Science.gov

Sample records for nano-secondary ion mass

  1. Elemental mapping of Neuromelanin organelles of human Substantia Nigra: correlative ultrastructural and chemical analysis by analytical transmission electron microscopy and nano-secondary ion mass spectrometry.

    PubMed

    Biesemeier, Antje; Eibl, Oliver; Eswara, Santhana; Audinot, Jean-Nicolas; Wirtz, Tom; Pezzoli, Gianni; Zucca, Fabio A; Zecca, Luigi; Schraermeyer, Ulrich

    2016-07-01

    Neuromelanin (NM) is a compound which highly accumulates mainly in catecholamine neurons of the substantia nigra (SN), and is contained in organelles (NM-containing organelles) with lipid bodies and proteins. These neurons selectively degenerate in Parkinson's disease and NM can play either a protective or toxic role. NM-containing organelles of SN were investigated by Analytical Electron Microscopy (AEM) and Nano-Secondary Ion Mass Spectrometry (NanoSIMS) within human tissue sections with respect to ultrastructure and elemental composition. Within the NM-containing organelle, the single NM granules and lipid bodies had sizes of about 200-600 nm. Energy-Dispersive X-ray microanalysis spectra of the NM granules and lipid bodies were acquired with 100 nm beam diameter in AEM, NanoSIMS yielded elemental maps with a lateral resolution of about 150 nm. AEM yielded the quantitative elemental composition of NM granules and bound metals, e.g., iron with a mole fraction of about 0.15 atomic percent. Chemical analyses by AEM and NanoSIMS were consistent at the subcellular level so that nanoSIMS measurements have been quantitated. In NM granules of SN from healthy subjects, a significant amount of S, Fe, and Cu was found. In lipid bodies an amount of P consistent with the presence of phospholipids was measured. The improved detection limits of nanoSIMS offer new possibilities for chemical mapping, high-sensitivity trace element detection, and reduced acquisition times. Variations between individual NM granules can now be investigated effectively and quantitatively by NanoSIMS mapping Cu and Fe. This should yield new insight into the changes in chemical composition of NM pigments during healthy aging and disease. Neuromelanin-containing organelles of dopamine neurons in normal human substantia nigra were investigated by analytical electron mircoscopy and secondary ion mass spectroscopy (NanoSIMS) yielding the ultrastructure and elemental composition. In neuromelanin

  2. Elemental mapping of Neuromelanin organelles of human Substantia Nigra: correlative ultrastructural and chemical analysis by analytical transmission electron microscopy and nano-secondary ion mass spectrometry.

    PubMed

    Biesemeier, Antje; Eibl, Oliver; Eswara, Santhana; Audinot, Jean-Nicolas; Wirtz, Tom; Pezzoli, Gianni; Zucca, Fabio A; Zecca, Luigi; Schraermeyer, Ulrich

    2016-07-01

    Neuromelanin (NM) is a compound which highly accumulates mainly in catecholamine neurons of the substantia nigra (SN), and is contained in organelles (NM-containing organelles) with lipid bodies and proteins. These neurons selectively degenerate in Parkinson's disease and NM can play either a protective or toxic role. NM-containing organelles of SN were investigated by Analytical Electron Microscopy (AEM) and Nano-Secondary Ion Mass Spectrometry (NanoSIMS) within human tissue sections with respect to ultrastructure and elemental composition. Within the NM-containing organelle, the single NM granules and lipid bodies had sizes of about 200-600 nm. Energy-Dispersive X-ray microanalysis spectra of the NM granules and lipid bodies were acquired with 100 nm beam diameter in AEM, NanoSIMS yielded elemental maps with a lateral resolution of about 150 nm. AEM yielded the quantitative elemental composition of NM granules and bound metals, e.g., iron with a mole fraction of about 0.15 atomic percent. Chemical analyses by AEM and NanoSIMS were consistent at the subcellular level so that nanoSIMS measurements have been quantitated. In NM granules of SN from healthy subjects, a significant amount of S, Fe, and Cu was found. In lipid bodies an amount of P consistent with the presence of phospholipids was measured. The improved detection limits of nanoSIMS offer new possibilities for chemical mapping, high-sensitivity trace element detection, and reduced acquisition times. Variations between individual NM granules can now be investigated effectively and quantitatively by NanoSIMS mapping Cu and Fe. This should yield new insight into the changes in chemical composition of NM pigments during healthy aging and disease. Neuromelanin-containing organelles of dopamine neurons in normal human substantia nigra were investigated by analytical electron mircoscopy and secondary ion mass spectroscopy (NanoSIMS) yielding the ultrastructure and elemental composition. In neuromelanin

  3. A New Radio Frequency Plasma Oxygen Primary Ion Source on Nano Secondary Ion Mass Spectrometry for Improved Lateral Resolution and Detection of Electropositive Elements at Single Cell Level.

    PubMed

    Malherbe, Julien; Penen, Florent; Isaure, Marie-Pierre; Frank, Julia; Hause, Gerd; Dobritzsch, Dirk; Gontier, Etienne; Horréard, François; Hillion, François; Schaumlöffel, Dirk

    2016-07-19

    An important application field of secondary ion mass spectrometry at the nanometer scale (NanoSIMS) is the detection of chemical elements and, in particular, metals at the subcellular level in biological samples. The detection of many trace metals requires an oxygen primary ion source to allow the generation of positive secondary ions with high yield in the NanoSIMS. The duoplasmatron oxygen source is commonly used in this ion microprobe but cannot achieve the same quality of images as the cesium primary ion source used to produce negative secondary ions (C(-), CN(-), S(-), P(-)) due to a larger primary ion beam size. In this paper, a new type of an oxygen ion source using a rf plasma is fitted and characterized on a NanoSIMS50L. The performances of this primary ion source in terms of current density and achievable lateral resolution have been characterized and compared to the conventional duoplasmatron and cesium sources. The new rf plasma oxygen source offered a net improvement in terms of primary beam current density compared to the commonly used duoplasmatron source, which resulted in higher ultimate lateral resolutions down to 37 nm and which provided a 5-45 times higher apparent sensitivity for electropositive elements. Other advantages include a better long-term stability and reduced maintenance. This new rf plasma oxygen primary ion source has been applied to the localization of essential macroelements and trace metals at basal levels in two biological models, cells of Chlamydomonas reinhardtii and Arabidopsis thaliana. PMID:27291826

  4. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  5. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  6. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  7. Halo ion trap mass spectrometer.

    PubMed

    Austin, Daniel E; Wang, Miao; Tolley, Samuel E; Maas, Jeffrey D; Hawkins, Aaron R; Rockwood, Alan L; Tolley, H Dennis; Lee, Edgar D; Lee, Milton L

    2007-04-01

    We describe a novel radio frequency ion trap mass analyzer based on toroidal trapping geometry and microfabrication technology. The device, called the halo ion trap, consists of two parallel ceramic plates, the facing surfaces of which are imprinted with sets of concentric ring electrodes. Radii of the imprinted rings range from 5 to 12 mm, and the spacing between the plates is 4 mm. Unlike conventional ion traps, in which hyperbolic metal electrodes establish equipotential boundary conditions, electric fields in the halo ion trap are established by applying different radio frequency potentials to each ring. The potential on each ring can be independently optimized to provide the best trapping field. The halo ion trap features an open structure, allowing easy access for in situ ionization. The toroidal geometry provides a large trapping and analyzing volume, increasing the number of ions that can be stored and reducing the effects of space-charge on mass analysis. Preliminary mass spectra show resolution (m/Deltam) of 60-75 when the trap is operated at 1.9 MHz and 500 Vp-p. PMID:17335180

  8. A cometary ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Simpson, D. A.

    1984-01-01

    The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.

  9. Microscale ion trap mass spectrometer

    DOEpatents

    Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  10. Mass spectrometry and inhomogeneous ion optics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1973-01-01

    Work done in several areas to advance the state of the art of magnetic mass spectrometers is described. The calculations and data necessary for the design of inhomogeneous field mass spectrometers, and the calculation of ion trajectories through such fields are presented. The development and testing of solid state ion detection devices providing the capability of counting single ions is discussed. New techniques in the preparation and operation of thermal-ionization ion sources are described. Data obtained on the concentrations of copper in rainfall and uranium in air samples using the improved thermal ionization techniques are presented. The design of a closed system static mass spectrometer for isotopic analyses is discussed. A summary of instrumental aspects of a four-stage mass spectrometer comprising two electrostatic and two 90 deg. magnetic lenses with a 122-cm radius used to study the interaction of ions with solids is presented.

  11. Secondary ion mass spectrometry: Polyatomic and molecular ion emission

    NASA Astrophysics Data System (ADS)

    Colton, Richard J.; Ross, Mark M.; Kidwell, David A.

    1986-03-01

    Secondary ion mass spectrometry (SIMS) has become a diverse tool for the study of many substances such as metals, semiconductors, inorganic compounds and organic compounds, including polymers and biomolecules. This paper discusses the formation and emission of polyatomic and molecular ions from surfaces of these materials. The mass, energy, and abundance distribution of cluster ions emitted from various solids — Van der Waals, molecular, metallic, ionic and covalent — are compared. Trends in their emission patterns are discussed in terms of a recombination or a direct emission mechanism. For example, the ion abundance of cluster ions sputtered from metals decreases monotonically with increasing cluster size due to a decreasing formation probability for large clusters. The emission from metal oxides, however, shows a broad distribution of M mO ±n cluster ions whose formation can be described by both recombination and direct emission mechanisms. Covalently bonded molecules tend to eject as intact species. The emission of molecular ions is also discussed with respect to the method of ionization and the various sample preparation and matrix-assisted and derivatization procedures used. For example, the emission of molecular ions from metal surfaces is strongly influenced by the nature of the adsorption site; and matrix-assisted and derivatization procedures enhance the ionization efficiency of the analyte.

  12. Miniaturized Linear Wire Ion Trap Mass Analyzer.

    PubMed

    Wu, Qinghao; Li, Ailin; Tian, Yuan; Zare, Richard N; Austin, Daniel E

    2016-08-01

    We report a linear ion trap (LIT) in which the electric field is formed by fine wires held under tension and accurately positioned using holes drilled in two end plates made of plastic. The coordinates of the hole positions were optimized in simulation. The stability diagram and mass spectra using boundary ejection were compared between simulation and experiment and good agreement was found. The mass spectra from experiments show peak widths (fwhm) in units of mass-to-charge of around 0.38 Th using a scan rate of 3830 Th/s. The limits of detection are 137 ppbv and 401 ppbv for benzene and toluene, respectively. Different sizes of the wire ion trap can be easily fabricated by drilling holes in scaled positions. Other distinguishing features, such as high ion and photon transmission, low capacitance, high tolerance to mechanical and assembly error, and low weight, are discussed. PMID:27373557

  13. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  14. Accelerator mass spectrometry of molecular ions

    NASA Astrophysics Data System (ADS)

    Golser, Robin; Gnaser, Hubert; Kutschera, Walter; Priller, Alfred; Steier, Peter; Vockenhuber, Christof; Wallner, Anton

    2005-10-01

    The use of tandem accelerators for accelerator mass spectrometry (AMS) allows to literally "analyze" molecules. When a molecular ion with mass M and charge Q is injected at the low-energy side, it is efficiently broken up into its atomic constituents during the stripping process in the terminal. At the high-energy side the positively charged atomic ions are again analyzed by their mass-to-charge ratio and by their energy in the detector (and eventually by their nuclear charge, too). We show the usefulness of the AMS method by identifying unambiguously the doubly-charged negative molecule (43Ca19F4)2- for the first time. It considerably eases the task that the total mass M = 119 is odd, so the di-anion is injected at the half-integer mass-to-charge ratio M/Q = 59.5, where no singly charged ions can interfere. The full power of AMS is needed when we try to proof the existence of di-anions with an integer M/Q, e.g. (23Na35Cl3)2-, whose stability is of interest for atomic physics theory.

  15. AFE ion mass spectrometer design study

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1989-01-01

    This final technical report covers the activities engaged in by the University of Texas at Dallas, Center for Space Sciences in conjunction with the NASA Langley Research Center, Systems Engineering Division in design studies directed towards defining a suitable ion mass spectrometer to determine the plasma parameter around the Aeroassisted Flight Experiment vehicle during passage through the earth's upper atmosphere. Additional studies relate to the use of a Langmuir probe to measure windward ion/electron concentrations and temperatures. Selected instrument inlet subsystems were tested in the NASA Ames Arc-Jet Facility.

  16. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  17. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  18. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  19. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  20. Non-destructive ion trap mass spectrometer and method

    DOEpatents

    Frankevich, Vladimir E.; Soni, Manish H.; Nappi, Mario; Santini, Robert E.; Amy, Jonathan W.; Cooks, Robert G.

    1997-01-01

    The invention relates to an ion trap mass spectrometer of the type having an ion trapping volume defined by spaced end caps and a ring electrode. The ion trap includes a small sensing electrode which senses characteristic motion of ions trapped in said trapping volume and provides an image current. Ions are excited into characteristic motion by application of an excitation pulse to the trapped ions. The invention also relates to a method of operating such an ion trap.

  1. In situ secondary ion mass spectrometry analysis

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  2. THOR Ion Mass Spectrometer instrument - IMS

    NASA Astrophysics Data System (ADS)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  3. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  4. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  5. Microfabricated quadrupole ion trap for mass spectrometer applications.

    PubMed

    Pau, S; Pai, C S; Low, Y L; Moxom, J; Reilly, P T A; Whitten, W B; Ramsey, J M

    2006-03-31

    An array of miniaturized cylindrical quadrupole ion traps, with a radius of 20 microm, is fabricated using silicon micromachining using phosphorus doped polysilicon and silicon dioxide for the purpose of creating a mass spectrometer on a chip. We have operated the array for mass-selective ion ejection and mass analysis using Xe ions at a pressure of 10(-4). The scaling rules for the ion trap in relation to operating pressure, voltage, and frequency are examined. PMID:16605890

  6. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  7. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  8. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  9. Ion Neutral Mass Spectrometer Measurements from Titan

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Niemann, H.; Yelle, R. V.; Kasprzak, W.; Cravens, T.; Luhmann, J.; McNutt, R.; Ip, W.-H.; Gell, D.; Muller-Wordag, I. C. F.

    2005-01-01

    Introduction: The Ion Neutral Mass Spectrometer (INMS) aboard the Cassini orbiter has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, argon, and a host of stable carbon-nitrile compounds in its first flyby of Titan. The bulk composition and thermal structure of the moon s upper atmosphere do not appear to be changed since the Voyager flyby in 1979. However, the more sensitive techniques provided by modern in-situ mass spectrometry also give evidence for large-spatial-scale large-amplitude atmospheric waves in the upper atmosphere and for a plethora of stable carbon-nitrile compounds above 1174 km. Furthermore, they allow the first direct measurements of isotopes of nitrogen, carbon, and argon, which provide interesting clues about the evolution of the atmosphere. The atmosphere was first accreted as ammonia and ammonia ices from the Saturn sub-nebula. Subsequent photochemistry likely converted the atmosphere into molecular nitrogen. The early atmosphere was 1.5 to 5 times more substantial and was lost via escape over the intervening 4.5 billion years due to the reduced gravity associated with the relatively small mass of Titan. Carbon in the form of methane has continued to outgas over time from the interior with much of it being deposited in the form of complex hydrocarbons on the surface and some of it also being lost to space.

  10. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  11. Ion trap array mass analyzer: structure and performance.

    PubMed

    Li, Xiaoxu; Jiang, Gongyu; Luo, Chan; Xu, Fuxing; Wang, Yuanyuan; Ding, Li; Ding, Chuan-Fan

    2009-06-15

    An ion trap array (ITA) mass analyzer--a novel ion trap mass analyzer with multiple ion trapping and analyzing channels--was designed and constructed. Its property and performance were investigated and reported in this paper. The ITA was built with several planar electrodes including two parallel printed circuit board (PCB) plates. Each PCB plate was fabricated to several identical rectangular electric strips based on normal PCB fabrication technology and was placed symmetrically to those on the opposite plate. There is no electrode between any two adjacent strips. Every strip was supplied with an rf voltage while the polarity of the voltage applied to the adjacent two strips was opposite. So the electric potential at the central plane between two adjacent strips is zero. Multiple identical electric field regions that contain the dominant quadrupole plus some other high-order fields were produced between the two PCB plates. The multiple identical electric field regions will have the property of ion trapping, ion storage, and mass analysis functions. So an ITA could work as multiple ion trap mass analyzers. It could perform multiple sample ion storage, mass-selected ion isolation, ion ejection, and mass analysis simultaneously. The ITA was operated at both "digital ion trap mode" and "conventional rf mode" experimentally. A preliminary mass spectrum has been carried out in one of the ion trap channels, and it shows a mass resolution of over 1000. Additional functions such as mass-selected ion isolation and mass-selected ion ejection have also been tested. Furthermore, the ITA has a small size and very low cost. An ITA with four channels is less than 30 cm(3) in total volume, and it shows a great promise for the miniaturization of the whole mass spectrometer instrument and high-throughput mass analysis. PMID:19441854

  12. Radiation Design of Ion Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Ed; Cooper, John; Christian, Eric; Moore, Tom; Sturner, Steve; Paschalidis, Nick

    2011-01-01

    In the harsh radiation environment of Jupiter and with the JUpiter ICy moon Explorer (JUICE) mission including two Europa flybys where local intensities are approx. 150 krad/month behind 100 mils of Al shielding, so background from penetrating radiation can be a serious issue for detectors inside an Ion Mass Spectrometer (IMS). This can especially be important for minor ion detection designs. Detectors of choice for time-of-flight (TOF) designs are microchannel plates (MCP) and some designs may include solid state detectors (SSD). The standard approach is to use shielding designs so background event rates are low enough that the detector max rates and lifetimes are first not exceeded and then the more stringent requirement that the desired measurement can successfully be made (i.e., desired signal is sufficiently greater than background noise after background subtraction is made). GEANT codes are typically used along with various electronic techniques, but such designs need to know how the detectors will respond to the simulated primary and secondary radiations produced within the instrument. We will be presenting some preliminary measurements made on the response of MCPs to energetic electrons (20 ke V to 1400 ke V) using a Miniature TOF (MTOF) device and the High Energy Facility at Goddard Space Flight Center which has a Van de Graaff accelerator.

  13. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  14. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  15. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  16. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  17. Letter: High-mass capabilities of positive-ion and negative-ion direct analysis in real time mass spectrometry.

    PubMed

    Gross, Jürgen H

    2016-01-01

    Of the ionic liquid 1-butyl-3-methylimidazolium (C(+)) tricyanomethide (A(-)) high-mass cluster ions of both positive ([C(n)A(n-1)](+)) and negative ([C(n-1)A(n)](-)) charge were generated and detected by direct analysis in real time (DART) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). After optimization of the settings of the DART ionization source and of the mass analyzer ions of m/z values unprecedented in DART-MS were detected. Thus, the upper m/z limits of positive-ion and negative-ion DART- MS were substantially expanded. Negative-ion DART-MS delivered cluster ions up to [C(15)A(16)](-), m/z 3527 (nominal mass of monoisotopic ion), while positive-ion DART-MS even yielded ions up to [C(30)A(29)](+), m/z 6784. The identification of the cluster ions is supported by their accurate mass and exact mass differences corresponding to CA between adjacent cluster ion peaks.

  18. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Smith, Donald F.; Robinson, Errol W.; Tolmachev, Aleksey V.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana

    2011-12-15

    Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g. Au and Bi cluster and buckminsterfullerene (C60)) provide improved secondary ion yield and decreased fragmentation of surface species, thus accessibility to intact molecular ions. Despite developments in primary ion sources, development of mass spectrometers to fully exploit their advantages has been limited. Tandem mass spectrometry for identification of secondary ions is highly desirable, but implementation has proven to be difficult. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C60 primary ion source with the ultra-high mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100,000 (m/Δm50%) is demonstrated, with mass measurement accuracies below 3 parts-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulae can be assigned to fragment ions.

  19. An ion mobility mass spectrometer for investigating photoisomerization and photodissociation of molecular ions

    SciTech Connect

    Adamson, B. D.; Coughlan, N. J. A.; Markworth, P. B.; Bieske, E. J.; Continetti, R. E.

    2014-12-15

    An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the device is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.

