executives believe the new radio and cellular network will greatly improve the company`s ability to control its power distribution, manage its load requirements, monitor outages, and in the near future, allow time-of-use and offpeak pricing. The KCPL system represents the first systemwide, commercial application of wireless automated meter reading (AMR) by a U.S. utility. The article alsomore » describes other AMR systems for reading water and gas meters, along with saying that $18 billion in future power plant investments can be avoided by using time-of-use pricing for residential customers.« less

  3. 8-Meter UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    This slide presentation proposes using the unprecedented capability of the planned Ares V launch vehicle, to place a 8 meter monolithic space telescope at the Earth-Sun L2 point. This new capability enables a new design pardigm -- simplicity. The six to eight meter class telescope with a massive high Technical Readiness Level ground observatory class monolithic primary mirror has been determined feasible. The proposed design, structural analysis, spacecraft design and shroud integration, thermal analysis, propulsion system, guidance navigation and pointing control assumptions about the avionics, and power systems, operational lifetime, and the idea of in-space servicing are reviewed.

  4. Autogenic Feedback Training Exercise: Controlling Physiological Responses to Mitigate Motion Sickness

    NASA Technical Reports Server (NTRS)

    Walton, Nia; Spencer, Telissa; Cowings, Patricia; Toscano, William B.

    2018-01-01

    During space travel approximately 50 of the crew experience symptoms of motion sickness that can range from mild forms of nausea or dizziness to severe malaise and vomiting1. Developing an effective treatment for these symptoms has become a priority of the National Aeronautics and Space Administration (NASA). Autogenic-Feedback Training Exercise (AFTE) is a nonpharmacological countermeasure for mitigating motion sickness. It involves training subjects to control physiological responses in high stress environments2. The primary goal of this experiment is to evaluate the effectiveness of AFTE for increasing tolerance to motion sickness in high stress environments.

  5. Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.

    2011-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.

  6. Efficacy of early controlled motion of the ankle compared with no motion after non-operative treatment of an acute Achilles tendon rupture: study protocol for a randomized controlled trial.

    PubMed

    Barfod, Kristoffer Weisskirchner; Hansen, Maria Swennergren; Holmich, Per; Troelsen, Anders; Kristensen, Morten Tange

    2016-11-29

    Early controlled ankle motion is widely used in the non-operative treatment of acute Achilles tendon rupture, though its safety and efficacy have never been investigated in a randomized setup. The objectives of this study are to investigate if early controlled motion of the ankle affects functional and patient-reported outcomes. The study is performed as a blinded, randomized, controlled trial with patients allocated in a 1:1 ratio to one of two parallel groups. Patients aged from 18 to 70 years are eligible for inclusion. The intervention group performs early controlled motion of the ankle in weeks 3-8 after rupture. The control group is immobilized. In total, 130 patients will be included from one big orthopedic center over a period of 2½ years. The primary outcome is the patient-reported Achilles tendon Total Rupture Score evaluated at 12 months post-injury. Secondary outcome measures are the heel-rise work test, Achilles tendon elongation, and the rate of re-rupture. The primary analysis will be conducted as intention-to-treat analyses. This trial is the first to investigate the safety and efficacy of early controlled motion in the treatment of acute Achilles tendon rupture in a randomized setup. The study uses the patient-reported outcome measure, the Achilles tendon Total Rupture Score, as the primary endpoint, as it is believed to be the best surrogate measure for the tendon's actual capability to function in everyday life. ClinicalTrials.gov: NCT02015364 . Registered on 13 December 2013.

  7. Injury risk in runners using standard or motion control shoes: a randomised controlled trial with participant and assessor blinding

    PubMed Central

    Malisoux, Laurent; Chambon, Nicolas; Delattre, Nicolas; Gueguen, Nils; Urhausen, Axel; Theisen, Daniel

    2016-01-01

    Background/aim This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology. Methods Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method. Cox regression analyses were used to compare injury risk between the two groups, based on HRs and their 95% CIs, controlling for potential confounders. Stratified analyses were conducted to evaluate the effect of motion control system in runners with supinated, neutral and pronated feet. Results The overall injury risk was lower among the participants who had received motion control shoes (HR=0.55; 95% CI 0.36 to 0.85) compared to those receiving standard shoes. This positive effect was only observed in the stratum of runners with pronated feet (n=94; HR=0.34; 95% CI 0.13 to 0.84); there was no difference in runners with neutral (n=218; HR=0.78; 95% CI 0.44 to 1.37) or supinated feet (n=60; HR=0.59; 95% CI 0.20 to 1.73). Runners with pronated feet using standard shoes had a higher injury risk compared to those with neutral feet (HR=1.80; 95% CI 1.01 to 3.22). Conclusions The overall injury risk was lower in participants who had received motion control shoes. Based on secondary analysis, those with pronated feet may benefit most from this shoe type. PMID:26746907

  8. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft.

    PubMed

    Wang, Xingjian; Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-10-25

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  9. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    PubMed Central

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  10. Pharmacology in space. Part 2. Controlling motion sickness

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Charles, J. B.; Bungo, M. W.

    1989-01-01

    In this second article in the two-part series on pharmacology in space, Claire Lathers and colleagues discuss the pharmacology of drugs used to control motion sickness in space and note that the pharmacology of the 'ideal' agent has yet to be worked out. That motion sickness may impair the pharmacological action of a drug by interfering with its absorption and distribution because of alteration of physiology is a problem unique to pharmacology in space. The authors comment on the problem of designing suitable ground-based studies to evaluate the pharmacological effect of drugs to be used in space and discuss the use of salivary samples collected during space flight to allow pharmacokinetic evaluations necessary for non-invasive clinical drug monitoring.

  11. Multi-tip nano-prisms: Controlled growth and emission enhancement properties

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Meng, Cong; Xue, Zheng-Hong; Xiong, Xiang; Shu, Da-Jun; Peng, Ru-Wen; Wu, Qiang; Hu, Zheng; Wang, Mu

    2013-10-01

    We report here the experimental observations that the tip topography of ZnO nano-prisms sensitively depends on the percentage of oxygen in the flux of the carrying gas in vapor growth. At a relatively high oxygen concentration, a number of thin filaments can be nucleated atop nano-prisms, forming a unique fish-spear-like multi-tip morphology. The length and density of the “spear tines” depend on the flux of the carrying gas. The field emission properties of the nanorod array with different tip morphology are investigated. The structures with longer and denser spear tines possess lower turn-on electric field and higher electric current density. The cathodoluminescence properties of the ZnO nano-prisms have also been studied. The luminescence related to defects in multi-tip nano-prisms possesses the strongest intensity, and the nanorod without any tine structure possesses the lowest defect luminescence intensity. The intrinsic luminescence of ZnO around 385 nm, however, has the opposite tendency. We suggest that our observation is inspiring in optimizing the emission properties of the nanowire devices.

  12. 77 FR 40586 - Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...-01] Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter... Technology (NIST) seeks comments on Draft NISTIR 7823, Advanced Metering Infrastructure Smart Meter.... Electronic comments should be sent to: Michaela Iorga at [email protected]nist.gov , with a Subject line...

  13. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    PubMed Central

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2015-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC. PMID:25609043

  14. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    PubMed

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  15. Highly miniaturized FEEP propulsion system (NanoFEEP) for attitude and orbit control of CubeSats

    NASA Astrophysics Data System (ADS)

    Bock, Daniel; Tajmar, Martin

    2018-03-01

    A highly miniaturized Field Emission Electric Propulsion (FEEP) system is currently under development at TU Dresden, called NanoFEEP [1]. The highly miniaturized thruster heads are very compact and have a volume of less than 3 cm3 and a weight of less than 6 g each. One thruster is able to generate continuous thrust of up to 8 μN with short term peaks of up to 22 μN. The very compact design and low power consumption (heating power demand between 50 and 150 mW) are achieved by using Gallium as metal propellant with its low melting point of approximately 30 °C. This makes it possible to implement an electric propulsion system consisting of four thruster heads, two neutralizers and the necessary electronics on a 1U CubeSat with its strong limitation in space, weight and available power. Even formation flying of 1U CubeSats using an electric propulsion system is possible with this system, which is shown by the example of a currently planned cooperation project between Wuerzburg University, Zentrum fuer Telematik and TU Dresden. It is planned to use the NanoFEEP electric propulsion system on the UWE (University Wuerzburg Experimental) 1U CubeSat platform [2] to demonstrate orbit and two axis attitude control with our electric propulsion system NanoFEEP. We present the latest performance characteristics of the NanoFEEP thrusters and the highly miniaturized electronics. Additionally, the concept and the current status of a novel cold neutralizer chip using Carbon Nano Tubes (CNTs) is presented.

  16. The accuracy of portable peak flow meters.

    PubMed

    Miller, M R; Dickinson, S A; Hitchings, D J

    1992-11-01

    The variability of peak expiratory flow (PEF) is now commonly used in the diagnosis and management of asthma. It is essential for PEF meters to have a linear response in order to obtain an unbiased measurement of PEF variability. As the accuracy and linearity of portable PEF meters have not been rigorously tested in recent years this aspect of their performance has been investigated. The response of several portable PEF meters was tested with absolute standards of flow generated by a computer driven, servo controlled pump and their response was compared with that of a pneumotachograph. For each device tested the readings were highly repeatable to within the limits of accuracy with which the pointer position can be assessed by eye. The between instrument variation in reading for six identical devices expressed as a 95% confidence limit was, on average across the range of flows, +/- 8.5 l/min for the Mini-Wright, +/- 7.9 l/min for the Vitalograph, and +/- 6.4 l/min for the Ferraris. PEF meters based on the Wright meter all had similar error profiles with overreading of up to 80 l/min in the mid flow range from 300 to 500 l/min. This overreading was greatest for the Mini-Wright and Ferraris devices, and less so for the original Wright and Vitalograph meters. A Micro-Medical Turbine meter was accurate up to 400 l/min and then began to underread by up to 60 l/min at 720 l/min. For the low range devices the Vitalograph device was accurate to within 10 l/min up to 200 l/min, with the Mini-Wright overreading by up to 30 l/min above 150 l/min. Although the Mini-Wright, Ferraris, and Vitalograph meters gave remarkably repeatable results their error profiles for the full range meters will lead to important errors in recording PEF variability. This may lead to incorrect diagnosis and bias in implementing strategies of asthma treatment based on PEF measurement.

  17. The accuracy of portable peak flow meters.

    PubMed Central

    Miller, M R; Dickinson, S A; Hitchings, D J

    1992-01-01

    BACKGROUND: The variability of peak expiratory flow (PEF) is now commonly used in the diagnosis and management of asthma. It is essential for PEF meters to have a linear response in order to obtain an unbiased measurement of PEF variability. As the accuracy and linearity of portable PEF meters have not been rigorously tested in recent years this aspect of their performance has been investigated. METHODS: The response of several portable PEF meters was tested with absolute standards of flow generated by a computer driven, servo controlled pump and their response was compared with that of a pneumotachograph. RESULTS: For each device tested the readings were highly repeatable to within the limits of accuracy with which the pointer position can be assessed by eye. The between instrument variation in reading for six identical devices expressed as a 95% confidence limit was, on average across the range of flows, +/- 8.5 l/min for the Mini-Wright, +/- 7.9 l/min for the Vitalograph, and +/- 6.4 l/min for the Ferraris. PEF meters based on the Wright meter all had similar error profiles with overreading of up to 80 l/min in the mid flow range from 300 to 500 l/min. This overreading was greatest for the Mini-Wright and Ferraris devices, and less so for the original Wright and Vitalograph meters. A Micro-Medical Turbine meter was accurate up to 400 l/min and then began to underread by up to 60 l/min at 720 l/min. For the low range devices the Vitalograph device was accurate to within 10 l/min up to 200 l/min, with the Mini-Wright overreading by up to 30 l/min above 150 l/min. CONCLUSION: Although the Mini-Wright, Ferraris, and Vitalograph meters gave remarkably repeatable results their error profiles for the full range meters will lead to important errors in recording PEF variability. This may lead to incorrect diagnosis and bias in implementing strategies of asthma treatment based on PEF measurement. PMID:1465746

  18. Shoulder Dynamic Control Ratio and Rotation Range of Motion in Female Junior Elite Handball Players and Controls.

    PubMed

    van Cingel, Robert; Habets, Bas; Willemsen, Linn; Staal, Bart

    2018-03-01

    To compare glenohumeral range of motion and shoulder rotator muscle strength in healthy female junior elite handball players and controls. Cross-sectional case-control study. Sports medical center. Forty elite female handball players and 30 controls active in nonoverhead sports participated in this study. Passive external rotator (ER), internal rotator (IR), and total range of motion (TROM) of the dominant and nondominant arm were examined with a goniometer. An isokinetic dynamometer was used to evaluate concentric and eccentric rotator muscle strength at 60 and 120 degrees/s with dynamic control ratio (DCR = ERecc:IRcon) as the main outcome parameter. Except for the ER range of motion in the nondominant arm, no significant differences were found between groups for IR, ER of the dominant arm, and the TROM. Within the handball group, the side-to-side difference for IR of the dominant arm was -1.4 degrees. The ER and the TROM of the dominant arm were significantly larger, 6.3 and 4.9 degrees, respectively. For both groups, the DCR values were above 1 and no significant differences were found between the dominant and nondominant arm. The DCR values in the handball group were significantly lower than in the control group. Based on the adopted definitions for muscle imbalance, glenohumeral internal range of motion deficit and TROM deficit our elite female handball players seem not at risk for shoulder injuries. Prospective studies are needed to support the belief that a DCR below 1 places the shoulder at risk for injury.

  19. Three axis electronic flight motion simulator real time control system design and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiyuan; Miao, Zhonghua, E-mail: zhonghua-miao@163.com; Wang, Xiaohua

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  20. Three axis electronic flight motion simulator real time control system design and implementation.

    PubMed

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  1. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  2. Coherent random lasing controlled by Brownian motion of the active scatterer

    NASA Astrophysics Data System (ADS)

    Liang, Shuofeng; Yin, Leicheng; Zhang, ZhenZhen; Xia, Jiangying; Xie, Kang; Zou, Gang; Hu, Zhijia; Zhang, Qijin

    2018-05-01

    The stability of the scattering loop is fundamental for coherent random lasing in a dynamic scattering system. In this work, fluorescence of DPP (N, N-di [3-(isobutyl polyhedral oligomeric silsesquioxanes) propyl] perylene diimide) is scattered to produce RL and we realize the transition from incoherent RL to coherent RL by controlling the Brownian motion of the scatterers (dimer aggregates of DPP) and the stability of scattering loop. To produce coherent random lasers, the loop needs to maintain a stable state within the loop-stable time, which can be determined through controlled Brownian motion of scatterers in the scattering system. The result shows that the loop-stable time is within 5.83 × 10‑5 s to 1.61 × 10‑4 s based on the transition from coherent to incoherent random lasing. The time range could be tuned by finely controlling the viscosity of the solution. This work not only develops a method to predict the loop-stable time, but also develops the study between Brownian motion and random lasers, which opens the road to a variety of novel interdisciplinary investigations involving modern statistical mechanics and disordered photonics.

  3. Magnetic Nano- and Micro- Particles in Living Cells: Kinetics and Fluctuations

    NASA Astrophysics Data System (ADS)

    Pease, C.; Chiang, N.; Pierce, C.; Muthusamy, N.; Sooryakumar, R.

    2015-03-01

    Functional nano and micro materials have recently been used not only as diagnostic tools for extracellular studies but also as intracellular drug delivery vehicles and as internal probes of the cell. To realize proper cellular applications, it is important not only to achieve efficient delivery of these materials to targeted cells, but also to control their movement and activity within the confines of the cell. In this presentation, superparamagnetic nano and micro particles are utilized as probes, with their responses to weak external magnetic fields enabling them to be maneuvered within a cell. In order to generate the required local magnetic fields needed for manipulation, the fields emanating from microscopic domain walls stabilized on patterned surface profiles are used in conjunction with weak external magnetic fields to create mobile traps that can localize and transport the internalized particle. Preliminary findings on creating the mobile traps suitable for applications to probe the interior of cells, and the responses, both Brownian fluctuations and directed motion, of particles ranging in size from 200 nm to 1 micron within HS-5 cells will be presented. Future applications to probe cellular behavior within the framework of emerging biomaterials will be discussed.

  4. Injury risk in runners using standard or motion control shoes: a randomised controlled trial with participant and assessor blinding.

    PubMed

    Malisoux, Laurent; Chambon, Nicolas; Delattre, Nicolas; Gueguen, Nils; Urhausen, Axel; Theisen, Daniel

    2016-04-01

    This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology. Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method. Cox regression analyses were used to compare injury risk between the two groups, based on HRs and their 95% CIs, controlling for potential confounders. Stratified analyses were conducted to evaluate the effect of motion control system in runners with supinated, neutral and pronated feet. The overall injury risk was lower among the participants who had received motion control shoes (HR=0.55; 95% CI 0.36 to 0.85) compared to those receiving standard shoes. This positive effect was only observed in the stratum of runners with pronated feet (n=94; HR=0.34; 95% CI 0.13 to 0.84); there was no difference in runners with neutral (n=218; HR=0.78; 95% CI 0.44 to 1.37) or supinated feet (n=60; HR=0.59; 95% CI 0.20 to 1.73). Runners with pronated feet using standard shoes had a higher injury risk compared to those with neutral feet (HR=1.80; 95% CI 1.01 to 3.22). The overall injury risk was lower in participants who had received motion control shoes. Based on secondary analysis, those with pronated feet may benefit most from this shoe type. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Planet-wide sand motion on mars

    USGS Publications Warehouse

    Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; McEwen, A.S.; Mellon, M.T.; Stantzos, N.; Thomson, B.J.

    2012-01-01

    Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains. ?? 2012 Geological Society of America.

  6. DOTD support for UTC project : development of an optimal ramp metering control strategy for I-12, [research project capsule].

    DOT National Transportation Integrated Search

    2013-10-01

    From June to November of 2010, the Louisiana Department of Transportation and : Development (DOTD) deployed ramp metering control, using a simple pre-timed operation : with a xed cycle length (2 seconds of green/2 seconds of red), along a 15-mile ...

  7. Design and development of a motion compensator for the RSRA main rotor control

    NASA Technical Reports Server (NTRS)

    Jeffrey, P.; Huber, R.

    1979-01-01

    The RSRA, an experimental helicopter, is equipped with an active isolation system that allows the transmission to move relative to the fuselage. The purpose of the motion compensator is to prevent these motions from introducing unwanted signals to the main rotor control. A motion compensator concept was developed that has six-degree-of-freedom capability. The mechanism was implemented on RSRA and its performance verified by ground and flight tests.

  8. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt.

    PubMed

    Ghorbanzade, Tahere; Jafari, Seid Mahdi; Akhavan, Sahar; Hadavi, Roxana

    2017-02-01

    Fish oils have many dietary benefits, but due to their strong odors and rapid deterioration, their application in food formulations is limited. For these reasons, nano-liposome was used to nano-encapsulate fish oil in this study and encapsulated fish oil was utilized in fortifying yogurt. Physicochemical properties of produced yogurt including pH, acidity, syneresis, fatty acid composition, peroxide value as well as sensory tests were investigated during three weeks storage at 4°C. Nano-liposome encapsulation resulted in a significant reduction in acidity, syneresis and peroxide value. The results of gas chromatography analyses revealed that after 21days storage, yogurt fortified with nano-encapsulated fish oil had a higher DHA and EPA contents than yogurt containing free fish oil. Overall, the results of this study indicates that adding nano-encapsulated fish oil into yogurt gave closer characteristics to control sample in terms of sensory characteristics than yogurt fortified with free fish oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Development of a Computer Controlled Super 8 Motion Picture Projector.

    ERIC Educational Resources Information Center

    Reynolds, Eldon J.

