Sample records for nano-scale dna cage

  1. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    PubMed Central

    Andersen, Felicie F.; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto; Frøhlich, Rikke F.; Krüger, Dinna; Bungert, Jörg; Agbandje-McKenna, Mavis; McKenna, Robert; Juul, Sissel; Veigaard, Christopher; Koch, Jørn; Rubinstein, John L.; Guldbrandtsen, Bernt; Hede, Marianne S.; Karlsson, Göran; Andersen, Anni H.; Pedersen, Jan Skov; Knudsen, Birgitta R.

    2008-01-01

    The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson–Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double-stranded DNA helices that assembles from eight oligonucleotides with a yield of ∼30%. As demonstrated by Small Angle X-ray Scattering and cryo-Transmission Electron Microscopy analyses the eight-stranded DNA structure has a central cavity larger than the apertures in the surrounding DNA lattice and can be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures. PMID:18096620

  2. Sensitivity of BN nano-cages to caffeine and nicotine molecules

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Baei, Mohammad T.; Tazikeh Lemeski, E.; Shahini, Malihe

    2014-12-01

    Adsorption of caffeine and nicotine molecules over B12N12 and B16N16 nano-cages were investigated by using first-principles calculations to define whether BN nano-cages are applicable for filtering or sensing caffeine and nicotine molecules. The chemisorption energy of nicotine molecule on BN nano-cages is very stronger than caffeine molecule. Upon the adsorption of caffeine and nicotine molecules, the electronic properties of the BN nano-cages can be significantly changed, being too much sensitized on the caffeine and nicotine adsorptions.

  3. Packaging DNA Origami into Viral Protein Cages.

    PubMed

    Linko, Veikko; Mikkilä, Joona; Kostiainen, Mauri A

    2018-01-01

    The DNA origami technique is a widely used method to create customized, complex, spatially well-defined two-dimensional (2D) and three-dimensional (3D) DNA nanostructures. These structures have huge potential to serve as smart drug-delivery vehicles and molecular devices in various nanomedical and biotechnological applications. However, so far only little is known about the behavior of these novel structures in living organisms or in cell culture/tissue models. Moreover, enhancing pharmacokinetic bioavailability and transfection properties of such structures still remains a challenge. One intriguing approach to overcome these issues is to coat DNA origami nanostructures with proteins or lipid membranes. Here, we show how cowpea chlorotic mottle virus (CCMV) capsid proteins (CPs) can be used for coating DNA origami nanostructures. We present a method for disassembling native CCMV particles and isolating the pure CP dimers, which can further bind and encapsulate a rectangular DNA origami shape. Owing to the highly programmable nature of DNA origami, packaging of DNA nanostructures into viral protein cages could find imminent uses in enhanced targeting and cellular delivery of various active nano-objects, such as enzymes and drug molecules.

  4. Self-assembly in the ferritin nano-cage protein superfamily.

    PubMed

    Zhang, Yu; Orner, Brendan P

    2011-01-01

    Protein self-assembly, through specific, high affinity, and geometrically constraining protein-protein interactions, can control and lead to complex cellular nano-structures. Establishing an understanding of the underlying principles that govern protein self-assembly is not only essential to appreciate the fundamental biological functions of these structures, but could also provide a basis for their enhancement for nano-material applications. The ferritins are a superfamily of well studied proteins that self-assemble into hollow cage-like structures which are ubiquitously found in both prokaryotes and eukaryotes. Structural studies have revealed that many members of the ferritin family can self-assemble into nano-cages of two types. Maxi-ferritins form hollow spheres with octahedral symmetry composed of twenty-four monomers. Mini-ferritins, on the other hand, are tetrahedrally symmetric, hollow assemblies composed of twelve monomers. This review will focus on the structure of members of the ferritin superfamily, the mechanism of ferritin self-assembly and the structure-function relations of these proteins.

  5. Lipid Membrane Encapsulation of a 3D DNA Nano Octahedron.

    PubMed

    Perrault, Steven D; Shih, William M

    2017-01-01

    Structural DNA nanotechnology methods such as DNA origami allow for the synthesis of highly precise nanometer-scale materials (Rothemund, Nature 440:297-302, 2006; Douglas et al., Nature 459:414-418, 2009). These offer compelling advantages for biomedical applications. Such materials can suffer from structural instability in biological environments due to denaturation and nuclease digestion (Hahn et al., ACS Nano 2014; Perrault and Shih, ACS Nano 8:5132-5140, 2014). Encapsulation of DNA nanostructures in a lipid membrane compartmentalizes them from their environment and prevents denaturation and nuclease digestion (Perrault and Shih, ACS Nano 8:5132-5140, 2014). Here, we describe the encapsulation of a 50 nm DNA nanostructure having the geometry of a wireframe octahedron in a phospholipid membrane containing poly-(ethylene glycol), resulting in biocompatible DNA nanostructures.

  6. Dye-sensitization of CdS nano-cage - A density functional theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Kalpna; Singh, Kh. S.; Kishor, Shyam

    2016-05-23

    Quantum dots a few nanometer in size exhibit unique properties in comparison to bulk due to quantum confinement. Their properties can be tuned according to their sizes. Dye sensitized quantum dot (DSQD) solar cells are based on the same principle with surface dangling bonds as a challenge. Researches have shown the existence and stability of nano-cages which are assembled such as to minimize the surface dangling bonds and hence maximize stability. Here, we report a first principles DFT study of optical and electronic properties of CdS-cage (Cd{sub 34}S{sub 34}) sensitized with nkx-2388 dye in three different geometric configurations of dyemore » attachment. A significant distortion is found to occur in the geometric structure of the cage when it interacts strongly with the dye. The relative positioning of dye and cage energy levels is found to be different in different configurations. The absorption spectrum has been analyzed with the help of natural transition orbitals (NTO).« less

  7. Synthesis and evaluation of novel caged DNA alkylating agents bearing 3,4-epoxypiperidine structure.

    PubMed

    Kawada, Yuji; Kodama, Tetsuya; Miyashita, Kazuyuki; Imanishi, Takeshi; Obika, Satoshi

    2012-07-14

    Previously, we reported that the 3,4-epoxypiperidine structure, whose design was based on the active site of DNA alkylating antitumor antibiotics, azinomycins A and B, possesses prominent DNA cleavage activity. In this report, novel caged DNA alkylating agents, which were designed to be activated by UV irradiation, were synthesized by the introduction of four photo-labile protecting groups to a 3,4-epoxypiperidine derivative. The DNA cleavage activity and cytotoxicity of the caged DNA alkylating agents were examined under UV irradiation. Four caged DNA alkylating agents showed various degrees of bioactivity depending on the photosensitivity of the protecting groups.

  8. Protein cage assembly across multiple length scales.

    PubMed

    Aumiller, William M; Uchida, Masaki; Douglas, Trevor

    2018-05-21

    Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.

  9. Recent development of nano-materials used in DNA biosensors.

    PubMed

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  10. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  11. A first-principles study on the adsorption behavior of amphetamine on pristine, P- and Al-doped B12N12 nano-cages

    NASA Astrophysics Data System (ADS)

    Bahrami, Aidin; Seidi, Shahram; Baheri, Tahmineh; Aghamohammadi, Mohammad

    2013-12-01

    The first-principles computations using density functional theory (DFT) calculations at the M062X/6-311++G** level have been applied to scrutinize the adsorption behavior of amphetamine (AMP) molecule on the external surface of pristine, P- and Al-doped B12N12 nano-cages. In order to gain insight into the binding features of pristine and doped B12N12 complexes as adsorbent with AMP, the structural and electronic parameters as well as the Atoms in Molecules (AIM) properties were examined. The results showed that AMP prefers to adsorb via its nitrogen atom on the Lewis acid sites of B and Al atoms of the nano-cages. On the basis of calculated density of states, the interaction of AMP with the external wall of B12N12 leads to the remarkable differences in their conductivities. Presence of polar solvent increases the AMP adsorption on the nano-cage. In addition, AIM based analyses indicated an electrostatic nature for N-B interaction in Amph-B12N12 and partial covalent for N-Al in AMP-B11AlN12. Based on calculated results, the B12N12 and B11AlN12 nano-cages are expected to be a potential efficient adsorbent as well as sensors for adsorption of AMP in environmental systems.

  12. Plasmonic Nanostructures for Nano-Scale Bio-Sensing

    PubMed Central

    Chung, Taerin; Lee, Seung-Yeol; Song, Eui Young; Chun, Honggu; Lee, Byoungho

    2011-01-01

    The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realized by using the shift of resonance wavelength of LSPR in response to the refractive index change. In this paper, we overview various plasmonic nanostructures as potential sensing components. The qualitative descriptions of plasmonic nanostructures are supported by the physical phenomena such as plasmonic hybridization and Fano resonance. We present guidelines for designing specific nanostructures with regard to wavelength range and target sensing materials. PMID:22346679

  13. A library of protein cage architectures as nanomaterials.

    PubMed

    Flenniken, M L; Uchida, M; Liepold, L O; Kang, S; Young, M J; Douglas, T

    2009-01-01

    Virus capsids and other structurally related cage-like proteins such as ferritins, dps, and heat shock proteins have three distinct surfaces (inside, outside, interface) that can be exploited to generate nanomaterials with multiple functionality by design. Protein cages are biological in origin and each cage exhibits extremely homogeneous size distribution. This homogeneity can be used to attain a high degree of homogeneity of the templated material and its associated property. A series of protein cages exhibiting diversity in size, functionality, and chemical and thermal stabilities can be utilized for materials synthesis under a variety of conditions. Since synthetic approaches to materials science often use harsh temperature and pH, it is an advantage to utilize protein cages from extreme environments. In this chapter, we review recent studies on discovering novel protein cages from harsh natural environments such as the acidic thermal hot springs at Yellowstone National Park (YNP) and on utilizing protein cages as nano-scale platforms for developing nanomaterials with wide range of applications from electronics to biomedicine.

  14. Be12O12 Nano-cage as a Promising Catalyst for CO2 Hydrogenation

    PubMed Central

    Zhu, Haiyan; Li, Yawei; Zhu, Guizhi; Su, Haibin; Chan, Siew Hwa; Sun, Qiang

    2017-01-01

    An efficient conversion of CO2 into valuable fuels and chemicals has been hotly pursued recently. Here, for the first time, we have explored a series of M12x12 nano-cages (M = B, Al, Be, Mg; X = N, P, O) for catalysis of CO2 to HCOOH. Two steps are identified in the hydrogenation process, namely, H2 activation to 2H*, and then 2H* transfer to CO2 forming HCOOH, where the barriers of two H* transfer are lower than that of the H2 activation reaction. Among the studied cages, Be12O12 is found to have the lowest barrier in the whole reaction process, showing two kinds of reaction mechanisms for 2H* (simultaneous transfer and a step-wise transfer with a quite low barrier). Moreover, the H2 activation energy barrier can be further reduced by introducing Al, Ga, Li, and Na to B12N12 cage. This study would provide some new ideas for the design of efficient cluster catalysts for CO2 reduction. PMID:28098191

  15. Using DNA-labelled nano- and microparticles to track particle transport in the environment

    NASA Astrophysics Data System (ADS)

    McNew, Coy; Wang, Chaozi; Dahlke, Helen; Lyon, Steve; Walter, Todd

    2017-04-01

    By utilizing bio-molecular nanotechnology developed for nano-medicines and drug delivery, we are able to produce DNA-labelled nano- and microparticle tracers for use in a myriad of environmental systems. The use of custom sequenced DNA allows for the fabrication of an enormous number of uniquely labelled tracers with identical transport properties (approximately 1.61 x 1060 unique sequences), each independently quantifiable, that can be applied simultaneously in any hydrologic system. By controlling the fabrication procedure to produce particles of custom size and charge, we are able to tag each size-charge combination uniquely in order to directly probe the effect of these variables on the transport properties of the particles. Here we present our methods for fabrication, extraction, and analysis of the DNA nano- and microparticle tracers, along with results from several successful applications of the tracers, including transport and retention analysis at the lab, continuum, and field scales. To date, our DNA-labelled nano- and microparticle tracers have proved useful in surface and subsurface water applications, soil retention, and even subglacial flow pathways. The range of potential applications continue to prove nearly limitless.

  16. ASSESSING HABITAT QUALITY OF MOUNT HOPE BAY AND NARRAGANSETT BAY USING GROWTH, RNA:DNA, AND FEDDING HABITS OF CAGED JUVENILE WINTER FLOUNDER

    EPA Science Inventory

    Somatic growth rates, RNA:DNA, and feeding habits of juvenile Pseudopleuronectes americanus (Winter Flounder) were used to asses small-scale spatio-temporal variations in the habitat quality of Mount Hope Bay and Narragan-sett Bay, RI. Three successive caging experiments (14–16 d...

  17. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems.

    PubMed

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; Kestell, John D; Boscoboinik, Alejandro M; Kim, Taejin; Stacchiola, Dario J; Lu, Deyu; Boscoboinik, J Anibal

    2017-07-17

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.

  18. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems

    DOE PAGES

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; ...

    2017-07-17

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. Here, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, themore » permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. Our findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.« less

  19. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. Here, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, themore » permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. Our findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.« less

  20. Bio-Inspired Nanomaterials: Protein Cage Nano-Architectures

    DTIC Science & Technology

    2008-04-01

    chemical modification of protein cage materials and controlled chemical synthesis under mild biological conditions. High- resolution structural...properties based on a combination of controlled mobility and metal ligand interactions. Using the exterior surface of the CCMV viral cage we have chemically ...follows: Patterning by microplotter was achieved by depositing a preselected antibody solution directly onto chemically activated silicon or gold

  1. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    PubMed

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage

    NASA Astrophysics Data System (ADS)

    Bi, Chun-wei; Zhao, Yun-peng; Dong, Guo-hai

    2015-06-01

    The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.

  3. Structural evolution of a uranyl peroxide nano-cage fullerene: U60, at elevated pressures

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Lin, Y.; Zhang, F.; McGrail, B.; Burns, P. C.; Mao, W. L.; Ewing, R. C.

    2015-12-01

    U60 is a uranyl peroxide nano-cage that adopts a highly symmetric fullerene topology; it is topologically identical to C60. Several studies on the aqueous-phase of U60 clusters, [UO2(O2)(OH)]6060-, have shown its persistence in complex solutions and over lengthy time scales. Peroxide enhances corrosion of nuclear fuel in a reactor accident-uranyl peroxides often form near contaminated sites. U60 (Fm-3) crystallizes with approximate formula: Li68K12(OH)20[UO2(O2)(OH)]60(H2O)310. Here, we have used the diamond anvil cell (DAC) to examine U60 to understand the stability of this cluster at high pressures. We used a symmetric DAC with 300 μm culet diamonds and two different pressure-transmitting media: a mixture of methanol+ethanol and silicone oil. Using a combination of in situ Raman spectroscopy and synchrotron XRD, and electrospray ionization mass spectroscopy (ESI-MS) ex situ, we have determined the pressure-induced evolution of U60. Crystalline U60 undergoes an irreversible phase transition to a tetragonal structure at 4.1 GPa, and irreversibly amorphizes at 13 GPa. The amorphous phase likely consists of clusters of U60. Above 15 GPa, the U60 cluster is irreversibly destroyed. ESI-MS shows that this phase consists of species that likely have between 10-20 uranium atoms. Raman spectroscopy complements the diffraction measurements. U60 shows two dominant vibrational modes: a symmetric stretch of the uranyl U-O triple bond (810 cm-1), and a symmetric stretch of the U-O2-U peroxide bond (820 cm-1). As pressure is increased, these modes shift to higher wavenumbers, and overlap at 4 GPa. At 15 GPa, their intensity decreases below detection. These experiments reveal several novel behaviors including a new phase of U60. Notably, the amorphization of U60 occurs before the collapse of its cluster topology. This is different from the behavior of solvated C60 at high pressure, which maintains a hcp structure up to 30 GPa, while the clusters disorder. These results suggest

  4. DNA Assembly Line for Nano-Construction

    ScienceCinema

    Oleg Gang

    2017-12-09

    Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl

  5. Electrochemical method of producing nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  6. Evaluation of anterior cervical reconstruction with titanium mesh cages versus nano-hydroxyapatite/polyamide66 cages after 1- or 2-level corpectomy for multilevel cervical spondylotic myelopathy: a retrospective study of 117 patients.

    PubMed

    Zhang, Yuan; Quan, Zhengxue; Zhao, Zenghui; Luo, Xiaoji; Tang, Ke; Li, Jie; Zhou, Xu; Jiang, Dianming

    2014-01-01

    To retrospectively compare the efficacy of the titanium mesh cage (TMC) and the nano-hydroxyapatite/polyamide66 cage (n-HA/PA66 cage) for 1- or 2-level anterior cervical corpectomy and fusion (ACCF) to treat multilevel cervical spondylotic myelopathy (MCSM). A total of 117 consecutive patients with MCSM who underwent 1- or 2-level ACCF using a TMC or an n-HA/PA66 cage were studied retrospectively at a mean follow-up of 45.28 ± 12.83 months. The patients were divided into four groups according to the level of corpectomy (1- or 2-level corpectomy) and cage type used (TMC or n-HA/PA66 cage). Clinical and radiological parameters were used to evaluate outcomes. At the one-year follow-up, the fusion rate in the n-HA/PA66 group was higher, albeit non-significantly, than that in the TMC group for both 1- and 2-level ACCF, but the fusion rates of the procedures were almost equal at the final follow-up. The incidence of cage subsidence at the final follow-up was significantly higher in the TMC group than in the n-HA/PA66 group for the 1-level ACCF (24% vs. 4%, p = 0.01), and the difference was greater for the 2-level ACCF between the TMC group and the n-HA/PA66 group (38% vs. 5%, p = 0.01). Meanwhile, a much greater loss of fused height was observed in the TMC group compared with the n-HA/PA66 group for both the 1- and 2-level ACCF. All four groups demonstrated increases in C2-C7 Cobb angle and JOA scores and decreases in VAS at the final follow-up compared with preoperative values. The lower incidence of cage subsidence, better maintenance of the height of the fused segment and similar excellent bony fusion indicate that the n-HA/PA66 cage may be a superior alternative to the TMC for cervical reconstruction after cervical corpectomy, in particular for 2-level ACCF.

  7. Method of producing nano-scaled inorganic platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  8. Protein Cage Nanoparticles Bearing the LyP-1 Peptide for Enhanced Imaging of Macrophage-Rich Vascular Lesions

    PubMed Central

    Uchida, Masaki; Kosuge, Hisanori; Terashima, Masahiro; Willits, Deborah A.; Liepold, Lars O.; Young, Mark J.; McConnell, Michael V.; Douglas, Trevor

    2011-01-01

    Cage-like protein nano particles are promising platforms for cell and tissue specific targeted delivery of imaging and therapeutic agents. Here, we have successfully modified the 12 nm small heat shock protein from Methanococcus jannaschii (MjHsp) to detect atherosclerotic plaque lesions in a mouse model system. As macrophages are centrally involved in the initiation and progression of atherosclerosis, targeted imaging of macrophages is valuable to assess the biologic status of the blood vessel wall. LyP-1, a nine residue peptide, has been shown to target tumor-associated macrophages. Thus, LyP-1 was genetically incorporated onto the exterior surface of MjHsp, while a fluorescent molecule (Cy5.5) was conjugated on the interior cavity. This bioengineered protein cage, LyP-Hsp, exhibited enhanced affinity to macrophage in vitro. Furthermore, in vivo injection of LyP-Hsp allowed visualization of macrophage-rich murine carotid lesions by in situ and ex vivo fluorescence imaging. These results demonstrate the potential of LyP-1-conjugated protein cages as nano-scale platforms for delivery of imaging agents for the diagnosis of atherosclerosis. PMID:21391720

  9. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification

    PubMed Central

    Lech, Christopher Jacques

    2017-01-01

    Abstract Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0–13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin–avidin conjugation approach. PMID:28499037

  10. Computer-aided design of nano-filter construction using DNA self-assembly

    NASA Astrophysics Data System (ADS)

    Mohammadzadegan, Reza; Mohabatkar, Hassan

    2007-01-01

    Computer-aided design plays a fundamental role in both top-down and bottom-up nano-system fabrication. This paper presents a bottom-up nano-filter patterning process based on DNA self-assembly. In this study we designed a new method to construct fully designed nano-filters with the pores between 5 nm and 9 nm in diameter. Our calculations illustrated that by constructing such a nano-filter we would be able to separate many molecules.

  11. DNA in the material world: electrical properties and nano-applications.

    PubMed

    Triberis, Georgios P; Dimakogianni, Margarita

    2009-01-01

    Contradictory experimental findings and theoretical interpretations have spurred intense debate over the electrical properties of the DNA double helix. In the present review article the various factors responsible for these divergences are discussed. The enlightenment of this issue could improve long range chemistry of oxidative DNA damage and repair processes, monitoring protein-DNA interactions and possible applications in nano-electronic circuit technology. The update experimental situation concerning measurements of the electrical conductivity is given. The character of the carriers responsible for the electrical conductivity measured in DNA is investigated. A theoretical model for the temperature dependence of the electrical conductivity of DNA is presented, based on microscopic models and percolation theoretical arguments. The theoretical results, excluding or including correlation effects, are applied to recent experimental findings for DNA, considering it as a one dimensional molecular wire. The results indicate that correlation effects are probably responsible for large hopping distances in DNA samples. Other theoretical conductivity models proposed for the interpretation of the responsible transport mechanism are also reviewed. Some of the most known and pioneering works on DNA's nano-applications, future developments and perspectives along with current technological limitations and patents are presented and discussed.

  12. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification.

    PubMed

    Lech, Christopher Jacques; Phan, Anh Tuân

    2017-06-20

    Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0-13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin-avidin conjugation approach. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Topological and metric properties of linear and circular DNA chains in nano-slits and nano-channels

    NASA Astrophysics Data System (ADS)

    Orlandini, Enzo; Micheletti, Cristian

    2014-03-01

    Motivated by recent advancements in single DNA molecule experiments, based on nanofluidic devices, we investigate numerically the metric and topological properties of a modelof open and circular DNA chains confined inside nano-slits and nano-channles. The results reveal an interesting characterization of the metric crossover behaviour in terms of the abundance, type and length of occuring knots. In particular we find that the knotting probability is nonmonotonic for increasing confinement and can be largely enhanced or suppressed, compared to the bulk case, by simply varying the slit or channel trasversal dimension. The observed knot population consists of knots that are far simpler than for DNA chains in spherical (i.e. cavities or capsids) confinement. These results suggest that nanoslits and nanochannels can be properly designed to produce open DNA chains hosting simple knots or to sieve DNA rings according to their knotted state. Finally we discuss the implications that the presence of knots may have on the dynamical properties of confined DNA chains such as chain elongation, injection/ejection processes and entanglement relaxation. We acknowledge financial support from the Italian ministry of education, grant PRIN 2010HXAW77.

  14. Scaling laws for nanoFET sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Fu-Shan; Wei, Qi-Huo

    2008-01-01

    The sensitive conductance change of semiconductor nanowires and carbon nanotubes in response to the binding of charged molecules provides a novel sensing modality which is generally denoted as nanoFET sensors. In this paper, we study the scaling laws of nanoplate FET sensors by simplifying nanoplates as random resistor networks with molecular receptors sitting on lattice sites. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors, while they could be eliminated by designing devices with very short source-drain distance and large width.

  15. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidasemore » (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA

  16. Scaling Laws for NanoFET Sensors

    NASA Astrophysics Data System (ADS)

    Wei, Qi-Huo; Zhou, Fu-Shan

    2008-03-01

    In this paper, we report our numerical studies of the scaling laws for nanoplate field-effect transistor (FET) sensors by simplifying the nanoplates as random resistor networks. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field-effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors. We propose to eliminate these detection thresholds by employing devices with very short source-drain distance and large width.

  17. An electrochemiluminescent DNA sensor based on nano-gold enhancement and ferrocene quenching.

    PubMed

    Yao, Wu; Wang, Lun; Wang, Haiyan; Zhang, Xiaolei; Li, Ling; Zhang, Na; Pan, Le; Xing, Nannan

    2013-02-15

    An electrochemiluminescent DNA (ECL-DNA) sensor based on nano-gold signal enhancement (i.e. gold nanoparticles, GNP) and ferrocene signal quenching was investigated. The Au electrode was first modified with GNPs through electrodeposition method, followed by subsequent immobilization of single-stranded probe DNA labeled with ruthenium complex. The resulting sensor produced a higher ECL signal due to its higher density of self-assembled probe DNAs on the surface. Upon the hybridization of probe DNA with complementary target DNA labeled with ferrocene, ECL intensity decreased significantly due to spatial separation of ECL label from the electrode surface. As a result, the ECL signal was simultaneously quenched by ferrocene. The effects of both nano-gold electrodeposition time and ferrocene on the performance of ECL-DNA sensor were studied in detail and possible reasons for these effects were suggested as well. The reported ECL-DNA sensor showed great sensitivity and may provide an alternative approach for DNA detection in diagnostics and gene analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor

    NASA Astrophysics Data System (ADS)

    Panda, Deepanjan; Saha, Puja; Das, Tania; Dash, Jyotirmayee

    2017-07-01

    The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery.

  19. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  20. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles.

    PubMed

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Infinite Coordination Polymer Nano- and Micro-Particles

    DTIC Science & Technology

    2015-06-12

    Mirkin, Tobin J. Marks, Joseph T. Hupp. SiO2 Aerogel-templated, Porous TiO2 Photoanodes for Enhanced Performances in Dye-Sensitized Solar Cells ...nano-scale ICPs and their selective surface functionalization, we examined if indeed these ICP-DNA hybrid structures could enter cells and...surface functionalization. In particular, we aimed to utilize this fundamental understanding for the realization of nano-scale ICP-biomolecule hybrids

  2. A large scale laboratory cage trial of Aedes densonucleosis virus (AeDNV).

    PubMed

    Wise de Valdez, Megan R; Suchman, Erica L; Carlson, Jonathan O; Black, William C

    2010-05-01

    Aedes aegypti (L.) (Diptera: Culicidae) the primary vector of dengue viruses (DENV1-4), oviposit in and around human dwellings, including sites difficult to locate, making control of this mosquito challenging. We explored the efficacy and sustainability of Aedes Densonucleosis Virus (AeDNV) as a biocontrol agent for Ae. aegypti in and among oviposition sites in large laboratory cages (> 92 m3) as a prelude to field trials. Select cages were seeded with AeDNV in a single oviposition site (OPS) with unseeded OPSs established at varied distances. Quantitative real-time polymerase chain reaction was used to track dispersal and accumulation of AeDNV among OPSs. All eggs were collected weekly from each cage and counted. We asked: (1) Is AeDNV dispersed over varying distances and can it accumulate and persist in novel OPSs? (2) Are egg densities reduced in AeDNV treated populations? AeDNV was dispersed to and sustained in novel OPSs. Virus accumulation in OPSs was positively correlated with egg densities and proximity to the initial infection source affected the timing of dispersal and maintenance of viral titers. AeDNV did not significantly reduce Ae. aegypti egg densities. The current study documents that adult female Ae. aegypti oviposition behavior leads to successful viral dispersal from treated to novel containers in large-scale cages; however, the AeDNV titers reached were not sufficient to reduce egg densities.

  3. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family

    NASA Astrophysics Data System (ADS)

    Franch, Oskar; Iacovelli, Federico; Falconi, Mattia; Juul, Sissel; Ottaviani, Alessio; Benvenuti, Claudia; Biocca, Silvia; Ho, Yi-Ping; Knudsen, Birgitta R.; Desideri, Alessandro

    2016-07-01

    In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands.In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous

  4. CAGEd-oPOSSUM: motif enrichment analysis from CAGE-derived TSSs.

    PubMed

    Arenillas, David J; Forrest, Alistair R R; Kawaji, Hideya; Lassmann, Timo; Wasserman, Wyeth W; Mathelier, Anthony

    2016-09-15

    With the emergence of large-scale Cap Analysis of Gene Expression (CAGE) datasets from individual labs and the FANTOM consortium, one can now analyze the cis-regulatory regions associated with gene transcription at an unprecedented level of refinement. By coupling transcription factor binding site (TFBS) enrichment analysis with CAGE-derived genomic regions, CAGEd-oPOSSUM can identify TFs that act as key regulators of genes involved in specific mammalian cell and tissue types. The webtool allows for the analysis of CAGE-derived transcription start sites (TSSs) either provided by the user or selected from ∼1300 mammalian samples from the FANTOM5 project with pre-computed TFBS predicted with JASPAR TF binding profiles. The tool helps power insights into the regulation of genes through the study of the specific usage of TSSs within specific cell types and/or under specific conditions. The CAGEd-oPOSUM web tool is implemented in Perl, MySQL and Apache and is available at http://cagedop.cmmt.ubc.ca/CAGEd_oPOSSUM CONTACTS: anthony.mathelier@ncmm.uio.no or wyeth@cmmt.ubc.ca Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  5. CAGEd-oPOSSUM: motif enrichment analysis from CAGE-derived TSSs

    PubMed Central

    Arenillas, David J.; Forrest, Alistair R. R.; Kawaji, Hideya; Lassmann, Timo; Wasserman, Wyeth W.; Mathelier, Anthony

    2016-01-01

    With the emergence of large-scale Cap Analysis of Gene Expression (CAGE) datasets from individual labs and the FANTOM consortium, one can now analyze the cis-regulatory regions associated with gene transcription at an unprecedented level of refinement. By coupling transcription factor binding site (TFBS) enrichment analysis with CAGE-derived genomic regions, CAGEd-oPOSSUM can identify TFs that act as key regulators of genes involved in specific mammalian cell and tissue types. The webtool allows for the analysis of CAGE-derived transcription start sites (TSSs) either provided by the user or selected from ∼1300 mammalian samples from the FANTOM5 project with pre-computed TFBS predicted with JASPAR TF binding profiles. The tool helps power insights into the regulation of genes through the study of the specific usage of TSSs within specific cell types and/or under specific conditions. Availability and Implementation: The CAGEd-oPOSUM web tool is implemented in Perl, MySQL and Apache and is available at http://cagedop.cmmt.ubc.ca/CAGEd_oPOSSUM. Contacts: anthony.mathelier@ncmm.uio.no or wyeth@cmmt.ubc.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27334471

  6. "Nano" Scale Biosignatures and the Search for Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Robert, F.; Meibom, A.; Mostefaoui, S.; Selo, M.; Walter, M. R.; Sugitani, K.; Allwood, A.; Mimura, K.; Gibson, E. K.

    2008-01-01

    A critical step in the search for remnants of potential life forms on other planets lies in our ability to recognize indigenous fragments of ancient microbes preserved in some of Earth's oldest rocks. To this end, we are building a database of nano-scale chemical and morphological characteristics of some of Earth's oldest organic microfossils. We are primarily using the new technology of Nano-Secondary ion mass spectrometry (NanoSIMS) which provides in-situ, nano-scale elemental analysis of trace quantities of organic residues. The initial step was to characterize element composition of well-preserved, organic microfossils from the late Proterozoic (0.8 Ga) Bitter Springs Formation of Australia. Results from that work provide morphologic detail and nitrogen/carbon ratios that appear to reflect the well-established biological origin of these 0.8 Ga fossils.

  7. DNA damage on nano- and micrometer scales impacts dicentric induction: computer modelling of ion microbeam experiments

    NASA Astrophysics Data System (ADS)

    Friedland, Werner; Kundrat, Pavel; Schmitt, Elke

    2016-07-01

    Detailed understanding of the enhanced relative biological effectiveness (RBE) of ions, in particular at high linear energy transfer (LET) values, is needed to fully explore the radiation risk of manned space missions. It is generally accepted that the enhanced RBE of high-LET particles results from the DNA lesion patterns, in particular DNA double-strand breaks (DSB), due to the spatial clustering of energy deposits around their trajectories. In conventional experiments on biological effects of radiation types of diverse quality, however, clustering of energy deposition events on nanometer scale that is relevant for the induction and local complexity of DSB is inherently interlinked with regional (sub-)micrometer-scale DSB clustering along the particle tracks. Due to this limitation, the role of both (nano- and micrometer) scales on the induction of diverse biological endpoints cannot be frankly separated. To address this issue in a unique way, experiments at the ion microbeam SNAKE [1] and corresponding track-structure based model calculations of DSB induction and subsequent repair with the biophysical code PARTRAC [2] have been performed. In the experiments, hybrid human-hamster A_{L} cells were irradiated with 20 MeV (2.6 keV/μm) protons, 45 MeV (60 keV/μm) lithium ions or 55 MeV (310 keV/μm) carbon ions. The ions were either quasi-homogeneously distributed or focused to 0.5 x 1 μm^{2} spots on regular matrix patterns of 5.4 μm, 7.6 μm and 10.6 μm grid size, with pre-defined particle numbers per spot so as to deposit a mean dose of 1.7 Gy for all irradiation patterns. As expected, the induction of dicentrics by homogeneous irradiation increased with LET: lithium and carbon ions induced about two- and four-fold higher yields of dicentrics than protons. The induction of dicentrics is, however, affected by µm-scale, too: focusing 20 lithium ions or 451 protons per spot on a 10.6 μm grid induced two or three times more dicentrics, respectively, than a

  8. Advances in nano-scaled biosensors for biomedical applications.

    PubMed

    Wang, Jianling; Chen, Guihua; Jiang, Hui; Li, Zhiyong; Wang, Xuemei

    2013-08-21

    Recently, a growing amount of attention has been focused on the utility of biosensors for biomedical applications. Combined with nanomaterials and nanostructures, nano-scaled biosensors are installed for biomedical applications, such as pathogenic bacteria monitoring, virus recognition, disease biomarker detection, among others. These nano-biosensors offer a number of advantages and in many respects are ideally suited to biomedical applications, which could be made as extremely flexible devices, allowing biomedical analysis with speediness, excellent selectivity and high sensitivity. This minireview discusses the literature published in the latest years on the advances in biomedical applications of nano-scaled biosensors for disease bio-marking and detection, especially in bio-imaging and the diagnosis of pathological cells and viruses, monitoring pathogenic bacteria, thus providing insight into the future prospects of biosensors in relevant clinical applications.

  9. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    PubMed

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  10. Method of producing carbon coated nano- and micron-scale particles

    DOEpatents

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  11. Aptamer-conjugated DNA nano-ring as the carrier of drug molecules

    NASA Astrophysics Data System (ADS)

    Srivithya, Vellampatti; Roun, Heo; Sekhar Babu, Mitta; Hyung, Park Jae; Ha, Park Sung

    2018-03-01

    Due to its predictable self-assembly and structural stability, structural DNA nanotechnology is considered one of the main interdisciplinary subjects encompassing conventional nanotechnology and biotechnology. Here we have fabricated the mucin aptamer (MUC1)˗conjugated DNA nano˗ring intercalated with doxorubicin (DNRA˗DOX) as potential therapeutics for breast cancer. DNRA˗DOX exhibited significantly higher cytotoxicity to the MCF˗7 breast cancer cells than the controls, including DOX alone and the aptamer deficient DNA nano˗ring (DNR) with doxorubicin. Interactions between DOX and DNRA were studied using spectrophotometric measurements. Dose-dependent cytotoxicity was performed to prove that both DNR and DNRA were non-toxic to the cells. The drug release profile showed a controlled release of DOX at normal physiological pH 7.4, with approximately 61% released, but when exposed to lysosomal of pH 5.5, the corresponding 95% was released within 48 h. Owing to the presence of the aptamer, DNRA˗DOX was effectively taken up by the cancer cells, as confirmed by confocal microscopy, implying that it has potential for use in targeted drug delivery.

  12. Rational Self-Assembly of Nano-Colloids using DNA Interaction

    NASA Astrophysics Data System (ADS)

    Ung, Marie T.; Scarlett, Raynaldo; Sinno, Talid R.; Crocker, John C.

    2010-03-01

    DNA is an attractive tool to direct the rational self-assembly of nano-colloids since its interaction is specific and reversible. This tunable attractive interaction should lead to a diverse and rich phase diagram of higher ordered structures which would not otherwise be entropically favored.footnotetextTkachenko AV, Morphological Diversity of DNA-Colloidal Self-Assembly, Phys. Rev. Lett 89 (2002) We compare our latest experimental observations to a simulation framework that precisely replicates the experimental phase behavior and the crystal growth kinetics.footnotetextKim AJ, Scarlett R., Biancaniello PL, Sinno T, Crocker JC, Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly, Nature Materials 8, 52-55 (2009) We will discuss the crystallography of novel structures and address how particle size and heterogeneity affect nucleation and growth rates.

  13. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel M.; Noh, Hyunwoo; Singh, Vivek; Cha, Jennifer N.; Nagpal, Prashant

    2015-02-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  14. Brillouin gain enhancement in nano-scale photonic waveguide

    NASA Astrophysics Data System (ADS)

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  15. A common anchor facilitated GO-DNA nano-system for multiplex microRNA analysis in live cells.

    PubMed

    Yu, Jiantao; He, Sihui; Shao, Chen; Zhao, Haoran; Li, Jing; Tian, Leilei

    2018-04-19

    The design of a nano-system for the detection of intracellular microRNAs is challenging as it must fulfill complex requirements, i.e., it must have a high sensitivity to determine the dynamic expression level, a good reliability for multiplex and simultaneous detection, and a satisfactory biostability to work in biological environments. Instead of employing a commonly used physisorption or a full-conjugation strategy, here, a GO-DNA nano-system was developed under graft/base-pairing construction. The common anchor sequence was chemically grafted to GO to base-pair with various microRNA probes; and the hybridization with miRNAs drives the dyes on the probes to leave away from GO, resulting in "turned-on" fluorescence. This strategy not only simplifies the synthesis but also efficiently balances the loading yields of different probes. Moreover, the conjugation yield of GO with a base-paired hybrid has been improved by more than two-fold compared to that of the conjugation with a single strand. We demonstrated that base-paired DNA probes could be efficiently delivered into cells along with GO and are properly stabilized by the conjugated anchor sequence. The resultant GO-DNA nano-system exhibited high stability in a complex biological environment and good resistance to nucleases, and was able to accurately discriminate various miRNAs without cross-reaction. With all of these positive features, the GO-DNA nano-system can simultaneously detect three miRNAs and monitor their dynamic expression levels.

  16. Multi-scale Modeling and Analysis of Nano-RFID Systems on HPC Setup

    NASA Astrophysics Data System (ADS)

    Pathak, Rohit; Joshi, Satyadhar

    In this paper we have worked out on some the complex modeling aspects such as Multi Scale modeling, MATLAB Sugar based modeling and have shown the complexities involved in the analysis of Nano RFID (Radio Frequency Identification) systems. We have shown the modeling and simulation and demonstrated some novel ideas and library development for Nano RFID. Multi scale modeling plays a very important role in nanotech enabled devices properties of which cannot be explained sometimes by abstraction level theories. Reliability and packaging still remains one the major hindrances in practical implementation of Nano RFID based devices. And to work on them modeling and simulation will play a very important role. CNTs is the future low power material that will replace CMOS and its integration with CMOS, MEMS circuitry will play an important role in realizing the true power in Nano RFID systems. RFID based on innovations in nanotechnology has been shown. MEMS modeling of Antenna, sensors and its integration in the circuitry has been shown. Thus incorporating this we can design a Nano-RFID which can be used in areas like human implantation and complex banking applications. We have proposed modeling of RFID using the concept of multi scale modeling to accurately predict its properties. Also we give the modeling of MEMS devices that are proposed recently that can see possible application in RFID. We have also covered the applications and the advantages of Nano RFID in various areas. RF MEMS has been matured and its devices are being successfully commercialized but taking it to limits of nano domains and integration with singly chip RFID needs a novel approach which is being proposed. We have modeled MEMS based transponder and shown the distribution for multi scale modeling for Nano RFID.

  17. Effect of curcumin caged silver nanoparticle on collagen stabilization for biomedical applications.

    PubMed

    Srivatsan, Kunnavakkam Vinjimur; Duraipandy, N; Begum, Shajitha; Lakra, Rachita; Ramamurthy, Usha; Korrapati, Purna Sai; Kiran, Manikantan Syamala

    2015-04-01

    The current study aims at understanding the influence of curcumin caged silver nanoparticle (CCSNP) on stability of collagen. The results indicated that curcumin caged silver nanoparticles efficiently stabilize collagen, indicated by enhanced tensile strength, fibril formation and viscosity. The tensile strength of curcumin caged silver nanoparticle cross-linked collagen and elongation at break was also found to be higher than glutaraldehyde cross-linked collagen. The physicochemical characteristics of curcumin caged nanoparticle cross-linked collagen exhibited enhanced strength. The thermal properties were also good with both thermal degradation temperature and hydrothermal stability higher than native collagen. CD analysis showed no structural disparity in spite of superior physicochemical properties suggesting the significance of curcumin caged nanoparticle mediated cross-linking. The additional enhancement in the stabilization of collagen could be attributed to multiple sites for interaction with collagen molecule provided by curcumin caged silver nanoparticles. The results of cell proliferation and anti-microbial activity assays indicated that curcumin caged silver nanoparticles promoted cell proliferation and inhibited microbial growth making it an excellent biomaterial for wound dressing application. The study opens scope for nano-biotechnological strategies for the development of alternate non-toxic cross-linking agents facilitating multiple site interaction thereby improving therapeutic values to the collagen for biomedical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Nano-scale processes behind ion-beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  19. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].

    PubMed

    Li, Lei; Pan, Gang; Chen, Hao

    2010-03-01

    Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.

  20. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  1. Intelligent design of nano-scale molecular imaging agents.

    PubMed

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-12-12

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on-off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  2. In situ thermomechanical testing methods for micro/nano-scale materials.

    PubMed

    Kang, Wonmo; Merrill, Marriner; Wheeler, Jeffrey M

    2017-02-23

    The advance of micro/nanotechnology in energy-harvesting, micropower, electronic devices, and transducers for automobile and aerospace applications has led to the need for accurate thermomechanical characterization of micro/nano-scale materials to ensure their reliability and performance. This persistent need has driven various efforts to develop innovative experimental techniques that overcome the critical challenges associated with precise mechanical and thermal control of micro/nano-scale specimens during material characterization. Here we review recent progress in the development of thermomechanical testing methods from miniaturized versions of conventional macroscopic test systems to the current state of the art of in situ uniaxial testing capabilities in electron microscopes utilizing either indentation-based microcompression or integrated microsystems. We discuss the major advantages/disadvantages of these methods with respect to specimen size, range of temperature control, ease of experimentation and resolution of the measurements. We also identify key challenges in each method. Finally, we summarize some of the important discoveries that have been made using in situ thermomechanical testing and the exciting research opportunities still to come in micro/nano-scale materials.

  3. DNA "nano-claw": logic-based autonomous cancer targeting and therapy.

    PubMed

    You, Mingxu; Peng, Lu; Shao, Na; Zhang, Liqin; Qiu, Liping; Cui, Cheng; Tan, Weihong

    2014-01-29

    Cell types, both healthy and diseased, can be classified by inventories of their cell-surface markers. Programmable analysis of multiple markers would enable clinicians to develop a comprehensive disease profile, leading to more accurate diagnosis and intervention. As a first step to accomplish this, we have designed a DNA-based device, called "Nano-Claw". Combining the special structure-switching properties of DNA aptamers with toehold-mediated strand displacement reactions, this claw is capable of performing autonomous logic-based analysis of multiple cancer cell-surface markers and, in response, producing a diagnostic signal and/or targeted photodynamic therapy. We anticipate that this design can be widely applied in facilitating basic biomedical research, accurate disease diagnosis, and effective therapy.

  4. DNA-carbon nano onion aggregate: triangle, hexagon, six-petal flower to dead-end network

    NASA Astrophysics Data System (ADS)

    Babar, Dipak Gorakh; Pakhira, Bholanath; Sarkar, Sabyasachi

    2017-08-01

    The interaction between calf-thymus (CT) dsDNA and water soluble carbon nano onion (wsCNO) in water follows denaturation of dsDNA (double stranded) to ssDNA (single stranded) as monitored by optical spectroscopy. The ssDNA concomitantly wraps the spiky surface of wsCNO to create triangular aggregate as the building block as observed by time-dependent SEM images. These triangles further aggregate leading to six-petal flower arrangement via hexagon and finally reach a dead end network as imaged by SEM and optical fluorescence microscopy. The dead-end network aggregate lost the intrinsic optical property of DNA suggesting complete loss of its activity.

  5. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    NASA Astrophysics Data System (ADS)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  6. Multi scale modeling of ignition and combustion of micro and nano aluminum particles

    NASA Astrophysics Data System (ADS)

    Puri, Puneesh

    With renewed interest in nano scale energetic materials like aluminum, many fundamental issues concerning the ignition and combustion characteristics at nano scales, remain to be clarified. The overall aim of the current study is the establishment of a unified theory accommodating the various processes and mechanisms involved in the combustion and ignition of aluminum particles at micro and nano scales. A comprehensive review on the ignition and combustion of aluminum particles at multi scales was first performed identifying various processes and mechanisms involved. Research focus was also placed on the establishment of a Molecular Dynamics (MD) simulation tool to investigate the characteristics of nano-particulate aluminum through three major studies. The general computational framework involved parallelized preprocessing, post-processing and main code with capability to simulate different ensembles using appropriate algorithms. Size dependence of melting temperature of pure aluminum particles was investigated in the first study. Phenomena like dynamic coexistence of solid and liquid phase and effect of surface charges on melting were explored. The second study involved the study of effect of defects in the form of voids on melting of bulk and particulate phase aluminum. The third MD study was used to analyze the thermo-mechanical behavior of nano-sized aluminum particles with total diameter of 5-10 nm and oxide thickness of 1-2.5 nm. The ensuing solid-solid and solid-liquid phase changes in the core and shell, stresses developed within the shell, and the diffusion of aluminum cations in the oxide layer, were explored in depth for amorphous and crystalline oxide layers. In the limiting case, the condition for pyrophoricity/explosivity of nano-particulate aluminum was analyzed and modified. The size dependence of thermodynamic properties at nano scales were considered and incorporated into the existing theories developed for micro and larger scales. Finally, a

  7. Incorporation of organometallic Ru complexes into apo-ferritin cage.

    PubMed

    Takezawa, Yusuke; Böckmann, Philipp; Sugi, Naoki; Wang, Ziyue; Abe, Satoshi; Murakami, Tatsuya; Hikage, Tatsuo; Erker, Gerhard; Watanabe, Yoshihito; Kitagawa, Susumu; Ueno, Takafumi

    2011-03-14

    Spherical protein cages such as an iron storage protein, ferritin, have great potential as nanometer-scale capsules to assemble and store metal ions and complexes. We report herein the synthesis of a composite of an apo-ferritin cage and Ru(p-cymene) complexes. Ru complexes were efficiently incorporated into the ferritin cavity without degradation of its cage structure. X-Ray crystallography revealed that the Ru complexes were immobilized on the interior surface of the cage mainly by the coordination of histidine residues.

  8. Controlled crystallization and granulation of nano-scale β-Ni(OH) 2 cathode materials for high power Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    He, Xiangming; Li, Jianjun; Cheng, Hongwei; Jiang, Changyin; Wan, Chunrong

    A novel synthesis of controlled crystallization and granulation was attempted to prepare nano-scale β-Ni(OH) 2 cathode materials for high power Ni-MH batteries. Nano-scale β-Ni(OH) 2 and Co(OH) 2 with a diameter of 20 nm were prepared by controlled crystallization, mixed by ball milling, and granulated to form about 5 μm spherical grains by spray drying granulation. Both the addition of nano-scale Co(OH) 2 and granulation significantly enhanced electrochemical performance of nano-scale Ni(OH) 2. The XRD and TEM analysis shown that there were a large amount of defects among the crystal lattice of as-prepared nano-scale Ni(OH) 2, and the DTA-TG analysis shown that it had both lower decomposition temperature and higher decomposition reaction rate, indicating less thermal stability, as compared with conventional micro-scale Ni(OH) 2, and indicating that it had higher electrochemical performance. The granulated grains of nano-scale Ni(OH) 2 mixed with nano-scale Co(OH) 2 at Co/Ni = 1/20 presented the highest specific capacity reaching its theoretical value of 289 mAh g -1 at 1 C, and also exhibited much improved electrochemical performance at high discharge capacity rate up to 10 C. The granulated grains of nano-scale β-Ni(OH) 2 mixed with nano-scale Co(OH) 2 is a promising cathode active material for high power Ni-MH batteries.

  9. Nano-funnels as electro-osmotic ``tweezers and pistons''

    NASA Astrophysics Data System (ADS)

    Wang, Yanqian; Panyukov, Sergey; Zhou, Jinsheng; Menard, Laurent D.; Ramsey, J. Michael; Rubinstien, Michael

    2014-03-01

    An electric field is used to force a DNA molecule into a nano-channel by compensating the free energy penalty that results from the reduced conformational entropy of the confined macromolecule. Narrow nano-channels require high critical electric fields to achieve DNA translocation, leading to short dwell times of DNA in these channels. We demonstrate that nano-funnels integrated with nano-channels reduce the free energy barrier and lower the critical electric field required for DNA translocation. A focused electric field within the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic pressure at the nano-channel entrance. This ``electro-osmotic piston'' forces the molecule into the nano-channel at lower electric fields than those observed without the funnel. Appropirately designed nano-funnels can also function as tweezers that allow manipulation of the position of the DNA molecule. The predictions of our theory describing double-stranded DNA behavior in nano-funnel - nano-channel devices are consistent with experimental results. Thanks for the financial support from NSF (DMR-1309892, DMR-1121107, DMR-1122483), NIH (1-P50-HL107168, 1-P01-HL108808-01A1, R01HG02647), NHGRI and CF Foundation.

  10. Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhu, Yingjie; Chen, Nuofu; Liu, Xinling; Sun, Zhengliang; Huang, Zhenghong; Kang, Feiyu; Gao, Qiuming; Jiang, Jun; Chen, Lidong

    2011-12-01

    A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi2Te3, Bi2Se3, and Bi2Se0.3Te2.7, through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.

  11. Provision Of Carbon Nanotube Bucky Paper Cages For Immune Shielding Of Cells, Tissues, and Medical Devices

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor)

    2006-01-01

    System and method for enclosing cells and/or tissue, for purposes of growth, cell differentiation, suppression of cell differentiation, biological processing and/or transplantation of cells and tissues (biological inserts), and for secretion, sensing and monitoring of selected chemical substances and activation of gene expression of biological inserts implanted into a human body. Selected cells and/or tissue are enveloped in a "cage" that is primarily carbon nanotube Bucky paper, with a selected thickness and porosity. Optionally, selected functional groups, proteins and/or peptides are attached to the carbon nanotube cage, or included within the cage, to enhance the growth and/or differentiation of the cells and/or tissue, to select for certain cellular sub-populations, to optimize certain functions of the cells and/or tissue and/or to optimize the passage of chemicals across the cage surface(s). A cage system is also used as an immuns shield and to control operation of a nano-device or macroscopic device, located within the cage, to provide or transform a selected chemical and/or a selected signal.

  12. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    DOEpatents

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  13. Characterization of Nano-scale Aluminum Oxide Transport through Porous Media

    NASA Astrophysics Data System (ADS)

    Norwood, S.; Reynolds, M.; Miao, Z.; Brusseau, M. L.; Johnson, G. R.