  20. Hybrid ion mobility and mass spectrometry as a separation tool.

    PubMed

    Ewing, Michael A; Glover, Matthew S; Clemmer, David E

    2016-03-25

    Ion mobility spectrometry (IMS) coupled to mass spectrometry (MS) has seen spectacular growth over the last two decades. Increasing IMS sensitivity and capacity with improvements in MS instrumentation have driven this growth. As a result, a diverse new set of techniques for separating ions by their mobility have arisen, each with characteristics that make them favorable for some experiments and some mass spectrometers. Ion mobility techniques can be broken down into dispersive and selective techniques based upon whether they pass through all mobilities for later analysis by mass spectrometry or select ions by mobility or a related characteristic. How ion mobility techniques fit within a more complicated separation including mass spectrometry and other techniques such as liquid chromatography is of fundamental interest to separations scientists. In this review we explore the multitude of ion mobility techniques hybridized to different mass spectrometers, detailing current challenges and opportunities for each ion mobility technique and for what experiments one technique might be chosen over another. The underlying principles of ion mobility separations, including: considerations regarding separation capabilities, ion transmission, signal intensity and sensitivity, and the impact that the separation has upon the ion structure (i.e., the possibility of configurational changes due to ion heating) are discussed.

  1. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.

  2. Characterization of protonated phospholipids as fragile ions in quadrupole ion trap mass spectrometry

    PubMed Central

    Garrett, Timothy J.; Merves, Matthew; Yost, Richard A.

    2011-01-01

    Some ions exhibit “ion fragility” in quadrupole ion trap mass spectrometry (QIT-MS) during mass analysis with resonance ejection. In many cases, different ions generated from the same compound exhibit different degrees of ion fragility, with some ions (e.g., the [M+H]+ ion) stable and other ions (e.g., the [M+Na]+ ion) fragile. The ion fragility for quadrupole ion trap (QIT) mass spectrometry (MS) for protonated and sodiated ions of three phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, PC (16:0/16:0), 1,2-dipalmitoyl-sn-glycero-3-phophoethanolamine, PE (16:0/16:0), and N-palmitoyl-D-erythro-sphingosylphosphorylcholine, SM (d18:1/16:0), was determined using three previously developed experiments: 1) the peak width using a slow scan speed, 2) the width of the isolation window for efficient isolation, and 3) the energy required for collision-induced dissociation. In addition, ion fragility studies were designed and performed to explore a correlation between ion fragility in QIT mass analysis and ion fragility during transport between the ion source and the ion trap. These experiments were: 1) evaluating the amount of thermal-induced dissociation as a function of heated capillary temperature, and 2) determining the extent of fragmentation occurring with increasing tube lens voltage. All phospholipid species studied exhibited greater ion fragility as protonated species in ion trap mass analysis than as sodiated species. In addition, the protonated species of both SM (d18:0/16:0) and PC (16:0/16:0) exhibited greater tendencies to fragment at higher heated capillary temperatures and high tube lens voltages, whereas the PE (16:0/16:0) ions did not appear to exhibit fragility during ion transport. PMID:22247650

  3. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  4. Ion-molecule adduct formation in tandem mass spectrometry.

    PubMed

    Alechaga, Élida; Moyano, Encarnación; Galceran, Maria Teresa

    2016-02-01

    Nowadays most LC-MS methods rely on tandem mass spectrometry not only for quantitation and confirmation of compounds by multiple reaction monitoring (MRM), but also for the identification of unknowns from their product ion spectra. However, gas-phase reactions between charged and neutral species inside the mass analyzer can occur, yielding product ions at m/z values higher than that of the precursor ion, or at m/z values difficult to explain by logical losses, which complicate mass spectral interpretation. In this work, the formation of adduct ions in the mass analyzer was studied using several mass spectrometers with different mass analyzers (ion trap, triple quadrupole, and quadrupole-Orbitrap). Heterocyclic amines (AαC, MeAαC, Trp-P-1, and Trp-P-2), photo-initiators (BP and THBP), and pharmaceuticals (phenacetin and levamisole) were selected as model compounds and infused in LCQ Classic, TSQ Quantum Ultra AM, and Q-Exactive Orbitrap (ThermoFisher Scientific) mass spectrometers using electrospray as ionization method. The generation of ion-molecule adducts depended on the compound and also on the instrument employed. Adducts with neutral organic solvents (methanol and acetonitrile) were only observed in the ion trap instrument (LCQ Classic), because of the ionization source on-axis configuration and the lack of gas-phase barriers, which allowed inertial entrance of the neutrals into the analyzer. Adduct formation (only with water) in the triple quadrupole instruments was less abundant than in the ion trap and quadrupole-Orbitrap mass spectrometers, because of the lower residence time of the reactive product ions in the mass analyzer. The moisture level of the CID and/or damper gas had a great effect in beam-like mass analyzers such as triple quadrupole, but not in trap-like mass analyzers, probably because of the long residence time that allowed adduct formation even with very low concentrations of water inside the mass spectrometer. PMID:26700446

  5. A mass- and velocity-broadband ion deflector for off-axis ion injection into a cyclotron resonance ion trap

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Marshall, Alan G.

    1996-02-01

    Off-axis ion injection into an FT-ICR ion trap is desirable for capturing ions from a continuously generated beam (e.g., electrospray). A conventional E×B (Wien) filter focuses ions of a single velocity (independent of mass). Here we show that by segmenting opposed flat electrodes into small sections, the electric field may be tailored to produce well-focused ion trajectories over a wide range of ion velocity and mass-to-charge ratio, m/z. In the limit of infinitely extended deflector electrodes, small m/z, and/or high B, ion trajectories vary as powers or roots of distance.

  6. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    PubMed Central

    DeBord, John Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ron M. A.; Paša-Tolić, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-01-01

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification. PMID:24911189

  7. Secondary ion mass spectrometry imaging of Dictyostelium discoideum aggregation streams.

    PubMed

    DeBord, John Daniel; Smith, Donald F; Anderton, Christopher R; Heeren, Ron M A; Paša-Tolić, Ljiljana; Gomer, Richard H; Fernandez-Lima, Francisco A

    2014-01-01

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  8. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    SciTech Connect

    Debord, J. Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-06-09

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  9. Fourier transform ion cyclotron resonance mass spectrometry: a primer.

    PubMed

    Marshall, A G; Hendrickson, C L; Jackson, G S

    1998-01-01

    This review offers an introduction to the principles and generic applications of FT-ICR mass spectrometry, directed to readers with no prior experience with the technique. We are able to explain the fundamental FT-ICR phenomena from a simplified theoretical treatment of ion behavior in idealized magnetic and electric fields. The effects of trapping voltage, trap size and shape, and other nonidealities are manifested mainly as perturbations that preserve the idealized ion behavior modified by appropriate numerical correction factors. Topics include: effect of ion mass, charge, magnetic field, and trapping voltage on ion cyclotron frequency; excitation and detection of ICR signals; mass calibration; mass resolving power and mass accuracy; upper mass limit(s); dynamic range; detection limit, strategies for mass and energy selection for MSn; ion axialization, cooling, and remeasurement; and means for guiding externally formed ions into the ion trap. The relation of FT-ICR MS to other types of Fourier transform spectroscopy and to the Paul (quadrupole) ion trap is described. The article concludes with selected applications, an appendix listing accurate fundamental constants needed for ultrahigh-precision analysis, and an annotated list of selected reviews and primary source publications that describe in further detail various FT-ICR MS techniques and applications.

  10. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1973-01-01

    Positive metallic ions have been measured in the earth's atmosphere between 85 and 120 km, during the period of the beta Taurids meteor shower, which is associated with Comet Encke. The ions originate during and following ablation of extraterrestrial debris by the earth's atmosphere. The enhancement of metal ion density during meteor showers is primary evidence for their extraterrestrial origin. The present results were obtained from a rocket-borne ion mass spectrometer.

  11. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  12. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  13. Mass spectra of heavy ions near comet Halley

    NASA Technical Reports Server (NTRS)

    Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.

    1986-01-01

    The heavy-ion analyzer, RPA2-PICCA, aboard the Giotto spacecraft, detected the first cometary ions at a distance of about 1.05 million km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.

  14. 10 K Ring Electrode Trap - Tandem Mass Spectrometer for Infrared Spectroscopy of Mass Selected Ions

    SciTech Connect

    Goebbert, Daniel J.; Meijer, Gerard; Asmis, Knut R.

    2009-03-17

    A novel instrumental setup for measuring infrared photodissociation spectra of buffer gas cooled, mass-selected ions is described and tested. It combines a cryogenically cooled, linear radio frequency ion trap with a tandem mass spectrometer, optimally coupling continuous ion sources to pulsed laser experiments. The use of six independently adjustable DC potentials superimposed over the trapping radio frequency field provides control over the ion distribution within, as well as the kinetic energy distribution of the ions extracted from the ion trap. The scheme allows focusing the ions in space and time, such that they can be optimally irradiated by a pulsed, widely tunable infrared photodissociation laser. Ion intensities are monitored with a time-of-flight mass spectrometer mounted orthogonally to the ion trap axis.

  15. Product ion scanning using a Q-q-Q linear ion trap (Q TRAP) mass spectrometer.

    PubMed

    Hager, James W; Yves Le Blanc, J C

    2003-01-01

    The use of a Q-q-Q(linear ion trap) instrument to obtain product ion spectra is described. The instrument is based on the ion path of a triple quadrupole mass spectrometer with Q3 operable as either a conventional RF/DC quadrupole mass filter or a linear ion trap mass spectrometer with axial ion ejection. This unique ion optical arrangement allows de-coupling of precursor ion isolation and fragmentation from the ion trap itself. The result is a high sensitivity tandem mass spectrometer with triple quadrupole fragmentation patterns and no inherent low mass cut-off. The use of the entrance RF-only section of the instrument as accumulation ion trap while the linear ion trap mass spectrometer is scanning enhances duty cycles and results in increased sensitivities by as much as a factor of 20. The instrument is also capable of all of the triple quadrupole scans including multiple-reaction monitoring (MRM) as well as precursor and constant neutral loss scanning. The high product ion scanning sensitivity allows the recording of useful product ion spectra near the MRM limit of quantitation.

  16. Mass Spectra and Ion Collision Cross Sections of Hemoglobin

    NASA Astrophysics Data System (ADS)

    Kang, Yang; Terrier, Peran; Douglas, D. J.

    2011-02-01

    Mass spectra of commercially obtained hemoglobin (Hb) show higher levels of monomer and dimer ions, heme-deficient dimer ions, and apo-monomer ions than hemoglobin freshly prepared from blood. This has previously been attributed to oxidation of commercial Hb. Further, it has been reported that that dimer ions from commercial bovine Hb have lower collision cross sections than low charge state monomer ions. To investigate these effects further, we have recorded mass spectra of fresh human Hb, commercial human and bovine Hb, fresh human Hb oxidized with H2O2, lyophilized fresh human Hb, fresh human Hb both lyophilized and chemically oxidized, and commercial human Hb oxidized with H2O2. Masses of α-monomer ions of all hemoglobins agree with the masses expected from the sequences within 3 Da or better. Mass spectra of the β chains of commercial Hb and oxidized fresh human Hb show a peak or shoulder on the high mass side, consistent with oxidation of the protein. Both commercial proteins and oxidized fresh human Hb produce heme-deficient dimers with masses 32 Da greater than expected and higher levels of monomer and dimer ions than fresh Hb. Lyophilization or oxidation of Hb both produce higher levels of monomer and dimer ions in mass spectra. Fresh human Hb, commercial human Hb, commercial bovine Hb, and oxidized commercial human Hb all give dimer ions with cross sections greater than monomer ions. Thus, neither oxidation of Hb or the difference in sequence between human and bovine Hb make substantial differences to cross sections of ions.

  17. Ion acoustic shock wave in collisional equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  18. Ion acoustic shock wave in collisional equal mass plasma

    NASA Astrophysics Data System (ADS)

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-01

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  19. Improved Ion Optics for Introduction of Ions into a 9.4 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2014-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T FT-ICR mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. PMID:25601704

  20. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  1. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  2. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  3. Transmission secondary ion mass spectrometry using 5 MeV C60+ ions

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Nagano, K.; Suzuki, M.; Narumi, K.; Saitoh, Y.; Hirata, K.; Kimura, K.

    2014-03-01

    In the secondary ion mass spectrometry (SIMS), use of cluster ions has an advantage of producing a high sensitivity of intact large molecular ions over monatomic ions. This paper presents further yield enhancement of the intact biomolecular ions by measuring the secondary ions emitted in the forward direction. Phenylalanine amino acid films deposited on self-supporting thin Si3N4 films were bombarded with 5 MeV C60 ions. Secondary ions emitted in the forward and backward directions were measured. The yield of intact phenylalanine molecular ions emitted in the forward direction is significantly enhanced compared to the backward direction while fragment ions are suppressed. This suggests a large potential of using transmission cluster ion SIMS for the analysis of biological materials.

  4. AUTOMATED DETERMINATION OF PRECURSOR ION, PRODUCT ION, AND NEUTRAL LOSS COMPOSITIONS AND DECONVOLUTION OF COMPOSITE MASS SPECTRA USING ION CORRELATION BASED ON EXACT MASSES AND RELATIVE ISOTOPIC ABUNDANCES

    EPA Science Inventory

    After a dispersive event, rapid determination of elemental compositions of ions in mass spectra is essential for tentatively identifying compounds. A Direct Analysis in Real Time (DART)® ion source interfaced to a JEOL AccuTOF® mass spectrometer provided exact masses accurate to ...

  5. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    DOE PAGESBeta

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting inmore » nearly lossless transmission.« less

  6. Linear electronic field time-of-flight ion mass spectrometers

    DOEpatents

    Funsten, Herbert O.

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  7. Simulating data processing for an Advanced Ion Mobility Mass Spectrometer

    SciTech Connect

    Chavarría-Miranda, Daniel; Clowers, Brian H.; Anderson, Gordon A.; Belov, Mikhail E.

    2007-11-03

    We have designed and implemented a Cray XD-1-based sim- ulation of data capture and signal processing for an ad- vanced Ion Mobility mass spectrometer (Hadamard trans- form Ion Mobility). Our simulation is a hybrid application that uses both an FPGA component and a CPU-based soft- ware component to simulate Ion Mobility mass spectrome- try data processing. The FPGA component includes data capture and accumulation, as well as a more sophisticated deconvolution algorithm based on a PNNL-developed en- hancement to standard Hadamard transform Ion Mobility spectrometry. The software portion is in charge of stream- ing data to the FPGA and collecting results. We expect the computational and memory addressing logic of the FPGA component to be portable to an instrument-attached FPGA board that can be interfaced with a Hadamard transform Ion Mobility mass spectrometer.

  8. Laser desorption in an ion trap mass spectrometer

    SciTech Connect

    Eiden, G.C.; Cisper, M.E.; Alexander, M.L.; Hemberger, P.H.; Nogar, N.S.

    1993-02-01

    Laser desorption in a ion-trap mass spectrometer shows significant promise for both qualitative and trace analysis. Several aspects of this methodology are discussed in this work. We previously demonstrated the generation of both negative and positive ions by laser desorption directly within a quadrupole ion trap. In the present work, we explore various combinations of d.c., r.f., and time-varying fields in order to optimize laser generated signals. In addition, we report on the application of this method to analyze samples containing compounds such as amines, metal complexes, carbon clusters, and polynuclear aromatic hydrocarbons. In some cases the ability to rapidly switch between positive and negative ion modes provides sufficient specificity to distinguish different compounds of a mixture with a single stage of mass spectrometry. In other experiments, we combined intensity variation studies with tandem mass spectrometry experiments and positive and negative ion detection to further enhance specificity.

  9. Design and development of a fast ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1983-01-01

    Two Fast Ion Mass Spectrometers (FIMS A and FIMS B) were developed. The design, development, construction, calibration, integration, and flight of these instruments, along with early results from the data analysis efforts are summarized. A medium energy ion mass spectrometer that covers mass velocity space with significantly higher time resolution, improved mass resolution, (particularly for heavier ions), and wider energy range than existing instruments had achieved was completed. The initial design consisted of a dual channel cylindrical electrostatic analyzer followed by a dual channel cylindrical velocity filter. The gain versus count rate characteristics of the high current channel electron multipliers (CEM's), which were chosen for ion detection, revealed a systematic behavior that can be used as a criterion for selection of CEM's for long counting lifetimes.

  10. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    SciTech Connect

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  11. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium

    NASA Technical Reports Server (NTRS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1991-01-01

    This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.

  12. Collisional activation with random noise in ion trap mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.

  13. Fluorescence Imaging for Visualization of the Ion Cloud in a Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Talbot, Francis O.; Sciuto, Stephen V.; Jockusch, Rebecca A.

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial ( r) and axial ( z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6 % of r 0 and ~3 % of z 0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/ z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/ z (higher q z ) are located in the center of the trapping region, effectively excluding higher m/ z (lower q z ) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution.

  14. Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed Central

    Solouki, T; Russell, D H

    1992-01-01

    Matrix-assisted laser desorption ionization is used to obtain Fourier-transform ion cyclotron resonance mass spectra of model peptides (e.g., gramicidin S, angiotensin I, renin substrate, melittin, and bovine insulin). Matrix-assisted laser desorption ionization yields ions having appreciable kinetic energies. Two methods for trapping the high kinetic energy ions are described: (i) the ion signal for [M+H]+ ions is shown to increase with increasing trapping voltages, and (ii) collisional relaxation is used for the detection of [M+H]+ ions of bovine insulin. Images PMID:1378614

  15. Ion track structure probed by plasma desorption mass spectrometry

    NASA Astrophysics Data System (ADS)

    U. R. Sundqvist, Bo

    1993-07-01

    Since the discovery of plasma desorption mass spectrometry by Torgerson [D.F. Torgerson, R.P. Skowronski and R.D. Macfarlane, Biophys. Res. Commun., 60(1974) 616], the method has mainly been used in mass spectrometric studies of bioorganic molecules. However, the ejecta in this electronic sputtering process have also been studied with the aim to gain information on the structure of the ion track formed in a solid by the incident fission fragment. In this paper such studies will be described. In particular, the ejection of large whole ionised organic molecules and the synthesis of fullerenes at the impact of a fast heavy ion on an organic solid will be discussed. Those two processes are connected to different parts of the ion track. Also, the ejection of light ions and damage cross sections will be discussed and are shown to give additional information on the time and space evolution of energy deposited in a fast ion track.

  16. Mass spectrometry. [in organic ion and biorganic chemistry and medicine

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Cox, R. E.; Derrick, P. J.

    1974-01-01

    Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.

  17. Secondary Ion Mass Spectrometry by Time-Of

    NASA Astrophysics Data System (ADS)

    Ens, Erich Werner

    The operation and performance of the Manitoba time-of-flight mass spectrometer is described. The recent implementation of a commercial time-to-digital converter is described and compared to the conventional timing method (time-to-amplitude conversion) used earlier. Mass spectra obtained here with keV alkali ions and in Rockefeller University with (TURN)100 MeV fission fragments from ('252)Cf were found to be similar. Yields of secondary ions from alanine were measured for primary alkali ions (Cs('+), K('+), Na('+), and Li('+)) at energies 1 keV to 16 keV. Yields increase greatly with increasing energy and with the mass of the bombarding particle, suggesting that in this energy region the nuclear stopping is mainly responsible for the secondary ion production. This is in contrast to the case for fission fragments where electronic stopping must be responsible. Thus, it appears that the mass spectra are fairly insensitive to the form of the incident energy loss. Secondary ions {(CsI)(,n)Cs}('+), with n up to (TURN)40, were produced by 8 keV Cs('+) bombardment of CsI. The yield of clusters decreased smoothly with n when observed in a time-of-flight mass spectrometer at effective times (TURN)0.2 (mu)s after emission. Clusters with n > 7 were found to be metastable, with lifetimes << 100 (mu)s. A large anomaly in the population of the disintegration products was measured at (TURN)70 (mu)s after emission, n = 13 clusters being favored and n = 14 and 15 being suppressed. A marked increase in the yield of cations, anions and all cluster ions was observed after irradiating alkali halides with >(, )10('14) alkali ions/cm('2). In addition, the irradiation was found to produce emission of cluster ions delayed by (TURN)200 ns after the primary ion impact.

  18. Systematization of the mass spectra for speciation of inorganic salts with static secondary ion mass spectrometry.

    PubMed

    Van Ham, Rita; Van Vaeck, Luc; Adams, Freddy C; Adriaens, Annemie

    2004-05-01

    The analytical use of mass spectra from static secondary ion mass spectrometry for the molecular identification of inorganic analytes in real life surface layers and microobjects requires an empirical insight in the signals to be expected from a given compound. A comprehensive database comprising over 50 salts has been assembled to complement prior data on oxides. The present study allows the systematic trends in the relationship between the detected signals and molecular composition of the analyte to be delineated. The mass spectra provide diagnostic information by means of atomic ions, structural fragments, molecular ions, and adduct ions of the analyte neutrals. The prediction of mass spectra from a given analyte must account for the charge state of the ions in the salt, the formation of oxide-type neutrals from oxy salts, and the occurrence of oxidation-reduction processes.