    Instructors in Child Development at the University of Texas at Austin selected sound motion pictures as the most effective medium to simulate the observation of children in nursery laboratories. A computer controlled projector was designed for this purpose. An interface and control unit controls the Super 8 projector from a time-sharing computer…

  10. Quality control procedures for dynamic treatment delivery techniques involving couch motion.

    PubMed

    Yu, Victoria Y; Fahimian, Benjamin P; Xing, Lei; Hristov, Dimitre H

    2014-08-01

    In this study, the authors introduce and demonstrate quality control procedures for evaluating the geometric and dosimetric fidelity of dynamic treatment delivery techniques involving treatment couch motion synchronous with gantry and multileaf collimator (MLC). Tests were designed to evaluate positional accuracy, velocity constancy and accuracy for dynamic couch motion under a realistic weight load. A test evaluating the geometric accuracy of the system in delivering treatments over complex dynamic trajectories was also devised. Custom XML scripts that control the Varian TrueBeam™ STx (Serial #3) axes in Developer Mode were written to implement the delivery sequences for the tests. Delivered dose patterns were captured with radiographic film or the electronic portal imaging device. The couch translational accuracy in dynamic treatment mode was 0.01 cm. Rotational accuracy was within 0.3°, with 0.04 cm displacement of the rotational axis. Dose intensity profiles capturing the velocity constancy and accuracy for translations and rotation exhibited standard deviation and maximum deviations below 3%. For complex delivery involving MLC and couch motions, the overall translational accuracy for reproducing programmed patterns was within 0.06 cm. The authors conclude that in Developer Mode, TrueBeam™ is capable of delivering dynamic treatment delivery techniques involving couch motion with good geometric and dosimetric fidelity.

  11. Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2015-09-01

    The present paper1 analyzes the basic problems arising in the solution of problems of the optimum control of spacecraft (SC) trajectory motion (including the Lyapunov instability of solutions of conjugate equations) using the principle of the maximum. The use of quaternion models of astrodynamics is shown to allow: (1) the elimination of singular points in the differential phase and conjugate equations and in their partial analytical solutions; (2) construction of the first integrals of the new quaternion; (3) a considerable decrease of the dimensions of systems of differential equations of boundary value optimization problems with their simultaneous simplification by using the new quaternion variables related with quaternion constants of motion by rotation transformations; (4) construction of general solutions of differential equations for phase and conjugate variables on the sections of SC passive motion in the simplest and most convenient form, which is important for the solution of optimum pulse SC transfers; (5) the extension of the possibilities of the analytical investigation of differential equations of boundary value problems with the purpose of identifying the basic laws of optimum control and motion of SC; (6) improvement of the computational stability of the solution of boundary value problems; (7) a decrease in the required volume of computation.

  12. Control of humanoid robot via motion-onset visual evoked potentials

    PubMed Central

    Li, Wei; Li, Mengfan; Zhao, Jing

    2015-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task. PMID:25620918

  13. Strain System for the Motion Base Shuttle Mission Simulator

    NASA Technical Reports Server (NTRS)

    Huber, David C.; Van Vossen, Karl G.; Kunkel, Glenn W.; Wells, Larry W.

    2010-01-01

    The Motion Base Shuttle Mission Simulator (MBSMS) Strain System is an innovative engineering tool used to monitor the stresses applied to the MBSMS motion platform tilt pivot frames during motion simulations in real time. The Strain System comprises hardware and software produced by several different companies. The system utilizes a series of strain gages, accelerometers, orientation sensor, rotational meter, scanners, computer, and software packages working in unison. By monitoring and recording the inputs applied to the simulator, data can be analyzed if weld cracks or other problems are found during routine simulator inspections. This will help engineers diagnose problems as well as aid in repair solutions for both current as well as potential problems.

  14. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  15. New weight factor for Brownian force exerted on micro/nano-particles in air flow

    NASA Astrophysics Data System (ADS)

    Zhang, Peijie; Lin, Jianzhong; Ku, Xiaoke

    2018-05-01

    In order to effectively describe the effect of Brownian force exerted on the micro/nano-particles in air flow, a new weight factor, which is defined as the ratio of the characteristic velocity of the Brownian motion to the macroscopic velocity, is proposed and applied to the particle settlement under gravity. Results show that the weight factor can quantitatively evaluate the effect of Brownian force on the particle motion. Moreover, the value of the weight factor can also be used to judge the particle motion pattern and determine whether the Brownian force should be taken into account.

  16. Motion direction discrimination training reduces perceived motion repulsion.

    PubMed

    Jia, Ke; Li, Sheng

    2017-04-01

    Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.

  17. Microfluidic diffusivity meter: a tool to optimize CO2 driven enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Puneeth, S. B.; Kim, Young Ho; Goel, Sanket

    2017-02-01

    As the energy demands continue to swell with growing population and there persists a lack of unexploited oilfields, the prime focus of any nation would be to maximize the oil recovery factor from existing oil fields. CO2-Enhanced oil recovery is a process to improve the recovery of crude oil from an oil field and works at high pressure and in very deep conditions. CO2 and oil are miscible at high pressure, resulting in low viscosity and oil swells. This swelling can be measured based on mathematical calculations in real time and correlated with the CO2 concentration. This process has myriad advantages over its counterparts which include being able to harness oil trapped in reservoirs besides being cheaper and more efficient. A Diffusivity meter is inevitable in the measurement of the diffusion co-efficient of two samples. Diffusivity meters currently available in the market are weighed down by disadvantages like the requirement of large samples for testing, high cost and complexity. This elicits the need for a Microfluidic based diffusivity meter capable of analyzing Nano-liter sample volumes besides being more precise and affordable. The scope of this work involves the design and development of a Microfluidic robust and inexpensive prototype diffusivity meter using a capillary tube and endorsing its performance by comparison of results with known diffusivity range and supervision of the results with an electronic microscope coupled to PC and Data Acquisition System. The prototype produced at the end of the work is expected to outweigh disadvantages in existing products in terms of sample size, efficiency and time saving.

  18. Localized diffusive motion on two different time scales in solid alkane nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, S.-K.; Mamontov, E.; Bai, M.; Hansen, F. Y.; Taub, H.; Copley, J. R. D.; García Sakai, V.; Gasparovic, G.; Jenkins, T.; Tyagi, M.; Herwig, K. W.; Neumann, D. A.; Montfrooij, W.; Volkmann, U. G.

    2010-09-01

    High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a "fast" motion corresponding to uniaxial rotation about the long molecular axis; and a "slow" motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.

  19. Tuning time-frequency methods for the detection of metered HF speech

    NASA Astrophysics Data System (ADS)

    Nelson, Douglas J.; Smith, Lawrence H.

    2002-12-01

    Speech is metered if the stresses occur at a nearly regular rate. Metered speech is common in poetry, and it can occur naturally in speech, if the speaker is spelling a word or reciting words or numbers from a list. In radio communications, the CQ request, call sign and other codes are frequently metered. In tactical communications and air traffic control, location, heading and identification codes may be metered. Moreover metering may be expected to survive even in HF communications, which are corrupted by noise, interference and mistuning. For this environment, speech recognition and conventional machine-based methods are not effective. We describe Time-Frequency methods which have been adapted successfully to the problem of mitigation of HF signal conditions and detection of metered speech. These methods are based on modeled time and frequency correlation properties of nearly harmonic functions. We derive these properties and demonstrate a performance gain over conventional correlation and spectral methods. Finally, in addressing the problem of HF single sideband (SSB) communications, the problems of carrier mistuning, interfering signals, such as manual Morse, and fast automatic gain control (AGC) must be addressed. We demonstrate simple methods which may be used to blindly mitigate mistuning and narrowband interference, and effectively invert the fast automatic gain function.

  20. Upgrade of the HET segment control system, utilizing state-of-the-art, decentralized and embedded system controllers

    NASA Astrophysics Data System (ADS)

    Häuser, Marco; Richter, Josef; Kriel, Herman; Turbyfill, Amanda; Buetow, Brent; Ward, Michael

    2016-07-01

    Together with the ongoing major instrument upgrade of the Hobby-Eberly Telescope (HET) we present the planned upgrade of the HET Segment Control System (SCS) to SCS2. Because HET's primary mirror is segmented into 91 individual 1-meter hexagonal mirrors, the SCS is essential to maintain the mirror alignment throughout an entire night of observations. SCS2 will complete tip, tilt and piston corrections of each mirror segment at a significantly higher rate than the original SCS. The new motion control hardware will further increase the system's reliability. The initial optical measurements of this array are performed by the Mirror Alignment Recovery System (MARS) and the HET Extra Focal Instrument (HEFI). Once the segments are optically aligned, the inductive edge sensors give sub-micron precise feedback of each segment's positions relative to its adjacent segments. These sensors are part of the Segment Alignment Maintenance System (SAMS) and are responsible for providing information about positional changes due to external influences, such as steep temperature changes and mechanical stress, and for making compensatory calculations while tracking the telescope on sky. SCS2 will use the optical alignment systems and SAMS inputs to command corrections of every segment in a closed loop. The correction period will be roughly 30 seconds, mostly due to the measurement and averaging process of the SAMS algorithm. The segment actuators will be controlled by the custom developed HET Segment MOtion COntroller (SMOCO). It is a direct descendant of University Observatory Munich's embedded, CAN-based system and instrument control tool-kit. To preserve the existing HET hardware layout, each SMOCO will control two adjacent mirror segments. Unlike the original SCS motor controllers, SMOCO is able to drive all six axes of its two segments at the same time. SCS2 will continue to allow for sub-arcsecond precision in tip and tilt as well as sub-micro meter precision in piston. These

  1. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control

    PubMed Central

    Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-01-01

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. SIGNIFICANCE STATEMENT When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments. PMID:27733607

  2. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control.

    PubMed

    Leib, Raz; Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-10-12

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments. Copyright © 2016 Leib et al.

  3. Interlayer Water Regulates the Bio-nano Interface of a β-sheet Protein stacking on Graphene

    PubMed Central

    Lv, Wenping; Xu, Guiju; Zhang, Hongyan; Li, Xin; Liu, Shengju; Niu, Huan; Xu, Dongsheng; Wu, Ren'an

    2015-01-01

    Using molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a β-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH···π interaction driving the attraction of the protein and graphene. The intermolecular coupling of interlayer water would be relaxed by the relative motion of protein upon graphene due to the interaction between water and protein surface. This effect reduced the hindrance of the interlayer water against the assembly of protein on graphene, resulting an appropriate adsorption status of protein on graphene with a deep free energy trap. Thereby, the confinement and the relative sliding between protein and graphene, the coupling of protein and water, and the interaction between graphene and water all have involved in the modulation of behaviors of water molecules within the bio-nano interface, governing the hindrance of interlayer water against the protein assembly on hydrophobic graphene. These results provide a deep insight into the fundamental mechanism of protein adsorption onto graphene surface in water. PMID:25557857

  4. Interlayer water regulates the bio-nano interface of a β-sheet protein stacking on graphene.

    PubMed

    Lv, Wenping; Xu, Guiju; Zhang, Hongyan; Li, Xin; Liu, Shengju; Niu, Huan; Xu, Dongsheng; Wu, Ren'an

    2015-01-05

    Using molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a β-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH···π interaction driving the attraction of the protein and graphene. The intermolecular coupling of interlayer water would be relaxed by the relative motion of protein upon graphene due to the interaction between water and protein surface. This effect reduced the hindrance of the interlayer water against the assembly of protein on graphene, resulting an appropriate adsorption status of protein on graphene with a deep free energy trap. Thereby, the confinement and the relative sliding between protein and graphene, the coupling of protein and water, and the interaction between graphene and water all have involved in the modulation of behaviors of water molecules within the bio-nano interface, governing the hindrance of interlayer water against the protein assembly on hydrophobic graphene. These results provide a deep insight into the fundamental mechanism of protein adsorption onto graphene surface in water.

  5. Interlayer Water Regulates the Bio-nano Interface of a β-sheet Protein stacking on Graphene

    NASA Astrophysics Data System (ADS)

    Lv, Wenping; Xu, Guiju; Zhang, Hongyan; Li, Xin; Liu, Shengju; Niu, Huan; Xu, Dongsheng; Wu, Ren'an

    2015-01-01

    Using molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a β-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH...π interaction driving the attraction of the protein and graphene. The intermolecular coupling of interlayer water would be relaxed by the relative motion of protein upon graphene due to the interaction between water and protein surface. This effect reduced the hindrance of the interlayer water against the assembly of protein on graphene, resulting an appropriate adsorption status of protein on graphene with a deep free energy trap. Thereby, the confinement and the relative sliding between protein and graphene, the coupling of protein and water, and the interaction between graphene and water all have involved in the modulation of behaviors of water molecules within the bio-nano interface, governing the hindrance of interlayer water against the protein assembly on hydrophobic graphene. These results provide a deep insight into the fundamental mechanism of protein adsorption onto graphene surface in water.

  6. Modeling of the motion of automobile elastic wheel in real-time for creation of wheeled vehicles motion control electronic systems

    NASA Astrophysics Data System (ADS)

    Balakina, E. V.; Zotov, N. M.; Fedin, A. P.

    2018-02-01

    Modeling of the motion of the elastic wheel of the vehicle in real-time is used in the tasks of constructing different models in the creation of wheeled vehicles motion control electronic systems, in the creation of automobile stand-simulators etc. The accuracy and the reliability of simulation of the parameters of the wheel motion in real-time when rolling with a slip within the given road conditions are determined not only by the choice of the model, but also by the inaccuracy and instability of the numerical calculation. It is established that the inaccuracy and instability of the calculation depend on the size of the step of integration and the numerical method being used. The analysis of these inaccuracy and instability when wheel rolling with a slip was made and recommendations for reducing them were developed. It is established that the total allowable range of steps of integration is 0.001.0.005 s; the strongest instability is manifested in the calculation of the angular and linear accelerations of the wheel; the weakest instability is manifested in the calculation of the translational velocity of the wheel and moving of the center of the wheel; the instability is less at large values of slip angle and on more slippery surfaces. A new method of the average acceleration is suggested, which allows to significantly reduce (up to 100%) the manifesting of instability of the solution in the calculation of all parameters of motion of the elastic wheel for different braking conditions and for the entire range of steps of integration. The results of research can be applied to the selection of control algorithms in vehicles motion control electronic systems and in the testing stand-simulators

  7. Micro/nano-particles and Cells: Manipulation, Transport, and Self-assembly

    DTIC Science & Technology

    2014-10-23

    SECURITY CLASSIFICATION OF: Technologies that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered...that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered systems that can assemble, transport, and...nano-scale particles offer several advantages as building blocks of artificial materials . The relative ease of modifying their charge states

  8. The influence of motion control shoes on the running gait of mature and young females.

    PubMed

    Lilley, Kim; Stiles, Vicky; Dixon, Sharon

    2013-03-01

    This study compared the running gait of mature and young females, and investigated the effect of a motion control shoe. First, it was hypothesised that in a neutral shoe, mature females would display significantly greater rearfoot eversion, knee internal rotation and external adductor moments when compared to a younger group. Secondly, the motion control shoe would reduce rearfoot eversion and knee internal rotation in both groups. Thirdly it was hypothesised that the motion control shoe would increase knee external adductor moment, through an increase in knee varus and moment arm. 15 mature (40-60 years) and 15 young (18-25 years) females performed 10 running trials at 3.5ms(-1)±5% over a force platform. Two shoes were tested, the Adidas Supernova Glide (neutral), and the Adidas Supernova Sequence (motion control). Ankle and knee joint dynamics were analysed for the right leg, and the mean of ten trials was calculated. Joint moments were calculated using inverse dynamics. In the neutral condition, mature females presented greater peak rearfoot eversion, knee internal rotation, and external adductor moments than young females (p<0.05). A motion control shoe significantly reduced peak rearfoot eversion and knee internal rotation among both groups (p<0.05). No between shoe differences in knee external adductor moment were observed. A motion control shoe is recommended to reduce risk of injury associated with rearfoot eversion and knee internal rotation in mature females. However since the knee external adductor moment is a variable commonly associated with medial knee loading it is suggested that alternative design features are required to influence this moment. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Active Motion Control of Tetrahymena pyriformis by Galvanotaxis and Geotaxis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Byun, Doyoung; Kim, Min Jun

    2013-11-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. These microorganisms naturally accompanied by complex motions. Therefore it is important to understand the flow characteristics as well as control mechanisms. One of eukaryotic cells, the protozoa are a diverse group of unicellular organisms, many of which are motile cilia. Motile cilia are cover on the surface of cell in large numbers and beat in oriented waves. Sequential beating motions of a single cilium form metachronal strokes, producing a propagation wave, and therefore the body is achieved propulsion force. So preliminary studies are achieved to understand the flow induced by swimming microorganisms. Based on hydrodynamic results, the follow study of a few micro-scale protozoa cell, such as the Tetrahymena pyriformis, has provided active or passive control into several external stimuli. In typical control methods, the galvanotaxis and geotaxis were adopted active and passive control, respectively. The validation of galvanotaxis is used DC and AC voltage. In terms of geotaxis, corrugated microstructures were used to control in the microchannel. This research was supported by the Ministry of Education, Science and Technology (MEST, 2011-0016461), National Science Foundation (NSF) CMMI Control Systems Program (#1000255) and Army Research Office (W911NF-11-1-0490).

  10. Polarization speed meter for gravitational-wave detection

    NASA Astrophysics Data System (ADS)

    Wade, Andrew R.; McKenzie, Kirk; Chen, Yanbei; Shaddock, Daniel A.; Chow, Jong H.; McClelland, David E.

    2012-09-01

    We propose a modified configuration of an advanced gravitational-wave detector that is a speed-meter-type interferometer with improved sensitivity with respect to quantum noise. With the addition of polarization-controlling components to the output of an arm cavity Michelson interferometer, an orthogonal polarization state of the interferometer can be used to store signal, returning it later with opposite phase to cancel position information below the storage bandwidth of the opposite mode. This modification provides an alternative to an external kilometer-scale Fabry-Pérot cavity, as presented in earlier work of Purdue and Chen [Phys. Rev. D 66, 122004 (2002)]. The new configuration requires significantly less physical infrastructure to achieve speed meter operation. The quantity of length and alignment degrees of freedom is also reduced. We present theoretical calculations to show that such a speed meter detector is capable of beating the strain sensitivity imposed by the standard quantum limit over a broad range of frequencies for Advanced Laser Interferometer Gravitational-wave Observatory-like parameters. The benefits and possible difficulties of implementing such a scheme are outlined. We also present results for tuning of the speed meter by adjusting the degree of polarization coupling, a novel possibility that does not exist in previously proposed designs, showing that there is a smooth transition from speed meter operation to that of a signal-recycling Michelson behavior.

  11. Motion control of rigid bodies in SE(3)

    NASA Astrophysics Data System (ADS)

    Roza, Ashton

    This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.

  12. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or...

  13. Groundwater-Seepage Meter

    NASA Technical Reports Server (NTRS)

    Walthall, Harry G.; Reay, William G.

    1993-01-01

    Instrument measures seepage of groundwater into inland or coastal body of water. Positioned at depth as great as 40 meters, and measures flow at low rate and low pressure differential. Auxiliary pressure meter provides data for correlation of flow of groundwater with tides and sea states. Seepage meter operates independently for several weeks. Its sampling rate adjusted to suit hydrologic conditions; to measure more frequently when conditions changing rapidly. Used in water-quality management and for biological and geological research. Potential industrial uses include measurement of seepage of caustic and corrosive liquids.

  14. Dual stimuli-responsive nano-vehicles for controlled drug delivery: mesoporous silica nanoparticles end-capped with natural chitosan.

    PubMed

    Hakeem, Abdul; Duan, Ruixue; Zahid, Fouzia; Dong, Chao; Wang, Boya; Hong, Fan; Ou, Xiaowen; Jia, Yongmei; Lou, Xiaoding; Xia, Fan

    2014-11-11

    Herein, we report natural chitosan end-capped MCM-41 type MSNPs as novel, dual stimuli, responsive nano-vehicles for controlled anticancer drug delivery. The chitosan nanovalves tightly close the pores of the MSNPs to control premature cargo release under physiological conditions but respond to lysozyme and acidic media to release the trapped cargo.

  15. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, <20 cm radius) in a darkened room is utilized to elicit otolith reflexes in the lateral plane without concordant canal or visual cues. A Tilt-Translation Sled (TTS) is capable of synchronizing pitch tilt with fore-aft translation to align the resultant gravitoinertial vector with the longitudinal body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a

  16. Structure from Motion vs. the Kinect: Comparisons of River Field Measurements at the 10-2 to 102 meter Scales

    NASA Astrophysics Data System (ADS)

    Fonstad, M. A.; Dietrich, J. T.