    2011-12-01

    Colloidal material (including that in the nanoparticle size range) is naturally present in most subsurface environments. Mobilization of these colloidal materials via particle disaggregation may occur through abrupt changes in flow rate and/or via chemical perturbations, such as rapid changes in ionic strength or solution pH. While concentrations of natural colloidal materials in the subsurface are typically small, those concentrations may be greatly increased at contaminated sites such as following the application of metal oxides for groundwater remediation efforts. Additionally, while land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers, biosolids have been shown to contain a significant fraction of organic and inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of nano-scale colloidal materials through the soil column and their potential participation in the facilitated transport of contaminants, such as heavy metals and emerging pollutants. The purpose of this study was to investigate the transport behavior of aluminum oxide (Al2O3) nanoparticles through porous media. The impacts of pH, ionic strength, pore-water velocity (i.e., residence time), and aqueous-phase concentration on transport was investigated. All experiments were conducted with large injection pulses to fully characterize the impact of long-term retention and transport behavior relevant for natural systems wherein multiple retention processes may be operative. The results indicate that the observed nonideal transport behavior of the nano-scale colloids is influenced by multiple retention mechanisms/processes. Given the ubiquitous nature of these nano-scale colloids in the environment, a clear understanding of their transport and fate is necessary in further resolving the potential for

  14. Prevention of arterial graft spasm in rats using a vasodilator-eluting biodegradable nano-scaled fibre†

    PubMed Central

    Yagami, Kei; Yamawaki-Ogata, Aika; Satake, Makoto; Kaneko, Hiroaki; Oshima, Hideki; Usui, Akihiko; Ueda, Yuichi; Narita, Yuji

    2013-01-01

    OBJECTIVES Arterial graft spasm occasionally causes circulatory collapse immediately following coronary artery bypass graft. The aim of this study is to evaluate the efficacy of our developed materials, which were composed of milrinone (phosphodiesterase III inhibitor) or diltiazem (calcium-channel blocker), with nano-scaled fibre made of biodegradable polymer to prevent arterial spasm. METHODS Milrinone- or diltiazem-releasing biodegradable nano-scaled fibres were fabricated by an electrospinning procedure. In vivo milrinone- or diltiazem-releasing tests were performed to confirm the sustained release of the drugs. An in vivo arterial spasm model was established by subcutaneous injection of noradrenalin around the rat femoral artery. Rats were randomly divided into four groups as follows: those that received 5 mg of milrinone-releasing biodegradable nano-scaled fibre (group M, n = 14); 5 mg of diltiazem-releasing biodegradable nano-scaled fibre (group D, n = 12); or those that received fibre without drugs (as a control; group C, n = 14) implanted into the rat femoral artery. In the fourth group, sham operation was performed (group S, n = 10). One day after the implantation, noradrenalin was injected in all groups. The femoral arterial blood flow was measured continuously before and after noradrenalin injection. The maximum blood flow before noradrenalin injection and minimum blood flow after noradrenalin injection were measured. RESULTS In vivo drug-releasing test revealed that milrinone-releasing biodegradable nano-scaled fibre released 78% of milrinone and diltiazem-releasing biodegradable nano-scaled fibre released 50% diltiazem on the first day. The ratios of rat femoral artery blood flow after/before noradrenalin injection in groups M (0.74 ± 0.16) and D (0.72 ± 0.05) were significantly higher than those of groups C (0.54 ± 0.09) and S (0.55 ± 0.16) (P < 0.05). CONCLUSION Noradrenalin-induced rat femoral artery spasm was inhibited by the implantation of

  15. Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I.

    PubMed

    Wei, Yin; Li, Bianmiao; Wang, Xu; Duan, Yixiang

    2014-08-15

    This paper describes a novel approach utilizing nano-graphite-DNA hybrid and DNase I for the amplified detection of silver(I) ion in aqueous solutions for the first time. Nano-graphite can effectively quench the fluorescence of dye-labeled cytosine-rich single-stranded DNA due to its strong π-π stacking interactions; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the hairpin structure can be cleaved by DNase I, and in such case Ag(+) is delivered from the complex. The released Ag(+) then binds other dye-labeled single-stranded DNA on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled single-stranded DNA from the nano-graphite, which leads to significant amplification of the signal. The present magnification sensing system exhibits high sensitivity toward Ag(+) with a limit of detection of 0.3nM (S/N=3), which is much lower than the standard for Ag(+) in drinking water recommended by the Environmental Protection Agency (EPA). The selectivity of the sensor for Ag(+) against other biologically and environmentally related metal ions is outstanding due to the high specificity of C-Ag(+)-C formation. Moreover, the sensing system is used for the determination of Ag(+) in river water samples with satisfying results. The proposed assay is simple, cost-effective, and might open the door for the development of new assays for other metal ions or biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhanced Immune Response and Protective Effects of Nano-chitosan-based DNA Vaccine Encoding T Cell Epitopes of Esat-6 and FL against Mycobacterium Tuberculosis Infection

    PubMed Central

    Feng, Ganzhu; Jiang, Qingtao; Xia, Mei; Lu, Yanlai; Qiu, Wen; Zhao, Dan; Lu, Liwei; Peng, Guangyong; Wang, Yingwei

    2013-01-01

    Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice. PMID:23637790

  17. Molecular dynamics study of nano-porous materials—Enhancement of mobility of Li ions in lithium disilicate

    NASA Astrophysics Data System (ADS)

    Habasaki, Junko

    2016-11-01

    In several nano-porous materials and their composites, enhancement of ionic conductivity has been reported and several mechanisms having different origins have been proposed so far. In the present work, ionic motion of Li ions in porous lithium disilicates is examined by molecular dynamics simulation in the constant volume conditions and the enhancement of the dynamics is predicted. Structures and dynamics of ions in a nano-porous system were characterized and visualized to clarify the mechanism of the enhancement. The diffusion coefficient of Li ions has shown the maximum in the medium density (and porosity) region, and near the maximum, shortening of the nearly constant loss region in the mean squared displacement of ions as well as changes of the structures of the coordination polyhedra, LiOx is found. It suggests that the loosening of the cage, which increases the jump rate of ions, is an origin of the enhancement. When larger (but still in a nano-scale) voids are formed with a further decrease of density, more tight cages are reconstructed and the diffusion coefficient decreases again. These behaviors are closely related to the residual stress in the system. It is noteworthy that the explanation is not based on the percolation of the path only or formation of boundaries, although the former also affects the dynamics.

  18. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Understanding Nano-scale Electronic Systems via Large-scale Computation

    NASA Astrophysics Data System (ADS)

    Cao, Chao

    2009-03-01

    Nano-scale physical phenomena and processes, especially those in electronics, have drawn great attention in the past decade. Experiments have shown that electronic and transport properties of functionalized carbon nanotubes are sensitive to adsorption of gas molecules such as H2, NO2, and NH3. Similar measurements have also been performed to study adsorption of proteins on other semiconductor nano-wires. These experiments suggest that nano-scale systems can be useful for making future chemical and biological sensors. Aiming to understand the physical mechanisms underlying and governing property changes at nano-scale, we start off by investigating, via first-principles method, the electronic structure of Pd-CNT before and after hydrogen adsorption, and continue with coherent electronic transport using non-equilibrium Green’s function techniques combined with density functional theory. Once our results are fully analyzed they can be used to interpret and understand experimental data, with a few difficult issues to be addressed. Finally, we discuss a newly developed multi-scale computing architecture, OPAL, that coordinates simultaneous execution of multiple codes. Inspired by the capabilities of this computing framework, we present a scenario of future modeling and simulation of multi-scale, multi-physical processes.

  19. Formation and metrology of dual scale nano-morphology on SF(6) plasma etched silicon surfaces.

    PubMed

    Boulousis, G; Constantoudis, V; Kokkoris, G; Gogolides, E

    2008-06-25

    Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this mechanism.

  20. Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice.

    PubMed

    Bhattacharjee, Arin; Basu, Abhishek; Biswas, Jaydip; Bhattacharya, Sudin

    2015-07-01

    Chemotherapy is an integral part of modern day treatment regimen but anticancer drugs fail to demarcate between cancerous and normal cells thereby causing severe form of systemic toxicity. Among which pulmonary toxicity is a dreadful complication developed in cancer patients upon cyclophosphamide (CP) therapy. Oxidative stress, fibrosis, and apoptosis are the major patho-mechanisms involved in CP-induced pulmonary toxicity. In the present study, we have synthesized Nano-Se, nanotechnology-based new form of elemental selenium which has significantly lower toxicity and acceptable bioavailability. In order to meet the need of effective drugs against CP-induced adverse effects, nano selenium (Nano-Se) was tested for its possible protective efficacy on CP-induced pulmonary toxicity and bone marrow toxicity. CP intoxication resulted in structural and functional lung impairment which was revealed by massive histopathological changes. Lung injury was associated with oxidative stress/lipid peroxidation as evident by increased in reactive oxygen species, nitric oxide level, and malondialdehyde (MDA) formation with decreased in level of antioxidants such as reduced glutathione, glutathione-S-transferase, glutathione peroxidase, superoxide dismutase, and catalase. Furthermore, CP at a dose of 25 mg/kg b.w. increased pulmonary DNA damage ('comet tail') and triggered DNA fragmentation and apoptosis in mouse bone marrow cells. On the other hand, Nano-Se at a dose of 2 mg Se/kg b.w., significantly inhibited CP-induced DNA damage in bronchoalveolar lavage cells, and decreased the apoptosis and percentage of DNA fragmentation in bone marrow cells and also antagonized the reduction of the activities of antioxidant enzymes and the increase level of MDA. Thus, our results suggest that Nano-Se in pre- and co-administration may serve as a promising preventive strategy against CP-induced pulmonary toxicity.

  1. Multi-functional nano silver: A novel disruptive and theranostic agent for pathogenic organisms in real-time

    PubMed Central

    Gopinath, Ponnusamy Manogaran; Ranjani, Anandan; Dhanasekaran, Dharumadurai; Thajuddin, Nooruddin; Archunan, Govindaraju; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman

    2016-01-01

    The present study was aimed at evaluating the fluorescence property, sporicidal potency against Bacillus and Clostridium endospores, and surface disinfecting ability of biogenic nano silver. The nano silver was synthesized using an actinobacterial cell-filtrate. The fluorescence property as well as imaging facilitator potency of this nano silver was verified adopting spectrofluorometer along with fluorescent and confocal laser scanning microscope wherein strong emission and bright green fluorescence, respectively, on the entire spore surface was observed. Subsequently, the endospores of B. subtilis, B. cereus, B. amyloliquefaciens, C. perfringens and C. difficile were treated with physical sporicides, chemical sporicides and nano silver, in which the nano silver brought about pronounced inhibition even at a very low concentration. Finally, the environmental surface-sanitizing potency of nano silver was investigated adopting cage co-contamination assay, wherein vital organs of mice exposed to the nano silver-treated cage did not show any signs of pathological lesions, thus signifying the ability of nano silver to completely disinfect the spore or reduce the count required for infection. Taken these observations together, we have shown the multi-functional biological properties of the nano silver, synthesized using an actinobacterial cell-filtrate, which could be of application in advanced diagnostics, biomedical engineering and therapeutics in the near future. PMID:27666290

  2. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4- cage nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Qin; Zhao, Lichen; Wu, Jiang; Gao, Ke; Luo, Deying; Jiang, Yufeng; Zhang, Ziyi; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Liu, Yi; Zhang, Wei; Grätzel, Michael; Liu, Feng; Russell, Thomas P.; Zhu, Rui; Gong, Qihuang

    2017-06-01

    Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI6]4- cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.

  3. Effect of Particle Size and Impact Velocity on Collision Behaviors Between Nano-Scale TiN Particles: MD Simulation.

    PubMed

    Yao, Hai-Long; Hu, Xiao-Zhen; Yang, Guan-Jun

    2018-06-01

    Inter-particle bonding formation which determines qualities of nano-scale ceramic coatings is influenced by particle collision behaviors during high velocity collision processes. In this study, collision behaviors between nano-scale TiN particles with different diameters were illuminated by using Molecular Dynamics simulation through controlling impact velocities. Results show that nano-scale TiN particles exhibit three states depending on particle sizes and impact velocities, i.e., bonding, bonding with localized fracturing, and rebounding. These TiN particles states are summarized into a parameter selection map providing an overview of the conditions in terms of particle sizes and velocities. Microstructure results show that localized atoms displacement and partial fracture around the impact region are main reasons for bonding formation of nano-scale ceramic particles, which shows differences from conventional particles refining and amorphization. A relationship between the adhesion energy and the rebound energy is established to understand bonding formation mechanism for nano-scale TiN particle collision. Results show that the energy relationship is depended on the particle sizes and impact velocities, and nano-scale ceramic particles can be bonded together as the adhesion energy being higher than the rebound energy.

  4. Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weiwei; Liu, Weihao, E-mail: liuwhao@ustc.edu.cn; Jia, Qika

    The special Smith-Purcell radiation (S-SPR), which is from the radiating eigen modes of a grating, has remarkable higher intensity than the ordinary Smith-Purcell radiation. Yet in previous studies, the gratings were treated as perfect conductor without considering the surface plasmon polaritons (SPPs) which are of significance for the nano-scale gratings especially in the optical region. In present paper, the rigorous theoretical investigations on the S-SPR from a nano-grating with SPPs taken into consideration are carried out. The dispersion relations and radiation characteristics are obtained, and the results are verified by simulations. According to the analyses, the tunable light radiation canmore » be achieved by the S-SPR from a nano-grating, which offers a new prospect for developing the nano-scale light sources.« less

  5. In-electrode vs. on-electrode: ultrasensitive Faraday cage-type electrochemiluminescence immunoassay.

    PubMed

    Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Wang, Sui

    2016-03-28

    A new-concept of an "in-electrode" Faraday cage-type electrochemiluminescence immunoassay (ECLIA) method for the ultrasensitive detection of neurotensin (NT) was reported with capture antibody (Ab1)-nanoFe3O4@graphene (GO) and detector antibody (Ab2)&N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@GO, which led to about 1000-fold improvement in sensitivity by extending the Helmholtz plane (OHP) of the proposed electrode assembly effectively.

  6. The Neurologic Assessment in Neuro-Oncology (NANO) Scale as an Assessment Tool for Survival in Patients With Primary Glioblastoma.

    PubMed

    Ung, Timothy H; Ney, Douglas E; Damek, Denise; Rusthoven, Chad G; Youssef, A Samy; Lillehei, Kevin O; Ormond, D Ryan

    2018-03-30

    The Neurologic Assessment in Neuro-Oncology (NANO) scale is a standardized objective metric designed to measure neurological function in neuro-oncology. Current neuroradiological evaluation guidelines fail to use specific clinical criteria for progression. To determine if the NANO scale was a reliable assessment tool in glioblastoma (GBM) patients and whether it correlated to survival. Our group performed a retrospective review of all patients with newly diagnosed GBM from January 1, 2010, through December 31, 2012, at our institution. We applied the NANO scale, Karnofsky performance score (KPS), Eastern Cooperative Oncology Group (ECOG) scale, Macdonald criteria, and the Response Assessment in Neuro-Oncology (RANO) criteria to patients at the time of diagnosis as well as at 3, 6, and 12 mo. Initial NANO score was correlated with overall survival at time of presentation. NANO progression was correlated with decreased survival in patients at 6 and 12 mo. A decrease in KPS was associated with survival at 3 and 6 mo, an increase in ECOG score was associated only at 3 mo, and radiological evaluation (RANO and Macdonald) was correlated at 3 and 6 mo. Only the NANO scale was associated with patient survival at 1 yr. NANO progression was the only metric that was linked to decreased overall survival when compared to RANO and Macdonald at 6 and 12 mo. The NANO scale is specific to neuro-oncology and can be used to assess patients with glioma. This retrospective analysis demonstrates the usefulness of the NANO scale in glioblastoma.

  7. Nano-Scale Spatial Assessment of Calcium Distribution in Coccolithophores Using Synchrotron-Based Nano-CT and STXM-NEXAFS

    PubMed Central

    Sun, Shiyong; Yao, Yanchen; Zou, Xiang; Fan, Shenglan; Zhou, Qing; Dai, Qunwei; Dong, Faqin; Liu, Mingxue; Nie, Xiaoqin; Tan, Daoyong; Li, Shuai

    2014-01-01

    Calcified coccolithophores generate calcium carbonate scales around their cell surface. In light of predicted climate change and the global carbon cycle, the biomineralization ability of coccoliths has received growing interest. However, the underlying biomineralization mechanism is not yet well understood; the lack of non-invasive characterizing tools to obtain molecular level information involving biogenic processes and biomineral components remain significant challenges. In the present study, synchrotron-based Nano-computed Tomography (Nano-CT) and Scanning Transmission X-ray Microscopy-Near-edge X-ray Absorption Fine Structure Spectromicroscopy (STXM-NEXAFS) techniques were employed to identify Ca spatial distribution and investigate the compositional chemistry and distinctive features of the association between biomacromolecules and mineral components of calcite present in coccoliths. The Nano-CT results show that the coccolith scale vesicle is similar as a continuous single channel. The mature coccoliths were intracellularly distributed and immediately ejected and located at the exterior surface to form a coccoshpere. The NEXAFS spectromicroscopy results of the Ca L edge clearly demonstrate the existence of two levels of gradients spatially, indicating two distinctive forms of Ca in coccoliths: a crystalline-poor layer surrounded by a relatively crystalline-rich layer. The results show that Sr is absorbed by the coccoliths and that Sr/Ca substitution is rather homogeneous within the coccoliths. Our findings indicate that synchrotron-based STXM-NEXAFS and Nano-CT are excellent tools for the study of biominerals and provide information to clarify biomineralization mechanism. PMID:25530614

  8. Single Molecule Nano-Metronome

    PubMed Central

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2008-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule sensor of minute sequence differences of a target DNA. PMID:16522050

  9. Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition.

    PubMed

    Seo, Min-Kyo; Kang, Ju-Hyung; Kim, Myung-Ki; Ahn, Byeong-Hyeon; Kim, Ju-Young; Jeong, Kwang-Yong; Park, Hong-Gyu; Lee, Yong-Hee

    2009-04-13

    A wavelength-scale cavity is generated by printing a carbonaceous nano-block on a photonic-crystal waveguide. The nanometer-size carbonaceous block is grown at a pre-determined region by the electron-beam-induced deposition method. The wavelength-scale photonic-crystal cavity operates as a single mode laser, near 1550 nm with threshold of approximately 100 microW at room temperature. Finite-difference time-domain computations show that a high-quality-factor cavity mode is defined around the nano-block with resonant wavelength slightly longer than the dispersion-edge of the photonic-crystal waveguide. Measured near-field images exhibit photon distribution well-localized in the proximity of the printed nano-block. Linearly-polarized emission along the vertical direction is also observed.

  10. Fabrication of nano-scale Cu bond pads with seal design in 3D integration applications.

    PubMed

    Chen, K N; Tsang, C K; Wu, W W; Lee, S H; Lu, J Q

    2011-04-01

    A method to fabricate nano-scale Cu bond pads for improving bonding quality in 3D integration applications is reported. The effect of Cu bonding quality on inter-level via structural reliability for 3D integration applications is investigated. We developed a Cu nano-scale-height bond pad structure and fabrication process for improved bonding quality by recessing oxides using a combination of SiO2 CMP process and dilute HF wet etching. In addition, in order to achieve improved wafer-level bonding, we introduced a seal design concept that prevents corrosion and provides extra mechanical support. Demonstrations of these concepts and processes provide the feasibility of reliable nano-scale 3D integration applications.

  11. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4− cage nanoparticles

    PubMed Central

    Hu, Qin; Zhao, Lichen; Wu, Jiang; Gao, Ke; Luo, Deying; Jiang, Yufeng; Zhang, Ziyi; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Liu, Yi; Zhang, Wei; Grätzel, Michael; Liu, Feng; Russell, Thomas P.; Zhu, Rui; Gong, Qihuang

    2017-01-01

    Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI6]4− cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated. PMID:28635947

  12. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI 6] 4– cage nanoparticles

    DOE PAGES

    Hu, Qin; Zhao, Lichen; Wu, Jiang; ...

    2017-06-21

    Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI 6] 4– cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular-more » or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.« less

  13. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles weremore » prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.« less

  14. Homogenized boundary conditions and resonance effects in Faraday cages

    PubMed Central

    Hewitt, I. J.

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775

  15. Homogenized boundary conditions and resonance effects in Faraday cages

    NASA Astrophysics Data System (ADS)

    Hewett, D. P.; Hewitt, I. J.

    2016-05-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.

  16. Homogenized boundary conditions and resonance effects in Faraday cages.

    PubMed

    Hewett, D P; Hewitt, I J

    2016-05-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called 'Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.

  17. Ballistic induced pumping of hypersonic heat current in DNA nano wire

    NASA Astrophysics Data System (ADS)

    Behnia, Sohrab; Panahinia, Robabe

    2016-12-01

    Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.

  18. Nano/micro-scale magnetophoretic devices for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lim, Byeonghwa; Vavassori, Paolo; Sooryakumar, R.; Kim, CheolGi

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology.

  19. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing.

    PubMed

    Jayakumar, K; Rajesh, R; Dharuman, V; Venkatasan, R; Hahn, J H; Pandian, S Karutha

    2012-01-15

    A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Scaffolded DNA origami of a DNA tetrahedron molecular container.

    PubMed

    Ke, Yonggang; Sharma, Jaswinder; Liu, Minghui; Jahn, Kasper; Liu, Yan; Yan, Hao

    2009-06-01

    We describe a strategy of scaffolded DNA origami to design and construct 3D molecular cages of tetrahedron geometry with inside volume closed by triangular faces. Each edge of the triangular face is approximately 54 nm in dimension. The estimated total external volume and the internal cavity of the triangular pyramid are about 1.8 x 10(-23) and 1.5 x 10(-23) m(3), respectively. Correct formation of the tetrahedron DNA cage was verified by gel electrophoresis, atomic force microscopy, transmission electron microscopy, and dynamic light scattering techniques.

  1. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    NASA Astrophysics Data System (ADS)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  2. Furnished Cage System and Hen Well-Being: Comparative Effects of Furnished Cages and Battery Cages on Behavioral Exhibitions in White Leghorn Chickens

    USDA-ARS?s Scientific Manuscript database

    The battery cage system is being banned in the European Union before or by 2012; and the furnished cage system will be the only cage system allowed after 2012. This study was conducted to examine the different effects of caging systems, furnished cages vs. battery cages, on bird behaviors. One hundr...

  3. A Mutation Directs the Structural Switch of DNA Binding Proteins under Starvation to a Ferritin-like Protein Cage.

    PubMed

    Williams, Sunanda Margrett; Chandran, Anu Vijayakumari; Prakash, Sunita; Vijayan, Mamannamana; Chatterji, Dipankar

    2017-09-05

    Proteins of the ferritin family are ubiquitous in living organisms. With their spherical cage-like structures they are the iron storehouses in cells. Subfamilies of ferritins include 24-meric ferritins and bacterioferritins (maxiferritins), and 12-meric Dps (miniferritins). Dps safeguards DNA by direct binding, affording physical protection and safeguards from free radical-mediated damage by sequestering iron in its core. The maxiferritins can oxidize and store iron but cannot bind DNA. Here we show that a mutation at a critical interface in Dps alters its assembly from the canonical 12-mer to a ferritin-like 24-mer under crystallization. This structural switch was attributed to the conformational alteration of a highly conserved helical loop and rearrangement of the C-terminus. Our results demonstrate a novel concept of mutational switch between related protein subfamilies and corroborate the popular model for evolution by which subtle substitutions in an amino acid sequence lead to diversification among proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Three-dimensional organization of block copolymers on "DNA-minimal" scaffolds.

    PubMed

    McLaughlin, Christopher K; Hamblin, Graham D; Hänni, Kevin D; Conway, Justin W; Nayak, Manoj K; Carneiro, Karina M M; Bazzi, Hassan S; Sleiman, Hanadi F

    2012-03-07

    Here, we introduce a 3D-DNA construction method that assembles a minimum number of DNA strands in quantitative yield, to give a scaffold with a large number of single-stranded arms. This DNA frame is used as a core structure to organize other functional materials in 3D as the shell. We use the ring-opening metathesis polymerization (ROMP) to generate block copolymers that are covalently attached to DNA strands. Site-specific hybridization of these DNA-polymer chains on the single-stranded arms of the 3D-DNA scaffold gives efficient access to DNA-block copolymer cages. These biohybrid cages possess polymer chains that are programmably positioned in three dimensions on a DNA core and display increased nuclease resistance as compared to unfunctionalized DNA cages. © 2012 American Chemical Society

  5. Synthesis and characterization of DNA nano-meso-microspheres as drug delivery carriers for intratumoral chemotherapy

    NASA Astrophysics Data System (ADS)

    Enriquez Schumacher, Iris Vanessa

    Conventional cancer chemotherapy results in systemic toxicity which severely limits effectiveness and often adversely affects patient quality of life. There is a need to find new drugs and delivery methods for less toxic therapy. Previous studies concerning DNA complexing with chemotherapy drugs suggest unique opportunities for DNA as a mesosphere drug carrier. The overall objective of this research was devoted to the synthesis and evaluation of novel DNA-drug nano-mesospheres designed for localized chemotherapy via intratumoral injection. My research presents DNA nano-meso-microspheres (DNA-MS) that were prepared using a modified steric stabilization method originally developed in this lab for the preparation of albumin MS. DNA-MS were prepared with glutaraldehyde covalent crosslinking (genipin crosslinking was attempted) through the DNA base pairs. In addition, novel crosslinking of DNA-MS was demonstrated using chromium, gadolinium, or iron cations through the DNA phosphate groups. Covalent and ionic crosslinked DNA-MS syntheses yielded smooth and spherical particle morphologies with multimodal size distributions. Optimized DNA-MS syntheses produced particles with narrow and normal size distributions in the 50nm to 5mum diameter size range. In aqueous dispersions approximately 200% swelling was observed with dispersion stability for more than 48 hours. Typical process conditions included a 1550rpm initial mixing speed and particle filtration through 20mum filters to facilitate preparation. DNA-MS were in situ loaded during synthesis for the first time with mitoxantrone, 5-fluorouracil, and methotrexate. DNA-MS drug incorporation was 12%(w/w) for mitoxantrone, 9%(w/w) for methotrexate, and 5%(w/w) for 5-fluorouracil. In vitro drug release into phosphate buffered saline was observed for over 35 days by minimum sink release testing. The effect of gadolinium crosslink concentration on mitoxantrone release was evaluated at molar equivalences in the range of 20% to

  6. Furnished cage system and hen well-being: Comparative effects of furnished cages and battery cages on behavioral exhibitions in White Leghorn chickens.

    PubMed

    Pohle, K; Cheng, H-W

    2009-08-01

    The battery cage system is being banned in the European Union before or by 2012, and the furnished cage system will be the only cage system allowed after 2012. This study was conducted to examine the different effects of caging systems, furnished cages vs. battery cages, on bird behaviors. One hundred ninety-two 1-d-old non-beak-trimmed Hy-Line W-36 White Leghorn chicks were reared using standard management practices in raised wire cages. At 19 wk of age, the birds were randomly assigned into battery cages or furnished cages. The battery cages were commercial wire cages containing 6 birds per cage, providing 645 cm(2) of floor space per birds. The furnished cages had wire floors and solid metal walls, with perches, a dustbathing area, scratch pads, and a nestbox area with a concealment curtain. Based on the company recommendations, 10 birds were housed per cage, providing a stocking density of 610 cm(2) of floor space per bird. Behavioral observations were conducted using the Noldus Observer software package. The birds were observed at 5-min intervals for the entire light period. The birds housed in battery cages had higher posture and behavioral transitions and increased time spent walking and performing exploratory behavior (P < 0.05, 0.01, respectively), which may indicate they were stressed, resulting in restlessness, whereas the birds housed in furnished cages had higher levels of preening (P < 0.05). Preening has been considered as a comfort behavior in birds. These results may suggest that furnished cages may be a favorable alternative system for housing birds by allowing them to perform certain natural behaviors.

  7. Crystallization of high-strength nano-scale leucite glass-ceramics.

    PubMed

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p<0.05) higher mean BFS and characteristic strength values than the commercial materials. Attritor milled and planetary milled (2h) materials showed no significant (p>0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (p<0.05) to each other. The mean (SD) MPa strengths measured were: Attritor milled: 252.4 (38.7), Planetary milled: 225.4 (41.8) [4h milling] 255.0 (35.0) [2h milling], Ceramco-3: 75.7 (6.8) and IPS Empress: 165.5 (30.6). Planetary milling enabled synthesis of nano-scale leucite glass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  9. Caged Molecular Glues as Photoactivatable Tags for Nuclear Translocation of Guests in Living Cells.

    PubMed

    Arisaka, Akio; Mogaki, Rina; Okuro, Kou; Aida, Takuzo

    2018-02-21

    We developed dendritic caged molecular glues ( Caged Glue-R) as tags for nucleus-targeted drug delivery, whose multiple guanidinium ion (Gu + ) pendants are protected by an anionic photocleavable unit (butyrate-substituted nitroveratryloxycarbonyl; BA NVOC). Negatively charged Caged Glue-R hardly binds to anionic biomolecules because of their electrostatic repulsion. However, upon exposure of Caged Glue-R to UV light or near-infrared (NIR) light, the BA NVOC groups of Caged Glue-R are rapidly detached to yield an uncaged molecular glue ( Uncaged Glue-R) that carries multiple Gu + pendants. Because Gu + forms a salt bridge with PO 4 - , Uncaged Glue-R tightly adheres to anionic biomolecules such as DNA and phospholipids in cell membranes by a multivalent salt-bridge formation. When tagged with Caged Glue-R, guests can be taken up into living cells via endocytosis and hide in endosomes. However, when the Caged Glue-R tag is photochemically uncaged to form Uncaged Glue-R, the guests escape from the endosome and migrate into the cytoplasm followed by the cell nucleus. We demonstrated that quantum dots (QDs) tagged with Caged Glue-R can be delivered efficiently to cell nuclei eventually by irradiation with light.

  10. nanoCAGE reveals 5′ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs

    PubMed Central

    Gandin, Valentina; Masvidal, Laia; Hulea, Laura; Gravel, Simon-Pierre; Cargnello, Marie; McLaughlan, Shannon; Cai, Yutian; Balanathan, Preetika; Morita, Masahiro; Rajakumar, Arjuna; Furic, Luc; Pollak, Michael; Porco, John A.; St-Pierre, Julie; Pelletier, Jerry; Larsson, Ola; Topisirovic, Ivan

    2016-01-01

    The diversity of MTOR-regulated mRNA translation remains unresolved. Whereas ribosome-profiling suggested that MTOR almost exclusively stimulates translation of the TOP (terminal oligopyrimidine motif) and TOP-like mRNAs, polysome-profiling indicated that MTOR also modulates translation of mRNAs without the 5′ TOP motif (non-TOP mRNAs). We demonstrate that in ribosome-profiling studies, detection of MTOR-dependent changes in non-TOP mRNA translation was obscured by low sensitivity and methodology biases. Transcription start site profiling using nano-cap analysis of gene expression (nanoCAGE) revealed that not only do many MTOR-sensitive mRNAs lack the 5′ TOP motif but that 5′ UTR features distinguish two functionally and translationally distinct subsets of MTOR-sensitive mRNAs: (1) mRNAs with short 5′ UTRs enriched for mitochondrial functions, which require EIF4E but are less EIF4A1-sensitive; and (2) long 5′ UTR mRNAs encoding proliferation- and survival-promoting proteins, which are both EIF4E- and EIF4A1-sensitive. Selective inhibition of translation of mRNAs harboring long 5′ UTRs via EIF4A1 suppression leads to sustained expression of proteins involved in respiration but concomitant loss of those protecting mitochondrial structural integrity, resulting in apoptosis. Conversely, simultaneous suppression of translation of both long and short 5′ UTR mRNAs by MTOR inhibitors results in metabolic dormancy and a predominantly cytostatic effect. Thus, 5′ UTR features define different modes of MTOR-sensitive translation of functionally distinct subsets of mRNAs, which may explain the diverse impact of MTOR and EIF4A inhibitors on neoplastic cells. PMID:26984228

  11. Modeling Near-Crack-Tip Plasticity from Nano- to Micro-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jake D.; Yamakov, Vesselin I.

    2010-01-01

    Several efforts that are aimed at understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity are discussed. The paper focuses on discussion of newly developed methodologies and their application to understanding damage processes in aluminum and its alloys. Examination of plastic mechanisms as a function of increasing length scale illustrates increasingly complex phenomena governing plasticity

  12. Controlling high-throughput manufacturing at the nano-scale

    NASA Astrophysics Data System (ADS)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  13. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  14. Molecular marriage through partner preferences in covalent cage formation and cage-to-cage transformation.

    PubMed

    Acharyya, Koushik; Mukherjee, Sandip; Mukherjee, Partha Sarathi

    2013-01-16

    Unprecedented self-sorting of three-dimensional purely organic cages driven by dynamic covalent bonds is described. Four different cages were first synthesized by condensation of two triamines and two dialdehydes separately. When a mixture of all the components was allowed to react, only two cages were formed, which suggests a high-fidelity self-recognition. The issue of the preference of one triamine for a particular dialdehyde was further probed by transforming a non-preferred combination to either of the two preferred combinations by reacting it with the appropriate triamine or dialdehyde.

  15. Plasmofluidics: Merging Light and Fluids at the Micro-/Nano-Scale

    PubMed Central

    Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph

    2016-01-01

    Plasmofluidics is the synergistic integration of plasmonics and micro/nano fluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids, and precise manipulation via micro/nano fluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, we examine and categorize the most recent advances in plasmofluidics into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro-/nano-scale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. We conclude with our perspectives on the upcoming challenges, opportunities, and the possible future directions of the emerging field of plasmofluidics. PMID:26140612

  16. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction.

    PubMed

    Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z

    2016-11-15

    Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Improved Synthesis of Caged Glutamate and Caging Each Functional Group.

    PubMed

    Guruge, Charitha; Ouedraogo, Yannick P; Comitz, Richard L; Ma, Jingxuan; Losonczy, Attila; Nesnas, Nasri

    2018-05-25

    Glutamate is an excitatory neurotransmitter that controls numerous pathways in the brain. Neuroscientists make use of photoremovable protecting groups, also known as cages, to release glutamate with precise spatial and temporal control. Various cage designs have been developed and among the most effective has been the nitroindolinyl caging of glutamate. We, hereby, report an improved synthesis of one of the current leading molecules of caged glutamate, 4-carboxymethoxy-5,7-dinitroindolinyl glutamate (CDNI-Glu), which possesses efficiencies with the highest reported quantum yield of at least 0.5. We present the shortest route, to date, for the synthesis of CDNI-Glu in 4 steps, with a total reaction time of 40 h and an overall yield of 20%. We also caged glutamate at the other two functional groups, thereby, introducing two new cage designs: α-CDNI-Glu and N-CDNI-Glu. We included a study of their photocleavage properties using UV-vis, NMR, as well as a physiology experiment of a two-photon uncaging of CDNI-Glu in acute hippocampal brain slices. The newly introduced cage designs may have the potential to minimize the interference that CDNI-Glu has with the GABA A receptor. We are broadly disseminating this to enable neuroscientists to use these photoactivatable tools.

  18. Surface roughness: A review of its measurement at micro-/nano-scale

    NASA Astrophysics Data System (ADS)

    Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.

    2018-01-01

    The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.

  19. Influence of Tribology of Cage Material on Ball Bearing Cage Instability

    NASA Astrophysics Data System (ADS)

    Servais, S.; Duquenne, M.; Bozet, J.-L.

    2013-09-01

    By creating a solid lubricant thickness on both bearing races, a cage material of cryogenic ball bearing plays a significant role in the good dynamical behavior of the cage. This role is essential because of the lack of conventional lubricant into this kind of bearing.In this paper, a method able to identify if a particular potential cage material can correctly fulfill its function is described. In other words, if it can lead to a stable movement of the cage. From the identification of fundamental tribological parameters governing the cage behavior, this method presents an example of ranking of such materials. This is based on pin-on-disk tests and on a numerical approach.

  20. Establishment of a medium-scale mosquito facility: tests on mass production cages for Aedes albopictus (Diptera: Culicidae).

    PubMed

    Zhang, Dongjing; Li, Yongjun; Sun, Qiang; Zheng, Xiaoying; Gilles, Jeremie R L; Yamada, Hanano; Wu, Zhongdao; Xi, Zhiyong; Wu, Yu

    2018-03-19

    Mass egg production is an important component of Aedes albopictus mosquito control programs, such as the sterile insect technique and incompatible insect technique, which requires the releases of large number of sterile males. Developing standard operating procedures and optimized cages for adult maintenance of Ae. albopictus can improve the mass rearing efficiency. Three different sex ratios of females to males with a total number of 4,000 mosquitoes were tested by evaluating the insemination rate, egg production (total number of eggs per cage), female fecundity and egg hatch rate in small cage (30 × 30 × 30 cm). Blood meals with adenosine triphosphate (ATP, 0.05 g/ml), cage structures (Big cage A: 90 × 30 × 30 cm; Big cage B: 90 × 30 × 50 cm or 90 × 50 × 30 cm) and rearing densities (12,000, 16,000 and 20,000 mosquitoes, corresponding to 0.9 cm 2 /mosquito, 0.675 cm 2 /mosquito and 0.54 cm 2 /mosquito, respectively) were also tested and evaluated on the basis of egg production, female fecundity and egg hatch rate. An adult rearing unit holding 15 of Big cage A with optimal egg production was designed to produce 10 million eggs per rearing cycle in a 1.8 m 2 space. Female to male ratios at 3:1 in small cages resulted in higher egg production but did not affect insemination rate, female fecundity and egg hatch rate. A concentration of 0.05 g/ml of ATP added to blood meals improved the blood-feeding frequency and thus increased the overall egg production per cage. Cage structures affected the egg production per cage, but not egg hatch rate. A medium rearing density at 0.675 cm 2 /mosquito (16,000 mosquitoes) resulted in higher egg production compared to both low and high densities. An adult rearing unit for Ae. albopictus on the basis of Big cage A has been developed with the capacity of producing 10 million eggs within 15 days. Our results have indicated that the adult rearing methods and adult maintenance unit are recommended for Ae. albopictus mass

  1. The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems

    NASA Astrophysics Data System (ADS)

    Choi, Edward

    Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the

  2. Bimetallic cages

    NASA Astrophysics Data System (ADS)

    Fournier, René; Afzal-Hussain, Sabeen

    2013-02-01

    We report the results of density functional theory for 39 clusters AxBy (x + y = 10 or 12) where A and B are metals from group 1, 2, 11, 12, 13, or 14 of the periodic table. The chemical compositions were chosen to satisfy an electronic shell closing criterion. We performed an unbiased search for the global minimum (GM) by taboo search in descriptor space in each case. Eight of the 39 putative GM are cages even though none of the clusters contains gold, a metal with a well known propensity to form cages. These cages are large enough to accommodate a dopant atom with an atomic radius varying between 0.7 Å and 1.2 Å. The chemical compositions most likely to produce cages have an element of group 11 alloyed with an element of group 2, 12, or 13.

  3. Compressing a confined DNA: from nano-channel to nano-cavity

    NASA Astrophysics Data System (ADS)

    Sakaue, Takahiro

    2018-06-01

    We analyze the behavior of a semiflexible polymer confined in nanochannel under compression in axial direction. Key to our discussion is the identification of two length scales; the correlation length ξ of concentration fluctuation and what we call the segregation length . These length scales, while degenerate in uncompressed state in nanochannel, generally split as upon compression, and the way they compete with the system size during the compression determines the crossover from quasi-1D nanochannel to quasi-0D nanocavity behaviors. For a flexible polymer, the story becomes very simple, which corresponds to a special limit of our description, but a much richer behavior is expected for a semiflexible polymer relevant to DNA in confined spaces. We also briefly discuss the dynamical properties of the compressed polymer.

  4. Multi-scale Modeling of Chromosomal DNA in Living Cells

    NASA Astrophysics Data System (ADS)

    Spakowitz, Andrew

    The organization and dynamics of chromosomal DNA play a pivotal role in a range of biological processes, including gene regulation, homologous recombination, replication, and segregation. Establishing a quantitative theoretical model of DNA organization and dynamics would be valuable in bridging the gap between the molecular-level packaging of DNA and genome-scale chromosomal processes. Our research group utilizes analytical theory and computational modeling to establish a predictive theoretical model of chromosomal organization and dynamics. In this talk, I will discuss our efforts to develop multi-scale polymer models of chromosomal DNA that are both sufficiently detailed to address specific protein-DNA interactions while capturing experimentally relevant time and length scales. I will demonstrate how these modeling efforts are capable of quantitatively capturing aspects of behavior of chromosomal DNA in both prokaryotic and eukaryotic cells. This talk will illustrate that capturing dynamical behavior of chromosomal DNA at various length scales necessitates a range of theoretical treatments that accommodate the critical physical contributions that are relevant to in vivo behavior at these disparate length and time scales. National Science Foundation, Physics of Living Systems Program (PHY-1305516).

  5. Phototoxicity and Dosimetry of Nano-scaleTitanium Dioxide in Aquatic Organisms

    EPA Science Inventory

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  6. Phototoxicity and Dosimetry of Nano-scale Titanium Dioxide in Aquatic Organisms

    EPA Science Inventory

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  7. Nano-scale surface morphology, wettability and osteoblast adhesion on nitrogen plasma-implanted NiTi shape memory alloy.

    PubMed

    Liu, X M; Wu, S L; Chu, Paul K; Chung, C Y; Chu, C L; Chan, Y L; Lam, K O; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K

    2009-06-01

    Plasma immersion ion implantation (PIII) is an effective method to increase the corrosion resistance and inhibit nickel release from orthopedic NiTi shape memory alloy. Nitrogen was plasma-implanted into NiTi using different pulsing frequencies to investigate the effects on the nano-scale surface morphology, structure, wettability, as well as biocompatibility. X-ray photoelectron spectroscopy (XPS) results show that the implantation depth of nitrogen increases with higher pulsing frequencies. Atomic force microscopy (AFM) discloses that the nano-scale surface roughness increases and surface features are changed from islands to spiky cones with higher pulsing frequencies. This variation in the nano surface structures leads to different surface free energy (SFE) monitored by contact angle measurements. The adhesion, spreading, and proliferation of osteoblasts on the implanted NiTi surface are assessed by cell culture tests. Our results indicate that the nano-scale surface morphology that is altered by the implantation frequencies impacts the surface free energy and wettability of the NiTi surfaces, and in turn affects the osteoblast adhesion behavior.

  8. Intrinsic flexibility of B-DNA: the experimental TRX scale.

    PubMed

    Heddi, Brahim; Oguey, Christophe; Lavelle, Christophe; Foloppe, Nicolas; Hartmann, Brigitte

    2010-01-01

    B-DNA flexibility, crucial for DNA-protein recognition, is sequence dependent. Free DNA in solution would in principle be the best reference state to uncover the relation between base sequences and their intrinsic flexibility; however, this has long been hampered by a lack of suitable experimental data. We investigated this relationship by compiling and analyzing a large dataset of NMR (31)P chemical shifts in solution. These measurements reflect the BI <--> BII equilibrium in DNA, intimately correlated to helicoidal descriptors of the curvature, winding and groove dimensions. Comparing the ten complementary DNA dinucleotide steps indicates that some steps are much more flexible than others. This malleability is primarily controlled at the dinucleotide level, modulated by the tetranucleotide environment. Our analyses provide an experimental scale called TRX that quantifies the intrinsic flexibility of the ten dinucleotide steps in terms of Twist, Roll, and X-disp (base pair displacement). Applying the TRX scale to DNA sequences optimized for nucleosome formation reveals a 10 base-pair periodic alternation of stiff and flexible regions. Thus, DNA flexibility captured by the TRX scale is relevant to nucleosome formation, suggesting that this scale may be of general interest to better understand protein-DNA recognition.

  9. Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro

    PubMed Central

    Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo

    2010-01-01

    Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368

  10. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    NASA Astrophysics Data System (ADS)

    Açıkkalp, Emin; Caner, Necmettin

    2015-09-01

    In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  11. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    PubMed

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  12. Nano-scaled Pt/Ag/Ni/Au contacts on p-type GaN for low contact resistance and high reflectivity.

    PubMed

    Kwon, Y W; Ju, I C; Kim, S K; Choi, Y S; Kim, M H; Yoo, S H; Kang, D H; Sung, H K; Shin, K; Ko, C G

    2011-07-01

    We synthesized the vertical-structured LED (VLED) using nano-scaled Pt between p-type GaN and Ag-based reflector. The metallization scheme on p-type GaN for high reflectance and low was the nano-scaled Pt/Ag/Ni/Au. Nano-scaled Pt (5 A) on Ag/Ni/Au exhibited reasonably high reflectance of 86.2% at the wavelength of 460 nm due to high transmittance of light through nano-scaled Pt (5 A) onto Ag layer. Ohmic behavior of contact metal, Pt/Ag/Ni/Au, to p-type GaN was achieved using surface treatments of p-type GaN prior to the deposition of contact metals and the specific contact resistance was observed with decreasing Pt thickness of 5 A, resulting in 1.5 x 10(-4) ohms cm2. Forward voltages of Pt (5 A)/Ag/Ni contact to p-type GaN showed 4.19 V with the current injection of 350 mA. Output voltages with various thickness of Pt showed the highest value at the smallest thickness of Pt due to its high transmittance of light onto Ag, leading to high reflectance. Our results propose that nano-scaled Pt/Ag/Ni could act as a promising contact metal to p-type GaN for improving the performance of VLEDs.

  13. Enrichment of Glycoproteins using Nano-scale Chelating Con A Monolithic Capillary Chromatography

    PubMed Central

    Feng, Shun; Yang, Na; Pennathur, Subramaniam; Goodison, Steve; Lubman, David M.

    2009-01-01

    Immobilized lectin chromatography can be employed for glycoprotein enrichment, but commonly used columns have limitations of yield and resolution. In order to improve efficiency and to make the technique applicable to minimal sample material, we have developed a nano-scale chelating Concanavalin A (Con A) monolithic capillary prepared using GMA-EDMA (glycidyl methacrylate–co-ethylene dimethacrylate) as polymeric support. Con A was immobilized on Cu(II)-charged iminodiacetic acid (IDA) regenerable sorbents by forming a IDA:Cu(II):Con A sandwich affinity structure that has high column capacity as well as stability. When compared with conventional Con A lectin chromatography, the monolithic capillary enabled the better reproducible detection of over double the number of unique N-glycoproteins in human urine samples. Utility for analysis of minimal biological samples was confirmed by the successful elucidation of glycoprotein profiles in mouse urine samples at the microliter scale. The improved efficiency of the nano-scale monolithic capillary will impact the analysis of glycoproteins in complex biological samples, especially where only limited material may be available. PMID:19366252

  14. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  15. Mass production of polymer nano-wires filled with metal nano-particles.

    PubMed

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  16. The challenge of pelvic discontinuity: cup-cage reconstruction does better than conventional cages in mid-term.

    PubMed

    Abolghasemian, M; Tangsaraporn, S; Drexler, M; Barbuto, R; Backstein, D; Safir, O; Kuzyk, P; Gross, A

    2014-02-01

    The use of ilioischial cage reconstruction for pelvic discontinuity has been replaced by the Trabecular Metal (Zimmer, Warsaw, Indiana) cup-cage technique in our institution, due to the unsatisfactory outcome of using a cage alone in this situation. We report the outcome of 26 pelvic discontinuities in 24 patients (20 women and four men, mean age 65 years (44 to 84)) treated by the cup-cage technique at a mean follow-up of 82 months (12 to 113) and compared them with a series of 19 pelvic discontinuities in 19 patients (18 women and one man, mean age 70 years (42 to 86)) treated with a cage at a mean follow-up of 69 months (1 to 170). The clinical and radiological outcomes as well as the survivorship of the groups were compared. In all, four of the cup-cage group (15%) and 13 (68%) of the cage group failed due to septic or aseptic loosening. The seven-year survivorship was 87.2% (95% confidence interval (CI) 71 to 103) for the cup-cage group and 49.9% (95% CI 15 to 84) for the cage-alone group (p = 0.009). There were four major complications in the cup-cage group and nine in the cage group. Radiological union of the discontinuity was found in all successful cases in the cup-cage group and three of the successful cage cases. Three hips in the cup-cage group developed early radiological migration of the components, which stabilised with a successful outcome. Cup-cage reconstruction is a reliable technique for treating pelvic discontinuity in mid-term follow-up and is preferred to ilioischial cage reconstruction. If the continuity of the bone graft at the discontinuity site is not disrupted, early migration of the components does not necessarily result in failure.

  17. Electron transport in nano-scaled piezoelectronic devices

    NASA Astrophysics Data System (ADS)

    Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.

    2013-05-01

    The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.

  18. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    DOEpatents

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  19. Tin doped indium oxide anodes with artificially controlled nano-scale roughness using segregated Ag nanoparticles for organic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki

    2016-09-01

    Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes.

  20. Ncm, a Photolabile Group for Preparation of Caged Molecules: Synthesis and Biological Application

    PubMed Central

    Muralidharan, Sukumaran; Dirda, Nathaniel D. A.; Katz, Elizabeth J.; Tang, Cha-Min; Bandyopadhyay, Sharba; Kanold, Patrick O.

    2016-01-01

    Ncm, 6-nitrocoumarin-7-ylmethyl, is a photolabile protective group useful for making “caged” molecules. Ncm marries the reliable photochemistry of 2-nitrobenzyl systems with the excellent stability and spectroscopic properties of the coumarin chromophore. From simple, commercially available starting materials, preparation of Ncm and its caged derivatives is both quick and easy. Photorelease of Ncm-caged molecules occurs on the microsecond time scale, with quantum efficiencies of 0.05–0.08. We report the synthesis and physical properties of Ncm and its caged derivatives. The utility of Ncm-caged glutamate for neuronal photostimulation is demonstrated in cultured hippocampal neurons and in brain slice preparations. PMID:27695074

  1. Stand-alone lumbar cage subsidence: A biomechanical sensitivity study of cage design and placement.

    PubMed

    Calvo-Echenique, Andrea; Cegoñino, José; Chueca, Raúl; Pérez-Del Palomar, Amaya

    2018-08-01

    Spinal degeneration and instability are commonly treated with interbody fusion cages either alone or supplemented with posterior instrumentation with the aim to immobilise the segment and restore intervertebral height. The purpose of this work is to establish a tool which may help to understand the effects of intervertebral cage design and placement on the biomechanical response of a patient-specific model to help reducing post-surgical complications such as subsidence and segment instability. A 3D lumbar functional spinal unit (FSU) finite element model was created and a parametric model of an interbody cage was designed and introduced in the FSU. A Drucker-Prager Cap plasticity formulation was used to predict plastic strains and bone failure in the vertebrae. The effect of varying cage size, cross-sectional area, apparent stiffness and positioning was evaluated under 500 N preload followed by 7.5 Nm multidirectional rotation and the results were compared with the intact model. The most influential cage parameters on the FSU were size, curvature congruence with the endplates and cage placement. Segmental stiffness was higher when increasing the cross-sectional cage area in all loading directions and when the cage was anteriorly placed in all directions but extension. In general, the facet joint forces were reduced by increasing segmental stiffness. However, these forces were higher than in the intact model in most of the cases due to the displacement of the instantaneous centre of rotation. The highest plastic deformations took place at the caudal vertebra under flexion and increased for cages with greater stiffness. Thus, wider cages and a more anteriorly placement would increase the volume of failed bone and, therefore, the risk of subsidence. Cage geometry plays a crucial role in the success of lumbar surgery. General considerations such as larger cages may be applied as a guideline, but parameters such as curvature or cage placement should be determined for

  2. Wafer-scale aluminum nano-plasmonics

    NASA Astrophysics Data System (ADS)

    George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric

    2014-09-01

    The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.

  3. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    NASA Astrophysics Data System (ADS)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  4. Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage

    NASA Astrophysics Data System (ADS)

    de Ruiter, Mark V.; Overeem, Nico J.; Singhai, Gaurav; Cornelissen, Jeroen J. L. M.

    2018-05-01

    Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.

  5. Stabilizing the body centered cubic crystal in titanium alloys by a nano-scale concentration modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H. L.; Shah, S. A. A.; Hao, Y. L.

    It is well-known that the body centered cubic (bcc) crystal in titanium alloys reaches its stability limit as the electron-to-atom (e/a) ratio of the alloy drops down to ~4.24. This critical value, however, is much higher than that of a multifunctional bcc type alloy (e/a = 4.15). Here we demonstrate that a nano-scale concentration modulation created by spinodal decomposition is what stabilizes the bcc crystal of the alloy. Aided by such a nano-scale concentration heterogeneity, unexpected properties from its chemically homogeneous counterpart are obtained. This provides a new strategy to design functional titanium alloys by tuning the spinodal decomposition.

  6. Flow Cage Assemblies

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor)

    2017-01-01

    Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.

  7. Methods of DNA methylation detection

    NASA Technical Reports Server (NTRS)

    Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)

    2010-01-01

    The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.

  8. New Functional Device using Bio Nano Process

    DTIC Science & Technology

    2011-09-20

    anticipated that acid treatment of CNTs would reduce the electronic properties.2 In contrast, Pender et al. created a bifunctional peptide aptamer that has...of amino acids . Here we report that a novel bifunctional cage-shaped protein able to fabricate a SWNT-titanium nanocompound containing nano-porous...nanostructures.6-7 Two peptide aptamers, NHBP-1 (DYFSSPYYEQLF)8 and minTBP-1 (RKLPDA)9 were genetically fused at the Fig. 1 (a) Amino acid sequence of CDT1. The

  9. Tribological Properties of CrAlN and TiN Coatings Tested in Nano- and Micro-scale Laboratory Wear Tests

    NASA Astrophysics Data System (ADS)

    Hong, Ling; Bian, Guangdong; Hu, Shugen; Wang, Linlin; Dacosta, Herbert

    2015-07-01

    We investigated the tribological properties of CrAlN and TiN coatings produced by electron beam plasma-assisted physical vapor deposition by nano- and micro-scale wear tests. For comparison, we also conducted nano-indentation, nano-scanning wear tests, and pin-on-disk tribotests on uncoated M2 steel. The results indicate that, after nano-scale sliding tests against diamond indenter and pin-on-disk tests against ceramic alumina counterface pins, the CrAlN coating presents superior abrasive wear resistance compared to the TiN-coated and uncoated M2 steel samples. Against aluminum counterface, aluminum is more prone to attach on the CrAlN coating surface compared to TiN coating, but no apparent adhesive wear was observed, which has occurred on the TiN coating.