  19. High-resolution mass spectrometer for liquid metal ion sources

    SciTech Connect

    Wortmann, Martin; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Meijer, Jan

    2013-09-15

    Recently, a mass spectrometer for liquid metal ion sources (LMIS) has been built and set into operation. This device uses an E×B-filter as mass dispersive element and provides sufficient resolution to analyse the emission of clusters from LMIS to much higher mass ranges (>2000 amu) than commercially available mass filters for focused ion beam systems. It has also been shown that for small masses the composition of clusters from different isotopes can be resolved. Furthermore, a rather high fluence of monodisperse clusters in the range of 10{sup 6}–10{sup 7} clusters/s can be achieved with this setup. This makes it a promising tool for the preparation of mass selected clusters. In this contribution, theoretical considerations as well as technical details and the results of first measurements are presented.

  20. High-resolution mass spectrometer for liquid metal ion sources.

    PubMed

    Wortmann, Martin; Ludwig, Arne; Meijer, Jan; Reuter, Dirk; Wieck, Andreas D

    2013-09-01

    Recently, a mass spectrometer for liquid metal ion sources (LMIS) has been built and set into operation. This device uses an E × B-filter as mass dispersive element and provides sufficient resolution to analyse the emission of clusters from LMIS to much higher mass ranges (>2000 amu) than commercially available mass filters for focused ion beam systems. It has also been shown that for small masses the composition of clusters from different isotopes can be resolved. Furthermore, a rather high fluence of monodisperse clusters in the range of 10(6)-10(7) clusters/s can be achieved with this setup. This makes it a promising tool for the preparation of mass selected clusters. In this contribution, theoretical considerations as well as technical details and the results of first measurements are presented.

  1. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  2. Observation and implications of high mass-to-charge ratio ions from electrospray ionization mass spectrometry.

    PubMed

    Winger, B E; Light-Wahl, K J; Ogorzalek Loo, R R; Udseth, H R; Smith, R D

    1993-07-01

    High mass-to-charge ratio ions (> 4000) from electrospray ionization (ESI) have been observed for several proteins, including bovine cytochrome c (M r 12,231) and porcine pepsin (M r 34,584), by using a quadrupole mass spectrometer with an m/z 45,000 range. The ESI mass spectrum for cytochrome c in an aqueous solution gives a charge state distribution that ranges from 12 + to 2 +, with a broad, low-intensity peak in the mass-to-charge ratio region corresponding to the [M + H](+) ion. the negative ion ESI mass spectrum for pepsin in 1% acetic acid solution shows a charge state distribution ranging from 7- to 2-. To observe the [M - H](-) ion, harsher desolvation and interface conditions were required. Also observed was the abundant aggregation of the protens with average charge states substantially lower than observed for their monomeric counterparts. The negative ion ESI mass spectrum for cytochrome c in 1-100 mM NH4OAc solutions showed greater relative abundances for the higher mass-to-charge ratio ions than in acuidic solutions, with an [M - H](-) ion relative abundance approximately 50% that of the most abundant charge state peak. The observation that protein aggregates are formed with charge states comparable to monomeric species (at fower mass-to-charge ratios) suggests that the high mass-to-charge ratio monomers may be formed by the dissociation of aggregate species. The observation of low charge state and aggregate molecular ions concurrently with highly charged species may serve to support a variation of the charged residue model, originally described by Dole and co-workers (Dole, M., et al. J. Chem. Phys. 1968, 49, 2240; Mack, L. L., et al. J. Chem. Phys. 1970, 52, 4977) which involves the Coulombically driven formation of either very highly solvated molecular ions or lower ananometer-diameter droplets. PMID:24227640

  3. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  4. Fourier transform ion cyclotron resonance mass spectrometric study of gas-phase ion-molecule reactions

    SciTech Connect

    Yin, Winnie Weixin.

    1993-01-01

    Gas-phase ion-molecule reactions of rare earth (include Sc, Y, and all the lanthanide series) metal ion (except Pm[sup +]) reactions with benzene and alkyl benzene ligands were systematically studied by FT/ICR mass spectrometry. An electronic configuration d[sup 1]s[sup 1] was found to be necessary for the ions to insert into C-C and/or C-H bonds of alkyl groups of the ligands. When the promotion energy for the transition groups of the ligands. When the promotion energy for the transition f[sup n]s[sup 1] [yields] f[sup n[minus]1]d[sup 1]s[sup 1] was large, no reaction resulting from activation was observed. Some of the rare earth metal ions do not activate C-C or C-H bond of saturated hydrocarbons, but are rather reactive with alkyl groups of aromatic ligands. Most of the rare earth ions only from intact complex ions with benzene, while Sc[sup +], Y[sup +], La[sup +] and Ce[sup +] form metal-benzyne ions. Rare earth metal ions are quite oxophilic and readily react with background oxygen containing species when the reactions with organic ligand(s). A hyperbolic ion trap for ET/ICR mass spectrometry was evaluated experimentally and compared with the most commonly used cubic ion trap. The hyperbolic trap offers several advantages over the cubic ion trap. The hyperbolic trap offers several advantages over the cubic trap: improved mass resolving power, improved mass accuracy for wide-range mass spectra, and elimination of frequency shift due to different ion cyclotron radius. But z-ejection is more pronounced in the hyperbolic than in the cubic trap.

  5. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  6. The Retarding Ion Mass Spectrometer on Dynamics Explorer-A

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.; Fields, S. A.; Baugher, C. R.; Hoffman, J. H.; Hanson, W. B.; Wright, W. W.; Hammack, H. D.; Carignan, G. R.; Nagy, A. F.

    1981-01-01

    The thermal component of the magnetospheric plasma plays a key role in magnetosphere-ionosphere coupling processes, acting as a strong influence on ionospheric structure at low altitudes and as a source and modifier of the hotter plasma population at high altitudes. The Retarding Ion Mass Spectrometer (RIMS) instrument on Dynamics Explorer-A is designed to measure this important thermal plasma component. Using a combination of retarding potential analysis and magnetic ion mass spectrometer techniques, the RIMS instrument will measure the bulk plasma parameters of ion density (0.1 to 1,000,000 ions/cu cm), temperature (0-45 eV), and bulk flow (greater than 0.5 km/sec) in the inner plasmasphere and ionosphere, and the specific ion pitch angle and energy spectral characteristics in the outer plasmasphere and plasma trough for a mass range of 1-32 amu. The energy and mass spectral step sequences, as well as the multiplexing of the resultant data, can be tailored to accomplish a variety of thermal ion measurements throughout the inner magnetosphere.

  7. "Fast excitation" CID in a quadrupole ion trap mass spectrometer.

    PubMed

    Murrell, J; Despeyroux, D; Lammert, S A; Stephenson, J L; Goeringer, D E

    2003-07-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. "Fast excitation" CID deposits (as determined by the intensity ratio of the a(4)/b(4) ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with "fast excitation" CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for "fast excitation" CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H)(17+) of horse heart myoglobin is also shown to illustrate the application of "fast excitation" CID to proteins.

  8. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  9. Mass determination of megadalton-DNA electrospray ions using charge detection mass spectrometry.

    PubMed

    Schultz, J C; Hack, C A; Benner, W H

    1998-04-01

    Charge detection mass spectrometry (CD-MS) has been used to determine the mass of double-stranded, circular DNA and single-stranded, circular DNA in the range of 2500 to 8000 base pairs (1.5-5.0 MDa). Simultaneous measurement of the charge and velocity of an electrostatically accelerated ion allows a mass determination of the ion, with instrument calibration determined independently of samples. Positive ion mass spectra of electrosprayed commercial DNA samples supplied in tris(hydroxymethyl)ethylenediaminetetraacetic acid buffer, diluted in 50 vol. % acetonitrile, were obtained without cleanup of the sample. A CD mass spectrum constructed from 3000 ion measurements takes 10 min to acquire and yields the DNA molecular mass directly (mass resolution = 6). The data collected represent progress toward a more automatable alternative to sizing of DNA by gel electrophoresis. In addition to the mass spectra, CD-MS generates charge versus mass plots, which provide another means to investigate the creation and fate of large electrospray ions.

  10. Mass determination of megadalton-DNA Electrospray Ions usingCharge Detection Mass Spectrometry

    SciTech Connect

    Schultz, Jocelyn C.; Hack, Christopher; Benner, Henry W.

    1997-10-01

    Charge detection mass spectrometry (CD-MS) has been used to determine the mass of double-stranded, circular DNA and single-stranded, circular DNA in the range of 2500 to 8000 base pairs (1.5-5.0 MDa). Simultaneous measurement of the charge and velocity of an electrostatically accelerated ion allows a mass determination of the ion, with instrument calibration determined independently of samples. Positive ion mass spectra of electrosprayed commercial DNA samples supplied in tris(hydroxymethyl)ethylenediamine tetraacetic acid buffer, diluted in 50 vol. percent acetonitrile, were obtained without cleanup of the sample. ACD mass spectrum constructed from 3000 ion measurements takes 10 min to acquire and yields the DNA molecular mass directly (mass resolution = 6). The data collected represent progress toward a more automatable alternative to sizing of DNA by gel electrophoresis. In addition to the mass spectra, CD-MS generates charge versus mass plots, which provide another means to investigate the creation and fate of large electrospray ions.

  11. Octupole Excitation of Trapped Ion Motion for Precision Mass Measurements

    NASA Astrophysics Data System (ADS)

    Bollen, G.; Ringle, R.; Schury, P.; Schwarz, S.; Sun, T.

    2005-04-01

    National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, USA An azimuthal octupole radiofrequency field has been used to excite the ion motion of ^40Ar^+ ions stored in a Penning trap. A resonant response was observed at twice the ions' true cyclotron frequency φc=q/m.B. The experiment has been performed with the 9.4-T Penning trap system of the recently commissioned LEBIT facility at the NSCL at MSU [1]. Similar to the excitation with an azimuthal quadrupole field at φc [2,3], octupole excitation at 2φc gives rise to a periodic beating of the ion motion between magnetron and reduced cyclotron motion. Differences are observed in the dependence of the excited ion motion on initial amplitudes and phases of the radial eigen motions. The observed behavior of the ions is found to be in good agreement with the results of numerical simulations. The technique still requires further testing but the first results indicate that 2φc excitation may provide benefits that are similar to doubling the magnetic field strength B. In particular precision mass measurements of short-lived rare isotopes may benefit from this technique by being able to reach a given precision with shorter ion storage and observation times. [1] S. Schwarz et al, Nucl. Instr. Meth. B204 (2004) 507 [2] G. Bollen et al., J. Appl. Phys. 68 (1990) 4355 [3] M. König et al., Int. J. Mass Spec. Ion. Proc. 142 (1995) 95

  12. Fundamental studies of ion injection and trapping of electrosprayed ions on a quadrupole ion trap mass spectrometer

    NASA Astrophysics Data System (ADS)

    Quarmby, Scott Thomas

    The quadrupole ion trap is a highly versatile and sensitive analytical mass spectrometer. Because of the advantages offered by the ion trap, there has been intense interest in coupling it to ionization techniques such as electrospray which form ions externally to the ion trap. In this work, experiments and computer simulations were employed to study the injection of electrosprayed ions into the ion trap of a Finnigan MAT LCQ LC/MS n mass spectrometer. The kinetic energy distribution of the ion beam was characterized and found to be relatively wide, a result of the high pressures from the atmospheric pressure source. One of the most important experimental parameters which affects ion injection efficiency is the RF voltage applied to the ring electrode. A theoretical model was fit to experimental data allowing the optimum RF voltage for trapping a given m/z ion to be predicted. Computer simulations of ion motion were performed to study the effect of various instrumental parameters on trapping efficiency. A commercially available ion optics program, SIMION v6.0, was chosen because it allowed the actual ion trap electrode geometry including endcap holes to be simulated. In contrast to previous computer simulations, SIMION provided the ability to start ions outside the ion trap and to simulate more accurately the injection of externally formed ions. The endcap holes were found to allow the RF field to penetrate out of the ion trap and affect ions as they approached the ion trap. From these simulations, a model for the process by which injected ions are trapped was developed. Using these computer simulations, techniques of improving trapping efficiency were investigated. Most previous techniques perturb ions which are already in the ion trap and therefore cannot be used to accumulate ions; the ability to accumulate ions is a necessity with ionization sources such as electrospray which form ions continuously. One such novel technique for improving trapping efficiency

  13. Conditioning of ion sources for mass spectrometry of plasmas

    SciTech Connect

    Dylla, H.F.; Blanchard, W.R.

    1983-02-01

    Mass spectrometry is a useful diagnostic technique for monitoring plasma species and plasma-surface interactions. In order to maximize the sensitivity of measurements of hydrogen-fueled fusion plasmas or hydrogen-based discharge cleaning and etching plasmas, the ion sources of mass spectrometers are operated at or near the high pressure limit of 10/sup -4/ Torr (10/sup -2/ Pa). Such high ambient pressures of hydrogen give rise to high background levels of residual gases such as H/sub 2/O, CO, and CH/sub 4/, due to surface reactions on the ion source electrodes. For a commonly used ion source configuration, the residual gas production is a linear function of the ambient H/sub 2/ pressure. Hydrogen conditioning can reduce the absolute residual gas levels. Steady-state residual gas production is observed in a conditioned ion source, which is related to a balance of diffusion and sorption on the electrode surfaces.

  14. Radiocarbon detection by ion charge exchange mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hotchkis, Michael; Wei, Tao

    2007-06-01

    A method for detection of radiocarbon at low levels is described and the results of tests are presented. We refer to this method as ion charge exchange mass spectrometry (ICE-MS). The ICE-MS instrument is a two stage mass spectrometer. In the first stage, molecular interferences which would otherwise affect radiocarbon detection at mass 14 are eliminated by producing high charge state ions directly in the ion source (charge state ⩾2). 14N interference is eliminated in the second stage by converting the beam to negative ions in a charge exchange cell. The beam is mass-analysed at each stage. We have built a test apparatus consisting of an electron cyclotron resonance ion source and a pair of analysing magnets with a charge exchange cell in between, followed by an electrostatic analyser to improve the signal to background ratio. With this apparatus we have measured charge exchange probabilities for (Cn+ → C-) from 4.5 to 40.5 keV (n = 1-3). We have studied the sources of background including assessment of limits for nitrogen interference by searching for negative ions from charge exchange of 14N ions. Our system has been used to detect 14C in enriched samples of CO2 gas with 14C/12C isotopic ratio down to the 10-9 level. Combined with a measured sample consumption rate of 4 ng/s, this corresponds to a capability to detect transient signals containing only a few μBq of 14C activity, such as may be obtained from chromatographic separation. The method will require further development to match the sensitivity of AMS with a gas ion source; however, even in its present state its sensitivity is well suited to tracer studies in biomedical research and drug development.

  15. Multiple mass analysis using an ion trap array (ITA) mass analyzer.

    PubMed

    Yu, Xiao; Chu, Yanqiu; Ling, Xing; Ding, Zhengzhi; Xu, Chongsheng; Ding, Li; Ding, Chuan-Fan

    2013-09-01

    A novel ion trap array (ITA) mass analyzer with six ion trapping and analyzing channels was investigated. It is capable of analyzing multiple samples simultaneously. The ITA was built with several planar electrodes made of stainless steel and 12 identical parallel zirconia ceramic substrates plated with conductive metal layers. Each two of the opposing ceramic electrode plates formed a boundary of an ion trap channel and six identical ion trapping and analyzing channels were placed in parallel without physical electrode between any two adjacent channels. The electric field distribution inside each channel was studied with simulation. The new design took the advantage of high precision machining attributable to the rigidity of ceramic, and the convenience of surface patterning technique. The ITA system was tested by using a two-channel electrospray ionization source, a multichannel simultaneous quadruple ion guide, and two detectors. The simultaneous analysis of two different samples with two adjacent ITA channels was achieved and independent mass spectra were obtained. For each channel, the mass resolution was tested. Additional ion trap functions such as mass-selected ion isolation and collision-induced dissociation (CID) were also tested. The results show that one ITA is well suited for multiple simultaneous mass analyses. PMID:23797864

  16. Multiple Mass Analysis Using an Ion Trap Array (ITA) Mass Analyzer

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Chu, Yanqiu; Ling, Xing; Ding, Zhengzhi; Xu, Chongsheng; Ding, Li; Ding, Chuan-Fan

    2013-09-01

    A novel ion trap array (ITA) mass analyzer with six ion trapping and analyzing channels was investigated. It is capable of analyzing multiple samples simultaneously. The ITA was built with several planar electrodes made of stainless steel and 12 identical parallel zirconia ceramic substrates plated with conductive metal layers. Each two of the opposing ceramic electrode plates formed a boundary of an ion trap channel and six identical ion trapping and analyzing channels were placed in parallel without physical electrode between any two adjacent channels. The electric field distribution inside each channel was studied with simulation. The new design took the advantage of high precision machining attributable to the rigidity of ceramic, and the convenience of surface patterning technique. The ITA system was tested by using a two-channel electrospray ionization source, a multichannel simultaneous quadruple ion guide, and two detectors. The simultaneous analysis of two different samples with two adjacent ITA channels was achieved and independent mass spectra were obtained. For each channel, the mass resolution was tested. Additional ion trap functions such as mass-selected ion isolation and collision-induced dissociation (CID) were also tested. The results show that one ITA is well suited for multiple simultaneous mass analyses.

  17. Ion mass spectrometer experiment for ISIS-2 spacecraft

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.

    1987-01-01

    The International Satellite for Ionospheric Studies (ISIS) program of NASA was the longest duration program in NASA history. A number of satellites were flown under this program, the last being called ISIS-2, which was launched on April 1, 1971 and operated successfully for over 13 years. An experiment called the Ion Mass Spectrometer (IMS) was flown on the ISIS-2 spacecraft. It operated for 10 years providing a large data base of positive ion composition and ion flow velocities along the orbit of the satellite, the latter being circular at 1400 km with a 90 degree inclination. The data were processed and reside in the National Space Sciences Data Center.

  18. A retarding ion mass spectrometer for the Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Wright, W.

    1985-01-01

    The Retarding Ion Mass Spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  19. Developments in ion mobility spectrometry-mass spectrometry.

    PubMed

    Collins, D C; Lee, M L

    2002-01-01

    Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments have been employed for the analysis of a variety of target analytes, including biomolecules, explosives, chemical warfare degradation products, and illicit drugs. PMID:11939214

  20. The effective temperature of ions stored in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Donald, William A; Khairallah, George N; O'Hair, Richard A J

    2013-06-01

    The extent of internal energy deposition into ions upon storage, radial ejection, and detection using a linear quadrupole ion trap mass spectrometer is investigated as a function of ion size (m/z 59 to 810) using seven ion-molecule thermometer reactions that have well characterized reaction entropies and enthalpies. The average effective temperatures of the reactants and products of the ion-molecule reactions, which were obtained from ion-molecule equilibrium measurements, range from 295 to 350 K and do not depend significantly on the number of trapped ions, m/z value, ion trap q z value, reaction enthalpy/entropy, or the number of vibrational degrees of freedom for the seven reactions investigated. The average of the effective temperature values obtained for all seven thermometer reactions is 318 ± 23 K, which indicates that linear quadrupole ion trap mass spectrometers can be used to study the structure(s) and reactivity of ions at near ambient temperature.

  1. Augmenting Ion Trap Mass Spectrometers Using a Frequency Modulated Drift Tube Ion Mobility Spectrometer.

    PubMed

    Morrison, Kelsey A; Siems, William F; Clowers, Brian H

    2016-03-15

    Historically, high pressure ion mobility drift tubes have suffered from low ion duty cycles and this problem is magnified when such instrumentation is coupled with ion trap mass spectrometers. To significantly alleviate these issues, we outline the result from coupling an atmospheric pressure, dual-gate drift tube ion mobility spectrometer (IMS) to a linear ion trap mass spectrometer (LIT-MS) via modulation of the ion beam with a linear frequency chirp. The time-domain ion current, once Fourier transformed, reveals a standard ion mobility drift spectrum that corresponds to the standard mode of mobility analysis. By multiplexing the ion beam, it is possible to successfully obtain drift time spectra for an assortment of simple peptide and protein mixtures using an LIT-MS while showing improved signal intensity versus the more common signal averaging technique. Explored here are the effects of maximum injection time, solution concentration, total experiment time, and frequency swept on signal-to-noise ratios (SNRs) and resolving power. Increased inject time, concentration, and experiment time all generally led to an improvement in SNR, while a greater frequency swept increases the resolving power at the expense of SNR. Overall, chirp multiplexing of a dual-gate IMS system coupled to an LIT-MS improves ion transmission, lowers analyte detection limits, and improves spectral quality. PMID:26854901

  2. An ion-to-photon conversion detector for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dubois, F.; Knochenmuss, R.; Zenobi, R.