    2014-12-01

    At the very smallest spatial scales of fluvial field analysis, measurements made historically in situ are often now supplemented, or even replaced by, remote sensing methods. This is particularly true in the case of topographic and particle size measurement. In the field, the scales of in situ observation usually range from millimeters up to hundreds of meters. Two recent approaches for remote mapping of river environments at the scales of historical in situ observations are (1) camera-based structure from motion (SfM), and (2) active patterned-light measurement with devices such as the Kinect. Even if only carried by hand, these two approaches can produce topographic datasets over three to four orders of magnitude of spatial scale. Which approach is most useful? Previous studies have demonstrated that both SfM and the Kinect are precise and accurate over in situ field measurement scales; we instead turn to alternate comparative metrics to help determine which tools might be best for our river measurement tasks. These metrics might include (1) the ease of field use, (2) which general environments are or are not amenable to measurement, (3) robustness to changing environmental conditions, (4) ease of data processing, and (5) cost. We test these metrics in a variety of bar-scale fluvial field environments, including a large-river cobble bar, a sand-bedded river point bar, and a complex mountain stream bar. The structure from motion approach is field-equipment inexpensive, is viable over a wide range of environmental conditions, and is highly spatially scalable. The approach requires some type of spatial referencing to make the data useful. The Kinect has the advantages of an almost real-time display of collected data, so problems can be detected quickly, being fast and easy to use, and the data are collected with arbitrary but metric coordinates, so absolute referencing isn't needed to use the data for many problems. It has the disadvantages of its light field

  17. Combining and Comparing Astrometric Data from Different Epochs: A Case Study with Hipparcos and Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Michalik, D.; Lindegren, L.; Hobbs, D.; Lammers, U.; Yamada, Y.

    2012-09-01

    The Hipparcos mission (1989-1993) resulted in the first space-based stellar catalogue including measurements of positions, parallaxes and annual proper motions accurate to about one milli-arcsecond. More space astrometry missions will follow in the near future. The ultra-small Japanese mission Nano-JASMINE (launch in late 2013) will determine positions and annual proper motions with some milli-arcsecond accuracy. In mid 2013 the next-generation ESA mission Gaia will deliver some tens of micro-arcsecond accurate astrometric parameters. Until the final Gaia catalogue is published in early 2020 the best way of improving proper motion values is the combination of positions from different missions separated by long time intervals. Rather than comparing positions from separately reduced catalogues, we propose an optimal method to combine the information from the different data sets by making a joint astrometric solution. This allows to obtain good results even when each data set alone is insufficient for an accurate reduction. We demonstrate our method by combining Hipparcos and simulated Nano-JASMINE data in a joint solution. We show a significant improvement over the conventional catalogue combination.

  18. An improved adaptive control for repetitive motion of robots

    NASA Technical Reports Server (NTRS)

    Pourboghrat, F.

    1989-01-01

    An adaptive control algorithm is proposed for a class of nonlinear systems, such as robotic manipulators, which is capable of improving its performance in repetitive motions. When the task is repeated, the error between the desired trajectory and that of the system is guaranteed to decrease. The design is based on the combination of a direct adaptive control and a learning process. This method does not require any knowledge of the dynamic parameters of the system.

  19. Development of Visual Motion Perception for Prospective Control: Brain and Behavioral Studies in Infants

    PubMed Central

    Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2016-01-01

    During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908

  20. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  1. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  2. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  3. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  4. Redox control of molecular motion in switchable artificial nanoscale devices.

    PubMed

    Credi, Alberto; Semeraro, Monica; Silvi, Serena; Venturi, Margherita

    2011-03-15

    The design, synthesis, and operation of molecular-scale systems that exhibit controllable motions of their component parts is a topic of great interest in nanoscience and a fascinating challenge of nanotechnology. The development of this kind of species constitutes the premise to the construction of molecular machines and motors, which in a not-too-distant future could find applications in fields such as materials science, information technology, energy conversion, diagnostics, and medicine. In the past 25 years the development of supramolecular chemistry has enabled the construction of an interesting variety of artificial molecular machines. These devices operate via electronic and molecular rearrangements and, like the macroscopic counterparts, they need energy to work as well as signals to communicate with the operator. Here we outline the design principles at the basis of redox switching of molecular motion in artificial nanodevices. Redox processes, chemically, electrically, or photochemically induced, can indeed supply the energy to bring about molecular motions. Moreover, in the case of electrically and photochemically induced processes, electrochemical and photochemical techniques can be used to read the state of the system, and thus to control and monitor the operation of the device. Some selected examples are also reported to describe the most representative achievements in this research area.

  5. Assessing Tactical Scheduler Options for Time-Based Surface Metering

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Windhorst, Robert

    2017-01-01

    NASA is committed to demonstrating a concept of integrated arrival, departure, and surface operations by 2020 under the Airspace Technology Demonstration 2 (ATD2) sub-project. This will be accomplished starting with a demonstration of flight specific time-based departure metering at Charlotte Douglass International Airport (CLT). ATD2 tactical metering capability is based on NASAs Spot And Runway Departure Advisor (SARDA) which has been tested successfully in human-in-the-loop simulations of CLT. SARDA makes use of surface surveillance data and surface modeling to estimate the earliest takeoff time for each flight active on the airport surface or ready for pushback from the gate. The system then schedules each flight to its assigned runway in order of earliest takeoff time and assigns a target pushback time, displayed to ramp controllers as an advisory gate hold time. The objective of this method of departure metering is to move as much delay as possible to the gate to minimize surface congestion and engine on-time, while keeping sufficient pressure on the runway to maintain throughput. This flight specific approached enables greater flight efficiency and predictability, facilitating trajectory-based operations and surface-airspace integration, which ATD2 aims to achieve.Throughout ATD2 project formulation and system development, researchers have continuously engaged with stakeholders and future users, uncovering key system requirements for tactical metering that SARDA did not address. The SARDA scheduler is updated every 10 seconds using real-time surface surveillance data to ensure the most up-to-date information is used to predict runway usage. However, rapid updates also open the potential for fluctuating advisories, which Ramp controllers at a busy airport like CLT find unacceptable. Therefore, ATD2 tactical metering requires that all advisories freeze once flights are ready so that Ramp controllers may communicate a single hold time when responding to pilot

  6. Velocity profile survey in a 16-in. custody-transfer orifice meter for natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, J.J.S.

    1991-02-01

    This paper describes a research project conducted at Chevron U.S.A. Inc.'s Venice, LA, facility to ascertain that the flow condition inside a nominal 16-in. (406-mm) custody-transfer orifice meter was in compliance with American Gas Assn. (AGA) requirements. The survey was conducted at four flow rates ranging from 160 to 200 MMscf/D (4.53 {times} 10{sup 6} to 5.66 {times} 10{sup 6} std m{sup 3}/d) of processed natural gas at 880 psia (6.1 MPa). Experimental data were collected by a portable data-acquisition system driven by a lap-top microcomputer. The measured profiles indicated that the flow was nearly fully developed at the orificemore » plate location, and no significant swirling motion was detected. This test successfully demonstrated the techniques and equipment developed for determining actual flow distributions inside orifice meters in the field under normal operating conditions. This technology can be used to detect detrimental flow profiles and to verify compliance with AGA requirements on flow conditions in custody-transfer orifice meters.« less

  7. How NASA KSC Controls Interfaces with the use of Motion Skeletons and Product Structure

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2013-01-01

    This presentation will show how NASA KSC controls interfaces for Modular Product Architecture (MPA) using Locator Skeletons, Interface Skeletons, and Product Structure, to be combined together within a Motion Skeleton. The user will learn how to utilize skeleton models to communicate interface data, as successfully done at NASA KSC in their use of Motion Skeletons to control interfaces for multi-launch systems. There will be discussion of the methodology used to control design requirements through WTParts, and how to utilize product structure for non-CAD documents.

  8. Motion control of musculoskeletal systems with redundancy.

    PubMed

    Park, Hyunjoo; Durand, Dominique M

    2008-12-01

    Motion control of musculoskeletal systems for functional electrical stimulation (FES) is a challenging problem due to the inherent complexity of the systems. These include being highly nonlinear, strongly coupled, time-varying, time-delayed, and redundant. The redundancy in particular makes it difficult to find an inverse model of the system for control purposes. We have developed a control system for multiple input multiple output (MIMO) redundant musculoskeletal systems with little prior information. The proposed method separates the steady-state properties from the dynamic properties. The dynamic control uses a steady-state inverse model and is implemented with both a PID controller for disturbance rejection and an artificial neural network (ANN) feedforward controller for fast trajectory tracking. A mechanism to control the sum of the muscle excitation levels is also included. To test the performance of the proposed control system, a two degree of freedom ankle-subtalar joint model with eight muscles was used. The simulation results show that separation of steady-state and dynamic control allow small output tracking errors for different reference trajectories such as pseudo-step, sinusoidal and filtered random signals. The proposed control method also demonstrated robustness against system parameter and controller parameter variations. A possible application of this control algorithm is FES control using multiple contact cuff electrodes where mathematical modeling is not feasible and the redundancy makes the control of dynamic movement difficult.

  9. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy

    NASA Astrophysics Data System (ADS)

    Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray

    2007-09-01

    Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the

  10. Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance.

    PubMed

    Anomasiri, Wilai; Sanguanrungsirikul, Sompol; Saichandee, Pisut

    2004-09-01

    This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.

  11. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training.

    PubMed

    Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua

    2015-06-01

    Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.

  12. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training

    NASA Astrophysics Data System (ADS)

    Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua

    2015-06-01

    Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.

  13. 1-Meter Digital Elevation Model specification

    USGS Publications Warehouse

    Arundel, Samantha T.; Archuleta, Christy-Ann M.; Phillips, Lori A.; Roche, Brittany L.; Constance, Eric W.

    2015-10-21

    In January 2015, the U.S. Geological Survey National Geospatial Technical Operations Center began producing the 1-Meter Digital Elevation Model data product. This new product was developed to provide high resolution bare-earth digital elevation models from light detection and ranging (lidar) elevation data and other elevation data collected over the conterminous United States (lower 48 States), Hawaii, and potentially Alaska and the U.S. territories. The 1-Meter Digital Elevation Model consists of hydroflattened, topographic bare-earth raster digital elevation models, with a 1-meter x 1-meter cell size, and is available in 10,000-meter x 10,000-meter square blocks with a 6-meter overlap. This report details the specifications required for the production of the 1-Meter Digital Elevation Model.

  14. Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls

    PubMed Central

    Chae, Jeongsook; Jin, Yong; Sung, Yunsick

    2018-01-01

    Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641

  15. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    NASA Astrophysics Data System (ADS)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  16. Synchronized motion control and precision positioning compensation of a 3-DOFs macro-micro parallel manipulator fully actuated by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Li, Chaodong; Zhang, Jiantao; Zhang, Xu

    2017-11-01

    The macro-micro combined approach, as an effective way to realize trans-scale nano-precision positioning with multi-dimensions and high velocity, plays a significant role in integrated circuit manufacturing field. A 3-degree-of-freedoms (3-DOFs) macro-micro manipulator is designed and analyzed to compromise the conflictions among the large stroke, high precision and multi-DOFs. The macro manipulator is a 3-Prismatic-Revolute-Revolute (3-PRR) structure parallel manipulator which is driven by three linear ultrasonic motors. The dynamic model and the cross-coupling error based synchronized motion controller of the 3-PRR parallel manipulator are theoretical analyzed and experimental tested. To further improve the positioning accuracy, a 3-DOFs monolithic compliant manipulator actuated by three piezoelectric stack actuators is designed. Then a multilayer BP neural network based inverse kinematic model identifier is developed to perform the positioning control. Finally, by forming the macro-micro structure, the dual stage manipulator successfully achieved the positioning task from the point (2 mm, 2 mm, 0 rad) back to the original point (0 mm, 0 mm, 0 rad) with the translation errors in X and Y directions less than ±50 nm and the rotation error around Z axis less than ±1 μrad, respectively.

  17. Combustion products generating and metering device

    NASA Technical Reports Server (NTRS)

    Wiberg, R. E.; Klisch, J. A.

    1974-01-01

    Device simulates incipient fire conditions in closely-controlled adjustable manner, to give predetermined degree of intensity at selected locations throughout area, and to verify that detection system will respond. Device can be used with and for cross calibration and experimentation in conjunction with commercially available products of combustion analyzing meters.

  18. Optimal control of the ballistic motion of Airy beams.

    PubMed

    Hu, Yi; Zhang, Peng; Lou, Cibo; Huang, Simon; Xu, Jingjun; Chen, Zhigang

    2010-07-01

    We demonstrate the projectile motion of two-dimensional truncated Airy beams in a general ballistic trajectory with controllable range and height. We show that the peak beam intensity can be delivered to any desired location along the trajectory as well as repositioned to a given target after displacement due to propagation through disordered or turbulent media.

  19. Response analysis of curved bridge with unseating failure control system under near-fault ground motions

    NASA Astrophysics Data System (ADS)

    Zuo, Ye; Sun, Guangjun; Li, Hongjing

    2018-01-01

    Under the action of near-fault ground motions, curved bridges are prone to pounding, local damage of bridge components and even unseating. A multi-scale fine finite element model of a typical three-span curved bridge is established by considering the elastic-plastic behavior of piers and pounding effect of adjacent girders. The nonlinear time-history method is used to study the seismic response of the curved bridge equipped with unseating failure control system under the action of near-fault ground motion. An in-depth analysis is carried to evaluate the control effect of the proposed unseating failure control system. The research results indicate that under the near-fault ground motion, the seismic response of the curved bridge is strong. The unseating failure control system perform effectively to reduce the pounding force of the adjacent girders and the probability of deck unseating.

  20. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  1. An alternative arrangement of metered dosing fluid using centrifugal pump

    NASA Astrophysics Data System (ADS)

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for

  2. Content and structure of knowledge base used for virtual control of android arm motion in specified environment

    NASA Astrophysics Data System (ADS)

    Pritykin, F. N.; Nebritov, V. I.

    2018-01-01

    The paper presents the configuration of knowledge base necessary for intelligent control of android arm mechanism motion with different positions of certain forbidden regions taken into account. The present structure of the knowledge base characterizes the past experience of arm motion synthesis in the vector of velocities with due regard for the known obstacles. This structure also specifies its intrinsic properties. Knowledge base generation is based on the study of the arm mechanism instantaneous states implementations. Computational experiments connected with the virtual control of android arm motion with known forbidden regions using the developed knowledge base are introduced. Using the developed knowledge base to control virtually the arm motion reduces the time of test assignments calculation. The results of the research can be used in developing control systems of autonomous android robots in the known in advance environment.

  3. Hand interception of occluded motion in humans: a test of model-based vs. on-line control

    PubMed Central

    Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. PMID:26133803

  4. Controlled propulsion and separation of helical particles at the nanoscale.

    PubMed

    Alcanzare, Maria Michiko T; Thakore, Vaibhav; Ollila, Santtu T T; Karttunen, Mikko; Ala-Nissila, Tapio

    2017-03-15

    Controlling the motion of nano and microscale objects in a fluid environment is a key factor in designing optimized tiny machines that perform mechanical tasks such as transport of drugs or genetic material in cells, fluid mixing to accelerate chemical reactions, and cargo transport in microfluidic chips. Directed motion is made possible by the coupled translational and rotational motion of asymmetric particles. A current challenge in achieving directed and controlled motion at the nanoscale lies in overcoming random Brownian motion due to thermal fluctuations in the fluid. We use a hybrid lattice-Boltzmann molecular dynamics method with full hydrodynamic interactions and thermal fluctuations to demonstrate that controlled propulsion of individual nanohelices in an aqueous environment is possible. We optimize the propulsion velocity and the efficiency of externally driven nanohelices. We quantify the importance of the thermal effects on the directed motion by calculating the Péclet number for various shapes, number of turns and pitch lengths of the helices. Consistent with the experimental microscale separation of chiral objects, our results indicate that in the presence of thermal fluctuations at Péclet numbers >10, chiral particles follow the direction of propagation according to its handedness and the direction of the applied torque making separation of chiral particles possible at the nanoscale. Our results provide criteria for the design and control of helical machines at the nanoscale.

  5. Extended state observer-based motion synchronisation control for hybrid actuation system of large civil aircraft

    NASA Astrophysics Data System (ADS)

    Wang, Xingjian; Shi, Cun; Wang, Shaoping

    2017-07-01

    Hybrid actuation system with dissimilar redundant actuators, which is composed of a hydraulic actuator (HA) and an electro-hydrostatic actuator (EHA), has been applied on modern civil aircraft to improve the reliability. However, the force fighting problem arises due to different dynamic performances between HA and EHA. This paper proposes an extended state observer (ESO)-based motion synchronisation control method. To cope with the problem of unavailability of the state signals, the well-designed ESO is utilised to observe the HA and EHA state variables which are unmeasured. In particular, the extended state of ESO can estimate the lumped effect of the unknown external disturbances acting on the control surface, the nonlinear dynamics, uncertainties, and the coupling term between HA and EHA. Based on the observed states of ESO, motion synchronisation controllers are presented to make HA and EHA to simultaneously track the desired motion trajectories, which are generated by a trajectory generator. Additionally, the unknown disturbances and the coupling terms can be compensated by using the extended state of the proposed ESO. Finally, comparative simulation results indicate that the proposed ESO-based motion synchronisation controller can achieve great force fighting reduction between HA and EHA.

  6. Ramp metering : a review of the literature.

    DOT National Transportation Integrated Search

    1998-01-01

    Ramp metering is an effective, viable, and practical strategy used to manage freeway traffic. It is a proven freeway management technique as various forms of ramp control have been in place since the 1960s in the Chicago, Detroit, and Los Angeles are...

  7. Application of a Leap Motion Sensor for Improved Drone Control

    DTIC Science & Technology

    2017-12-01

    command ( )u t needed to control the distance error ( )e t was obtained using         0 1 t p d i de t u t K e t e d T T dt...SENSOR FOR IMPROVED DRONE CONTROL by Alfredo Belaunde Sara-Lafosse December 2017 Thesis Advisor: Xiaoping Yun Second Reader: James Calusdian THIS...thesis 4. TITLE AND SUBTITLE APPLICATION OF A LEAP MOTION SENSOR FOR IMPROVED DRONE CONTROL 5. FUNDING NUMBERS 6. AUTHOR(S) Alfredo Belaunde Sara

  8. Nano-fabricated size exclusion chromatograph

    NASA Technical Reports Server (NTRS)

    Svehla, D.; Feldman, S.; Feldman, J.; Grunthaner, F.; Shakkottai, P.; Castillo, L. del; White, V.

    2002-01-01

    This paper describes the development of a nano-fabricated size exclusion chromatograph (nSEC) based on the principle that molecules traveling through amicrocolumn containing nano-fabricated features will have characteristic elution times that directly correlate to molecular weight. Compared to conventional size exclusion chromatography, the nSEC offers greater control over the size exclusion process; mass fabrication; integration of the separation column with associated valves, pumps, and detectors; and dramatic reductions in instrument mass and power requirements.

  9. Thermal effects in nano-sized adsorbate islands growth processes at vapor deposition

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Dvornichenko, Alina V.

    2016-02-01

    We study a model of pattern formation in adsorptive systems with a local change in the surface temperature due to adsorption/desorption processes. It is found that thermal effects shrink the domain of main system parameters, when pattern formation is possible. It is shown that an increase in a surface reheat efficiency delays ordering processes. We have found that a distribution of adsorbate islands over sizes depends on relaxation and reheat processes. We have shown that the mean linear size of stationary adsorbate islands is of nano-meter range.

  10. PSD Camera Based Position and Posture Control of Redundant Robot Considering Contact Motion

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Kotani, Kentaro

    The paper describes a position and posture controller design based on the absolute position by external PSD vision sensor for redundant robot manipulator. The redundancy enables a potential capability to avoid obstacle while continuing given end-effector jobs under contact with middle link of manipulator. Under contact motion, the deformation due to joint torsion obtained by comparing internal and external position sensor, is actively suppressed by internal/external position hybrid controller. The selection matrix of hybrid loop is given by the function of the deformation. And the detected deformation is also utilized in the compliant motion controller for passive obstacle avoidance. The validity of the proposed method is verified by several experimental results of 3link planar redundant manipulator.