  10. PCR Testing of a Ventilated Caging System to Detect Murine Fur Mites

    PubMed Central

    Jensen, Eric S; Allen, Kenneth P; Henderson, Kenneth S; Szabo, Aniko; Thulin, Joseph D

    2013-01-01

    Rodents housed in microisolation caging are commonly monitored for infectious agents by the use of soiled bedding sentinels. This strategy relies on the successful transmission of rodent pathogens from the index rodents via soiled bedding to sentinel cages and the subsequent infection or colonization of sentinel rodents. When the prevalence of a pathogen is low or the target agent is not readily transmitted by soiled bedding, alternative testing methodologies should be used. Given the continued prevalence of institutions self-reporting murine fur mites and with the advent of a new sensitive and specific PCR assay for mites, we sought to determine whether the exhaust system of an individual ventilated caging (IVC) system could be used for monitoring the rack's rodent population for mites rather than relying on the responses of sentinels. We deployed single cages of mice (Mus musculus) that were known to be infested with either Radfordia affinis or Myobia musculi on a 70-cage rack, sampled the horizontal exhaust manifolds weekly, and used the new PCR assay to test these samples for mite DNA. We detected the presence of fur mites at a 94.1% probability of detection within 4 wk of placement. Therefore, we recommend swabbing and testing the shelf exhaust manifolds of IVC racks rather than relying on soiled-bedding sentinels as an indicator of the mite status of the rodents on that rack. PMID:23562030

  11. Porous organic cages

    NASA Astrophysics Data System (ADS)

    Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.

    2009-12-01

    Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

  12. Do Lordotic Cages Provide Better Segmental Lordosis Versus Nonlordotic Cages in Lateral Lumbar Interbody Fusion (LLIF)?

    PubMed

    Sembrano, Jonathan N; Horazdovsky, Ryan D; Sharma, Amit K; Yson, Sharon C; Santos, Edward R G; Polly, David W

    2017-05-01

    A retrospective comparative radiographic review. To evaluate the radiographic changes brought about by lordotic and nonlordotic cages on segmental and regional lumbar sagittal alignment and disk height in lateral lumbar interbody fusion (LLIF). The effects of cage design on operative level segmental lordosis in posterior interbody fusion procedures have been reported. However, there are no studies comparing the effect of sagittal implant geometry in LLIF. This is a comparative radiographic analysis of consecutive LLIF procedures performed with use of lordotic and nonlordotic interbody cages. Forty patients (61 levels) underwent LLIF. Average age was 57 years (range, 30-83 y). Ten-degree lordotic PEEK cages were used at 31 lumbar interbody levels, and nonlordotic cages were used at 30 levels. The following parameters were measured on preoperative and postoperative radiographs: segmental lordosis; anterior and posterior disk heights at operative level; segmental lordosis at supra-level and subjacent level; and overall lumbar (L1-S1) lordosis. Measurement changes for each cage group were compared using paired t test analysis. The use of lordotic cages in LLIF resulted in a significant increase in lordosis at operative levels (2.8 degrees; P=0.01), whereas nonlordotic cages did not (0.6 degrees; P=0.71) when compared with preoperative segmental lordosis. Anterior and posterior disk heights were significantly increased in both groups (P<0.01). Neither cage group showed significant change in overall lumbar lordosis (lordotic P=0.86 vs. nonlordotic P=0.25). Lordotic cages provided significant increase in operative level segmental lordosis compared with nonlordotic cages although overall lumbar lordosis remained unchanged. Anterior and posterior disk heights were significantly increased by both cages, providing basis for indirect spinal decompression.

  13. Curating viscoelastic properties of icosahedral viruses, virus-based nanomaterials, and protein cages.

    PubMed

    Kant, Ravi; Rayaprolu, Vamseedhar; McDonald, Kaitlyn; Bothner, Brian

    2018-06-01

    The beauty, symmetry, and functionality of icosahedral virus capsids has attracted the attention of biologists, physicists, and mathematicians ever since they were first observed. Viruses and protein cages assemble into functional architectures in a range of sizes, shapes, and symmetries. To fulfill their biological roles, these structures must self-assemble, resist stress, and are often dynamic. The increasing use of icosahedral capsids and cages in materials science has driven the need to quantify them in terms of structural properties such as rigidity, stiffness, and viscoelasticity. In this study, we employed Quartz Crystal Microbalance with Dissipation technology (QCM-D) to characterize and compare the mechanical rigidity of different protein cages and viruses. We attempted to unveil the relationships between rigidity, radius, shell thickness, and triangulation number. We show that the rigidity and triangulation numbers are inversely related to each other and the comparison of rigidity and radius also follows the same trend. Our results suggest that subunit orientation, protein-protein interactions, and protein-nucleic acid interactions are important for the resistance to deformation of these complexes, however, the relationships are complex and need to be explored further. The QCM-D based viscoelastic measurements presented here help us elucidate these relationships and show the future prospect of this technique in the field of physical virology and nano-biotechnology.

  14. Influence of 5 Different Caging Types and the Use of Cage-Changing Stations on Mouse Allergen Exposure

    PubMed Central

    Feistenauer, Susan; Sander, Ingrid; Schmidt, Jörg; Zahradnik, Eva; Raulf, Monika; Brielmeier, Markus

    2014-01-01

    Animal allergens constitute a serious health risk in laboratory animal facilities. To assess possibilities for allergen reduction by technical and organizational measures, we studied personnel exposure to mouse urinary aeroallergens in an animal facility with a holding capacity of 30,000 cages. Short-term (2 h) and intermediate-term (12 h) stationary samples (n = 107) and short-term (2 h) personnel samples (n = 119) were collected on polytetrafluorethylene filters by using air pumps. Long-term (14 d) stationary dust samples containing airborne allergens (n = 165) were collected with electrostatic dust fall collectors (EDC). Mouse allergens were quantified by ELISA. Personnel samples were collected during bedding disposal and refilling of clean cages as well as during cage changing with and without use of cage-changing station. Animal rooms were equipped with either open cages, cages with a soft filter top, cages with a rigid filter top (static microisolation caging), or with individually ventilated cages (IVC) with either a sealed or nonsealed lid, each in positive- or negative-pressure mode. Highest personnel allergen exposure was detected during cage change and emptying of soiled cages. Allergen concentrations were lowest in rooms with sealed IVC under positive or negative pressure, with unsealed IVC under negative pressure, and with static microisolation caging. The use of cage-changing stations and a vacuum bedding-disposal system reduced median personnel exposures 14- to 25-fold, respectively. Using sealed IVC and changing stations minimized allergen exposure, indicating that state-of-the-art equipment reduces exposure to mouse allergens and decreases health risks among animal facility personnel. PMID:25199090

  15. Scaling properties of ballistic nano-transistors

    PubMed Central

    2011-01-01

    Recently, we have suggested a scale-invariant model for a nano-transistor. In agreement with experiments a close-to-linear thresh-old trace was found in the calculated ID - VD-traces separating the regimes of classically allowed transport and tunneling transport. In this conference contribution, the relevant physical quantities in our model and its range of applicability are discussed in more detail. Extending the temperature range of our studies it is shown that a close-to-linear thresh-old trace results at room temperatures as well. In qualitative agreement with the experiments the ID - VG-traces for small drain voltages show thermally activated transport below the threshold gate voltage. In contrast, at large drain voltages the gate-voltage dependence is weaker. As can be expected in our relatively simple model, the theoretical drain current is larger than the experimental one by a little less than a decade. PMID:21711899

  16. Developing Sensitive and Selective Nanosensors: A Single Molecule - Multiple Excitation Source Approach. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing

    DTIC Science & Technology

    2012-03-13

    Source Approach Part II. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing Report Title ABSTRACT This final report for Contract W911NF-09-C-0135 transmits the...prototype development. The second (Part II.) is "Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Test Report". The

  17. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    PubMed

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  18. Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Engles, Derick

    2015-05-01

    In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.

  19. Random access in large-scale DNA data storage.

    PubMed

    Organick, Lee; Ang, Siena Dumas; Chen, Yuan-Jyue; Lopez, Randolph; Yekhanin, Sergey; Makarychev, Konstantin; Racz, Miklos Z; Kamath, Govinda; Gopalan, Parikshit; Nguyen, Bichlien; Takahashi, Christopher N; Newman, Sharon; Parker, Hsing-Yeh; Rashtchian, Cyrus; Stewart, Kendall; Gupta, Gagan; Carlson, Robert; Mulligan, John; Carmean, Douglas; Seelig, Georg; Ceze, Luis; Strauss, Karin

    2018-03-01

    Synthetic DNA is durable and can encode digital data with high density, making it an attractive medium for data storage. However, recovering stored data on a large-scale currently requires all the DNA in a pool to be sequenced, even if only a subset of the information needs to be extracted. Here, we encode and store 35 distinct files (over 200 MB of data), in more than 13 million DNA oligonucleotides, and show that we can recover each file individually and with no errors, using a random access approach. We design and validate a large library of primers that enable individual recovery of all files stored within the DNA. We also develop an algorithm that greatly reduces the sequencing read coverage required for error-free decoding by maximizing information from all sequence reads. These advances demonstrate a viable, large-scale system for DNA data storage and retrieval.

  20. Design and construction of a DNA origami drug delivery system based on MPT64 antibody aptamer for tuberculosis treatment.

    PubMed

    Ranjbar, Reza; Hafezi-Moghadam, Mohammad Sadegh

    2016-02-01

    With all of the developments on infectious diseases, tuberculosis (TB) remains a cause of death among people. One of the most promising assembly techniques in nano-technology is "scaffolded DNA origami" to design and construct a nano-scale drug delivery system. Because of the global health problems of tuberculosis, the development of potent new anti-tuberculosis drug delivery system without cross-resistance with known anti-mycobacterial agents is urgently needed. The aim of this study was to design a nano-scale drug delivery system for TB treatment using the DNA origami method. In this study, we presented an experimental research on a DNA drug delivery system for treating Tuberculosis. TEM images were visualized with an FEI Tecnai T12 BioTWIN at 120 kV. The model was designed by caDNAno software and computational prediction of the 3D solution shape and its flexibility was calculated with a CanDo server. Synthesizing the product was imaged using transmission electron microscopy after negative-staining by uranyl formate. We constructed a multilayer 3D DNA nanostructure system by designing square lattice geometry with the scaffolded-DNA-origami method. With changes in the lock and key sequences, we recommend that this system be used for other infectious diseases to target the pathogenic bacteria.

  1. Nano-Scale Fabrication Using Optical-Near-Field

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Ohtsu, Motoichi

    This paper reviews the specific nature of nanophotonics, i.e., a novel optical nano-technology, utilizing dressed photon excited in the nano-material. As examples of nanophotnic fabrication, optical near-field etching and increased spatial homogeneity of contents in compound semiconductors is demonstrated with a self-organized manner.

  2. Synthesis of Nano-Scale Fast Ion Conducting Cubic Li7La3Zr2O12

    DTIC Science & Technology

    2013-09-25

    offer the flexibility to make nano-dimensional particles with high sinterability nor the ability to coat/protect electrode powders. By developing a...sintering temperature are needed. One possible approach is to use small particles , such as nano-scale particles , that can be sintered at lower temperatures...matrix to suppress Li dendrite penetration. By developing a sol–gel process, the LLZO particle size can be precisely tuned, from the nanometer to the

  3. Scaling in nature: From DNA through heartbeats to weather

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Buldyrev, S. V.; Bunde, A.; Goldberger, A. L.; Ivanov, P. Ch.; Peng, C.-K.; Stanley, H. E.

    1999-12-01

    The purpose of this talk is to describe some recent progress in applying scaling concepts to various systems in nature. We review several systems characterized by scaling laws such as DNA sequences, heartbeat rates and weather variations. We discuss the finding that the exponent α quantifying the scaling in DNA in smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the scaling exponent α is smaller during sleep periods compared to wake periods. We also discuss the recent findings that suggest a universal scaling exponent characterizing the weather fluctuations.

  4. Scaling in nature: from DNA through heartbeats to weather

    NASA Technical Reports Server (NTRS)

    Havlin, S.; Buldyrev, S. V.; Bunde, A.; Goldberger, A. L.; Peng, C. K.; Stanley, H. E.

    1999-01-01

    The purpose of this report is to describe some recent progress in applying scaling concepts to various systems in nature. We review several systems characterized by scaling laws such as DNA sequences, heartbeat rates and weather variations. We discuss the finding that the exponent alpha quantifying the scaling in DNA in smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the scaling exponent alpha is smaller during sleep periods compared to wake periods. We also discuss the recent findings that suggest a universal scaling exponent characterizing the weather fluctuations.

  5. DNA interaction studies of new nano metal based anticancer agent: validation by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh; Azam, Ameer

    2010-05-01

    A new nano dimensional heterobimetallic Cu-Sn containing complex as a potential drug candidate was designed, synthesized and characterized by analytical and spectral methods. The electronic absorption and electron paramagnetic resonance parameters of the complex revealed that the Cu(II) ion exhibits a square pyramidal geometry with the two pyrazole nitrogen atoms, the amine nitrogen atom and the carboxylate oxygen of the phenyl glycine chloride ligand located at the equatorial sites and the coordinated chloride ion occupying an apical position. 119Sn NMR spectral data showed a hexa-coordinated environment around the Sn(IV) metal ion. TEM, AFM and XRD measurements illustrate that the complex could induce the condensation of CT-DNA to a particulate nanostructure. The interaction of the Cu-Sn complex with CT-DNA was investigated by UV-vis absorption and emission spectroscopy, as well as cyclic voltammetric measurements. The results indicated that the complex interacts with DNA through an electrostatic mode of binding with an intrinsic binding constant Kb = 8.42 × 104 M - 1. The Cu-Sn complex exhibits effective cleavage of pBR322 plasmid DNA by an oxidative cleavage mechanism, monitored at different concentrations both in the absence and in the presence of reducing agents.

  6. Field cage studies and progressive evaluation of genetically-engineered mosquitoes.

    PubMed

    Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M; Gould, Fred; Walsh, Rachael K; Bond, Guillermo; Robert, Michael A; Lloyd, Alun L; James, Anthony A; Alphey, Luke; Scott, Thomas W

    2013-01-01

    A genetically-engineered strain of the dengue mosquito vector Aedes aegypti, designated OX3604C, was evaluated in large outdoor cage trials for its potential to improve dengue prevention efforts by inducing population suppression. OX3604C is engineered with a repressible genetic construct that causes a female-specific flightless phenotype. Wild-type females that mate with homozygous OX3604C males will not produce reproductive female offspring. Weekly introductions of OX3604C males eliminated all three targeted Ae. aegypti populations after 10-20 weeks in a previous laboratory cage experiment. As part of the phased, progressive evaluation of this technology, we carried out an assessment in large outdoor field enclosures in dengue endemic southern Mexico. OX3604C males were introduced weekly into field cages containing stable target populations, initially at 10:1 ratios. Statistically significant target population decreases were detected in 4 of 5 treatment cages after 17 weeks, but none of the treatment populations were eliminated. Mating competitiveness experiments, carried out to explore the discrepancy between lab and field cage results revealed a maximum mating disadvantage of up 59.1% for OX3604C males, which accounted for a significant part of the 97% fitness cost predicted by a mathematical model to be necessary to produce the field cage results. Our results indicate that OX3604C may not be effective in large-scale releases. A strain with the same transgene that is not encumbered by a large mating disadvantage, however, could have improved prospects for dengue prevention. Insights from large outdoor cage experiments may provide an important part of the progressive, stepwise evaluation of genetically-engineered mosquitoes.

  7. PMMA versus titanium cage after anterior cervical discectomy - a prospective randomized trial.

    PubMed

    Schröder, J; Grosse-Dresselhaus, F; Schul, C; Wassmann, H

    2007-02-01

    Nonautologous interbody fusion materials are utilised in increasing numbers after anterior cervical disc surgery to overcome the problem of donor site morbidity of autologous bone grafts. This study investigates the performance of two nonautologous materials, the bone cement Polymethylmethacrylate (PMMA) and titanium cages. This prospective randomised trial, with assessment of the results by an independent observer, evaluates whether a Polymethylmethacrylate (PMMA) spacer or a titanium cage provides a better fusion rate around the implant and a better clinical outcome. Between 2000 and 2002, 115 patients with monoradicular cervical nerve root compression syndrome caused by soft cervical disc herniation were eligible for this study. Myelopathy, excessive osteophyte formation, and adjacent level degeneration were exclusion criteria. A block-restricted randomisation was applied. The 2-year clinical outcome served as the primary endpoint of the study. Clinical outcome was assessed according to the Odom scale by an independent observer at the follow-up examination. Preoperative, postoperative, and follow-up radiographs were taken. The study was completed by 107 patients (53 with PMMA and 54 with titanium cage). No significant difference between the two groups could be established with respect to the clinical outcome. In each group, 26 patients scored excellent. Good results were found in 19 PMMA patients and 16 titanium cage patients; satisfactory results were found in 8 PMMA patients and 9 titanium cage patients; bad results were found in 3 titanium cage patients. In 47 titanium cage cases (87%), fusion occurred radiologically as bony bridging around the implant. The fusion rate was significantly lower (p=0.011) in the PMMA group, with 35 cases (66%) united at follow-up. The radiological result of the titanium cage is superior to that of PMMA with respect to the fusion rate. Although the titanium cage achieves a better fusion rate, there is no difference between

  8. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    NASA Astrophysics Data System (ADS)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to

  9. Ammonia Levels and Urine-Spot Characteristics as Cage-Change Indicators for High-Density Individually Ventilated Mouse Cages

    PubMed Central

    Washington, Ida M; Payton, Mark E

    2016-01-01

    Mouse cage and bedding changes are potentially stressful to mice and are also labor- and resource-intensive. These changes are often performed on a calendar-based schedule to maintain a clean microenvironment and limit the concentrations of ammonia to which mice and workers are exposed. The current study sought to establish a performance-based approach to mouse cage-changing that uses urine spot characteristics as visual indicators of intracage ammonia levels. Colorimetric ammonia indicators were used to measure ammonia levels in individually-ventilated cages (IVC) housing male or female mice (n =5 per cage) of various strains at 1 to 16 d after cage change. Urine spot characteristics were correlated with ammonia levels to create a visual indicator of the cage-change criterion of 25 ppm ammonia. Results demonstrated a consistent increase in ammonia levels with days since cage change, with cages reaching the cage-change criterion at approximately 10 d for IVC containing male mice and 16 d for those with female mice. Ammonia levels were higher for male than female mice but were not correlated with mouse age. However, urine spot diameter, color, and edge characteristics were strongly correlated with ammonia levels. Husbandry practices based on using urine spot characteristics as indicators of ammonia levels led to fewer weekly cage changes and concomitant savings in labor and resources. Therefore, urine spot characteristics can be used as visual indicators of intracage ammonia levels for use of a performance (urine spot)-based approach to cage-changing frequency that maintains animal health and wellbeing. PMID:27177558

  10. Stand-alone anchored cage versus cage with plating for single-level anterior cervical discectomy and fusion: a prospective, randomized, controlled study with a 2-year follow-up.

    PubMed

    Nemoto, Osamu; Kitada, Akira; Naitou, Satoko; Tachibana, Atsuko; Ito, Yuya; Fujikawa, Akira

    2015-07-01

    To avoid complications associated with plating in anterior cervical discectomy and fusion (ACDF), stand-alone anchored PEEK cage was developed and favourable outcomes with a low rate of dysphasia have been described. The objective of this study was to compare the clinical and radiological outcomes of ACDF using a standalone anchored PEEK cage (PREVAIL; Medtronic Sofamor Danek, Memphis, TN) with those of a PEEK cage with plating in a prospective randomized manner. Fifty patients with single-level cervical radiculopathy were randomly assigned to a PREVAIL or a PEEK cage with plating. Following 3, 6, 12, and 24 months, clinical and radiological outcomes were assessed. The mean surgical time for the patients with a PREVAIL was significantly shorter than that for those with a PEEK cage with plating. The clinical outcomes evaluated by visual analogue scale for pain and the Odom's criteria were comparable between both the groups. Both the groups demonstrated the high fusion rate (92% in PREVAIL; 96% in PEEK cage with plating). The subsidence rate and the improvement of cervical alignment were comparable between both the groups. The incidence of adjacent-level ossification was significantly lower for patients with a PREVAIL than that for those with a PEEK cage with plating. The rate of dysphasia graded by the method of Bazaz and measurement of prevertebral soft tissue swelling indicated no significant differences between both the groups. Our prospective randomized study confirmed that stand-alone anchored PEEK cage is a valid alternative to plating in ACDF with a low rate of adjacent-level ossification. However, the potential to reduce the incidence of dysphasia was not confirmed.

  11. Molecular Imaging of Kerogen and Minerals in Shale Rocks across Micro- and Nano- Scales

    NASA Astrophysics Data System (ADS)

    Hao, Z.; Bechtel, H.; Sannibale, F.; Kneafsey, T. J.; Gilbert, B.; Nico, P. S.

    2016-12-01

    Fourier transform infrared (FTIR) spectroscopy is a reliable and non-destructive quantitative method to evaluate mineralogy and kerogen content / maturity of shale rocks, although it is traditionally difficult to assess the organic and mineralogical heterogeneity at micrometer and nanometer scales due to the diffraction limit of the infrared light. However, it is truly at these scales that the kerogen and mineral content and their formation in share rocks determines the quality of shale gas reserve, the gas flow mechanisms and the gas production. Therefore, it's necessary to develop new approaches which can image across both micro- and nano- scales. In this presentation, we will describe two new molecular imaging approaches to obtain kerogen and mineral information in shale rocks at the unprecedented high spatial resolution, and a cross-scale quantitative multivariate analysis method to provide rapid geochemical characterization of large size samples. The two imaging approaches are enhanced at nearfield respectively by a Ge-hemisphere (GE) and by a metallic scanning probe (SINS). The GE method is a modified microscopic attenuated total reflectance (ATR) method which rapidly captures a chemical image of the shale rock surface at 1 to 5 micrometer resolution with a large field of view of 600 X 600 micrometer, while the SINS probes the surface at 20 nm resolution which provides a chemically "deconvoluted" map at the nano-pore level. The detailed geochemical distribution at nanoscale is then used to build a machine learning model to generate self-calibrated chemical distribution map at micrometer scale with the input of the GE images. A number of geochemical contents across these two important scales are observed and analyzed, including the minerals (oxides, carbonates, sulphides), the organics (carbohydrates, aromatics), and the absorbed gases. These approaches are self-calibrated, optics friendly and non-destructive, so they hold the potential to monitor shale gas

  12. Development of furnished cages for laying hens.

    PubMed

    Appleby, M C; Walker, A W; Nicol, C J; Lindberg, A C; Freire, R; Hughes, B O; Elson, H A

    2002-09-01

    1. A 3-year trial was carried out of cages for laying hens, occupying a full laying house. The main cage designs used were 5000 cm2 in area, 50 cm high at the rear and furnished with nests and perches. F cages had a front rollaway nest at the side, lined with artificial turf. FD cages also had a dust bath containing sand over the nest. H cages had two nest hollows at the side, one in front of the other. They were compared with conventional cages 2500 cm2 in area and 38 cm high at the rear. 2. Cages were stocked with from 4 to 8 ISA Brown hens per cage, resulting in varied allowances of area, feeder and perch per bird. No birds were beak trimmed. In F and FD cages two further treatments were applied: nests and dust baths were sometimes fitted with gates to exclude birds from dust baths in the morning and from both at night; elevated food troughs, with a lip 33 cm above the cage floor, were compared with standard troughs. 3. Management of the house was generally highly successful, with temperature control achieved by ventilation. Egg production was above breeders' standards and not significantly affected by cage design. More eggs per bird were collected when there were fewer birds per cage but food consumption also then tended to be higher. 4. The number of downgraded eggs was variable, with some tendency for more in furnished cages. Eggs laid in dust baths were often downgraded. Those laid at the back of the cage were frequently dirty because of accumulation of droppings. H nests were unsuccessful, with less than 50% of eggs laid in the nest hollows. However, up to 93% of eggs were laid in front rollaways, and few of these were downgraded. 5. Feather and foot damage were generally less in furnished than in conventional cages, greater where there were more birds per cage. With an elevated food trough there was less feather damage but more overgrowth of claws. In year 2, mortality was greater in cages with more birds. 6. Pre-laying behaviour was mostly settled in

  13. NanoStringNormCNV: pre-processing of NanoString CNV data.

    PubMed

    Sendorek, Dorota H; Lalonde, Emilie; Yao, Cindy Q; Sabelnykova, Veronica Y; Bristow, Robert G; Boutros, Paul C

    2018-03-15

    The NanoString System is a well-established technology for measuring RNA and DNA abundance. Although it can estimate copy number variation, relatively few tools support analysis of these data. To address this gap, we created NanoStringNormCNV, an R package for pre-processing and copy number variant calling from NanoString data. This package implements algorithms for pre-processing, quality-control, normalization and copy number variation detection. A series of reporting and data visualization methods support exploratory analyses. To demonstrate its utility, we apply it to a new dataset of 96 genes profiled on 41 prostate tumour and 24 matched normal samples. NanoStringNormCNV is implemented in R and is freely available at http://labs.oicr.on.ca/boutros-lab/software/nanostringnormcnv. paul.boutros@oicr.on.ca. Supplementary data are available at Bioinformatics online.

  14. Elimination of Subsidence with 26-mm-Wide Cages in Extreme Lateral Interbody Fusion.

    PubMed

    Lang, Gernot; Navarro-Ramirez, Rodrigo; Gandevia, Lena; Hussain, Ibrahim; Nakhla, Jonathan; Zubkov, Micaella; Härtl, Roger

    2017-08-01

    Extreme lateral interbody fusion (ELIF) has gained popularity as a minimally invasive technique for indirect decompression. However, graft subsidence potentially threatens long-term success of ELIF. This study evaluated whether 26-mm-wide cages can eliminate subsidence and subsequent loss of decompression in ELIF. Patients undergoing ELIF surgery using a 26-mm-wide cage were analyzed retrospectively. Patient demographics and perioperative data for radiographic and clinical outcomes were recorded. Radiographic parameters included regional sagittal lumbar lordosis and foraminal and disc height. Clinical parameters were evaluated using the Oswestry Disability Index and visual analog scale. Subsidence of 26-mm-wide cages was compared with previous outcomes of patients undergoing ELIF using 18-mm-wide and 22-mm-wide cages. There were 21 patients and 28 spinal segments analyzed. Radiographic outcome measures such as disc and foraminal height revealed significant improvement at follow-up compared with before surgery (P = 0.001). Postoperative to last follow-up cage subsidence translated into 0.34 mm ± 0.26 and -0.55 mm ± 0.64 in disc and foraminal height loss, respectively. Patients with 26-mm-wide cages experienced less subsidence by means of disc (26 mm vs. 18 mm and 22 mm, P ≤ 0.05) and foraminal height (26 mm vs. 18 mm, P = 0.005; 26 mm vs. 22 mm, P = 0.208) loss compared with patients receiving 18-mm-wide and 22-mm-wide cages. The 26-mm-wide cages almost eliminated cage subsidence in ELIF. Compared with 18-mm-wide and 22-mm-wide cages, 26-mm-wide cages significantly reduced cage subsidence in ELIF at midterm follow-up. A 26-mm-wide cage should be used in ELIF to achieve sustained indirect decompression. Copyright © 2017. Published by Elsevier Inc.

  15. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    PubMed Central

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  16. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, andmore » background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.« less

  17. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    NASA Astrophysics Data System (ADS)

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.

  18. Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment.

    PubMed

    Liang, Shu-Xuan; Jin, Yu; Liu, Wei; Li, Xiliang; Shen, Shi-Gang; Ding, Ling

    2017-04-01

    The effect of the combined application of nano-hydroxyapatite (NHAP) or nano-carbon black (NCB) on the phytoextraction of Pb by ryegrass was investigated as an enhanced remediation technique for soils by field-scale experiment. After the addition of 0.2% NHAP or NCB to the soil, temporal variation of the uptake of Pb in aboveground parts and roots were observed. Ryegrass shoot concentrations of Pb were lower with nano-materials application than without nano-materials for the first month. However, the shoot concentrations of Pb were significantly increased with nano-materials application, in particular NHAP groups. The ryegrass root concentrations of Pb were lower with nano-materials application for the first month. These results indicated that nano-materials had significant effects on stabilization of lead, especially at the beginning of the experiment. Along with the experimental proceeding, phytotoxicity was alleviated after the incorporation of nano-materials. The ryegrass biomass was significantly higher with nano-materials application. Consequently, the Pb phytoextraction potential of ryegrass significantly increased with nano-materials application compared to the gounps without nano-materials application. The total removal rates of soil Pb were higher after combined application of NHAP than NCB. NHAP is more suitable than NCB for in-situ remediation of Pb-contaminated soils. The ryegrass translocation factor exhibited a marked increase with time. It was thought that the major role of NHP and NBA might be to alleviate the Pb phytotoxicity and increase biomass of plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Field Cage Studies and Progressive Evaluation of Genetically-Engineered Mosquitoes

    PubMed Central

    Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Gould, Fred; Walsh, Rachael K.; Bond, Guillermo; Robert, Michael A.; Lloyd, Alun L.; James, Anthony A.; Alphey, Luke; Scott, Thomas W.

    2013-01-01

    Background A genetically-engineered strain of the dengue mosquito vector Aedes aegypti, designated OX3604C, was evaluated in large outdoor cage trials for its potential to improve dengue prevention efforts by inducing population suppression. OX3604C is engineered with a repressible genetic construct that causes a female-specific flightless phenotype. Wild-type females that mate with homozygous OX3604C males will not produce reproductive female offspring. Weekly introductions of OX3604C males eliminated all three targeted Ae. aegypti populations after 10–20 weeks in a previous laboratory cage experiment. As part of the phased, progressive evaluation of this technology, we carried out an assessment in large outdoor field enclosures in dengue endemic southern Mexico. Methodology/Principal Findings OX3604C males were introduced weekly into field cages containing stable target populations, initially at 10∶1 ratios. Statistically significant target population decreases were detected in 4 of 5 treatment cages after 17 weeks, but none of the treatment populations were eliminated. Mating competitiveness experiments, carried out to explore the discrepancy between lab and field cage results revealed a maximum mating disadvantage of up 59.1% for OX3604C males, which accounted for a significant part of the 97% fitness cost predicted by a mathematical model to be necessary to produce the field cage results. Conclusions/Significance Our results indicate that OX3604C may not be effective in large-scale releases. A strain with the same transgene that is not encumbered by a large mating disadvantage, however, could have improved prospects for dengue prevention. Insights from large outdoor cage experiments may provide an important part of the progressive, stepwise evaluation of genetically-engineered mosquitoes. PMID:23350003

  20. Turbulent Channel Flow Measurements with a Nano-scale Thermal Anemometry Probe

    NASA Astrophysics Data System (ADS)

    Bailey, Sean; Witte, Brandon

    2014-11-01

    Using a Nano-scale Thermal Anemometry Probe (NSTAP), streamwise velocity was measured in a turbulent channel flow wind tunnel at Reynolds numbers ranging from Reτ = 500 to Reτ = 4000 . Use of these probes results in the a sensing-length-to-viscous-length-scale ratio of just 5 at the highest Reynolds number measured. Thus measured results can be considered free of spatial filtering effects. Point statistics are compared to recently published DNS and LDV data at similar Reynolds numbers and the results are found to be in good agreement. However, comparison of the measured spectra provide further evidence of aliasing at long wavelengths due to application of Taylor's frozen flow hypothesis, with increased aliasing evident with increasing Reynolds numbers. In addition to conventional point statistics, the dissipative scales of turbulence are investigated with focus on the wall-dependent scaling. Results support the existence of a universal pdf distribution of these scales once scaled to account for large-scale anisotropy. This research is supported by KSEF Award KSEF-2685-RDE-015.

  1. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    PubMed

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Evolution of the Cup-Cage Technique for Major Acetabular Defects: Full and Half Cup-Cage Reconstruction.

    PubMed

    Sculco, Peter K; Ledford, Cameron K; Hanssen, Arlen D; Abdel, Matthew P; Lewallen, David G

    2017-07-05

    Complex acetabular reconstruction for major bone loss can require advanced methods such as the use of a cup-cage construct. The purpose of this study was to review outcomes after the initial development of the cup-cage technique and the subsequent evolution to the use of a half cup-cage construct. We performed a retrospective, single-center review of 57 patients treated with cup-cage reconstruction for major acetabular bone loss. All patients had major acetabular defects graded as Paprosky Type 2B through 3B, with 34 (60%) having an associated pelvic discontinuity. Thirty patients received a full cup-cage construct and 27, a half cup-cage construct. The mean follow-up was 5 years. Both the full and half cup-cage cohorts demonstrated significantly improved Harris hip score (HHS) values, from 36 to 72 at a minimum of 2 years of follow-up (p < 0.05). Early construct migration occurred in 4 patients, with stabilization prior to 2-year follow-up in all but 1 patient. Incomplete, zone-3, nonprogressive acetabular radiolucencies were observed in 2 (7%) of the full cup-cage constructs and 6 (22%) of the half cup-cage constructs. One patient with a full cup-cage construct underwent re-revision of the acetabular component for progressive migration and aseptic loosening. Short-term survivorship free from re-revision for any cause or reoperation was 89% (83% and 96% for full and half cup-cage cohorts, respectively). Both full and half cup-cage constructs demonstrated successful clinical outcomes and survivorship in the treatment of major acetabular defects and pelvic discontinuity. Each method is utilized on the basis of individual intraoperative findings, including the extent and pattern of bone loss, the quality and location of host bone remaining after preparation, and the presence of pelvic discontinuity. Longer-term follow-up is required to understand the durability of these constructs in treating major acetabular defects and pelvic discontinuity. Therapeutic Level III

  3. Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Longo, Mathew; Matheny, Matthew; Knudsen, Jasmine

    2016-03-01

    We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model.

  4. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression

    PubMed Central

    Ha, Shin-Woo; Jang, Hae Lin; Nam, Ki Tae; Beck, George R.

    2015-01-01

    Hydroxyapatite (HA) is the primary structural component of the skeleton and dentition. Under biological conditions, HA does not occur spontaneously and therefore must be actively synthesized by mineralizing cells such as osteoblasts. The mechanism(s) by which HA is actively synthesized by cells and deposited to create a mineralized matrix are not fully understood and the consequences of mineralization on cell function are even less well understood. HA can be chemically synthesized (HAp) and is therefore currently being investigated as a promising therapeutic biomaterial for use as a functional scaffold and implant coating for skeletal repair and dental applications. Here we investigated the biological effects of nano-HAp (10×100 nm) on the lineage commitment and differentiation of bone forming osteoblasts. Exposure of early stage differentiating osteoblasts resulted in dramatic and sustained changes in gene expression, both increased and decreased, whereas later stage osteoblasts were much less responsive. Analysis of the promoter region one of the most responsive genes, alkaline phosphatase, identified the stimulation of DNA methylation following cell exposure to nano-HAp. Collectively, the results reveal the novel epigenetic regulation of cell function by nano-HAp which has significant implication on lineage determination as well as identifying a novel potential therapeutic use of nanomaterials. PMID:26141836

  5. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression.

    PubMed

    Ha, Shin-Woo; Jang, Hae Lin; Nam, Ki Tae; Beck, George R

    2015-10-01

    Hydroxyapatite (HA) is the primary structural component of the skeleton and dentition. Under biological conditions, HA does not occur spontaneously and therefore must be actively synthesized by mineralizing cells such as osteoblasts. The mechanism(s) by which HA is actively synthesized by cells and deposited to create a mineralized matrix are not fully understood and the consequences of mineralization on cell function are even less well understood. HA can be chemically synthesized (HAp) and is therefore currently being investigated as a promising therapeutic biomaterial for use as a functional scaffold and implant coating for skeletal repair and dental applications. Here we investigated the biological effects of nano-HAp (10 × 100 nm) on the lineage commitment and differentiation of bone forming osteoblasts. Exposure of early stage differentiating osteoblasts resulted in dramatic and sustained changes in gene expression, both increased and decreased, whereas later stage osteoblasts were much less responsive. Analysis of the promoter region one of the most responsive genes, alkaline phosphatase, identified the stimulation of DNA methylation following cell exposure to nano-HAp. Collectively, the results reveal the novel epigenetic regulation of cell function by nano-HAp which has significant implication on lineage determination as well as identifying a novel potential therapeutic use of nanomaterials. Published by Elsevier Ltd.

  6. Challenges for the Modern Science in its Descend Towards Nano Scale

    PubMed Central

    Uskoković, Vuk

    2013-01-01

    The current rise in the interest in physical phenomena at nano spatial scale is described hereby as a natural consequence of the scientific progress in manipulation with matter with an ever higher sensitivity. The reason behind arising of the entirely new field of nanoscience is that the properties of nanostructured materials may significantly differ from their bulk counterparts and cannot be predicted by extrapolations of the size-dependent properties displayed by materials composed of microsized particles. It is also argued that although a material can comprise critical boundaries at the nano scale, this does not mean that it will inevitably exhibit properties that endow a nanomaterial. This implies that the attribute of “nanomaterial” can be used only in relation with a given property of interest. The major challenges faced with the expansion of resolution of the materials design, in terms of hardly reproducible experiments, are further discussed. It is claimed that owing to an unavoidable interference between the experimental system and its environment to which the controlling system belongs, an increased fineness of the experimental settings will lead to ever more difficulties in rendering them reproducible and controllable. Self-assembly methods in which a part of the preprogrammed scientific design is substituted with letting physical systems spontaneously evolve into attractive and functional structures is mentioned as one of the ways to overcome the problems inherent in synthetic approaches at the ultrafine scale. The fact that physical systems partly owe their properties to the interaction with their environment implies that each self-assembly process can be considered a co-assembly event. PMID:26491428

  7. [Experiences with cage combinations for guinea pigs].

    PubMed

    von Zychlinski, J

    1989-01-01

    Special cage units described in 1982 for guinea pigs have been used either as cages for small groups of breeding animals or for caging of growing animals. By using these cages the following advantages have been noted; the cage size can be adapted to number, age and body weight of the animals; aggression and panic are avoided by corners, walls and tunnels; economic use of breeding males by mating with more females.

  8. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.

    PubMed

    Duan, Fei; He, Bin; Wei, Tao

    2015-04-01

    The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.

  9. Self-Assembled Pyridine-Dipyrrolate Cages.

    PubMed

    Zhang, Huacheng; Lee, Juhoon; Lammer, Aaron D; Chi, Xiaodong; Brewster, James T; Lynch, Vincent M; Li, Hao; Zhang, Zhan; Sessler, Jonathan L

    2016-04-06

    An inherently nonlinear pyridine dipyrrolate ligand, namely 2,6-bis(3,4-diethyl-5-carboxy-1H-pyrrol-2yl)pyridine (compound 1), is able to distinguish between different zinc(II) cation sources, namely Zn(acac)2 and Zn(OAc)2, respectively. This differentiation is manifest both in terms of the observed fluorescent behavior in mixed organic media and the reaction chemistry. Treatment of 1 with Zn(acac)2 gives rise to a cage dimer, cage-1, wherein two molecules of compound 1 act as double bridging units to connect two individual cage subunits. As inferred from X-ray crystallographic studies, this cage system consists of discrete zinc dimers with hydroxide bridges that, with the assistance of bound DMF solvent molecules, serve to fix the geometry and orientation of the pyridine dipyrrolate building blocks. When a different zinc source, Zn(OAc)2, is used to carry out an ostensibly similar complexation reaction with compound 1, an acetate-bridged 1D abacus-like cage polymer is obtained as inferred from X-ray diffraction analysis. This extended solid state structure, cage-2, contains individual zinc dimer cage submits and appears stabilized by solvent molecules (DMF) and the counteranion (acetate). Rod-like assemblies are also observed by DLS and SEM. This construct, in contrast to cage-1, proved fluorescent in mixed organic media. The structure of the ligand itself (i.e., in the absence of Zn(II)) was confirmed by X-ray crystallographic analysis and was found to assemble into a supramolecular polymer. Conversion to a dimer form was seen upon the addition of TBAOAc. On the basis of the metric parameters, the structures seen in the solid state are stabilized via hydrogen bonding interactions involving solvent molecules.

  10. Analytical study of nano-scale logical operations

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2018-07-01

    A complete analytical prescription is given to perform three basic (OR, AND, NOT) and two universal (NAND, NOR) logic gates at nano-scale level using simple tailor made geometries. Two different geometries, ring-like and chain-like, are taken into account where in each case the bridging conductor is coupled to a local atomic site through a dangling bond whose site energy can be controlled by means of external gate electrode. The main idea is that when injecting electron energy matches with site energy of local atomic site transmission probability drops exactly to zero, whereas the junction exhibits finite transmission for other energies. Utilizing this prescription we perform logical operations, and, we strongly believe that the proposed results can be verified in laboratory. Finally, we numerically compute two-terminal transmission probability considering general models and the numerical results match exactly well with our analytical findings.

  11. Nano-scale Characterization of Basalt - Quenched Lava and Reheated Products

    NASA Astrophysics Data System (ADS)

    Burkhard, D. J.; Wirth, R.

    2001-12-01

    In order to trace the mechanism of crystallization in basalt we investigated basalt lava from active Pu'u O'o, Kilauea, Hawaii with TEM. We considered (1) quenched melt (glass, obtained by dipping a hammer into the lava (April 1996) and subsequent quenching in air), and (2) that glass after reheating for 48 hr at 850° C, and (3) after reheating for 48 hr at 930° C. Previous investigations had illustrated interface-controlled growth of pyroxene and Fe-Ti oxides at 850° C and volumetric growth of these phases in addition to plagioclase above 920° C [1]. In general, (1) is a perfect glass to the nano-scale. Occasional inhomogeneities are identified as plagioclase. With a size of no more than approximately 100 unit cells, these "crystals" might be considered as nuclei. Dendrites of pyroxene, identified on the micron scale with back scattered electrons [1], occur as a sequence of slightly displaced plates with equal orientation on the nano-scale. HREM, diffraction pattern and EDS confirm that this is augite, in agreement with investigations on the micron-scale [1]. Fe-Ti oxides occur isolated in the matrix with a diameter less than 100 nm, in contrast to the micron-scale, where Fe-Ti oxides appear at the apices of augite. In (3) we find in addition plagioclase with thin lamellae, indicating twinning. In (3),augite contains lamellae parallel to (001), and they are identified as pigeonite by HREM and electron diffraction. Pigeonite lamellae occur also in (2), however, less developed. Electron diffraction suggests that reflections of augite correspond to the space group C 2/c, and of exsolved pigeonite to P 21/c, which is a low pigeonite. These exsolution phenomena are undistiguishable from what is usually observed in relation to high cooling rates [e.g. 2]. The stability of pigeonite at these temperatures suggests a Fe/Fe+Mg ratio above 0.6 for pyroxene in the quadilateral [3]. Microprobe analyses [1] suggest ratios of 0.4 to 0.5. [1] Burkhard D.J.M. (2001) J. Petrol

  12. Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C4 cage axes.

    PubMed

    Theil, Elizabeth C; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina

    2014-06-01

    Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3·H2O minerals from Fe(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe(2+)/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe(2+) + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3·H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.

  13. Coordinating Subdomains of Ferritin Protein Cages with Catalysis and Biomineralization viewed from the C4 Cage Axes

    PubMed Central

    Theil, Elizabeth C.; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina

    2014-01-01

    Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3•H2O minerals from Fe2+, for metabolic iron concentrates and oxidant protection; biomineral order varies in different ferritin proteins. The conserved 4, 3, 2 geometric symmetry of ferritin protein cages, parallels subunit dimer, trimer and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self- assembling ferritin nanocages have functional relationships to cage symmetry such as Fe2+ transport though ion channels (3-fold symmetry), biomineral nucleation/order (4-fold symmetry) and mineral dissolution (3-fold symmetry) studied in ferritin variants. Cage subunit dimers (2-fold symmetry) influence iron oxidation and mineral dissolution, based on effects of natural or synthetic subunit dimer crosslinks. 2Fe2+/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n=3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of 3 subunits. Here, we study 2Fe2+ + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3•H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein 2-fold and 3-fold cage axes to show function at ferritin 4-fold cage axes. Here, conserved amino acids facilitate dissolution of ferritin protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage 4-fold symmetry and solid state mineral properties remain largely unexplored. PMID:24504941

  14. The Cage-Busting Teacher

    ERIC Educational Resources Information Center

    Hess, Frederick M.

    2015-01-01

    "The Cage-Busting Teacher" adopts the logic of "Cage-Busting Leadership" and applies it to the unique challenges and opportunities of classroom teachers. Detailed, accessible, and thoroughly engaging, it uncovers the many ways in which teachers can break out of familiar constraints in order to influence school and classroom…

  15. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2010-01-01

    Methodologies for understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  16. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2011-01-01

    Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  17. Small Cages with Insect Couples Provide a Simple Method for a Preliminary Assessment of Mating Disruption

    PubMed Central

    Briand, Françoise; Guerin, Patrick M.; Charmillot, Pierre-Joseph; Kehrli, Patrik

    2012-01-01

    Mating disruption by sex pheromones is a sustainable, effective and widely used pest management scheme. A drawback of this technique is its challenging assessment of effectiveness in the field (e.g., spatial scale, pest density). The aim of this work was to facilitate the evaluation of field-deployed pheromone dispensers. We tested the suitability of small insect field cages for a pre-evaluation of the impact of sex pheromones on mating using the grape moths Eupoecilia ambiguella and Lobesia botrana, two major pests in vineyards. Cages consisted of a cubic metal frame of 35 cm sides, which was covered with a mosquito net of 1500 μm mesh size. Cages were installed in the centre of pheromone-treated and untreated vineyards. In several trials, 1 to 20 couples of grape moths per cage were released for one to three nights. The proportion of mated females was between 15 to 70% lower in pheromone-treated compared to untreated vineyards. Overall, the exposure of eight couples for one night was adequate for comparing different control schemes. Small cages may therefore provide a fast and cheap method to compare the effectiveness of pheromone dispensers under standardised semi-field conditions and may help predict the value of setting-up large-scale field trials. PMID:22645483

  18. Temperature dependence of polyhedral cage volumes in clathrate hydrates

    USGS Publications Warehouse

    Chakoumakos, B.C.; Rawn, C.J.; Rondinone, A.J.; Stern, L.A.; Circone, S.; Kirby, S.H.; Ishii, Y.; Jones, C.Y.; Toby, B.H.

    2003-01-01

    The polyhedral cage volumes of structure I (sI) (carbon dioxide, methane, trimethylene oxide) and structure II (sII) (methane-ethane, propane, tetrahydrofuran, trimethylene oxide) hydrates are computed from atomic positions determined from neutron powder-diffraction data. The ideal structural formulas for sI and sII are, respectively, S2L6 ?? 46H2O and S16L???8 ?? 136H2O, where S denotes a polyhedral cage with 20 vertices, L a 24-cage, and L??? a 28-cage. The space-filling polyhedral cages are defined by the oxygen atoms of the hydrogen-bonded network of water molecules. Collectively, the mean cage volume ratio is 1.91 : 1.43 : 1 for the 28-cage : 24-cage : 20-cage, which correspond to equivalent sphere radii of 4.18, 3.79, and 3.37 A??, respectively. At 100 K, mean polyhedral volumes are 303.8, 227.8, and 158.8 A??3 for the 28-cage, 24-cage, and 20-cage, respectively. In general, the 20-cage volume for a sII is larger than that of a sI, although trimethylene oxide is an exception. The temperature dependence of the cage volumes reveals differences between apparently similar cages with similar occupants. In the case of trimethylene oxide hydrate, which forms both sI and sII, the 20-cages common to both structures contract quite differently. From 220 K, the sII 20-cage exhibits a smooth monotonic reduction in size, whereas the sI 20-cage initially expands upon cooling to 160 K, then contracts more rapidly to 10 K, and overall the sI 20-cage is larger than the sII 20-cage. The volumes of the large cages in both structures contract monotonically with decreasing temperature. These differences reflect reoriented motion of the trimethyelene oxide molecule in the 24-cage of sI, consistent with previous spectroscopic and calorimetric studies. For the 20-cages in methane hydrate (sI) and a mixed methane-ethane hydrate (sII), both containing methane as the guest molecule, the temperature dependence of the 20-cage volume in sII is much less than that in sI, but sII is overall

  19. Complex between triple helix of collagen and double helix of DNA in aqueous solution.

    PubMed

    Mrevlishvili, George M; Svintradze, David V

    2005-06-01

    We demonstrate in this paper that one example of a biologically important and molecular self-assembling complex system is a collagen-DNA ordered aggregate which spontaneously forms in aqueous solutions. Interaction between the collagen and the DNA leads to destruction of the hydration shell of the triple helix and stabilization of the double helix structure. From a molecular biology point of view this nano-scale self-assembling superstructure could increase the stability of DNA against the nucleases during collagen diseases and the growth of collagen fibrills in the presence of DNA.

  20. Large-scale phase separation with nano-twin domains in manganite spinel (Co,Fe,Mn){sub 3}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horibe, Y., E-mail: horibe@post.matsc.kyutech.ac.jp; Takeyama, S.; Mori, S.

    The effect of Mn concentration on the formation of nano-domain structures in the spinel oxide (Co,Fe,Mn){sub 3}O{sub 4} was investigated by electron diffraction, bright-, and dark-field imaging technique with transmission electron microscopy. Large scale phase separation with nano-twin domains was observed in Co{sub 0.6}Fe{sub 1.0}Mn{sub 1.4}O{sub 4}, in contrast to the highly aligned checkerboard nano-domains in Co{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4}. Diffusion of the Mn{sup 3+} ions with the Jahn-Teller distortions is suggested to play an important role in the formation of checkerboard nano-domain structure.

  1. Deformation of DNA molecules by hydrodynamic focusing

    NASA Astrophysics Data System (ADS)

    Wong, Pak Kin; Lee, Yi-Kuen; Ho, Chih-Ming

    2003-12-01

    The motion of a DNA molecule in a solvent flow reflects the deformation of a nano/microscale flexible mass spring structure by the forces exerted by the fluid molecules. The dynamics of individual molecules can reveal both fundamental properties of the DNA and basic understanding of the complex rheological properties of long-chain molecules. In this study, we report the dynamics of isolated DNA molecules under homogeneous extensional flow. Hydrodynamic focusing generates homogeneous extensional flow with uniform velocity in the transverse direction. The deformation of individual DNA molecules in the flow was visualized with video fluorescence microscopy. A coil stretch transition was observed when the Deborah number (De) is larger than 0.8. With a sudden stopping of the flow, the DNA molecule relaxes and recoils. The longest relaxation time of T2 DNA was determined to be 0.63 s when scaling viscosity to 0.9 cP.

  2. Direct Simulations of Coupled Transport and Reaction on Nano-Scale X-Ray Computed Tomography Images of Platinum Group Metal-Free Catalyst Cathodes

    DOE PAGES

    Ogawa, S.; Komini Babu, S.; Chung, H. T.; ...

    2016-08-22

    The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less

  3. Direct Simulations of Coupled Transport and Reaction on Nano-Scale X-Ray Computed Tomography Images of Platinum Group Metal-Free Catalyst Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, S.; Komini Babu, S.; Chung, H. T.

    The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less

  4. Nano-Scale Characterization of Al-Mg Nanocrystalline Alloys

    NASA Astrophysics Data System (ADS)

    Harvey, Evan; Ladani, Leila

    Materials with nano-scale microstructure have become increasingly popular due to their benefit of substantially increased strengths. The increase in strength as a result of decreasing grain size is defined by the Hall-Petch equation. With increased interest in miniaturization of components, methods of mechanical characterization of small volumes of material are necessary because traditional means such as tensile testing becomes increasingly difficult with such small test specimens. This study seeks to characterize elastic-plastic properties of nanocrystalline Al-5083 through nanoindentation and related data analysis techniques. By using nanoindentation, accurate predictions of the elastic modulus and hardness of the alloy were attained. Also, the employed data analysis model provided reasonable estimates of the plastic properties (strain-hardening exponent and yield stress) lending credibility to this procedure as an accurate, full mechanical characterization method.

  5. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    PubMed

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (p<0.05) less volume and mean-height tooth loss compared to Ceramco-3. The NS group had significantly (p<0.05) less tooth mean-height loss and less combined (tooth and ceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The Impact of Cage Dimensions, Positioning, and Side of Approach in Extreme Lateral Interbody Fusion.