    1997-12-01

    An ion-to-photon conversion detector (IPD) for time-of-flight mass spectrometry was studied and tested with ions produced by matrix-assisted laser desorption-ionization. The detector consisted of a conversion surface located at the end of the drift tube of a time-of-flight mass spectrometer and, behind it, a head-on photomultiplier tube. Fluorescent organic scintillator materials like Bu-PBD [2-(4-t-buthylphenyl)-5-(4-biphenylyl)-1,3,4-oxidiazole] were found to be the most efficient converters of those materials tested. Similar mass resolutions were found with the ion-to-photo detector and standard microchannel plates in a linear time-of-flight instrument. The background noise of the IPD was more intense than with microchannel plates. Slow unfocused ions are suspected to contribute to this noise. Test analytes as large as 70 000 Da could be measured with the IPD. Even with no secondary particle conversion surface in front of the IPD, masses up to approximately 20 000 Da may be more efficiently detected with the IPD than the MCP. For higher masses, a conversion dynode should be considered for increased signal.

  3. UV photodissociation of trapped ions following ion mobility separation in a Q-ToF mass spectrometer.

    PubMed

    Bellina, Bruno; Brown, Jeffery M; Ujma, Jakub; Murray, Paul; Giles, Kevin; Morris, Michael; Compagnon, Isabelle; Barran, Perdita E

    2014-12-21

    An ion mobility mass spectrometer has been modified to allow optical interrogation of ions with different mass-to-charge (m/z) ratios and/or mobilities (K). An ion gating and trapping procedure has been developed which allows us to store ions for several seconds enabling UV photodissociation (UVPD).

  4. Radio-frequency ion deflector for mass separation

    SciTech Connect

    Schlösser, Magnus Rudnev, Vitaly; Ureña, Ángel González

    2015-10-15

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated.

  5. Radio-frequency ion deflector for mass separation.

    PubMed

    Schlösser, Magnus; Rudnev, Vitaly; González Ureña, Ángel

    2015-10-01

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated. PMID:26520948

  6. Time-of-flight secondary ion mass spectrometry with transmission of energetic primary cluster ions through foil targets

    SciTech Connect

    Hirata, K.; Saitoh, Y.; Chiba, A.; Yamada, K.; Matoba, S.; Narumi, K.

    2014-03-15

    We developed time-of-flight (TOF) secondary ion (SI) mass spectrometry that provides informative SI ion mass spectra without needing a sophisticated ion beam pulsing system. In the newly developed spectrometry, energetic large cluster ions with energies of the order of sub MeV or greater are used as primary ions. Because their impacts on the target surface produce high yields of SIs, the resulting SI mass spectra are informative. In addition, the start signals necessary for timing information on primary ion incidence are provided by the detection signals of particles emitted from the rear surface of foil targets upon transmission of the primary ions. This configuration allows us to obtain positive and negative TOF SI mass spectra without pulsing system, which requires precise control of the primary ions to give the spectra with good mass resolution. We also successfully applied the TOF SI mass spectrometry with energetic cluster ion impacts to the chemical structure characterization of organic thin film targets.

  7. Time-of-flight secondary ion mass spectrometry with transmission of energetic primary cluster ions through foil targets.

    PubMed

    Hirata, K; Saitoh, Y; Chiba, A; Yamada, K; Matoba, S; Narumi, K

    2014-03-01

    We developed time-of-flight (TOF) secondary ion (SI) mass spectrometry that provides informative SI ion mass spectra without needing a sophisticated ion beam pulsing system. In the newly developed spectrometry, energetic large cluster ions with energies of the order of sub MeV or greater are used as primary ions. Because their impacts on the target surface produce high yields of SIs, the resulting SI mass spectra are informative. In addition, the start signals necessary for timing information on primary ion incidence are provided by the detection signals of particles emitted from the rear surface of foil targets upon transmission of the primary ions. This configuration allows us to obtain positive and negative TOF SI mass spectra without pulsing system, which requires precise control of the primary ions to give the spectra with good mass resolution. We also successfully applied the TOF SI mass spectrometry with energetic cluster ion impacts to the chemical structure characterization of organic thin film targets.

  8. Activation of large ions in FT-ICR mass spectrometry.

    PubMed

    Laskin, Julia; Futrell, Jean H

    2005-01-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has enabled the extension of mass spectrometric methods to large molecules and molecular complexes. This both greatly extends the applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of these applications. This review emphasizes the most promising methods for activation and dissociation of complex ions and presents this discussion in the context of general knowledge of reaction kinetics and dynamics largely established for small ions. We then introduce the characteristic differences associated with the higher number of internal degrees of freedom and high density of states associated with molecular complexity. This is reflected primarily in the kinetics of unimolecular dissociation of complex ions, particularly their slow decay and the higher energy content required to induce decomposition--the kinetic shift (KS). The longer trapping time of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) significantly reduces the KS, which presents several advantages over other methods for the investigation of dissociation of complex molecules. After discussing general principles of reaction dynamics related to collisional activation of ions, we describe conventional ways to achieve single- and multiple-collision activation in FT-ICR MS. Sustained off-resonance irradiation (SORI)--the simplest and most robust means of introducing the multiple collision activation process--is discussed in greatest detail. Details of implementation of this technique, required control of experimental parameters, limitations, and examples of very successful application of SORI-CID are described. The advantages of high mass resolving power and the ability to carry out several stages of mass selection and activation intrinsic to FT-ICR MS are demonstrated in several examples. Photodissociation of ions from small molecules

  9. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    SciTech Connect

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  10. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    SciTech Connect

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time

  11. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  12. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGESBeta

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  13. High-Sensitivity Ion Mobility Spectrometry/Mass Spectrometry Using Electrodynamic Ion Funnel Interfaces

    SciTech Connect

    Tang, Keqi; Shvartsburg, Alexandre A.; Lee, Hak-No; Prior, David C.; Buschbach, Michael A.; Li, Fumin; Tolmachev, Aleksey V.; Anderson, Gordon A.; Smith, Richard D.

    2005-05-15

    The utility of ion mobility spectrometry (IMS) for separation of mixtures and structural characterization of ions has been demonstrated extensively, including in the biological and nanoscience contexts. A major attraction of IMS is its speed, several orders of magnitude above that of condensed-phase separations. Nonetheless, IMS combined with mass spectrometry (MS) has remained a niche technique, substantially due to limited sensitivity resulting from ion losses at the IMS-MS junction. We have developed a new electrospray ionization (ESI)-IMS-QToF MS instrument that incorporates electrodynamic ion funnels at both front ESI-IMS and back IMS-QToF interfaces. The front funnel is of the novel ''hourglass'' design that efficiently accumulates ions and pulses them into the IMS drift tubes. Even for drift tubes of two meter length, ion transmission through IMS and on to QToF is essentially lossless across the range of ion masses relevant to most applications. The RF ion focusing at IMS terminus does not degrade IMS resolving power, which exceeds 100 (for singly-charged ions) and is close to the theoretical limit. The overall sensitivity of present ESI-IMS-MS system is shown to be comparable to that of commercial ESI-MS, which should make IMS-MS suitable for analyses of complex mixtures with ultra-high sensitivity and exceptional throughput.

  14. Transient Ion-Pair Separations for Electrospray Mass Spectrometry.

    PubMed

    Liu, Hanghui; Lam, Lily; Chi, Bert; Kadjo, Akinde F; Dasgupta, Purnendu K

    2016-02-16

    We report a novel ion-pair chromatography (IPC) approach for liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS), where the eluent does not contain any ion-pairing reagent (IPR). The IPR is injected on the column, much like the sample, and moves down the column. Significant amounts of a high retention factor IPR is injected, resulting in a transient but reproducible regional coating that progresses along the column. The sample is injected after a brief interval. The sample components interact with the IPR coated region during their passage; the chosen eluent gradient elutes the analytes of interest into the mass spectrometer before the IPR. Following analyte elution, the gradient is steeply raised, the IPR is washed out, and the effluent is sent to waste via a diverter valve until it is fully removed. As the nature of the analyte retention continuously changes along the column and with time, we call this transient ion-pair separation (TIPS). As the IPR never enters the MS, TIPS addresses two major drawbacks of IPC for ESI-MS: it avoids both ion suppression and ion source contamination. The potential of the generic approach for other modes of separation is discussed. An illustrative separation of two small inorganic ions, iodate and nitrate, is demonstrated on a reverse phase column by a transient prior injection of hexadecyltrimethylammonium chloride as IPR. PMID:26765166

  15. Searching for photon rest-mass with ion interferometry

    NASA Astrophysics Data System (ADS)

    Christensen, Dan; Neyenhuis, Brian; Spencer, Ross; Durfee, Dallin

    2006-10-01

    We will discuss a proposed scheme to search for a non-zero photon rest mass. This scheme could be more than 100 times more sensitive than previous experiments. The experiment would use an ion interferometer to search for variations in Coulomb's inverse-square law predicted by the Proca equation. Analytical and numerical computations will be presented.

  16. Laser desorption lamp ionization source for ion trap mass spectrometry.

    PubMed

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. PMID:25601688

  17. Utilizing Ion-Mobility Data to Estimate Molecular Masses

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Kanik, Isik

    2008-01-01

    A method is being developed for utilizing readings of an ion-mobility spectrometer (IMS) to estimate molecular masses of ions that have passed through the spectrometer. The method involves the use of (1) some feature-based descriptors of structures of molecules of interest and (2) reduced ion mobilities calculated from IMS readings as inputs to (3) a neural network. This development is part of a larger effort to enable the use of IMSs as relatively inexpensive, robust, lightweight instruments to identify, via molecular masses, individual compounds or groups of compounds (especially organic compounds) that may be present in specific environments or samples. Potential applications include detection of organic molecules as signs of life on remote planets, modeling and detection of biochemicals of interest in the pharmaceutical and agricultural industries, and detection of chemical and biological hazards in industrial, homeland-security, and industrial settings.

  18. Measuring Neutrino Mass with Radioactive Ions in a Storage Ring

    SciTech Connect

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2010-03-30

    A method to measure the neutrino mass kinematically using beams of ions which undergo beta decay is proposed. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. By counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for m{sub n}u<0.2 eV, it is necessary to control the ion momentum with a precision better than deltap/p<10{sup -5}, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least O(10{sup 18}) decays.

  19. Measuring neutrino mass with radioactive ions in a storage ring

    NASA Astrophysics Data System (ADS)

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2009-12-01

    We propose a method to measure the neutrino mass kinematically using beams of ions which undergo beta decay. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. Then, by counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for m ν <0.2 eV, it is necessary to control the ion momentum with a precision better than δ p/ p<10-5, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least mathcal{O}(10^{18}) decays.

  20. Measuring neutrino mass with radioactive ions in a storage ring

    NASA Astrophysics Data System (ADS)

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2010-01-01

    We propose a method to measure the neutrino mass kinematically using beams of ions which undergo beta decay. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. Then, by counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for mν < 0.2 eV, it is necessary to control the ion momentum with a precision better than δp/p < 10-5, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least Script O(1018) decays.

  1. Measuring Neutrino Mass with Radioactive Ions in a Storage Ring

    NASA Astrophysics Data System (ADS)

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2010-03-01

    A method to measure the neutrino mass kinematically using beams of ions which undergo beta decay is proposed. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. By counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for mν<0.2 eV, it is necessary to control the ion momentum with a precision better than δp/p<10-5, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least O(1018) decays.

  2. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.

    PubMed

    Servage, Kelly A; Silveira, Joshua A; Fort, Kyle L; Russell, David H

    2016-07-19

    Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the

  3. Compact Ion and Neutral Mass Spectrometer with Ion Drifts, Temperatures and Neutral Winds

    NASA Astrophysics Data System (ADS)

    Paschalidis, Nikolaos

    2016-07-01

    In situ measurements of atmospheric neutral and ion composition and density, temperatures, ion drifts and neutral winds, are in high demand to study the dynamics of the ionosphere-theremosphere-mesosphere system. This paper presents a compact Ion and Neutral Mass Spectrometer (INMS) with impended ion drifts and temperature, and neutral winds capability for in situ measurements of ions and neutrals H, He, N, O, N2, O2. The mass resolution M/dM is approximately 10 at an incoming energy range of 0-20eV. The goal is to resolve ion drifts in the range 0 to 3000m/sec with a resolution better than 50m/sec, and neutral winds in the range of 0 to 1000m/sec with similar resolution. For temperatures the goal is to cover a dynamic range of 0 to 5000K. The INMS is based on front end optics for ions and neutrals, pre acceleration, gated time of flight, top hat ESA, MCP detectors and compact electronics. The instrument is redundant for ions and neutrals with the ion and neutral sensor heads on opposite sides and with full electronics in the middle. The ion front end includes RPA for temperature scanning and neutral front end includes angular modulation and thermionic ionization and ion blocking grids. The electronics include fast electric gating, TOF electronics, TOF binning and C&DH digital electronics. The data package includes 400 mass bins each for ions and neutrals and key housekeeping data for instrument health and calibration. The data sampling can be commanded from 0.1 to 10 sec with 1sec nominal setting. The instrument has significant onboard storage capability and a data compression scheme. The mass spectrometer version of the instrument has been flown on the Exocube mission. The instrument occupied 1.5U volume, weighed only 560 g and required nominal power of 1.6W The ExoCube mission was designed to acquire global knowledge of in-situ densities of [H], [He], [O] and H+, He+, O+ in the upper ionosphere and lower exosphere in combination with incoherent scatter radar and

  4. Molecular secondary ion mass spectrometry: New dimensions in chemical characterization

    NASA Astrophysics Data System (ADS)

    Colton, Richard J.; Campana, Joseph E.; Kidwell, David A.; Ross, Mark M.; Wyatt, Jeffrey R.

    1985-04-01

    Secondary ion mass spectrometry (SIMS) has become a diverse tool for the study of many substances other than metals and semiconductors. This paper discusses the emission of polyatomic and molecular ions from surfaces that contain various inorganic and organic compounds including polymers and biomolecules. The mass and abundance distribution of cluster ions emitted from various solids — Van der Waals, metallic, ionic and covalent — are compared. Trends in the emission patterns are discussed in terms of a recombination or direct emission mechanism. The emission of molecular ions is also discussed with respect to the method of ionization and the various sample preparation and matrix-assisted procedures used. The matrices include various solid-state and liquid matrices such as ammonium chloride, charcoal, glycerol and gallium. Various chemical derivatization procedures have been developed to enhance the sensitivity of molecular SIMS and to detect selectively components in mixtures. The procedures are demonstrated for the low-level detection of airborne contaminants from paints, for the analysis of drugs in biological fluids, and for the sequencing of biomolecules such as peptides and sugars. The emission of characteristic fragment ions from the surfaces of polymers is also described for thick, insulating films.

  5. Opportunistic Mass Measurements at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Hausladen, Paul; Beene, James R; Galindo-Uribarri, Alfredo {nmn}; Larochelle, Y; Liang, J Felix; Mueller, Paul Edward; Shapira, Dan; Stracener, Daniel W; Thomas, J. S.; Varner Jr, Robert L; Wollnik, Hermann

    2006-01-01

    A technique for measuring mass differences has been developed at the Holifield Radioactive Ion Beam Facility (HRIBF) that requires no specialized equipment. Mass differences are measured as position differences between known and unknown-mass isobars, dispersed at the image of the energy-analyzing magnet following the 25MV tandem post-accelerator, and identified by an energy-loss measurement. The technique has been demonstrated on neutron-rich 77 79Cu and 83 86Ge isotopes produced using the isotope separator online (ISOL) method with the 238U(p,fission) reaction, where a mass accuracy of 500 keV was achieved. These nuclides are well suited to the measurement technique, as they readily migrate out of the production target and to the ion source and comprise the most neutron-rich elements of the isobarically mixed beam. Because modest precision mass values can be obtained with only a few tens of counts of the nuclide of interest among orders of magnitude more of the isobaric neighbors closer to stability, the sensitivity of this technique makes it appropriate for initial mass measurements far from stability.

  6. Negative thermal ion mass spectrometry of oxygen in phosphates

    NASA Astrophysics Data System (ADS)

    Holmden, C.; Papanastassiou, D. A.; Wasserburg, G. J.

    1997-06-01

    A novel technique for the precise measurement of oxygen isotopes by negative thermal ion mass spectrometry (NTIMS) is presented. The technique is ideally suited to the analysis of oxygen isotopes in phosphates which form intense P03 ion beams. Since P is monoisotopic, the mass spectrum for P0 3- at 79, 80, and 81 corresponds to 1660, 170, and 180. Natural and synthetic phosphates are converted and loaded on the mass spectrometer filament as Ag 3PO 4 precipitated directly from ammoniacal solution. To lower the work function of the filament, BaCl, is added in a 1:1 molar ratio of PO 4:Ba. Using these procedures, Br - mass interference (at 79 and 81 amu) is eliminated for typical analyses. Experiments with 180-enriched water show less than 1 % O-exchange between sample PO 4 and adsorbed water, and there is no O-exchange with trace OZ present in the mass spectrometer source chamber. The ionization efficiency of PO 4, as P0 3- is >10% compared to 0.01% for both conventional dual inlet Gas Isotope Ratio Mass Spectrometry (GIRMS) and secondary ion mass spectrometry (SIMS). Therefore, NTIMS offers exceptional sensitivity enabling routine and precise oxygen isotope analysis of sub-microgram samples of PO 4, (<21 nmoles equivalent CO 2 gas) without need for lengthy chemical pre-treatment reproducibility of the sample. Overall external precision is ±1%c (2σ) for 18O/16 O and 170/15O with of instrumental isotope fractionation (calculated from 18O/16O of ±0.5%c amu -1. Small phosphate samples including single mineral grains from meteorites, or apatite microfossils, can be analyzed by this technique.

  7. Automatic detection of mass-resolved ion conics

    NASA Technical Reports Server (NTRS)

    Doherty, Mark F.; Bjorklund, Carolyn M.; Peterson, William K.; Collin, Henry L.

    1993-01-01

    A processing algorithm to automatically detect a specific type of ion distribution (called the ion conic distribution) in data obtained from a space-based mass spectrometer has been devised. Automation of this task is necessary due to the sparseness of conic events within the very large databases typical of space plasma instruments. This paper reports on the algorithm used to perform this automated analysis, along with a description of the methods used to verify the algorithm and a summary of initial results on the characterization of the near-earth space plasma.

  8. Linear electric field time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  9. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  10. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas. PMID:27340893

  11. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    SciTech Connect

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  12. Secondary Ion Mass Spectrometry of Zeolite Materials: Observation of Abundant Aluminosilicate Oligomers Using an Ion Trap

    SciTech Connect

    Groenewold, Gary Steven; Kessinger, Glen Frank; Scott, Jill Rennee; Gianotto, Anita Kay; Appelhans, Anthony David; Delmore, James Edward

    2000-12-01

    Oligomeric oxyanions were observed in the secondary ion mass spectra (SIMS) of zeolite materials. The oxyanions have the general composition AlmSinO2(m+n)H(m-1)- (m + n = 2 to 8) and are termed dehydrates. For a given mass, multiple elemental compositions are possible because (Al + H) is an isovalent and isobaric substitute for Si. Using 18 keV Ga+ as a projectile, oligomer abundances are low relative to the monomers. Oligomer abundance can be increased by using the polyatomic projectile ReO4- (~5 keV). Oligomer abundance can be further increased using an ion trap (IT-) SIMS; in this instrument, long ion lifetimes (tens of ms) and relatively high He pressure result in significant collisional stabilization and increased high-mass abundance. The dehydrates rapidly react with adventitious H2O present in the IT-SIMS to form mono-, di-, and trihydrates. The rapidity of the reaction and comparison to aluminum oxyanion hydration suggest that H2O adds to the aluminosilicate oxyanions in a dissociative fashion, forming covalently bound product ions. In addition to these findings, it was noted that production of abundant oligomeric aluminosilicates could be significantly increased by substituting the countercation (NH4+) with the larger alkali ions Rb+ and Cs+. This constitutes a useful tactic for generating large aluminosilicate oligomers for surface characterization and ion-molecule reactivity studies.