  11. Model Performance of Water-Current Meters

    USGS Publications Warehouse

    Fulford, J.M.; ,

    2002-01-01

    The measurement of discharge in natural streams requires hydrographers to use accurate water-current meters that have consistent performance among meters of the same model. This paper presents the results of an investigation into the performance of four models of current meters - Price type-AA, Price pygmy, Marsh McBirney 2000 and Swoffer 2100. Tests for consistency and accuracy for six meters of each model are summarized. Variation of meter performance within a model is used as an indicator of consistency, and percent velocity error that is computed from a measured reference velocity is used as an indicator of meter accuracy. Velocities measured by each meter are also compared to the manufacturer's published or advertised accuracy limits. For the meters tested, the Price models werer found to be more accurate and consistent over the range of test velocities compared to the other models. The Marsh McBirney model usually measured within its accuracy specification. The Swoffer meters did not meet the stringent Swoffer accuracy limits for all the velocities tested.

  12. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.

    PubMed

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung

    2017-07-01

    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.

  14. Nonlinear dynamics and chaotic motions in feedback-controlled two- and three-degree-of-freedom robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravishankar, A.S. Ghosal, A.

    1999-01-01

    The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper, the authors analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. The authors first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zeromore » or positive, then the robot equations cannot exhibit chaos. The authors show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, they analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator, respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, the authors resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and the authors show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.« less

  15. [Effect of nano-hydroxyapatite to glass ionomer cement].

    PubMed

    Mu, Ya-Bing; Zang, Guang-Xiang; Sun, Hong-Chen; Wang, Cheng-Kun

    2007-12-01

    To investigate the mechanical character, microleakage and mineralizing potential of nano-hydroxyapatite (nano-HAP)-added glass ionomer cement(GIC). 8% nano-HAP were incorporated into GIC as composite, and pure GIC as control. Both types of material were used to make 20 cylinders respectively in order to detect three-point flexural strength and compressive strength. Class V cavities were prepared in 120 molars extracted for orthodontic treatment, then were filled by two kinds of material. The microleakage at the composite-dentine interface was observed with confocal laser scanning microscope (CLSM) after stained with 1% rhodamin-B-isothiocyanate for 24 hours. Class V cavities were prepared in the molars of 4 healthy dogs, filled with composite, and the same molars in the other side were filled with GIC as control. The teeth were extracted to observe the mineralizing property with polarimetric microscope in 8 weeks after filling. Three-point flexural strength and compressive of nano-HAP-added GIC were increased compared with pure GIC (P < 0.001, P < 0.05). The nanoleakages and microleakages appeared at the material-dentine interface in the two groups, but there were more microleakages in control group than in experiment group (P = 0.004). New crystals of hydroxyapatite were formed into a new mineralizing zone at the interface of tooth and nano-HAP-added GIC, while there was no hydroxyapatite crystals formed at the interface of tooth and pure GIC. 8% nano-HAP-added GIC can tightly fill tooth and have mineralizing potential, and can be used as liner or filling material for prevention.

  16. Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan

    2017-11-01

    Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.

  17. Finite element analysis of cylinder shell resonator and design of intelligent density meter

    NASA Astrophysics Data System (ADS)

    W, Sui X.; M, Fan Y.; X, Zhang G.; R, Qiu Z.

    2005-01-01

    On the basis of the mathematical model and finite element analysis of the cylinder shell resonator, a novel resonant liquid density meter is designed. The meter consists of a cylinder shell resonator fixed on both ends, a measurement circuit with automatic gain control and automatic phase control, and a signal processing system with microcomputer unit C8051F021. The density meter is insensitive to the liquid pressure, and it can intelligently compensate for the temperature. The experiment results show the meter characteristic coefficients of K0, K1, and K2 at 25 centigrade are -129.5668 kg m-3, -0.2535 × 106 kg m-3 s-1 and 0.6239 × 1010 kg m-3 s-2, respectively. The accuracy of the sensor is ±0.1% in range of 700-900 kg m-3

  18. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  19. Cross-cultural differences in meter perception.

    PubMed

    Kalender, Beste; Trehub, Sandra E; Schellenberg, E Glenn

    2013-03-01

    We examined the influence of incidental exposure to varied metrical patterns from different musical cultures on the perception of complex metrical structures from an unfamiliar musical culture. Adults who were familiar with Western music only (i.e., simple meters) and those who also had limited familiarity with non-Western music were tested on their perception of metrical organization in unfamiliar (Turkish) music with simple and complex meters. Adults who were familiar with Western music detected meter-violating changes in Turkish music with simple meter but not in Turkish music with complex meter. Adults with some exposure to non-Western music that was unmetered or metrically complex detected meter-violating changes in Turkish music with both simple and complex meters, but they performed better on patterns with a simple meter. The implication is that familiarity with varied metrical structures, including those with a non-isochronous tactus, enhances sensitivity to the metrical organization of unfamiliar music.

  20. Experimental investigation of shaping disturbance observer design for motion control of precision mechatronic stages with resonances

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Hu, Chuxiong; Zhu, Yu; Wang, Ze; Zhang, Ming

    2017-08-01

    In this paper, shaping disturbance observer (SDOB) is investigated for precision mechatronic stages with middle-frequency zero/pole type resonance to achieve good motion control performance in practical manufacturing situations. Compared with traditional standard disturbance observer (DOB), in SDOB a pole-zero cancellation based shaping filter is cascaded to the mechatronic stage plant to meet the challenge of motion control performance deterioration caused by actual resonance. Noting that pole-zero cancellation is inevitably imperfect and the controller may even consequently become unstable in practice, frequency domain stability analysis is conducted to find out how each parameter of the shaping filter affects the control stability. Moreover, the robust design criterion of the shaping filter, and the design procedure of SDOB, are both proposed to guide the actual design and facilitate practical implementation. The SDOB with the proposed design criterion is applied to a linear motor driven stage and a voice motor driven stage, respectively. Experimental results consistently validate the effectiveness nature of the proposed SDOB scheme in practical mechatronics motion applications. The proposed SDOB design actually could be an effective unit in the controller design for motion stages of mechanical manufacture equipments.

  1. Cancer-meter: measure and cure.

    PubMed

    Kashyap, Sunil Kumar; Sharma, Birendra Kumar; Banerjee, Amitabh

    2017-05-01

    This paper presents a theory and system on "Cancer-Meter'. This idea came through the statement that "cancer is curable if it is measurable". The Cancer-Meter proves that it is possible. This paper proposes the cancer-meter in two ways, theoretical and electronically, as per the measurement and treatment. By the mathematics, first part is defined but the second part is based on computer programming, electrical and electronics. Thus, the cancer-meter is a programmed-electrical-electronic device which measures and cures the cancer both.

  2. Relative dynamics and motion control of nanosatellite formation flying

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin; Hiraki, Koju

    2016-04-01

    Orbit selection is a necessary factor in nanosatellite formation mission design/meanwhile, to keep the formation, it is necessary to consume fuel. Therefore, the best orbit design for nanosatellite formation flying should be one that requires the minimum fuel consumption. The purpose of this paper is to analyse orbit selection with respect to the minimum fuel consumption, to provide a convenient way to estimate the fuel consumption for keeping nanosatellite formation flying and to present a simplified method of formation control. The formation structure is disturbed by J2 gravitational perturbation and other perturbing accelerations such as atmospheric drag. First, Gauss' Variation Equations (GVE) are used to estimate the essential ΔV due to the J2 perturbation and atmospheric drag. The essential ΔV presents information on which orbit is good with respect to the minimum fuel consumption. Then, the linear equations which account for J2 gravitational perturbation of Schweighart-Sedwick are presented and used to estimate the fuel consumption to maintain the formation structure. Finally, the relative dynamics motion is presented as well as a simplified motion control of formation structure by using GVE.

  3. Hand interception of occluded motion in humans: a test of model-based vs. on-line control.

    PubMed

    La Scaleia, Barbara; Zago, Myrka; Lacquaniti, Francesco

    2015-09-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. Copyright © 2015 the American Physiological Society.

  4. A very small astrometry satellite mission: Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Gouda, G.; Tsujimoto, T.; Yano, T.; Suganuma, M.; Yamauchi, M.; Takato, N.; Miyazaki, S.; Yamada, Y.; Sako, N.; Nakasuka, S.

    2006-08-01

    The current status of the nano-JASMINE project is presented. Nano-JASMINE--a very small satellite weighing less than 10 kg--aims to carry out astrometry measurements of nearby bright stars. This satellite adopts the same observation technique that was used by the HIPPARCOS satellite. In this technique, simultaneous measurements in two different fields of view separated by an angle that is greater than 90 degrees are carried out; these measurements are performed in the course of continuous scanning observations of the entire sky. This technique enables us to distinguish between an irregularity in the spin velocity and the distribution of stellar positions. There is a major technical difference between the nano-JASMINE and the HIPPARCOS satellites--the utilization of a CCD sensor in nano-JASMINE that makes it possible to achieve an astrometry accuracy comparable to that achieved by HIPPARCOS by using an extremely small telescope. We developed a prototype of the observation system and evaluated its performance. The telescope (5cm) including a beam combiner composed entirely of aluminum. The telescope is based on the standard Ritchey-Chretien optical system and has a composite f-ratio of 33 that enables the matching of the Airy disk size to three times the CCD pixel size of 15um. A full depletion CCD will be used in the time delay integration (TDI) mode in order to efficiently survey the whole sky in wavelengths including the near infrared. The nano-JASMINE satellite is being developed as a piggyback system and is [S: scheduled for launch in 2008. We expect the satellite to measure the position and proper motion of bright stars (mz< 8.3) with an accuracy of 1 mas, this is comparable to the accuracy achieved with the HIPPARCOS satellite.

  5. Control of large space structures

    NASA Technical Reports Server (NTRS)

    Gran, R.; Rossi, M.; Moyer, H. G.; Austin, F.

    1979-01-01

    The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only.

  6. Optical motion control of maglev graphite.

    PubMed

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  7. Squeezed cooling of mechanical motion beyond the resolved-sideband limit

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Zhang, Lin; Zhang, Weiping

    2018-04-01

    Cavity optomechanics provides a unique platform for controlling micromechanical systems by means of optical fields that cross the classical-quantum boundary to achieve solid foundations for quantum technologies. Currently, optomechanical resonators have become promising candidates for the development of precisely controlled nano-motors, ultrasensitive sensors and robust quantum information processors. For all these applications, a crucial requirement is to cool the mechanical resonators down to their quantum ground states. In this paper, we present a novel cooling scheme to further cool a micromechanical resonator via the noise squeezing effect. One quadrature in such a resonator can be squeezed to induce enhanced fluctuations in the other, “heated” quadrature, which can then be used to cool the mechanical motion via conventional optomechanical coupling. Our theoretical analysis and numerical calculations demonstrate that this squeeze-and-cool mechanism offers a quick technique for deeply cooling a macroscopic mechanical resonator to an unprecedented temperature region below the zero-point fluctuations.

  8. In-situ comprehensive calibration of a tri-port nano-electro-mechanical device.

    PubMed

    Collin, E; Defoort, M; Lulla, K; Moutonet, T; Heron, J-S; Bourgeois, O; Bunkov, Yu M; Godfrin, H

    2012-04-01

    We report on experiments performed in vacuum and at cryogenic temperatures on a tri-port nano-electro-mechanical (NEMS) device. One port is a very nonlinear capacitive actuation, while the two others implement the magnetomotive scheme with a linear input force port and a (quasi-linear) output velocity port. We present an experimental method enabling a full characterization of the nanomechanical device harmonic response: the nonlinear capacitance function C(x) is derived, and the normal parameters k and m (spring constant and mass) of the mode under study are measured through a careful definition of the motion (in meters) and of the applied forces (in Newtons). These results are obtained with a series of purely electric measurements performed without disconnecting/reconnecting the device, and rely only on known dc properties of the circuit, making use of a thermometric property of the oscillator itself: we use the Young modulus of the coating metal as a thermometer, and the resistivity for Joule heating. The setup requires only three connecting lines without any particular matching, enabling the preservation of a high impedance NEMS environment even at MHz frequencies. The experimental data are fit to a detailed electrical and thermal model of the NEMS device, demonstrating a complete understanding of its dynamics. These methods are quite general and can be adapted (as a whole, or in parts) to a large variety of electromechanical devices. © 2012 American Institute of Physics

  9. Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.

    1997-01-01

    The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.

  10. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.

    PubMed

    Lahanas, Vasileios; Loukas, Constantinos; Georgiou, Konstantinos; Lababidi, Hani; Al-Jaroudi, Dania

    2017-12-01

    The majority of the current surgical simulators employ specialized sensory equipment for instrument tracking. The Leap Motion controller is a new device able to track linear objects with sub-millimeter accuracy. The aim of this study was to investigate the potential of a virtual reality (VR) simulator for assessment of basic laparoscopic skills, based on the low-cost Leap Motion controller. A simple interface was constructed to simulate the insertion point of the instruments into the abdominal cavity. The controller provided information about the position and orientation of the instruments. Custom tools were constructed to simulate the laparoscopic setup. Three basic VR tasks were developed: camera navigation (CN), instrument navigation (IN), and bimanual operation (BO). The experiments were carried out in two simulation centers: MPLSC (Athens, Greece) and CRESENT (Riyadh, Kingdom of Saudi Arabia). Two groups of surgeons (28 experts and 21 novices) participated in the study by performing the VR tasks. Skills assessment metrics included time, pathlength, and two task-specific errors. The face validity of the training scenarios was also investigated via a questionnaire completed by the participants. Expert surgeons significantly outperformed novices in all assessment metrics for IN and BO (p < 0.05). For CN, a significant difference was found in one error metric (p < 0.05). The greatest difference between the performances of the two groups occurred for BO. Qualitative analysis of the instrument trajectory revealed that experts performed more delicate movements compared to novices. Subjects' ratings on the feedback questionnaire highlighted the training value of the system. This study provides evidence regarding the potential use of the Leap Motion controller for assessment of basic laparoscopic skills. The proposed system allowed the evaluation of dexterity of the hand movements. Future work will involve comparison studies with validated simulators and

  11. In silico reconstitution of Listeria propulsion exhibits nano-saltation.

    PubMed

    Alberts, Jonathan B; Odell, Garrett M

    2004-12-01

    To understand how the actin-polymerization-mediated movements in cells emerge from myriad individual protein-protein interactions, we developed a computational model of Listeria monocytogenes propulsion that explicitly simulates a large number of monomer-scale biochemical and mechanical interactions. The literature on actin networks and L. monocytogenes motility provides the foundation for a realistic mathematical/computer simulation, because most of the key rate constants governing actin network dynamics have been measured. We use a cluster of 80 Linux processors and our own suite of simulation and analysis software to characterize salient features of bacterial motion. Our "in silico reconstitution" produces qualitatively realistic bacterial motion with regard to speed and persistence of motion and actin tail morphology. The model also produces smaller scale emergent behavior; we demonstrate how the observed nano-saltatory motion of L. monocytogenes,in which runs punctuate pauses, can emerge from a cooperative binding and breaking of attachments between actin filaments and the bacterium. We describe our modeling methodology in detail, as it is likely to be useful for understanding any subcellular system in which the dynamics of many simple interactions lead to complex emergent behavior, e.g., lamellipodia and filopodia extension, cellular organization, and cytokinesis.

  12. Novel Organic Field Effect Transistors via Nano-Modification

    DTIC Science & Technology

    2005-07-01

    mobility by using two kinds of nano-scale films. One is to apply the photoalignment method on a nano-scale film to control the orientation of pentacene ...scale film (polymer electrolyte) to control moving of ions in/out an active semiconducor, pentacene or conducting polymer, for improving carrier...mobility. In this project, pentacene or a series of conducting polymers, such as the derivatives of PANI and P3HT will be patterned and manufactured in

  13. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  14. Infrasonic induced ground motions

    NASA Astrophysics Data System (ADS)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  15. Ultra-Stable Segmented Telescope Sensing and Control Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Bolcar, Matthew; Knight, Scott; Redding, David

    2017-01-01

    The LUVOIR team is conducting two full architecture studies Architecture A 15 meter telescope that folds up in an 8.4m SLS Block 2 shroud is nearly complete. Architecture B 9.2 meter that uses an existing fairing size will begin study this Fall. This talk will summarize the ultra-stable architecture of the 15m segmented telescope including the basic requirements, the basic rationale for the architecture, the technologies employed, and the expected performance. This work builds on several dynamics and thermal studies performed for ATLAST segmented telescope configurations. The most important new element was an approach to actively control segments for segment to segment motions which will be discussed later.

  16. Electric moisture meters for wood

    Treesearch

    William L. James

    1988-01-01

    Electric moisture meters for wood measure electric conductance (resistance) or dielectric properties, which vary fairly consistently with moisture content when it is less than 30 percent. The two major classes of electric moisture meters are the conductance (resistance) type and the dielectric type. Conductance-t ype meters use penetrating electrodes that measure in a...

  17. Ramp meter design manual

    DOT National Transportation Integrated Search

    2000-01-01

    Caltrans is committed to using ramp metering as an effective traffic management strategy to maintain an efficient freeway system and protect the investment made in constructing freeways by keeping them operating at or near capacity. Ramp Metering is ...

  18. The motion and control of a complex three-body space tethered system

    NASA Astrophysics Data System (ADS)

    Shi, Gefei; Zhu, Zhanxia; Chen, Shiyu; Yuan, Jianping; Tang, Biwei

    2017-11-01

    This paper is mainly devoted to investigating the dynamics and stability control of a three body-tethered satellite system which contains a main satellite and two subsatellites connected by two straight, massless and inextensible tethers. Firstly, a detailed mathematical model is established in the central gravitational field. Then, the dynamic characteristics of the established system are investigated and analyzed. Based on the dynamic analysis, a novel sliding mode prediction model (SMPM) control strategy is proposed to suppress the motion of the built tethered system. The numerical results show that the proposed underactuated control law is highly effective in suppressing the attitude/libration motion of the underactuated three-body tethered system. Furthermore, cases of different target angles are also examined and analyzed. The simulation results reveal that even if the final equilibrium states differ from different selections of the target angles, the whole system can still be maintained in acceptable areas.

  19. [Development and test of a wheat chlorophyll, nitrogen and water content meter].

    PubMed

    Yu, Bo; Sun, Ming; Han, Shu-Qing; Xia, Jin-Wen

    2011-08-01

    A portable meter was developed which can detect chlorophyll, nitrogen and moisture content of wheat leaf simultaneously, and can supply enough data for guiding fertilization and irrigation. This meter is composed of light path and electronic circuit. And this meter uses 660, 940 and 1450 nm LED together with narrow band filters as the active light source. The hardware circuit consists of micro-controller, LED drive circuit, detector, communication circuit, keyboard and LCD circuit. The meter was tested in the field and performed well with good repeatability and accuracy. The relative errors of chlorophyll and nitrogen test were about 10%, relative error for water content was 4%. The coefficients of variation of the three indices were all below 1.5%. All of these prove that the meter can be applied under the field condition to guide the wheat production.

  20. Analysis of Timing Control Mechanism of Utterance and Body Motion Using Dialogue between Human and Communication Robot

    NASA Astrophysics Data System (ADS)

    Takasugi, Shoji; Yamamoto, Tomohito; Muto, Yumiko; Abe, Hiroyuki; Miyake, Yoshihiro

    The purpose of this study is to clarify the effects of timing control of utterance and body motion in human-robot interaction. Our previous study has already revealed the correlation of timing of utterance and body motion in human-human communication. Here we proposed a timing control model based on our previous research and estimated its influence to realize human-like communication using a questionnaire method. The results showed that the difference of effectiveness between the communication with the timing control model and that without it was observed. In addition, elderly people evaluated the communication with timing control much higher than younger people. These results show not only the importance of timing control of utterance and body motion in human communication but also its effectiveness for realizing human-like human-robot interaction.

  1. Evaluation of Different Disinfectants on the Performance of an On-Meter Dosed Amperometric Glucose-Oxidase-Based Glucose Meter

    PubMed Central

    Sarmaga, Don; DuBois, Jeffrey A; Lyon, Martha E

    2011-01-01

    Background Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. Method The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). Results No clinical (<0.3 mmol/liter) or statistical differences (p > .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (<0.3 mmol/liter). Conclusion The on-meter dosed glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. PMID:22226263

  2. Evaluation of different disinfectants on the performance of an on-meter dosed amperometric glucose-oxidase-based glucose meter.

    PubMed

    Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E

    2011-11-01

    Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical (<0.3 mmol/liter) or statistical differences (p > .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (<0.3 mmol/liter). The on-meter dosed glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.