    PubMed

    Alimi, Marjan; Lang, Gernot; Navarro-Ramirez, Rodrigo; Perrech, Moritz; Berlin, Connor; Hofstetter, Christoph P; Moriguchi, Yu; Elowitz, Eric; Härtl, Roger

    2018-02-01

    This is a retrospective single-center study. The aim of the study was to evaluate the impact of cage characteristics and position toward clinical and radiographic outcome measures in patients undergoing extreme lateral interbody fusion (ELIF). ELIF is utilized for indirect decompression and minimally invasive surgical treatment for various degenerative spinal disorders. However, evidence regarding the influence of cage characteristics in patient outcome is minimal. Patients undergoing ELIF between 2007 and 2011 were included in a retrospective study. Demographic and perioperative data, as well as cage characteristics and side of approach were extracted. Radiographic parameters including lumbar lordosis, foraminal height, and disc height as well as clinical outcome parameters (Oswestry Disability Index and Visual Analog Scale) were measured preoperatively, postoperatively, and at the latest follow-up examination. Cage dimensions, in situ position, and type were correlated with radiographic and clinical outcome parameters. In total, 84 patients with a total of 145 functional spinal units were analyzed. At the last follow-up of 17.7 months, radiographic and clinical outcome measures revealed significant improvement compared with before surgery with both, 18 and 22 mm cage anterior-posterior diameter subgroups (P≤0.05). Among cage characteristics, 22 mm cages presented superior restoration of foraminal and disc heights compared with 18 mm cages (P≤0.05). Neither position of the cage (anterior vs. posterior), nor the type (parallel vs. lordotic) had a significant impact on restoration of foraminal height and lumbar lordosis. Moreover, the side of surgical approach did not influence the amount of foraminal height increase. Cage anterior-posterior diameter is the determining factor in restoration of foraminal height in ELIF. Cage height, type, positioning, and side of approach do not have a determining role in radiographic outcome in the present study. Sustainable

  7. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    NASA Astrophysics Data System (ADS)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  8. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    PubMed

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  9. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    PubMed Central

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  10. 50 CFR 648.77 - Cage identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Atlantic Surf Clam and Ocean Quahog Fisheries § 648.77 Cage identification. Except as provided in § 648.78... for surfclams and ocean quahogs: (a) Tagging. Before offloading, all cages that contain surfclams or... Administrator. (g) Transfer. See § 648.74(b)(2). (h) Presumptions. Surfclams and ocean quahogs found in cages...

  11. 50 CFR 648.77 - Cage identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Atlantic Surf Clam and Ocean Quahog Fisheries § 648.77 Cage identification. Except as provided in § 648.78... for surfclams and ocean quahogs: (a) Tagging. Before offloading, all cages that contain surfclams or... Administrator. (g) Transfer. See § 648.74(b)(2). (h) Presumptions. Surfclams and ocean quahogs found in cages...

  12. 50 CFR 648.77 - Cage identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Atlantic Surf Clam and Ocean Quahog Fisheries § 648.77 Cage identification. Except as provided in § 648.78... for surfclams and ocean quahogs: (a) Tagging. Before offloading, all cages that contain surfclams or... Administrator. (g) Transfer. See § 648.74(b)(2). (h) Presumptions. Surfclams and ocean quahogs found in cages...

  13. Three-dimensional micro/nano-scale structure fabricated by combination of non-volatile polymerizable RTIL and FIB irradiation

    PubMed Central

    Kuwabata, Susumu; Minamimoto, Hiro; Inoue, Kosuke; Imanishi, Akihito; Hosoya, Ken; Uyama, Hiroshi; Torimoto, Tsukasa; Tsuda, Tetsuya; Seki, Shu

    2014-01-01

    Room-temperature ionic liquid (RTIL) has been widely investigated as a nonvolatile solvent as well as a unique liquid material because of its interesting features, e.g., negligible vapor pressure and high thermal stability. Here we report that a non-volatile polymerizable RTIL is a useful starting material for the fabrication of micro/nano-scale polymer structures with a focused-ion-beam (FIB) system operated under high-vacuum condition. Gallium-ion beam irradiation to the polymerizable 1-allyl-3-ethylimidazolium bis((trifluoromethane)sulfonyl)amide RTIL layer spread on a Si wafer induced a polymerization reaction without difficulty. What is interesting to note is that we have succeeded in provoking the polymerization reaction anywhere on the Si wafer substrate by using FIB irradiation with a raster scanning mode. By this finding, two- and three-dimensional micro/nano-scale polymer structure fabrications were possible at the resolution of 500,000 dpi. Even intricate three-dimensional micro/nano-figures with overhang and hollow moieties could be constructed at the resolution of approximately 100 nm. PMID:24430465

  14. [Genome-scale sequence data processing and epigenetic analysis of DNA methylation].

    PubMed

    Wang, Ting-Zhang; Shan, Gao; Xu, Jian-Hong; Xue, Qing-Zhong

    2013-06-01

    A new approach recently developed for detecting cytosine DNA methylation (mC) and analyzing the genome-scale DNA methylation profiling, is called BS-Seq which is based on bisulfite conversion of genomic DNA combined with next-generation sequencing. The method can not only provide an insight into the difference of genome-scale DNA methylation among different organisms, but also reveal the conservation of DNA methylation in all contexts and nucleotide preference for different genomic regions, including genes, exons, and repetitive DNA sequences. It will be helpful to under-stand the epigenetic impacts of cytosine DNA methylation on the regulation of gene expression and maintaining silence of repetitive sequences, such as transposable elements. In this paper, we introduce the preprocessing steps of DNA methylation data, by which cytosine (C) and guanine (G) in the reference sequence are transferred to thymine (T) and adenine (A), and cytosine in reads is transferred to thymine, respectively. We also comprehensively review the main content of the DNA methylation analysis on the genomic scale: (1) the cytosine methylation under the context of different sequences; (2) the distribution of genomic methylcytosine; (3) DNA methylation context and the preference for the nucleotides; (4) DNA- protein interaction sites of DNA methylation; (5) degree of methylation of cytosine in the different structural elements of genes. DNA methylation analysis technique provides a powerful tool for the epigenome study in human and other species, and genes and environment interaction, and founds the theoretical basis for further development of disease diagnostics and therapeutics in human.

  15. Interbody fusion cage design using integrated global layout and local microstructure topology optimization.

    PubMed

    Lin, Chia-Ying; Hsiao, Chun-Ching; Chen, Po-Quan; Hollister, Scott J

    2004-08-15

    An approach combining global layout and local microstructure topology optimization was used to create a new interbody fusion cage design that concurrently enhanced stability, biofactor delivery, and mechanical tissue stimulation for improved arthrodesis. To develop a new interbody fusion cage design by topology optimization with porous internal architecture. To compare the performance of this new design to conventional threaded cage designs regarding early stability and long-term stress shielding effects on ingrown bone. Conventional interbody cage designs mainly fall into categories of cylindrical or rectangular shell shapes. The designs contribute to rigid stability and maintain disc height for successful arthrodesis but may also suffer mechanically mediated failures of dislocation or subsidence, as well as the possibility of bone resorption. The new optimization approach created a cage having designed microstructure that achieved desired mechanical performance while providing interconnected channels for biofactor delivery. The topology optimization algorithm determines the material layout under desirable volume fraction (50%) and displacement constraints favorable to bone formation. A local microstructural topology optimization method was used to generate periodic microstructures for porous isotropic materials. Final topology was generated by the integration of the two-scaled structures according to segmented regions and the corresponding material density. Image-base finite element analysis was used to compare the mechanical performance of the topology-optimized cage and conventional threaded cage. The final design can be fabricated by a variety of Solid Free-Form systems directly from the image output. The new design exhibited a narrower, more uniform displacement range than the threaded cage design and lower stress at the cage-vertebra interface, suggesting a reduced risk of subsidence. Strain energy density analysis also indicated that a higher portion of

  16. Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability

    NASA Astrophysics Data System (ADS)

    Necula, B. S.; Apachitei, I.; Fratila-Apachitei, L. E.; van Langelaan, E. J.; Duszczyk, J.

    2013-05-01

    This study aimed at producing a multifunctional layer with micro/nano-interconnected porosity and antibacterial capability on a rough macro-porous plasma sprayed titanium surface using the plasma electrolytic oxidation process. The layers were electrochemically formed in electrolytes based on calcium acetate and calcium glycerophosphate salts bearing dispersed Ag nanoparticles. They were characterized with respect to surface morphology and chemical composition using a scanning electron microscope equipped with the energy dispersive spectroscopy and back scattering detectors. Scanning electron microscopy images showed the formation of a micro/nano-scale porous layer, comprised of TiO2 bearing Ca and P species and Ag nanoparticles, following accurately the surface topography of the plasma sprayed titanium coating. The Ca/P atomic ratio was found to be close to that of bone apatite. Ag nanoparticles were incorporated on both on top and inside the porous structure of the TiO2 layer.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhiwen; Wu, Hong J.; Zhang, Youyu

    Ferritins are nano-scale globular protein cages encapsulating a ferric core. They widely exist in animals, plants, and microbes, playing indispensable roles in iron homeostasis. Interestingly, our study clearly demonstrates that ferritin has an enzyme-mimic activity derived from its ferric nano-core, but not the protein cage. Further study revealed that the mimic-enzyme activity of ferritin is more thermally stable and pH-tolerant compared with horseradish peroxidase. Considering the abundance of ferritin in numerous organisms, this finding may indicate a new role of ferritin in antioxidant and detoxification metabolisms. In addition, as a natural protein-caged nanoparticle with an enzyme-mimic activity, ferritin is readilymore » conjugated with biomolecules to construct nano-biosensors, thus holds promising potential for facile and biocompatible labeling for sensitive and robust bioassays in biomedical applications.« less

  18. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticlemore » surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  19. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks.

    PubMed

    Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi

    2017-05-01

    The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p < 0.05). The in silico multi-scale model established in this study demonstrates that the Young's moduli, Poisson's ratios, and compressive strengths of CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.

  20. Molecular Precision at Micrometer Length Scales: Hierarchical Assembly of DNA-Protein Nanostructures.

    PubMed

    Schiffels, Daniel; Szalai, Veronika A; Liddle, J Alexander

    2017-07-25

    Robust self-assembly across length scales is a ubiquitous feature of biological systems but remains challenging for synthetic structures. Taking a cue from biology-where disparate molecules work together to produce large, functional assemblies-we demonstrate how to engineer microscale structures with nanoscale features: Our self-assembly approach begins by using DNA polymerase to controllably create double-stranded DNA (dsDNA) sections on a single-stranded template. The single-stranded DNA (ssDNA) sections are then folded into a mechanically flexible skeleton by the origami method. This process simultaneously shapes the structure at the nanoscale and directs the large-scale geometry. The DNA skeleton guides the assembly of RecA protein filaments, which provides rigidity at the micrometer scale. We use our modular design strategy to assemble tetrahedral, rectangular, and linear shapes of defined dimensions. This method enables the robust construction of complex assemblies, greatly extending the range of DNA-based self-assembly methods.

  1. Microclimatic Variation Within Sleeve Cages Used in Ecological Studies

    PubMed Central

    Nelson, Lori A.; Rieske, Lynne K.

    2014-01-01

    Abstract Sleeve cages for enclosing or excluding arthropods are essential components of field studies evaluating trophic interactions. Microclimatic variation in sleeve cages was evaluated to characterize its potential effects on subsequent long-term experiments. Two sleeve cage materials, polyester and nylon, and two cage sizes, 400 and 6000 cm 2 , were tested on eastern hemlock, Tsuga canadensis (L.) Carrière. Temperature and relative humidity inside and outside cages, and the cost and durability of the cage materials, were compared. Long-term effects of the sleeve cages were observed by measuring new growth on T. canadensis branches. The ultimate goal was to identify a material that minimizes bag-induced microclimatic variation. Bagged branches whose microclimates mimic those of surrounding unbagged branches should have minimal effects on plant growth and may prove ideal venues for assessing herbivore and predator behavior under natural conditions. No differences were found in temperature or humidity between caging materials. Small cages had higher average temperatures than large cages, especially in the winter, but this difference was confounded by the fact that small cages were positioned higher in trees than large cages. Differences in plant growth were detected. Eastern hemlock branches enclosed within polyester cages produced fewer new growth tips than uncaged controls. Both polyester and nylon cages reduced the length of new shoot growth relative to uncaged branches. In spite of higher costs, nylon cages were superior to polyester with respect to durability and ease of handling. PMID:25368083

  2. NanoBench: An Individually Addressable Nanotube Array

    DTIC Science & Technology

    2006-03-25

    17 (1999). 5 Cai, L., H. Tabata and T. Kawai, "Probing electrical properties of oriented DNA by conducting atomic force microscopy", Nanotechnology 12...the e-beam hits the other side of the NanoBench. This allows the cells to be kept alive in a biological medium while they are being tested. The key...advantage of the NanoBench is that the e-beam never hits the sample. UHV Technologies Inc. 7 NanoBench: An Individually Addressable Nanotube Array Final

  3. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seungmin, E-mail: lim76@illinois.edu; Mondal, Paramita

    2014-06-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis.more » Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage.« less

  4. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  5. A new multiscale model to describe a modified Hall-Petch relation at different scales for nano and micro materials

    NASA Astrophysics Data System (ADS)

    Fadhil, Sadeem Abbas; Alrawi, Aoday Hashim; Azeez, Jazeel H.; Hassan, Mohsen A.

    2018-04-01

    In the present work, a multiscale model is presented and used to modify the Hall-Petch relation for different scales from nano to micro. The modified Hall-Petch relation is derived from a multiscale equation that determines the cohesive energy between the atoms and their neighboring grains. This brings with it a new term that was originally ignored even in the atomistic models. The new term makes it easy to combine all other effects to derive one modified equation for the Hall-Petch relation that works for all scales together, without the need to divide the scales into two scales, each scale with a different equation, as it is usually done in other works. Due to that, applying the new relation does not require a previous knowledge of the grain size distribution. This makes the new derived relation more consistent and easier to be applied for all scales. The new relation is used to fit the data for Copper and Nickel and it is applied well for the whole range of grain sizes from nano to micro scales.

  6. Dynamic DNA Methylation Controls Glutamate Receptor Trafficking and Synaptic Scaling

    PubMed Central

    Sweatt, J. David

    2016-01-01

    Hebbian plasticity, including LTP and LTD, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homoeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and de-methylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. PMID:26849493

  7. Atomic-scale imaging of DNA using scanning tunnelling microscopy.

    PubMed

    Driscoll, R J; Youngquist, M G; Baldeschwieler, J D

    1990-07-19

    The scanning tunnelling microscope (STM) has been used to visualize DNA under water, under oil and in air. Images of single-stranded DNA have shown that submolecular resolution is possible. Here we describe atomic-resolution imaging of duplex DNA. Topographic STM images of uncoated duplex DNA on a graphite substrate obtained in ultra-high vacuum are presented that show double-helical structure, base pairs, and atomic-scale substructure. Experimental STM profiles show excellent correlation with atomic contours of the van der Waals surface of A-form DNA derived from X-ray crystallography. A comparison of variations in the barrier to quantum mechanical tunnelling (barrier-height) with atomic-scale topography shows correlation over the phosphate-sugar backbone but anticorrelation over the base pairs. This relationship may be due to the different chemical characteristics of parts of the molecule. Further investigation of this phenomenon should lead to a better understanding of the physics of imaging adsorbates with the STM and may prove useful in sequencing DNA. The improved resolution compared with previously published STM images of DNA may be attributable to ultra-high vacuum, high data-pixel density, slow scan rate, a fortuitously clean and sharp tip and/or a relatively dilute and extremely clean sample solution. This work demonstrates the potential of the STM for characterization of large biomolecular structures, but additional development will be required to make such high resolution imaging of DNA and other large molecules routine.

  8. Characteristic Behavior and Scaling Studies of Self Organized InP Nano-dots formed via keV and MeV irradiations

    NASA Astrophysics Data System (ADS)

    Paramanik, Dipak; Varma, Shikha

    2008-04-01

    The controlled formation of nano-dots, using ion beams as tool, has become important as it offers a unique method to generate non-equilibrium phases with novel physical properties and structures with nano-dimensions. We have investigated the creation of self assembled nano- dots on InP(111) surfaces after 3 keV as well as 1.5 MeV ion beams at a large range of fluences. We have studied the Scaling exponents of the evolved surfaces by utilizing the technique of Scanning Probe Microscopy (SPM). At keV energies ripening of the nano-dots is seen below a critical time whereas an inverse ripening is observed for longer durations. At the critical time square shaped array of nano --dots are observed. The dots are characterized by narrow height and size distributions. Nano dots have also been observed at MeV ion irradiations. Their size distribution though broad at lowest fluence decreases for larger fluences.

  9. A novel test cage with an air ventilation system as an alternative to conventional cages for the efficacy testing of mosquito repellents.

    PubMed

    Obermayr, U; Rose, A; Geier, M

    2010-11-01

    We have developed a novel test cage and improved method for the evaluation of mosquito repellents. The method is compatible with the United States Environmental Protection Agency, 2000 draft OPPTS 810.3700 Product Performance Test Guidelines for Testing of Insect Repellents. The Biogents cages (BG-cages) require fewer test mosquitoes than conventional cages and are more comfortable for the human volunteers. The novel cage allows a section of treated forearm from a volunteer to be exposed to mosquito probing through a window. This design minimizes residual contamination of cage surfaces with repellent. In addition, an air ventilation system supplies conditioned air to the cages after each single test, to flush out and prevent any accumulation of test substances. During biting activity tests, the untreated skin surface does not receive bites because of a screen placed 150 mm above the skin. Compared with the OPPTS 810.3700 method, the BG-cage is smaller (27 liters, compared with 56 liters) and contains 30 rather than hundreds of blood-hungry female mosquitoes. We compared the performance of a proprietary repellent formulation containing 20% KBR3023 with four volunteers on Aedes aegypti (L.) (Diptera: Culicidae) in BG- and conventional cages. Repellent protection time was shorter in tests conducted with conventional cages. The average 95% protection time was 4.5 +/- 0.4 h in conventional cages and 7.5 +/- 0.6 h in the novel BG-cages. The protection times measured in BG-cages were more similar to the protection times determined with these repellents in field tests.

  10. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  11. Mechano-micro/nano systems

    NASA Astrophysics Data System (ADS)

    Horie, Mikio

    2004-10-01

    In recent years, the researches about Micro/Nano Systems are down actively in the bio-medical research fields, DNA research fields, chemical analysis systems fields, etc. In the results, a new materials and new functions in the systems are developed. In this invited paper, Mechano-Micro/Nano Systems, especially, motion systems are introduced. First, the research activities concerning the Mechano-Micro/Nano Systems in the world(MST2003, MEMS2003 and MEMS2004) and in Japan(Researech Projects on Nanotechnology and Materials in Ministry of Education, Culture, Sports, Science and Technology) are shown. Secondary, my research activities are introduced. As my research activities, (1) a comb-drive static actuator for the motion convert mechanisms, (2) a micro-nano fabrication method by use of FAB(Fast Atom Beam) machines, (3) a micro optical mirror manipulator for inputs-outputs optical switches, (4) a miniature pantograph mechanism with large-deflective hinges and links made of plastics are discussed and their performances are explained.

  12. Segmental kyphosis after cervical interbody fusion with stand-alone polyetheretherketone (PEEK) cages: a comparative study on 2 different PEEK cages.

    PubMed

    Kim, Chi Heon; Chung, Chun Kee; Jahng, Tae-Ahn; Park, Sung Bae; Sohn, Seil; Lee, Sungjoon

    2015-02-01

    Retrospective comparative study. Two polyetheretherketone (PEEK) cages of different designs were compared in terms of the postoperative segmental kyphosis after anterior cervical discectomy and fusion. Segmental kyphosis occasionally occurs after the use of a stand-alone cage for anterior cervical discectomy and fusion. Although PEEK material seems to have less risk of segmental kyphosis compared with other materials, the occurrence of segmental kyphosis for PEEK cages has been reported to be from 0% to 29%. There have been a few reports that addressed the issue of PEEK cage design. A total of 41 consecutive patients who underwent single-level anterior discectomy and fusion with a stand-alone cage were included. Either a round tube-type (Solis; 18 patients, S-group) or a trapezoidal tube-type (MC+; 23 patients, M-group) cage was used. The contact area between the cage and the vertebral body is larger in MC+ than in Solis, and anchoring pins were present in the Solis cage. The effect of the cage type on the segmental angle (SA) (lordosis vs. kyphosis) at postoperative month 24 was analyzed. Preoperatively, segmental lordosis was present in 12/18 S-group and 16/23 M-group patients (P=0.84). The SA was more lordotic than the preoperative angle in both groups just after surgery, with no difference between groups (P=0.39). At 24 months, segmental lordosis was observed in 9/18 S-group and 20/23 M-group patients (P=0.01). The patients in M-group were 7.83 times more likely than patients in S-group (P=0.04; odds ratio, 7.83; 95% confidence interval, 1.09-56.28) not to develop segmental kyphosis. The design of the PEEK cage used may influence the SA, and this association needs to be considered when using stand-alone PEEK cages.

  13. Colorimetric monitoring of nanometer distance changes in DNA-templated plasmon rulers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lermusiaux, Laurent; Bidault, Sebastien

    2016-03-01

    The nanometer-scale sensitivity of plasmon coupling allows the translation of minute morphological changes in nanostructures into macroscopic optical signals. In particular, single nanostructure scattering spectroscopy provides a direct estimation of interparticle distances in gold nanoparticle (AuNP) dimers linked by a short DNA double-strand [M. P. Busson et al, Nano Lett. 11, 5060 (2011)]. We demonstrate here that this spectroscopic information can be inferred from simple widefield measurements on a calibrated color camera [L. Lermusiaux et al, ACS Nano 9, 978 (2015)]. This allows us to analyze the influence of electrostatic and steric interparticle interactions on the morphology of DNA-templated AuNP groupings. Furthermore, polarization-resolved measurements on a color CCD provide a parallel imaging of AuNP dimer orientations. We apply this spectroscopic characterization to identify dimers featuring two different conformations of the same DNA template. In practice, the biomolecular scaffold contains a hairpin-loop that opens after hybridization to a specific DNA sequence and increases the interparticle distance [L. Lermusiaux et al, ACS Nano 6, 10992 (2012)]. These results open exciting perspectives for the parallel sensing of single specific DNA strands using plasmon rulers. We discuss the limits of this approach in terms of the physicochemical stability and reactivity of these nanostructures and demonstrate the importance of engineering the AuNP surface chemistry, in particular using amphiphilic ligands [L. Lermusiaux and S. Bidault, Small (2015), in press].

  14. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    DTIC Science & Technology

    2010-04-01

    The EZVI is composed of food-grade surfactant, biodegradable oil , water, and ZVI particles (either nano- or micro-scale iron), which form...emulsion particles (Figure 2-1). Each emulsion particle or droplet contains ZVI particles in water surrounded by an oil -liquid membrane. Since the...exterior oil membrane of the emulsion droplet has hydrophobic properties similar to that of DNAPL, the droplets are miscible with DNAPL. It is believed

  15. Solid-state devices for detection of DNA, protein biomarkers and cells

    NASA Astrophysics Data System (ADS)

    Asghar, Waseem

    Nanobiotechnology and BioMEMS have had tremendous impact on biosensing in the areas of cancer cell detection and therapeutics, disease diagnostics, proteomics and DNA analysis. Diseases are expressed on all levels including DNA, protein, cell and tissue. Therefore it is very critical to develop biosensors at each level. The power of the nanotechnology lies in the fact that we can fabricate devices on all scales from micro to nano. This dissertation focuses on four areas: 1) Development of nanopore sensors for DNA analysis; 2) Development of micropore sensors for early detection of circulating tumor cells (CTCs) from whole blood; 3) Synthesis of nano-textured substrates for cancer isolation and tissue culture applications; 4) Fabrication of nanoscale break-junctions. All of these sensors are fabricated using standard silicon processing techniques. Pulsed plasma polymer deposition is also utilized to control the density of the biosensor surface charges. These devices are then used for efficient detection of DNA, proteins and cells, and can be potentially used in point-of-care systems. Overall, our designed biosensing platforms offer improved selectivity, yield and reliability. Novel approaches to nanopore shrinking are simple, reliable and do not change the material composition around the pore boundary. The micropores provide a direct interface to distinguish CTCs from normal cell without requiring fluorescent dyes and surface functionalization. Nano-textured surfaces and break-junctions can be used for enhanced adhesion of cells and selective detection of proteins respectively.

  16. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under

  17. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.

    PubMed

    Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong

    2011-10-15

    NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 μg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.

  18. Meissner effect measurement of single indium particle using a customized on-chip nano-scale superconducting quantum interference device system

    NASA Astrophysics Data System (ADS)

    Wu, Long; Chen, Lei; Wang, Hao; Liu, Xiaoyu; Wang, Zhen

    2017-04-01

    As many emergent phenomena of superconductivity appear on a smaller scale and at lower dimension, commercial magnetic property measurement systems (MPMSs) no longer provide the sensitivity necessary to study the Meissner effect of small superconductors. The nano-scale superconducting quantum interference device (nano-SQUID) is considered one of the most sensitive magnetic sensors for the magnetic characterization of mesoscopic or microscopic samples. Here, we develop a customized on-chip nano-SQUID measurement system based on a pulsed current biasing method. The noise performance of our system is approximately 4.6 × 10-17 emu/Hz1/2, representing an improvement of 9 orders of magnitude compared with that of a commercial MPMS (~10-8 emu/Hz1/2). Furthermore, we demonstrate the measurement of the Meissner effect of a single indium (In) particle (of 47 μm in diameter) using our on-chip nano-SQUID system. The system enables the observation of the prompt superconducting transition of the Meissner effect of a single In particle, thereby providing more accurate characterization of the critical field Hc and temperature Tc. In addition, the retrapping field Hre as a function of temperature T of single In particle shows disparate behavior from that of a large ensemble.

  19. Faraday Cage Protects Against Lightning

    NASA Technical Reports Server (NTRS)

    Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.

    1992-01-01

    Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.

  20. Bacterial toxicity comparison between nano- and micro-scaled oxide particles.

    PubMed

    Jiang, Wei; Mashayekhi, Hamid; Xing, Baoshan

    2009-05-01

    Toxicity of nano-scaled aluminum, silicon, titanium and zinc oxides to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles but titanium oxide showed higher toxicity (at 20 mg/L) than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three nanoparticles, causing 100% mortality to the three tested bacteria. Al(2)O(3) nanoparticles had a mortality rate of 57% to B. subtilis, 36% to E. coli, and 70% to P. fluorescens. SiO(2) nanoparticles killed 40% of B. subtilis, 58% of E. coli, and 70% of P. fluorescens. TEM images showed attachment of nanoparticles to the bacteria, suggesting that the toxicity was affected by bacterial attachment. Bacterial responses to nanoparticles were different from their bulk counterparts; hence nanoparticle toxicity mechanisms need to be studied thoroughly.

  1. Free-energy landscape for cage breaking of three hard disks.

    PubMed

    Hunter, Gary L; Weeks, Eric R

    2012-03-01

    We investigate cage breaking in dense hard-disk systems using a model of three Brownian disks confined within a circular corral. This system has a six-dimensional configuration space, but can be equivalently thought to explore a symmetric one-dimensional free-energy landscape containing two energy minima separated by an energy barrier. The exact free-energy landscape can be calculated as a function of system size by a direct enumeration of states. Results of simulations show the average time between cage breaking events follows an Arrhenius scaling when the energy barrier is large. We also discuss some of the consequences of using a one-dimensional representation to understand dynamics through a multidimensional space, such as diffusion acquiring spatial dependence and discontinuities in spatial derivatives of free energy.

  2. A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Chenliang, Liang; Weili, Liu; Shasha, Li; Hui, Kong; Zefang, Zhang; Zhitang, Song

    2016-05-01

    Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electro-mechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibility. As the application of Ti moves to the micro or nano scale, however, traditional methods of planarization have shown their short slabs. Thus, we introduce the method of chemical mechanical polishing (CMP) to provide a new way for the nano-scale planarization method of Ti alloys. We obtain a mirror-like surface, whose flatness is of nano-scale, via the CMP method. We test the basic mechanical behavior of Ti-6Al-4V (Ti64) in the CMP process, and optimize the composition of CMP slurry. Furthermore, the possible reactions that may take place in the CMP process have been studied by electrochemical methods combined with x-ray photoelectron spectroscopy (XPS). An equivalent circuit has been built to interpret the dynamic of oxidation. Finally, a model has been established to explain the synergy of chemical and mechanical effects in the CMP of Ti-6Al-4V. Project supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China (Grant No. 2009ZX02030-1), the National Natural Science Foundation of China (Grant No. 51205387), the Support by Science and Technology Commission of Shanghai City, China (Grant No. 11nm0500300), and the Science and Technology Commission of Shanghai City, China (Grant No. 14XD1425300).

  3. Usefulness of the "CAGE" in Malaysia.

    PubMed

    Indran, S K

    1995-04-01

    This study examines the usefulness of the "CAGE", (which is an acronym for "cut down", "annoyed", "guilty" and "eye-opener"), a 4-question screening test to identify excessive drinkers among Malaysian inpatients. The CAGE questionnaire after translation and back translation was administered to all inpatients in the General Hospital, Kuala Lumpur. The author interviewed 'blindly' all who score positive on the CAGE score and 10% of all negatives using the DSM III interview schedule for alcohol abuse dependence. The results show that the CAGE performs best at a cut-off point of 2 and above, with a sensitivity of 92%, specificity of 62%, positive predictive values of 38% and Kappa (K) of 0.37 with a DSM III R diagnosis for alcohol abuse/dependence. The poor agreement with a DSM III diagnosis indicates that the CAGE is not useful in the Malaysian population. Reasons suggested for this are: cultural factors in the Malaysian population resulting in the overrating of the question of 'guilt' by Muslims and translations into the local languages which are only the closest approximations.

  4. Polymers containing borane or carborane cage compounds and related applications

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-04-23

    Polymers comprising residues of cage compound monomers having at least one polyalkoxy silyl substituent are provided. The cage compound monomers are selected from borane cage compound monomers comprising at least 7 cage atoms and/or carborane cage compound monomers comprising 7 to 11 cage compound monomers. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Articles of manufacture comprising such polymers are also disclosed.

  5. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion.

    PubMed

    de Visser, Leonie; van den Bos, Ruud; Spruijt, Berry M

    2005-05-28

    This paper introduces automated observations in a modular home cage system as a tool to measure the effects of wheel running on the time distribution and daily organization of cage floor locomotor activity in female C57BL/6 mice. Mice (n = 16) were placed in the home cage system for 6 consecutive days. Fifty percent of the subjects had free access to a running wheel that was integrated in the home cage. Overall activity levels in terms of duration of movement were increased by wheel running, while time spent inside a sheltering box was decreased. Wheel running affected the hourly pattern of movement during the animals' active period of the day. Mice without a running wheel, in contrast to mice with a running wheel, showed a clear differentiation between novelty-induced and baseline levels of locomotion as reflected by a decrease after the first day of introduction to the home cage. The results are discussed in the light of the use of running wheels as a tool to measure general activity and as an object for environmental enrichment. Furthermore, the possibilities of using automated home cage observations for e.g. behavioural phenotyping are discussed.

  6. Indium-tin-oxide nanowhiskers crystalline silicon photovoltaics combining micro- and nano-scale surface textures

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Hsu, M. H.; Chang, W. L.; Sun, W. C.; Yu, Peichen

    2011-02-01

    In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The combined surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on passivated, micro-grooved silicon solar cells using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared, which is optically equivalent to a stack of two dielectric thin-films with step- and graded- refractive index profiles. The ITO nanowhiskers provide broadband anti-reflective properties (R<5%) in the wavelength range of 350-1100nm. In comparison with conventional Si solar cell, the combined surface texture solar cell shows higher external quantum efficiency (EQE) in the range of 700-1100nm. Moreover, the ITO nano-whisker coating Si solar cell shows a high total efficiency increase of 1.1% (from 16.08% to17.18%). Furthermore, the nano-whiskers also provide strong forward scattering for ultraviolet and visible light, favorable in thin-wafer silicon photovoltaics to increase the optical absorption path.

  7. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  8. Effects of single caging and cage size on behavior and stress level of domestic neutered cats housed in an animal shelter.

    PubMed

    Uetake, Katsuji; Goto, Akihiro; Koyama, Rumi; Kikuchi, Rieko; Tanaka, Toshio

    2013-03-01

    Cats need a minimum amount of space even in animal shelters. In this study the effects of single caging and cage size on the behavior and stress level of domestic cats were investigated. Six neutered cats (2-15 years old) that had been housed in a group for at least 7 months were moved to three kinds of single cages (small, medium and large) by rotation on a Latin square design. They experienced each cage size for 6 days. Cats could use vertical dimensions when housed in a group room and the large cage. Behavioral observation was conducted for 3 h in the evening, and stress levels were assessed by urine cortisol-to-creatinine ratios. The amounts (estimated proportions) of time spent in locomotion and social/solitary play were lower even in large cages than in group housing (both P < 0.05). Conversely, the amount of time spent resting tended to increase when housed singly (P = 0.104). The urine cortisol-to-creatinine ratios of singly housed cats tended to be higher than that of group-housed cats (P = 0.086). The results indicate that cats become less active when they are housed singly in cages regardless of the cage size. Cats seem to feel no undue stress even in small cages if the stay is short. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  9. Anterior cervical corpectomy: review and comparison of results using titanium mesh cages and carbon fibre reinforced polymer cages.

    PubMed

    Kabir, Syed M R; Alabi, J; Rezajooi, Kia; Casey, Adrian T H

    2010-10-01

    Different types of cages have recently become available for reconstruction following anterior cervical corpectomy. We review the results using titanium mesh cages (TMC) and stackable CFRP (carbon fibre reinforced polymer) cages. Forty-two patients who underwent anterior cervical corpectomy between November 2001 and September 2008 were retrospectively reviewed. Pathologies included cervical spondylotic myelopathy (CSM), cervical radiculopathy, OPLL (ossified posterior longitudinal ligament), metastasis/primary bone tumour, rheumatoid arthritis and deformity correction. All patients were evaluated clinically and radiologically. Outcome was assessed on the basis of the Odom's criteria, neck disability index (NDI) and myelopathy disability index (MDI). Mean age was 60 years and mean follow-up was 1½ years. Majority of the patients had single-level corpectomy. Twenty-three patients had TMC cages while 19 patients had CFRP cages. The mean subsidence noted with TMC cage was 1.91 mm, while with the stackable CFRP cage it was 0.5 mm. This difference was statistically significant (p < 0.05). However, there was no statistically significant correlation noted between subsidence and clinical outcome (p > 0.05) or between subsidence and post-operative sagittal alignment (p > 0.05) in either of the groups. Three patients had significant subsidence (> 3 mm), one of whom was symptomatic. There were no hardware-related complications. On the basis of the Odom's criterion, 9 patients (21.4%) had an excellent outcome, 14 patients (33.3%) had a good outcome, 9 patients (21.4%) had a fair outcome and 5 patients (11.9%) had a poor outcome, i.e. symptoms and signs unchanged or exacerbated. Mean post-operative NDI was 26.27% and mean post-operative MDI was 19.31%. Fusion was noted in all 42 cases. Both TMC and stackable CFRP cages provide solid anterior column reconstruction with good outcome following anterior cervical corpectomy. However, more subsidence is noted with TMC cages though

  10. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  11. Building a better Faraday cage

    NASA Astrophysics Data System (ADS)

    MartinAlfven; Wright, David; skocpol; Rounce, Graham; Richfield, Jon; W, Nick; wheelsonfire

    2015-11-01

    In reply to the physicsworld.com news article “Are Faraday cages less effective than previously thought?” (15 September, http://ow.ly/SfklO), about a study that indicated, based on mathematical modelling, that conducting wire-mesh cages may not be as good at excluding electromagnetic radiation as is commonly assumed.

  12. In Vitro Phototoxicity and Hazard Identification of Nano-scale Titanium Dioxide

    EPA Science Inventory

    Nano-titanium dioxide (nano-Ti02) catalyzes many reactions under UV radiation and is hypothesized to cause phototoxicity. A human-derived line of retinal pigment epithelial cells (ARPE-19) was treated with six different samples of nano-Ti02 and exposed to UVA radiation. The Ti02 ...

  13. High flexibility of DNA on short length scales probed by atomic force microscopy.

    PubMed

    Wiggins, Paul A; van der Heijden, Thijn; Moreno-Herrero, Fernando; Spakowitz, Andrew; Phillips, Rob; Widom, Jonathan; Dekker, Cees; Nelson, Philip C

    2006-11-01

    The mechanics of DNA bending on intermediate length scales (5-100 nm) plays a key role in many cellular processes, and is also important in the fabrication of artificial DNA structures, but previous experimental studies of DNA mechanics have focused on longer length scales than these. We use high-resolution atomic force microscopy on individual DNA molecules to obtain a direct measurement of the bending energy function appropriate for scales down to 5 nm. Our measurements imply that the elastic energy of highly bent DNA conformations is lower than predicted by classical elasticity models such as the worm-like chain (WLC) model. For example, we found that on short length scales, spontaneous large-angle bends are many times more prevalent than predicted by the WLC model. We test our data and model with an interlocking set of consistency checks. Our analysis also shows how our model is compatible with previous experiments, which have sometimes been viewed as confirming the WLC.

  14. The Influence of Fluorination on Nano-Scale Phase Separation and Photovoltaic Performance of Small Molecular/PC71BM Blends

    PubMed Central

    Lu, Zhen; Liu, Wen; Li, Jingjing; Fang, Tao; Li, Wanning; Zhang, Jicheng; Feng, Feng; Li, Wenhua

    2016-01-01

    To investigate the fluorination influence on the photovoltaic performance of small molecular based organic solar cells (OSCs), six small molecules based on 2,1,3-benzothiadiazole (BT), and diketopyrrolopyrrole (DPP) as core and fluorinated phenyl (DFP) and triphenyl amine (TPA) as different terminal units (DFP-BT-DFP, DFP-BT-TPA, TPA-BT-TPA, DFP-DPP-DFP, DFP-DPP-TPA, and TPA-DPP-TPA) were synthesized. With one or two fluorinated phenyl as the end group(s), HOMO level of BT and DPP based small molecular donors were gradually decreased, inducing high open circuit voltage for fluorinated phenyl based OSCs. DFP-BT-TPA and DFP-DPP-TPA based blend films both displayed stronger nano-scale aggregation in comparison to TPA-BT-TPA and TPA-DPP-TPA, respectively, which would also lead to higher hole motilities in devices. Ultimately, improved power conversion efficiency (PCE) of 2.17% and 1.22% was acquired for DFP-BT-TPA and DFP-DPP-TPA based devices, respectively. These results demonstrated that the nano-scale aggregation size of small molecules in photovoltaic devices could be significantly enhanced by introducing a fluorine atom at the donor unit of small molecules, which will provide understanding about the relationship of chemical structure and nano-scale phase separation in OSCs. PMID:28335208

  15. Observing non-equilibrium state of transport through graphene channel at the nano-second time-scale

    NASA Astrophysics Data System (ADS)

    Mishra, Abhishek; Meersha, Adil; Raghavan, Srinivasan; Shrivastava, Mayank

    2017-12-01

    Electrical performance of a graphene FET is drastically affected by electron-phonon inelastic scattering. At high electric fields, the out-of-equilibrium population of optical phonons equilibrates by emitting acoustic phonons, which dissipate the energy to heat sinks. The equilibration time of the process is governed by thermal diffusion time, which is few nano-seconds for a typical graphene FET. The nano-second time-scale of the process keeps it elusive to conventional steady-state or DC measurement systems. Here, we employ a time-domain reflectometry-based technique to electrically probe the device for few nano-seconds and investigate the non-equilibrium state. For the first time, the transient nature of electrical transport through graphene FET is revealed. A maximum change of 35% in current and 50% in contact resistance is recorded over a time span of 8 ns, while operating graphene FET at a current density of 1 mA/μm. The study highlights the role of intrinsic heating (scattering) in deciding metal-graphene contact resistance and transport through the graphene channel.

  16. Nano- and micro-scale Bi-substituted iron garnet films for photonics and magneto-optic eddy current defectoscopy

    NASA Astrophysics Data System (ADS)

    Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.

    2017-10-01

    Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution eddy current magnetic field near defects.

  17. Rotational Brownian Dynamics simulations of clathrin cage formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilie, Ioana M.; Briels, Wim J.; MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithmmore » to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.« less

  18. Developing an Effective Model for Shale Gas Flow in Nano-scale Pore Clusters based on FIB-SEM Images

    NASA Astrophysics Data System (ADS)

    Jiang, W. B.; Lin, M.; Yi, Z. X.; Li, H. S.

    2016-12-01

    Nano-scale pores existed in the form of clusters are the controlling void space in shale gas reservoir. Gas transport in nanopores which has a significant influence on shale gas' recoverability displays multiple transport regimes, including viscous, slippage flow and Knudsen diffusion. In addition, it is also influenced by pore space characteristics. For convenience and efficiency consideration, it is necessary to develop an upscaling model from nano pore to pore cluster scale. Existing models are more like framework functions that provide a format, because the parameters that represent pore space characteristics are underdetermined and may have multiple possibilities. Therefore, it is urgent to make them clear and obtained a model that is closer to reality. FIB-SEM imaging technology is able to acquire three dimensional images with nanometer resolution that nano pores can be visible. Based on the images of two shale samples, we used a high-precision pore network extraction algorithm to generate equivalent pore networks and simulate multiple regime (non-Darcy) flow in it. Several structural parameters can be obtained through pore network modelling. It is found that although the throat-radius distributions are very close, throat flux-radius distributions of different samples can be divided into two categories. The variation of tortuosity with pressure and the overall trend of throat-flux distribution changes with pressure are disclosed. A deeper understanding of shale gas flow in nano-scale pore clusters is obtained. After all, an upscaling model that connects absolute permeability, apparent permeability and other characteristic parameters is proposed, and the best parameter scheme considering throat number-radius distribution and flowing porosity for this model is selected out of three schemes based on pore scale results, and it can avoid multiple-solution problem and is useful in reservoir modelling and experiment result analysis, etc. This work is supported by

  19. Convergence Science in a Nano World

    PubMed Central

    Cady, Nathaniel

    2013-01-01

    Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innovative and groundbreaking technologies. In the biological and biomedical sciences, nanotechnology research has resulted in dramatic improvements in sensors, diagnostics, imaging, and even therapeutics. In particular, there is a current push to examine the interface between the biological world and micro/nano-scale systems. For example, my laboratory is developing novel strategies for spatial patterning of biomolecules, electrical and optical biosensing, nanomaterial delivery systems, cellular patterning techniques, and the study of cellular interactions with nano-structured surfaces. In this seminar, I will give examples of how convergent research is being applied to three major areas of biological research &endash; cancer diagnostics, microbiology, and DNA-based biosensing. These topics will be presented as case studies, showing the benefits (and challenges) of multi-disciplinary, convergent research and development.

  20. Dyspnea, chest wall hyperinflation, and rib cage distortion in exercising patients with chronic obstructive pulmonary disease.

    PubMed

    Bruni, Giulia Innocenti; Gigliotti, Francesco; Binazzi, Barbara; Romagnoli, Isabella; Duranti, Roberto; Scano, Giorgio

    2012-06-01

    Whether dyspnea, chest wall dynamic hyperinflation, and abnormalities of rib cage motion are interrelated phenomena has not been systematically evaluated in patients with chronic obstructive pulmonary disease (COPD). Our hypothesis that they are not interrelated was based on the following observations: (i) externally imposed expiratory flow limitation is associated with no rib cage distortion during strenuous incremental exercise, with indexes of hyperinflation not being correlated with dyspnea, and (ii) end-expiratory chest wall volume may either increase or decrease during exercise in patients with COPD, with those who hyperinflate being as breathless as those who do not. Sixteen patients breathed either room air or 50% supplemental O2 at 75% of peak exercise in randomized order. We evaluated the volume of chest wall (V(cw)) and its compartments: the upper rib cage (V(rcp)), lower rib cage (V(rca)), and abdomen (V(ab)) using optoelectronic plethysmography; rib cage distortion was assessed by measuring the phase angle shift between V(rcp) and V(rca). Ten patients increased end-expiratory V(cw) (V(cw,ee)) on air. In seven hyperinflators and three non-hyperinflators, the lower rib cage paradoxed inward during inspiration with a phase angle of 63.4° ± 30.7° compared with a normal phase angle of 16.1° ± 2.3° recorded in patients without rib cage distortion. Dyspnea (by Borg scale) averaged 8.2 and 9 at the end of exercise on air in patients with and without rib cage distortion, respectively. At iso-time during exercise with oxygen, decreased dyspnea was associated with a decrease in ventilation regardless of whether patients distorted the rib cage, dynamically hyperinflated, or deflated the chest wall. Dyspnea, chest wall dynamic hyperinflation, and rib cage distortion are not interrelated phenomena.

  1. Functional helicoidal model of DNA molecule with elastic nonlinearity

    NASA Astrophysics Data System (ADS)

    Tseytlin, Y. M.

    2013-06-01

    We constructed a functional DNA molecule model on the basis of a flexible helicoidal sensor, specifically, a pretwisted hollow nano-strip. We study in this article the helicoidal nano- sensor model with a pretwisted strip axial extension corresponding to the overstretching transition of DNA from dsDNA to ssDNA. Our model and the DNA molecule have similar geometrical and nonlinear mechanical features unlike models based on an elastic rod, accordion bellows, or an imaginary combination of "multiple soft and hard linear springs", presented in some recent publications.

  2. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  3. Placing and shaping liposomes with reconfigurable DNA nanocages

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Yang, Yang; Pincet, Frederic; C. Llaguno, Marc; Lin, Chenxiang

    2017-07-01

    The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.

  4. Placing and shaping liposomes with reconfigurable DNA nanocages.

    PubMed

    Zhang, Zhao; Yang, Yang; Pincet, Frederic; Llaguno, Marc C; Lin, Chenxiang

    2017-06-23

    The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.

  5. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    PubMed Central

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-01-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition. PMID:26658159

  6. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  7. A system approach for reducing the environmental impact of manufacturing and sustainability improvement of nano-scale manufacturing

    NASA Astrophysics Data System (ADS)

    Yuan, Yingchun

    This dissertation develops an effective and economical system approach to reduce the environmental impact of manufacturing. The system approach is developed by using a process-based holistic method for upstream analysis and source reduction of the environmental impact of manufacturing. The system approach developed consists of three components of a manufacturing system: technology, energy and material, and is useful for sustainable manufacturing as it establishes a clear link between manufacturing system components and its overall sustainability performance, and provides a framework for environmental impact reductions. In this dissertation, the system approach developed is applied for environmental impact reduction of a semiconductor nano-scale manufacturing system, with three case scenarios analyzed in depth on manufacturing process improvement, clean energy supply, and toxic chemical material selection. The analysis on manufacturing process improvement is conducted on Atomic Layer Deposition of Al2O3 dielectric gate on semiconductor microelectronics devices. Sustainability performance and scale-up impact of the ALD technology in terms of environmental emissions, energy consumption, nano-waste generation and manufacturing productivity are systematically investigated and the ways to improve the sustainability of the ALD technology are successfully developed. The clean energy supply is studied using solar photovoltaic, wind, and fuel cells systems for electricity generation. Environmental savings from each clean energy supply over grid power are quantitatively analyzed, and costs for greenhouse gas reductions on each clean energy supply are comparatively studied. For toxic chemical material selection, an innovative schematic method is developed as a visual decision tool for characterizing and benchmarking the human health impact of toxic chemicals, with a case study conducted on six chemicals commonly used as solvents in semiconductor manufacturing. Reliability of

  8. Eggshell bacterial levels of non-washed and washed eggs from caged and cage-free hens

    USDA-ARS?s Scientific Manuscript database

    The bacteria levels of non-washed and washed eggs obtained from caged and cage-free laying hens housed on either all shavings or all wire slat floors were determined. On eight sample days (from 22 to 52 weeks at 4 week intervals), 20 eggs were collected from each pen (n=120/sample day). Ten eggs p...

  9. Computed Tomography Measurement of Rib Cage Morphometry in Emphysema

    PubMed Central

    Sverzellati, Nicola; Colombi, Davide; Randi, Giorgia; Pavarani, Antonio; Silva, Mario; Walsh, Simon L.; Pistolesi, Massimo; Alfieri, Veronica; Chetta, Alfredo; Vaccarezza, Mauro; Vitale, Marco; Pastorino, Ugo

    2013-01-01

    Background Factors determining the shape of the human rib cage are not completely understood. We aimed to quantify the contribution of anthropometric and COPD-related changes to rib cage variability in adult cigarette smokers. Methods Rib cage diameters and areas (calculated from the inner surface of the rib cage) in 816 smokers with or without COPD, were evaluated at three anatomical levels using computed tomography (CT). CTs were analyzed with software, which allows quantification of total emphysema (emphysema%). The relationship between rib cage measurements and anthropometric factors, lung function indices, and %emphysema were tested using linear regression models. Results A model that included gender, age, BMI, emphysema%, forced expiratory volume in one second (FEV1)%, and forced vital capacity (FVC)% fit best with the rib cage measurements (R2 = 64% for the rib cage area variation at the lower anatomical level). Gender had the biggest impact on rib cage diameter and area (105.3 cm2; 95% CI: 111.7 to 98.8 for male lower area). Emphysema% was responsible for an increase in size of upper and middle CT areas (up to 5.4 cm2; 95% CI: 3.0 to 7.8 for an emphysema increase of 5%). Lower rib cage areas decreased as FVC% decreased (5.1 cm2; 95% CI: 2.5 to 7.6 for 10 percentage points of FVC variation). Conclusions This study demonstrates that simple CT measurements can predict rib cage morphometric variability and also highlight relationships between rib cage morphometry and emphysema. PMID:23935872

  10. [Radiological study on the n-HA/PA66 cage used in the transforaminal lumbar interbody fusion].

    PubMed

    Sang, Pei-ming; Zhang, Ming; Chen, Bin-hui; Cai, Chang; Gu, Shi-rong; Zhou, Min

    2014-08-01

    To explore the effects of nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cage on recovering and maintaining lumbar curvature, lumbar heights and fusion rate when used in the transforaminal lumbar interbody fusion. From February to July 2012, 50 patients with degenerative lumbar disease(lumbar disc herniation in 32 cases and lumbar spondylolisthesis in 18 cases) were treated with transforaminal lumbar interbody fusion using the n-HA/PA66 cage, and their preoperative and postoperative clinical outcomes were analyzed. The patients were followed up for 2, 4, 6 and 8 months after operation, during which the CR and CT film of lumbar vertebra were checked to get relative height of vertebral space, Taillard index,index of lumbar spinal curvature,angle of segmental and full lumbar lordosis. The data were analyzed respectively with pair t-test, analysis of variance or LSD-t-test. All the patients were followed up, and the duraion ranged from 8 to 13 months, with a mean of 11.32 months. There were significant differences in relative height of vertebral space, Taillard index, index of lumbar spinal curvature, angle of segmental and full lumbar lordosis after surgery, but there were no significant differences in different periods after operation. The fusion time of lumbar ranged from 4 to 8 months. The n-HA/PA66 cage can recover and maintain lumbar normal stability with higher rate of fusion and less complications.

  11. Gel Electrophoresis of Gold-DNA Nano-Conjugates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrino, T.; Sperling, R.A.; Alivisatos, A.P.

    2006-01-10

    Single stranded DNA of different lengths and different amounts was attached to colloidal phosphine stabilized Au nanoparticles. The resulting conjugates were investigated in detail by a gel electrophoresis study based on 1200 gels. We demonstrate how these experiments help to understand the binding of DNA to Au particles. In particular we compare specific attachment of DNA via gold-thiol bonds with nonspecific adsorption of DNA. The maximum number of DNA molecules that can be bound per particle was determined. We also compare several methods to used gel electrophoresis for investigating the effective diameter of DNA-Au conjugates, such as using a calibrationmore » curve of particles with known diameters and Ferguson plots.« less

  12. A non-invasive technique for rapid extraction of DNA from fish scales.

    PubMed

    Kumar, Ravindra; Singh, Poonam Jayant; Nagpure, N S; Kushwaha, Basdeo; Srivastava, S K; Lakra, W S

    2007-11-01

    DNA markers are being increasingly used in studies related to population genetics and conservation biology of endangered species. DNA isolation for such studies requires a source of biological material that is easy to collect, non-bulky and reliable. Further, the sampling strategies based on non-invasive procedures are desirable, especially for the endangered fish species. In view of above, a rapid DNA extraction method from fish scales has been developed with the use of a modified lysis buffer that require about 2 hr duration. This methodology is non-invasive, less expensive and reproducible with high efficiency of DNA recovery. The DNA extracted by this technique, have been found suitable for performing restriction enzyme digestion and PCR amplification. Therefore, the present DNA extraction procedure can be used as an alternative technique in population genetic studies pertaining to endangered fish species. The technique was also found equally effective for DNA isolation from fresh, dried and ethanol preserved scales.