  13. Chemical noise reduction via mass spectrometry and ion/ion charge inversion: amino acids.

    PubMed

    Hassell, Kerry M; LeBlanc, Yves C; McLuckey, Scott A

    2011-05-01

    Charge inversion ion/ion reactions can provide a significant reduction in chemical noise associated with mass spectra derived from complex mixtures for species composed of both acidic and basic sites, provided the ions derived from the matrix largely undergo neutralization. Amino acids constitute an important class of amphoteric compounds that undergo relatively efficient charge inversion. Precipitated plasma constitutes a relatively complex biological matrix that yields detectable signals at essentially every mass-to-charge value over a wide range. This chemical noise can be dramatically reduced using multiply charged reagent ions that can invert the charge of species amenable to the transfer of multiple charges upon a single interaction and by detecting product ions of opposite polarity. The principle is illustrated here with amino acids present in precipitated plasma subjected to ionization in the positive mode, reaction with anions derived from negative nanoelectrospray ionization of poly (amido amine) dendrimer generation 3.5, and mass analysis in the negative ion mode. PMID:21456599

  14. Production of He-like light and medium mass ions in laser ion source

    NASA Astrophysics Data System (ADS)

    Kondrashev, S.; Mescheryakov, N.; Sharkov, B.; Shumshurov, A.; Khomenko, S.; Makarov, K.; Satov, Yu.; Smakovskii, Yu.

    2000-03-01

    Operation of the laser ion source of He-like light ions designed for the first stage of the ITEP Terra Watt Accumulator (TWAC) project is discussed. A 5 J/0.5 Hz rep-rate CO2 laser was used for generation of highly charged light ions. The absolute number of ions with different charge states for carbon and aluminum ion beams has been measured. The obtained number of C+4 ions (˜1011ions/pulse) is sufficient to start the experimental proof of the accelerator scheme of the TWAC project. The investigation of shot to shot stability indicates significant increasing (˜2-3 times) of highly charged ion yield for the first shot onto the fresh target surface with respect to the next shots onto the same spot of aluminum target. This effect was not observed for the carbon target. Experimental results for highly charged light and medium mass (F, Mg, Al, Ca, Ti) ions produced by of 75 J single pulse CO2 laser consisting of a master oscillator and power amplifier are also presented.

  15. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    SciTech Connect

    Gulyuz, Kerim; Stedwell, Corey N.; Wang Da; Polfer, Nick C.

    2011-05-15

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarily increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.

  16. DETERMINATION OF ION AND NEUTRAL LOSS COMPOSITIONS AND DECONVOLUTION OF PRODUCT ION MASS SPECTRA USING AN ORTHOGONAL ACCELERATION, TIME-OF-FLIGHT MASS SPECTROMETER AND AN ION CORRELATION PROGRAM

    EPA Science Inventory

    Exact masses of monoisotopic ions and the relative isotopic abundances (RIAs) of ions greater in mass by 1 and 2 Da than the monoisotopic ion are independent and complementary physical properties useful for istinguishing among ion compositions possible for a given nominal mass. U...

  17. Ion mobility-mass spectrometry with a radial opposed migration ion and aerosol classifier (ROMIAC).

    PubMed

    Mui, Wilton; Thomas, Daniel A; Downard, Andrew J; Beauchamp, Jesse L; Seinfeld, John H; Flagan, Richard C

    2013-07-01

    The first application of a novel differential mobility analyzer, the radial opposed migration ion and aerosol classifier (ROMIAC), is demonstrated. The ROMIAC uses antiparallel forces from an electric field and a cross-flow gas to both scan ion mobilities and continuously transmit target mobility ions with 100% duty cycle. In the ROMIAC, diffusive losses are minimized, and resolution of ions, with collisional cross-sections of 200-2000 Å(2), is achieved near the nondispersive resolution of ~20. Higher resolution is theoretically possible with greater cross-flow rates. The ROMIAC was coupled to a linear trap quadrupole mass spectrometer and used to classify electrosprayed C2-C12 tetra-alkyl ammonium ions, bradykinin, angiotensin I, angiotensin II, bovine ubiquitin, and two pairs of model peptide isomers. Instrument and mobility calibrations of the ROMIAC show that it exhibits linear responses to changes in electrode potential, making the ROMIAC suitable for mobility and cross-section measurements. The high resolution of the ROMIAC facilitates separation of isobaric isomeric peptides. Monitoring distinct dissociation pathways associated with peptide isomers fully resolves overlapping peaks in the ion mobility data. The ability of the ROMIAC to operate at atmospheric pressure and serve as a front-end analyzer to continuously transmit ions with a particular mobility facilitates extensive studies of target molecules using a variety of mass spectrometric methods. PMID:23730869

  18. Compact ExB mass separator for heavy ion beams

    SciTech Connect

    Wada, M.; Hashino, T.; Hirata, F.; Kasuya, T.; Sakamoto, Y.; Nishiura, M.

    2008-02-15

    A compact ExB mass separator that deflects beam by 30 deg. has been designed and built to prove its principle of operation. The main part of the separator is contained in a shielding box of 11 cm long, 9 cm wide, and 1.5 cm high. An electromagnet of 7 cm pole diameter produced variable magnetic field in the mass separation region instead of a couple of permanent magnets which is to be used in the final design. The experimental result agreed well with the theoretical prediction, and larger mass ions is bent with less magnetic field with the aid of the deflection electric field. The reduction in resolving power for mass separation due to the deflection electric field has been investigated experimentally.

  19. Servo-amplifiers for ion current measurement in mass spectrometry

    USGS Publications Warehouse

    Stacey, J.S.; Russell, R.D.; Kollar, F.

    1965-01-01

    A servo-voltmeter can provide a useful alternative to the d.c. amplifier or vibrating reed electrometer for the accurate measurement of mass spectrometer ion currents, and has some advantages which recommend its use in certain applications. A generalized analysis based on servomechanism theory is presented as an aid for understanding the design criteria for this type of device. Two existing systems are described and their operation and performance are examined.

  20. Cassini Orbiter Ion and Neutral Gas Mass Spectrometer (INMS) Results

    NASA Astrophysics Data System (ADS)

    Kasprzak, W. T.; Waite, J. H.; Yelle, R.; Cravens, T. E.; Luhmann, J.; McNutt, R.; Ip, W.; Robertson, I. P.; Ledvina, S.; Niemann, H. B.; Fletcher, G.; Thorpe, R.; Gell, D.; Magee, B.

    The Cassini Orbiter Ion and Neutral Gas Mass Spectrometer was built by NASA Goddard Space Flight Center. After the spacecraft's launch, data analysis and operations are being conducted by a facility science team. The instrument measures in-situ neutral gas and positive thermal energy ions in the upper atmosphere of Titan, in the vicinity of the icy satellites and rings, and in the magnetosphere of Saturn, wherever the signal is above the detection threshold. The instrument was opened to the environment of Saturn immediately after the completion of the Saturn orbit capture burn.The Cassini Orbiter Ion and Neutral Gas Mass Spectrometer was built by NASA Goddard Space Flight Center. After the spacecraft's launch, data analysis and operations are being conducted by a facility science team. The instrument measures in-situ neutral gas and positive thermal energy ions in the upper atmosphere of Titan, in the vicinity of the icy satellites and rings, and in the magnetosphere of Saturn, wherever the signal is above the detection threshold. The instrument was opened to the environment of Saturn immediately after the completion of the Saturn orbit capture burn.

  1. Modeling Transport of Secondary Ion Fragments into a Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Warmenhoven, J.; Demarche, J.; Palitsin, V.; Kirkby, K. J.; Webb, R. P.

    The Surrey Ion Beam Centre was awarded the Engineering and Physical Sciences Research Council (EPSRC) grant for "Promoting Cross Disciplinary Research: Engineering and Physical Sciences and Social Sciences" allowing continued research into the characteristics of desorption of secondary ions by the impact of fast primary ions in the ambient pressure at the sub-micron scale. To carry out this research a new beamline has been constructed consisting of a time-of-flight secondary ion mass spectrometer combined with the current 2MV Tandem accelerator. This research has already returned many significant results such as the first simultaneous SIMS, PIXE and RBS measurement preformed on an organic sample in vacuum. However, further optimization and validation of the new beamline is still being worked on. This work focuses on the optimization of the end station geometry to allow for high sensitivity ambient pressure measurements. It is concluded that a common geometry can be adopted for a wide variety of smooth samples to ensure optimum sensitivity provided a hard edge of the sample can be found to place the mass spectrometer capillary near.

  2. In situ analysis of ion-induced polymer surface modification using secondary ion mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Okuji, Shigeto; Kitazawa, Hideaki; Takeda, Yoshihiko

    2016-06-01

    We have investigated the surface modification process consisting of ion irradiation immediately followed by exposure to ambient gas for three types of polymers having the same main chain, sbnd Csbnd Csbnd , but different atoms bound to the main chain, using in situ secondary ion mass spectroscopy. The polymers' surface was irradiated with 30 keV Au ions at a total fluence for up to 1 × 1017 cm-2 and exposed to ambient gas in a ultra-high-vacuum chamber (1 × 10-6 Pa) for 30 min after the ion irradiation. Low density polyethylene mainly exhibited a hydrogen dissociation during the ion irradiation and a recombination with hydrogen atoms by the exposure, polytetrafluoroethylene mainly showed a main chain scission and no recombination during the exposure, and polyvinylidene difluoride lost hydrogen and fluorine atoms by the ion irradiation and partially recombined with hydrogen and fluorine atoms upon the exposure. The deposited energy density on the polymer surfaces reflects the dependence of the modification on the incident ion species, Au or Ga ions.

  3. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources

    PubMed Central

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that “…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more” (Int. J. Mass Spectrom. 200: 459–478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451–4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that “super-atmospheric operation would be more preferable in space-charge-limited situations.”(Int. J. Mass Spectrom. 300: 182–193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912

  4. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources.

    PubMed

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that "…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more" (Int. J. Mass Spectrom. 200: 459-478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451-4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that "super-atmospheric operation would be more preferable in space-charge-limited situations."(Int. J. Mass Spectrom. 300: 182-193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper.

  5. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources.

    PubMed

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that "…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more" (Int. J. Mass Spectrom. 200: 459-478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451-4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that "super-atmospheric operation would be more preferable in space-charge-limited situations."(Int. J. Mass Spectrom. 300: 182-193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912

  6. Isotope ratio measurements by secondary ion mass spectrometry (SIMS) and glow discharge mass spectrometry (GDMS)

    NASA Astrophysics Data System (ADS)

    Betti, Maria

    2005-04-01

    The basic principles of secondary ion mass spectrometry and glow discharge mass spectrometry have been shortly revisited. The applications of both techniques as exploited for the isotope ratio measurements in several matrices have been reviewed. Emphasis has been given to research fields in expansions such as solar system studies, medicine, biology, environment and nuclear forensic. The characteristics of the two techniques are discussed in terms of sensitivity and methodology of quantification. Considerations on the different detection possibilities in SIMS are also presented.

  7. SCAPS, a two-dimensional ion detector for mass spectrometer

    NASA Astrophysics Data System (ADS)

    Yurimoto, Hisayoshi

    2014-05-01

    Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40

  8. Mass lost from the atmosphere through ion-outflow

    NASA Astrophysics Data System (ADS)

    Johnsen, C.; Østgaard, N.; Haaland, S.

    2012-04-01

    In the polar regions, there is a continuous outward flow of ions along the open geomagnetic field lines. The purpose of this study is to determine the fate of these ions. What amount will disappear out on the Earth's night side, instead of returning to the magnetosphere? ESA's Cluster spacecrafts move in an elliptical, polar orbit and make measurements of the ion density (n), the particle velocity (vpm) along the magnetic field lines, the electric (Em) and magnetic field components (Bm) in the magnetosphere. When we combine these data, and use several assumptions, it is also possible to calculate the convection velocity (vcm) in the magnetosphere and in the ionosphere (vi). From these calculations we can determine where the ions are when they reach the plasma sheet, and compare it to the location of the reconnection point on the Earth's night side. Based on this, we can decide whether they will return to Earth's magnetosphere, or escape beyond the distant neutral line, and get lost into the solar wind, and estimate the total mass loss rate. Finally, we will explore how different solar wind parameters and geomagnetic indices affect the loss of ions.

  9. Fourier transform ion cyclotron resonance mass resolution and dynamic range limits calculated by computer modeling of ion cloud motion.

    PubMed

    Vladimirov, Gleb; Hendrickson, Christopher L; Blakney, Greg T; Marshall, Alan G; Heeren, Ron M A; Nikolaev, Eugene N

    2012-02-01

    Particle-in-Cell (PIC) ion trajectory calculations provide the most realistic simulation of Fourier transform ion cyclotron resonance (FT-ICR) experiments by efficient and accurate calculation of the forces acting on each ion in an ensemble (cloud), including Coulomb interactions (space charge), the electric field of the ICR trap electrodes, image charges on the trap electrodes, the magnetic field, and collisions with neutral gas molecules. It has been shown recently that ion cloud collective behavior is required to generate an FT-ICR signal and that two main phenomena influence mass resolution and dynamic range. The first is formation of an ellipsoidal ion cloud (termed "condensation") at a critical ion number (density), which facilitates signal generation in an FT-ICR cell of arbitrary geometry because the condensed cloud behaves as a quasi-ion. The second phenomenon is peak coalescence. Ion resonances that are closely spaced in m/z coalesce into one resonance if the ion number (density) exceeds a threshold that depends on magnetic field strength, ion cyclotron radius, ion masses and mass difference, and ion initial spatial distribution. These two phenomena decrease dynamic range by rapid cloud dephasing at small ion density and by cloud coalescence at high ion density. Here, we use PIC simulations to quantitate the dependence of coalescence on each critical parameter. Transitions between independent and coalesced motion were observed in a series of the experiments that systematically varied ion number, magnetic field strength, ion radius, ion m/z, ion m/z difference, and ion initial spatial distribution (the present simulations begin from elliptically-shaped ion clouds with constant ion density distribution). Our simulations show that mass resolution is constant at a given magnetic field strength with increasing ion number until a critical value (N) is reached. N dependence on magnetic field strength, cyclotron radius, ion mass, and difference between ion masses

  10. Final Report - Ion Production and Transport in Atmospheric Pressure Ion Source Mass Spectrometers

    SciTech Connect

    Farnsworth, Paul B.; Spencer, Ross L.

    2014-05-14

    This document is the final report on a project that focused in the general theme of atmospheric-pressure ion production and transport for mass spectrometry. Within that general theme there were two main projects: the fundamental study of the transport of elemental ions through the vacuum interface of an inductively coupled plasma mass spectrometer (ICPMS), and fundamental studies of the ionization mechanisms in ambient desorption/ionization (ADI) sources for molecular mass spectrometry. In both cases the goal was to generate fundamental understanding of key instrumental processes that would lead to the development of instruments that were more sensitive and more consistent in their performance. The emphasis on consistency derives from the need for instruments that have the same sensitivity, regardless of sample type. In the jargon of analytical chemistry, such instruments are said to be free from matrix effects. In the ICPMS work each stage of ion production and of ion transport from the atmospheric pressure to the high-vacuum mass analyzer was studied. Factors controlling ion transport efficiency and consistency were identified at each stage of pressure reduction. In the ADI work the interactions between an electrospray plume and a fluorescent sample on a surface were examined microscopically. A new mechanism for analyte ion production in desorption electrospray ionization (DESI) was proposed. Optical spectroscopy was used to track the production of reactive species in plasmas used as ADI sources. Experiments with mixed-gas plasmas demonstrated that the addition of a small amount of hydrogen to a helium ADI plasma could boost the sensitivity for some analytes by over an order of magnitude.

  11. Identification of carbohydrate anomers using ion mobility-mass spectrometry.

    PubMed

    Hofmann, J; Hahm, H S; Seeberger, P H; Pagel, K

    2015-10-01

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  12. Identification of carbohydrate anomers using ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K.

    2015-10-01

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  13. Dynamically Multiplexed Ion Mobility Time-of-Flight Mass Spectrometry

    SciTech Connect

    Belov, Mikhail E.; Clowers, Brian H.; Prior, David C.; Danielson, William F.; Liyu, Andrei V.; Petritis, Brianne O.; Smith, Richard D.

    2008-08-01

    Ion Mobility Spectrometry–Time-of-Flight Mass Spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity high-throughput platform for e.g. proteomics applications. In this work, we have developed and integrated three advanced technologies, enabling (1) efficient ion accumulation in the ion funnel trap prior to IMS separation, (2) multiplexing (MP) of ion packet introduction into the IMS drift tube and (3) signal detection with an analog-to-digital converter (ADC), into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of e.g. blood plasma. To better address variable sample complexity, we have additionally developed and rigorously evaluated a new dynamic MP approach that ensures correlation of the analyzer performance with an ion source function, and provides the improved dynamic range and sensitivity. The MP IMS-TOF MS instrument has been shown to reliably detect peptides at a concentration of 1 nM in a highly complex matrix, as well as to provide a four orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features yielded ~ 700 unique peptide identifications at a false discovery rate (FDR) of ~ 7.5 %. Accounting for IMS information gave rise to a projected FDR of ~ 4 %. Signal reproducibility was found to be greater than 80 %, while the variations in the number of unique peptide identifications were < 15 %. A single sample analysis was completed in 15 min, corresponding to approximately an order of magnitude improvement compared to a more conventional LC-MS approach.

  14. Calorimetric low temperature detectors for mass identification of heavy ions

    NASA Astrophysics Data System (ADS)

    Kraft, S.; Bleile, A.; Egelhof, P.; Golser, R.; Kisselev, O.; Kutschera, W.; Liechtenstein, V.; Meier, H. J.; Priller, A.; Shrivastava, A.; Steier, P.; Vockenhuber, C.; Weber, M.

    2002-02-01

    The energy sensitive detection of heavy ions with calorimetric low temperature detectors (CLTDs) is investigated for the energy range E=0.1-1 MeV/u, commonly used for accelerator mass spectrometry (AMS). Such measurements complement earlier investigations [1, 2] at higher energies (E=5-300 MeV/u) where an energy resolution of ΔE/E=1-2×10-3 was obtained for various ion species. The detectors used consist of sapphire absorbers and superconducting transition edge thermometers operated at T~1.5 K. They were irradiated with various heavy ion beams (13C, 197Au, 238U) provided by the VERA tandem accelerator in Vienna, Austria. An energy resolution of ΔE/E=5-6×10-3 has been obtained even for heaviest ions like 197Au and 238U at E=0.1-0.3 MeV/u, thereby exceeding the resolution of conventional semiconductor detectors in this energy range by at least one order of magnitude. In addition, no evidence for pulse height defects has been observed. With the achieved performance, the present CLTDs bear a large potential for applications in various fields of heavy ion research. Of special interest is isotope mass identification via combined energy and time-of-flight (TOF) measurement. In present test measurements, including a standard TOF spectrometer, a clear separation of the isotopes 206Pb and 208Pb at E~0.1 MeV/u has been obtained. Such a detection scheme may in future provide substantial background suppression for AMS measurements. .

  15. A hand-portable digital linear ion trap mass spectrometer.

    PubMed

    Xue, Bing; Sun, Lulu; Huang, Zhengxu; Gao, Wei; Fan, Rongrong; Cheng, Ping; Ding, Li; Ma, Li; Zhou, Zhen

    2016-10-01

    A hand-portable digital linear ion trap mass spectrometer (DLIT-MS) has been developed for VOC analysis. It has a weight of 18 kg with dimensions of 49 cm × 39 cm × 16 cm, and consumes an average power of ca. 60 W. As a result of the introduction of a digital waveform, the DLIT-MS can be driven at a lower voltage (±100 V) to cover a mass range of 30-300 Th with a unit resolution. Compact electronics has been designed to control the DLIT-MS and record mass spectra. The mass drift was reduced after the improvement in electronics to stabilize the digital waveform voltage during the mass scan. Tandem mass spectrometry (MS) has been achieved by using digital asymmetric waveform isolation (DAWI), forward and reverse scan, and collision induced dissociation (CID). The isolation and CID efficiency for methyl salicylate were 83.9% and 81.3%, respectively. A novel buffer gas inlet system was designed to enhance the sensitivity and allow easy and safe use of the instrument. Limits of detection below 1 ppbv were obtained for several mixed gaseous samples. PMID:27396834

  16. A hand-portable digital linear ion trap mass spectrometer.

    PubMed

    Xue, Bing; Sun, Lulu; Huang, Zhengxu; Gao, Wei; Fan, Rongrong; Cheng, Ping; Ding, Li; Ma, Li; Zhou, Zhen

    2016-10-01

    A hand-portable digital linear ion trap mass spectrometer (DLIT-MS) has been developed for VOC analysis. It has a weight of 18 kg with dimensions of 49 cm × 39 cm × 16 cm, and consumes an average power of ca. 60 W. As a result of the introduction of a digital waveform, the DLIT-MS can be driven at a lower voltage (±100 V) to cover a mass range of 30-300 Th with a unit resolution. Compact electronics has been designed to control the DLIT-MS and record mass spectra. The mass drift was reduced after the improvement in electronics to stabilize the digital waveform voltage during the mass scan. Tandem mass spectrometry (MS) has been achieved by using digital asymmetric waveform isolation (DAWI), forward and reverse scan, and collision induced dissociation (CID). The isolation and CID efficiency for methyl salicylate were 83.9% and 81.3%, respectively. A novel buffer gas inlet system was designed to enhance the sensitivity and allow easy and safe use of the instrument. Limits of detection below 1 ppbv were obtained for several mixed gaseous samples.