  3. Development of the 15 meter diameter hoop column antenna

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The building of a deployable 15-meter engineering model of the 100 meter antenna based on the point-design of an earlier task of this contract, complete with an RF-capable surface is described. The 15 meter diameter was selected so that the model could be tested in existing manufacturing, near-field RF, thermal vacuum, and structural dynamics facilities. The antenna was designed with four offset paraboloidal reflector surfaces with a focal length of 366.85 in and a primary surface accuracy goal of .069 in rms. Surface adjustment capability was provided by manually resetting the length of 96 surface control cords which emanated from the lower column extremity. A detailed description of the 15-meter Hoop/Column Antenna, major subassemblies, and a history of its fabrication, assembly, deployment testing, and verification measurements are given. The deviation for one aperture surface (except the outboard extremity) was measured after adjustments in follow-on tests at the Martin Marietta Near-field Facility to be .061 in; thus the primary surface goal was achieved.

  4. Neck motion, motor control, pain and disability: A longitudinal study of associations in neck pain patients in physiotherapy treatment.

    PubMed

    Meisingset, Ingebrigt; Stensdotter, Ann-Katrin; Woodhouse, Astrid; Vasseljen, Ottar

    2016-04-01

    Neck pain is associated with several alterations in neck motion and motor control, but most of the findings are based on cross-sectional studies. The aim of this study was to investigate associations between changes in neck motion and motor control, and changes in neck pain and disability in physiotherapy patients during a course of treatment. Prospective cohort study. Subjects with non-specific neck pain (n = 71) participated in this study. Neck flexibility, joint position error (JPE), head steadiness, trajectory movement control and postural sway were recorded before commencement of physiotherapy (baseline), at 2 weeks, and at 2 months. Numerical Rating Scale and Neck Disability Index were used to measure neck pain and disability at the day of testing. To analyze within subjects effects in neck motion and motor control, neck pain, and disability over time we used fixed effects linear regression analysis. Changes in neck motion and motor control occurred primarily within 2 weeks. Reduction in neck pain was associated with increased cervical range of motion in flexion-/extension and increased postural sway when standing with eyes open. Decreased neck disability was associated with some variables for neck flexibility and trajectory movement control. Cervical range of motion in flexion-/extension was the only variable associated with changes in both neck pain and neck disability. This study shows that few of the variables for neck motion and motor control were associated with changes neck pain and disability over a course of 2 months with physiotherapy treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of aircraft and flight parameters on energy-efficient profile descents in time-based metered traffic

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1984-01-01

    Concepts to save fuel while preserving airport capacity by combining time based metering with profile descent procedures were developed. A computer algorithm is developed to provide the flight crew with the information needed to fly from an entry fix to a metering fix and arrive there at a predetermined time, altitude, and airspeed. The flight from the metering fix to an aim point near the airport was calculated. The flight path is divided into several descent and deceleration segments. Descents are performed at constant Mach numbers or calibrated airspeed, whereas decelerations occur at constant altitude. The time and distance associated with each segment are calculated from point mass equations of motion for a clean configuration with idle thrust. Wind and nonstandard atmospheric properties have a large effect on the flight path. It is found that uncertainty in the descent Mach number has a large effect on the predicted flight time. Of the possible combinations of Mach number and calibrated airspeed for a descent, only small changes were observed in the fuel consumed.

  6. Motion control of a gantry crane with a container

    NASA Astrophysics Data System (ADS)

    Shugailo, T. S.; Yushkov, M. P.

    2018-05-01

    The transportation of a container by a gantry crane in a given time from one point of space to another is considered. The system is at rest at the end of the motion. A maximum admissible speed is taken into account. The control force is found using either the Pontryagin maximum principle or the generalized Gauss principle. The advantages of the second method over the first one is demonstrated.

  7. Aswan High Dam in 6-meter Resolution from the International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut photography of the Earth from the International Space Station has achieved resolutions close to those available from commercial remote sensing satellites-with many photographs having spatial resolutions of less than six meters. Astronauts take the photographs by hand and physically compensate for the motion of the spacecraft relative to the Earth while the images are being acquired. The achievement was highlighted in an article entitled 'Space Station Allows Remote Sensing of Earth to within Six Meters' published in this week's edition of Eos, Transactions of the American Geophysical Union. Lines painted on airport runways at the Aswan Airport served to independently validate the spatial resolution of the camera sensor. For press information, read: International Space Station Astronauts Set New Standard for Earth Photography For details, see Robinson, J. A. and Evans, C. A. 2002. Space Station Allows Remote Sensing of Earth to within Six Meters. Eos, Transactions, American Geophysical Union 83(17):185, 188. See some of the other detailed photographs posted to Earth Observatory: Pyramids at Giza Bermuda Downtown Houston The image above represents a detailed portion of a digitized NASA photograph STS102-303-17, and was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  8. Decentralized reinforcement-learning control and emergence of motion patterns

    NASA Astrophysics Data System (ADS)

    Svinin, Mikhail; Yamada, Kazuyaki; Okhura, Kazuhiro; Ueda, Kanji

    1998-10-01

    In this paper we propose a system for studying emergence of motion patterns in autonomous mobile robotic systems. The system implements an instance-based reinforcement learning control. Three spaces are of importance in formulation of the control scheme. They are the work space, the sensor space, and the action space. Important feature of our system is that all these spaces are assumed to be continuous. The core part of the system is a classifier system. Based on the sensory state space analysis, the control is decentralized and is specified at the lowest level of the control system. However, the local controllers are implicitly connected through the perceived environment information. Therefore, they constitute a dynamic environment with respect to each other. The proposed control scheme is tested under simulation for a mobile robot in a navigation task. It is shown that some patterns of global behavior--such as collision avoidance, wall-following, light-seeking--can emerge from the local controllers.

  9. Object motion perception is shaped by the motor control mechanism of ocular pursuit.

    PubMed

    Schweigart, G; Mergner, T; Barnes, G R

    2003-02-01

    It is still a matter of debate whether the control of smooth pursuit eye movements involves an internal drive signal from object motion perception. We measured human target velocity and target position perceptions and compared them with the presumed pursuit control mechanism (model simulations). We presented normal subjects (Ns) and vestibular loss patients (Ps) with visual target motion in space. Concurrently, a visual background was presented, which was kept stationary or was moved with or against the target (five combinations). The motion stimuli consisted of smoothed ramp displacements with different dominant frequencies and peak velocities (0.05, 0.2, 0.8 Hz; 0.2-25.6 degrees /s). Subjects always pursued the target with their eyes. In a first experiment they gave verbal magnitude estimates of perceived target velocity in space and of self-motion in space. The target velocity estimates of both Ns and Ps tended to saturate at 0.8 Hz and with peak velocities >3 degrees /s. Below these ranges the velocity estimates showed a pronounced modulation in relation to the relative target-to-background motion ('background effect'; for example, 'background with'-motion decreased and 'against'-motion increased perceived target velocity). Pronounced only in Ps and not in Ns, there was an additional modulation in relation to the relative head-to-background motion, which co-varied with an illusion of self-motion in space (circular vection, CV) in Ps. In a second experiment, subjects performed retrospective reproduction of perceived target start and end positions with the same stimuli. Perceived end position was essentially veridical in both Ns and Ps (apart from a small constant offset). Reproduced start position showed an almost negligible background effect in Ns. In contrast, it showed a pronounced modulation in Ps, which again was related to CV. The results were compared with simulations of a model that we have recently presented for velocity control of eye pursuit. We found

  10. Convex optimisation approach to constrained fuel optimal control of spacecraft in close relative motion

    NASA Astrophysics Data System (ADS)

    Massioni, Paolo; Massari, Mauro

    2018-05-01

    This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as "Sum Of Squares" (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.

  11. Shear-wave velocity compilation for Northridge strong-motion recording sites

    USGS Publications Warehouse

    Borcherdt, Roger D.; Fumal, Thomas E.

    2002-01-01

    Borehole and other geotechnical information collected at the strong-motion recording sites of the Northridge earthquake of January 17, 1994 provide an important new basis for the characterization of local site conditions. These geotechnical data, when combined with analysis of strong-motion recordings, provide an empirical basis to evaluate site coefficients used in current versions of US building codes. Shear-wave-velocity estimates to a depth of 30 meters are derived for 176 strong-motion recording sites. The estimates are based on borehole shear-velocity logs, physical property logs, correlations with physical properties and digital geologic maps. Surface-wave velocity measurements and standard penetration data are compiled as additional constraints. These data as compiled from a variety of databases are presented via GIS maps and corresponding tables to facilitate use by other investigators.

  12. Balanced Flow Meters without Moving Parts

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced

  13. A Generalized-Compliant-Motion Primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1993-01-01

    Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.

  14. Insert metering plates for gas turbine nozzles

    DOEpatents

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  15. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO 2  < nano iron oxides < nano-Al 2 O 3  < nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  16. Using Unconstrained Tongue Motion as an Alternative Control Mechanism for Wheeled Mobility

    PubMed Central

    Huo, Xueliang; Ghovanloo, Maysam

    2015-01-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users’ intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility. PMID:19362901

  17. Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility.

    PubMed

    Huo, Xueliang; Ghovanloo, Maysam

    2009-06-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users' intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility.

  18. The sensory power of cameras and noise meters for protest surveillance in South Korea.

    PubMed

    Kim, Eun-Sung

    2016-06-01

    This article analyzes sensory aspects of material politics in social movements, focusing on two police tools: evidence-collecting cameras and noise meters for protest surveillance. Through interviews with Korean political activists, this article examines the relationship between power and the senses in the material culture of Korean protests and asks why cameras and noise meters appeared in order to control contemporary peaceful protests in the 2000s. The use of cameras and noise meters in contemporary peaceful protests evidences the exercise of what Michel Foucault calls 'micro-power'. Building on material culture studies, this article also compares the visual power of cameras with the sonic power of noise meters, in terms of a wide variety of issues: the control of things versus words, impacts on protest size, differential effects on organizers and participants, and differences in timing regarding surveillance and punishment.

  19. Control-structure interaction/mirror motion compensation

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark; Chu, Peter; Price, Xen

    1992-01-01

    Space Systems/Loral (formerly Ford Aerospace, Space Systems Division) has implemented a rigid-body Mirror Motion Compensation (MMC) scheme for the GOES-I/M spacecraft currently being built for NASA and NOAA. This has resulted in a factor of 15 reduction in pointing error due to rigid-body spacecraft motion induced by the periodic black-body calibration maneuvers required for the instruments. For GOES the spacecraft and the payload mirrors are considered as rigid bodies. The structural flexibility effects are small and are included in the total pointing budget as a separate item. This paper extends the MMC technique to include structural flexibility. For large multi-payload platforms, the structural flexibility effects can be more important in sensor pointing jitter as the result of payload motion. Sensitivity results are included to show the importance of the dynamic model fidelity.

  20. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  1. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    PubMed Central

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  2. Coarse and nano emulsions for effective delivery of the natural pest control agent pulegone for stored grain protection.

    PubMed

    Golden, Gilad; Quinn, Elazar; Shaaya, Eli; Kostyukovsky, Moshe; Poverenov, Elena

    2018-04-01

    One of the most significant contributors to the global food crisis is grain loss during storage, mainly caused by pest insects. Currently, there are two main methods used for insect pest control: fumigation and grain protection using contact insecticides. As some chemical insecticides can harm humans and the environment, there is a global tendency to reduce their use by finding alternative eco-friendly approaches. In this study, the natural pest-managing agent pulegone was encapsulated into coarse and nano emulsions. The emulsions were characterized using spectroscopic and microscopic methods and their stability and pulegone release ability were examined. The insecticidal activity of the prepared formulations against two stored product insects, rice weevil (Sitophilus oryzae L.) and red flour beetle (Tribolium castaneum Herbst), was demonstrated. The nano emulsion-based formulation offered significant advantages and provided powerful bioactivity, with high (> 90%) mortality rates for as long as 5 weeks for both insects, whereas coarse emulsions showed high efficacy for only 1 week. The developed pulegone-based nano emulsions could serve as a model for an effective alternative method for pest control. Although pulegone is from a natural source, toxicological studies should be performed before the widespread application of pulegone or pulegone-containing essential oils to dry food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Microgravity experiments of nano-satellite docking mechanism for final rendezvous approach and docking phase

    NASA Astrophysics Data System (ADS)

    Ui, Kyoichi; Matunaga, Saburo; Satori, Shin; Ishikawa, Tomohiro

    2005-09-01

    Laboratory for Space Systems (LSS), Tokyo Institute of Technology (Tokyo Tech) conducted three-dimensional microgravity environment experiments about a docking mechanism for mothership-daughtership (MS-DS) nano-satellite using the facility of Japan Micro Gravity Center (JAMIC) with Hokkaido Institute of Technology (HIT). LSS has studied and developed a docking mechanism for MS-DS nano-satellite system in final rendezvous approach and docking phase since 2000. Consideration of the docking mechanism is to mate a nano-satellite stably while remaining control error of relative velocity and attitude because it is difficult for nano-satellite to have complicated attitude control and mating systems. Objective of the experiments is to verify fundamental grasping function based on our proposed docking methodology. The proposed docking sequence is divided between approach/grasping phase and guiding phase. In the approach/grasping phase, the docking mechanism grasps the nano-satellite even though the nano-satellite has relative position and attitude control errors as well as relative velocity in a docking space. In the guiding function, the docking mechanism guides the nano-satellite to a docking port while adjusting its attitude in order to transfer electrical power and fuel to the nano-satellite. In the paper, we describe the experimental system including the docking mechanism, control system, the daughtership system and the release mechanism, and describe results of microgravity experiments in JAMIC.

  4. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  5. 2.1 meter (82 inch) Slip Ring By-Pass Project

    NASA Astrophysics Data System (ADS)

    Bryan, Corby B.

    2006-12-01

    2.1 meter (82 inch) Slip Ring By-Pass Project I will describe a project to bypass the old method of getting control communications above the rotation point of the McDonald Observatory 2.1 meter dome. The old method used slip rings that were implemented in the late 1930s. The new system uses wireless serial commands which allow the control lines to be taken off the slip rings, leaving only power and ground. I will describe how the concept was devised so the slip rings could be by-passed, what micro-controller system that was decided on and used, how the wireless units were set up and finally how the system was tested and put in place with only limited tasks to control. (I.E. the opening and closing of the shutters) We describe the advantages to making this upgrade and how it could benefit any telescope interested in upgrading its communication systems. This project was designed and tested in ten weeks during the McDonald Observatory REU and was supported under NSF AST-0243745. The system was designed so that it could be installed while running side by side with the current method of getting control to the above rotation point. The method is still in place being tested on the 2.1 meter telescope and will soon be fully implemented by the University of Texas McDonald Observatory OS staff.

  6. How to use your peak flow meter

    MedlinePlus

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  7. A volumetric meter chip for point-of-care quantitative detection of bovine catalase for food safety control.

    PubMed

    Cui, Xingye; Hu, Jie; Choi, Jane Ru; Huang, Yalin; Wang, Xuemin; Lu, Tian Jian; Xu, Feng

    2016-09-07

    A volumetric meter chip was developed for quantitative point-of-care (POC) analysis of bovine catalase, a bioindicator of bovine mastitis, in milk samples. The meter chip displays multiplexed quantitative results by presenting the distance of ink bar advancement that is detectable by the naked eye. The meter chip comprises a poly(methyl methacrylate) (PMMA) layer, a double-sided adhesive (DSA) layer and a glass slide layer fabricated by the laser-etching method, which is typically simple, rapid (∼3 min per chip), and cost effective (∼$0.2 per chip). Specially designed "U shape" reaction cells are covered by an adhesive tape that serves as an on-off switch, enabling the simple operation of the assay. As a proof of concept, we employed the developed meter chip for the quantification of bovine catalase in raw milk samples to detect catalase concentrations as low as 20 μg/mL. The meter chip has great potential to detect various target analytes for a wide range of POC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOEpatents

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  9. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  10. Wideband Motion Control by Position and Acceleration Input Based Disturbance Observer

    NASA Astrophysics Data System (ADS)

    Irie, Kouhei; Katsura, Seiichiro; Ohishi, Kiyoshi

    The disturbance observer can observe and suppress the disturbance torque within its bandwidth. Recent motion systems begin to spread in the society and they are required to have ability to contact with unknown environment. Such a haptic motion requires much wider bandwidth. However, since the conventional disturbance observer attains the acceleration response by the second order derivative of position response, the bandwidth is limited due to the derivative noise. This paper proposes a novel structure of a disturbance observer. The proposed disturbance observer uses an acceleration sensor for enlargement of bandwidth. Generally, the bandwidth of an acceleration sensor is from 1Hz to more than 1kHz. To cover DC range, the conventional position sensor based disturbance observer is integrated. Thus, the performance of the proposed Position and Acceleration input based disturbance observer (PADO) is superior to the conventional one. The PADO is applied to position control (infinity stiffness) and force control (zero stiffness). The numerical and experimental results show viability of the proposed method.

  11. Manual control of yaw motion with combined visual and vestibular cues

    NASA Technical Reports Server (NTRS)

    Zacharias, G. L.; Young, L. R.

    1977-01-01

    Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation was modelled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A correction to the frequency responses is provided by a separate measurement of manual control performance in an analogous visual pursuit nulling task. The resulting dual-input describing function for motion perception dependence on combined cue presentation supports the complementary model, in which vestibular cues dominate sensation at frequencies above 0.05 Hz. The describing function model is extended by the proposal of a non-linear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.

  12. Adaptive neural network motion control for aircraft under uncertainty conditions

    NASA Astrophysics Data System (ADS)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  13. Controlled motion in an elastic world. Research project: Manipulation strategies for massive space payloads

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1992-01-01

    The flexibility of the drives and structures of controlled motion systems are presented as an obstacle to be overcome in the design of high performance motion systems, particularly manipulator arms. The task and the measure of performance to be applied determine the technology appropriate to overcome this obstacle. Included in the technologies proposed are control algorithms (feedback and feed forward), passive damping enhancement, operational strategies, and structural design. Modeling of the distributed, nonlinear system is difficult, and alternative approaches are discussed. The author presents personal perspectives on the history, status, and future directions in this area.

  14. Intercomparison of American and Soviet stellar image motion monitors

    NASA Astrophysics Data System (ADS)

    Forbes, Fred F.; Kutyrev, Aleksandr

    1990-07-01

    Astronomical observatory site testing programs in the USA and USSR have used a variety of stellar image motion monitors in the selection of the best sites for the construction of large (6 to 10 meter) telescopes. While there appears to be a reasonable agreement between microthermal and sodar results for the better sites in both countries, there remain unexplained inconsistencies in measured seeing, especially at Mauna Kea, Hawaii and Mount Sanglok. The photoelectric seeing monitor built by Scheglov (1984) of the Moscow Sternberg Institute, and the National Optical Astronomy Observatories site-survey intensified CID seeing monitor have been mounted on the same telescope. Simultaneous image motion data recorded are compared for single images as differential measurements of dual images.

  15. Design and motion control of bioinspired humanoid robot head from servo motors toward artificial muscles

    NASA Astrophysics Data System (ADS)

    Almubarak, Yara; Tadesse, Yonas

    2017-04-01

    The potential applications of humanoid robots in social environments, motivates researchers to design, and control biomimetic humanoid robots. Generally, people are more interested to interact with robots that have similar attributes and movements to humans. The head is one of most important part of any social robot. Currently, most humanoid heads use electrical motors, pneumatic actuators, and shape memory alloy (SMA) actuators for actuation. Electrical and pneumatic actuators take most of the space and would cause unsmooth motions. SMAs are expensive to use in humanoids. Recently, in many robotic projects, Twisted and Coiled Polymer (TCP) artificial muscles are used as linear actuators which take up little space compared to the motors. In this paper, we will demonstrate the designing process and motion control of a robotic head with TCP muscles. Servo motors and artificial muscles are used for actuating the head motion, which have been controlled by a cost efficient ARM Cortex-M7 based development board. A complete comparison between the two actuators is presented.