  13. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.

    PubMed

    Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio

    2017-10-24

    High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.

  14. Cryogenic Caging for Science Instrumentation

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Chui, Talso C.

    2011-01-01

    A method has been developed for caging science instrumentation to protect from pyro-shock and EDL (entry, descent, and landing) acceleration damage. Caging can be achieved by immersing the instrument (or its critical parts) in a liquid and solidifying the liquid by cooling. After the launch shock and/or after the payload has landed, the solid is heated up and evaporated.

  15. Detection of bisphenol A using palm-size NanoAptamer analyzer.

    PubMed

    Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2017-08-15

    We have demonstrated a palm-size NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (<1ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. Modified NanoGene assay was used as the sensing mechanism where signaling DNA and QD 655 was tethered to QD 565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD 655 from the complex and hence corresponding decrease in QD 655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Theory of nanotube faraday cage

    NASA Astrophysics Data System (ADS)

    Roxana Margine, Elena; Nisoli, Cristiano; Kolmogorov, Aleksey; Crespi, Vincent H.

    2003-03-01

    Charge transfer between dopants and double-wall carbon nanotubes is examined theoretically. We model the system as a triple cylindrical capacitor with the dopants forming a shell around the outer wall of the nanotube. The total energy of the system contains three terms: the band structure energies of the inner and outer tube, calculated in a tight-binding model with rigid bands, and the electrostatic energy of the tri-layer distribution. Even for metallic inner and outer tube walls, wherein the diameter dependence of the bandgap does not favor the outer wall, nearly all of the dopant charge resides on the outer layer, a nanometer-scale Faraday cage. The calculated charge distribution is in agreement with recent experimental measurements.

  17. Design and modeling of Faraday cages for substrate noise isolation

    NASA Astrophysics Data System (ADS)

    Wu, Joyce H.; del Alamo, Jesús A.

    2013-07-01

    A Faraday cage structure using through-substrate vias is an effective strategy to suppress substrate crosstalk, particularly at high frequencies. Faraday cages can reduce substrate noise by 32 dB at 10 GHz, and 26 dB at 50 GHz. We have developed lumped-element, equivalent circuit models of the Faraday cages and test structures to better understand the performance of the Faraday cages. These models compare well to measured results and show that the vias of the Faraday cage act as an RLC shunt to ground that draws substrate current. Designing a Faraday cage to achieve optimum isolation requires low via impedance and mitigation of via sidewall capacitance. The Faraday cage inductance is correlated to the number of vias and via spacing of the cage and can be optimized for the frequency of operation.

  18. Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Inverardi, Luca; Ricordi, Camillo; Stabler, Cherie L

    2012-10-01

    Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Differentiation of lepidoptera scale cells from epidermal stem cells followed by ecdysone-regulated DNA duplication and scale secreting.

    PubMed

    Yuan, Shenglei; Huang, Wuren; Geng, Lei; Beerntsen, Brenda T; Song, Hongsheng; Ling, Erjun

    2017-01-01

    Integuments are the first line to protect insects from physical damage and pathogenic infection. In lepidopteran insects, they undergo distinct morphology changes such as scale formation during metamorphosis. However, we know little about integument development and scale formation during this stage. Here, we use the silkworm, Bombyx mori, as a model and show that stem cells in the integument of each segment, but not intersegmental membrane, divide into two scale precursor cells during the spinning stage. In young pupae, the scale precursor cell divides again. One of the daughter cells becomes a mature scale-secreting cell that undergoes several rounds of DNA duplication and the other daughter cell undergoes apoptosis later on. This scale precursor cell division is crucial to the development and differentiation of scale-secreting cells because scale production can be blocked after treatment with the cell division inhibitor paclitaxel. Subsequently, the growth of scale-secreting cells is under the control of 20-hydroxyecdysone but not juvenile hormone since injection of 20-hydroxyecdysone inhibited scale formation. Further work demonstrated that 20-hydroxyecdysone injection inhibits DNA duplication in scale-secreting cells while the expression of scale-forming gene ASH1 was down-regulated by BR-C Z2. Therefore, this research demonstrates that the scale cells of the silkworm develops through stem cell division prior to pupation and then another wave of cell division differentiates these cells into scale secreting cells soon after entrance into the pupal stage. Additionally, DNA duplication and scale production in the scale-secreting cells were found to be under the regulation of 20-hydroxyecdysone.

  20. Free fatty acid profiling of marine sentinels by nanoLC-EI-MS for the assessment of environmental pollution effects.

    PubMed

    Albergamo, Ambrogina; Rigano, Francesca; Purcaro, Giorgia; Mauceri, Angela; Fasulo, Salvatore; Mondello, Luigi

    2016-11-15

    The present work aims to elucidate the free fatty acid (FFA) profile of the mussel Mytilus galloprovincialis caged in an anthropogenically impacted area and in a reference site through an innovative and validated analytical approach for the assessment of biological alterations induced by marine pollution. The FFA pattern is involved in the regulation of different cellular pathways and differs with respect to metabolic stimuli. To this purpose, the lipid fraction of mussels coming from both sampling areas was extracted and the FFA fractions were isolated and purified by a solid phase extraction; then, nano-scale liquid chromatography coupled to electron ionization mass spectrometry (nanoLC-EI-MS) was employed for the characterization of the two samples. A total of 19 and 17 FFAs were reliably identified in the mussels coming from the reference and polluted site, respectively. Significant qualitative and quantitative differences found in saturated, monounsaturated and polyunsaturated species may be exploited as typical pollution biomarkers (e.g. alteration of the fatty acid biosynthetic system and lipotoxicity) and explain adverse and compromising effects (e.g. oxidative stress and inflammatory processes) related to environmental pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. COATING ALTERNATIVES GUIDE (CAGE) USER'S GUIDE

    EPA Science Inventory

    The guide provides instructions for using the Coating Alternatives GuidE (CAGE) software program, version 1.0. It assumes that the user is familiar with the fundamentals of operating an IBM-compatible personal computer (PC) under the Microsoft disk operating system (MS-DOS). CAGE...

  2. DNA barcoding gap: reliable species identification over morphological and geographical scales.

    PubMed

    Čandek, Klemen; Kuntner, Matjaž

    2015-03-01

    The philosophical basis and utility of DNA barcoding have been a subject of numerous debates. While most literature embraces it, some studies continue to question its use in dipterans, butterflies and marine gastropods. Here, we explore the utility of DNA barcoding in identifying spider species that vary in taxonomic affiliation, morphological diagnosibility and geographic distribution. Our first test searched for a 'barcoding gap' by comparing intra- and interspecific means, medians and overlap in more than 75,000 computed Kimura 2-parameter (K2P) genetic distances in three families. Our second test compared K2P distances of congeneric species with high vs. low morphological distinctness in 20 genera of 11 families. Our third test explored the effect of enlarging geographical sampling area at a continental scale on genetic variability in DNA barcodes within 20 species of nine families. Our results generally point towards a high utility of DNA barcodes in identifying spider species. However, the size of the barcoding gap strongly depends on taxonomic groups and practices. It is becoming critical to define the barcoding gap statistically more consistently and to document its variation over taxonomic scales. Our results support models of independent patterns of morphological and molecular evolution by showing that DNA barcodes are effective in species identification regardless of their morphological diagnosibility. We also show that DNA barcodes represent an effective tool for identifying spider species over geographic scales, yet their variation contains useful biogeographic information. © 2014 John Wiley & Sons Ltd.

  3. One and two hydrogen molecules in the large cage of the structure II clathrate hydrate: quantum translation-rotation dynamics close to the cage wall.

    PubMed

    Sebastianelli, Francesco; Xu, Minzhong; Kanan, Dalal K; Bacić, Zlatko

    2007-07-19

    We have performed a rigorous theoretical study of the quantum translation-rotation (T-R) dynamics of one and two H2 and D2 molecules confined inside the large hexakaidecahedral (5(12)6(4)) cage of the sII clathrate hydrate. For a single encapsulated H2 and D2 molecule, accurate quantum five-dimensional calculations of the T-R energy levels and wave functions are performed that include explicitly, as fully coupled, all three translational and the two rotational degrees of freedom of the hydrogen molecule, while the cage is taken to be rigid. In addition, the ground-state properties, energetics, and spatial distribution of one and two p-H2 and o-D2 molecules in the large cage are calculated rigorously using the diffusion Monte Carlo method. These calculations reveal that the low-energy T-R dynamics of hydrogen molecules in the large cage are qualitatively different from that inside the small cage, studied by us recently. This is caused by the following: (i) The large cage has a cavity whose diameter is about twice that of the small cage for the hydrogen molecule. (ii) In the small cage, the potential energy surface (PES) for H2 is essentially flat in the central region, while in the large cage the PES has a prominent maximum at the cage center, whose height exceeds the T-R zero-point energy of H2/D2. As a result, the guest molecule is excluded from the central part of the large cage, its wave function localized around the off-center global minimum. Peculiar quantum dynamics of the hydrogen molecule squeezed between the central maximum and the cage wall manifests in the excited T-R states whose energies and wave functions differ greatly from those for the small cage. Moreover, they are sensitive to the variations in the hydrogen-bonding topology, which modulate the corrugation of the cage wall.

  4. pH-Driven Reversible Self-Assembly of Micron-Scale DNA Scaffolds.

    PubMed

    Green, Leopold N; Amodio, Alessia; Subramanian, Hari K K; Ricci, Francesco; Franco, Elisa

    2017-12-13

    Inspired by cytoskeletal scaffolds that sense and respond dynamically to environmental changes and chemical inputs with a unique capacity for reconfiguration, we propose a strategy that allows the dynamic and reversible control of the growth and breakage of micron-scale synthetic DNA structures upon pH changes. We do so by rationally designing a pH-responsive system composed of synthetic DNA strands that act as pH sensors, regulators, and structural elements. Sensor strands can dynamically respond to pH changes and route regulatory strands to direct the self-assembly of structural elements into tubular structures. This example represents the first demonstration of the reversible assembly and disassembly of micron-scale DNA scaffolds using an external chemical input other than DNA. The capacity to reversibly modulate nanostructure size may promote the development of smart devices for catalysis or drug-delivery applications.

  5. Linear arrangements of nano-scale ferromagnetic particles spontaneously formed in a copper-base Cu-Ni-Co alloy

    NASA Astrophysics Data System (ADS)

    Sakakura, Hibiki; Kim, Jun-Seop; Takeda, Mahoto

    2018-03-01

    We have investigated the influence of magnetic interactions on the microstructural evolution of nano-scale granular precipitates formed spontaneously in an annealed Cu-20at%Ni-5at%Co alloy and the associated changes of magnetic properties. The techniques used included transmission electron microscopy, superconducting quantum interference device (SQUID) magnetometry, magneto-thermogravimetry (MTG), and first-principles calculations based on the method of Koster-Korringa-Rostker with the coherent potential approximation. Our work has revealed that the nano-scale spherical and cubic precipitates which formed on annealing at 873 K and 973 K comprise mainly cobalt and nickel with a small amount of copper, and are arranged in the 〈1 0 0〉 direction of the copper matrix. The SQUID and MTG measurements suggest that magnetic properties such as coercivity and Curie temperature are closely correlated with the microstructure. The combination of results suggests that magnetic interactions between precipitates during annealing can explain consistently the observed precipitation phenomena.

  6. Enhanced electronic excitation energy transfer between dye molecules incorporated in nano-scale media with apparent fractal dimensionality

    NASA Astrophysics Data System (ADS)

    Yefimova, Svetlana L.; Rekalo, Andrey M.; Gnap, Bogdan A.; Viagin, Oleg G.; Sorokin, Alexander V.; Malyukin, Yuri V.

    2014-09-01

    In the present study, we analyze the efficiency of Electronic Excitation Energy Transfer (EEET) between two dyes, an energy donor (D) and acceptor (A), concentrated in structurally heterogeneous media (surfactant micelles, liposomes, and porous SiO2 matrices). In all three cases, highly effective EEET in pairs of dyes has been found and cannot be explained by Standard Förster-type theory for homogeneous solutions. Two independent approaches based on the analysis of either the D relative quantum yield () or the D fluorescence decay have been used to study the deviation of experimental results from the theoretical description of EEET process. The observed deviation is quantified by the apparent fractal distribution of molecules parameter . We conclude that the highly effective EEET observed in the nano-scale media under study can be explained by both forced concentration of the hydrophobic dyes within nano-volumes and non-uniform cluster-like character of the distribution of D and A dye molecules within nano-volumes.

  7. Dynamic behavior and deformation analysis of the fish cage system using mass-spring model

    NASA Astrophysics Data System (ADS)

    Lee, Chun Woo; Lee, Jihoon; Park, Subong

    2015-06-01

    Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.

  8. The effect of pesticide residue on caged mosquito bioassays.

    PubMed

    Barber, J A S; Greer, Mike; Coughlin, Jamie

    2006-09-01

    Wind tunnel experiments showed that secondary pickup of insecticide residue by mosquitoes in cage bioassays had a significant effect on mortality. Cage bioassays using adult Ochlerotatus taeniorhynchus (Wiedemann) investigated the effect of exposure time to a contaminated surface. Cages were dosed in a wind tunnel using the LC50 for naled (0.124 mg a.i./ml) and an LC25 (0.0772 mg a.i./ml) for naled. Half of the bioassay mosquitoes were moved directly into clean cages with the other half remaining in the sprayed, hence contaminated, cage. Treatment mortality was assessed at 8, 15, 30, 60, 120, 240, and 1,440 min postapplication. Cage contamination had a significant effect on mosquito mortality for both the LC25 and LC50 between 15 and 30 min postapplication.

  9. Influence of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage.

    PubMed

    Baker, Joseph L; Furbish, Jeffrey; Lindberg, Gerrick E

    2015-11-01

    We examine the effect of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage and contrast these results with the behavior of Trp-cage in water. We find the ionic liquid has a dramatic effect on Trp-cage, though many similarities with aqueous Trp-cage are observed. We assess Trp-cage folding by monitoring root mean square deviation from the crystallographic structure, radius of gyration, proline cis/trans isomerization state, protein secondary structure, amino acid contact formation and distance, and native and non-native contact formation. Starting from an unfolded configuration, Trp-cage folds in water at 298 K in less than 500 ns of simulation, but has very little mobility in the ionic liquid at the same temperature, which can be ascribed to the higher ionic liquid viscosity. At 365 K, the mobility of the ionic liquid is increased and initial stages of Trp-cage folding are observed, however Trp-cage does not reach the native folded state in 2 μs of simulation in the ionic liquid. Therefore, in addition to conventional molecular dynamics, we also employ scaled molecular dynamics to expedite sampling, and we demonstrate that Trp-cage in the ionic liquid does closely approach the aqueous folded state. Interestingly, while the reduced mobility of the ionic liquid is found to restrict Trp-cage motion, the ionic liquid does facilitate proline cis/trans isomerization events that are not seen in our aqueous simulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The influence of fish cage aquaculture on pelagic carbon flow and water chemistry in tidally dominated mangrove estuaries of peninsular Malaysia.

    PubMed

    Alongi, D M; Chong, V C; Dixon, P; Sasekumar, A; Tirendi, F

    2003-05-01

    The impact of floating net cages culturing the seabass, Lates calcarifer, on planktonic processes and water chemistry in two heavily used mangrove estuaries in Malaysia was examined. Concentrations of dissolved inorganic and particulate nutrients were usually greater in cage vs. adjacent (approximately 100 m) non-cage waters, although most variability in water-column chemistry related to water depth and tides. There were few consistent differences in plankton abundance, production or respiration between cage and non-cage sites. Rates of primary production were low compared with rates of pelagic mineralization reflecting high suspended loads coupled with large inputs of organic matter from mangrove forests, fishing villages, fish cages, pig farms and other industries within the catchment. Our preliminary sampling did not reveal any large-scale eutrophication due to the cages. A crude estimate of the contribution of fish cage inputs to the estuaries shows that fish cages contribute only approximately 2% of C but greater percentages of N (32-36%) and P (83-99%) to these waters relative to phytoplankton and mangrove inputs. Isolating and detecting impacts of cage culture in such heavily used waterways--a situation typical of most mangrove estuaries in Southeast Asia--are constrained by a background of large, highly variable fluxes of organic material derived from extensive mangrove forests and other human activities. Copyright 2002 Elsevier Science B.V.

  11. Measurement profiles of nano-scale ion beam for optimized radiation energy losses

    NASA Astrophysics Data System (ADS)

    Woo, T. H.; Cho, H. S.

    2011-10-01

    The behavior of charged particles is investigated for nano-scale ion beam therapy using a medical accelerator. Computational work is performed for the Bragg-peak simulation, which is focused on human organ material of pancreas and thyroid. The Results show that the trends of the dose have several different kinds of distributions. Before constructing a heavy ion collider, this study can give us the reliability of the therapeutic effect. Realistic treatment using human organs is calculated in a simple and cost effective manner using the computational code, the Stopping and Range of Ions in Matter 2008 (SRIM 2008). Considering the safety of the therapy, it is suggested to give a patient orient planning of the cancer therapy. The energy losses in ionization and phonon are analyzed, which are the behaviors in the molecular level nano-scopic investigation. The different fluctuations are shown at 150 MeV, where the lowest temperature is found in proton and pancreas case. Finally, the protocol for the radiation therapy is constructed by the simulation in which the procedure for a better therapy is selected. An experimental measurement incorporated with the simulations could be programmed by this protocol.

  12. Self-assembled DNA Structures for Nanoconstruction

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  13. Detecting Nano-Scale Vibrations in Rotating Devices by Using Advanced Computational Methods

    PubMed Central

    del Toro, Raúl M.; Haber, Rodolfo E.; Schmittdiel, Michael C.

    2010-01-01

    This paper presents a computational method for detecting vibrations related to eccentricity in ultra precision rotation devices used for nano-scale manufacturing. The vibration is indirectly measured via a frequency domain analysis of the signal from a piezoelectric sensor attached to the stationary component of the rotating device. The algorithm searches for particular harmonic sequences associated with the eccentricity of the device rotation axis. The detected sequence is quantified and serves as input to a regression model that estimates the eccentricity. A case study presents the application of the computational algorithm during precision manufacturing processes. PMID:22399918

  14. Single transverse-orientation cage via MIS-TLIF approach for the treatment of degenerative lumbar disease: a technical note.

    PubMed

    Wang, Shan-Jin; Han, Ying-Chao; Pan, Fu-Min; Ma, Bin; Tan, Jun

    2015-01-01

    Single transverse cage placed in the anterior vertebral column can better maintain lumbar lordosis and sagittal alignment and is frequently used via the lateral transpsoas approach. However, there is no clear description in the literature of the steps required to place the single transverse cage during the instrumented transforaminal lumbar interbody fusion (TLIF) procedure for the treatment of degenerative lumbar disease. The objective of this study is to describe the technique using single transverse-orientation cage when performing TLIF procedures. We present 18 illustrative cases in which single transverse-orientation cage was placed according to a step-by-step technique that can be used during the TLIF procedure. Information acquired included procedure time, intraoperative blood loss and postoperative complications. The preoperative and postoperative Oswestry Disability Index (ODI) and the visual analogue scale (VAS) scores were recorded. Changes in disc height and segmental lordosis were measured at radiographs. The single transverse-orientation cage was successfully placed in 18 patients in a stepwise technique to achieve lumbar fusion. Using this technique, the patients significantly improved clinically and radiographically at postoperative visits. This is the first report demonstrating the safety and efficacy of instrumented TLIF with single transverse-orientation cage for the treatment of degenerative lumbar disease. Single transverse-orientation cage via MIS-TLIF approach can maintain greater lumbar lordosis and avoid the unique complications of lateral transpsoas approach. Understanding the options for cage placement is important for surgeons considering the use of this technique.

  15. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    PubMed Central

    Helinski, Michelle EH; Hassan, Mo'awia M; El-Motasim, Waleed M; Malcolm, Colin A; Knols, Bart GJ; El-Sayed, Badria

    2008-01-01

    Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Results Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females. Conclusion It is concluded that although conditions are challenging, there are no major obstacles associated with the small-scale

  16. Proof of concept of a novel SMA cage actuator

    NASA Astrophysics Data System (ADS)

    Deyer, Christopher W.; Brei, Diann E.

    2001-06-01

    Numerous industrial applications that currently utilize expensive solenoids or slow wax motors are good candidates for smart material actuation. Many of these applications require millimeter-scale displacement and low cost; thereby, eliminating piezoelectric technologies. Fortunately, there is a subset of these applications that can tolerate the slower response of shape memory alloys. This paper details a proof-of-concept study of a novel SMA cage actuator intended for proportional braking in commercial appliances. The chosen actuator architecture consists of a SMA wire cage enclosing a return spring. To develop an understanding of the influences of key design parameters on the actuator response time and displacement amplitude, a half-factorial 25 Design of Experiment (DOE) study was conducted utilizing eight differently configured prototypes. The DOE results guided the selection of the design parameters for the final proof-of-concept actuator. This actuator was built and experimentally characterized for stroke, proportional control and response time.

  17. 50 CFR 648.75 - Cage identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Atlantic Surf Clam and Ocean Quahog Fisheries § 648.75 Cage identification. Link to an amendment published.... Before offloading, all cages that contain surfclams or ocean quahogs must be tagged with tags acquired...) Observers. (i) The Regional Administrator may allow the shucking of surfclams or ocean quahogs at sea if he...

  18. A new germfree chicken cage--characteristics and use.

    PubMed

    MILLER, H T; LUCKEY, T D

    1962-01-01

    A new germfree chicken cage for rearing chicks up to 3 or 4 weeks of age has been designed and is in use at the University of Missouri. The cage and the accessory parts, the small magnet and hinged door, the "Bactytector," the built-in air filter assembly, and the glass top with connecting air outlet filter have been described in detail. The complete operating procedure for sterilizing the cage and diet and the method of adding sterile embryonated eggs have been outlined. Data on the effectiveness of the cage as a physical barrier to microbes have been presented.

  19. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Caged compounds: tools for illuminating neuronal responses and connections.

    PubMed

    Nerbonne, J M

    1996-06-01

    A number of new 'caged' intracellular second messengers and neurotransmitters have been developed using the photolabile o-nitrobenzyl group. This chemistry has also recently been exploited in novel ways, including the development of caged enzyme substrates and caged proteins. Although caged compounds continue to be used primarily for mechanistic (kinetic) studies of processes mediated by transmitters or second messengers, the spatial resolution afforded by the use of light to effect changes in transmitter concentrations has now been clearly demonstrated. The increased availability of caged compounds and of the technologies required to exploit them provides neurobiologists with powerful tools for probing neuronal response properties and connectivity patterns.

  1. Comparison of the effect of NaOH and TE buffer on 25 to 100 eV electron induced damage to ΦX174 dsDNA

    NASA Astrophysics Data System (ADS)

    Kumar, S. V. K.; Murali, Megha; Kushwaha, Preksha

    2015-09-01

    In this article we report the usage of (1) ΦX174 dsDNA as a model for electron - DNA interaction studies, (2) semiconductor grade 100 silicon wafer, gold on chrome on glass, and tantalum foil substrates, drying process and effect of temperature, on the DNA film formation and its stability, (3) stability of DNA films formed from DNA suspended in nano pure water and with additives like NaOH and TE buffer, and (4) effect of 0.001 mM NaOH and TE buffer (at pH 7.5) additives on DNA damage induced by 25 to 100 eV electrons. The results show that when tantalum foils are used as a substrate, it results in films, which have DNA distributed fairly uniformly and is also stable against strand breaks affected due to the stress of the drying. Electron irradiation of DNA suspended in TE buffer result in the formation of only relaxed form. When the DNA is suspended in 0.001 mM NaOH and irradiated similarly, linear form and cross links are also formed, in addition to relaxed form. This could be likely due to the secondary electrons interacting with Na+ ions that are bound to the DNA causing a second strand break in the opposite strand. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  2. Two-dimensional MoS2 as a nano-binder for ssDNA: Ultrasensitive aptamer based amperometric detection of Ochratoxin A.

    PubMed

    Tang, Juan; Huang, Yapei; Cheng, Yu; Huang, Lulu; Zhuang, Junyang; Tang, Dianping

    2018-02-07

    Two-dimensional (2D) MoS 2 is found to possess different affinities for ssDNA and dsDNA. This finding is exploited in an amperometric aptamer-based method for the determination of the mycotoxin ochratoxin A (OTA). Initially, a dsDNA probe (formatted through the hybridization of OTA-aptamer with an auxiliary DNA) is self-assembled on a gold electrode. Upon introduction of OTA, it will bind to the aptamer and cause the unwinding of dsDNA, while the auxiliary DNA (with single-stranded structure) remains on the electrode. Since the affinity of 2D MoS 2 for ssDNA is considerably larger than that for dsDNA, it will be adsorbed on the electrode by binding to the auxiliary DNA. Notably, 2D MoS 2 possesses peroxidase-like activity. Hence, it can catalyze the amplification of electrochemical signal of the hydroquinone/benzoquinone redox system. Under optimal conditions, the amperometric signal (best measured at -0.2 V vs. SCE) increases with increasing OTA concentration in the range from 0.5 pg·mL -1 to 1.0 ng·mL -1 , with a lower detection limit of 0.23 pg·mL -1 . The method was applied to the determination of OTA in spiked red wine. Graphical abstract Herein we construct a convenient electrochemical aptasensor for sensitive monitor of ochratoxin A by using 2D MoS 2 as a nano-binder to catalyze the amplification of electrochemical signal from hydroquinone/benzoquinone system.

  3. Comparing the Efficacy of Three Different Nano-scale Bone Substitutes: In vivo Study.

    PubMed

    Razavi, Sayed Mohammad; Rismanchian, Mansour; Jafari-Pozve, Nasim; Nosouhian, Saied

    2017-01-01

    Synthetic biocompatible bone substitutions have been used widely for bone tissue regeneration as they are safe and effective. The aim of this animal study is to compare the effectiveness of three different biocompatible bone substitutes, including nano-hydroxyapatite (nano-HA) nano-bioglass (nano-BG) and forstrite scaffolds. In this interventional and experimental study, four healthy dogs were anesthetized, and the first to fourth premolars were extracted in each quadrant. After healing, the linear incision on the crestal ridge from molar to anterior segment prepared in each quadrant and 16 defects in each dog were prepared. Nano-HA, nano-BG, and forstrite scaffold was prepared according to the size of defects and placed in the 12 defects randomly, four defects remained as a control group. The dogs were sacrificed in four time intervals (15, 30, 45, and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed using Mann-Whitney test (α = 0.05). The difference in nano-HA and nano-BG with the control group was significant in three-time intervals regarding the amount of bone formation ( P < 0.01). After 15 days, the nano-HA showed the highest amount of woven and lamellar bone regeneration (18.37 ± 1.06 and 30.44 ± 0.54). Nano-HA and nano-BG groups showed a significant amount of bone regeneration, especially after 30 days, but paying more surveys and observation to these materials as bone substitutes seem to be needed.

  4. Application Of Positron Beams For The Characterization Of Nano-scale Pores In Thin Films

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Ito, K.; Kobayashi, Y.; Suzuki, R.; Ohdaira, T.; Eijt, S. W. H.; Schut, H.; van Veen, A.

    2003-08-01

    We applied three positron annihilation techniques, positron 3γ-annihilation spectroscopy, positron annihilation lifetime spectroscopy, and angular correlation of annihilation radiation, to the characterization of nano-scale pores in thin films by combining them with variable-energy positron beams. Characterization of pores in thin films is an important part of the research on various thin films of industrial importance. The results of our recent studies on pore characterization of thin films by positron beams will be reported here.

  5. Order of magnitude improvement of nano-contact spin torque nano-oscillator performance.

    PubMed

    Banuazizi, Seyed Amir Hossein; Sani, Sohrab R; Eklund, Anders; Naiini, Maziar M; Mohseni, Seyed Majid; Chung, Sunjae; Dürrenfeld, Philipp; Malm, B Gunnar; Åkerman, Johan

    2017-02-02

    Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (t Cu ) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing t Cu from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.

  6. Radio- and photosensitization of DNA with compounds containing platinum and bromine atoms

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.; Ptasińska, Sylwia; Gow, Jason; Vrønning Hoffmann, Søren; Mason, Nigel J.

    2015-05-01

    Irradiations of plasmid DNA by both X-rays and UV light in the presence and absence of compounds containing platinum and bromine atoms were performed in order to asses the sensitization potential of these compounds. Plasmid DNA pBR322 was incubated with platinum (II) bromide, hydrogen hexabromoplatinate (IV), hydrogen hexahydroxyplatinate (IV) and sodium hexahydroxyplatinate (IV). Incubation was followed by X-ray or UV irradiations. It was found that amongst the sensitizers tested, during irradiations carried out in the presence of platinum (II) bromide, the highest levels of double strand breaks formation upon X-ray treatment were recorded. In contrast much less damage was induced by UV light. Data presented here suggests that this compound may be a promising radiosensitizer for cancer treatment. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  7. Reproductive Performance of Mice in Disposable and Standard Individually Ventilated Cages

    PubMed Central

    Ferguson, Danielle R; Bailey, Michele M

    2013-01-01

    This study assessed the reproductive performance of mice housed in 2 types of individually ventilated caging systems. Breeding pairs from 48 female and 24 male mice of 3 established transgenic mouse breeding colonies were placed in either a standard or disposable ventilated caging system. For 3 breeding cycles, the number of pups born, pup survival rate to weaning, time interval between litters, and pup weights were monitored for each breeding pair. Disposable and standard cages were maintained in the same location during breeding. Environmental parameters included intracage temperature, humidity, and ammonia and carbon dioxide levels and room light intensity and sound. Overall, 776 offspring were produced. Breeding performance did not differ significantly between the 2 cage types. By 11 wk of age, the weights of pups from both cage types were equivalent. The intracage temperature was 1.1 °F warmer and light intensity at the site of the nest was 34 lx dimmer in disposable cages than in standard caging. The difference in lighting likely was due to nest location; the nests in the disposable cages were at the back of the cages and away from the anterior air supply, whereas in standard caging, nests were at the front of the cages, with the air supply at the rear. Under these husbandry conditions, mice housed in disposable caging systems have comparable breeding performance to those housed in standard individually ventilated cages. PMID:23849403

  8. Comparing the Efficacy of Three Different Nano-scale Bone Substitutes: In vivo Study

    PubMed Central

    Razavi, Sayed Mohammad; Rismanchian, Mansour; Jafari-pozve, Nasim; Nosouhian, Saied

    2017-01-01

    Background: Synthetic biocompatible bone substitutions have been used widely for bone tissue regeneration as they are safe and effective. The aim of this animal study is to compare the effectiveness of three different biocompatible bone substitutes, including nano-hydroxyapatite (nano-HA) nano-bioglass (nano-BG) and forstrite scaffolds. Materials and Methods: In this interventional and experimental study, four healthy dogs were anesthetized, and the first to fourth premolars were extracted in each quadrant. After healing, the linear incision on the crestal ridge from molar to anterior segment prepared in each quadrant and 16 defects in each dog were prepared. Nano-HA, nano-BG, and forstrite scaffold was prepared according to the size of defects and placed in the 12 defects randomly, four defects remained as a control group. The dogs were sacrificed in four time intervals (15, 30, 45, and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed using Mann–Whitney test (α = 0.05). Results: The difference in nano-HA and nano-BG with the control group was significant in three-time intervals regarding the amount of bone formation (P < 0.01). After 15 days, the nano-HA showed the highest amount of woven and lamellar bone regeneration (18.37 ± 1.06 and 30.44 ± 0.54). Conclusion: Nano-HA and nano-BG groups showed a significant amount of bone regeneration, especially after 30 days, but paying more surveys and observation to these materials as bone substitutes seem to be needed. PMID:28603705

  9. Multicomponent Gas Storage in Organic Cage Molecules

    DOE PAGES

    Zhang, Fei; He, Yadong; Huang, Jingsong; ...

    2017-05-18

    Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less

  10. Compositions containing borane or carborane cage compounds and related applications

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-05-28

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  11. Compositions containing borane or carborane cage compounds and related applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-11-11

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  12. Compositions containing borane or carborane cage compounds and related applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, III, Daniel E.; Eastwood, Eric A.

    2015-09-15

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  13. Performance and welfare of rabbit does in various caging systems.

    PubMed

    Mikó, A; Matics, Zs; Gerencsér, Zs; Odermatt, M; Radnai, I; Nagy, I; Szendrő, K; Szendrő, Zs

    2014-07-01

    The objective of the study was to compare production and welfare of rabbit does and their kits housed in various types of cages. Female rabbits were randomly allocated to four groups with the following cage types: CN: common wire-mesh flat-deck cage, without footrest; CF: cage similar to the CN but with plastic footrest; ECWP: enlarged cage with wire-mesh platform; and ECPP: extra enlarged cage with plastic-mesh platform. All does were inseminated on the same day, 11 days after kindlings. Reproductive performance was evaluated during the first five consecutive kindlings. Severity of sore hocks was scored at each insemination. Location preference of the does and the platform usage of their kits were evaluated. Kindling rate, litter size (total born, born alive, alive at 21 and 35 days) and kit mortality were not significantly influenced by the cage types. The litter weight at 21 days was higher in ECWP and ECPP cages than in the CF group (3516, 3576 and 3291 g, respectively; P2.5 cm) and 3 to 4 (3=callus opened, cracks present; 4=wounds) were 58%, 60%, 78% and 48%, and 0%, 5%, 0% and 48% in groups ECPP, ECWP, CF and CN, respectively. Higher number of daily nest visits was observed for CF does than for ECWP does (12.5 v. 5.9; P2/day) was higher in the CF group than in the ECWP group (12.1 v. 3.2%; P<0.01). Within large cages, the does were observed on the platform more frequently in the ECPP cages compared with the ECWP cages (56.9% v. 31.7%; P<0.001). Similarly, 2.7% and 0.2% of kits at 21 days of age, and 33.2% and 5.2% of kits at 28 days of age, were found on the platforms of ECPP and ECWP cages, respectively. In conclusion, cages larger than the conventional ones improved kits' weaning weight, plastic footrests and plastic-mesh platforms in conventional and/or large cages reduced sore hocks' problems, plastic-mesh platforms were more used by both does and kits compared with the wire-mesh platforms.

  14. Irradiation Induced Fluorescence Enhancement in PEGylated Cyanine-based NIR Nano- and Meso-scale GUMBOS

    PubMed Central

    Lu, Chengfei; Das, Susmita; Magut, Paul K. S.; Li, Min; El Zahab, Bilal; Warner, Isiah M.

    2014-01-01

    We report on the synthesis and characterization of a PEGylated IR786 GUMBOS (Group of Uniform Materials Based on Organic Salts). The synthesis of this material was accomplished using a three step protocol: (1) substitution of chloride on the cyclohexenyl ring in the heptamethine chain of IR786 by 6-aminohexanoic acid, (2) grafting of methoxy poly ethyleneglycol (MeOPEG) onto the 6-aminohexanoic acid via an esterification reaction, and (3) anion exchange between [PEG786][I] and lithium bis(trifluoromethylsulfonyl)imide (LiNTf2) or sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in order to obtain PEG786 GUMBOS. Examination of spectroscopic data for this PEG786 GUMBOS indicates a large stokes shift (122 nm). It was observed that this PEG786 GUMBOS associates in aqueous solution to form nano-and meso-scale self-assemblies with sizes ranging from 100 to 220 nm. These nano- and meso-scale GUMBOS are also able to resist nonspecific binding to proteins. PEGylation of the original IR786 leads to reduced cytotoxicity. In addition, it was noted that anions, such as NTf2 and AOT, play a significant role in improving the photostability of PEG786 GUMBOS. Irradiation-induced J aggregation in [PEG786][NTf2] and to some extent in [PEG786][AOT] produced enhanced photostability. This observation was supported by use of both steady state and time-resolved fluorescence measurements. PMID:22957476

  15. Diversification of Protein Cage Structure Using Circularly Permuted Subunits.

    PubMed

    Azuma, Yusuke; Herger, Michael; Hilvert, Donald

    2018-01-17

    Self-assembling protein cages are useful as nanoscale molecular containers for diverse applications in biotechnology and medicine. To expand the utility of such systems, there is considerable interest in customizing the structures of natural cage-forming proteins and designing new ones. Here we report that a circularly permuted variant of lumazine synthase, a cage-forming enzyme from Aquifex aeolicus (AaLS) affords versatile building blocks for the construction of nanocompartments that can be easily produced, tailored, and diversified. The topologically altered protein, cpAaLS, self-assembles into spherical and tubular cage structures with morphologies that can be controlled by the length of the linker connecting the native termini. Moreover, cpAaLS proteins integrate into wild-type and other engineered AaLS assemblies by coproduction in Escherichia coli to form patchwork cages. This coassembly strategy enables encapsulation of guest proteins in the lumen, modification of the exterior through genetic fusion, and tuning of the size and electrostatics of the compartments. This addition to the family of AaLS cages broadens the scope of this system for further applications and highlights the utility of circular permutation as a potentially general strategy for tailoring the properties of cage-forming proteins.

  16. Nano scale devices: Fabrication, actuation, and related fluidic dynamics

    NASA Astrophysics Data System (ADS)

    Jing, Hao

    cilia beating through the use of magnetic nanowires. We apply our custom magnetic system, 3DFM, to drive these magnetic nanowires rotating with desired patterns and frequencies in a liquid chamber. High speed movies of passive tracers in the oscillating 3-D flow fields reveal the spatio-temporal structure of the induced fluid motion. Complementing these experimental studies, we have developed a family of exact solutions of the Stoke's equations for a spheroid sweeping a double cone in free space, and an asymptotic solution for a spinning slender rod sweeping an upright cone above a flat, infinite no-slip plane. We are using these solutions to develop a mathematical package to quantitatively model, and predict the tracer motion induced by the spinning nano-rods with and without Brownian noise. To understand the effect of these epicyclical flows on molecular conformations, we have studied the conformation of fluorescently labeled, single DNA molecules (lambda-DNA) in the flow produced by a precessing nanowire. The flow patterns in a viscoelastic medium about a precessing nanowire are also presented to reveal the epicyclical flows in a more bio-related environment.

  17. Particulate matter in animal rooms housing mice in microisolation caging.

    PubMed

    Langham, Gregory L; Hoyt, Robert F; Johnson, Thomas E

    2006-11-01

    Reactions to allergens created by laboratory animals are among the most frequently encountered occupational illnesses associated with research animals. Personnel are exposed to these allergens through airborne particulate matter. Although the use of microisolation caging systems can reduce particulate matter concentrations in rooms housing mice, the operating parameters of ventilated caging systems vary extensively. We compared room air in mouse rooms containing 5 different types of caging: 1) individually ventilated caging under positive pressure with filtered intake air and exhaust air returned to the room (VCR+), 2) individually ventilated caging under negative pressure with exhaust air returned to the room (VCR-), 3) individually ventilated caging under positive pressure with exhaust air returned to the heating, ventilation, and air-conditioning (HVAC) system, 4) individually ventilated caging under negative pressure with exhaust air returned to the HVAC system, and 5) static microisolation cages. We found that rooms under VCR conditions had fewer large particles than did those under other conditions, but the numbers of 0.3 microm particles did not differ significantly among systems. Static, positive or negative pressure applied to caging units as well as route of air exhaust were found to have little influence on the total number of particles in the atmosphere. Therefore, considering the heat load, odor, and overall particulate concentration in the room, placing individually ventilated caging under negative pressure with exhaust air returned to the HVAC system appears to be the optimal overall choice when using microisolation housing for rodents.

  18. Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global-local topology optimization with laser sintering.

    PubMed

    Kang, Heesuk; Hollister, Scott J; La Marca, Frank; Park, Paul; Lin, Chia-Ying

    2013-10-01

    Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.

  19. Modeling DNA bubble formation at the atomic scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beleva, V; Rasmussen, K. O.; Garcia, A. E.

    We describe the fluctuations of double stranded DNA molecules using a minimalist Go model over a wide range of temperatures. Minimalist models allow us to describe, at the atomic level, the opening and formation of bubbles in DNA double helices. This model includes all the geometrical constraints in helix melting imposed by the 3D structure of the molecule. The DNA forms melted bubbles within double helices. These bubbles form and break as a function of time. The equilibrium average number of broken base pairs shows a sharp change as a function of T. We observe a temperature profile of sequencemore » dependent bubble formation similar to those measured by Zeng et al. Long nuclei acid molecules melt partially through the formations of bubbles. It is known that CG rich sequences melt at higher temperatures than AT rich sequences. The melting temperature, however, is not solely determined by the CG content, but by the sequence through base stacking and solvent interactions. Recently, models that incorporate the sequence and nonlinear dynamics of DNA double strands have shown that DNA exhibits a very rich dynamics. Recent extensions of the Bishop-Peyrard model show that fluctuations in the DNA structure lead to opening in localized regions, and that these regions in the DNA are associated with transcription initiation sites. 1D and 2D models of DNA may contain enough information about stacking and base pairing interactions, but lack the coupling between twisting, bending and base pair opening imposed by the double helical structure of DNA that all atom models easily describe. However, the complexity of the energy function used in all atom simulations (including solvent, ions, etc) does not allow for the description of DNA folding/unfolding events that occur in the microsecond time scale.« less

  20. Effects of Nano-zinc on Biochemical Parameters in Cadmium-Exposed Rats.

    PubMed

    Hejazy, Marzie; Koohi, Mohammad Kazem

    2017-12-01

    Cadmium (Cd) is a toxic environmental and occupational pollutant with reported toxic effects on the kidneys, liver, lungs, bones, and the immunity system. Based on its physicochemical similarity to cadmium, zinc (Zn) shows protective effects against cadmium toxicity and cadmium accumulation in the body. Nano-zinc and nano-zinc oxide (ZnO), recently used in foods and pharmaceutical products, can release a great amount of Zn 2+ in their environment. This research was carried out to investigate the more potent properties of the metal zinc among sub-acute cadmium intoxicated rats. Seventy-five male Wistar rats were caged in 15 groups. Cadmium chloride (CdCl 2 ) was used in drinking water to induce cadmium toxicity. Different sizes (15, 20, and 30 nm) and doses of nano-zinc particles (3, 10, 100 mg/kg body weight [bw]) were administered solely and simultaneously with CdCl 2 (2-5 mg/kg bw) for 28 days. The experimental animals were decapitated, and the biochemical biomarkers (enzymatic and non-enzymatic) were determined in their serum after oral exposure to nano-zinc and cadmium. Statistical analysis was carried out with a one-way ANOVA and t test. P < 0.05 was considered as statistically significant. The haematocrit (HCT) significantly increased and blood coagulation time significantly reduced in the nano-zinc-treated rats. AST, ALT, triglyceride, total cholesterol, LDL, and free fatty acids increased significantly in the cadmium- and nano-zinc-treated rats compared with the controls. However, albumin, total protein, and HDLc significantly decreased in the cadmium- and nano-zinc-treated rats compared with the controls (P < 0.05). It seems that in the oral administration of nano-zinc, the smaller sizes with low doses and the larger sizes with high doses are more toxic than metallic zinc. In a few cases, an inverse dose-dependent relationship was seen as well. This research showed that in spite of larger sizes of zinc, smaller sizes of nano-zinc particles are not

  1. Gigadalton-scale shape-programmable DNA assemblies

    NASA Astrophysics Data System (ADS)

    Wagenbauer, Klaus F.; Sigl, Christian; Dietz, Hendrik

    2017-12-01

    Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.

  2. Gigadalton-scale shape-programmable DNA assemblies.

    PubMed

    Wagenbauer, Klaus F; Sigl, Christian; Dietz, Hendrik

    2017-12-06

    Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.

  3. [Design and research progress of zero profile cervical Interbody cage].

    PubMed

    Zhu, Jia; Wang, Song; Liao, Zhenhua; Liu, Weiqiang

    2017-02-01

    Zero profile cervical interbody cage is an improvement of traditional fusion products and necessary supplement of emerging artificial intervertebral disc products. When applied in Anterior Cervical Decompression Fusion(ACDF), zero profile cervical interbody cage can preserve the advantages of traditional fusion and reduce the incidence of postoperative complications. Moreover, zero profile cervical interbody cage can be applied under the tabu symptoms of Artificial Cervical Disc Replacement(ACDR). This article summarizes zero profile interbody cage products that are commonly recognized and widely used in clinical practice in recent years, and reviews the progress of structure design and material research of zero profile cervical interbody cage products. Based on the latest clinical demands and research progress, this paper also discusses the future development directions of zero profile interbody cage.

  4. Comparative study on predicting Young's modulus of graphene sheets using nano-scale continuum mechanics approach

    NASA Astrophysics Data System (ADS)

    Rafiee, Roham; Eskandariyun, Amirali

    2017-06-01

    In this research, nano-scale continuum modeling is employed to predict Young's modulus of graphene sheet. The lattice nano-structure of a graphene sheet is replaced with a discrete space-frame structure simulating carbon-carbon bonds with either beam or spring elements. A comparative study is carried out to check the influence of employed elements on estimated Young's moduli of graphene sheets in both horizontal and vertical directions. A detailed analysis is also conducted to investigate the influence of graphene sheet sizes on its Young's modulus and corresponding aspect ratios that unwelcomed end effects disappear on the results are extracted. At the final stage, defected graphene sheets suffering from vacancy defects are investigated through a stochastic analysis taking into account both number of defects and their locations as random parameters. The reduction level in the Young's moduli of defected graphene sheets compared with non-defected ones is analyzed and reported.

  5. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats.

    PubMed

    Tenorio, Neuli M; Ribeiro, Daniel A; Alvarenga, Tathiana A; Fracalossi, Ana Carolina C; Carlin, Viviane; Hirotsu, Camila; Tufik, Sergio; Andersen, Monica L

    2013-01-01

    The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group). The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.

  6. An unprecedented Fe(36) phosphonate cage.

    PubMed

    Beavers, Christine M; Prosvirin, Andrey V; Prosverin, Andrey V; Cashion, John D; Dunbar, Kim R; Richards, Anne F

    2013-02-18

    The reaction of 2-pyridylphosphonic acid (LH(2)) with iron(II) perchlorate and iron(III) nitrate afforded an interconnected, double-layered, cationic iron cage, [{Fe(36)L(44)(H(2)O)(48)}](20+) (1a), the largest interconnected, polynuclear ferric cage reported to date. Magnetic studies on 1a revealed antiferromagnetic coupling between the spins on adjacent Fe(III) ions.

  7. Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA

    PubMed Central

    Gierhart, Brian C.; Howitt, David G.; Chen, Shiahn J.; Zhu, Zhineng; Kotecki, David E.; Smith, Rosemary L.; Collins, Scott D.

    2009-01-01

    A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device. PMID:19584949

  8. Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA.

    PubMed

    Gierhart, Brian C; Howitt, David G; Chen, Shiahn J; Zhu, Zhineng; Kotecki, David E; Smith, Rosemary L; Collins, Scott D

    2008-06-16

    A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device.

  9. Novel Organic Field Effect Transistors via Nano-Modification

    DTIC Science & Technology

    2005-07-01

    mobility by using two kinds of nano-scale films. One is to apply the photoalignment method on a nano-scale film to control the orientation of pentacene ...scale film (polymer electrolyte) to control moving of ions in/out an active semiconducor, pentacene or conducting polymer, for improving carrier...mobility. In this project, pentacene or a series of conducting polymers, such as the derivatives of PANI and P3HT will be patterned and manufactured in

  10. Zero-profile anchored cage reduces risk of postoperative dysphagia compared with cage with plate fixation after anterior cervical discectomy and fusion.

    PubMed

    Xiao, ShanWen; Liang, ZhuDe; Wei, Wu; Ning, JinPei

    2017-04-01

    To compare the rate of postoperative dysphagia between zero-profile anchored cage fixation (ZPC group) and cage with plate fixation (CP group) after anterior cervical discectomy and fusion (ACDF). A meta-analysis of cohort studies between zero-profile anchored cage and conventional cage with plate fixation after ACDF for the treatment of cervical diseases from 2008 to May 2016. An extensive search of studies was performed in PubMed, Medline, Embase, Cochrane library and Google Scholar. Dysphagia rate was extracted. Data analysis was conducted with RevMan 5.2. Sixteen trials involving 1066 patients were included in this meta-analysis. The results suggested that the ZPC group were associated with lower incidences of dysphagia than the CP group at postoperative immediately, 2 weeks, 2, 3, 6 and 12 months. In subgroup analysis, although significant differences were only found in the mild dysphagia at 3 and 6 months postoperatively and in the moderate dysphagia at 2 weeks after surgery; the ZPC group had a lower rate of postoperative dysphagia than the CCP group in short, medium and long term follow-up periods. Zero-profile anchored cage had a lower risk of postoperative dysphagia than cage with plate.

  11. Electrochemical micro/nano-machining: principles and practices.

    PubMed

    Zhan, Dongping; Han, Lianhuan; Zhang, Jie; He, Quanfeng; Tian, Zhao-Wu; Tian, Zhong-Qun

    2017-03-06

    Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the increasing industrial demand for supersmooth surfaces and functional three-dimensional micro/nano-structures (3D-MNS) in ultra-large scale integrated circuits, microelectromechanical systems, miniaturized total analysis systems, precision optics, and so on. Taking advantage of no tool wear, no surface stress, environmental friendliness, simple operation, and low cost, electrochemical micro/nano-machining (EC-MNM) has an irreplaceable role in MNM. This comprehensive review presents the state-of-art of EC-MNM techniques for direct writing, surface planarization and polishing, and 3D-MNS fabrications. The key point of EC-MNM is to confine electrochemical reactions at the micro/nano-meter scale. This review will bring together various solutions to "confined reaction" ranging from electrochemical principles through technical characteristics to relevant applications.

  12. Synthesis and Characterization of Polyfunctional Polyhedral Silsesquioxane Cages

    NASA Astrophysics Data System (ADS)

    Sulaiman, Santy

    Recent studies on octameric polyhedral silsesquioxanes, (RSiO1.5 )8, indicate that the silsesquioxane cage is not just a passive component but appears to be involved in electron delocalization with conjugated organic tethers in the excited state. This dissertation presents the synthesis and characterization of (RSiO1.5)8 molecules with unique photophysical properties that provide support for the existence of conjugation that involves the (RSiO1.5)8 cage. The dissertation first discusses the elaboration of octavinylsilsesquioxane via cross-metathesis to form styrenyl-functionalized octasilsesquioxane molecules. Subsequent Heck coupling reactions of p-bromostyrenyl derivative provides vinylstilbene-functionalized octasilsesquioxane. The amino derivative, NH2VinylStilbeneOS, show highly red-shifted emission spectrum (100 nm from the simple organic analog p-vinylstilbene) and high two-photon absorption (TPA) cross-section value (100 GM/moiety), indicating charge-transfer processes involving the silsesquioxane cage as the electron acceptor. The unique photophysical properties of polyfunctional luminescent cubic silsesquioxanes synthesized from ortho-8-, (2,5)-16-, and 24-brominated octaphenylsilsesquioxane (OPS) via Heck coupling show how the steric interactions of the organic tethers at the silsesquioxane cage corner affect conjugation with the silsesquioxane cage. Furthermore, the high TPA cross-section (10 GM/moiety) and photoluminescence quantum yield (20%) of OPS functionalized with 24 acetoxystyrenyl groups suggest that the existence excited states in these molecules with similar energies and decay rates: normal radiative pi- pi* transition and charge transfer involving the silsesquioxane cage. The fluoride ion-catalyzed rearrangement reactions of cage and polymeric silsesquioxanes provide a convenient route to a mixture of deca- and dodecameric silsesquioxane molecules in high yields, giving us the opportunity to investigate the effect of silsesquioxane cage

  13. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion.