  17. Absorption mode Fourier transform electrostatic linear ion trap mass spectrometry.

    PubMed

    Hilger, Ryan T; Wyss, Phillip J; Santini, Robert E; McLuckey, Scott A

    2013-09-01

    In Fourier transform mass spectrometry, it is well-known that plotting the spectrum in absorption mode rather than magnitude mode has several advantages. However, magnitude spectra remain commonplace due to difficulties associated with determining the phase of each frequency at the onset of data acquisition, which is required for generating absorption spectra. The phasing problem for electrostatic traps is much simpler than for Fourier transform ion cyclotron resonance (FTICR) instruments, which greatly simplifies the generation of absorption spectra. Here, we present a simple method for generating absorption spectra from a Fourier transform electrostatic linear ion trap mass spectrometer. The method involves time shifting the data prior to Fourier transformation in order to synchronize the onset of data acquisition with the moment of ion acceleration into the electrostatic trap. Under these conditions, the initial phase of each frequency at the onset of data acquisition is zero. We demonstrate that absorption mode provides a 1.7-fold increase in resolution (full width at half maximum, fwhm) as well as reduced peak tailing. We also discuss methodology that may be applied to unsynchronized data in order to determine the time shift required to generate an absorption spectrum.

  18. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  19. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    PubMed

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.

  20. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-08-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  1. Trace level perchlorate analysis by ion chromatography-mass spectrometry.

    PubMed

    Mathew, Johnson; Gandhi, Jay; Hedrick, Joe

    2005-08-26

    Perchlorate is commonly used as an oxidant in solid fuel propellant for rockets and missiles. Recently perchlorate contamination was found in many aquifers associated with Colorado River and other sites. Perchlorate was also found at elevated level in crops that use contaminated water for irrigation. Ion chromatography with conductivity detection could be used to measure perchlorate levels in drinking and wastewaters as per United States Environmental Protection Agency method 314, but at lower levels and with complexity of the matrix there could be false positive and/or false negative. This study was done to demonstrate the detection of perchlorate with lower detection limit with high ionic matrix by ion chromatography-mass spectrometry. PMID:16106848

  2. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  3. In situ secondary ion mass spectrometry analysis. 1992 Summary report

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  4. Cassini Ion Neutral Mass Spectrometer (INMS) Results from Titan

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Waite, J. H.; Niemann, H.; Yelle, R. V.; Kasprzak, W. T.; Luhmann, J. G.; McNutt, R. L.; Ip, W.; Gell, D.; de La Haye, V.; Müller-Wordag, I.; Ledvina, S. L.; Robertson, I. P.; Borggren, N.

    2005-05-01

    The Cassini Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini Orbiter measured the neutral composition and structure of the upper atmosphere of Titan during the first flyby (Ta) of this satellite. The INMS detected N2, CH4, and H2, the noble gas argon, and a host of more complex hydrocarbon and nitrile species. INMS also made neutral measurements during the Tb flyby. During the T5 Titan flyby, which took place in April 2005, the INMS measured both the neutral and the ion composition of the upper atmosphere and ionosphere. These measurements will be summarized in this talk. The implications of these measurements for our current understanding of the photochemistry, dynamics, and energetics of Titan's upper atmosphere and ionosphere will also be discussed.

  5. Study on ion formation in electrospray droplet impact secondary ion mass spectrometry.

    PubMed

    Asakawa, Daiki; Fujimaki, Susumu; Hashimoto, Yutaka; Mori, Kunihiko; Hiraoka, Kenzo

    2007-01-01

    A new type of cluster secondary ion mass spectrometry (SIMS), named electrospray droplet impact (EDI), has been developed in our laboratory. In general, rather strong negative ions as well as positive ions can be generated by EDI compared with conventional SIMS. In this work, various aspects of ion formation in EDI are investigated. The Brønsted bases (proton acceptor) and acids (proton donor) mixed in the analyte samples enhanced the signal intensities of deprotonated molecules (negative ions) and protonated molecules (positive ions), respectively, for analytes. This suggests the occurrence of heterogeneous proton transfer reactions (i.e. M + M' --> [M+H](+) + [M'-H](-)) in the shockwave-heated selvedge of the colliding interface between the water droplet and the solid sample deposited on the metal substrate. EDI-SIMS shows a remarkable tolerance to the large excess of salts present in samples. The mechanism for desorption/ionization in EDI is much simpler than those for MALDI and SIMS because only very thin sample layers take part in the shockwave-heated selvedge and complicated higher-order reactions are largely suppressed.

  6. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  7. Ion Trap with Narrow Aperture Detection Electrodes for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Oleg Y.; Tsybin, Yury O.

    2015-05-01

    The current paradigm in ion trap (cell) design for Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is the ion detection with wide aperture detection electrodes. Specifically, excitation and detection electrodes are typically 90° wide and positioned radially at a similar distance from the ICR cell axis. Here, we demonstrate that ion detection with narrow aperture detection electrodes (NADEL) positioned radially inward of the cell's axis is feasible and advantageous for FT-ICR MS. We describe design details and performance characteristics of a 10 T FT-ICR MS equipped with a NADEL ICR cell having a pair of narrow aperture (flat) detection electrodes and a pair of standard 90° excitation electrodes. Despite a smaller surface area of the detection electrodes, the sensitivity of the NADEL ICR cell is not reduced attributable to improved excite field distribution, reduced capacitance of the detection electrodes, and their closer positioning to the orbits of excited ions. The performance characteristics of the NADEL ICR cell are comparable with the state-of-the-art FT-ICR MS implementations for small molecule, peptide, protein, and petroleomics analyses. In addition, the NADEL ICR cell's design improves the flexibility of ICR cells and facilitates implementation of advanced capabilities (e.g., quadrupolar ion detection for improved mainstream applications). It also creates an intriguing opportunity for addressing the major bottleneck in FTMS—increasing its throughput via simultaneous acquisition of multiple transients or via generation of periodic non-sinusoidal transient signals.

  8. Improved Isobaric Tandem Mass Tag Quantification by Ion Mobility-Mass Spectrometry

    PubMed Central

    Li, Lingjun

    2014-01-01

    Isobaric tandem mass tags are an attractive alternative to mass difference tags and label free approaches for quantitative proteomics due to the high degree of multiplexing that can be performed with their implementation. A drawback of tandem mass tags are that the co-isolation and co-fragmentation of labeled peptide precursors can result in chimeric MS/MS spectra that can underestimate the fold-change expression of each peptide. Two methods (QuantMode and MS3) have addressed this concern for ion trap and orbitrap instruments, but there is still a need to solve this problem for quadrupole time-of-flight (Q-TOF) instruments. Ion mobility (IM) separations coupled to Q-TOF instruments have the potential to mitigate MS/MS spectra chimeracy since IM-MS has the ability to separate ions based on charge, m/z, and collision cross section (CCS). This work presents results that showcase the power of IM-MS to improve tandem mass tag peptide quantitation accuracy by resolving co-isolated differently charged and same charged peptides prior to MS/MS fragmentation. PMID:24677527

  9. Continuous time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2004-10-19

    A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.

  10. Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry.

    PubMed

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-02-01

    Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn  + (n = 1000–10,000) to form a mixed cluster. The ‘tailored beam’ has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl– , allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. H–D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1–8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield.

  11. Data processing in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Qi, Yulin; O'Connor, Peter B

    2014-01-01

    The Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer intricately couples advanced physics, instrumentation, and electronics with chemical and particularly biochemical research. However, general understanding of the data processing methodologies used lags instrumentation, and most data processing algorithms we are familiar with in FT-ICR are not well studied; thus, professional skill and training in FT-ICR operation and data analysis is still the key to achieve high performance in FT-ICR. This review article is focused on FT-ICR data processing, and explains the procedures step-by-step for users with the goal of maximizing spectral features, such as mass accuracy, resolving power, dynamic range, and detection limits.

  12. Non-mass-analyzed ion implantation from a solid phosphorus source

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    A phosphorus ion beam, extracted from a Freeman ion source charged with elemental phosphorus, has been investigated for use in solar cell fabrication. Mass spectroscopy of the beam indicates the absence of both minority-carrier lifetime degrading impurities and hydrogen. The ion beam, without mass analysis, was used for ion implantation of solar cells, and performance for all cells was found to be equivalent to mass-analyzed controls.

  13. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    SciTech Connect

    Manuel J. Manard, Stephan Weeks, Kevin Kyle

    2010-05-27

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  14. Nanowire dopant measurement using secondary ion mass spectrometry

    SciTech Connect

    Chia, A. C. E.; Boulanger, J. P.; Wood, B. A.; LaPierre, R. R.; Dhindsa, N.; Saini, S. S.

    2015-09-21

    A method is presented to improve the quantitative determination of dopant concentration in semiconductor nanowire (NW) arrays using secondary ion mass spectrometry (SIMS). SIMS measurements were used to determine Be dopant concentrations in a Be-doped GaAs thin film and NW arrays of various pitches that were dry-etched from the same film. A comparison of these measurements revealed a factor of 3 to 12 difference, depending on the NW array pitch, between the secondary Be ion yields of the film and the NW arrays, despite being identically doped. This was due to matrix effects and ion beam mixing of Be from the NWs into the surrounding benzocyclobutene that was used to fill the space between the NWs. This indicates the need for etched NWs to be used as doping standards instead of 2D films when evaluating NWs of unknown doping by SIMS. Using the etched NWs as doping standards, NW arrays of various pitches grown by the vapour-liquid-solid mechanism were characterized by SIMS to yield valuable insights into doping mechanisms.

  15. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

    NASA Astrophysics Data System (ADS)

    Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-06-01

    A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.

  16. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    SciTech Connect

    Lentz, Nicholas B.

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  17. Development of a linear ion trap/orthogonal-time-of-flight mass spectrometer for time-dependent observation of product ions by ultraviolet photodissociation of peptide ions.

    PubMed

    Kim, Tae-Young; Schwartz, Jae C; Reilly, James P

    2009-11-01

    A hybrid linear ion trap/orthogonal time-of-flight (TOF) mass spectrometer has been developed to observe time-dependent vacuum ultraviolet photodissociation product ions. In this apparatus, a reflectron TOF mass analyzer is orthogonally interfaced to an LTQ using rf-only octopole and dc quadrupole ion guides. Precursor ions are generated by electrospray ionization and isolated in the ion trap. Subsequently they are directed to the TOF source where photodissociation occurs and product ions are extracted for mass analysis. To detect photodissociation product ions having axially divergent trajectories, a large rectangular detector is utilized. With variation of the time between photodissociation and orthogonal extraction in the TOF source, product ions formed over a range of times after photoexcitation can be sampled. Time-dependent observation of product ions following 157 nm photodissociation of a singly charged tryptic peptide ion (NWDAGFGR) showed that prompt photofragment ions (x- and v-type ions) dominate the tandem mass spectrum up to 1 micros after the laser shot, but the intensities of low energy thermal fragment ions (y-type ions) become comparable several microseconds later. Different proton mobilization time scales were observed for arginine- and lysine-terminated tryptic peptides.

  18. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    PubMed

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-09

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.

  19. High latitude minor ion enhancements: A clue for studies of magnetosphere-atmosphere coupling. [using OGO 6 ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.

    1973-01-01

    Unexpectedly abrupt and pronounced distributions of the thermal molecular ions NO(+), O2(+) and N2(+) were observed at mid and high latitudes by the OGO-6 ion mass spectrometer. These minor ions may reach concentration levels exceeding 1000 ions/cu cm at altitudes as great as 1000 km, suggestive of scale heights well in excess of those inferred from low and mid-latitude measurements, under relatively undisturbed conditions. The high latitude ion enhancements were observed to be narrowly defined in time and space, with molecular ion concentrations changing by as much as an order of magnitude between successive orbits.

  20. Influence of the ion/neutral atom mass ratio on the damping of electrostatic ion-cyclotron waves

    NASA Technical Reports Server (NTRS)

    Suszcynsky, D. M.; Cartier, S. L.; D'Angelo, N.; Merlino, R. L.

    1987-01-01

    The damping of electrostatic ion-cyclotron waves by ion-neutral collisions was studied in a single-ended Q machine. The amplitudes of K(+) and Cs(+) electrostatic ion-cyclotron waves were measured as a function of neutral pressure in helium, neon, argon, krypton, and xenon. For each ion/neutral atom combination, the electrostatic ion-cyclotron wave amplitude maximizes at a neutral pressure that scales monotonically with the m(+)/m(n) mass ratio. This result is interpreted by considering the dynamics of elastic collisions between the ions and the neutral atoms.

  1. The Microhollow Cathode Discharge as ion source for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kunze, Kerstin; Miclea, Manuela; Franzke, Joachim; Niemax, Kay

    2003-10-01

    Microhollow Cathode Discharges (MHCD) are atmospheric pressure, non-equilibrium discharges and well studied for the generation of excimer radiation. The investigated discharge consists of two platinum electrodes with a hole diameter of 100 μm separated by a 200 μm thick Al_2O3 insulator. Diode laser atomic absorption spectroscopy reveals a gas temperature of 2000 K and 1000 K and electron density of 6x10^15/cm^3 and 2x10^14/cm^3 for Ar and He, respectively [1]. The ionization degree of 10-3 to 10-5 at atmospheric pressure makes the plasma suitable as a mass selective detector for analytical purposes. Hereby the discharge expands from atmospheric pressure on anode side to a low-pressure regime on cathode side. The MHCD does not only act as an ion source, but the small aperture serves also as sampler for the quadrupole mass spectrometer. Halogenated hydrocarbons in gas mixtures as well as liquid samples, preseparated by a gas chromatograph, could be detected by the halogen mass in the low ppb range. [1] M. Miclea et al., Proc. XVI-th ESCAMPIG Conf., 14-18 July, Grenoble - France (2002)

  2. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  3. Ion composition experiment. [ISEE-C solar wind ion mass spectroscopy

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Ogilvie, K. W.; Bochsler, P. A.; Geiss, J.

    1978-01-01

    An investigation using a novel ion mass spectrometer for measuring the ionic composition of the solar wind from the ISEE-C spacecraft is described. The resolution and dynamic range of the instrument are sufficient to be able to resolve up to twelve individual ions or groups of ions. This will permit the solution of a number of fundamental problems related to solar abundances and the formation of the solar wind. The spectrometer is composed of a stigmatic Wien filter and hemispherical electrostatic energy analyzer. The use of curved electric field plates in the filter results in a substantial saving of weight with respect to a conventional filter of the same resolution and angular acceptance. The spectrometer is controlled by a microprocessor based on a special purpose computer which has three modes of operations: full and partial survey modes and a search mode. In the search mode, the instrument locks on to the solar wind. This allows four times the time resolution of the full survey mode and yields a full mass spectrum every 12.6 min.

  4. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry.

    PubMed

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure. Graphical Abstract ᅟ.

  5. An electrostatic ion guide for efficient transmission of low energy externally formed ions into a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Limbach, Patrick A.; Marshall, Alan G.; Wang, Mingda

    1993-06-01

    A new method for transmitting externally formed ions into an ICR ion trap is demonstrated. In an electrostatic ion guide, a potential difference is applied between a conductive cylinder and a rigid wire suspended along the central axis of the cylinder. The cylinder is then positioned between an ion source located outside the bore of superconducting solenoidal magnet and an ion trap located at or near the center of the solenoid. simion simulations predict that low-energy ions entering the ion guide will spiral around the central wire and pass through the fringe of the magnet to reach the ICR ion trap. The theoretical predictions are borne out by experiments in which Na+ and K+ ions from a thermionic emitter are transmitted with high efficiency through the fringe field of the magnet to the ICR ion trap. Mass resolving power of 285 000 for K+ is shown. The electrostatic ion guide offers the advantages that: (a) a wide range of low-energy external sources (e.g., fast-atom on fast-ion bombardment, electrospray, glow discharge, etc.) may be used; (b) prior acceleration of the ions along the magnetic field direction (and subsequent deceleration to slow the ions on entry into the ICR ion trap) is not required; (c) ions are focused along magnetic field lines once the ions have passed through the magnetic fringe field; and (d) ions formed initially off axis are efficiently captured and transmitted by the ion guide without additional focusing.

  6. Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response.

    PubMed

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv(3.1) (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  7. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  8. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  9. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, David P.; Browning, James F.

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  10. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, David P.; Browning, James F.

    1998-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  11. Characterization of environmental samples using ion trap-secondary ion mass spectrometry

    SciTech Connect

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.

    1998-02-01

    The detection of chemical warfare agent residues on environmental surfaces is an important analytical activity because of the potential for proliferation of these weapons, and for environmental monitoring in areas where they are stored. Historically, one of the most widely used agents has been bis(2-chloroethyl) sulfide, also known as mustard gas and HD. It was initially used in combat in 1917; by the end of the First World War, more than 16% of all casualties were due to chemicals, in most cases mustard. Manufacture of mustard is continuing to this day; consequently, there are ongoing opportunities for exposure. 2-Chloroethyl ethyl sulfide (CEES) is used as a simulant for mustard (HD) in a study to develop secondary ion mass spectrometry (SIMS) for rapid, semi-quantitative detection of mustard on soil. Using SIMS with single stage mass spectrometry, a signature for CEES can be unequivocally observed only at the highest concentrations (0.1 monolayer and above). Selectivity and sensitivity are markedly improved employing multiple-stage mass spectrometry using an ion trap. C{sub 2}H{sub 5}SC{sub 2}H{sub 4}{sup +} from CEES eliminates C{sub 2}H{sub 4} and H{sub 2}S, which are highly diagnostic. CEES was detected at 0.0012 monolayer on soil. A single analysis could be conducted in under 5 minutes.

  12. Interrogating viral capsid assembly with ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.

    2011-02-01

    Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.

  13. Anomalous Ion Charge State Behavior In Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.

    2015-12-01

    A recent analysis of solar wind charge state composition measurements from the ACE/SWICS instrument showed that the expected correlation between the frozen-in values of the O7/O6 and C6/C5 ratios was violated in ~5% of the slow solar wind in the 1998-2011 period (Zhao et al. 2015). In this work we determine that such anomalous behavior is also found in over 40% of Interplanetary Coronal Mass Ejections (ICMEs), as identified by Richardson and Cane (2010). An analysis of the plasma composition during these events reveals significant depletions in densities of fully stripped ions of Carbon, Oxygen, and Nitrogen. We argue that these events are indicators of ICME plasma acceleration via magnetic reconnection near the freeze-in region of Carbon and Oxygen above the solar corona.

  14. Secondary-ion mass spectrometry of genetically encoded targets.

    PubMed

    Vreja, Ingrid C; Kabatas, Selda; Saka, Sinem K; Kröhnert, Katharina; Höschen, Carmen; Opazo, Felipe; Diederichsen, Ulf; Rizzoli, Silvio O

    2015-05-01

    Secondary ion mass spectrometry (SIMS) is generally used in imaging the isotopic composition of various materials. It is becoming increasingly popular in biology, especially for investigations of cellular metabolism. However, individual proteins are difficult to identify in SIMS, which limits the ability of this technology to study individual compartments or protein complexes. We present a method for specific protein isotopic and fluorescence labeling (SPILL), based on a novel click reaction with isotopic probes. Using this method, we added (19) F-enriched labels to different proteins, and visualized them by NanoSIMS and fluorescence microscopy. The (19) F signal allowed the precise visualization of the protein of interest, with minimal background, and enabled correlative studies of protein distribution and cellular metabolism or composition. SPILL can be applied to biological systems suitable for click chemistry, which include most cell-culture systems, as well as small model organisms. PMID:25783034

  15. Ion Mass Spectrometer for Sporadic-E Rocket Experiments

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Earle, G. D.; Pfaff, Robert

    2000-01-01

    NASA grant NAG5-5086 provided funding for the William B. Hanson Center for Space Sciences at the University of Texas at Dallas (UTD) to design, fabricate, calibrate, and ultimately fly two ion mass spectrometer instruments on a pair of sounding rocket payloads. Drs. R.A. Heelis and G.D. Earle from UTD were co-investigators on the project. The principal investigator for both rocket experiments was Dr. Robert Pfaff of the Goddard Space Flight Center. The overall project title was "Rocket/Radar Investigation of Lower Ionospheric Electrodynamics Associated with Intense Mid-Latitude Sporadic-E Layers". This report describes the overall objectives of the project, summarizes the instrument design and flight experiment details, and presents representative data obtained during the flights.