  16. Nano-JASMINE: a 10-kilogram satellite for space astrometry

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Gouda, Naoteru; Tsujimoto, Takuji; Yano, Taihei; Suganuma, Masahiro; Yamauchi, Masahiro; Takato, Naruhisa; Miyazaki, Satoshi; Yamada, Yoshiyuki; Sako, Nobutada; Nakasuka, Shin'ichi

    2006-06-01

    The current status of the nano-JASMINE project is presented. Nano-JASMINE - a very small satellite weighing less than 10 kg - aims to carry out astrometry measurements of nearby bright stars. This satellite adopts the same observation technique that was used by the HIPPARCOS satellite. In this technique, simultaneous measurements in two different fields of view separated by an angle that is greater than 90° are carried out; these measurements are performed in the course of continuous scanning observations of the entire sky. This technique enables us to distinguish between an irregularity in the spin velocity and the distribution of stellar positions. There is a major technical difference between the nano-JASMINE and the HIPPARCOS satellites-the utilization of a CCD sensor in nano-JASMINE that makes it possible to achieve an astrometry accuracy comparable to that achieved by HIPPARCOS by using an extremely small telescope. We developed a prototype of the observation system and evaluated its performance. The telescope (5cm) including a beam combiner composed entirely of aluminum. The telescope is based on the standard Ritchey- Chretien optical system and has a composite f-ratio of 33 that enables the matching of the Airy disk size to three times the CCD pixel size of 15μm. A full depletion CCD will be used in the time delay integration (TDI) mode in order to efficiently survey the whole sky in wavelengths including the near infrared. The nano-JASMINE satellite is being developed as a piggyback system and is hoped for launch in 2008. We expect the satellite to measure the position and proper motion of bright stars (m z < 8.3) with an accuracy of 1 mas, this is comparable to the accuracy achieved with the HIPPARCOS satellite.

  17. Pitching motion control of a butterfly-like 3D flapping wing-body model

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji

    2014-11-01

    Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.

  18. Virtual remote center of motion control for needle placement robots.

    PubMed

    Boctor, Emad M; Webster, Robert J; Mathieu, Herve; Okamura, Allison M; Fichtinger, Gabor

    2004-01-01

    We present an algorithm that enables percutaneous needle-placement procedures to be performed with unencoded, unregistered, minimally calibrated robots while removing the constraint of placing the needle tip on a mechanically enforced Remote Center of Motion (RCM). The algorithm requires only online tracking of the surgical tool and a five-degree-of-freedom (5-DOF) robot comprising three prismatic DOF and two rotational DOF. An incremental adaptive motion control cycle guides the needle to the insertion point and also orients it to align with the target-entry-point line. The robot executes RCM motion without having a physically constrained fulcrum point. The proof-of-concept prototype system achieved 0.78 mm translation accuracy and 1.4 degrees rotational accuracy (this is within the tracker accuracy) within 17 iterative steps (0.5-1 s). This research enables robotic assistant systems for image-guided percutaneous procedures to be prototyped/constructed more quickly and less expensively than has been previously possible. Since the clinical utility of such systems is clear and has been demonstrated in the literature, our work may help promote widespread clinical adoption of this technology by lowering system cost and complexity.

  19. Controlled Chemical Patterns with ThermoChemical NanoLithography (TCNL)

    NASA Astrophysics Data System (ADS)

    Carroll, Keith; Giordano, Anthony; Wang, Debin; Kodali, Vamsi; King, W. P.; Marder, S. R.; Riedo, E.; Curtis, J. E.

    2012-02-01

    Many research areas, both fundamental and applied, rely upon the ability to organize non-trivial assemblies of molecules on surfaces. In this work, we introduce a significant extension of ThermoChemical NanoLithography (TCNL), a high throughput chemical patterning technique that uses temperature-driven chemical reactions localized near the tip of a thermal cantilever. By combining a chemical kinetics based model with experiments, we have developed a protocol for varying the concentration of surface bound molecules. The result is an unprecedented ability to fabricate extremely complex patterns comprised of varying chemical concentrations, as demonstrated by sinusoidal patterns of amine groups with varying pitches (˜5-15 μm) and the replication of Leonardo da Vinci's Mona Lisa with dimensions of ˜30 x 40 μm^2. Programmed control of the chemical reaction rate should have widespread applications for a technique which has already been shown to nanopattern various substrates including graphene nanowires, piezoelectric crystals, and optoelectronic materials.

  20. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  1. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  2. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  3. Comparison of current meters used for stream gaging

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.

    1994-01-01

    The U.S. Geological Survey (USGS) is field and laboratory testing the performance of several current meters used throughout the world for stream gaging. Meters tested include horizontal-axis current meters from Germany, the United Kingdom, and the People's Republic of China, and vertical-axis and electromagnetic current meters from the United States. Summarized are laboratory test results for meter repeatability, linearity, and response to oblique flow angles and preliminary field testing results. All current meters tested were found to under- and over-register velocities; errors usually increased as the velocity and angle of the flow increased. Repeatability and linearity of all meters tested were good. In the field tests, horizontal-axis meters, except for the two meters from the People's Republic of China, registered higher velocity than did the vertical-axis meters.

  4. Comparative evaluation of hydroxyapatite and nano-bioglass in two forms of conventional micro- and nano-particles in repairing bone defects (an animal study).

    PubMed

    Nosouhian, Saied; Razavi, Mohammad; Jafari-Pozve, Nasim; Rismanchian, Mansour

    2015-01-01

    Many synthetic bone materials have been introduced for repairing bone defects. The aim of this study is to comparatively evaluate the efficacy of nano-hydroxyapatite (HA) and nano-bioglass bone materials with their traditional micro counterparts in repairing bone defects. In this prospective animal study, four healthy dogs were included. First to fourth premolars were extracted in each quadrant and five cavities in each quadrant were created using trephine. Sixteen cavities in each dog were filled by HA, nano-HA, bioglass, and nano-bioglass and four defects were left as the control group. All defects were covered by a nonrestorable membrane. Dogs were sacrificed after 15, 30, 45, and 60 days sequentially. All 20 samples were extracted by trephine #8 with a sufficient amount of surrounding bone. All specimens were investigated under an optical microscope and the percentage of total regenerated bone, lamellar, and woven bone were evaluated. Data analysis was carried out by SPSS Software ver. 15 and Mann-Whitney U-test (α =0.05). After 15 days, the bone formation percentage showed a significant difference between HA and nano-HA and between HA and bioglass (P < 0.001). The nano-HA group showed the highest rate of bone formation after 15 days. Nano-bioglass and bioglass and nano-HA and nano-bioglass groups represented a significant difference and nano-bioglass showed the highest rate of bone formation after 30 days (P = 0.01). After 45 days, the bone formation percentage showed a significant difference between nano-bioglass and bioglass and between nano-HA and nano-bioglass groups (P = 0.01). Nano-HA and nano-bioglass biomaterials showed promising results when compared to conventional micro-particles in the repair of bone defects.

  5. DIGITAL Q METER

    DOEpatents

    Briscoe, W.L.

    1962-02-13

    A digital Q meter is described for measuring the Q of mechanical or electrical devices. The meter comprises in combination a transducer coupled to an input amplifier, and an upper and lower level discriminator coupled to the amplifier and having their outputs coupled to an anticoincidence gate. The output of the gate is connected to a scaler. The lower level discriminator is adjusted to a threshold level of 36.8 percent of the operating threshold level of the upper level discriminator. (AEC)

  6. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    NASA Astrophysics Data System (ADS)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  7. Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin.

    PubMed

    Amoli-Diva, Mitra; Pourghazi, Kamyar; Mashhadizadeh, Mohammad Hossein

    2015-02-01

    A novel pH-responsive polymer, poly(methacrylic acid-co-acrylic acid)-co-polyvinyl-pyrrolidone (polymeric nano-carrier) was synthesized and used for encapsulation of 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticles to prepare a new magnetic nano-carrier. The loading and release characteristics of both polymeric and magnetic nano-carriers were investigated using fluvastatin as the model drug. The loading behavior of the carriers was studied by varying concentration of fluvastatin in aqueous medium at 25°C and their release was followed spectrophotometrically (at 304 nm) at 37°C in three different solutions (buffered at pH1.2, 5.5 and 7.2) to simulate gastric and intestine medium. The effect of different parameters on the release of fluvastatin such as the amount of methacrylic acid monomer, cross-linker amount, initiator amount, and magnetic nanoparticles content was also studied. Considering the release kinetics and mechanism of the magnetic nanocarrier besides swelling behavior study of the polymeric nano-carrier reveal Fickian pattern and diffusion controlled mechanism for delivery of fluvastatin. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.

    PubMed

    McLelland, Douglas; Baker, Pamela M; Ahmed, Bashir; Kohn, Adam; Bair, Wyeth

    2015-07-15

    A key feature of neural networks is their ability to rapidly adjust their function, including signal gain and temporal dynamics, in response to changes in sensory inputs. These adjustments are thought to be important for optimizing the sensitivity of the system, yet their mechanisms remain poorly understood. We studied adaptive changes in temporal integration in direction-selective cells in macaque primary visual cortex, where specific hypotheses have been proposed to account for rapid adaptation. By independently stimulating direction-specific channels, we found that the control of temporal integration of motion at one direction was independent of motion signals driven at the orthogonal direction. We also found that individual neurons can simultaneously support two different profiles of temporal integration for motion in orthogonal directions. These findings rule out a broad range of adaptive mechanisms as being key to the control of temporal integration, including untuned normalization and nonlinearities of spike generation and somatic adaptation in the recorded direction-selective cells. Such mechanisms are too broadly tuned, or occur too far downstream, to explain the channel-specific and multiplexed temporal integration that we observe in single neurons. Instead, we are compelled to conclude that parallel processing pathways are involved, and we demonstrate one such circuit using a computer model. This solution allows processing in different direction/orientation channels to be separately optimized and is sensible given that, under typical motion conditions (e.g., translation or looming), speed on the retina is a function of the orientation of image components. Many neurons in visual cortex are understood in terms of their spatial and temporal receptive fields. It is now known that the spatiotemporal integration underlying visual responses is not fixed but depends on the visual input. For example, neurons that respond selectively to motion direction integrate

  9. Offshore multiphase meter nears acceptable accuracy level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaisford, S.; Amdal, J.; Berentsen, H.

    1993-05-17

    Companies worldwide are looking for new production methods for offshore oil fields. In many areas, undeveloped smaller fields cannot bear the cost of dedicated production facilities. Multiphase transportation to existing production facilities can extend the distance over which unseparated oil, water, and gas streams can be transported, from a limit of several kilometers today to perhaps 200 km in the future. An encouraging multiphase meter test was sponsored by Saga Petroleum AS and carried out by Den norske stats oljeselskap AS (Statoil) on the Gullfaks B platform, Norwegian sector of the North Sea. The complete multiphase meter has two separatemore » meters. One is the composition meter for measuring the instantaneous volume or mass fractions of oil, water, and gas in the sensor. The other is a velocity meter for determining the speed of the mixture through the sensor. An instantaneous volume or mass production rate for each component is calculated by combining the outputs from the two meters. The paper describes the multiphase meter; measurements; limitations; the test setup; calibration; test results for the composition meter, velocity meter, and production rates; and future plans.« less

  10. Controllable preparation of copper phthalocyanine single crystal nano column and its chlorine gas sensing properties

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhong; Qiao, Zhenfang; Zhang, Yumin; Zou, Taoyu; Yu, Leiming; Luo, Li; Wang, Xiaoyan; Yang, Yiji; Wang, Hai; Tang, Libin

    2016-09-01

    The unsubstituted copper phthalocyanine (CuPc) single crystal nano columns were fabricated for the first time as chlorine (Cl2) gas sensors in this paper. The nano columns of CuPc have been prepared on different substrates via template-free physical vapor deposition (PVD) approach. The growth mechanism of CuPc nano column on quartz was explored and the same condition used on other substrates including glass, sapphire (C-plane<0001>, M-plane<10 1 ¯ 0 >, R-plane<1 1 ¯ 02 >), Si and SiO2/Si came to a same conclusion, which confirmed that the aligned growth of CuPc nano column is not substrate-dependent. And then the CuPc nano column with special morphology was integrated as in-situ sensor device which exhibits high sensitivity and selectivity towards Cl2 at room temperature with a minimum detection limit as low as 0.08 ppm. The response of sensor was found to increase linearly (26 ˜659 % ) with the increase for Cl2 within concentration range (0.08 ˜4.0 ppm ) . These results clearly demonstrate the great potential of the nano column growth and device integration approach for sensor device.

  11. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    NASA Astrophysics Data System (ADS)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  12. Meter Designs Reduce Operation Costs for Industry

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Marshall Space Flight Center collaborated with Quality Monitoring and Control (QMC) of Humble, Texas, through a Space Act Agreement to design a balanced flow meter for the Space Shuttle Program. QMC founded APlus-QMC LLC to commercialize the technology, which has contributed to 100 new jobs, approximately $250,000 in yearly sales, and saved customers an estimated $10 million.

  13. Wafer-scale aluminum nano-plasmonics

    NASA Astrophysics Data System (ADS)

    George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric

    2014-09-01

    The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.

  14. [Medical application of nano-materials].

    PubMed

    Jiang, Hui-qing; Chen, Yi-fei

    2002-11-01

    To review the research progress and medical application of nano-materials. The literature review and comprehensive analysis, methods were used in this study. The Nanotechnology is a typical crossing knowledge. It could be extensively applied in the fields of novel biomaterials, effective transmission of bioactive factor; the detection of functions for all vital organ systems, vascular circulation condition, the control of repair of burn trauma wounds will be monitored by the varied methods of nano technology combined with molecular biological engineering. The application of Nanotechnology will play important roles in clinical medicine, wound repair and basic research for the traditional Chinese medicine.

  15. Analytic Theory and Control of the Motion of Spinning Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Tsiotras, Panagiotis

    1993-01-01

    Numerical simulations are often resorted to, in order to understand the attitude response and control characteristics of a rigid body. However, this approach in performing sensitivity and/or error analyses may be prohibitively expensive and time consuming, especially when a large number of problem parameters are involved. Thus, there is an important role for analytical models in obtaining an understanding of the complex dynamical behavior. In this dissertation, new analytic solutions are derived for the complete attitude motion of spinning rigid bodies, under minimal assumptions. Hence, we obtain the most general solutions reported in the literature so far. Specifically, large external torques and large asymmetries are included in the problem statement. Moreover, problems involving large angular excursions are treated in detail. A new tractable formulation of the kinematics is introduced which proves to be extremely helpful in the search for analytic solutions of the attitude history of such kinds of problems. The main utility of the new formulation becomes apparent however, when searching for feedback control laws for stabilization and/or reorientation of spinning spacecraft. This is an inherently nonlinear problem, where standard linear control techniques fail. We derive a class of control laws for spin axis stabilization of symmetric spacecraft using only two pairs of gas jet actuators. Practically, this could correspond to a spacecraft operating in failure mode, for example. Theoretically, it is also an important control problem which, because of its difficulty, has received little, if any, attention in the literature. The proposed control laws are especially simple and elegant. A feedback control law that achieves arbitrary reorientation of the spacecraft is also derived, using ideas from invariant manifold theory. The significance of this research is twofold. First, it provides a deeper understanding of the fundamental behavior of rigid bodies subject to body

  16. 10 CFR 451.7 - Metering requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Metering requirements. 451.7 Section 451.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.7 Metering requirements... renewable energy facility must be measured by a standard metering device that— (a) Meets generally accepted...

  17. 10 CFR 451.7 - Metering requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Metering requirements. 451.7 Section 451.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.7 Metering requirements... renewable energy facility must be measured by a standard metering device that— (a) Meets generally accepted...

  18. 10 CFR 451.7 - Metering requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Metering requirements. 451.7 Section 451.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.7 Metering requirements... renewable energy facility must be measured by a standard metering device that— (a) Meets generally accepted...

  19. 10 CFR 451.7 - Metering requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Metering requirements. 451.7 Section 451.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.7 Metering requirements... renewable energy facility must be measured by a standard metering device that— (a) Meets generally accepted...

  20. 10 CFR 451.7 - Metering requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Metering requirements. 451.7 Section 451.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.7 Metering requirements... renewable energy facility must be measured by a standard metering device that— (a) Meets generally accepted...

  1. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  2. ATD-2 Surface Scheduling and Metering Concept

    NASA Technical Reports Server (NTRS)

    Coppenbarger, Richard A.; Jung, Yoon Chul; Capps, Richard Alan; Engelland, Shawn A.

    2017-01-01

    This presentation describes the concept of ATD-2 tactical surface scheduling and metering. The concept is composed of several elements, including data exchange and integration; surface modeling; surface scheduling; and surface metering. The presentation explains each of the elements. Surface metering is implemented to balance demand and capacity• When surface metering is on, target times from surface scheduler areconverted to advisories for throttling demand• Through the scheduling process, flights with CTOTs will not get addedmetering delay (avoids potential for ‘double delay’)• Carriers can designate certain flights as exempt from metering holds• Demand throttle in Phase 1 at CLT is through advisories sent to rampcontrollers for pushback instructions to the flight deck– Push now– Hold for an advised period of time (in minutes)• Principles of surface metering can be more generally applied to otherairports in the NAS to throttle demand via spot-release times (TMATs Strong focus on optimal use of airport resources• Flexibility enables stakeholders to vary the amount of delay theywould like transferred to gate• Addresses practical aspects of executing surface metering in aturbulent real world environment• Algorithms designed for both short term demand/capacityimbalances (banks) or sustained metering situations• Leverage automation to enable surface metering capability withoutrequiring additional positions• Represents first step in Tactical/Strategic fusion• Provides longer look-ahead calculations to enable analysis ofstrategic surface metering potential usage

  3. Operant learning of Drosophila at the torque meter.

    PubMed

    Brembs, Bjoern

    2008-06-16

    For experiments at the torque meter, flies are kept on standard fly medium at 25 degrees C and 60% humidity with a 12hr light/12hr dark regime. A standardized breeding regime assures proper larval density and age-matched cohorts. Cold-anesthetized flies are glued with head and thorax to a triangle-shaped hook the day before the experiment. Attached to the torque meter via a clamp, the fly's intended flight maneuvers are measured as the angular momentum around its vertical body axis. The fly is placed in the center of a cylindrical panorama to accomplish stationary flight. An analog to digital converter card feeds the yaw torque signal into a computer which stores the trace for later analysis. The computer also controls a variety of stimuli which can be brought under the fly's control by closing the feedback loop between these stimuli and the yaw torque trace. Punishment is achieved by applying heat from an adjustable infrared laser.

  4. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    PubMed

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).

  5. Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts

    PubMed Central

    Backhausen, Lea L.; Herting, Megan M.; Buse, Judith; Roessner, Veit; Smolka, Michael N.; Vetter, Nora C.

    2016-01-01

    In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g., FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e., determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here, we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies. PMID:27999528

  6. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  7. Plant chlorophyll content meter

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor); Carter, Gregory A. (Inventor)

    2000-01-01

    A plant chlorophyll content meter is described which collects light reflected from a target plant and separates the collected light into two different wavelength bands. These wavelength bands, or channels, are described as having center wavelengths of 700 nm and 840 nm. The light collected in these two channels are processed using photo detectors and amplifiers. An analog to digital converter is described which provides a digital representation of the level of light collected by the lens and falling within the two channels. A controller provided in the meter device compares the level of light reflected from a target plant with a level of light detected from a light source, such as light reflected by a target having 100% reflectance, or transmitted through a diffusion receptor. The percent of reflection in the two separate wavelength bands from a target plant are compared to provide a ratio which indicates a relative level of plant physiological stress. A method of compensating for electronic drift is described where a sample is taken when a collection lens is covered to prevent light from entering the device. This compensation method allows for a more accurate reading by reducing error contributions due to electronic drift from environmental conditions at the location where a hand-held unit is used.