    PubMed

    Wu, Su-Hua; Li, Yi; Zhang, Yong-Quan; Li, Xiao-Kang; Yuan, Chao-Fan; Hao, Yu-Lin; Zhang, Zhi-Yong; Guo, Zheng

    2013-12-01

    Interbody fusion cages made of poly-ether-ether-ketone (PEEK) have been widely used in clinics for spinal disorders treatment; however, they do not integrate well with surrounding bone tissue. Ti-6Al-4V (Ti) has demonstrated greater osteoconductivity than PEEK, but the traditional Ti cage is generally limited by its much greater elastic modulus (110 GPa) than natural bone (0.05-30 GPa). In this study, we developed a porous Ti cage using electron beam melting (EBM) technique to reduce its elastic modulus and compared its spinal fusion efficacy with a PEEK cage in a preclinical sheep anterior cervical fusion model. A porous Ti cage possesses a fully interconnected porous structure (porosity: 68 ± 5.3%; pore size: 710 ± 42 μm) and a similar Young's modulus as natural bone (2.5 ± 0.2 GPa). When implanted in vivo, the porous Ti cage promoted fast bone ingrowth, achieving similar bone volume fraction at 6 months as the PEEK cage without autograft transplantation. Moreover, it promoted better osteointegration with higher degree (2-10x) of bone-material binding, demonstrated by histomorphometrical analysis, and significantly higher mechanical stability (P < 0.01), shown by biomechanical testing. The porous Ti cage fabricated by EBM could achieve fast bone ingrowth. In addition, it had better osseointegration and superior mechanical stability than the conventional PEEK cage, demonstrating great potential for clinical application. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  14. Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.

    PubMed

    Schimke, Magdalena M; Stigler, Robert; Wu, Xujun; Waag, Thilo; Buschmann, Peter; Kern, Johann; Untergasser, Gerold; Rasse, Michael; Steinmüller-Nethl, Doris; Krueger, Anke; Lepperdinger, Günter

    2016-04-01

    Biofunctionalized scaffold facilitates complete healing of large defects. Biological constraints are induction and ingrowth of vessels. Angiogenic growth factors such as vascular endothelial growth factor or angiopoietin-1 can be bound to nano-scaled diamond particles. Corresponding bioactivities need to be examined after biofunctionalization. We therefore determined the physisorptive capacity of distinctly manufactured, differently sized nDP and the corresponding activities of bound factors. The properties of biofunctionalized nDPs were investigated on cultivated human mesenchymal stem cells and on the developing chicken embryo chorio-allantoic membrane. Eventually porous bone substitution material was coated with nDP to generate an interface that allows biofactor physisorption. Angiopoietin-1 was applied shortly before scaffold implantation into an osseous defect in sheep calvaria. Biofunctionalized scaffolds exhibited significantly increased rates of angiogenesis already one month after implantation. Conclusively, nDP can be used to ease functionalization of synthetic biomaterials. With the advances in nanotechnology, many nano-sized materials have been used in the biomedical field. This is also true for nano-diamond particles (nDP). In this article, the authors investigated the physical properties of functionalized nano-diamond particles in both in-vitro and in-vivo settings. The positive findings would help improve understanding of these nanomaterials in regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.

    2017-02-01

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  16. DNA Nanostructures as Models for Evaluating the Role of Enthalpy and Entropy in Polyvalent Binding

    PubMed Central

    Nangreave, Jeanette; Yan, Hao; Liu, Yan

    2011-01-01

    DNA nanotechnology allows the design and construction of nano-scale objects that have finely tuned dimensions, orientation, and structure with remarkable ease and convenience. Synthetic DNA nanostructures can be precisely engineered to model a variety of molecules and systems, providing the opportunity to probe very subtle biophysical phenomena. In this study, several such synthetic DNA nanostructures were designed to serve as models to study the binding behavior of polyvalent molecules and gain insight into how small changes to the ligand/receptor scaffolds, intended to vary their conformational flexibility, will affect their association equilibrium. This approach has yielded a quantitative identification of the roles of enthalpy and entropy in the affinity of polyvalent DNA nanostructure interactions, which exhibit an intriguing compensating effect. PMID:21381740

  17. 48 CFR 204.7202-1 - CAGE codes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....39-M, Federal Logistics Information System (FLIS) Procedures Manual, prescribe use of CAGE codes. (b..., Federal Center, 74 Washington Avenue, North, Battle Creek, MI 49017-3084. Their telephone number is: toll-free 1-888-352-9333); (B) The on-line access to the CAGE file through the Defense Logistics Information...

  18. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    PubMed

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  19. Common experience modifies the reinforcing properties of methamphetamine-injected cage mates but not morphine-injected cage mates in C57 mice.

    PubMed

    Watanabe, Shigeru

    2015-10-01

    The aim of this study was to determine whether previous exposure to a drug affects the social facilitation of conditioned place preference (CPP) for a drug-injected cage mate. Twenty-two male C57/BL6J mice received drug injections (methamphetamine or morphine) and 22 male C57/BL6J mice received saline injections. All 44 mice then received CPP training, during which one compartment of a conventional CPP apparatus was associated with a drug-injected cage mate (stimulus mouse) and the other compartment was associated with a saline-injected cage mate (stimulus mouse). The subject mice did not receive any drug injection during this CPP training. Time spent in the compartment associated with the drug-injected cage mate was measured before and after training. Subject mice that had previously received methamphetamine injections showed an increase in the time spent in the compartment associated with the methamphetamine-injected cage mate after CPP training. This effect was not observed in subject mice that had previously received saline injections. Subject mice did not show an increase in the time spent in the compartment associated with the morphine-injected cage mate irrespective of whether they had previously received morphine or saline injections. Therefore, in agreement with previous reports, common experience with methamphetamine induced reinforcing properties, but that with morphine did not.

  20. Scaling up digital circuit computation with DNA strand displacement cascades.

    PubMed

    Qian, Lulu; Winfree, Erik

    2011-06-03

    To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands. These multilayer circuits include thresholding and catalysis within every logical operation to perform digital signal restoration, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays. The design naturally incorporates other crucial elements for large-scale circuitry, such as general debugging tools, parallel circuit preparation, and an abstraction hierarchy supported by an automated circuit compiler.

  1. Octa- and hexametallic iron(III)-potassium phosphonate cages.

    PubMed

    Gopal, Kandasamy; Tuna, Floriana; Winpenny, Richard E P

    2011-12-07

    Two new iron(III)-potassium phosphonate cage complexes with {K(2)Fe(6)} and {K(2)Fe(4)} cores are reported. Magnetic studies reveal antiferromagnetic interactions between the Fe(III) centres occur in these cages.

  2. Caged Protein Prenyltransferase Substrates: Tools for Understanding Protein Prenylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGraw, Amanda J.; Hast, Michael A.; Xu, Juhua

    Originally designed to block the prenylation of oncogenic Ras, inhibitors of protein farnesyltransferase currently in preclinical and clinical trials are showing efficacy in cancers with normal Ras. Blocking protein prenylation has also shown promise in the treatment of malaria, Chagas disease and progeria syndrome. A better understanding of the mechanism, targets and in vivo consequences of protein prenylation are needed to elucidate the mode of action of current PFTase (Protein Farnesyltransferase) inhibitors and to create more potent and selective compounds. Caged enzyme substrates are useful tools for understanding enzyme mechanism and biological function. Reported here is the synthesis and characterizationmore » of caged substrates of PFTase. The caged isoprenoid diphosphates are poor substrates prior to photolysis. The caged CAAX peptide is a true catalytically caged substrate of PFTase in that it is to not a substrate, yet is able to bind to the enzyme as established by inhibition studies and X-ray crystallography. Irradiation of the caged molecules with 350 nm light readily releases their cognate substrate and their photolysis products are benign. These properties highlight the utility of those analogs towards a variety of in vitro and in vivo applications.« less

  3. Micro/nano moire methods

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Shang, Haixia; Xie, Huimin; Li, Biao

    2003-10-01

    Two novel micro/nano moire method, SEM scanning moiré and AFM scanning moire techniques are discussed in this paper. The principle and applications of two scanning moire methods are described in detail. The residual deformation in a polysilicon MEMS cantilever structure with a 5000 lines/mm grating after removing the SiO2 sacrificial layer is accurately measured by SEM scanning moire method. While AFM scanning moire method is used to detect thermal deformation of electronic package components, and formation of nano-moire on a freshly cleaved mica crystal. Experimental results demonstrate the feasibility of these two moire methods, and also show they are effective methods to measure the deformation from micron to nano-scales.

  4. Comparative Study of Seven Commercial Kits for Human DNA Extraction from Urine Samples Suitable for DNA Biomarker-Based Public Health Studies

    PubMed Central

    El Bali, Latifa; Diman, Aurélie; Bernard, Alfred; Roosens, Nancy H. C.; De Keersmaecker, Sigrid C. J.

    2014-01-01

    Human genomic DNA extracted from urine could be an interesting tool for large-scale public health studies involving characterization of genetic variations or DNA biomarkers as a result of the simple and noninvasive collection method. These studies, involving many samples, require a rapid, easy, and standardized extraction protocol. Moreover, for practicability, there is a necessity to collect urine at a moment different from the first void and to store it appropriately until analysis. The present study compared seven commercial kits to select the most appropriate urinary human DNA extraction procedure for epidemiological studies. DNA yield has been determined using different quantification methods: two classical, i.e., NanoDrop and PicoGreen, and two species-specific real-time quantitative (q)PCR assays, as DNA extracted from urine contains, besides human, microbial DNA also, which largely contributes to the total DNA yield. In addition, the kits giving a good yield were also tested for the presence of PCR inhibitors. Further comparisons were performed regarding the sampling time and the storage conditions. Finally, as a proof-of-concept, an important gene related to smoking has been genotyped using the developed tools. We could select one well-performing kit for the human DNA extraction from urine suitable for molecular diagnostic real-time qPCR-based assays targeting genetic variations, applicable to large-scale studies. In addition, successful genotyping was possible using DNA extracted from urine stored at −20°C for several months, and an acceptable yield could also be obtained from urine collected at different moments during the day, which is particularly important for public health studies. PMID:25365790

  5. Animal Welfare and Food Safety Aspects of Confining Broiler Chickens to Cages

    PubMed Central

    Shields, Sara; Greger, Michael

    2013-01-01

    Simple Summary In commercial chicken meat production, broiler chickens are usually kept on the floor in ware-house like buildings, but the use of cages is becoming more common. Confining chickens to cages is a welfare problem, as has been thoroughly demonstrated for laying hens used for egg production. Caged broiler chickens may suffer from poor bone strength due to lack of exercise, feather loss, and restriction of natural behavior. There are also potential food safety concerns associated with the use of cages. While cages may provide an economic advantage in some geographical regions of the world, the severe, inherent disadvantages should also be considered before cages are more widely adopted in the global broiler chicken industry. Abstract In most areas of the world, broiler chickens are raised in floor systems, but cage confinement is becoming more common. The welfare of broiler chickens in cages is affected by movement restriction, poor bone strength due to lack of exercise, and prevention of key behavioral patterns such as dustbathing and ground scratching. Cages for broiler chickens also have a long history of causing skin and leg conditions that could further compromise welfare, but a lack of controlled studies makes it difficult to draw conclusions about newer cage designs. Cage environments are usually stocked at a higher density than open floor systems, and the limited studies available suggest that caging may lead to increased levels of fear and stress in the birds. Further, birds reared on the floor appear less likely to harbor and shed Salmonella, as litter may serve as a seeding agent for competitive exclusion by other microorganisms. Cages for laying hens used in egg production have met with substantial opposition due to welfare concerns and caging broiler chickens will likely be subject to the same kinds of social disapproval. PMID:26487409

  6. Development of a portable NanoAptamer analyzer for the detection of bisphenol A

    NASA Astrophysics Data System (ADS)

    Son, Ahjeong; Lim, Hyun Jeong; Chua, Beelee

    2017-04-01

    We have demonstrated a portable NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (< 1 ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. NanoAptamer assay was developed and used as a sensing mechanism where signaling DNA and QD655 was tethered to QD565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD655 from the complex and hence corresponding decrease in QD655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0 ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients.

  7. Nano-scale imaging and spectroscopy of plasmonic systems, thermal near-fields, and phase separation in complex oxides

    NASA Astrophysics Data System (ADS)

    Jones, Andrew C.

    Optical spectroscopy represents a powerful characterization technique with the ability to directly interact with the electronic, spin, and lattice excitations in matter. In addition, through implementation of ultrafast techniques, further insight into the real-time dynamics of elementary interactions can be gained. However, the resolution of far-field microscopy techniques is restricted by the diffraction limit setting a spatial resolution limit in the 100s nm to micron range for visible and IR light, respectively. This resolution is too coarse for the characterization of mesoscopic phenomena in condensed matter physics. The development of experimental techniques with nanoscale resolution and sensitivity to optical fields has been a long standing obstacle to the characterization of condensed matter systems on their natural length scales. This dissertation focuses on the fundamental near-field optical properties of surfaces and nanoscale systems as well as the utilization of nano-optical techniques, specifically apertureless scattering-type Scanning Near-field Optical Microscopy (s-SNOM), to characterize said optical properties with nanometer scale resolution. First, the s-SNOM characterization of the field enhancement associated with the localized surface plasmon resonances on metallic structures is discussed. With their ability to localize light, plasmonic nano-structures are promising candidate systems to serve as molecular sensors and nano-photonic devices; however, it is well known that particle morphology and the plasmon resonance alone do not uniquely reflect the details of the local field distribution. Here, I demonstrate the use interferometric s-SNOM for imaging of the near-fields associated with plasmonic resonances of crystalline triangular silver nano-prisms in the visible spectral range. I subsequently show the extension of the concept of a localized plasmon into the mid-IR spectral range with the characterization of near-fields of silver nano

  8. Rattling of Oxygen Ions in a Sub-Nanometer-Sized Cage Converts Terahertz Radiation to Visible Light.

    PubMed

    Toda, Yoshitake; Ishiyama, Shintaro; Khutoryan, Eduard; Idehara, Toshitaka; Matsuishi, Satoru; Sushko, Peter V; Hosono, Hideo

    2017-12-26

    A simple and robust approach to visualization of continuous wave terahertz (CW-THz) light would open up opportunities to couple physical phenomena that occur at fundamentally different energy scales. Here we demonstrate how nanoscale cages of Ca 12 Al 14 O 33 crystal enable conversion of CW-THz radiation to visible light. These crystallographic cages are partially occupied with weakly bonded oxygen ions and give rise to a narrow conduction band that can be populated with localized, yet mobile electrons. CW-THz light excites a nearly stand-alone rattling motion of the encaged oxygen species, which promotes electron transfer from them to the neighboring vacant cages. When the power of CW-THz light reaches tens of watts, the coupling between forced rattling in the confined space, electronic excitation and ionization of oxygen species, and corresponding recombination processes result in emission of bright visible light.

  9. Distribution of Helicobacter pylori cagA, cagE and vacA in different ethnic groups in Kuala Lumpur, Malaysia.

    PubMed

    Tan, Huck Joo; Rizal, Abdul Manaf; Rosmadi, Mohamed-Yusoff; Goh, Khean-Lee

    2005-04-01

    There is a geographic variation in Helicobacter pylori (HP) genotypes and virulence factors. Cytotoxin associated genes A (cagA) and E (cagE), and certain vacuolating cytotoxin (vacA) genotypes are associated with peptic ulcer disease (PUD). There is also a different prevalence of PUD among different ethnic groups in Malaysia. The present study compared the distribution of vacA alleles and cagA and cagE status in three ethnic groups residing in Kuala Lumpur, Malaysia, and their association with clinical outcome. All patients with cultured positive HP were recruited prospectively. DNA was extracted and polymerase chain reaction was carried out to determine the cagA and cagE status and vacA alleles. The results of 127 patients (72 men and 55 women) were included. The mean age was 55.53 +/- 12.52 years. The ethnic distribution was 59 Chinese, 38 Indian and 30 Malay patients. The predominant genotype was s1a among the Malay (76.6%) and Indian patients (71.0%), and s1c among the Chinese patients (66.1%). The vacA middle region sequence m1 was detected in 66.7% of Malay, 54.2% of Chinese and 76.3% of Indian patients. Of the Malay, Chinese and Indian patients, 76.6%, 86.4% and 86.8%, respectively, were cagA positive, and 70.0%, 39.0% and 81.6%, respectively, were cagE positve. HP cagA, cagE and vacA were not associated with PUD. There is a distinctive difference in the HP strains among the three ethnic groups in Malaysia. There was no association between cagA, cagE or vacA genotypes and clinical outcome in the patients. None of these markers are helpful in predicting the clinical presentation of a HP infection.

  10. Mitochondria mediate septin cage assembly to promote autophagy of Shigella.

    PubMed

    Sirianni, Andrea; Krokowski, Sina; Lobato-Márquez, Damián; Buranyi, Stephen; Pfanzelter, Julia; Galea, Dieter; Willis, Alexandra; Culley, Siân; Henriques, Ricardo; Larrouy-Maumus, Gerald; Hollinshead, Michael; Sancho-Shimizu, Vanessa; Way, Michael; Mostowy, Serge

    2016-07-01

    Septins, cytoskeletal proteins with well-characterised roles in cytokinesis, form cage-like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single-cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri-infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin-related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin-polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti-Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Effects of Furnished Cage Type on Behavior and Welfare of Laying Hens.

    PubMed

    Li, Xiang; Chen, Donghua; Li, Jianhong; Bao, Jun

    2016-06-01

    This study was conducted to compare the effects of layout of furniture (a perch, nest, and sandbox) in cages on behavior and welfare of hens. Two hundred and sixteen Hyline Brown laying hens were divided into five groups (treatments) with four replicates per group: small furnished cages (SFC), medium furnished cages type I (MFC-I), medium furnished cages type II (MFC-II), and medium furnished cages type III (MFC-III) and conventional cages (CC). The experiment started at 18 week of age and finished at 52 week of age. Hens' behaviors were filmed during the following periods: 8:00 to 10:00; 13:00 to 14:00; 16:00 to 17:00 on three separate days and two hens from each cage were measured for welfare parameters at 50 wk of age. The results showed that feeding and laying of all hens showed no effect by cage type (p>0.05), and the hens in the furnished cages had significantly lower standing and higher walking than CC hens (p<0.05). The birds in MFC-III had significant higher preening, scratching and feather-pecking behavior than in the other cages (p<0.05). No difference in nesting behavior was found in the hens between the furnished cages (p>0.05). The hens in MFC-I, -II, and -III showed a significant higher socializing behavior than SFC and CC (p<0.05). The lowest perching was for the hens in SFC and the highest perching found for the hens in MFC-III. Overall, the hens in CC showed poorer welfare conditions than the furnished cages, in which the feather condition score, gait score and tonic immobility duration of the hens in CC was significantly higher than SFC, MFC-I, MFC-II, and MFC-III (p<0.05). In conclusion, the furnished cage design affected both behavior and welfare states of hens. Overall, MFC-III cage design was better than SFC, MFC-I, and MFC-II cage designs.

  12. Effects of Furnished Cage Type on Behavior and Welfare of Laying Hens

    PubMed Central

    Li, Xiang; Chen, Donghua; Li, Jianhong; Bao, Jun

    2016-01-01

    This study was conducted to compare the effects of layout of furniture (a perch, nest, and sandbox) in cages on behavior and welfare of hens. Two hundred and sixteen Hyline Brown laying hens were divided into five groups (treatments) with four replicates per group: small furnished cages (SFC), medium furnished cages type I (MFC-I), medium furnished cages type II (MFC-II), and medium furnished cages type III (MFC-III) and conventional cages (CC). The experiment started at 18 week of age and finished at 52 week of age. Hens’ behaviors were filmed during the following periods: 8:00 to 10:00; 13:00 to 14:00; 16:00 to 17:00 on three separate days and two hens from each cage were measured for welfare parameters at 50 wk of age. The results showed that feeding and laying of all hens showed no effect by cage type (p>0.05), and the hens in the furnished cages had significantly lower standing and higher walking than CC hens (p<0.05). The birds in MFC-III had significant higher preening, scratching and feather-pecking behavior than in the other cages (p<0.05). No difference in nesting behavior was found in the hens between the furnished cages (p>0.05). The hens in MFC-I, −II, and −III showed a significant higher socializing behavior than SFC and CC (p<0.05). The lowest perching was for the hens in SFC and the highest perching found for the hens in MFC-III. Overall, the hens in CC showed poorer welfare conditions than the furnished cages, in which the feather condition score, gait score and tonic immobility duration of the hens in CC was significantly higher than SFC, MFC-I, MFC-II, and MFC-III (p<0.05). In conclusion, the furnished cage design affected both behavior and welfare states of hens. Overall, MFC-III cage design was better than SFC, MFC-I, and MFC-II cage designs. PMID:26954171

  13. A metabolic cage for the hindlimb suspended rat

    NASA Technical Reports Server (NTRS)

    Evans, J.; Mulenburg, G. M.; Harper, J. S.; Skundberg, T. L.; Navidi, M.; Arnaud, S. B.

    1994-01-01

    Hindlimb suspension has been successfully used to simulate the effects of microgravity in rats. The cage and suspension system developed by E. R. Holton is designed to produce a headward shift of fluid and unload the hindlimbs in rodents, causing changes in bone and muscle similar to those in animals and humans exposed to spaceflight. While the Holton suspension system simulates many of the conditions observed in the spaceflight animal, it does not provide for the collection of urine and feces needed to monitor some metabolic activities. As a result, only limited information has been gathered on the nutritional status, and the gastrointestinal and renal function of animals using that model. Although commercial metabolic cages are available, they are usually cylindrical and require a centrally located suspension system and thus, do not readily permit movement of the rats. The limited floor space of commercial cages may affect comparisons with studies using the Holton model which has more than twice the living space of most commercially available cages. To take advantage of the extra living space and extensive data base that has been developed with the Holton model, Holton's cage was modified to make urine and fecal collections possible.

  14. Extreme ultraviolet patterning of tin-oxo cages

    NASA Astrophysics Data System (ADS)

    Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.

    2017-07-01

    We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.

  15. Ammonia and Carbon Dioxide Concentrations in Disposable and Reusable Ventilated Mouse Cages

    PubMed Central

    Silverman, Jerald; Bays, David W; Cooper, Sheldon F; Baker, Stephen P

    2008-01-01

    This study compares resuable and disposable individually ventilated mouse cages in terms of the formation of intracage CO2 and NH3. Crl:CD-1(ICR) female mice were placed in either disposable or reusable ventilated cages in a positive pressure animal rack. Intracage CO2 and NH3 were measured once daily for 9 d; temperature and relative humidity were monitored for the first 7 d. Results indicated higher CO2 levels in the rear of the disposable cages and in the front of the reusable cages. This pattern corresponded to where the mice tended to congregate. However, CO2 concentrations did not differ significantly between the 2 cage types. Average CO2 levels in both cage types never exceeded approximately 3000 ppm. Intracage NH3 began to rise in the reusable cages on day 4, reached approximately 50 ppm by day 5 and by day 9 was greater than 150 ppm at the cages' rear sampling port while remaining at approximately 70 ppm at the front sampling port. Intracage NH3 levels in the disposable cages remained less than or equal to 3.2 ppm. Intracage temperature and relative humidity were approximately the same in both cage types. We concluded that the disposable ventilated cage performed satisfactorily under the conditions of the study. PMID:18351723

  16. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions.

    PubMed

    Zhang, Peng

    2015-05-19

    When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons' formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics.

  17. Rearing Laying Hens in Aviaries Reduces Fearfulness following Transfer to Furnished Cages

    PubMed Central

    Brantsæter, Margrethe; Tahamtani, Fernanda M.; Moe, Randi O.; Hansen, Tone B.; Orritt, Rachel; Nicol, Christine; Janczak, Andrew M.

    2016-01-01

    Appropriate rearing is essential for ensuring the welfare and productivity of laying hens. Early experience has the potential to affect the development of fearfulness. This study tested whether rearing in aviaries, as opposed to cages, reduces the fearfulness of laying hens after transfer to furnished cages. Fear responses were recorded as avoidance of a novel object in the home cage. Lohmann Selected Leghorns were reared in an aviary system or conventional rearing cages and then transported to furnished cages at 16 weeks, before the onset of lay. Observations of a selection of birds were conducted at 19 (N = 50 independent cages) and 21 (N = 48 independent cages) weeks of age. At 19 and 21 weeks, cage-reared birds showed higher levels of fearfulness indicated by spending more time away from the novel object compared to aviary-reared birds. These results suggest that rearing in an enriched aviary environment reduces fearfulness up to the fifth week after transfer to a new housing system, compared to rearing in cages. PMID:26955634

  18. Characterization of a new caged proton capable of inducing large pH jumps.

    PubMed Central

    Barth, Andreas; Corrie, John E T

    2002-01-01

    A new caged proton, 1-(2-nitrophenyl)ethyl sulfate (caged sulfate), is characterized by infrared spectroscopy and compared with a known caged, proton 2-hydroxyphenyl 1-(2-nitrophenyl)ethyl phosphate (caged HPP). In contrast to caged HPP, caged sulfate can induce large pH jumps and protonate groups that have pK values as low as 2.2. The photolysis mechanism of caged sulfate is analogous to that of P(3)-[1-(2-nitrophenyl)ethyl] ATP (caged ATP), and the photolysis efficiency is similar. The utility of this new caged compound for biological studies was demonstrated by its ability to drive the acid-induced conformational change of metmyoglobin. This transition from the native conformation to a partially unfolded form takes place near pH 4 and was monitored by near-UV absorption spectroscopy. PMID:12414718

  19. Extended cage adjustable speed electric motors and drive packages

    DOEpatents

    Hsu, John S.

    1999-01-01

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.

  20. A New Vertebral Body Replacement Strategy Using Expandable Polymeric Cages

    PubMed Central

    Liu, Xifeng; Paulsen, Alex; Giambini, Hugo; Guo, Ji; Miller, A. Lee; Lin, Po-Chun; Yaszemski, Michael J.

    2017-01-01

    We have developed a novel polymeric expandable cage that can be delivered via a posterior-only surgical approach for the treatment of noncontained vertebral defects. This approach is less invasive than an anterior-only or combined approach and much more cost-effective than currently used expandable metal cages. The polymeric expandable cage is composed of oligo poly(ethylene glycol) fumarate (OPF), a hydrogel that has been previously shown to have excellent nerve and bone tissue biocompatibility. OPF hydrogel cages can expand to twice their original diameter and length within a surgical time frame following hydration. Modulation of parameters such as polymeric network crosslink density or the introduction of charge to the network allowed for precise expansion kinetics. To meet specific requirements due to size variations in patient vertebral bodies, we fabricated a series of molds with varied diameters and explored the expansion kinetics of the OPF cages. Results showed a stable expansion ratio of approximately twofold to the original size within 20 min, regardless of the absolute value of the cage size. Following implantation of a dried OPF cage into a noncontained vertebral defect and its in situ expansion with normal saline, other augmentation biomaterials, such as poly(propylene fumarate) (PPF), can be injected to the lumen of the OPF cage and allowed to crosslink in situ. The OPF/PPF composite scaffold can provide the necessary rigidity and stability to the augmented spine. PMID:27835935

  1. Superconducting properties of Nb-Cu nano-composites and nano-alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Pradnya, E-mail: pradnyaprb@gmail.com; Kumar, Sanjeev; Bhui, Prabhjyot

    The evolution of the superconducting transition temperature (T{sub c}) in nano-composite and nano-alloys of Nb-Cu, grown by DC magnetron co-sputtering are investigated. Microstructure of these films depends less strongly on the ratio of Nb:Cu but more on the growth temperature. At higher growth temperature, phase separated granular films of Nb and Cu were formed which showed superconducting transition temperatures (T{sub c}) of ~ 7.2±0.5 K, irrespective of the composition. Our results show that this is primarily influenced by the microstructure of the films determined during growth which rules out the superconducting proximity effect expected in these systems. At room temperaturemore » growth, films with nano-scale alloying were obtained at the optimal compositional range of 45-70 atomic% (At%) of Nb. These were also superconducting with a T{sub c} of 3.2 K.« less

  2. Effects of wind speed on aerosol spray penetration in adult mosquito bioassay cages.

    PubMed

    Hoffmann, W Clint; Fritz, Bradley K; Farooq, Muhammad; Cooperband, Miriam F

    2008-09-01

    Bioassay cages are commonly used to assess efficacy of insecticides against adult mosquitoes in the field. To correlate adult mortality readings to insecticidal efficacy and/or spray application parameters properly, it is important to know how the cage used in the bioassay interacts with the spray cloud containing the applied insecticide. This study compared the size of droplets, wind speed, and amount of spray material penetrating cages and outside of cages in a wind tunnel at different wind speeds. Two bioassay cages, Center for Medical, Agricultural and Veterinary Entomology (CMAVE) and Circle, were evaluated. The screen materials used on these cages reduced the size of droplets, wind speed, and amount of spray material inside the cages as compared to the spray cloud and wind velocity outside of the cages. When the wind speed in the dispersion tunnel was set at 0.6 m/sec (1.3 mph), the mean wind speed inside of the CMAVE Bioassay Cage and Circle Cage was 0.045 m/sec (0.10 mph) and 0.075 m/sec (0.17 mph), respectively. At air velocities of 2.2 m/sec (4.9 mph) in the dispersion tunnel, the mean wind speed inside of the CMAVE Bioassay Cage and Circle Cage was 0.83 m/sec (1.86 mph) and 0.71 m/sec (1.59 mph), respectively. Consequently, there was a consistent 50-70% reduction of spray material penetrating the cages compared to the spray cloud that approached the cages. These results provide a better understanding of the impact of wind speed, cage design, and construction on ultra-low-volume spray droplets.

  3. A fluorescent organic cage for picric acid detection.

    PubMed

    Acharyya, Koushik; Mukherjee, Partha Sarathi

    2014-12-25

    Dynamic covalent imine chemistry has been utilized to synthesize a fluorescent [3+2] self-assembled nanoscopic organic cage. The fluorescent nature of the reduced analogue of the cage was further exploited for the highly selective detection of the explosive picric acid (PA).

  4. Murine liver damage caused by exposure to nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Zhang, Yu-Qing

    2016-03-01

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.

  5. Preparation of biomimetic nano-structured films with multi-scale roughness

    NASA Astrophysics Data System (ADS)

    Shelemin, A.; Nikitin, D.; Choukourov, A.; Kylián, O.; Kousal, J.; Khalakhan, I.; Melnichuk, I.; Slavínská, D.; Biederman, H.

    2016-06-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45-240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery.

  6. Extended cage adjustable speed electric motors and drive packages

    DOEpatents

    Hsu, J.S.

    1999-03-23

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.

  7. Improved light extraction efficiency in GaN-based light emitting diode by nano-scale roughening of p-GaN surface.

    PubMed

    Park, Sang Jae; Sadasivam, Karthikeyan Giri; Chung, Tae Hoon; Hong, Gi Cheol; Kim, Jin Bong; Kim, Sang Mook; Park, Si-Hyun; Jeon, Seong-Ran; Lee, June Key

    2008-10-01

    Improvement in light extraction efficiency of Ultra Violet-Light Emitting Diode (UV-LED) is achieved by nano-scale roughening of p-type Gallium Nitride (p-GaN) surface. The process of surface roughening is carried out by using self assembled gold (Au) nano-clusters with support of nano-size silicon-oxide (SiO2) pillars on p-GaN surface as a dry etching mask and by p-GaN regrowth in the regions not covered by the mask after dry etching. Au nano-clusters are formed by rapid thermal annealing (RTA) process carried out at 600 degrees C for 1 min using 15 nm thick Au layer on top of SiO2. The p-GaN roughness is controlled by p-GaN regrowth time. Four different time values of 15 sec, 30 sec, 60 sec and 120 sec are considered for p-GaN regrowth. Among the four different p-GaN regrowth time values 30 sec regrown p-GaN sample has the optimum roughness to increase the electroluminescence (EL) intensity to a value approximately 60% higher than the EL intensity of a conventional LED.

  8. DNA adsorption characteristics of hollow spherule allophane nano-particles.

    PubMed

    Matsuura, Yoko; Iyoda, Fumitoshi; Arakawa, Shuichi; John, Baiju; Okamoto, Masami; Hayashi, Hidetomo

    2013-12-01

    To understand the propensity of natural allophane to adsorb the DNA molecules, the adsorption characteristics were assessed against natural allophane (AK70), using single-stranded DNA (ss-DNA) and adenosine 5'-monophosphate (5'-AMP) as a reference molecule. The adsorption capacity of ss-DNA on AK70 exhibited one order of magnitude lower value as compared with that of 5'-AMP. The adsorption capacity of ss-DNA decreased with increasing pH due to the interaction generated between phosphate groups of ss-DNA and functional Al-OH groups on the wall perforations through deprotonating, associated with higher energy barrier for the adsorption of ss-DNA. The adsorption morphologies consisting of the individual ss-DNA with mono-layer coverage of the clustered allophane particle were observed successfully through transmission electron microscopy analysis. © 2013.

  9. Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites

    DOEpatents

    Zhamu, Aruna [Centerville, OH; Shi, Jinjun [Columbus, OH; Guo, Jiusheng [Centerville, OH; Jang, Bor Z [Centerville, OH

    2012-03-13

    A method of exfoliating a layered material to produce separated nano-scaled platelets having a thickness smaller than 100 nm. The method comprises: (a) providing a graphite intercalation compound comprising a layered graphite containing expandable species residing in an interlayer space of the layered graphite; (b) exposing the graphite intercalation compound to an exfoliation temperature lower than 650.degree. C. for a duration of time sufficient to at least partially exfoliate the layered graphite without incurring a significant level of oxidation; and (c) subjecting the at least partially exfoliated graphite to a mechanical shearing treatment to produce separated platelets. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  10. Transgene and immune gene expression following intramuscular injection of Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano- and microparticles.

    PubMed

    Hølvold, Linn Benjaminsen; Fredriksen, Børge N; Bøgwald, Jarl; Dalmo, Roy A

    2013-09-01

    The use of poly-(D,L-lactic-co-glycolic) acid (PLGA) particles as carriers for DNA delivery has received considerable attention in mammalian studies. DNA vaccination of fish has been shown to elicit durable transgene expression, but no reports exist on intramuscular administration of PLGA-encapsulated plasmid DNA (pDNA). We injected Atlantic salmon (Salmo salar L.) intramuscularly with a plasmid vector containing a luciferase (Photinus pyralis) reporter gene as a) naked pDNA, b) encapsulated into PLGA nano- (~320 nm) (NP) or microparticles (~4 μm) (MP), c) in an oil-based formulation, or with empty particles of both sizes. The ability of the different pDNA-treatments to induce transgene expression was analyzed through a 70-day experimental period. Anatomical distribution patterns and depot effects were determined by tracking isotope labeled pDNA. Muscle, head kidney and spleen from all treatment groups were analyzed for proinflammatory cytokines (TNF-α, IL-1β), antiviral genes (IFN-α, Mx) and cytotoxic T-cell markers (CD8, Eomes) at mRNA transcription levels at days 1, 2, 4 and 7. Histopathological examinations were performed on injection site samples from days 2, 7 and 30. Injection of either naked pDNA or the oil-formulation was superior to particle treatments for inducing transgene expression at early time-points. Empty particles of both sizes were able to induce proinflammatory immune responses as well as degenerative and inflammatory pathology at the injection site. Microparticles demonstrated injection site depots and an inflammatory pathology comparable to the oil-based formulation. In comparison, the distribution of NP-encapsulated pDNA resembled that of naked pDNA, although encapsulation into NPs significantly elevated the expression of antiviral genes in all tissues. Together the results indicate that while naked pDNA is most efficient for inducing transgene expression, the encapsulation of pDNA into NPs up-regulates antiviral responses that could be

  11. Cage drying and the application of a dry treatment (absorbent cornstarch powder) as a means to diminish Campylobacter on transport cages.

    USDA-ARS?s Scientific Manuscript database

    Broiler transport cages soiled with Campylobacter-positive feces have been shown to facilitate cross contamination of broilers. Campylobacter organisms are sensitive to dry stress. Allowing feces left on transport cage flooring to dry during extended periods of nonuse would be an effective method ...

  12. Synthesis, structural characterisation and magnetic studies of polymetallic iron phosphonate cages.

    PubMed

    Khanra, Sumit; Helliwell, Madeleine; Tuna, Floriana; McInnes, Eric J L; Winpenny, Richard E P

    2009-08-21

    Four new polymetallic iron(III) phosphonate cages have been made and structurally characterised. These are an octanuclear cage [Fe(8)O(3)(OH)(2)(O(2)C(t)Bu)(11)(PhCH(2)PO(3))(3)(py)(3)], a decanuclear cage [Fe(10)O(2)(OH)(8)(O(2)C(t)Bu)(10)(PhCH(2)PO(3))(4)(pip)(2)], a heterometallic cage [Fe(6)Li(5)(mu(3)-O)(2)((t)BuPO(3))(6)(O(2)C(t)Bu)(8)(MeOH)(2)(Py)(4)] and a tridecanuclear cage [Et(3)NH](2)[Fe(13)(mu(3)-O)(3)(mu(2)-OH)(7)((t)BuPO(3))(7)(Me(3)CCO(2))(14)(H(2)O)] (pip = piperidine, py = pyridine). Magnetic studies of the first three compounds show anti-ferromagnetic exchange between the iron(III) centers leading to diamagnetic ground states for the homometallic cages. For the heterometallic cage, the six Fe(III) centers are arranged in two triangles, and each triangle has an S = 1/2 spin ground state.

  13. Can an Endplate-conformed Cervical Cage Provide a Better Biomechanical Environment than a Typical Non-conformed Cage?: A Finite Element Model and Cadaver Study.

    PubMed

    Zhang, Fan; Xu, Hao-Cheng; Yin, Bo; Xia, Xin-Lei; Ma, Xiao-Sheng; Wang, Hong-Li; Yin, Jun; Shao, Ming-Hao; Lyu, Fei-Zhou; Jiang, Jian-Yuan

    2016-08-01

    To evaluate the biomechanical characteristics of endplate-conformed cervical cages by finite element method (FEM) analysis and cadaver study. Twelve specimens (C2 -C7 ) and a finite element model (C3 -C7 ) were subjected to biomechanical evaluations. In the cadaver study, specimens were randomly assigned to intact (I), endplate-conformed (C) and non-conformed (N) groups with C4-5 discs as the treated segments. The morphologies of the endplate-conformed cages were individualized according to CT images of group C and the cages fabricated with a 3-D printer. The non-conformed cages were wedge-shaped and similar to commercially available grafts. Axial pre-compression loads of 73.6 N and moment of 1.8 Nm were used to simulate flexion (FLE), extension (EXT), lateral bending (LB) and axial rotation (AR). Range of motion (ROM) at C4-5 of each specimen was recorded and film sensors fixed between the cages and C5 superior endplates were used to detect interface stress. A finite element model was built based on the CT data of a healthy male volunteer. The morphologies of the endplate-conformed and wedge-shaped, non-conformed cervical cages were both simulated by a reverse engineering technique and implanted at the segment of C4-5 in the finite element model for biomechanical evaluation. Force loading and grouping were similar to those applied in the cadaver study. ROM of C4-5 in group I were recorded to validate the finite element model. Additionally, maximum cage-endplate interface stresses, stress distribution contours on adjoining endplates, intra-disc stresses and facet loadings at adjacent segments were measured and compared between groups. In the cadaver study, Group C showed a much lower interface stress in all directions of motion (all P < 0.05) and the ROM of C4-5 was smaller in FLE-EXT (P = 0.001) but larger in AR (P = 0.017). FEM analysis produced similar results: the model implanted with an endplate-conformed cage presented a lower interface stress with a more

  14. Iron oxide nanoparticles in NaA zeolite cages

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, S. K.; Vijayalakshmi, R.; Sudarsan, V.; Salunke, H. G.; Bhargava, S. C.

    2013-07-01

    Zeolite NaA samples with varying concentration of Fe3+ ions have been prepared by wet chemical method. Based on powder X-ray diffraction, 29Si and 27Al MAS NMR and Fe3+ EPR investigations, the formation of nano-sized ferric oxide particles inside the larger α-cages of zeolite NaA has been established. Both Mössbauer effect and magnetization measurements carried out down to 4.5 K established the superparamagnetic behaviour of these Fe2O3 particles with a blocking temperature of ≈20 K, where the magnetization values showed deviation for the zero field cooled and field cooled samples and the appearance of a very narrow magnetic hysteresis loop below this temperature. For all Fe3+ containing samples the room temperature Mössbauer spectrum is a broad quadrupole doublet with chemical shift, δ ≈ 0.33 mm/s and quadrupole splitting, ΔEq ≈ 0.68 mm/s. Variable temperature 57Fe Mössbauer effect measurements exhibited magnetic features below the blocking temperature and at 4.5 K, the observed spectrum is a broad magnetic sextet characterized by an internal hyperfine field value of ≈504 kOe along with a very weak central superparamagnetic quadrupole doublet.

  15. One-step large-scale deposition of salt-free DNA origami nanostructures

    PubMed Central

    Linko, Veikko; Shen, Boxuan; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.; Tuukkanen, Sampo

    2015-01-01

    DNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be controllably deposited on silicon and glass substrates by the proposed method. The results are verified using either atomic force microscopy or fluorescence microscopy depending on the shape of the DNA origami. DNA origamis are successfully deposited onto untreated substrates with surface coverage of about 4 objects/mm2. Further, the DNA nanostructures maintain their shape even if the salt residues are removed from the DNA origami fabrication buffer after the folding procedure. We believe that the presented one-step spray-coating method will find use in various fields of material sciences, especially in the development of DNA biochips and in the fabrication of metamaterials and plasmonic devices through DNA metallisation. PMID:26492833

  16. Photo-dependent protein biosynthesis using a caged aminoacyl-tRNA.

    PubMed

    Akahoshi, Akiya; Doi, Yoshio; Sisido, Masahiko; Watanabe, Kazunori; Ohtsuki, Takashi

    2014-12-01

    Translation systems with four-base codons provide a powerful strategy for protein engineering and protein studies because they enable site-specific incorporation of non-natural amino acids into proteins. In this study, a caged aminoacyl-tRNA with a four-base anticodon was synthesized. The caged aminoacyl-tRNA contains a photocleavable nitroveratryloxycarbonyl (NVOC) group. This study showed that the caged aminoacyl-tRNA was not deacylated, did not bind to EF-Tu, and was activated by light. Photo-dependent translation of an mRNA containing the four-base codon was demonstrated using the caged aminoacyl-tRNA.

  17. The polymethyl methacrylate cervical cage for treatment of cervical disk disease Part III. Biomechanical properties.

    PubMed

    Chen, Jyi-Feng; Lee, Shih-Tseng

    2006-10-01

    In a previous article, we used the PMMA cervical cage in the treatment of single-level cervical disk disease and the preliminary clinical results were satisfactory. However, the mechanical properties of the PMMA cage were not clear. Therefore, we designed a comparative in vitro biomechanical study to determine the mechanical properties of the PMMA cage. The PMMA cervical cage and the Solis PEEK cervical cage were compressed in a materials testing machine to determine the mechanical properties. The compressive yield strength of the PMMA cage (7030 +/- 637 N) was less than that of the Solis polymer cervical cage (8100 +/- 572 N). The ultimate compressive strength of the PMMA cage (8160 +/- 724 N) was less than that of the Solis cage (9100 +/- 634 N). The stiffness of the PMMA cervical cage (8106 +/- 817 N/mm) was greater than that of the Solis cage (6486 +/- 530 N/mm). The elastic modulus of the PMMA cage (623 +/- 57 MPa) was greater than that of the Solis cage (510 +/- 42 MPa). The elongation of PMMA cage (43.5 +/- 5.7%) was larger than that of the Solis cage (36.1 +/- 4.3%). Although the compressive yield strength and ultimate compressive strength of the PMMA cervical cage were less than those of the Solis polymer cage, the mechanical properties are better than those of the cervical vertebral body. The PMMA cage is strong and safe for use as a spacer for cervical interbody fusion. Compared with other cage materials, the PMMA cage has many advantages and no obvious failings at present. However, the PMMA cervical cage warrants further long-term clinical study.

  18. Biomechanical analysis of an expandable lateral cage and a static transforaminal lumbar interbody fusion cage with posterior instrumentation in an in vitro spondylolisthesis model.

    PubMed

    Mantell, Matthew; Cyriac, Mathew; Haines, Colin M; Gudipally, Manasa; O'Brien, Joseph R

    2016-01-01

    Insufficient biomechanical data exist from comparisons of the stability of expandable lateral cages with that of static transforaminal lumbar interbody fusion (TLIF) cages. The purpose of this biomechanical study was to compare the relative rigidity of L4-5 expandable lateral interbody constructs with or without additive pedicle screw fixation with that of L4-5 static TLIF cages in a novel cadaveric spondylolisthesis model. Eight human cadaver spines were used in this study. A spondylolisthesis model was created at the L4-5 level by creating 2 injuries. First, in each cadaver, a nucleotomy from 2 channels through the anterior side was created. Second, the cartilage of the facet joint was burred down to create a gap of 4 mm. Light-emitting-diode tracking markers were placed at L-3, L-4, L-5, and S-1. Specimens were tested in the following scenarios: intact model, bilateral pedicle screws, expandable lateral 18-mm-wide cage (alone, with unilateral pedicle screws [UPSs], and with bilateral pedicle screws [BPSs]), expandable lateral 22-mm-wide cage (alone, with UPSs, and with BPSs), and TLIF (alone, with UPSs, and with BPSs). Four of the spines were tested with the expandable lateral cages (18-mm cage followed by the 22-mm cage), and 4 of the spines were tested with the TLIF construct. All these constructs were tested in flexion-extension, axial rotation, and lateral bending. The TLIF-alone construct was significantly less stable than the 18- and 22-mm-wide lateral lumbar interbody fusion (LLIF) constructs and the TLIF constructs with either UPSs or BPSs. The LLIF constructs alone were significantly less stable than the TLIF construct with BPSs. However, there was no significant difference between the 18-mm LLIF construct with UPSs and the TLIF construct with BPSs in any of the loading modes. Expandable lateral cages with UPSs provide stability equivalent to that of a TLIF construct with BPSs in a degenerative spondylolisthesis model.

  19. Dynamical Scaling and Phase Coexistence in Topologically Constrained DNA Melting.

    PubMed

    Fosado, Y A G; Michieletto, D; Marenduzzo, D

    2017-09-15

    There is a long-standing experimental observation that the melting of topologically constrained DNA, such as circular closed plasmids, is less abrupt than that of linear molecules. This finding points to an important role of topology in the physics of DNA denaturation, which is, however, poorly understood. Here, we shed light on this issue by combining large-scale Brownian dynamics simulations with an analytically solvable phenomenological Landau mean field theory. We find that the competition between melting and supercoiling leads to phase coexistence of denatured and intact phases at the single-molecule level. This coexistence occurs in a wide temperature range, thereby accounting for the broadening of the transition. Finally, our simulations show an intriguing topology-dependent scaling law governing the growth of denaturation bubbles in supercoiled plasmids, which can be understood within the proposed mean field theory.

  20. Cage Change Influences Serum Corticosterone and Anxiety-Like Behaviors in the Mouse

    PubMed Central

    Rasmussen, Skye; Miller, Melinda M.; Filipski, Sarah B.; Tolwani, Ravi J.

    2011-01-01

    Environmental variables and husbandry practices can influence physiology and alter behavior in mice. Our study evaluated the effects of cage change on serum corticosterone levels and anxiety-like behaviors in C57BL/6 male mice. We examined the effects of 3 different methods of performing cage transfer and of transferring mice to a clean or a dirty familiar cage microenvironment. The 3 different handling methods were forceps transfer, gentle transfer with gloved hands, and a passive transfer technique that did not involve active handling. Active handling methods and transfer to both clean and dirty cage microenvironments significantly increased serum corticosterone 15 min after cage change; however, at 60 min after cage change, levels were comparable to those of unmanipulated mice. Although the effects were transient, cage change altered anxiety-like behaviors in the open field when behavioral testing was performed on the same day. These results demonstrate that the timing of cage change can influence behavioral results, an effect that is an important consideration for rodent behavioral studies. PMID:21838975

  1. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  2. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  3. Optical and electrical properties of GaN-based light emitting diodes grown on micro- and nano-scale patterned Si substrate

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May

    2011-10-01

    We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.

  4. Atypical gnawing and cage destructive behavior in one strain of laboratory rat.

    PubMed

    Jacobs, H K; Van Pelt, L F; Dunlap, B K

    1984-06-01

    Approximately 80% of a colony of 900 Long Evans rats, Blu:(LE), gnawed on polypropylene shoe box type cages around the automatic watering grommet. The gnawing led to cage destruction and escape of the animals. The addition of a large stainless steel shield between the original grommet backing and the cage prevented further gnawing on the cage.

  5. Room environment influence on eggshell bacterial levels of non-washed and washed eggs from caged and cage-free laying hens

    USDA-ARS?s Scientific Manuscript database

    The bacteria levels of non-washed and washed eggs obtained from caged and cage-free hens housed in either wire slats or shaving-covered pens were determined. On eight days (from 22 to 52 wk), 20 eggs were collected from each pen. Ten eggs/pen were washed with a commercial egg washing solution, whi...

  6. Fracture behavior of nano-scale rubber-modified epoxies

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Lauren N.

    The primary focus of the first portion of this study is to compare physical and mechanical properties of a model epoxy that has been toughened with one of three different types of rubber-based modifier: a traditional telechelic oligomer (phase separates into micro-size particles), a core-shell latex particle (preformed nano-scale particles) and a triblock copolymer (self-assembles into nano-scale particles). The effect of modifier content on the physical properties of the matrix was determined using several thermal analysis methods, which provided insight into any inherent alterations of the epoxy matrix. Although the primary objective is to study the role of particle size on the fracture toughness, stiffness and strength were also determined since these properties are often reduced in rubber-toughened epoxies. It was found that since the CSR- and SBM-modified epoxies are composed of less rubber, thermal and mechanical properties of the epoxy were better maintained. In order to better understand the fracture behavior and mechanisms of the three types of rubber particles utilized in this study, extensive microscopy analysis was conducted. Scanning transmission electron microscopy (STEM) was used to quantify the volume fraction of particles, transmission optical microscopy (TOM) was used to determine plastic damage zone size, and scanning electron microscopy (SEM) was used to assess void growth in the plastic zone after fracture. By quantifying these characteristics, it was then possible to model the plastic damage zone size as well as the fracture toughness to elucidate the behavior of the rubber-modified epoxies. It was found that localized shear yielding and matrix void growth are the active toughening mechanisms in all rubber-modified epoxies in this study, however, matrix void growth was more prevalent. The second portion of this study investigated the use of three acrylate-based triblocks and four acrylate-based diblocks to modify a model epoxy system. By

  7. Impact of Room Ventilation Rates on Mouse Cage Ventilation and Microenvironment.

    PubMed

    Reeb, Carolyn K.; Jones, Robert B.; Bearg, David W.; Bedigian, Hendrick; Paigen, Beverly

    1997-01-01

    To assess the impact of room ventilation on animal cage microenvironment, intracage ventilation rate, temperature, humidity, and concentrations of carbon dioxide and ammonia were monitored in nonpressurized, bonnet-topped mouse cages. Cages on the top, middle, and bottom rows of a mouse rack were monitored at room ventilation rates of 0, 5, 10, and 20 air changes/h (ACH). Ventilation inside the animal cage increased somewhat from 12.8 to 18.9 ACH as room ventilation rate in- creased from 0 to 20 ACH, but the differences were not statistically significant, and most of the increase occurred in cages in the top row nearest to the fresh air supply. Cages containing mice had ventilation rate between 10 and 15 ACH even when room ventilation was reduced to 0 ACH; this ventilation is a result of the thermal heat load of the mice. After 6 days of soiled bedding, intracage ammonia concentration was c 3 ppm at all room ventilation rates and was not affected by increasing room ventilation. Temperature inside cages did not change with increasing ventilation. Humidity inside cages significantly decreased with increasing ventilation, from 55% relative humidity at 5 ACH to 36% relative humidity at 20 ACH. Carbon dioxide concentration decreased from 2,500 ppm to 1,900 ppm when ventilation rate increased from 5 ACH to 10 ACH, but no further significant decrease was observed at 20 ACH. In conclusion, increasing the room ventilation rate higher than 5 ACH did not result in significant improvements in the cage microenvironment.

  8. Population genetics of the cytoplasm and the units of selection on mitochondrial DNA in Drosophila melanogaster

    PubMed Central

    2011-01-01

    Biological variation exists across a nested set of hierarchical levels from nucleotides within genes to populations within species to lineages within the tree of life. How selection acts across this hierarchy is a long-standing question in evolutionary biology. Recent studies have suggested that genome size is influenced largely by the balance of selection, mutation and drift in lineages with different population sizes. Here we use population cage and maternal transmission experiments to identify the relative strength of selection at an individual and cytoplasmic level. No significant trends were observed in the frequency of large (L) and small (S) mtDNAs across 14 generations in population cages. In all replicate cages, new length variants were observed in heteroplasmic states indicating that spontaneous length mutations occurred in these experimental populations. Heteroplasmic flies carrying L genomes were more frequent than those carrying S genomes suggesting an asymmetric mutation dynamic from larger to smaller mtDNAs. Mother-offspring transmission of heteroplasmy showed that the L mtDNA increased in frequency within flies both between and within generations despite sampling drift of the same intensity as occurred in population cages. These results suggest that selection for mtDNA size is stronger at the cytoplasmic than at the organismal level. The fixation of novel mtDNAs within and between species requires a transient intracellular heteroplasmic stage. The balance of population genetic forces at the cytoplasmic and individual levels governs the units of selection on mtDNA, and has implications for evolutionary inference as well as for the effects of mtDNA mutations on fitness, disease and aging. PMID:21538136

  9. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales

    USGS Publications Warehouse

    Tillotson, Michael D.; Kelly, Ryan P.; Duda, Jeff; Hoy, Marshal S.; Kralj, James; Quinn, Thomas P.