  16. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell.

    PubMed

    Allen, Samuel J; Giles, Kevin; Gilbert, Tony; Bush, Matthew F

    2016-02-01

    Ion mobility mass spectrometry experiments enable the characterization of mass, assembly, and shape of biological molecules and assemblies. Here, a new radio-frequency confining drift cell is characterized and used to measure the mobilities of peptide, protein, and protein complex ions. The new drift cell replaced the traveling-wave ion mobility cell in a Waters Synapt G2 HDMS. Methods for operating the drift cell and determining collision cross section values using this experimental set up are presented within the context of the original instrument control software. Collision cross sections for 349 cations and anions are reported, 155 of which are for ions that have not been characterized previously using ion mobility. The values for the remaining ions are similar to those determined using a previous radio-frequency confining drift cell and drift tubes without radial confinement. Using this device under 2 Torr of helium gas and an optimized drift voltage, denatured and native-like ions exhibited average apparent resolving powers of 14.2 and 16.5, respectively. For ions with high mobility, which are also low in mass, the apparent resolving power is limited by contributions from ion gating. In contrast, the arrival-time distributions of low-mobility, native-like ions are not well explained using only contributions from ion gating and diffusion. For those species, the widths of arrival-time distributions are most consistent with the presence of multiple structures in the gas phase.

  17. Ion sponge: a 3-dimentional array of quadrupole ion traps for trapping and mass-selectively processing ions in gas phase.

    PubMed

    Xu, Wei; Li, Linfan; Zhou, Xiaoyu; Ouyang, Zheng

    2014-05-01

    In this study, the concept of ion sponge has been explored for developing 3D arrays of large numbers of ion traps but with simple configurations. An ion sponge device with 484 trapping units in a volume of 10 × 10 × 3.2 cm has been constructed by simply stacking 9 meshes together. A single rf was used for trapping ions and mass-selective ion processing. The ion sponge provides a large trapping capacity and is highly transparent for transfer of ions, neutrals, and photons for gas phase ion processing. Multiple layers of quadrupole ion traps, with 121 trapping units in each layer, can operate as a single device for MS or MS/MS analysis, or as a series of mass-selective trapping devices with interlayer ion transfers facilitated by AC and DC voltages. Automatic sorting of ions to different trapping layers based on their mass-to-charge (m/z) ratios was achieved with traps of different sizes. Tandem-in-space MS/MS has also been demonstrated with precursor ions and fragment ions trapped in separate locations.

  18. Ion Sponge: A 3-Dimentional Array of Quadrupole Ion Traps for Trapping and Mass-Selectively Processing Ions in Gas Phase

    PubMed Central

    2015-01-01

    In this study, the concept of ion sponge has been explored for developing 3D arrays of large numbers of ion traps but with simple configurations. An ion sponge device with 484 trapping units in a volume of 10 × 10 × 3.2 cm has been constructed by simply stacking 9 meshes together. A single rf was used for trapping ions and mass-selective ion processing. The ion sponge provides a large trapping capacity and is highly transparent for transfer of ions, neutrals, and photons for gas phase ion processing. Multiple layers of quadrupole ion traps, with 121 trapping units in each layer, can operate as a single device for MS or MS/MS analysis, or as a series of mass-selective trapping devices with interlayer ion transfers facilitated by AC and DC voltages. Automatic sorting of ions to different trapping layers based on their mass-to-charge (m/z) ratios was achieved with traps of different sizes. Tandem-in-space MS/MS has also been demonstrated with precursor ions and fragment ions trapped in separate locations. PMID:24758328

  19. Ion mobility mass spectrometry of proteins in a modified commercial mass spectrometer

    NASA Astrophysics Data System (ADS)

    Thalassinos, K.; Slade, S. E.; Jennings, K. R.; Scrivens, J. H.; Giles, K.; Wildgoose, J.; Hoyes, J.; Bateman, R. H.; Bowers, M. T.

    2004-08-01

    Ion mobility has emerged as an important technique for determining biopolymer conformations in solvent free environments. These experiments have been nearly exclusively performed on home built systems. In this paper we describe modifications to a commercial high performance mass spectrometer, the Waters UK "Ultima" Q-Tof, that allows high sensitivity measurement of peptide and protein cross sections. Arrival time distributions are obtained for a series of peptides (bradykinin, LHRH, substance P, bombesin) and proteins (bovine and equine cytochrome c, myoglobin, [alpha]-lactalbumin) with good agreement found with literature cross sections where available. In complex ATD's, mass spectra can be obtained for each feature confirming assignments. The increased sensitivity of the commercial instrument is retained along with the convenience of the data system, crucial features for analysis of protein misfolding systems.

  20. Modeling vapor uptake induced mobility shifts in peptide ions observed with transversal modulation ion mobility spectrometry-mass spectrometry.

    PubMed

    Rawat, Vivek K; Vidal-de-Miguel, Guillermo; Hogan, Christopher J

    2015-10-21

    Low field ion mobility spectrometry-mass spectrometry (IMS-MS) techniques exhibit low orthogonality, as inverse mobility often scales with mass to charge ratio. This inadequacy can be mitigated by adding vapor dopants, which may cluster with analyte ions and shift their mobilities by amounts independent of both mass and mobility of the ion. It is therefore important to understand the interactions of vapor dopants with ions, to better quantify the extent of dopant facilitated mobility shifts. Here, we develop predictive models of vapor dopant facilitated mobility shifts, and compare model calculations to measurements of mobility shifts for peptide ions exposed to variable gas phase concentrations of isopropanol. Mobility measurements were made at atmospheric pressure and room temperature using a recently developed transversal modulation ion mobility spectrometer (TMIMS). Results are compared to three separate models, wherein mobility shifts due to vapor dopants are attributed to changes in gas composition and (I) no vapor dopant uptake is assumed, (II) site-specific dopant uptake by the ion is assumed (approximated via a Langmuir adsorption model), and (III) site-unspecific dopant uptake by the ion is assumed (approximated via a classical nucleation model). We find that mobility shifts in peptide ions are in excellent agreement with model II, site-specific binding predictions. Conversely, mobility shifts of tetraalkylammonium ions from previous measurements were compared with these models and best agreement was found with model III predictions, i.e. site-unspecific dopant uptake.

  1. Ion collision cross section measurements in Fourier transform-based mass analyzers.

    PubMed

    Li, Dayu; Tang, Yang; Xu, Wei

    2016-06-01

    With the increasing demands of molecular structure analysis, several methods have been developed to measure ion collision cross sections within Fourier transform (FT) based mass analyzers. Particularly in the recent three years since 2012, the method of obtaining biomolecule collision cross sections was achieved in Fourier transform ion cyclotron resonance (FT-ICR) cells. Furthermore, similar methods have been realized or proposed for orbitraps and quadrupole ion traps. This technique adds a new ion structure analysis capability to FT-based mass analyzers. By providing complementary ion structure information, it could be used together with tandem mass spectrometry and ion mobility spectroscopy techniques. Although many questions and challenges remain, this technique potentially would greatly enhance the ion structure analysis capability of a mass spectrometer, and provide a new tool for chemists and biochemists.

  2. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/ trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  3. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer

    PubMed Central

    Gardner, Myles W.; Smith, Suncerae I.; Ledvina, Aaron R.; Madsen, James A.; Coon, Joshua J.; Schwartz, Jae C.; Stafford, George C.; Brodbelt, Jennifer S.

    2009-01-01

    A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells - the first a high pressure cell operated at nominally 5 × 10-3 Torr and the second a low pressure cell operated at nominally 3 × 10-4 Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y1 fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of ~100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra. PMID:19739654

  4. Determination of N-linked glycosylation in viral glycoproteins by negative ion mass spectrometry and ion mobility

    PubMed Central

    Bitto, David; Harvey, David J.; Halldorsson, Steinar; Doores, Katie J.; Pritchard, Laura K.; Huiskonen, Juha T.; Bowden, Thomas A.; Crispin, Max

    2016-01-01

    Summary Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans. PMID:26169737

  5. Development of an atmospheric pressure ion mobility spectrometer-mass spectrometer with an orthogonal acceleration electrostatic sector TOF mass analyzer.

    PubMed

    Sysoev, Alexey A; Chernyshev, Denis M; Poteshin, Sergey S; Karpov, Alexander V; Fomin, Oleg I; Sysoev, Alexander A

    2013-10-01

    Recently developed ion mobility mass spectrometer is described. The instrument is based on a drift tube ion mobility spectrometer and an orthogonal acceleration electrostatic sector time-of-flight mass analyzer. Data collection is performed using a specially developed fast ADC-based recorder that allows real-time data integration in an interval between 3 and 100 s. Primary tests were done with positive ion electrospray. The tests have shown obtaining 100 ion mobility resolving power and 2000 mass resolving power. Obtained for 2,6-di-tert-butylpyridine in electrosprayed liquid samples during 100 s analysis and full IMS/MS data collection mode were 4 nM relative limits of detection and a 1 pg absolute limit of detection (S/N=3). Characteristic ion mobility/mass distributions were recorded for selected antibiotics, including amoxicillin, ampicillin, lomefloxacin, and ofloxacin. At studied conditions, lomefloxacin forms only a protonated molecule-producing reduced ion mobility peak at 1.082 cm(2)/(V s). Both amoxicillin and ampicillin produce [M + H](+), [M + CH3OH + H](+), and [M + CH3CN + H](+). Amoxicillin shows two peaks at 0.909 cm(2)/(V s) and 0.905 cm(2)/(V s). Ampicillin shows one peak at 0.945 cm(2)/(V s). Intensity of protonated methanol containing cluster for both ampicillin and amoxicillin has a clear tendency to rise with sample keeping time. Ofloxacin produces two peaks in the ion mobility distribution. A lower ion mobility peak at 1.051 cm(2)/(V s) is shown to be formed by [M + H](+) ions. A higher ion mobility peak appearing for samples kept more than 48 h is shown to be formed by both [M + H](+) ion and a component identified as the [M + 2H + M](+2) cluster. The cluster probably partly dissociates in the interface producing the [M + H](+) ion.

  6. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  7. An electrodynamic ion funnel interface for greater sensitivity and higher throughput with linear ion trap mass spectrometers

    NASA Astrophysics Data System (ADS)

    Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-09-01

    An electrospray ionization interface incorporating an electrodynamic ion funnel has been designed and implemented on a linear ion trap mass spectrometer (Thermo Electron, LTQ). We found ion transmission to be greatly improved by replacing the standard capillary-skimmer interface with the capillary-ion funnel interface. An infusion study using a serial dilution of a reserpine solution showed that ion injection (accumulation) times to fill the ion trap at a given automatic gain control (AGC) target value were reduced by ~90% which resulted in an ~10-fold increase in peak intensities. In liquid chromatography tandem MS (LC-MS/MS) experiments performed using a global protein digest sample from the bacterium, Shewanella oneidensis, more peptides and proteins were identified when the ion funnel interface was used in place of the standard interface. This improvement was most pronounced at lower sample concentrations, where extended ion accumulation times are required, resulting in an ~2-fold increase in the number of protein identifications. Implementation of the ion funnel interface on a LTQ Fourier transform (FT) mass spectrometer showed a ~25-50% reduction in spectrum acquisition time. The duty cycle improvement in this case was due to the ion accumulation event contributing a larger portion to the total spectrum acquisition time.

  8. Improving secondary ion mass spectrometry image quality with image fusion.

    PubMed

    Tarolli, Jay G; Jackson, Lauren M; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure.

  9. Improving secondary ion mass spectrometry image quality with image fusion.

    PubMed

    Tarolli, Jay G; Jackson, Lauren M; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure. PMID:24912432

  10. An electrodynamic ion funnel interface for greater sensitivity and higher throughput with linear ion trap mass spectrometers

    SciTech Connect

    Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-09-01

    An electrospray ionization interface incorporating an electrodynamic ion funnel has been designed and implemented in conjunction with a linear ion trap mass spectrometer (Thermo Electron, LTQ). We found ion transmission to be greatly improved by replacing the standard capillary-skimmer interface with the capillary-ion funnel interface. An infusion study using a serial dilution of a reserpine solution showed that ion injection times to fill the ion trap were reduced by ~90% which resulted in an ~10-fold increase in reported peak intensities. In liquid chromatography (LC)-MS and LC tandem MS (MS/MS) experiments performed using a proteomic sample from the bacterium, Shewanella oneidensis, the ion funnel interface provided an ~7-fold reduction in ion injection (accumulation) times. In a series of LC-MS/MS experiments we found that more dilute S. oneidensis samples provided more peptide and protein identifications when the ion funnel interface was used in place of the standard interface. This improvement was most pronounced at lower sample concentrations, where extended ion accumulation times are required, resulting in an ~2-fold increase in the number of protein identifications. Implementation of the ion funnel interface with a LTQ Fourier transform (FT) MS requiring much greater ion populations resulted in spectrum acquisition times reduced by ~25 to 50%.

  11. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  12. Treatise on the Measurement of Molecular Masses with Ion Mobility Spectrometry

    PubMed Central

    Valentine, Stephen J.; Clemmer, David E.

    2009-01-01

    The ability to separate isotopes by high-resolution ion mobility spectrometry techniques is considered as a direct means for determining mass at ambient pressures. Calculations of peak shapes from the transport equation show that it should be possible to separate isotopes for low mass ions (<200) by utilizing heavy collision gasses and high resolution ion mobility analyzers. The mass accuracy associated with this isotopic separation approach based on ion mobility separation is considered. Finally, we predict several isotopes that should be separable. PMID:19548697

  13. Treatise on the measurement of molecular masses with ion mobility spectrometry.

    PubMed

    Valentine, Stephen J; Clemmer, David E

    2009-07-15

    The ability to separate isotopes by high-resolution ion mobility spectrometry techniques is considered as a direct means for determining mass at ambient pressures. Calculations of peak shapes from the transport equation show that it should be possible to separate isotopes for low-mass ions (<200) by utilizing heavy collision gases and high-resolution ion mobility analyzers. The mass accuracy associated with this isotopic separation approach based on ion mobility separation is considered. Finally, we predict several isotopes that should be separable.

  14. Zeptomole-sensitivity electrospray ionization--Fourier transform ion cyclotron resonance mass spectrometry of proteins.

    PubMed

    Belov, M E; Gorshkov, M V; Udseth, H R; Anderson, G A; Smith, R D

    2000-05-15

    Methods are being developed for ultrasensitive protein characterization based upon electrospray ionization (ESI) with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The sensitivity of a FTICR mass spectrometer equipped with an ESI source depends on the overall ion transmission, which combines the probability of ionization, transmission efficiency, and ion trapping in the FTICR cell. Our developments implemented in a 3.5 tesla FTICR mass spectrometer include introduction and optimization of a newly designed electrodynamic ion funnel in the ESI interface, improving the ion beam characteristics in a quadrupole-electrostatic ion guide interface, and modification of the electrostatic ion guide. These developments provide a detection limit of approximately 30 zmol (approximately 18,000 molecules) for proteins with molecular weights ranging from 8 to 20 kDa.

  15. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.

    PubMed

    Kozole, Joseph; Levine, Lauren A; Tomlinson-Phillips, Jill; Stairs, Jason R

    2015-08-01

    The gas phase ion chemistry for an ion mobility spectrometer (IMS) based explosive detector has been elucidated using tandem mass spectrometry. The IMS system, which is operated with hexachloroethane and isobutyramide reagent gases and an ion shutter type gating scheme, is connected to the atmospheric pressure interface of a triple quadrupole mass spectrometer (MS/MS). Product ion masses, daughter ion masses, and reduced mobility values for a collection of nitro, nitrate, and peroxide explosives measured with the IMS/MS/MS instrument are reported. The mass and mobility data together with targeted isotopic labeling experiments and information about sample composition and reaction environment are leveraged to propose molecular formulas, structures, and ionization pathways for the various product ions. The major product ions are identified as [DNT-H](-) for DNT, [TNT-H](-) for TNT, [RDX+Cl](-) and [RDX+NO2](-) for RDX, [HMX+Cl](-) and [HMX+NO2](-) for HMX, [NO3](-) for EGDN, [NG+Cl](-) and [NG+NO3](-) for NG, [PETN+Cl](-) and [PETN+NO3](-) for PETN, [HNO3+NO3](-) for NH4NO3, [NO2](-) for DMNB, [HMTD-NC3H6O3+H+Cl](-) and [HMTD+H-CH2O-H2O2](+) for HMTD, and [(CH3)3CO2](+) for TATP. In general, the product ions identified for the IMS system studied here are consistent with the product ions reported previously for an ion trap mobility spectrometer (ITMS) based explosive trace detector, which is operated with dichloromethane and ammonia reagent gases and an ion trap type gating scheme. Differences between the explosive trace detectors include the [NG+Cl](-) and [PETN+Cl](-) product ions being major ions in the IMS system compared to minor ions in the ITMS system as well as the major product ion for TATP being [(CH3)3CO2](+) for the IMS system and [(CH3)2CNH2](+) for the ITMS system. PMID:26048817

  16. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.

    PubMed

    Kozole, Joseph; Levine, Lauren A; Tomlinson-Phillips, Jill; Stairs, Jason R

    2015-08-01

    The gas phase ion chemistry for an ion mobility spectrometer (IMS) based explosive detector has been elucidated using tandem mass spectrometry. The IMS system, which is operated with hexachloroethane and isobutyramide reagent gases and an ion shutter type gating scheme, is connected to the atmospheric pressure interface of a triple quadrupole mass spectrometer (MS/MS). Product ion masses, daughter ion masses, and reduced mobility values for a collection of nitro, nitrate, and peroxide explosives measured with the IMS/MS/MS instrument are reported. The mass and mobility data together with targeted isotopic labeling experiments and information about sample composition and reaction environment are leveraged to propose molecular formulas, structures, and ionization pathways for the various product ions. The major product ions are identified as [DNT-H](-) for DNT, [TNT-H](-) for TNT, [RDX+Cl](-) and [RDX+NO2](-) for RDX, [HMX+Cl](-) and [HMX+NO2](-) for HMX, [NO3](-) for EGDN, [NG+Cl](-) and [NG+NO3](-) for NG, [PETN+Cl](-) and [PETN+NO3](-) for PETN, [HNO3+NO3](-) for NH4NO3, [NO2](-) for DMNB, [HMTD-NC3H6O3+H+Cl](-) and [HMTD+H-CH2O-H2O2](+) for HMTD, and [(CH3)3CO2](+) for TATP. In general, the product ions identified for the IMS system studied here are consistent with the product ions reported previously for an ion trap mobility spectrometer (ITMS) based explosive trace detector, which is operated with dichloromethane and ammonia reagent gases and an ion trap type gating scheme. Differences between the explosive trace detectors include the [NG+Cl](-) and [PETN+Cl](-) product ions being major ions in the IMS system compared to minor ions in the ITMS system as well as the major product ion for TATP being [(CH3)3CO2](+) for the IMS system and [(CH3)2CNH2](+) for the ITMS system.

  17. Radial stratification of ions as a function of mass to charge ratio in collisional cooling radio frequency multipoles used as ion guides or ion traps.

    PubMed

    Tolmachev, A V; Udseth, H R; Smith, R D

    2000-01-01

    Collisional cooling in radio frequency (RF) ion guides has been used in mass spectrometry as an intermediate step during the transport of ions from high pressure regions of an ion source into high vacuum regions of a mass analyzer. Such collisional cooling devices are also increasingly used as 'linear', two-dimensional (2D) ion traps for ion storage and accumulation to achieve improved sensitivity and dynamic range. We have used the effective potential approach to study m/z dependent distribution of ions in the devices. Relationships obtained for the ideal 2D multipole demonstrate that after cooling the ion cloud forms concentric cylindrical layers, each of them composed of ions having the same m/z ratio; the higher the m/z, the larger is the radial position occupied by the ions. This behavior results from the fact that the effective RF focusing is stronger for ions of lower m/z, pushing these ions closer to the axis. Radial boundaries of the layers are more distinct for multiply charged ions, compared to singly charged ions having the same m/z and charge density. In the case of sufficiently high ion density and low ion kinetic energy, we show that each m/z layer is separated from its nearest neighbor by a radial gap of low ion density. The radial gaps of low ion population between the layers are formed due to the space charge repulsion. Conditions for establishing the m/z stratified structure include sufficiently high charge density and adequate collisional relaxation. These conditions are likely to occur in collisional RF multipoles operated as ion guides or 2D ion traps for external ion accumulation. When linear ion density increases, the maximum ion cloud radius also increases, and outer layers of high m/z ions approach the multipole rods and may be ejected. This 'overfilling' of the multipole capacity results in a strong discrimination against high m/z ions. A relationship is reported for the maximum linear ion density of a multipole that is not overfilled.