  8. Virus scaffolds as enzyme nano-carriers.

    PubMed

    Cardinale, Daniela; Carette, Noëlle; Michon, Thierry

    2012-07-01

    The cooperative organization of enzymes by cells is a key feature for the efficiency of living systems. In the field of nanotechnologies, effort currently aims at mimicking this natural organization. Nanoscale resolution and high-registration alignment are necessary to control enzyme distribution in nano-containers or on the surface of solid supports. Virus capsid self-assembly is driven by precise supramolecular combinations of protein monomers, which have made them attractive building blocks to engineer enzyme nano-carriers (ENCs). We discuss some examples of what in our opinion constitute the latest advances in the use of plant viruses, bacteriophages and virus-like particles (VLPs) as nano-scaffolds for enzyme selection, enzyme confinement and patterning, phage therapy, raw material processing, and single molecule enzyme kinetics studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Shape-dependent electronic properties of blue phosphorene nano-flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Pradeep; Swaroop, Ram; Kumar, Ashok, E-mail: ashok@cup.ac.in

    In recent year’s considerable attention has been given to the first principles method for modifying and controlling electronic properties of nano-materials. We performed DFT-based calculations on the electronic properties of zigzag-edged nano-flakes of blue phosphorene with three possible shapes namely rectangular, triangular and hexagonal. We observed that HOMO-LUMO gap of zigzag phosphorene nano-flakes with different shapes is ∼2.9 eV with H-passivations and ∼0.7 – 1.2 eV in pristine cases. Electronic properties of blue phosphorene nano-flakes show the strong dependence on their shape. We observed that distributions of molecular orbitals were strongly affected by the different shapes. Zigzag edged considered nanostructuresmore » are non-magnetic and semiconducting in nature. The shape dependent electronic properties may find applications in tunable nano-electronics.« less

  10. Nebulised fenoterol compared with metered aerosol.

    PubMed Central

    Melville, C; Phelan, P D; Landau, L I

    1985-01-01

    The effect of nebulised fenoterol was compared with that of a similar dose administered by metered aerosol in 14 children, aged 7 to 17 years with moderately severe asthma. The initial response to fenoterol delivered by metered aerosol or nebuliser was the same, but a second dose by nebuliser after a dose by metered aerosol produced maximum potential bronchodilatation which was not seen when a second dose by metered aerosol was given after that by nebuliser. Administration of a bronchodilator by nebuliser does seem advantageous in the treatment of some children. PMID:3985659

  11. Evaluation of the effects of insufficient blood volume samples on the performance of blood glucose self-test meters.

    PubMed

    Pfützner, Andreas; Schipper, Christina; Ramljak, Sanja; Flacke, Frank; Sieber, Jochen; Forst, Thomas; Musholt, Petra B

    2013-11-01

    Accuracy of blood glucose readings is (among other things) dependent on the test strip being completely filled with sufficient sample volume. The devices are supposed to display an error message in case of incomplete filling. This laboratory study was performed to test the performance of 31 commercially available devices in case of incomplete strip filling. Samples with two different glucose levels (60-90 and 300-350 mg/dl) were used to generate three different sample volumes: 0.20 µl (too low volume for any device), 0.32 µl (borderline volume), and 1.20 µl (low but supposedly sufficient volume for all devices). After a point-of-care capillary reference measurement (StatStrip, NovaBiomedical), the meter strip was filled (6x) with the respective volume, and the response of the meters (two devices) was documented (72 determinations/meter type). Correct response was defined as either an error message indicating incomplete filling or a correct reading (±20% compared with reference reading). Only five meters showed 100% correct responses [BGStar and iBGStar (both Sanofi), ACCU-CHEK Compact+ and ACCU-CHEK Mobile (both Roche Diagnostics), OneTouch Verio (LifeScan)]. The majority of the meters (17) had up to 10% incorrect reactions [predominantly incorrect readings with sufficient volume; Precision Xceed and Xtra, FreeStyle Lite, and Freedom Lite (all Abbott); GlucoCard+ and GlucoMen GM (both Menarini); Contour, Contour USB, and Breeze2 (all Bayer); OneTouch Ultra Easy, Ultra 2, and Ultra Smart (all LifeScan); Wellion Dialog and Premium (both MedTrust); FineTouch (Terumo); ACCU-CHEK Aviva (Roche); and GlucoTalk (Axis-Shield)]. Ten percent to 20% incorrect reactions were seen with OneTouch Vita (LifeScan), ACCU-CHEK Aviva Nano (Roche), OmniTest+ (BBraun), and AlphaChek+ (Berger Med). More than 20% incorrect reactions were obtained with Pura (Ypsomed), GlucoCard Meter and GlucoMen LX (both Menarini), Elite (Bayer), and MediTouch (Medisana). In summary, partial and

  12. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  13. Exploring the energy benefits of advanced water metering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Michael A.; Hans, Liesel; Piscopo, Kate

    Recent improvements to advanced water metering and communications technologies have the potential to improve the management of water resources and utility infrastructure, benefiting both utilities and ratepayers. The highly granular, near-real-time data and opportunity for automated control provided by these advanced systems may yield operational benefits similar to those afforded by similar technologies in the energy sector. While significant progress has been made in quantifying the water-related benefits of these technologies, the research on quantifying the energy benefits of improved water metering is underdeveloped. Some studies have quantified the embedded energy in water in California, however these findings are basedmore » on data more than a decade old, and unanimously assert that more research is needed to further explore how topography, climate, water source, and other factors impact their findings. In this report, we show how water-related advanced metering systems may present a broader and more significant set of energy-related benefits. We review the open literature of water-related advanced metering technologies and their applications, discuss common themes with a series of water and energy experts, and perform a preliminary scoping analysis of advanced water metering deployment and use in California. We find that the open literature provides very little discussion of the energy savings potential of advanced water metering, despite the substantial energy necessary for water’s extraction, conveyance, treatment, distribution, and eventual end use. We also find that water AMI has the potential to provide water-energy co-efficiencies through improved water systems management, with benefits including improved customer education, automated leak detection, water measurement and verification, optimized system operation, and inherent water and energy conservation. Our findings also suggest that the adoption of these technologies in the water sector has

  14. DEPOSITION DISTRIBUTION OF NANO AND ULTRAFINE PARTICLES IN HUMAN LUNGS DURING CONTROLLED MOUTH BREATHING

    EPA Science Inventory

    Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...

  15. Functionalized nano-graphene oxide particles for targeted fluorescence imaging and photothermy of glioma U251 cells.

    PubMed

    Li, Zhong-Jun; Li, Chao; Zheng, Mei-Guang; Pan, Jia-Dong; Zhang, Li-Ming; Deng, Yue-Fei

    2015-01-01

    This study was to prepare the functionalized nano-graphene oxide (nano-GO) particles, and observe targeted fluorescence imaging and photothermy of U251 glioma cells under near infrared (NIR) exposure. The functionalized nano-GO-Tf-FITC particles were prepared and then were incubated with U251 glioma cells. Estimation of CCK8 cell activity was adopted for measurement of cytotoxicity. The effect of fluorescein imaging was detected by fluorescence microscope with anti-CD71-FITC as a control. Finally, we detected the killing efficacy with flow cytometry after an 808 nm NIR exposure. Both nano-GO-Tf-FITC group and CD71-FITC group exhibited green-yellow fluorescence, while the control group without the target molecule nano-GO-FITC was negative. The nano-GO-Tf-FITC was incubated with U251 cells at 0.1 mg/ml, 1.0 mg/ml, 3.0 mg/ml and 5.0 mg/ml. After 48 h of incubation, the absorbance was 0.747 ± 0.031, 0.732 ± 0.043, 0.698 ± 0.051 and 0.682 ± 0.039, while the absorbance of control group is 0.759 ± 0.052. There is no significant difference between the nano-GO-FITC groups and control group. In addition, the apoptosis and death index of nano-GO-Tf-FITC group was significantly higher than that of nano-GO-FITC and blank control group (P < 0.05). The nano-GO-Tf-FITC particles with good biological compatibility and low cytotoxicity are successfully made, which have an observed effect of target imaging and photothermal therapy on glioma U251 cells.

  16. Coupling control based on Adiabatic elimination for densely integrated nano-photonics

    NASA Astrophysics Data System (ADS)

    Mrejen, Michael; Suchowski, Haim; Hatakeyama, Taiki; Wu, Chihhui; Feng, Liang; O'Brien, Kevin; Wang, Yuan; Zhang, Xiang

    2015-03-01

    The ever growing need for energy-efficient and fast communications is driving the development of highly integrated photonic circuits where controlling light at the nanoscale becomes the most critical aspect of information transfer. Here we develop a unique scheme of adiabatic elimination (AE) modulation to actively control the coupling among waveguides for densely integrated photonics. Analogous to atomic systems, AE is achieved by applying a decomposition on a three waveguide coupler, where the two outer waveguides serve as an effective two-mode system with an effective coupling of Veff = [(V*13 + V*23V*12/Δβ12) (V13-V23V12/Δβ23) ]1/2,and the middle waveguide is the equivalent to the intermediate level `dark state'. We experimentally demonstrate the first all optical AE modulation and its ability to control the coupling between the two waveguides by manipulating the mode index of the decoupled middle one. In addition, we show that the strong modes interactions allowed at the nano-scale offer a unique configuration of zero-coupling between all the waveguides, a phenomena that paves the way for ultra-high density photonic integrated circuits where small footprint is of crucial importance.

  17. Bounded parametric control of plane motions of space tethered system

    NASA Astrophysics Data System (ADS)

    Bezglasnyi, S. P.; Mukhametzyanova, A. A.

    2018-05-01

    This paper is focused on the problem of control of plane motions of a space tethered system (STS). The STS is modeled as a heavy rod with two point masses. Point masses are fixed on the rod. A third point mass can move along the rod. The control is realized as a continuous change of the distance from the centre of mass of the tethered system to the movable mass. New limited control laws processes of excitation and damping are built. Diametric reorientation and gravitational stabilization to the local vertical of an STS were obtained. The problem is solved by the method of Lyapunov's functions of the classical theory of stability. The theoretical results are confirmed by numerical calculations.

  18. Ramp - Metering Algorithms Evaluated within Simplified Conditions

    NASA Astrophysics Data System (ADS)

    Janota, Aleš; Holečko, Peter; Gregor, Michal; Hruboš, Marián

    2017-12-01

    Freeway networks reach their limits, since it is usually impossible to increase traffic volumes by indefinitely extending transport infrastructure through adding new traffic lanes. One of the possible solutions is to use advanced intelligent transport systems, particularly ramp metering systems. The paper shows how two particular algorithms of local and traffic-responsive control (Zone, ALINEA) can be adapted to simplified conditions corresponding to Slovak freeways. Both control strategies are modelled and simulated using PTV Vissim software, including the module VisVAP. Presented results demonstrate the properties of both control strategies, which are compared mutually as well as with the initial situation in which no control strategy is applied

  19. Integration Method of Emphatic Motions and Adverbial Expressions with Scalar Parameters for Robotic Motion Coaching System

    NASA Astrophysics Data System (ADS)

    Okuno, Keisuke; Inamura, Tetsunari

    A robotic coaching system can improve humans' learning performance of motions by intelligent usage of emphatic motions and adverbial expressions according to user reactions. In robotics, however, method to control both the motions and the expressions and how to bind them had not been adequately discussed from an engineering point of view. In this paper, we propose a method for controlling and binding emphatic motions and adverbial expressions by using two scalar parameters in a phase space. In the phase space, variety of motion patterns and verbal expressions are connected and can be expressed as static points. We show the feasibility of the proposing method through experiments of actual sport coaching tasks for beginners. From the results of participants' improvements in motion learning, we confirmed the feasibility of the methods to control and bind emphatic motions and adverbial expressions, as well as confirmed contribution of the emphatic motions and positive correlation of adverbial expressions for participants' improvements in motion learning. Based on the results, we introduce a hypothesis that individually optimized method for binding adverbial expression is required.

  20. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  1. Design and Evaluation of an Integrated Online Motion Control Training Package

    ERIC Educational Resources Information Center

    Buiu, C.

    2009-01-01

    The aim of this paper is to present an integrated Internet-based package for teaching the fundamentals of motion control by using a wide range of resources: theory, videos, simulators, games, quizzes, and a remote lab. The package is aimed at automation technicians, pupils at vocational schools and students taking an introductory course in…

  2. Vestibular Stimulation for ADHD: Randomized Controlled Trial of Comprehensive Motion Apparatus

    ERIC Educational Resources Information Center

    Clark, David L.; Arnold, L. Eugene; Crowl, Lindsay; Bozzolo, Hernan; Peruggia, Mario; Ramadan, Yaser; Bornstein, Robert; Hollway, Jill A.; Thompson, Susan; Malone, Krista; Hall, Kristy L.; Shelton, Sara B.; Bozzolo, Dawn R.; Cook, Amy

    2008-01-01

    Objective: This research evaluates effects of vestibular stimulation by Comprehensive Motion Apparatus (CMA) in ADHD. Method: Children ages 6 to 12 (48 boys, 5 girls) with ADHD were randomized to thrice-weekly 30-min treatments for 12 weeks with CMA, stimulating otoliths and semicircular canals, or a single-blind control of equal duration and…

  3. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.

    PubMed

    Miura, Shingo; Banno, Taisuke; Tonooka, Taishi; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro

    2014-07-15

    Self-propelled motion of micrometer-sized substances has drawn much attention as an autonomous transportation system. One candidate vehicle is a chemically driven micrometer-sized oil droplet. However, to the best of our knowledge, there has been no report of a chemical reaction system controlling the three-dimensional motion of oil droplets underwater. In this study, we developed a molecular system that controlled the self-propelled motion of 4-heptyloxybenzaldehyde oil droplets by using novel gemini cationic surfactants containing carbonate linkages (2G12C). We found that, in emulsions containing sodium hydroxide, the motion time of the self-propelled oil droplets was longer in the presence of 2G12C than in the presence of gemini cationic surfactants without carbonate linkages. Moreover, in 2G12C solution, oil droplets at rest underwent unidirectional, self-propelled motion in a gradient field toward a higher concentration of sodium hydroxide. Even though they stopped within several seconds, they restarted in the same direction. 2G12C was gradually hydrolyzed under basic conditions to produce a pair of the corresponding monomeric surfactants, which exhibit different interfacial properties from 2G12C. The prolonged and restart motion of the oil droplets were explained by the increase in the heterogeneity of the interfacial tension of the oil droplets.

  4. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].

    PubMed

    Li, Lei; Pan, Gang; Chen, Hao

    2010-03-01

    Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.

  5. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    PubMed Central

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  6. Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek

    2018-04-01

    The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.

  7. Calibration of water-velocity meters

    USGS Publications Warehouse

    Kaehrle, William R.; Bowie, James E.

    1988-01-01

    The U.S. Geological Survey, Department of the Interior, as part of its responsibility to appraise the quantity of water resources in the United States, maintains facilities for the calibration of water-velocity meters at the Gulf Coast Hydroscience Center's Hydraulic Laboratory Facility, NSTL, Mississippi. These meters are used in hydrologic studies by the Geological Survey, U.S. Army Corps of Engineers, U.S. Department of Energy, state agencies, universities, and others in the public and private sector. This paper describes calibration facilities, types of water-velocity meters calibrated, and calibration standards, methods and results.

  8. Control of Respiratory Motion by Hypnosis Intervention during Radiotherapy of Lung Cancer I

    PubMed Central

    Deng, Jie; Xie, Yaoqin

    2013-01-01

    The uncertain position of lung tumor during radiotherapy compromises the treatment effect. To effectively control respiratory motion during radiotherapy of lung cancer without any side effects, a novel control scheme, hypnosis, has been introduced in lung cancer treatment. In order to verify the suggested method, six volunteers were selected with a wide range of distribution of age, weight, and chest circumference. A set of experiments have been conducted for each volunteer, under the guidance of the professional hypnotist. All the experiments were repeated in the same environmental condition. The amplitude of respiration has been recorded under the normal state and hypnosis, respectively. Experimental results show that the respiration motion of volunteers in hypnosis has smaller and more stable amplitudes than in normal state. That implies that the hypnosis intervention can be an alternative way for respiratory control, which can effectively reduce the respiratory amplitude and increase the stability of respiratory cycle. The proposed method will find useful application in image-guided radiotherapy. PMID:24093100

  9. Analysis Balance Parameter of Optimal Ramp metering

    NASA Astrophysics Data System (ADS)

    Li, Y.; Duan, N.; Yang, X.

    2018-05-01

    Ramp metering is a motorway control method to avoid onset congestion through limiting the access of ramp inflows into the main road of the motorway. The optimization model of ramp metering is developed based upon cell transmission model (CTM). With the piecewise linear structure of CTM, the corresponding motorway traffic optimization problem can be formulated as a linear programming (LP) problem. It is known that LP problem can be solved by established solution algorithms such as SIMPLEX or interior-point methods for the global optimal solution. The commercial software (CPLEX) is adopted in this study to solve the LP problem within reasonable computational time. The concept is illustrated through a case study of the United Kingdom M25 Motorway. The optimal solution provides useful insights and guidances on how to manage motorway traffic in order to maximize the corresponding efficiency.

  10. Mass production of polymer nano-wires filled with metal nano-particles.

    PubMed

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  11. Automatic Rotational Sky Quality Meter (R-SQM) Design and Software for Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Dogan, E.; Ozbaldan, E. E.; Shameoni, Niaei M.; Yesilyaprak, C.

    2016-12-01

    We have presented the new design of Sky Quality Meter (SQM) device that is an automatic rotational model of sky quality meter (R-SQM) carried out by DAG (Eastern Anatolia Observatory) Technical Team. R-SQM is required for determining the long-term changes of sky quality of an astronomical observatory and consists of four SQM devices mounted on a rotating shaft with different angles for scanning all sky. This system is controlled by a Raspberry Pi control card and a step motor with its driver and a special software.

  12. Altered sensory-motor control of the head as an etiological factor in space-motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1989-01-01

    Mechanical unloading during head movements in weightlessness may be an etiological factor in space-motion sickness. We simulated altered head loading on Earth without affecting vestibular stimulation by having subjects wear a weighted helmet. Eight subjects were exposed to constant velocity rotation about a vertical axis with direction reversals every 60 sec. for eight reversals with the head loaded and eight with the head unloaded. The severity of motion sickness elicited was significantly higher when the head was loaded. This suggests that altered sensory-motor control of the head is also an etiological factor in space-motion sickness.

  13. Determination of the implementation of the 3-axis attitude motion simulator digital position controller

    NASA Technical Reports Server (NTRS)

    Magana, Mario E.

    1989-01-01

    The digital position controller implemented in the control computer of the 3-axis attitude motion simulator is mathematically reconstructed and documented, since the information supplied with the executable code of this controller was insufficient to make substantial modifications to it. Also developed were methodologies to introduce changes in the controller which do not require rewriting the software. Finally, recommendations are made on possible improvement to the control system performance.

  14. Controlling Motion Sickness and Spatial Disorientation and Enhancing Vestibular Rehabilitation with a User-Worn See-Through Display

    PubMed Central

    Krueger, Wesley W.O.

    2010-01-01

    Objectives/Hypotheses An eyewear mounted visual display (“User-worn see-through display”) projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Study Design Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-post test design for patients in vestibular rehabilitation. Methods Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales while 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. Results All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to post-therapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. Conclusions A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon

  15. Controlling motion sickness and spatial disorientation and enhancing vestibular rehabilitation with a user-worn see-through display.

    PubMed

    Krueger, Wesley W O

    2011-01-01

    An eyewear mounted visual display ("User-worn see-through display") projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-posttest design for patients in vestibular rehabilitation. Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales, whereas 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to posttherapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon and aligned with user movement, has demonstrated substantial

  16. Comparing the Efficacy of Three Different Nano-scale Bone Substitutes: In vivo Study.

    PubMed

    Razavi, Sayed Mohammad; Rismanchian, Mansour; Jafari-Pozve, Nasim; Nosouhian, Saied

    2017-01-01

    Synthetic biocompatible bone substitutions have been used widely for bone tissue regeneration as they are safe and effective. The aim of this animal study is to compare the effectiveness of three different biocompatible bone substitutes, including nano-hydroxyapatite (nano-HA) nano-bioglass (nano-BG) and forstrite scaffolds. In this interventional and experimental study, four healthy dogs were anesthetized, and the first to fourth premolars were extracted in each quadrant. After healing, the linear incision on the crestal ridge from molar to anterior segment prepared in each quadrant and 16 defects in each dog were prepared. Nano-HA, nano-BG, and forstrite scaffold was prepared according to the size of defects and placed in the 12 defects randomly, four defects remained as a control group. The dogs were sacrificed in four time intervals (15, 30, 45, and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed using Mann-Whitney test (α = 0.05). The difference in nano-HA and nano-BG with the control group was significant in three-time intervals regarding the amount of bone formation ( P < 0.01). After 15 days, the nano-HA showed the highest amount of woven and lamellar bone regeneration (18.37 ± 1.06 and 30.44 ± 0.54). Nano-HA and nano-BG groups showed a significant amount of bone regeneration, especially after 30 days, but paying more surveys and observation to these materials as bone substitutes seem to be needed.