    2018-01-01

    Developing fast, cost-effective assessments of wild animal abundance is an important goal for many researchers, and environmental DNA (eDNA) holds much promise for this purpose. However, the quantitative relationship between species abundance and the amount of DNA present in the environment is likely to vary substantially among taxa and with ecological context. Here, we report a strong quantitative relationship between eDNA concentration and the abundance of spawning sockeye salmon in a small stream in Alaska, USA, where we took temporally- and spatially-replicated samples during the spawning period. This high-resolution dataset suggests that (1) eDNA concentrations vary significantly day-to-day, and likely within hours, in the context of the dynamic biological event of a salmon spawning season; (2) eDNA, as detected by species-specific quantitative PCR probes, seems to be conserved over short distances (tens of meters) in running water, but degrade quickly over larger scales (ca. 1.5 km); and (3) factors other than the mere presence of live, individual fish — such as location within the stream, live/dead ratio, and water temperature — can affect the eDNA-biomass correlation in space or time. A multivariate model incorporating both biotic and abiotic variables accounted for over 75% of the eDNA variance observed, suggesting that where a system is well-characterized, it may be possible to predict species' abundance from eDNA surveys, although we underscore that species- and system-specific variables are likely to limit the generality of any given quantitative model. Nevertheless, these findings provide an important step toward quantitative applications of eDNA in conservation and management.

  10. Genome-scale analysis of aberrant DNA methylation in colorectal cancer

    PubMed Central

    Hinoue, Toshinori; Weisenberger, Daniel J.; Lange, Christopher P.E.; Shen, Hui; Byun, Hyang-Min; Van Den Berg, David; Malik, Simeen; Pan, Fei; Noushmehr, Houtan; van Dijk, Cornelis M.; Tollenaar, Rob A.E.M.; Laird, Peter W.

    2012-01-01

    Colorectal cancer (CRC) is a heterogeneous disease in which unique subtypes are characterized by distinct genetic and epigenetic alterations. Here we performed comprehensive genome-scale DNA methylation profiling of 125 colorectal tumors and 29 adjacent normal tissues. We identified four DNA methylation–based subgroups of CRC using model-based cluster analyses. Each subtype shows characteristic genetic and clinical features, indicating that they represent biologically distinct subgroups. A CIMP-high (CIMP-H) subgroup, which exhibits an exceptionally high frequency of cancer-specific DNA hypermethylation, is strongly associated with MLH1 DNA hypermethylation and the BRAFV600E mutation. A CIMP-low (CIMP-L) subgroup is enriched for KRAS mutations and characterized by DNA hypermethylation of a subset of CIMP-H-associated markers rather than a unique group of CpG islands. Non-CIMP tumors are separated into two distinct clusters. One non-CIMP subgroup is distinguished by a significantly higher frequency of TP53 mutations and frequent occurrence in the distal colon, while the tumors that belong to the fourth group exhibit a low frequency of both cancer-specific DNA hypermethylation and gene mutations and are significantly enriched for rectal tumors. Furthermore, we identified 112 genes that were down-regulated more than twofold in CIMP-H tumors together with promoter DNA hypermethylation. These represent ∼7% of genes that acquired promoter DNA methylation in CIMP-H tumors. Intriguingly, 48/112 genes were also transcriptionally down-regulated in non-CIMP subgroups, but this was not attributable to promoter DNA hypermethylation. Together, we identified four distinct DNA methylation subgroups of CRC and provided novel insight regarding the role of CIMP-specific DNA hypermethylation in gene silencing. PMID:21659424

  11. eDNAoccupancy: An R package for multi-scale occupancy modeling of environmental DNA data

    USGS Publications Warehouse

    Dorazio, Robert; Erickson, Richard A.

    2017-01-01

    In this article we describe eDNAoccupancy, an R package for fitting Bayesian, multi-scale occupancy models. These models are appropriate for occupancy surveys that include three, nested levels of sampling: primary sample units within a study area, secondary sample units collected from each primary unit, and replicates of each secondary sample unit. This design is commonly used in occupancy surveys of environmental DNA (eDNA). eDNAoccupancy allows users to specify and fit multi-scale occupancy models with or without covariates, to estimate posterior summaries of occurrence and detection probabilities, and to compare different models using Bayesian model-selection criteria. We illustrate these features by analyzing two published data sets: eDNA surveys of a fungal pathogen of amphibians and eDNA surveys of an endangered fish species.

  12. Biomechanical Analysis of Porous Additive Manufactured Cages for Lateral Lumbar Interbody Fusion: A Finite Element Analysis.

    PubMed

    Zhang, Zhenjun; Li, Hui; Fogel, Guy R; Liao, Zhenhua; Li, Yang; Liu, Weiqiang

    2018-03-01

    A porous additive manufactured (AM) cage may provide stability similar to that of traditional solid cages and may be beneficial to bone ingrowth. The biomechanical influence of various porous cages on stability, subsidence, stresses in cage, and facet contact force has not been fully described. The purpose of this study was to verify biomechanical effects of porous AM cages. The surgical finite element models with various cages were constructed. The partially porous titanium (PPT) cages and fully porous titanium (FPT) cages were applied. The mechanical parameters of porous materials were obtained by mechanical test. Then the porous AM cages were compared with solid titanium (TI) cage and solid polyetheretherketone (PEEK) cage. The 4 motion modes were simulated. Range of motion (ROM), cage stress, end plate stress, and facet joint force (FJF) were compared. For all the surgical models, ROM decreased by >90%. Compared with TI and PPT cages, PEEK and FPT cages substantially reduced the maximum stresses in cage and end plate in all motion modes. Compared with PEEK cages, the stresses in cage and end plate for FPT cages decreased, whereas the ROM increased. Comparing FPT cages, the stresses in cage and end plate decreased with increasing porosity, whereas ROM increased with increasing porosity. After interbody fusion, FJF was substantially reduced in all motion modes except for flexion. Fully porous cages may offer an alternative to solid PEEK cages in lateral lumbar interbody fusion. However, it may be prudent to further increase the porosity of the cage. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Design and analysis of roll cage

    NASA Astrophysics Data System (ADS)

    Angadi, Gurusangappa; Chetan, S.

    2018-04-01

    Wildlife fire fighting vehicles are used to extinguish fires in forests, in this process vehicles face falling objects like rocks, tree branches and other objects. Also due to uneven conditions of the terrain like cliff edges, uneven surfaces etc. makes the vehicle to roll over and these can cause injuries to both the driver and the operator. Roll over of a vehicle is a common incident which makes fatal injuries to the operator and also stands next to the crash accidents. In order to reduce the injury level and continuous roll over of the vehicle it is necessary to equip suitable roll cage according to standards of vehicle. In this present work roll cage for pump operator in wildfire fighting vehicle is designed and analysis is carried out in computer simulated environment when seating position of operator seated outside of the cabin. According to NFPA 1906 standards wildlife fire apparatus, Design and Test procedures that are carried out in Hyperworks maintaining SAE J1194.1983 standards. G load case, roof crush analysis and pendulum impact analysis tests are carried out on roll cage to ensure the saftey of design. These load cases are considerd to satisfy the situation faced in forest terrain. In these test procedures roll cage is analysed for stresses and deformation in various load cases. After recording results these are compared with standards mentioned in SAE J1194.1983.

  14. Kinetic research on dechlorinating dichlorobenzene in aqueous system by nano-scale nickel/iron loaded with CMC/NFC hydrogel.

    PubMed

    Wan, Xiao-Fang; Guo, Congbao; Liu, Yu; Chai, Xin-Sheng; Li, Youming; Chen, Guangxue

    2018-03-01

    In this study, we reported on the nano-scale nickel/iron particles loaded in carboxymethyl/nanofibrillated cellulose (CMC/NFC) hydrogel for the dechlorination of o-dichlorobenzene (DCB) in aqueous solution. The biodegradable hydrogel may provide an ideal supporting material for fastening the bimetallic nano-scale particles, which was examined and characterized by TEM, SEM-EDX, FT-IR and BET. The performance of the selected bimetallic particles was evaluated by conducting the dechlorination of DCB in the solution under different reaction conditions (e.g., pH, dosage of nickel/iron nanoparticles and temperature). The results showed that about 70% of DCB could be dechlorinated at 20 °C in 8 h, which indicated that the immobilized reactive material had a high reduction activity when Ni/Fe loading dosage in the hydrogel (18 wt%) was considered. Moreover, the reduction behavior agreed to the pseudo-first order reaction, in which the dechlorination rate was irrelative to the pH aqueous solution. A kinetic model for predicting the concentration of DCB during the reduction reaction was established based on the experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions

    PubMed Central

    Zhang, Peng

    2015-01-01

    When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons’ formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics. PMID:25988951

  16. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    NASA Astrophysics Data System (ADS)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2012-08-01

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  17. Effect of 2 Bedding Materials on Ammonia Levels in Individually Ventilated Cages

    PubMed Central

    Koontz, Jason M; Kumsher, David M; III, Richard Kelly; Stallings, Jonathan D

    2016-01-01

    This study sought to identify an optimal rodent bedding and cage-change interval to establish standard procedures for the IVC in our rodent vivarium. Disposable cages were prefilled with either corncob or α-cellulose bedding and were used to house 2 adult Sprague–Dawley rats (experimental condition) or contained no animals (control). Rats were observed and intracage ammonia levels measured daily for 21 d. Intracage ammonia accumulation became significant by day 8 in experimental cages containing α-cellulose bedding, whereas experimental cages containing corncob bedding did not reach detectable levels of ammonia until day 14. In all 3 experimental cages containing α-cellulose, ammonia exceeded 100 ppm (our maximum acceptable limit) by day 11. Two experimental corncob cages required changing at days 16 and 17, whereas the remaining cage containing corncob bedding lasted the entire 21 d without reaching the 100-ppm ammonia threshold. These data suggests that corncob bedding provides nearly twice the service life of α-cellulose bedding in the IVC system. PMID:26817976

  18. Effect of 2 Bedding Materials on Ammonia Levels in Individually Ventilated Cages.

    PubMed

    Koontz, Jason M; Kumsher, David M; Kelly, Richard; Stallings, Jonathan D

    2016-01-01

    This study sought to identify an optimal rodent bedding and cage-change interval to establish standard procedures for the IVC in our rodent vivarium. Disposable cages were prefilled with either corncob or α-cellulose bedding and were used to house 2 adult Sprague-Dawley rats (experimental condition) or contained no animals (control). Rats were observed and intracage ammonia levels measured daily for 21 d. Intracage ammonia accumulation became significant by day 8 in experimental cages containing α-cellulose bedding, whereas experimental cages containing corncob bedding did not reach detectable levels of ammonia until day 14. In all 3 experimental cages containing α-cellulose, ammonia exceeded 100 ppm (our maximum acceptable limit) by day 11. Two experimental corncob cages required changing at days 16 and 17, whereas the remaining cage containing corncob bedding lasted the entire 21 d without reaching the 100-ppm ammonia threshold. These data suggests that corncob bedding provides nearly twice the service life of α-cellulose bedding in the IVC system.

  19. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage.

    PubMed

    Yang, Z; Chen, H; Yu, T; Li, B

    2016-08-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  20. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Chen, H.; Yu, T.; Li, B.

    2016-08-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  1. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Z., E-mail: zhaohui@nwpu.edu.cn; Yu, T.; Chen, H.

    2016-08-15

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images whenmore » the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.« less

  2. Potential of environmental DNA to evaluate Northern pike (Esox lucius) eradication efforts: An experimental test and case study

    USGS Publications Warehouse

    Dunker, Kristine J.; Sepulveda, Adam; Massengill, Robert L.; Olsen, Jeffrey B.; Russ, Ora L.; Wenburg, John K.; Antonovich, Anton

    2016-01-01

    Determining the success of invasive species eradication efforts is challenging because populations at very low abundance are difficult to detect. Environmental DNA (eDNA) sampling has recently emerged as a powerful tool for detecting rare aquatic animals; however, detectable fragments of DNA can persist over time despite absence of the targeted taxa and can therefore complicate eDNA sampling after an eradication event. This complication is a large concern for fish eradication efforts in lakes since killed fish can sink to the bottom and slowly decay. DNA released from these carcasses may remain detectable for long periods. Here, we evaluated the efficacy of eDNA sampling to detect invasive Northern pike (Esox lucius) following piscicide eradication efforts in southcentral Alaskan lakes. We used field observations and experiments to test the sensitivity of our Northern pike eDNA assay and to evaluate the persistence of detectable DNA emitted from Northern pike carcasses. We then used eDNA sampling and traditional sampling (i.e., gillnets) to test for presence of Northern pike in four lakes subjected to a piscicide-treatment designed to eradicate this species. We found that our assay could detect an abundant, free-roaming population of Northern pike and could also detect low-densities of Northern pike held in cages. For these caged Northern pike, probability of detection decreased with distance from the cage. We then stocked three lakes with Northern pike carcasses and collected eDNA samples 7, 35 and 70 days post-stocking. We detected DNA at 7 and 35 days, but not at 70 days. Finally, we collected eDNA samples ~ 230 days after four lakes were subjected to piscicide-treatments and detected Northern pike DNA in 3 of 179 samples, with a single detection at each of three lakes, though we did not catch any Northern pike in gillnets. Taken together, we found that eDNA can help to inform eradication efforts if used in conjunction with multiple lines of inquiry and sampling

  3. Potential of Environmental DNA to Evaluate Northern Pike (Esox lucius) Eradication Efforts: An Experimental Test and Case Study

    PubMed Central

    Dunker, Kristine J.; Sepulveda, Adam J.; Massengill, Robert L.; Olsen, Jeffrey B.; Russ, Ora L.; Wenburg, John K.; Antonovich, Anton

    2016-01-01

    Determining the success of invasive species eradication efforts is challenging because populations at very low abundance are difficult to detect. Environmental DNA (eDNA) sampling has recently emerged as a powerful tool for detecting rare aquatic animals; however, detectable fragments of DNA can persist over time despite absence of the targeted taxa and can therefore complicate eDNA sampling after an eradication event. This complication is a large concern for fish eradication efforts in lakes since killed fish can sink to the bottom and slowly decay. DNA released from these carcasses may remain detectable for long periods. Here, we evaluated the efficacy of eDNA sampling to detect invasive Northern pike (Esox lucius) following piscicide eradication efforts in southcentral Alaskan lakes. We used field observations and experiments to test the sensitivity of our Northern pike eDNA assay and to evaluate the persistence of detectable DNA emitted from Northern pike carcasses. We then used eDNA sampling and traditional sampling (i.e., gillnets) to test for presence of Northern pike in four lakes subjected to a piscicide-treatment designed to eradicate this species. We found that our assay could detect an abundant, free-roaming population of Northern pike and could also detect low-densities of Northern pike held in cages. For these caged Northern pike, probability of detection decreased with distance from the cage. We then stocked three lakes with Northern pike carcasses and collected eDNA samples 7, 35 and 70 days post-stocking. We detected DNA at 7 and 35 days, but not at 70 days. Finally, we collected eDNA samples ~ 230 days after four lakes were subjected to piscicide-treatments and detected Northern pike DNA in 3 of 179 samples, with a single detection at each of three lakes, though we did not catch any Northern pike in gillnets. Taken together, we found that eDNA can help to inform eradication efforts if used in conjunction with multiple lines of inquiry and sampling

  4. Potential of Environmental DNA to Evaluate Northern Pike (Esox lucius) Eradication Efforts: An Experimental Test and Case Study.

    PubMed

    Dunker, Kristine J; Sepulveda, Adam J; Massengill, Robert L; Olsen, Jeffrey B; Russ, Ora L; Wenburg, John K; Antonovich, Anton

    2016-01-01

    Determining the success of invasive species eradication efforts is challenging because populations at very low abundance are difficult to detect. Environmental DNA (eDNA) sampling has recently emerged as a powerful tool for detecting rare aquatic animals; however, detectable fragments of DNA can persist over time despite absence of the targeted taxa and can therefore complicate eDNA sampling after an eradication event. This complication is a large concern for fish eradication efforts in lakes since killed fish can sink to the bottom and slowly decay. DNA released from these carcasses may remain detectable for long periods. Here, we evaluated the efficacy of eDNA sampling to detect invasive Northern pike (Esox lucius) following piscicide eradication efforts in southcentral Alaskan lakes. We used field observations and experiments to test the sensitivity of our Northern pike eDNA assay and to evaluate the persistence of detectable DNA emitted from Northern pike carcasses. We then used eDNA sampling and traditional sampling (i.e., gillnets) to test for presence of Northern pike in four lakes subjected to a piscicide-treatment designed to eradicate this species. We found that our assay could detect an abundant, free-roaming population of Northern pike and could also detect low-densities of Northern pike held in cages. For these caged Northern pike, probability of detection decreased with distance from the cage. We then stocked three lakes with Northern pike carcasses and collected eDNA samples 7, 35 and 70 days post-stocking. We detected DNA at 7 and 35 days, but not at 70 days. Finally, we collected eDNA samples ~ 230 days after four lakes were subjected to piscicide-treatments and detected Northern pike DNA in 3 of 179 samples, with a single detection at each of three lakes, though we did not catch any Northern pike in gillnets. Taken together, we found that eDNA can help to inform eradication efforts if used in conjunction with multiple lines of inquiry and sampling

  5. Group selection for adaptation to multiple-hen cages: humoral immune response.

    PubMed

    Hester, P Y; Muir, W M; Craig, J V

    1996-11-01

    A selected line of White Leghorns, which has shown improved survivability and reduced feather loss in large multiple-hen cages, was evaluated for humoral immune response to SRBC under both stressed and unstressed conditions. Three lines of chickens (selected, control, and commercial) were housed in either single- (1 hen) or multiple-hen cages (12 hens, social competition) and subjected to a cold ambient temperature (0 C) at 33 wk of age and to two heating episodes (38 C) at 44 wk of age. Each hen was challenged intravenously with 1 mL of a 7% saline suspension of SRBC at the time that cold exposure was initiated. Hens subjected to high ambient temperatures had been exposed previously to a cold temperature, but were not challenged with SRBC until 16 to 18 h following the end of the second heating episode. Exposure to cold caused immunosuppression in single-caged hens, but not in hens in colony cages. Single- vs colony-caged hens of the control environment challenged with SRBC at 33 wk of age had similar primary hemagglutinin responses to SRBC. Hens subjected to heat experienced immunosuppression at 9 and 12 d following challenge to SRBC when compared to the controls. Hens of multiple-bird cages challenged with antigen at 44 wk of age had a significantly lower hemagglutinin response to SRBC than those reared in single-bird cages. The three lines of genetic stock had similar primary hemagglutinin responses to SRBC; the interactions of genetic stock with cage size or environmental temperature were not significant. It was concluded that genetically selecting hens for survival in multiple-hen cages did not affect their humoral immune response to SRBC.

  6. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    NASA Technical Reports Server (NTRS)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  7. Supracolloidal fullerene-like cages: design principles and formation mechanisms.

    PubMed

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-11-30

    How to create novel desired structures by rational design of building blocks represents a significant challenge in materials science. Here we report a conceptually new design principle for creating supracolloidal fullerene-like cages through the self-assembly of soft patchy particles interacting via directional nonbonded interactions by mimicking non-planar sp 2 hybridized carbon atoms in C 60 . Our numerical investigations demonstrate that the rational design of patch configuration, size, and interaction can drive soft three-patch particles to reversibly self-assemble into a vast collection of supracolloidal fullerene-like cages. We further elucidate the formation mechanisms of supracolloidal fullerene-like cages by analyzing the structural characteristics and the formation process. Our results provide conceptual and practical guidance towards the experimental realization of supracolloidal fullerene-like cages, as well as a new perspective on understanding the fullerene formation mechanisms.

  8. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. DNA Free Energy Landscapes and RNA Nano-Self-Assembly Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Frey, Eric William

    There is an important conceptual lesson which has long been appreciated by those who work in biophysics and related interdisciplinary fields. While the extraordinary behavior of biological matter is governed by its detailed atomic structure and random fluctuations, and is therefore difficult to predict, it can nevertheless be understood within simplified frameworks. Such frameworks model the system as consisting of only one or a few components, and model the behavior of the system as the occupation of a single state out of a small number of states available. The emerging widespread application of nanotechnology, such as atomic force microscopy (AFM), has expanded this understanding in eye-opening new levels of detail by enabling nano-scale control, measurement, and visualization of biological molecules. This thesis describes two independent projects, both of which illuminate this understanding using AFM, but which do so from very different perspectives. The organization of this thesis is as follows. Chapter 1 begins with an experimental background and introduction to AFM, and then describes our setup in both single-molecule manipulation and imaging modes. In Chapter 2, we describe the first project, the motivation for which is to extend methods for the experimental determination of the free energy landscape of a molecule. This chapter relies on the analysis of single-molecule manipulation data. Chapter 3 describes the second project, the motivation for which is to create RNA-based nano-structures suitable for future applications in living mammalian cells. This chapter relies mainly on imaging. Chapters 2 and 3 can thus be read and understood separately.

  10. Effects of glucose concentration on osteogenic differentiation of type II diabetes mellitus rat bone marrow-derived mesenchymal stromal cells on a nano-scale modified titanium.

    PubMed

    Yamawaki, I; Taguchi, Y; Komasa, S; Tanaka, A; Umeda, M

    2017-08-01

    Diabetes mellitus (DM) is a common disease worldwide. Patients with DM have an increased risk of losing their teeth compared with other individuals. Dental implants are a standard of care for treating partial or full edentulism, and various implant surface treatments have recently been developed to increase dental implant stability. However, some studies have reported that DM reduces osseointegration and the success rate of dental implants. The purpose of this study was to determine the effects of high glucose levels for hard tissue formation on a nano-scale modified titanium surface. Titanium disks were heated at 600°C for 1 h after treatment with or without 10 m NaOH solution. All disks were incubated with type II DM rat bone marrow-derived mesenchymal stromal cells before exposure to one of four concentrations of glucose (5.5, 8.0, 12.0 or 24.0 mm). The effect of different glucose concentrations on bone marrow-derived mesenchymal stromal cell osteogenesis and inflammatory cytokines on the nano-scale modified titanium surface was evaluated. Alkaline phosphatase activity decreased with increasing glucose concentration. In contrast, osteocalcin production and calcium deposition were significantly decreased at 8.0 mm glucose, but increased with glucose concentrations over 8.0 mm. Differences in calcium/phosphate ratio associated with the various glucose concentrations were similar to osteocalcin production and calcium deposition. Inflammatory cytokines were expressed at high glucose concentrations, but the nano-scale modified titanium surface inhibited the effect of high glucose concentrations. High glucose concentration increased hard tissue formation, but the quality of the mineralized tissue decreased. Furthermore, the nano-scale modified titanium surface increased mineralized tissue formation and anti-inflammation, but the quality of hard tissue was dependent on glucose concentration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A Cobalt Supramolecular Triple-Stranded Helicate-based Discrete Molecular Cage

    PubMed Central

    Mai, Hien Duy; Kang, Philjae; Kim, Jin Kyung; Yoo, Hyojong

    2017-01-01

    We report a strategy to achieve a discrete cage molecule featuring a high level of structural hierarchy through a multiple-assembly process. A cobalt (Co) supramolecular triple-stranded helicate (Co-TSH)-based discrete molecular cage (1) is successfully synthesized and fully characterized. The solid-state structure of 1 shows that it is composed of six triple-stranded helicates interconnected by four linking cobalt species. This is an unusual example of a highly symmetric cage architecture resulting from the coordination-driven assembly of metallosupramolecular modules. The molecular cage 1 shows much higher CO2 uptake properties and selectivity compared with the separate supramolecular modules (Co-TSH, complex 2) and other molecular platforms. PMID:28262690

  12. Nano-technology and nano-toxicology.

    PubMed

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  13. Nano-technology and nano-toxicology

    PubMed Central

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021

  14. Design of a Small-Scale Multi-Inlet Vortex Mixer for Scalable Nanoparticle Production and Application to the Encapsulation of Biologics by Inverse Flash NanoPrecipitation.

    PubMed

    Markwalter, Chester E; Prud'homme, Robert K

    2018-05-14

    Flash NanoPrecipitation (FNP) is a scalable approach to generate polymeric nanoparticles using rapid micromixing in specially-designed geometries such as a confined impinging jets (CIJ) mixer or a Multi-Inlet Vortex Mixer (MIVM). A major limitation of formulation screening using the MIVM is that a single run requires tens of milligrams of the therapeutic. To overcome this, we have developed a scaled-down version of the MIVM, requiring as little as 0.2 mg of therapeutic, for formulation screening. The redesigned mixer can then be attached to pumps for scale-up of the identified formulation. It was shown that Reynolds Number allowed accurate scaling between the two MIVM designs. The utility of the small-scale MIVM for formulation development was demonstrated through the encapsulation of a number of hydrophilic macromolecules using inverse Flash NanoPrecipitation with target loadings as high as 50% by mass. Copyright © 2018. Published by Elsevier Inc.

  15. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  16. Solute diffusion through fibrotic tissue formed around protective cage system for implantable devices.

    PubMed

    Prihandana, Gunawan Setia; Ito, Hikaru; Tanimura, Kohei; Yagi, Hiroshi; Hori, Yuki; Soykan, Orhan; Sudo, Ryo; Miki, Norihisa

    2015-08-01

    This article presents the concept of an implantable cage system that can house and protect implanted biomedical sensing and therapeutic devices in the body. Cylinder-shaped cages made of porous polyvinyl alcohol (PVA) sheets with an 80-µm pore size and/or stainless steel meshes with 0.54-mm openings were implanted subcutaneously in the dorsal region of rats for 5 weeks. Analysis of the explanted cages showed the formation of fibrosis tissue around the cages. PVA cages had fibrotic tissue growing mostly along the outer surface of cages, while stainless steel cages had fibrotic tissue growing into the inside surface of the cage structure, due to the larger porosity of the stainless steel meshes. As the detection of target molecules with short time lags for biosensors and mass transport with low diffusion resistance into and out of certain therapeutic devices are critical for the success of such devices, we examined whether the fibrous tissue formed around the cages were permeable to molecules of our interest. For that purpose, bath diffusion and microfluidic chamber diffusion experiments using solutions containing the target molecules were performed. Diffusion of sodium, potassium and urea through the fibrosis tissue was confirmed, thus suggesting the potential of these cylindrical cages surrounded by fibrosis tissue to successfully encase implantable sensors and therapeutic apparatus. © 2014 Wiley Periodicals, Inc.

  17. Transition-Metal-Catalyzed Selective Cage B-H Functionalization of o-Carboranes.

    PubMed

    Quan, Yangjian; Qiu, Zaozao; Xie, Zuowei

    2018-02-26

    Carboranes are a class of carbon-boron molecular clusters with unusual thermal and chemical stabilities. They have been proved as very useful building blocks in supramolecular design, optoelectronics, nanomaterials, boron neutron capture therapy agents and organometallic/coordination chemistry. Thus, the functionalization of o-carboranes has received growing interests. Over the past decades, most of the works in this area have been focused on cage carbon functionalization as the weakly acidic cage C-H proton can be readily deprotonated by strong bases. In sharp contrast, selective cage B-H activation/functionalization among chemically very similar ten B-H vertices is very challenging. Considering the differences in electron density of ten cage B-H bonds in o-carborane and the nature of transition metal complexes, we have tackled this selectivity issue by means of organometallic chemistry. Our strategy is as follows: using electron-rich transition metal catalysts for the functionalization of the most electron-deficient B(3,6)-H vertices (bonded to both cage CH vertices); using electron-deficient transition-metal catalysts for the functionalization of relatively electron-rich B(8,9,10,12)-H vertices (with no bonding to both cage CH vertices); and using the combination of directing groups and electrophilic transition metal catalysts for the functionalization of B(4,5,7,11)-H vertices (bonded to only one cage CH vertex). Successful applications of such a strategy result in the preparation of a large variety of cage B-functionalized carboranes in a regioselective and catalytic manner, which are inaccessible by other means. It is believed that as this field progresses, other cage B-functionalized carboranes are expected to be synthesized, and the results detailed in this concept article will further these efforts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modeling and control for micro and nano manipulation

    NASA Astrophysics Data System (ADS)

    Wejinya, Uchechukwu C.

    Manipulation of micro and nano entities implies the movement of micro and nano entities from an initial position (location) to the desire position (location). This operation is not only necessary, but a required task with great precision. The tools needed for the manipulation needs to be chosen properly because the capabilities of the human hand are very restricted. Smart micro and nano manipulation are becoming of great interest in many applications including medicine and industry. In industry, high precision manipulation systems are especially needed for mass production of both micro and nano systems which consist of different component in respective scales. The transition from assembling and manipulating micro and nano entities manually to mass products with high quality is only attainable by automated assembly and manipulation systems. An example is the testing of integrated circuits which can be carried out by exchanging the manipulation tool by an electric probe. Furthermore, in medical research it is customary to pick up a single cell (human, plant, or animal), and carry it to another device which is used to further analyze the cell. Consequently, the cell of interest has to be separated from the other cells and picked up using the appropriate micro/nano tool. Hence it becomes absolutely necessary that the appropriate tool be used for specific micro or nano entity manipulation and assembly. In this research, we focus on developing micro tool for manipulating micro and nano entities in liquid environment using a micro fluidic end effector system with in-situ Polyvinylidene Fluoride (PVDF) sensing. The microfluidic end effector system consists of a DC micro-diaphragm pump and compressor, one region of flexible latex tube, a Polyvinylidene Fluoride (PVDF) sensor for in-situ measurement of micro drag force, and a micro pipette. The micro pipette of the novel microfluidic end effector system has an internal diameter (ID) smaller than 20mum used for microfluidic

  19. A bio-recognition device developed onto nano-crystals of carbonate apatite for cell-targeted gene delivery.

    PubMed

    Chowdhury, E H; Akaike, Toshihiro

    2005-05-20

    The DNA delivery to mammalian cells is an essential tool for analyzing gene structure, regulation, and function. The approach holds great promise for the further development of gene therapy techniques and DNA vaccination strategies to treat and control diseases. Here, we report on the establishment of a cell-specific gene delivery and expression system by physical adsorption of a cell-recognition molecule on the nano-crystal surface of carbonate apatite. As a model, DNA/nano-particles were successfully coated with asialofetuin to facilitate uptake by hepatocyte-derived cell lines through the asialoglycoprotein receptor (ASGPr) and albumin to prevent non-specific interactions of the particles with cell-surface. The resulting composite particles with dual surface properties could accelerate DNA uptake and enhance expression to a notable extent. Nano-particles coated with transferrin in the same manner dramatically enhanced transgene expression in the corresponding receptor-bearing cells and thus our newly developed strategy represents a universal phenomenon for anchoring a bio-recognition macromolecule on the apatite crystal surface for targeted gene delivery, having immediate applications in basic research laboratories and great promise for gene therapy. (c) 2005 Wiley Periodicals, Inc.

  20. Age-Related Variations in Intestinal Microflora of Free-Range and Caged Hens.

    PubMed

    Cui, Yizhe; Wang, Qiuju; Liu, Shengjun; Sun, Rui; Zhou, Yaqiang; Li, Yue

    2017-01-01

    Free range feeding pattern puts the chicken in a mixture of growth materials and enteric bacteria excreted by nature, while it is typically unique condition materials and enteric bacteria in commercial caged hens production. Thus, the gastrointestinal microflora in two feeding patterns could be various. However, it remains poorly understood how feeding patterns affect development and composition of layer hens' intestinal microflora. In this study, the effect of feeding patterns on the bacteria community in layer hens' gut was investigated using free range and caged feeding form. Samples of whole small intestines and cecal digesta were collected from young hens (8-weeks) and mature laying hens (30-weeks). Based on analysis using polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing of bacterial 16S rDNA gene amplicons, the microflora of all intestinal contents were affected by both feeding patterns and age of hens. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria were the main components. Additionally, uncultured environmental samples were found too. There were large differences between young hens and adult laying hens, the latter had more Firmicutes and Bacteroidetes, and bacterial community is more abundant in 30-weeks laying hens of all six phyla than 8-weeks young hens of only two phyla. In addition, the differences were also observed between free range and caged hens. Free range hens had richer Actinobacteria, Bacteroidetes, and Proteobacteria. Most of strains found were detected more abundant in small intestines than in cecum. Also the selected Lactic acid bacteria from hens gut were applied in feed and they had beneficial effects on growth performance and jejunal villus growth of young broilers. This study suggested that feeding patterns have an importance effect on the microflora composition of hens, which may impact the host nutritional status and intestinal health.

  1. DNAzymes in DNA Nanomachines and DNA Analysis

    NASA Astrophysics Data System (ADS)

    He, Yu; Tian, Ye; Chen, Yi; Mao, Chengde

    This chapter discusses our efforts in using DNAzymes in DNA nano-machines and DNA analysis systems. 10-23 DNAzymes can cleave specific phos-phodiester bonds in RNA. We use them to construct an autonomous DNA-RNA chimera nanomotor, which constantly extracts chemical energy from RNA substrates and transduces the energy into a mechanical motion: cycles of contraction and extension. The motor's motion can be reversibly turned on and off by a DNA analogue (brake) of the RNA substrate. Addition and removal of the brake stops and restarts, respectively, the motor's motion. Furthermore, when the RNA substrates are preorganized into a one-dimensional track, a DNAzyme can continuously move along the track so long as there are substrates available ahead. Based on a similar mechanism, a novel DNA detection system has been developed. A target DNA activates a DNAzyme to cleave RNA-containing molecular beacons (MB), which generates an enhanced fluorescence signal. A following work integrates two steps of signal amplifications: a rolling-circle amplification (RCA) to synthesize multiple copies of DNAzymes, and the DNAzymes catalyze a chemical reaction to generate a colorimetric signal. This method allows detection of DNA analytes whose concentration is as low as 1 pM.

  2. Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Gorman, Paul D.; English, Niall J.; MacElroy, J. M. D.

    2012-01-01

    Classical equilibrium molecular dynamics simulations have been performed to investigate dynamical properties of cage radial breathing modes and intra- and inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar and up to 250 K. For the mixed H2-THF system in which there is single H2 occupation of the small cage (labelled "1SC 1LC"), we find that no H2 migration occurs, and this is also the case for pure H2 hydrate with single small-cavity occupation and quadruple occupancy for large cages (dubbed "1SC 4LC"). However, for the more densely filled H2-THF and pure-H2 systems, in which there is double H2 occupation in the small cage (dubbed "2SC 1LC" and "2SC 4LC," respectively), there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K, with an approximate Arrhenius temperature-dependence for the migration rate from 200 to 250 K. It was found that these "cage hopping" events are facilitated by temporary openings of pentagonal small-cage faces with the relaxation and reformation of key stabilising hydrogen bonds during and following passage. The cages remain essentially intact up to 250 K, save for transient hydrogen bond weakening and reformation during and after inter-cage hydrogen diffusion events in the 200-250 K range. The "breathing modes," or underlying frequencies governing the variation in the cavities' radii, exhibit a certain overlap with THF rattling motion in the case of large cavities, while there is some overlap of small cages' radial breathing modes with lattice acoustic modes.

  3. Metabolic Cages for a Space Flight Model in the Rat

    NASA Technical Reports Server (NTRS)

    Harper, Jennifer S.; Mulenburg, Gerald M.; Evans, Juli; Navidi, Meena; Wolinsky, Ira; Arnaud, Sara B.

    1994-01-01

    A variety of space flight models are available to mimic the physiologic changes seen in the rat during weightlessness. The model reported by Wronski and Morey-Holton has been widely used by many investigators, in musculoskeletal physiologic studies especially, resulting in accumulation of an extensive database that enables scientists to mimic space flight effects in the 1-g environment of Earth. However, information on nutrition or gastrointestinal and renal function in this space flight model is limited by the difficulty in acquiring uncontaminated metabolic specimens for analysis. In the Holton system, a traction tape harness is applied to the tail, and the rat's hindquarters are elevated by attaching the harness to a pulley system. Weight-bearing hind limbs are unloaded, and there is a headward fluid shift. The tail-suspended rats are able to move freely about their cages on their forelimbs and tolerate this procedure with minimal signs of stress. The cage used in Holton's model is basically a clear acrylic box set on a plastic grid floor with the pulley and tail harness system attached to the open top of the cage. Food is available from a square food cup recessed into a corner of the floor. In this system, urine, feces, and spilled food fall through the grid floor onto absorbent paper beneath the cage and cannot be separated and recovered quantitatively for analysis in metabolic balance studies. Commercially available metabolic cages are generally cylindrical and have been used with a centrally located suspension apparatus in other space flight models. The large living area, three times as large as most metabolic cages, and the free range of motion unique to Holton's model, essential for musculoskeletal investigations, were sacrificed. Holton's cages can accommodate animals ranging in weight from 70 to 600 g. Although an alternative construction of Holton's cage has been reported, it does not permit collection of separate urine and fecal samples. We describe

  4. Virucidal effects of rodent cage-cleaning practices on the viability of adenovirus vectors.

    PubMed

    Porter, Jacqueline D; Lyons, Russette M

    2002-09-01

    Human adenoviruses and adenoviral vectors are classified as Risk Group 2 agents and require BSL2 containment and practices. An additional consideration in using adenoviruses and viral vectors in laboratory animal studies is the possible transmission of these agents to other animals and/or personnel as a result of viral shedding in animal urine and feces. When handling BSL2 agents, cage-wash staff are required to wear appropriate personnel protective equipment, including scrubs, Tyvek suit, hair covering, dust mask, shoes covers, and gloves. Current decontamination procedures are to bag and autoclave soiled rodent cages containing bedding prior to washing in the cage washer to prevent possible adenoviral transmission. However, the practice of autoclaving softens the polycarbonate-based rodent cages, allowing damaging agents or conditions to affect the integrity of the plastic and degrade the cages. The objective of this study was to determine whether current rodent cage-cleaning practices produced virucidal effects for use in lieu of or prior to autoclaving the cages. We found that heating an Av3GFP vector in a test tube to a temperature of 74 degrees C (165 degrees F) for 6 min conditions equivalent to those of the cage washer resulted in greater than an 11-log reduction in infectivity of the vector as evaluated by its cytopathic effect on cells. The combination of heating and a liquid, phosphate-free alkaline detergent produced the same reduction in vector infectivity. However, common cage-cleaning solutions alone possessed no virucidal activity. The high temperatures used in cage-washing procedures alone or in combination with a cleaning solution reduced or eliminated the risk of transmission from viral shedding through urine and feces even at vector concentrations far greater than would ever be expected to be present. Autoclaving cages diminishes the stability and integrity of the polycarbonate cages without providing a further reduction in the risk of virus or

  5. Analysis of babA, cagE and cagA genes in Helicobacter pylori from upper gastric patients in the north of Iran.

    PubMed

    Asl, Saba Fakhrieh; Pourvahedi, Mehrnaz; Mojtahedi, Ali; Shenagari, Mohammad

    2018-05-14

    Helicobacter pylori is a Gram-negative bacterium which has a serious effect on the up to half of the world's population and has been related to different gastric diseases. The goal of this study was to assess the frequency of babA, cagE and cagA genotypes among H. pylori strains isolated from gastric biopsies of endoscopic patients in the north of Iran. The present study was performed on 90 strains of H. pylori isolated from patients with gastric diseases (Gastric ulcer (GU), Duodenal ulcer (DU), Gastritis (G), Non-ulcer dyspepsia (NUD) and Gastric adenocarcinoma (GC)). DNA was extracted from all isolated strains and PCR method was performed to detect the prevalence of babA, cagE and cagA genes using specific primers. Among 90 samples of H. pylori, babA, cagE, and cagA genes were detected in 42.2%, 30% and 82.2% of strains respectively. The statistical analysis showed that the prevalence of cagA gene in GU, G, DU, and NUD was significantly higher than other genes. Moreover, cagA, and babA2 genes was significantly more prevalent in GC patients compared to cagE gene. Our isolates exhibited 8 distinct arrangements of virulence patterns. The occurrence of cagA (35.6%) was the most prevalent pattern followed by cagA/babA2 (20%), and cagA/babA2/cagE (14.4%). In summary, as first report from Guilan province in the north of Iran, we showed significant association between the presence of babA2, cagE, and cagA genes in different types of gastric disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Fabrication of large-area nano-scale patterned sapphire substrate with laser interference lithography

    NASA Astrophysics Data System (ADS)

    Xuan, Ming-dong; Dai, Long-gui; Jia, Hai-qiang; Chen, Hong

    2014-01-01

    Periodic triangle truncated pyramid arrays are successfully fabricated on the sapphire substrate by a low-cost and high-efficiency laser interference lithography (LIL) system. Through the combination of dry etching and wet etching techniques, the nano-scale patterned sapphire substrate (NPSS) with uniform size is prepared. The period of the patterns is 460 nm as designed to match the wavelength of blue light emitting diode (LED). By improving the stability of the LIL system and optimizing the process parameters, well-defined triangle truncated pyramid arrays can be achieved on the sapphire substrate with diameter of 50.8 mm. The deviation of the bottom width of the triangle truncated pyramid arrays is 6.8%, which is close to the industrial production level of 3%.

  7. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).

    PubMed

    Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.

  8. Nano-scale hydrogen-bond network improves the durability of greener cements

    PubMed Central

    Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T. F.; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P.; Bordallo, Heloisa N.

    2013-01-01

    More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free “greener” building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676

  9. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA)

    PubMed Central

    Lee, Yong-Gu; Lyons, Kevin W.; Feng, Shaw C.

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design. PMID:27366610

  10. A Non-Parametric Item Response Theory Evaluation of the CAGE Instrument Among Older Adults.

    PubMed

    Abdin, Edimansyah; Sagayadevan, Vathsala; Vaingankar, Janhavi Ajit; Picco, Louisa; Chong, Siow Ann; Subramaniam, Mythily

    2018-02-23

    The validity of the CAGE using item response theory (IRT) has not yet been examined in older adult population. This study aims to investigate the psychometric properties of the CAGE using both non-parametric and parametric IRT models, assess whether there is any differential item functioning (DIF) by age, gender and ethnicity and examine the measurement precision at the cut-off scores. We used data from the Well-being of the Singapore Elderly study to conduct Mokken scaling analysis (MSA), dichotomous Rasch and 2-parameter logistic IRT models. The measurement precision at the cut-off scores were evaluated using classification accuracy (CA) and classification consistency (CC). The MSA showed the overall scalability H index was 0.459, indicating a medium performing instrument. All items were found to be homogenous, measuring the same construct and able to discriminate well between respondents with high levels of the construct and the ones with lower levels. The item discrimination ranged from 1.07 to 6.73 while the item difficulty ranged from 0.33 to 2.80. Significant DIF was found for 2-item across ethnic group. More than 90% (CC and CA ranged from 92.5% to 94.3%) of the respondents were consistently and accurately classified by the CAGE cut-off scores of 2 and 3. The current study provides new evidence on the validity of the CAGE from the IRT perspective. This study provides valuable information of each item in the assessment of the overall severity of alcohol problem and the precision of the cut-off scores in older adult population.

  11. Play Caging Benefits the Behavior of Singly Housed Laboratory Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Griffis, Caroline M; Martin, Allison L; Perlman, Jaine E; Bloomsmith, Mollie A

    2013-01-01

    This study addresses a recommendation in The Guide for the Care and Use of Laboratory Animals to provide singly housed nonhuman primates with intermittent access to large, enriched (play) caging. Research on the potential benefits of this type of caging is limited. The present study examines the effects of play caging on behavior, activity, and enrichment use. Singly housed, adult male, rhesus macaques (n = 10) underwent a baseline phase in their home cages, a 2-wk treatment phase with housing in play cages, and a posttreatment phase after returning to their home cages. Each subject underwent focal behavioral observations (n = 10; duration 30 min each) during each study phase, for a total of 150 h of data collection. Results showed increases in locomotion and enrichment use and a trend toward decreased abnormal behavior while subjects were in the play cage, with the durations of these behaviors returning to baseline levels after treatment. Anxiety-related behaviors decreased between the treatment and posttreatment phases but not between baseline and treatment, suggesting that outside factors may have influenced the decline. During the treatment phase, subjects spent more time in the upper quadrants of the play caging and preferred a mirror and forage boards as forms of enrichment. The greatest behavioral improvement occurred during the first week in the play cage. This study provides evidence to support the benefits of play caging for singly housed rhesus macaques. PMID:24041207

  12. Ecological assessment of nano-enabled supercapacitors for automotive applications

    NASA Astrophysics Data System (ADS)

    Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M.

    2012-09-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  13. Effects of Cage-Change Frequency and Bedding Volume on Mice and Their Microenvironment

    PubMed Central

    Rosenbaum, Matthew D; VandeWoude, Susan; Johnson, Thomas E

    2009-01-01

    The frequency at which mouse cages are changed has important implications for the animals, animal care personnel, and facility managers. The objective of this study was to determine how bedding volume and the interval between changes affect microenvironmental conditions, health, and behavior of mice housed in individually ventilated cages (IVC). A total of 15 cages (n = 5 cages per bedding volume) housing ICR female mice (n = 5 animals per cage) were monitored for 17 d. Parameters monitored included clinical evaluation of each animal, appearance of the cage, fecal corticosterone levels, bedding weight, and mouse mass. Atmospheric analysis was performed daily to determine intracage ammonia cage humidity and temperature on a daily basis. Mice were videotaped for 10 min on days 1, 8, and 15, and videos were analyzed for abnormal behaviors. On day 17, 1 mouse from each cage was euthanized, and bronchoalveolar lavage was performed. Statistical differences in parameters were most often noted between low- and high-volume bedding groups. Correlation between visual appearance and actual intracage environmental conditions and mouse health and behavior at specific time points indicated cages that appear dirty to most observers did not have measurably adverse effects on the animals for any of the many parameters evaluated in this study. This study demonstrated that a 2-wk interval between cage changes for ICR female mice housed in IVC caging (with approximately 90 air changes per hour) and aspen chip bedding did not significantly affect measures of animal well-being in this study. This lack of effect occurred despite the appearance of excessive soiling by the 2-wk time point. PMID:19930825

  14. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    PubMed Central

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-01-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722

  15. Caging and Photoactivation in Single-Molecule Förster Resonance Energy Transfer Experiments

    PubMed Central

    2017-01-01

    Caged organic fluorophores are established tools for localization-based super-resolution imaging. Their use relies on reversible deactivation of standard organic fluorophores by chemical reduction or commercially available caged dyes with ON switching of the fluorescent signal by ultraviolet (UV) light. Here, we establish caging of cyanine fluorophores and caged rhodamine dyes, i.e., chemical deactivation of fluorescence, for single-molecule Förster resonance energy transfer (smFRET) experiments with freely diffusing molecules. They allow temporal separation and sorting of multiple intramolecular donor–acceptor pairs during solution-based smFRET. We use this “caged FRET” methodology for the study of complex biochemical species such as multisubunit proteins or nucleic acids containing more than two fluorescent labels. Proof-of-principle experiments and a characterization of the uncaging process in the confocal volume are presented. These reveal that chemical caging and UV reactivation allow temporal uncoupling of convoluted fluorescence signals from, e.g., multiple spectrally similar donor or acceptor molecules on nucleic acids. We also use caging without UV reactivation to remove unwanted overlabeled species in experiments with the homotrimeric membrane transporter BetP. We finally outline further possible applications of the caged FRET methodology, such as the study of weak biochemical interactions, which are otherwise impossible with diffusion-based smFRET techniques because of the required low concentrations of fluorescently labeled biomolecules. PMID:28362086

  16. Three-dimensional protonic conductivity in porous organic cage solids.

    PubMed

    Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y; Little, Marc A; Hasell, Tom; Aldous, Iain M; Brown, Craig M; Smith, Martin W; Morrison, Carole A; Hardwick, Laurence J; Cooper, Andrew I

    2016-09-13

    Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10(-3) S cm(-1) at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores.

  17. FANTOM5 CAGE profiles of human and mouse samples.

    PubMed

    Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Kojima, Miki; Kubosaki, Atsutaka; Manabe, Ri-Ichiroh; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakazato, Kenichi; Ninomiya, Noriko; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A; Babina, Magda; Baillie, J Kenneth; Barnett, Timothy C; Beckhouse, Anthony G; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J; Clevers, Hans C; Davis, Carrie A; Detmar, Michael; Dohi, Taeko; Edge, Albert S B; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Farach-Carson, Mary C; Faulkner, Geoffrey J; Ferrai, Carmelo; Fisher, Malcolm E; Forrester, Lesley M; Fujita, Rie; Furusawa, Jun-Ichi; Geijtenbeek, Teunis B; Gingeras, Thomas; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J; Hume, David A; Ikawa, Tomokatsu; Ishizu, Yuri; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I; Kempfle, Judith S; Kenna, Tony J; Kere, Juha; Khachigian, Levon M; Kitamura, Toshio; Klein, Sarah; Klinken, S Peter; Knox, Alan J; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Mackay-Sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J; Motohashi, Hozumi; Mummery, Christine L; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Schulze-Tanzil, Gundula G; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A; Winteringham, Louise N; Wolvetang, Ernst; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide

    2017-08-29

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.

  18. Three-dimensional protonic conductivity in porous organic cage solids

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y.; Little, Marc A.; Hasell, Tom; Aldous, Iain M.; Brown, Craig M.; Smith, Martin W.; Morrison, Carole A.; Hardwick, Laurence J.; Cooper, Andrew I.

    2016-09-01

    Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10-3 S cm-1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores.

  19. Immune reactivity in early life stages of sea-cage cultured Pacific bluefin tuna naturally infected with blood flukes from genus Cardicola (Trematoda: Aporocotylidae).

    PubMed

    Pennacchi, Ylenia; Shirakashi, Sho; Nowak, Barbara F; Bridle, Andrew R

    2016-11-01

    Pacific bluefin tuna (PBT), Thunnus orientalis, due to its high average price on the market is an economically valuable fish species. Infections by blood flukes from the genus Cardicola (Trematoda: Aporocotylidae) represent a growing concern for the cage culture of bluefin tuna in Japan, Australia and Southern Europe. The accumulation of numerous Cardicola eggs in the fish gills causes severe pathology that has been linked to mortality in PBT juveniles up to one year old. The only effective treatment used to mitigate the infection is the oral administration of the antihelminthic drug praziquantel (PZQ) to the affected fish. However, with the need to minimise therapeutic drug use in aquaculture it is hoped that immunoprophylaxis can provide a future alternative to protect the PBT juveniles against Cardicola infection. Currently, little is known of the host immune response to these parasites and of their infection dynamics. In this study, using real-time qPCR we aimed to quantitatively detect C. orientalis and C. opisthorchis DNA within the gills and heart of cultured PBT juveniles and to investigate the host immune response at the transcriptional level in the gills. The research focused mainly during early stages of infection soon after young PBT were transferred to culture cages (from 14 to 77 days post-transfer). An increase (up to 11-fold) of immune-related genes, namely IgM, MHC-I, TCR-β and IL-1β was observed in the PBT gills infected with Cardicola spp. (28-77 days post-transfer). Furthermore, IgM (19-fold increase) and MHC-I (11.5-fold increase) transcription was strongly up-regulated in gill samples of PBT infected with C. orientalis relative to uninfected fish but not in fish infected with C. opisthorchis. Cardicola-specific DNA was first detected in the host 14 days post-transfer (DPT) to sea-cages which was 55 days earlier than the first detection of parasite eggs and adults by microscopy. Oral administration of PZQ did not have an immediate effect

  20. Pop hole passages and welfare in furnished cages for laying hens.

    PubMed

    Wall, H; Tauson, R; Elwinger, K

    2004-02-01

    1. This study included two designs of furnished cages for 16 hens; H-cages divided into two apartments by a partition with pop holes in the middle of the cage, and fully open O-cages, without a partition. The hypothesis was that in this rather large group of birds the pop hole partition would benefit the birds by allowing them to avoid or escape from potential cannibals, feather-peckers or aggressive hens. All cages had two nests, two perches and one litter box. 2. A total of 10 cages (5 H and 5 O) were stocked with Lohmann Selected Leghorn (LSL) and 8 cages (4 H and 4 O) with Hy-Line W36. No birds were beak-trimmed. 3. Heterophil/lymphocyte (H/L) ratios, duration of tonic immobility (TI) and exterior appearance (scoring of plumage condition and wounds at comb or around cloaca) were used as indicators of well-being. Total mortality and deaths due to cannibalism were also recorded. 4. Visits to nests and passages through partition pop holes were studied in samples of 35 and 21 birds, respectively, using a technique based on passive integrated transponder (PIT) tags. 5. Cage design (H- vs O-cage) had no effect on the welfare traits chosen. 6. Hy-Line birds showed higher H/L ratios, longer duration of TI and better plumage condition than LSL birds. These differences are discussed in terms of stress thresholds and copying strategies. 7. On days when a hen made visits to nests, the visiting frequency was 1.4 and the total time in the nest was 41 min on average. Hens made use of the pop hole passages between 1 and 8 times per hen and day. 8. Overall low levels of aggression, lack of injuries or deaths due to cannibalism, and plumage condition indicating moderate feather pecking, together imply a low need to escape. The pop holes were used frequently and birds distributed well between compartments showing that the system worked well. However, at this group size there was no evidence in the measured traits that H-cages provided a better housing environment.