  17. Plasmonic graded nano-disks as nano-optical conveyor belt.

    PubMed

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

  18. Real-time motion-based H.263+ frame rate control

    NASA Astrophysics Data System (ADS)

    Song, Hwangjun; Kim, JongWon; Kuo, C.-C. Jay

    1998-12-01

    Most existing H.263+ rate control algorithms, e.g. the one adopted in the test model of the near-term (TMN8), focus on the macroblock layer rate control and low latency under the assumptions of with a constant frame rate and through a constant bit rate (CBR) channel. These algorithms do not accommodate the transmission bandwidth fluctuation efficiently, and the resulting video quality can be degraded. In this work, we propose a new H.263+ rate control scheme which supports the variable bit rate (VBR) channel through the adjustment of the encoding frame rate and quantization parameter. A fast algorithm for the encoding frame rate control based on the inherent motion information within a sliding window in the underlying video is developed to efficiently pursue a good tradeoff between spatial and temporal quality. The proposed rate control algorithm also takes the time-varying bandwidth characteristic of the Internet into account and is able to accommodate the change accordingly. Experimental results are provided to demonstrate the superior performance of the proposed scheme.

  19. Safety Ellipse Motion with Coarse Sun Angle Optimization

    NASA Technical Reports Server (NTRS)

    Naasz, Bo

    2005-01-01

    The Hubble Space Telescope Robotic Servicing and De-orbit Mission (HRSDM) was t o be performed by the unmanned Hubble Robotic Vehicle (HRV) consisting of a Deorbit Module (DM), responsible for the ultimate disposal of Hubble Space Telescope (HST) at the end of science operations, and an Ejection Module (EM), responsible for robotically servicing the HST to extend its useful operational lifetime. HRSDM consisted of eight distinct phases, including: launch, pursuit, proximity operations, capture, servicing, EM jettison and disposal, science operations, and deorbit. The scope of this paper is limited to the Proximity Operations phase of HRSDM. It introduces a relative motion strategy useful for Autonomous Rendezvous and Docking (AR&D) or Formation Flying missions where safe circumnavigation trajectories, or close proximity operations (tens or hundreds of meters) are required for extended periods of time. Parameters and algorithms used to model the relative motion of HRV with respect to HST during the Proximity Operations phase of the HRSDM are described. Specifically, the Safety Ellipse (SE) concept, convenient parameters for describing SE motion, and a concept for initializing SE motion around a target vehicle to coarsely optimize sun and relative navigation sensor angles are presented. The effects of solar incidence angle variations on sun angle optimization, and the effects of orbital perturbations and navigation uncertainty on long term SE motion are discussed.

  20. Nano-graphene in biomedicine: theranostic applications.

    PubMed

    Yang, Kai; Feng, Liangzhu; Shi, Xiaoze; Liu, Zhuang

    2013-01-21

    Owing to their unique physical and chemical properties, graphene and its derivatives such as graphene oxide (GO), reduced graphene oxide (RGO) and GO-nanocomposites have attracted tremendous interest in many different fields including biomedicine in recent years. With every atom exposed on its surface, single-layered graphene shows ultra-high surface area available for efficient molecular loading and bioconjugation, and has been widely explored as novel nano-carriers for drug and gene delivery. Utilizing the intrinsic near-infrared (NIR) optical absorbance, in vivo graphene-based photothermal therapy has been realized, achieving excellent anti-tumor therapeutic efficacy in animal experiments. A variety of inorganic nanoparticles can be grown on the surface of nano-graphene, obtaining functional graphene-based nanocomposites with interesting optical and magnetic properties useful for multi-modal imaging and imaging-guided cancer therapy. Moreover, significant efforts have also been devoted to study the behaviors and toxicology of functionalized nano-graphene in animals. It has been uncovered that both surface chemistry and sizes play key roles in controlling the biodistribution, excretion, and toxicity of nano-graphene. Biocompatibly coated nano-graphene with ultra-small sizes can be cleared out from body after systemic administration, without rendering noticeable toxicity to the treated mice. In this review article, we will summarize the latest progress in this rapidly growing field, and discuss future prospects and challenges of using graphene-based materials for theranostic applications.

  1. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    NASA Astrophysics Data System (ADS)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  2. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Jiang, Tao; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B.

    2018-01-01

    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (XD) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of XD states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the XD emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe2 on a gold substrate, we demonstrate 6 × 105-fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 103 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

  3. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect.

    PubMed

    Park, Kyoung-Duck; Jiang, Tao; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B

    2018-01-01

    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (X D ) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of X D states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the X D emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe 2 on a gold substrate, we demonstrate ~6 × 10 5 -fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 10 3 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

  4. New virtual laboratories presenting advanced motion control concepts

    NASA Astrophysics Data System (ADS)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  5. Application of Nano-SiO₂ and Nano-Fe₂O₃ for Protection of Steel Rebar in Chloride Contaminated Concrete: Epoxy Nanocomposite Coatings and Nano-Modified Mortars.

    PubMed

    Nguyen, Tuan Anh; Nguyen, The Huyen; Pham, Thi Lua; Dinh, Thi Mai Thanh Dinh; Thai, Hoang; Shi, Xianming

    2017-01-01

    The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel in salt contaminated mortars was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy. Researchers conducted electrochemical monitoring of the coated steel embedded in mortar over 100 days of immersion in 0.1 M NaOH solutions. The chloride permeability and microstructure of Portland cement mortar with admixed nano-materials (at 1% by weight of cement) were examined using an electromigration test and field emission scanning electron microscopy (FESEM). Electrochemical monitoring showed that nano Fe₂O₃ improved the corrosion resistance of the coated rebar. The incorporation of a small amount of nano Fe₂O₃ (1% by total weight of resin and hardener) into the epoxy coating reduced the corrosion current of the epoxy-coated steel in chloride-contaminated mortar (0.3% chloride by weight of cement). After 100 days of immersion, the nanoparticles reduced the corrosion current of epoxy-coated steel by a factor of 6. The FESEM test revealed that admixing of nano-materials not only led to denser cement mortar but also changed the morphology of cement hydration products. The test results of compressive strength showed that nanoparticles increased the strength of cement mortar. The electromigration test showed that the incorporation of nanoparticles improved the chloride penetration resistance of the mortar, as indicated by the reduced apparent diffusion coefficients of the chloride anion. When nano-SiO₂ and nano-Fe₂O₃ were admixed into fresh cement mortar at 1% by weight of cement, the value of D(Cl−) was decreased by 83%, from 7.35×10(−11) m²/s (control specimen) to 1.21×10(−11) m²/s and 1.36×10(−11) m²/s, respectively.

  6. Research on the full life cycle management system of smart electric energy meter

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  7. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control

    NASA Astrophysics Data System (ADS)

    Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong

    2018-05-01

    Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.

  8. Effect of high altitude on blood glucose meter performance.

    PubMed

    Fink, Kenneth S; Christensen, Dale B; Ellsworth, Allan

    2002-01-01

    Participation in high-altitude wilderness activities may expose persons to extreme environmental conditions, and for those with diabetes mellitus, euglycemia is important to ensure safe travel. We conducted a field assessment of the precision and accuracy of seven commonly used blood glucose meters while mountaineering on Mount Rainier, located in Washington State (elevation 14,410 ft). At various elevations each climber-subject used the randomly assigned device to measure the glucose level of capillary blood and three different concentrations of standardized control solutions, and a venous sample was also collected for later glucose analysis. Ordinary least squares regression was used to assess the effect of elevation and of other environmental potential covariates on the precision and accuracy of blood glucose meters. Elevation affects glucometer precision (p = 0.08), but becomes less significant (p = 0.21) when adjusted for temperature and relative humidity. The overall effect of elevation was to underestimate glucose levels by approximately 1-2% (unadjusted) for each 1,000 ft gain in elevation. Blood glucose meter accuracy was affected by elevation (p = 0.03), temperature (p < 0.01), and relative humidity (p = 0.04) after adjustment for the other variables. The interaction between elevation and relative humidity had a meaningful but not statistically significant effect on accuracy (p = 0.07). Thus, elevation, temperature, and relative humidity affect blood glucose meter performance, and elevated glucose levels are more greatly underestimated at higher elevations. Further research will help to identify which blood glucose meters are best suited for specific environments.

  9. An Improved Framework for Confound Regression and Filtering for Control of Motion Artifact in the Preprocessing of Resting-State Functional Connectivity Data

    PubMed Central

    Satterthwaite, Theodore D.; Elliott, Mark A.; Gerraty, Raphael T.; Ruparel, Kosha; Loughead, James; Calkins, Monica E.; Eickhoff, Simon B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.; Wolf, Daniel H.

    2013-01-01

    Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. PMID:22926292

  10. Development of an integrated sub-picometric SWIFTS-based wavelength meter

    NASA Astrophysics Data System (ADS)

    Duchemin, Céline; Thomas, Fabrice; Martin, Bruno; Morino, Eric; Puget, Renaud; Oliveres, Robin; Bonneville, Christophe; Gonthiez, Thierry; Valognes, Nicolas

    2017-02-01

    SWIFTSTM technology has been known for over five years to offer compact and high-resolution laser spectrum analyzers. The increase of wavelength monitoring demand with even better accuracy and resolution has pushed the development of a wavelength meter based on SWIFTSTM technology, named LW-10. As a reminder, SWIFTSTM principle consists in a waveguide in which a stationary wave is created, sampled and read out by a linear image sensor array. Due to its inherent properties (non-uniform subsampling) and aliasing signal (as presented in Shannon-Nyquist criterion), the system offers short spectral window bandwidths thus needs an a priori on the working wavelength and thermal monitoring. Although SWIFTSTM-based devices are barely sensitive to atmospheric pressure, temperature control is a key factor to master both high accuracy and wavelength meter resolution. Temperature control went from passive (temperature probing only) to active control (Peltier thermoelectric cooler) with milli-degree accuracy. The software part consists in dropping the Fourier-like transform, for a least-squares method directly on the interference pattern. Moreover, the consideration of the system's chromatic behavior provides a "signature" for automated wavelength detection and discrimination. This SWIFTSTM-based new device - LW-10 - shows outstanding results in terms of absolute accuracy, wavelength meter resolution as well as calibration robustness within a compact device, compared to other existing technologies. On the 630 - 1100 nm range, the final device configuration allows pulsed or CW lasers monitoring with 20 MHz resolution and 200 MHz absolute accuracy. Non-exhaustive applications include tunable laser control and frequency locking experiments

  11. Kinematic control of redundant robots and the motion optimizability measure.

    PubMed

    Li, L; Gruver, W A; Zhang, Q; Yang, Z

    2001-01-01

    This paper treats the kinematic control of manipulators with redundant degrees of freedom. We derive an analytical solution for the inverse kinematics that provides a means for accommodating joint velocity constraints in real time. We define the motion optimizability measure and use it to develop an efficient method for the optimization of joint trajectories subject to multiple criteria. An implementation of the method for a 7-dof experimental redundant robot is present.

  12. Sandia 25-meter compressed helium/air gun

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.

    1982-04-01

    For nearly twenty years the Sandia 25-meter compressed gas gun has been an important tool for studying condensed materials subjected to transient shock compression. Major system modifications are now in progress to provide new control, instrumentation, and data acquisition capabilities. These features will ensure that the facility can continue as an effective means of investigating a variety of physical and chemical processes in shock-compressed solids.

  13. SDRE controller for motion design of cable-suspended robot with uncertainties and moving obstacles

    NASA Astrophysics Data System (ADS)

    Behboodi, Ahad; Salehi, Seyedmohammad

    2017-10-01

    In this paper an optimal control approach for nonlinear dynamical systems was proposed based on State Dependent Riccati Equation (SDRE) and its robustness against uncertainties is shown by simulation results. The proposed method was applied on a spatial six-cable suspended robot, which was designed to carry loads or perform different tasks in huge workspaces. Motion planning for cable-suspended robots in such a big workspace is subjected to uncertainties and obstacles. First, we emphasized the ability of SDRE to construct a systematic basis and efficient design of controller for wide variety of nonlinear dynamical systems. Then we showed how this systematic design improved the robustness of the system and facilitated the integration of motion planning techniques with the controller. In particular, obstacle avoidance technique based on artificial potential field (APF) can be easily combined with SDRE controller with efficient performance. Due to difficulties of exact solution for SDRE, an approximation method was used based on power series expansion. The efficiency and robustness of the SDRE controller was illustrated on a six-cable suspended robot with proper simulations.

  14. Wrist range of motion and motion frequency during toy and game play with a joint-specific controller specially designed to provide neuromuscular therapy: A proof of concept study in typically developing children.

    PubMed

    Crisco, Joseph J; Schwartz, Joel B; Wilcox, Bethany; Brideau, Holly; Basseches, Benjamin; Kerman, Karen

    2015-08-20

    Upper extremities affected by hemiplegic cerebral palsy (CP) and other neuromuscular disorders have been demonstrated to benefit from therapy, and the greater the duration of the therapy, the greater the benefit. A great motivator for participating in and extending the duration of therapy with children is play. Our focus is on active motion therapy of the wrist and forearm. In this study we examine the wrist motions associated with playing with two toys and three computer games controlled by a specially-designed play controller. Twenty children (ages 5-11) with no diagnosis of a muscular disorder were recruited. The play controller was fitted to the wrist and forearm of each child and used to measure and log wrist flexion and extension. Play activity and enjoyment were quantified by average wrist range of motion (ROM), motion frequency measures, and a discrete visual scale. We found significant differences in the average wrist ROM and motion frequency among the toys and games, yet there were no differences in the level of enjoyment across all toys and games, which was high. These findings indicate which toys and games may elicit the greater number of goal-directed movements, and lay the foundation for our long-term goal to develop and evaluate innovative motion-specific play controllers that are engaging rehabilitative devices for enhancing therapy and promoting neural plasticity and functional recovery in children with CP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Deep Space Network Antenna Logic Controller

    NASA Technical Reports Server (NTRS)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  16. The Nano-filters as the tools for the management of the water imbalance in the human society

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Kontar, V.

    2011-12-01

    The imbalance of water in the human society there is some situation where the water demand is not equivalent to the water supply. We are talking now about the shortage of some clear water which suitable for human use, animals, plants, technologies etc. There are existing some various imbalances of water in the human society, but about this will be other publications. The humanity has have the millennial experience of the water imbalance management. The novelty of the matter is the new nano-materials which offer a lot of the new principles more effective management of the water imbalance in the human society. The nano-materials have typical pore size 0.001 micron (1 nano-meter). There are some metal-containing nano-particles, CNTs, fullerene, graphene, zeolites and dendrimers etc, The nano-materials have unique physicochemical properties due to their large surface areas, size and shape-dependent optical, electronic, and catalytic properties that make them very useful for separation components some various stuff and water also. They have ability to functionalize with various chemical groups to increase their affinity toward a desired compound. The silver nano-wires have established a variety of applications, including transparent conductive electrodes for solar cells and optoelectronic. The salt of silver i.e. bulk silver shows photo-catalytic properties. The gold decorated silver nano-wires film may clean the organic molecule while irradiated with either commercial bulb or sun light. The mat (membrane) papers of nano-wires may clean up spilled oil at sea and organic pollutants in water. Arsenic-poisoned drinking water is a global problem, affecting people in Asia, Africa, North America, South America and Europe. Tiny bits of iron oxide that are smaller than living cells known as nanorust, which naturally binds with arsenic, could be used as a low-cost means of removing arsenic from water. Nano-tea bag purifies water on a small scale. The sachets are made up from the

  17. Enhancement of integrated photonic biosensing by magnetic controlled nano-particles

    NASA Astrophysics Data System (ADS)

    Peserico, N.; Sharma, P. Pratim; Belloni, A.; Damin, F.; Chiari, M.; Bertacco, R.; Melloni, A.

    2018-02-01

    Integrated Mach-Zehnder interferometers, ring resonators, Bragg reflectors or simple waveguides are commonly used as photonic biosensing elements. They can be used for label-free detection relating the changes in the optical signal in realtime, as optical power or spectral response, to the presence and even the quantity of a target analyte on the surface of the photonic waveguide. The label-free method has advantages in term of sample preparation but it is more sensitive to spurious effects such as temperature and refractive index sample variation, biological noise, etc. Label methods can be more robust, more sensitive and able to manipulate the biological targets. In this work, we present an innovative labeled biosensing technique exploiting magnetic nano-beads for enhancement of sensitivity over integrated optic microrings. A sandwich binding is exploited to bring the magnetic labels close to the surface of the optical waveguide and interact with the optical evanescent field. The proximity and the quantity of the magnetic nano-beads are seen as a shift in the resonance of the microring. Detection of antibodies permits to reach a high level of sensitivity, down to 8 pM with a high confidence level. The sizes of the nano-beads are 50 to 250 nm. Furthermore, time-varying magnetic fields permit to manipulate the beads and even induce specific signals on the detected light to easy the processing and provide a reliable identification of the presence of the desired analyte. Multiple analytes detection is also possible.

  18. Motion Control of Drives for Prosthetic Hand Using Continuous Myoelectric Signals

    NASA Astrophysics Data System (ADS)

    Purushothaman, Geethanjali; Ray, Kalyan Kumar

    2016-03-01

    In this paper the authors present motion control of a prosthetic hand, through continuous myoelectric signal acquisition, classification and actuation of the prosthetic drive. A four channel continuous electromyogram (EMG) signal also known as myoelectric signals (MES) are acquired from the abled-body to classify the six unique movements of hand and wrist, viz, hand open (HO), hand close (HC), wrist flexion (WF), wrist extension (WE), ulnar deviation (UD) and radial deviation (RD). The classification technique involves in extracting the features/pattern through statistical time domain (TD) parameter/autoregressive coefficients (AR), which are reduced using principal component analysis (PCA). The reduced statistical TD features and or AR coefficients are used to classify the signal patterns through k nearest neighbour (kNN) as well as neural network (NN) classifier and the performance of the classifiers are compared. Performance comparison of the above two classifiers clearly shows that kNN classifier in identifying the hidden intended motion in the myoelectric signals is better than that of NN classifier. Once the classifier identifies the intended motion, the signal is amplified to actuate the three low power DC motor to perform the above mentioned movements.

  19. Ambiguity effects of rhyme and meter.

    PubMed

    Wallot, Sebastian; Menninghaus, Winfried

    2018-04-23

    Previous research has shown that rhyme and meter-although enhancing prosodic processing ease and memorability-also tend to make semantic processing more demanding. Using a set of rhymed and metered proverbs, as well as nonrhymed and nonmetered versions of these proverbs, the present study reveals this hitherto unspecified difficulty of comprehension to be specifically driven by perceived ambiguity. Roman Jakobson was the 1st to propose this hypothesis, in 1960. He suggested that "ambiguity is an intrinsic, inalienable feature" of "parallelistic" diction of which the combination of rhyme and meter is a pronounced example. Our results show that ambiguity indeed explains a substantial portion of the rhyme- and meter-driven difficulty of comprehension. Longer word-reading times differentially reflected ratings for ambiguity and comprehension difficulty. However, the ambiguity effect is not "inalienable." Rather, many rhymed and metered sentences turned out to be low in ambiguity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Three-dimensional nano-biointerface as a new platform for guiding cell fate.

    PubMed

    Liu, Xueli; Wang, Shutao

    2014-04-21

    Three-dimensional nano-biointerface has been emerging as an important topic for chemistry, nanotechnology, and life sciences in recent years. Understanding the exchanges of materials, signals, and energy at biological interfaces has inspired and helped the serial design of three-dimensional nano-biointerfaces. The intimate interactions between cells and nanostructures bring many novel properties, making three-dimensional nano-biointerfaces a powerful platform to guide cell fate in a controllable and accurate way. These advantages and capabilities endow three-dimensional nano-biointerfaces with an indispensable role in developing advanced biological science and technology. This tutorial review is mainly focused on the recent progress of three-dimensional nano-biointerfaces and highlights the new explorations and unique phenomena of three-dimensional nano-biointerfaces for cell-related fundamental studies and biomedical applications. Some basic bio-inspired principles for the design and creation of three-dimensional nano-biointerfaces are also delivered in this review. Current and further challenges of three-dimensional nano-biointerfaces are finally addressed and proposed.