  1. Long-term effects of placing one or two cages in instrumented posterior lumbar interbody fusion.

    PubMed

    Zhang, Mingzheng; Pu, Fang; Xu, Liqiang; Zhang, Linlin; Yao, Jie; Li, Deyu; Wang, Yu; Fan, Yubo

    2016-06-01

    Posterior lumbar interbody fusion (PLIF) is an established surgical procedure for spine stabilization after the removal of an intervertebral disc. Researches have shown that inserting a single oblique cage has a similar immediate effect to coupled cages, and it has been proposed that single-cage PLIF is a useful alternative to traditional two-cage PLIF. However, it is not clear whether placing one or two cages represents the best choice for long-term fusion. The aim of this study is to examine how cage placement affects bone remodeling after PLIF surgery, and how this consequently impacts the long-term fusion process. A finite element model of a L3-L4 lumbar spine with PLIF was developed. The spinal segment was modeled with a partial laminectomy and a discectomy with partial facetectomy, and implanted with posterior pedicle screws. Two models were analyzed, one with coupled parallel cages and one with a single oblique cage. Adaptive bone remodeling was simulated according to Huiskes' criterion. The results showed that in the initial state prior to any bone remodeling, cage stress, cage subsidence and cage dislodgement in the single cage model were all greater than in the coupled cage model. In the final state after significant bone remodeling had taken place, these parameters had decreased in both models and the differences between the two models were reduced. Also, the single cage model demonstrated superior bone development in the bone graft when placed under a constant 400 N axial compressive load. Based on the long-term results, instrumented PLIF with a single cage could also be encouraged in clinical practice.

  2. Oscillation-based methods for actuation and manipulation of nano-objects

    NASA Astrophysics Data System (ADS)

    Popov, V. L.

    2017-09-01

    We discuss how oscillations can be used for fixation or manipulation of nano-objects or producing nano-drives. The underlying principles are scale-invariant and principally can be scaled down up to the molecular scale. The main underlying principle of fixation and actuation occurs to be symmetry breaking of an oscillating system. From this unifying standpoint, a series of actuation principles are discussed as dragging, ratchets, micro walking, friction-inertia actuators, oscillation tweezers, flagella motors for propulsion in liquids as well as some recently proposed actuation principles.

  3. 48 CFR 204.7204 - Maintenance of the CAGE file.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electronic equivalent, to— DLA Logistics Information Service, DLIS-SBB, Federal Center, 74 Washington Avenue... Maintenance of the CAGE file. (a) DLA Logistics Information Service will accept written requests for changes...) Additional guidance for maintaining CAGE codes is in Volume 7 of DoD 4100.39-M, Federal Logistics Information...

  4. 48 CFR 204.7204 - Maintenance of the CAGE file.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electronic equivalent, to— DLA Logistics Information Service, DLIS-SBB, Federal Center, 74 Washington Avenue... Maintenance of the CAGE file. (a) DLA Logistics Information Service will accept written requests for changes...) Additional guidance for maintaining CAGE codes is in Volume 7 of DoD 4100.39-M, Federal Logistics Information...

  5. 48 CFR 204.7204 - Maintenance of the CAGE file.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electronic equivalent, to— DLA Logistics Information Service, DLIS-SBB, Federal Center, 74 Washington Avenue... Maintenance of the CAGE file. (a) DLA Logistics Information Service will accept written requests for changes...) Additional guidance for maintaining CAGE codes is in Volume 7 of DoD 4100.39-M, Federal Logistics Information...

  6. 48 CFR 204.7204 - Maintenance of the CAGE file.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electronic equivalent, to— DLA Logistics Information Service, DLIS-SBB, Federal Center, 74 Washington Avenue... Maintenance of the CAGE file. (a) DLA Logistics Information Service will accept written requests for changes...) Additional guidance for maintaining CAGE codes is in Volume 7 of DoD 4100.39-M, Federal Logistics Information...

  7. Nano-viscosity of supercooled liquid measured by fluorescence correlation spectroscopy: Pressure and temperature dependence and the density scaling

    NASA Astrophysics Data System (ADS)

    Meier, G.; Gapinski, J.; Ratajczyk, M.; Lettinga, M. P.; Hirtz, K.; Banachowicz, E.; Patkowski, A.

    2018-03-01

    The Stokes-Einstein relation allows us to calculate apparent viscosity experienced by tracers in complex media on the basis of measured self-diffusion coefficients. Such defined nano-viscosity values can be obtained through single particle techniques, like fluorescence correlation spectroscopy (FCS) and particle tracking (PT). In order to perform such measurements, as functions of pressure and temperature, a new sample cell was designed and is described in this work. We show that this cell in combination with a long working distance objective of the confocal microscope can be used for successful FCS, PT, and confocal imaging experiments in broad pressure (0.1-100 MPa) and temperature ranges. The temperature and pressure dependent nano-viscosity of a van der Waals liquid obtained from the translational diffusion coefficient measured in this cell by means of FCS obeys the same scaling as the rotational relaxation and macro-viscosity of the system.

  8. A Squirrel Cage Type Electric Motor Rotor Assembly.

    DTIC Science & Technology

    1996-09-05

    cage motor, but also provides efficiencies approaching those of permanent magnet motors . With the above and other objects in view, as will...and active motor life relative to known permanent magnet motors . Referring to FIG. 4, there is illustrated an alternative embodiment in which...part the.known advantages of a squirrel cage motor, and further provides improved efficiencies approaching those of permanent magnet motors . It is to

  9. Biocentrifuge system capable of exchanging specimen cages while in operational mode

    NASA Technical Reports Server (NTRS)

    Belew, R. R. (Inventor)

    1981-01-01

    The centrifuge comprises a generally circular, rotatably mounted frame carrying a plurality of removable and replaceable cages for the animal specimens. Pairs of opposing cages may be removed from the frame while it is rotating by means of a cage exchanger which rotates concentrically within the centrifuge and the speed of which is controlled independently of the frame speed. An image rotator is provided for selective observation of the rotating animals. The system further includes a waste conveyor system, a food supply system, and a water supply system for each cage for creating a life sustaining environment so that the animals can live in the rotating centrifuge for extended periods.

  10. Caged compounds for multichromic optical interrogation of neural systems

    PubMed Central

    Amatrudo, Joseph M.; Olson, Jeremy P.; Agarwal, Hitesh K.; Ellis-Davies, Graham C.R.

    2014-01-01

    Caged compounds have widely used by neurophysiologists to study many aspects of cellular signaling in glia and neurons. Biologically inert before irradiation, they can be loaded into cells via patch pipette or topically applied in situ to a defined concentration, photolysis releases the caged compound in a very rapid and spatially defined way. Since caged compounds are exogenous optical probes, they include not only natural products such neurotransmitters, calcium and IP3, but non-natural products such as fluorophores, drugs and antibodies. In this Technical Spotlight we provide a short introduction to the uncaging technique by discussing the nitroaromatic caging chromophores most widely used in such experiments (e.g. CNB1, DMNB, MNI and CDNI). We show that recently developed caging chromophores (RuBi and DEAC450) that are photolyzed with blue light (ca. 430–480 nm range) can be combined with traditional nitroaromatic caged compounds to enable two-color optical probing of neuronal function. For example, one-photon uncaging of either RuBi-GABA or DEAC450-GABA with a 473-nm laser is facile, and can block non-linear currents (dendritic spikes or action potentials) evoked by two-photon uncaging of CDNI-Glu at 720 nm. We also show that two-photon uncaging of DEAC450-Glu and CDNI-GABA at 900 and 720 nm, respectively, can be used to fire and block action potentials. Our experiments illustrate that recently developed chromophores have taken uncaging out of the “monochrome era”, in which it has existed since 1978, so as to enable multichromic interrogation of neuronal function with single synapse precision. PMID:25471355

  11. Recent advances in micro-scale and nano-scale high-performance liquid-phase chromatography for proteome research.

    PubMed

    Tao, Dingyin; Zhang, Lihua; Shan, Yichu; Liang, Zhen; Zhang, Yukui

    2011-01-01

    High-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS-MS) is regarded as one of the most powerful techniques for separation and identification of proteins. Recently, much effort has been made to improve the separation capacity, detection sensitivity, and analysis throughput of micro- and nano-HPLC, by increasing column length, reducing column internal diameter, and using integrated techniques. Development of HPLC columns has also been rapid, as a result of the use of submicrometer packing materials and monolithic columns. All these innovations result in clearly improved performance of micro- and nano-HPLC for proteome research.

  12. Nano-bio assemblies for artificial light harvesting systems

    NASA Astrophysics Data System (ADS)

    Bain, Dipankar; Maity, Subarna; Patra, Amitava

    2018-02-01

    Ultrasmall fluorescent gold nanoclusters (Au NCs) have drawn considerable research interest owing to their molecular like properties such as d-sp and sp-sp transitions, and intense fluorescence. Fluorescent Au NCs have especial attraction in biological system owing to their biocompatibility and high photostability. Recently, several strategies have been adapted to design an artificial light-harvesting system using Au NCs for potential applications. Here, we have designed Au nanoclusters based dsDNA (double stranded deoxyribonucleic acid) nano assemblies where the Au nanocluster is covalently attached with Alexa Fluor 488 (A488) dye tagged dsDNA. Investigation reveals that the incorporation of Ag+ into dsDNA enhances the rate of energy transfer from A488 to Au NCs. In addition cadmium telluride quantum dot (CdTe QDs) based Au NCs hybrid material shows the significant enhancement of energy transfer 35% to 83% with changing the capping ligand of Au NCs from glutathione (GSH) to bovine serum albumin (BSA) protein. Another hybrid system is developed using carbon dots and dye encapsulated BSA-protein capped Au NCs for efficient light harvesting system with 83% energy transfer efficiency. Thus, Au NCs base nano bio assemblies may open up new possibilities for the construction of artificial light harvesting system.

  13. Micro/nano-computed tomography technology for quantitative dynamic, multi-scale imaging of morphogenesis.

    PubMed

    Gregg, Chelsea L; Recknagel, Andrew K; Butcher, Jonathan T

    2015-01-01

    Tissue morphogenesis and embryonic development are dynamic events challenging to quantify, especially considering the intricate events that happen simultaneously in different locations and time. Micro- and more recently nano-computed tomography (micro/nanoCT) has been used for the past 15 years to characterize large 3D fields of tortuous geometries at high spatial resolution. We and others have advanced micro/nanoCT imaging strategies for quantifying tissue- and organ-level fate changes throughout morphogenesis. Exogenous soft tissue contrast media enables visualization of vascular lumens and tissues via extravasation. Furthermore, the emergence of antigen-specific tissue contrast enables direct quantitative visualization of protein and mRNA expression. Micro-CT X-ray doses appear to be non-embryotoxic, enabling longitudinal imaging studies in live embryos. In this chapter we present established soft tissue contrast protocols for obtaining high-quality micro/nanoCT images and the image processing techniques useful for quantifying anatomical and physiological information from the data sets.

  14. Modeling and analysis of sub-surface leakage current in nano-MOSFET under cutoff regime

    NASA Astrophysics Data System (ADS)

    Swami, Yashu; Rai, Sanjeev

    2017-02-01

    The high leakage current in nano-meter regimes is becoming a significant portion of power dissipation in nano-MOSFET circuits as threshold voltage, channel length, and gate oxide thickness are scaled down to nano-meter range. Precise leakage current valuation and meticulous modeling of the same at nano-meter technology scale is an increasingly a critical work in designing the low power nano-MOSFET circuits. We present a specific compact model for sub-threshold regime leakage current in bulk driven nano-MOSFETs. The proposed logical model is instigated and executed into the latest updated PTM bulk nano-MOSFET model and is found to be in decent accord with technology-CAD simulation data. This paper also reviews various transistor intrinsic leakage mechanisms for nano-MOSFET exclusively in weak inversion, like drain-induced barricade lowering (DIBL), gate-induced drain leakage (GIDL), gate oxide tunneling (GOT) leakage etc. The root cause of the sub-surface leakage current is mainly due to the nano-scale short channel length causing source-drain coupling even in sub-threshold domain. Consequences leading to carriers triumphing the barricade between the source and drain. The enhanced model effectively considers the following parameter dependence in the account for better-quality value-added results like drain-to-source bias (VDS), gate-to-source bias (VGS), channel length (LG), source/drain junction depth (Xj), bulk doping concentration (NBULK), and operating temperature (Top).

  15. Development of an integrated CAD-FEA system for patient-specific design of spinal cages.

    PubMed

    Zhang, Mingzheng; Pu, Fang; Xu, Liqiang; Zhang, Linlin; Liang, Hang; Li, Deyu; Wang, Yu; Fan, Yubo

    2017-03-01

    Spinal cages are used to create a suitable mechanical environment for interbody fusion in cases of degenerative spinal instability. Due to individual variations in bone structures and pathological conditions, patient-specific cages can provide optimal biomechanical conditions for fusion, strengthening patient recovery. Finite element analysis (FEA) is a valuable tool in the biomechanical evaluation of patient-specific cage designs, but the time- and labor-intensive process of modeling limits its clinical application. In an effort to facilitate the design and analysis of patient-specific spinal cages, an integrated CAD-FEA system (CASCaDeS, comprehensive analytical spinal cage design system) was developed. This system produces a biomechanical-based patient-specific design of spinal cages and is capable of rapid implementation of finite element modeling. By comparison with commercial software, this system was validated and proven to be both accurate and efficient. CASCaDeS can be used to design patient-specific cages with a superior biomechanical performance to commercial spinal cages.

  16. Beam-induced graphitic carbon cage transformation from sumanene aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Jun-ichi, E-mail: fujita@bk.tsukuba.ac.jp; Tachi, Masashi; Murakami, Katsuhisa

    2014-01-27

    We found that electron-beam irradiation of sumanene aggregates strongly enhanced their transformation into a graphitic carbon cage, having a diameter of about 20 nm. The threshold electron dose was about 32 mC/cm{sup 2} at 200 keV, but the transformation is still induced at 20 keV. The transformation sequence suggested that the cage was constructed accompanied by the dynamical movement of the transiently linked sumanene molecules in order to pile up inside the shell. Thus, bond excitation in the sumanene molecules rather than a knock-on of carbon atoms seems to be the main cause of the cage transformation.

  17. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    NASA Astrophysics Data System (ADS)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  18. Micro/nano-particles and Cells: Manipulation, Transport, and Self-assembly

    DTIC Science & Technology

    2014-10-23

    SECURITY CLASSIFICATION OF: Technologies that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered...that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered systems that can assemble, transport, and...nano-scale particles offer several advantages as building blocks of artificial materials . The relative ease of modifying their charge states

  19. Proposal for New Experimental Tests of the Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reaction and Transmutation Processes in Deuterium Loaded - and Nano-Scale Cavities

    NASA Astrophysics Data System (ADS)

    Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-02-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.

  20. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    PubMed

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules

    NASA Astrophysics Data System (ADS)

    Veetil, Aneesh T.; Chakraborty, Kasturi; Xiao, Kangni; Minter, Myles R.; Sisodia, Sangram S.; Krishnan, Yamuna

    2017-12-01

    Achieving triggered release of small molecules with spatial and temporal precision at designated cells within an organism remains a challenge. By combining a cell-targetable, icosahedral DNA-nanocapsule loaded with photoresponsive polymers, we show cytosolic delivery of small molecules with the spatial resolution of single endosomes in specific cells in Caenorhabditis elegans. Our technology can report on the extent of small molecules released after photoactivation as well as pinpoint the location at which uncaging of the molecules occurred. We apply this technology to release dehydroepiandrosterone (DHEA), a neurosteroid that promotes neurogenesis and neuron survival, and determined the timescale of neuronal activation by DHEA, using light-induced release of DHEA from targeted DNA nanocapsules. Importantly, sequestration inside the DNA capsule prevents photocaged DHEA from activating neurons prematurely. Our methodology can in principle be generalized to diverse neurostimulatory molecules.

  2. Horizontal transmission of Salmonella and Campylobacter among caged and cage-free laying hens

    USDA-ARS?s Scientific Manuscript database

    In each of five trials, laying hens (56-72 wk-of-age) were challenged orally, intracolonally, and intravaginally with Salmonella and Campylobacter. One wk post inoculation, challenged hens (n=3) were commingled with non-challenged hens (n=12) in conventional wire cages, on all wire slats, or on all...

  3. Hybrid Plasmonic Microring Nano-Ruler.

    PubMed

    Du, Jing; Wang, Jian

    2018-06-15

    Surface plasmonic polariton (SPP) has attracted increasing interest for its ability of confining light in the subwavelength scale and breaking the diffraction limit. Recently, there have appeared several important developments of SPP applied in plasmon rulers, waveguides and resonators. By combing these concepts we present a novel hybrid plasmonic microring nano-ruler relying on the sensitive hybrid mode property and the microring resonator structure. The designed nano-ruler can measure distance in nanoscale resolution and offer adjustable sensitivity, which exceeds 14.8 as the distance is less than 5 nm by recording the transmission spectra and outstrips 200 dB/nm by observing the shift of output intensity. These demonstrations suggest that hybrid plasmonic microring nano-ruler could be a promising candidate enabling high-resoluation measurement.

  4. Comparison of Expandable and Fixed Interbody Cages in a Human Cadaver Corpectomy Model: Fatigue Characteristics.

    PubMed

    Pekmezci, Murat; Tang, Jessica A; Cheng, Liu; Modak, Ashin; McClellan, Robert T; Buckley, Jenni M; Ames, Christopher P

    2016-11-01

    In vitro cadaver biomechanics study. The goal of this study is to compare the in situ fatigue life of expandable versus fixed interbody cage designs. Expandable cages are becoming more popular, in large part, due to their versatility; however, subsidence and catastrophic failure remain a concern. This in vitro analysis investigates the fatigue life of expandable and fixed interbody cages in a single level human cadaver corpectomy model by evaluating modes of subsidence of expandable and fixed cages as well as change in stiffness of the constructs with cyclic loading. Nineteen specimens from 10 human thoracolumbar spines (T10-L2, L3-L5) were biomechanically evaluated after a single level corpectomy that was reconstructed with an expandable or fixed cage and anterior dual rod instrumentation. All specimens underwent 98 K cycles to simulate 3 months of postoperative weight bearing. In addition, a third group with hyperlordotic cages was used to simulate catastrophic failure that is observed in clinical practice. Three fixed and 2 expandable cages withstood the cyclic loading despite perfect sagittal and coronal plane fitting of the endcaps. The majority of the constructs settled in after initial subsidence. The catastrophic failures that were observed in clinical practice could not be reproduced with hyperlordotic cages. However, all cages in this group subsided, and 60% resulted in endplate fractures during deployment of the cage. Despite greater surface contact area, expandable cages have a trend for higher subsidence rates when compared with fixed cages. When there is edge loading as in the hyperlordotic cage scenario, there is a higher risk of subsidence and intraoperative fracture during deployment of expandable cages.

  5. Field-Induced Crystalline-to-Amorphous Phase Transformation on the Si Nano-Apex and the Achieving of Highly Reliable Si Nano-Cathodes

    PubMed Central

    Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-01-01

    Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377

  6. Smallest fullerene-like silicon cage stabilized by a V(2) unit.

    PubMed

    Xu, Hong-Guang; Kong, Xiang-Yu; Deng, Xiao-Jiao; Zhang, Zeng-Guang; Zheng, Wei-Jun

    2014-01-14

    We conducted a combined anion photoelectron spectroscopy and density functional theory study on V2Si20 cluster. Our results show that the V2Si20 cluster has an elongated dodecahedron cage structure with a V2 unit encapsulated inside the cage. It is the smallest fullerene-like silicon cage and can be used as building block to make cluster-assembled materials, such as pearl-chain style nanowires.

  7. Smallest fullerene-like silicon cage stabilized by a V2 unit

    NASA Astrophysics Data System (ADS)

    Xu, Hong-Guang; Kong, Xiang-Yu; Deng, Xiao-Jiao; Zhang, Zeng-Guang; Zheng, Wei-Jun

    2014-01-01

    We conducted a combined anion photoelectron spectroscopy and density functional theory study on V2Si20 cluster. Our results show that the V2Si20 cluster has an elongated dodecahedron cage structure with a V2 unit encapsulated inside the cage. It is the smallest fullerene-like silicon cage and can be used as building block to make cluster-assembled materials, such as pearl-chain style nanowires.

  8. Mosquito density, biting rate and cage size effects on repellent tests.

    PubMed

    Barnard, D R; Posey, K H; Smith, D; Schreck, C E

    1998-01-01

    Mosquito biting rates and the mean duration of protection (in hours) from bites (MDPB) of Aedes aegypti and Anopheles quadrimaculatus, using the repellent 'deet' (N,N-diethyl-3-methylbenzamide) on a 50 cm2 area of healthy human skin, were observed in small (27 l), medium (approximately 65 l) and large (125 l) cages containing low, medium or high densities of mosquitoes: respectively, 640, 128 or 49 cm3 of cage volume per female. At the initial treatment rate of approximately 0.4 microliter/cm2 (1 ml of 25% deet in ethanol on 650 cm2 of skin), the MDPB for deet against Ae. aegypti ranged from 4.5 to 6.5 h and was significantly less (5.0 +/- 0.8 h) in large cages compared with medium (6.2 +/- 0.9 h) and small (6.2 +/- 0.8 h) cages, regardless of the density. Against An. quadrimaculatus the MDPB for deet 0.4 microliter/cm2 was 1.5-8.0 h, less in small (3.7 +/- 2.3 h) and large (2.2 +/- 1.1 h) cages at medium (3.7 +/- 2.3 h) and high (2.5 +/- 1.7 h) mosquito densities, and was longest in medium cages (6.2 +/- 2.6 h) at low mosquito densities (5.8 +/- 2.8 h). With equinoxial photoperiodicity (light on 06.00-18.00 hours) the biting rate was influenced by the time of observation (08.00, 12.00, 16.00 hours) for Ae. aegypti but not for An. quadrimaculatus. For both species, the biting rate was inversely proportional to mosquito density and the MDPB. The shortest MDPBs were obtained in large cages with high densities of mosquitoes and longest protection times occurred in medium sized cages with low mosquito densities.

  9. Caging Mechanism for a drag-free satellite position sensor

    NASA Technical Reports Server (NTRS)

    Hacker, R.; Mathiesen, J.; Debra, D. B.

    1976-01-01

    A disturbance compensation system for satellites based on the drag-free concept was mechanized and flown, using a spherical proof mass and a cam-guided caging mechanism. The caging mechanism controls the location of the proof mass for testing and constrains it during launch. Design requirements, design details, and hardware are described.

  10. Accelerative Forces Associated with Routine Inhouse Transportation of Rodent Cages

    PubMed Central

    Hurst, Keriann; Litwak, Kenneth N

    2012-01-01

    Transportation of rodents has repeatedly been demonstrated to potentially affect research outcomes. In addition, rapid acceleration and deceleration have marked physiologic effects. The current study determined the accelerative forces associated with common types of animal transportation within the institution and means of reducing these effects. A rodent-sized (24 g) accelerometer was placed in a standard polycarbonate mouse cage, which then was hand-carried or loaded onto a plastic, small metal, or large metal cart. The cage then moved along a set path that included several flooring types and obstacles. Accelerative forces within the mouse cage varied by as much as 35 m/s2 in as little as 1 s, primarily along the vertical axis (Z-axis). Measured acceleration was greatest with the plastic cart and lowest during hand-carrying. The placement of a towel under the cage dampened in-cage acceleration due to cart use by more than 50%, whereas a similarly located underpad had no significant effect. These data document that small rodents typically are exposed to considerable motion during transportation. The resulting physical and physiologic effects could affect study outcomes. PMID:23312081

  11. Greenhouse Gas Emissions from Three Cage Layer Housing Systems

    PubMed Central

    Fournel, Sébastien; Pelletier, Frédéric; Godbout, Stéphane; Lagacé, Robert; Feddes, John

    2011-01-01

    Simple Summary Greenhouse gas (GHG) emissions were measured from three different cage layer housing systems. A comparative study was conducted to identify the housing system with the least impact on the environment. The results showed that liquid manure from deep-pit housing systems produces greater emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) than natural and forced dried manure from belt housing systems. The influencing factors appeared to be the manure removal frequency and the dry matter content of the manure. Abstract Agriculture accounts for 10 to 12% of the World’s total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec’s egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from three different cage layer housing systems: a deep liquid manure pit and a manure belt with natural or forced air drying. Deep liquid manure pit housing systems consist of “A” frame layer cages located over a closed pit containing the hens’ droppings to which water is added to facilitate removal by pumping. Manure belt techniques imply that manure drops on a belt beneath each row of battery cages where it is either dried naturally or by forced air until it is removed. The experiment was replicated with 360 hens reared into twelve independent bench-scale rooms during eight weeks (19–27 weeks of age). The natural and forced air manure belt systems reduced CO2 (28.2 and 28.7 kg yr−1 hen−1, respectively), CH4 (25.3 and 27.7 g yr−1 hen−1, respectively) and N2O (2.60 and 2.48 g yr−1 hen−1, respectively) emissions by about 21, 16 and 9% in comparison with the deep-pit technique (36.0 kg CO2 yr−1 hen−1, 31.6 g CH4 yr−1 hen−1 and 2.78 g N2O yr−1 hen−1). The

  12. More vertical etch profile using a Faraday cage in plasma etching

    NASA Astrophysics Data System (ADS)

    Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup

    1999-05-01

    Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.

  13. Be a Cage-Buster

    ERIC Educational Resources Information Center

    Hess, Frederick M.

    2013-01-01

    "A cage-buster can't settle for ambiguity, banalities, or imprecision," writes well-known educator and author Rick Hess. "These things provide dark corners where all manners of ineptitude and excuse-making can hide." Hess suggests that leaders need to clearly define the problems they're trying to solve and open…

  14. Caged compounds for multichromic optical interrogation of neural systems.

    PubMed

    Amatrudo, Joseph M; Olson, Jeremy P; Agarwal, Hitesh K; Ellis-Davies, Graham C R

    2015-01-01

    Caged compounds are widely used by neurophysiologists to study many aspects of cellular signaling in glia and neurons. Biologically inert before irradiation, they can be loaded into cells via patch pipette or topically applied in situ to a defined concentration; photolysis releases the caged compound in a very rapid and spatially defined way. As caged compounds are exogenous optical probes, they include not only natural products such neurotransmitters, calcium and IP3 but non-natural products such as fluorophores, drugs and antibodies. In this Technical Spotlight we provide a short introduction to the uncaging technique by discussing the nitroaromatic caging chromophores most widely used in such experiments [e.g. α-carboxy-ortho-nitrobenyl (CNB), dimethoxynitrobenzyl (DMNB), 4-methoxy-7-nitroindolinyl (MNI) and 4-carboxymethoxy-7-nitroindolinyl (CDNI)]. We show that recently developed caging chromophores [rutheniumbipyridial (RuBi) and 7-diethylaminocoumarin (DEAC)450] that are photolyzed with blue light (~ 430-480 nm range) can be combined with traditional nitroaromatic caged compounds to enable two-color optical probing of neuronal function. For example, one-photon uncaging of either RuBi-GABA or DEAC450-GABA with a 473-nm laser is facile, and can block nonlinear currents (dendritic spikes or action potentials) evoked by two-photon uncaging of CDNI-Glu at 720 nm. We also show that two-photon uncaging of DEAC450-Glu and CDNI-GABA at 900 and 720 nm, respectively, can be used to fire and block action potentials. Our experiments illustrate that recently developed chromophores have taken uncaging out of the 'monochrome era', in which it has existed since 1978, so as to enable multichromic interrogation of neuronal function with single-synapse precision. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. DNA Based Molecular Scale Nanofabrication

    DTIC Science & Technology

    2015-12-04

    structure. We developed a method to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer...to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer substrates. Developed a high... imprinting using DNA nanostructure templates. Soft lithography uses polymeric stamps with certain features to transfer the pattern for printing

  16. Stabilization of fullerene-like boron cages by transition metal encapsulation

    NASA Astrophysics Data System (ADS)

    Lv, Jian; Wang, Yanchao; Zhang, Lijun; Lin, Haiqing; Zhao, Jijun; Ma, Yanming

    2015-06-01

    The stabilization of fullerene-like boron (B) cages in the free-standing form has been long sought after and a challenging problem. Studies that have been carried out for more than a decade have confirmed that the planar or quasi-planar polymorphs are energetically favored ground states over a wide range of small and medium-sized B clusters. Recently, the breakthroughs represented by Nat. Chem., 2014, 6, 727 established that the transition from planar/quasi-planar to cage-like Bn clusters occurs around n = ~38-40, paving the way for understanding the intriguing chemistry of B-fullerene. We herein demonstrate that the transition demarcation, n, can be significantly reduced with the help of transition metal encapsulation. We explore via extensive first-principles swarm-intelligence based structure searches the free energy landscapes of B24 clusters doped by a series of transition metals and find that the low-lying energy regime is generally dominated by cage-like isomers. This is in sharp contrast to that of bare B24 clusters, where the quasi-planar and rather irregular polyhedrons are prevalent. Most strikingly, a highly symmetric B cage with D3h symmetry is discovered in the case of Mo or W encapsulation. The endohedral D3h cages exhibit robust thermodynamic, dynamic and chemical stabilities, which can be rationalized in terms of their unique electronic structure of an 18-electron closed-shell configuration. Our results indicate that transition metal encapsulation is a feasible route for stabilizing medium-sized B cages, offering a useful roadmap for the discovery of more B fullerene analogues as building blocks of nanomaterials.The stabilization of fullerene-like boron (B) cages in the free-standing form has been long sought after and a challenging problem. Studies that have been carried out for more than a decade have confirmed that the planar or quasi-planar polymorphs are energetically favored ground states over a wide range of small and medium-sized B clusters

  17. Hydrophobic ultrathin films formed by fluorofunctional cage silsesquioxanes

    NASA Astrophysics Data System (ADS)

    Wamke, Anna; Makowiecki, Jaroslaw; Dopierała, Katarzyna; Karasiewicz, Joanna; Prochaska, Krystyna

    2018-06-01

    The usefulness of fluorofunctional cage silsesquioxanes (POSS) as coating materials effectively changing the surface properties of model substrates was analyzed. Five fully condensed silsesquioxanes (containing two types of organic groups attached to the Si-O cage: octafluoropentyloxypropyl (OFP) and trimethoxysilylethyl (TMS) at different ratios, one monofunctional derivative with OFP groups only and one open cage POSS derivative with three OFP and seven isobutyl groups as organic substituents were investigated. All POSS derivatives were applied to enhance hydrophobicity of quartz or glass plates by deposition of thin LB film transferred from the water subphase. Then, by comparison of water contact angles (WCA) on modified surfaces the effect of silsesquioxane structure (i.e. the TMS and fluoroalkyl group contents as well as the structure of silicon-oxygen cage) on hydrophobic properties was determined. Moreover, the texture of LB films formed by POSS considered was analyzed using the AFM technique. It has been established that the hydrophobizing properties of silsesquioxanes are considerably influenced not only by the number of OFP groups, but also by the silsesquioxane structure. The most effective appeared to be the open cage OFP-POSS derivative which produced coatings with water contact angles (WCA) equal to about 100 deg. Additionally the POSS derivatives studied were also used for dip-coating and spin-coating surface modification. The study has shown that fluorofunctional POSS derivatives can be effective hydrophobizing agents. Additionally applying the LB technique for surface modification allows obtaining substrate of enhanced hydrophobicity by using vanishingly small amount of the modifying substance in comparison to the dip-coating and spin-coating method, which is especially important from the economic viewpoint.

  18. 25 CFR 542.14 - What are the minimum internal control standards for the cage?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the cage shall be recorded on a cage accountability form on a per-shift basis. (6) Only cash, cash... identity, including photo identification. (8) A file for customers shall be prepared prior to acceptance of... cage shall be summarized on a cage accountability form on a per shift basis and shall be supported by...

  19. Modelling of DNA-Mediated of Two- and -Three dimensional Protein-Protein and Protein-Nanoparticle Self-Assembly

    NASA Astrophysics Data System (ADS)

    Millan, Jaime; McMillan, Janet; Brodin, Jeff; Lee, Byeongdu; Mirkin, Chad; Olvera de La Cruz, Monica

    Programmable DNA interactions represent a robust scheme to self-assemble a rich variety of tunable superlattices, where intrinsic and in some cases non-desirable nano-scale building blocks interactions are substituted for DNA hybridization events. Recent advances in synthesis has allowed the extension of this successful scheme to proteins, where DNA distribution can be tuned independently of protein shape by selectively addressing surface residues, giving rise to assembly properties in three dimensional protein-nanoparticle superlattices dependent on DNA distribution. In parallel to this advances, we introduced a scalable coarse-grained model that faithfully reproduces the previously observed co-assemblies from nanoparticles and proteins conjugates. Herein, we implement this numerical model to explain the stability of complex protein-nanoparticle binary superlattices and to elucidate experimentally inaccessible features such as protein orientation. Also, we will discuss systematic studies that highlight the role of DNA distribution and sequence on two-dimensional protein-protein and protein-nanoparticle superlattices.

  20. FANTOM5 CAGE profiles of human and mouse samples

    PubMed Central

    Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Kojima, Miki; Kubosaki, Atsutaka; Manabe, Ri-ichiroh; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakazato, Kenichi; Ninomiya, Noriko; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Detmar, Michael; Dohi, Taeko; Edge, Albert S.B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Ishizu, Yuri; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Mummery, Christine L.; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R.R.; Hayashizaki, Yoshihide

    2017-01-01

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities. PMID:28850106

  1. Micro- and Nano-Scale Fabrication of Fluorinated Polymers by Direct Etching Using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Fukutake, Naoyuki; Miyoshi, Nozomi; Takasawa, Yuya; Urakawa, Tatsuya; Gowa, Tomoko; Okamoto, Kazumasa; Oshima, Akihiro; Tagawa, Seiichi; Washio, Masakazu

    2010-06-01

    Micro- and nano-scale fabrications of various fluorinated polymers were demonstrated by direct maskless etching using a focused ion beam (FIB). The etching rates of perfluorinated polymers, such as poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoroalkoxyvinylether) (PFA), were about 500-1000 times higher than those of partially fluorinated polymers, such as poly(tetrafluoroethylene-co-ethylene) (ETFE) and poly(vinilydene-fluoride) (PVdF). Controlled high quality and high aspect-ratio nanostructures of spin-coated cross-linked PTFE were obtained without solid debris. The height and diameter of the fibers were about 1.5 µm and 90 nm, respectively. Their aspect ratio was about 17.

  2. Micro- and Nano-Scale Fabrication of Fluorinated Polymers by Direct Etching Using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Naoyuki Fukutake,; Nozomi Miyoshi,; Yuya Takasawa,; Tatsuya Urakawa,; Tomoko Gowa,; Kazumasa Okamoto,; Akihiro Oshima,; Seiichi Tagawa,; Masakazu Washio,

    2010-06-01

    Micro- and nano-scale fabrications of various fluorinated polymers were demonstrated by direct maskless etching using a focused ion beam (FIB). The etching rates of perfluorinated polymers, such as poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoroalkoxyvinylether) (PFA), were about 500-1000 times higher than those of partially fluorinated polymers, such as poly(tetrafluoroethylene-co-ethylene) (ETFE) and poly(vinilydene-fluoride) (PVdF). Controlled high quality and high aspect-ratio nanostructures of spin-coated cross-linked PTFE were obtained without solid debris. The height and diameter of the fibers were about 1.5 μm and 90 nm, respectively. Their aspect ratio was about 17.

  3. Nano-structured surface plasmon resonance sensor for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

    2008-08-01

    A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

  4. From micro- to nano-scale molding of metals : size effect during molding of single crystal Al with rectangular strip punches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Meng, W. J.; Mei, F.

    2011-02-01

    A single crystal Al specimen was molded at room temperature with long, rectangular, strip diamond punches. Quantitative molding response curves were obtained at a series of punch widths, ranging from 5 {micro}m to 550 nm. A significant size effect was observed, manifesting itself in terms of significantly increasing characteristic molding pressure as the punch width decreases to 1.5 {micro}m and below. A detailed comparison of the present strip punch molding results was made with Berkovich pyramidal indentation on the same single crystal Al specimen. The comparison reveals distinctly different dependence of the characteristic pressure on corresponding characteristic length. The presentmore » results show the feasibility of micro-/nano-scale compression molding as a micro-/nano-fabrication technique, and offer an experimental test case for size-dependent plasticity theories.« less

  5. Engineered nano particles: Nature, behavior, and effect on the environment.

    PubMed

    Goswami, Linee; Kim, Ki-Hyun; Deep, Akash; Das, Pallabi; Bhattacharya, Satya Sundar; Kumar, Sandeep; Adelodun, Adedeji A

    2017-07-01

    Increased application of engineered nano particles (ENPs) in production of various appliances and consumer items is increasing their presence in the natural environment. Although a wide variety of nano particles (NPs) are ubiquitously dispersed in ecosystems, risk assessment guidelines to describe their ageing, direct exposure, and long-term accumulation characteristics are poorly developed. In this review, we describe what is known about the life cycle of ENPs and their impact on natural systems and examine if there is a cohesive relationship between their transformation processes and bio-accessibility in various food chains. Different environmental stressors influence the fate of these particles in the environment. Composition of solid media, pore size, solution chemistry, mineral composition, presence of natural organic matter, and fluid velocity are some environmental stressors that influence the transformation, transport, and mobility of nano particles. Transformed nano particles can reduce cell viability, growth and morphology, enhance oxidative stress, and damage DNA in living organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Integration of micro-/nano-/quantum-scale photonic devices: scientific and technological considerations

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Seung-Gol; O, Beom Hoan; Park, Se Geun

    2004-08-01

    Scientific and technological issues and considerations regarding the integration of miniaturized microphotonic devices, circuits and systems in micron, submicron, and quantum scale, are presented. First, we examine the issues regarding the miniaturization of photonic devices including the size effect, proximity effect, energy confinement effect, microcavity effect, optical and quantum interference effect, high field effect, nonlinear effect, noise effect, quantum optical effect, and chaotic effect. Secondly, we examine the issues regarding the interconnection including the optical alignment, minimizing the interconnection losses, and maintaining optical modes. Thirdly, we address the issues regarding the two-dimensional or three-dimensional integration either in a hybrid format or in a monolithic format between active devices and passive devices of varying functions. We find that the concept of optical printed circuit board (O-PCB) that we propose is highly attractive as a platform for micro/nano/quantum-scale photonic integration. We examine the technological issues to be addressed in the process of fabrication, characterization, and packaging for actual implementation of the miniaturization, interconnection and integration. Devices that we have used for our study include: mode conversion schemes, micro-ring and micro-racetrack resonator devices, multimode interference devices, lasers, vertical cavity surface emitting microlasers, and their arrays. Future prospects are also discussed.

  7. Two conformational states in D-shaped DNA: Effects of local denaturation

    NASA Astrophysics Data System (ADS)

    Lee, O.-Chul; Kim, Cheolhee; Kim, Jae-Yeol; Lee, Nam Ki; Sung, Wokyung

    2016-06-01

    The bending of double-stranded(ds) DNA on the nano-meter scale plays a key role in many cellular processes such as nucleosome packing, transcription-control, and viral-genome packing. In our recent study, a nanometer-sized dsDNA bent into a D shape was formed by hybridizing a circular single-stranded(ss) DNA and a complementary linear ssDNA. Our fluorescence resonance energy transfer (FRET) measurement of D-DNA revealed two types of conformational states: a less-bent state and a kinked state, which can transform into each other. To understand the origin of the two deformed states of D-DNA, here we study the presence of open base-pairs in the ds portion by using the breathing-DNA model to simulate the system. We provide strong evidence that the two states are due to the emergence of local denaturation, i.e., a bubble in the middle and two forks at ends of the dsDNA portion. We also study the system analytically and find that the free-energy landscape is bistable with two minima representative of the two states. The kink and fork sizes estimated by the analytical calculation are also in excellent agreement with the results of the simulation. Thus, this combined experimental-simulation-analytical study corroborates that highly bent D-DNA reduces bending stress via local denaturation.

  8. A stochastic frontier analysis of technical efficiency of fish cage culture in Peninsular Malaysia.

    PubMed

    Islam, Gazi Md Nurul; Tai, Shzee Yew; Kusairi, Mohd Noh

    2016-01-01

    Cage culture plays an important role in achieving higher output and generating more export earnings in Malaysia. However, the cost of fingerlings, feed and labour have increased substantially for cage culture in the coastal areas in Peninsular Malaysia. This paper uses farm level data gathered from Manjung, Perak and Kota Tinggi, Johor to investigate the technical efficiency of brackish water fish cage culture using the stochastic frontier approach. The technical efficiency was estimated and specifically the factors affecting technical inefficiencies of fish cage culture system in Malaysia was investigated. On average, 37 percent of the sampled fish cage farms are technically efficient. The results suggest very high degrees of technical inefficiency exist among the cage culturists. This implies that great potential exists to increase fish production through improved efficiency in cage culture management in Peninsular Malaysia. The results indicate that farmers obtained grouper fingerlings from other neighboring countries due to scarcity of fingerlings from wild sources. The cost of feeding for grouper (Epinephelus fuscoguttatus) requires relatively higher costs compared to seabass (Lates calcarifer) production in cage farms in the study areas. Initiatives to undertake extension programmes at the farm level are needed to help cage culturists in utilizing their resources more efficiently in order to substantially enhance their fish production.

  9. Teaching in the Institutional Cage: Metaphor and Collateral Oppression

    ERIC Educational Resources Information Center

    Noël Smith, Becky L.

    2014-01-01

    This analysis is a philosophical exploration of Marilyn Frye's metaphor of the cage and Patricia Hill Collins' theory of intersecting oppressions. It argues that social structures and forms of oppressive knowledge make up the individual wires on each person's cage and that these work to confine individuals, particularly those in the…

  10. High pressure oxygen turbopump bearing cage stability analyses. [space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Merriman, T. L.; Kannel, J. W.

    1984-01-01

    The low service life of the high pressure oxygen turbopump (HPOTP) bearings used in the space shuttle main engine was examined by use of the Battelle "BASDAP' bearing computer stability model. The dynamic instability of the bearing cage resulted in excessive wear and eventual failure of the unit. By maintaining a cage/race clearance of no more than 0.25 millimeters (0.010 inches), ball/pocket clearance of no less than 0.54 millimeters (0.025 inches), dynamic balancing of the cages, and maintaining adequate lubricant films between the balls and races, cage instability and subsequent bearing degradation can be reduced.

  11. Progesterone After Estradiol Modulates Shuttle-Cage Escape by Facilitating Volition

    PubMed Central

    Mayeaux, Darryl J.; Tandle, Sarah M.; Cilano, Sean M.; Fitzharris, Matthew J.

    2015-01-01

    In animal models of depression, depression is defined as performance on a learning task. That task is typically escaping a mild electric shock in a shuttle cage by moving from one side of the cage to the other. Ovarian hormones influence learning in other kinds of tasks, and these hormones are associated with depressive symptoms in humans. The role of these hormones in shuttle-cage escape learning, however, is less clear. This study manipulated estradiol and progesterone in ovariectomized female rats to examine their performance in shuttle-cage escape learning without intentionally inducing a depressive-like state. Progesterone, not estradiol, within four hours of testing affected latencies to escape. The improvement produced by progesterone was in the decision to act, not in the speed of learning or speed of escaping. This parallels depression in humans in that depressed people are slower in volition, in their decisions to take action. PMID:26823653

  12. The potential phototoxicity of nano-scale ZnO induced by visible light on freshwater ecosystems.

    PubMed

    Du, Jingjing; Qv, Mingxiang; Zhang, Yuyan; Yin, Xiaoyun; Wan, Ning; Zhang, Baozhong; Zhang, Hongzhong

    2018-06-06

    With the development of nanotechnology, nanomaterials have been widely applied in anti-bacterial coating, electronic device, and personal care products. NanoZnO is one of the most used materials and its ecotoxicity has been extensively studied. To explore the potential phototoxicity of nanoZnO induced by visible light, we conducted a long-term experiment on litter decomposition of Typha angustifolia leaves with assessment of fungal multifaceted natures. After 158 d exposure, the decomposition rate of leaf litter was decreased by nanoZnO but no additional effect by visible light. However, visible light enhanced the inhibitory effect of nanoZnO on fungal sporulation rate due to light-induced dissolution of nanoZnO. On the contrary, enzymes such as β-glucosidase, cellobiohydrolase, and leucine-aminopeptidase were significantly increased by the interaction of nanoZnO and visible light, which led to high efficiency of leaf carbon decomposition. Furthermore, different treatments and exposure time separated fungal community associated with litter decomposition. Therefore, the study provided the evidence of the contribution of visible light to nanoparticle phototoxicity at the ecosystem level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Quantum Control of Light and Matter: From the Macroscopic to the Nano Scale

    DTIC Science & Technology

    2016-02-02

    navigation, and hybrid bio -graphene devices, incorporating enzymes positioned on graphene, for light-driven bio -fuel production with controlled...enzymatic rates. 15. SUBJECT TERMS Light-matter interactions; Quantum control; Slow light; Bose-Einstein condensates; Nano-science; Hybrid bio -nano...precise navigation. They also include hybrid bio -graphene devices incorporating enzymes positioned on graphene for dynamic control of enzymatic

  14. Bisphenol A is released from used polycarbonate animal cages into water at room temperature

    USGS Publications Warehouse

    Howdeshell, Kembra L.; Peterman, Paul H.; Judy, Barbara M.; Taylor, Julia A.; Orazio, Carl E.; Ruhlen, Rachel L.; vom Saal, Frederick S.; Welshons, Wade V.

    2003-01-01

    Bisphenol A (BPA) is a monomer with estrogenic activity that is used in the production of food packaging, dental sealants, polycarbonate plastic, and many other products. The monomer has previously been reported to hydrolyze and leach from these products under high heat and alkaline conditions, and the amount of leaching increases as a function of use. We examined whether new and used polycarbonate animal cages passively release bioactive levels of BPA into water at room temperature and neutral pH. Purified water was incubated at room temperature in new polycarbonate and polysulfone cages and used (discolored) polycarbonate cages, as well as control (glass and used polypropylene) containers. The resulting water samples were characterized with gas chromatography/mass spectrometry (GC/MS) and tested for estrogenic activity using an MCF-7 human breast cancer cell proliferation assay. Significant estrogenic activity, identifiable as BPA by GC/MS (up to 310 micro g/L), was released from used polycarbonate animal cages. Detectable levels of BPA were released from new polycarbonate cages (up to 0.3 micro g/L) as well as new polysulfone cages (1.5 micro g/L), whereas no BPA was detected in water incubated in glass and used polypropylene cages. Finally, BPA exposure as a result of being housed in used polycarbonate cages produced a 16% increase in uterine weight in prepubertal female mice relative to females housed in used polypropylene cages, although the difference was not statistically significant. Our findings suggest that laboratory animals maintained in polycarbonate and polysulfone cages are exposed to BPA via leaching, with exposure reaching the highest levels in old cages.

  15. From Coordination Cages to a Stable Crystalline Porous Hydrogen-Bonded Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Zhanfeng; Liu, Guoliang; Chen, Yu-Sheng

    2017-03-20

    A stable framework has been constructed through multiple charge-assisted H-bonds between cationic coordination cages and chloride ions. The framework maintained its original structure upon desolvation, which has been established by single-crystal structure analysis. This is the first fully characterized stable porous framework based on coordination cages after desolvation, with a moderately high Brunauer–Emmett–Teller (BET) surface area of 1201 m2 g-1. This work will not only give a light to construct stable porous frameworks based on coordination cages and thus broaden their applications, but will also provide a new avenue to the assembly of other porous materials such as porous organicmore » cages and hydrogen-bonded organic frameworks (HOFs) through non covalent bonds.« less

  16. Effects of separation of resources on behaviour, physical condition and production of laying hens in furnished cages.

    PubMed

    Shimmura, T; Azuma, T; Eguchi, Y; Uetake, K; Tanaka, T

    2009-01-01

    1. Based on our previous studies, we designed a medium-sized furnished cage with a dust bath and nest box on both sides of the cage (MFS) and evaluated its usefulness. 2. We used 180 White Leghorn layers. At the age of 17 weeks, the birds were distributed at random into one of the 4 cage designs: conventional cages (CC; 6 cages and 5 hens per cage), small (SF; 6 cages and 5 hens per cage) and medium furnished cages (MFL; 6 cages and 10 hens per cage) with a 'localised' dust bath and nest box on one side of the cage, and MFS (6 cages and 10 hens per cage). The total allocation of resources per bird was similar for all furnished cage designs. Behaviour, physical condition and production were measured in each cage. 3. Moving was more frequent in MFS and MFL than in CC and SF. The proportion of hens performing aggressive pecking and severe feather pecking was higher in MFL than CC and SF. These aggressive interactions occurred frequently in the dust bath area in MFL; however, these tendencies were not found in MFS. Egg production and egg mass were lower in MFL than in SF, while the production in MFS was similar to those in CC and SF. MFS hens laid eggs on the cage floor more often than in MFL. 4. In conclusion, these results demonstrate the possible usefulness of MFS. However, some inconsistent results and ways of improving MFS design were also identified.

  17. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, M J; Rudd, R E; McElfresh, M W

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discretemore » {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.« less

  18. Performance of concrete incorporating colloidal nano-silica

    NASA Astrophysics Data System (ADS)

    Zeidan, Mohamed Sabry

    Nanotechnology, as one of the most modern fields of science, has great market potential and economic impact. The need for research in the field of nanotechnology is continuously on the rise. During the last few decades, nanotechnology was developing rapidly into many fields of applied sciences, engineering and industrial applications, especially through studies of physics, chemistry, medicine and fundamental material science. These new developments may be attributed to the fact that material properties and performance can be significantly improved and controlled through nano-scale processes and nano-structures. This research program aims at 1) further understanding the behavior of cementitious materials when amended on the nano-scale level and 2) exploring the effect of this enhancement on the microstructure of cement matrix. This study may be considered as an important step towards better understanding the use of nano-silica in concrete. The main goal of the study is to investigate the effect of using colloidal nano-silica on properties of concrete, including mechanical properties, durability, transport properties, and microstructure. The experimental program that was conducted included a laboratory investigation of concrete mixtures in which nano-silica was added to cement or to a combination of cement and Class F fly ash. Various ratios of nano-silica were used in concrete mixtures to examine the extent and types of improvements that could be imparted to concrete. The conducted experimental program assessed these improvements in terms of reactivity, mechanical properties, and durability of the mixtures under investigation. Advanced testing techniques---including mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM)---were used to investigate the effect of nano-silica on the microstructure of the tested mixtures. In addition, the effect of nano-silica on the alkali-silica reaction (ASR) was examined using various techniques, including testing

  19. PyMICE: APython library for analysis of IntelliCage data.

    PubMed

    Dzik, Jakub M; Puścian, Alicja; Mijakowska, Zofia; Radwanska, Kasia; Łęski, Szymon

    2018-04-01

    IntelliCage is an automated system for recording the behavior of a group of mice housed together. It produces rich, detailed behavioral data calling for new methods and software for their analysis. Here we present PyMICE, a free and open-source library for analysis of IntelliCage data in the Python programming language. We describe the design and demonstrate the use of the library through a series of examples. PyMICE provides easy and intuitive access to IntelliCage data, and thus facilitates the possibility of using numerous other Python scientific libraries to form a complete data analysis workflow.

  20. A modular cage system design for continuous medium to large scale in vivo-rearing of predatory mites (Acari: phytoseiidae)

    USDA-ARS?s Scientific Manuscript database

    A new stackable modular system was developed for continuous in-vivo production of phytoseiid mites. The system consists of cage units that are filled with lima bean, Phaseolus lunatus, or red beans, P. vulgaris, leaves infested with high levels of the two-spotted spider mites, Tetranychus urticae. T...