  18. Ion-Surface Collisions in Mass Spectrometry: Where Analytical Chemistry Meets Surface Science

    SciTech Connect

    Laskin, Julia

    2015-02-01

    This article presents a personal perspective regarding the development of key concepts in understanding hyperthermal collisions of polyatomic ions with surfaces as a unique tool for mass spectrometry applications. In particular, this article provides a historic overview of studies focused on understanding the phenomena underlying surface-induced dissociation (SID) and mass-selected deposition of complex ions on surfaces. Fast energy transfer in ion-surface collisions makes SID especially advantageous for structural characterization of large complex molecules, such as peptides, proteins, and protein complexes. Soft, dissociative, and reactive landing of mass-selected ions provide the basis for preparatory mass spectrometry. These techniques enable precisely controlled deposition of ions on surfaces for a variety of applications. This perspective article shows how basic concepts developed in the 1920s and 1970s have evolved to advance promising mass-spectrometry-based applications.

  19. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory

    NASA Astrophysics Data System (ADS)

    Martens, Jonathan; Berden, Giel; Gebhardt, Christoph R.; Oomens, Jos

    2016-10-01

    We report on modifications made to a Paul-type quadrupole ion trap mass spectrometer and discuss its application in infrared ion spectroscopy experiments. Main modifications involve optical access to the trapped ions and hardware and software coupling to a variety of infrared laser sources at the FELIX infrared free electron laser laboratory. In comparison to previously described infrared ion spectroscopy experiments at the FELIX laboratory, we find significant improvements in efficiency and sensitivity. Effects of the trapping conditions of the ions on the IR multiple photon dissociation spectra are explored. Enhanced photo-dissociation is found at lower pressures in the ion trap. Spectra obtained under reduced pressure conditions are found to more closely mimic those obtained in the high-vacuum conditions of an Fourier transform ion cyclotron resonance mass spectrometer. A gas-mixing system is described enabling the controlled addition of a secondary gas into helium buffer gas flowing into the trap and allows for ion/molecule reactions in the trap. The electron transfer dissociation (ETD) option of the mass spectrometer allows for IR structure characterization of ETD-generated peptide dissociation products.

  20. Ion coalescence in Fourier transform mass spectrometry: should we worry about this in shotgun proteomics?

    PubMed

    Tarasova, Irina A; Surin, Alexey K; Fornelli, Luca; Pridatchenko, Marina L; Suvorina, Mariya Yu; Gorshkov, Mikhail V

    2015-01-01

    Coupling of motion of the ion clouds with close m/z values is a well-established phenomenon for ion- trapping mass analyzers. In Fourier transform ion cyclotron resonance mass spectrometry it is known as ion coalescence. Recently, ion coalescence was demonstrated and semiquantitatively characterized for the Orbitrap mass analyzer as well. When it occurs, the coalescence negatively affects the basic characteristics of a mass analyzer. Specifically, the dynamic range available for the high resolving power mass measurements reduces. In shotgun proteomics, another potentially adverse effect of ion coalescence is interference of the isotopic envelopes for the coeluting precursor ions of close m/z values, subjected to isolation before fragmentation. In this work we characterize coalescence events for synthetic peptide mixtures with fully and partially overlapping (13)C-isotope envelopes including pairs of peptides with glutamine deamidation. Furthermore, we demonstrate that fragmentation of the otherwise coalesced peptide ion clouds may remove the locking between them owing to the total charge redistribution between more ion species in the mass spectrum. Finally, we estimated the possible scale of the coalescence phenomenon for shotgun proteomics by considering the fraction of coeluted peptide pairs with the close masses using literature data for the yeast proteome. It was found that up to one tenth of all peptide identifications with the relative mass differences of 20 ppm or less in the corresponding pairs may potentially experience the coalescence of the (13)C-isotopic envelopes. However, sample complexity in a real proteomics experiment and precursor ion signal splitting between many channels in tandem mass spectrometry drastically increase the threshold for coalescence, thus leading to practically coalescence-free proteomics based on Fourier transform mass spectrometry.

  1. Ion coalescence in Fourier transform mass spectrometry: should we worry about this in shotgun proteomics?

    PubMed

    Tarasova, Irina A; Surin, Alexey K; Fornelli, Luca; Pridatchenko, Marina L; Suvorina, Mariya Yu; Gorshkov, Mikhail V

    2015-01-01

    Coupling of motion of the ion clouds with close m/z values is a well-established phenomenon for ion- trapping mass analyzers. In Fourier transform ion cyclotron resonance mass spectrometry it is known as ion coalescence. Recently, ion coalescence was demonstrated and semiquantitatively characterized for the Orbitrap mass analyzer as well. When it occurs, the coalescence negatively affects the basic characteristics of a mass analyzer. Specifically, the dynamic range available for the high resolving power mass measurements reduces. In shotgun proteomics, another potentially adverse effect of ion coalescence is interference of the isotopic envelopes for the coeluting precursor ions of close m/z values, subjected to isolation before fragmentation. In this work we characterize coalescence events for synthetic peptide mixtures with fully and partially overlapping (13)C-isotope envelopes including pairs of peptides with glutamine deamidation. Furthermore, we demonstrate that fragmentation of the otherwise coalesced peptide ion clouds may remove the locking between them owing to the total charge redistribution between more ion species in the mass spectrum. Finally, we estimated the possible scale of the coalescence phenomenon for shotgun proteomics by considering the fraction of coeluted peptide pairs with the close masses using literature data for the yeast proteome. It was found that up to one tenth of all peptide identifications with the relative mass differences of 20 ppm or less in the corresponding pairs may potentially experience the coalescence of the (13)C-isotopic envelopes. However, sample complexity in a real proteomics experiment and precursor ion signal splitting between many channels in tandem mass spectrometry drastically increase the threshold for coalescence, thus leading to practically coalescence-free proteomics based on Fourier transform mass spectrometry. PMID:26307727

  2. Surpassing the mass restriction of buffer gas cooling: Cooling of low mass ions by localized heavier atoms

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Sawant, Rahul; Rangwala, S. A.

    2016-05-01

    Cooling of trapped ions has resulted in fascinating science including the realization of some of the most accurate atomic clocks. It has also found widespread application, for example, in mass spectrometry and cold chemistry. Among the different methods for cooling ions, cooling by elastic collisions with ultracold neutral atoms is arguably the most generic. However, in spite of its widespread application, there is confusion with regards the collisional heating/cooling of light ions by heavier neutral atoms. We address the question experimentally and demonstrate, for the first time, cooling of light ions by co-trapped heavy atoms. We show that trapped 39 K+ ions are cooled by localized ultracold neutral 85 Rb atoms. The atom-ion mass ratio (= 2.18) is well beyond any theoretical predictions so far. We further argue that cooling of ions by localized cold atoms is possible for any mass ratio. The result opens up the possibility of reaching the elusive s-wave collision regime in atom-ion collisions. S.D. is supported by DST-INSPIRE Faculty Fellowship, India.

  3. An electrodynamic ion funnel for electrospray ionization source based time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bhushan, K. G.; Rao, K. C.; Sule, U.; Reddy, P.; Rodrigues, S. M.; Gaikwad, D. T.; Mukundhan, R.; Gupta, S. K.

    2016-04-01

    An electrodynamic ion funnel has been developed for improving the sensitivity of electrospray ionization sources widely used in the mass spectrometric study of proteins and other biological macromolecules. The ion funnel consists of 52 electrodes and works under the combined influence of RF and DC voltages in the pressure range of 0.1 to 5 mbar. A novel feature of this ion funnel is the specific shape of the exit electrode that improves transmission of lower mass ions by reducing the depth of effective trapping potentials. In this paper, we report on the optimization of the ion funnel design using ion trajectory simulation software SIMION 8.0 especially in the mass range 500–5000 amu, followed by experimental observations of the ion transmission from the electrospray interface. It is seen that the electrospray-ion funnel combination greatly enhances the transmission when compared with an electrospray-skimmer interface. Ion currents > 1 nA could be obtained at the exit of the ion funnel for dilute Streptomycin Sulphate (~ 1500 amu) solution with the ion funnel operating in the 500–900 kHz frequency range, amplitude of 70 Vp‑p, under a DC gradient of about 20 Volts/cm at a background pressure of 0.3 mbar. Details of the construction of the ion funnel along with the experimental results are presented.

  4. Possibilities of research for on-line mass separator with heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Siváček, I.; Kliman, J.; Rodin, A. M.; Krupa, L'; Belozerov, A. V.; Podshibyakin, A. V.; Salamatin, V. S.; Stepantsov, S. V.; Vedeneev, V. Yu

    2014-09-01

    Mass Analyser of Superheavy Atoms is ISOL - type setup created for direct mass measurement heavy ions. Hot catcher and ECR ion source combination allows effective formation of secondary beams of volatile elements. Powerful magnetic analysing system offers possibility to achieve mass resolution M/ΔM > 1000 in the focal plane silicon strip detector. The efficiency, time characteristics and detection system properties are described. Two applications of setup in different fields of research are presented together with methodology of experiments and data analysis.

  5. Atmospheric pressure ion lens extends the stable operational region of an electrospray ion source for capillary electrophoresis-mass spectrometry.

    PubMed

    Zhao, Shuai Sherry; Zhong, Xuefei; Chen, David D Y

    2012-04-01

    An atmospheric ion lens incorporated into an electrospray ion source for capillary electrophoresis-mass spectrometry (CE-MS) is found to extend the stable operational regions for both flow rates and electrospray ionization (ESI) voltages. The stable operating conditions for the ESI source with and without the ion lens were characterized. The results showed that the stable operation region was widest when the voltage difference between the sprayer and the ion lens ranges from 2.6 to 2.8 kV, and under these condition, the CE-MS interface can be adapted to a broader range of electroosmotic and modifier flow rates. Modeling of the electric field in the electrospray ion source with the ion lens suggests that the extension of the stable region is attributed to the flatter equipotential surfaces around the sprayer tip and higher electric field strengths in the rest of the interface region. PMID:22589113

  6. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  7. Rapid environmental organic analysis by direct sampling Glow Discharge Mass Spectrometry and Ion Trap Mass Spectrometry: Summary of pilot studies

    SciTech Connect

    Wise, M.B.; Buchanan, M.V.; Guerin, M.R.

    1990-03-01

    Direct Sampling Mass Spectrometry (DSMS) techniques employing both Glow Discharge Mass Spectrometry and Ion Trap Mass Spectrometry are being developed to quantitatively determine preselected organics in water, soil, and air samples at part per billion levels in less than five minutes. Direct sampling requires little or no sample preparation and no prior chromatographic separation and is applicable to both volatile and semivolatile organics. 25 figs., 3 tabs.

  8. Effect of ion and ion-beam mass ratio on the formation of ion-acoustic solitons in magnetized plasma in the presence of electron inertia

    SciTech Connect

    Kalita, B. C.; Barman, S. N.

    2009-05-15

    The propagation of ion-acoustic solitary waves in magnetized plasma with cold ions and ion-beams together with electron inertia has been investigated theoretically through the Korteweg-de Vries equation. Subject to the drift velocity of the ion beam, the existence of compressive solitons is found to become extinct as {alpha} (=cold ion mass/ion-beam mass) tends to 0.01 when {gamma}=0.985 ({gamma} is the beam velocity/phase velocity). Interestingly, a transitional direction of propagation of solitary waves has been unearthed for change over, from compressive solitons to rarefactive solitons based on {alpha} and {sigma}{sub {upsilon}}(=cosine of the angle {theta} made by the wave propagation direction {xi} with the direction of the magnetic field) for fixed Q(=electron mass/ion mass). Further, the direction of propagation of ion-acoustic waves is found to be the deterministic factor to admit compressive or rarefactive solitons subject to beam outsource.

  9. Liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometric characterization of protein kinase C phosphorylation.

    PubMed

    Chalmers, Michael J; Quinn, John P; Blakney, Greg T; Emmett, Mark R; Mischak, Harold; Gaskell, Simon J; Marshall, Alan G

    2003-01-01

    A vented column, capillary liquid chromatography (LC) microelectrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR (9.4 T)) mass spectrometry (MS) approach to phosphopeptide identification is described. A dual-ESI source capable of rapid (approximately 200 ms) switching between two independently controlled ESI emitters was constructed. The dual-ESI source, combined with external ion accumulation in a linear octopole ion trap, allowed for internal calibration of every mass spectrum during LC. LC ESI FT-ICR positive-ion MS of protein kinase C (PKC) revealed four previously unidentified phosphorylated peptides (one within PKC(alpha), one within PKC(delta), and two within PKC(zeta)). Internal calibration improved the mass accuracy for LC MS spectra from an absolute mean (47 peptide ions) of 11.5 ppm to 1.5 ppm. Five additional (out of eight known) activating sites of PKC phosphorylation, not detected in positive-ion experiments, were observed by subsequent negative-ion direct infusion nanoelectrospray. Extension of the method to enable infrared multiphoton dissociation of all ions in the ICR cell prior to every other mass measurement revealed the diagnostic neutral loss of H3PO4 from phosphorylated peptide ions. The combination of accurate-mass MS and MS/MS offers a powerful new tool for identifying the presence and site(s) of phosphorylation in peptides, without the need for additional wet chemical derivatization.

  10. Theory of peak coalescence in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Boldin, Ivan A; Nikolaev, Eugene N

    2009-10-01

    Peak coalescence, i.e. the merging of two close peaks in a Fourier transform ion cyclotron resonance (FTICR) mass spectrum at a high number of ions, plays an important role in various FTICR experiments. In order to describe the coalescence phenomenon we would like to propose a new theory of motion for ion clouds with close mass-to-charge ratios, driven by a uniform magnetic field and Coulomb interactions between the clouds. We describe the motion of the ion clouds in terms of their averaged drift motion in crossed magnetic and electric fields. The ion clouds are considered to be of constant size and their motion is studied in two dimensions. The theory deals with the first-order approximation of the equations of motion in relation to dm/m, where dm is the mass difference and m is the mass of a single ion. The analysis was done for an arbitrary inter-cloud interaction potential, which makes it possible to analyze finite-size ion clouds of any shape. The final analytical expression for the condition of the onset of coalescence is found for the case of uniformly charged spheres. An algorithm for finding this condition for an arbitrary interaction potential is proposed. The critical number of ions for the peak coalescence to take place is shown to depend quadratically on the magnetic field strength and to be proportional to the cyclotron radius and inversely proportional to the ion masses.

  11. Advances in ion trap mass spectrometry: Photodissociation as a tool for structural elucidation

    SciTech Connect

    Stephenson, J.L. Jr.; Booth, M.M.; Eyler, J.R.; Yost, R.A.

    1995-12-01

    Photo-induced dissociation (PID) is the next most frequently used method (after collisional activation) for activation of Polyatomic ions in tandem mass spectrometry. The range of internal energies present after the photon absorption process are much narrower than those obtained with collisional energy transfer. Therefore, the usefulness of PID for the study of ion structures is greatly enhanced. The long storage times and instrumental configuration of the ion trap mass spectrometer are ideally suited for photodissociation experiments. This presentation will focus on both the fundamental and analytical applications of CO{sub 2} lasers in conjunction with ion trap mass spectrometry. The first portion of this talk will examine the fundamental issues of wavelength dependence, chemical kinetics, photoabsorption cross section, and collisional effects on photodissociation efficiency. The second half of this presentation will look at novel instrumentation for electrospray/ion trap mass spectrometry, with the concurrent development of photodissociation as a tool for structural elucidation of organic compounds and antibiotics.

  12. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: Theory and simulations.

    PubMed

    Nikolaev, Eugene N; Kostyukevich, Yury I; Vladimirov, Gleb N

    2016-01-01

    Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer offers highest resolving power and mass accuracy among all types of mass spectrometers. Its unique analytical characteristics made FT ICR important tool for proteomics, metabolomics, petroleomics, and investigation of complex mixtures. Signal acquisition in FT ICR MS takes long time (up to minutes). During this time ion-ion interaction considerably affects ion motion and result in decreasing of the resolving power. Understanding of those effects required complicated theory and supercomputer simulations but culminated in the invention of the ion trap with dynamic harmonization which demonstrated the highest resolving power ever achieved. In this review we summarize latest achievements in theory and simulation of FT ICR mass spectrometers.

  13. High precision electric gate for time-of-flight ion mass spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  14. Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectometry: Theory and applications

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Marshall, Alan G.

    1996-12-01

    Stored waveform excitation produced by inverse Fourier transformation of a specified magnitude/phase excitation spectrum offers the most general and versatile means for broadband mass-selective excitation and ejection in Penning (FT-ICR) and Paul (quadrupole) ion trap mass spectrometry. Since the last comprehensive review of SWIFT excitation in 1987, the technique has been adopted, modified, and extended widely in both the ICR and quadrupole ion trap communities. Here, we review the principles, variations, algorithms, hardware implementation, and some applications of SWIFT for both ICR and quadrupole ion trap mass spectrometry. We show that the most desirable SWIFT waveform is that optimized to reduce both the time-domain SWIFT maximum amplitude and the amplitude near the start and end of the SWIFT waveform. We examine the "true" magnitude excitation spectrum, obtained by zero-filling and forward Fourier transforming the SWIFT time-domain waveform, in order to evaluate the trade-off between spectral magnitude uniformity and frequency (mass) selectivity. Apodization of the SWIFT waveform is optimally conducted by smoothing the excitation magnitude spectrum prior to generation of the SWIFT waveform by inverse FT. When (as for broadband ejection in a quadrupole ion trap) it is important that ions be excited near-simultaneously over a wide mass range, the phase spectrum (before inverse FT to generate the SWIFT waveform) may be overmodulated or randomly modulated ("filtered noise field"), with the recognition that very substantial non-uniformity in the "true" excitation magnitude spectrum will result.

  15. Enhancing Secondary Ion Yields in Time of Flight-Secondary Ion Mass Spectrometry Using Water Cluster Primary Beams

    PubMed Central

    2013-01-01

    Low secondary ion yields from organic and biological molecules are the principal limitation on the future exploitation of time of flight-secondary ion mass spectrometry (TOF-SIMS) as a surface and materials analysis technique. On the basis of the hypothesis that increasing the density of water related fragments in the ion impact zone would enhance proton mediated reactions, a prototype water cluster ion beam has been developed using supersonic jet expansion methodologies that enable ion yields using a 10 keV (H2O)1000+ beam to be compared with those obtained using a 10 keV Ar1000+ beam. The ion yields from four standard compounds, arginine, haloperidol, DPPC, and angiotensin II, have been measured under static+ and high ion dose conditions. Ion yield enhancements relative to the argon beam on the order of 10 or more have been observed for all the compounds such that the molecular ion yield per a 1 μm pixel can be as high as 20, relative to 0.05 under an argon beam. The water beam has also been shown to partially lift the matrix effect in a 1:10 mixture of haloperidol and dipalmitoylphosphatidylcholine (DPPC) that suppresses the haloperidol signal. These results provide encouragement that further developments of the water cluster beam to higher energies and larger cluster sizes will provide the ion yield enhancements necessary for the future development of TOF-SIMS. PMID:23718847

  16. Optimized precursor ion selection for labile ions in a linear ion trap mass spectrometer and its impact on quantification using selected reaction monitoring.

    PubMed

    Lee, Hyun-Seok; Shin, Kyong-Oh; Jo, Sung-Chan; Lee, Yong-Moon; Yim, Yong-Hyeon

    2014-12-01

    The fragmentation of fragile ions during the application of an isolation waveform for precursor ion selection and the resulting loss of isolated ion intensity is well-known in ion trap mass spectrometry (ITMS). To obtain adequate ion intensity in the selected reaction monitoring (SRM) of fragile precursor ions, a wider ion isolation width is required. However, the increased isolation width significantly diminishes the selectivity of the channels chosen for SRM, which is a serious problem for samples with complex matrices. The sensitive and selective quantification of many lipid molecules, including ceramides from real biological samples, using a linear ion trap mass spectrometer is also hindered by the same problem because of the ease of water loss from protonated ceramide ions. In this study, a method for the reliable quantification of ceramides using SRM with near unity precursor ion isolation has been developed for ITMS by utilizing alternative precursor ions generated by in-source dissociation. The selected precursor ions allow the isolation of ions with unit mass width and the selective analysis of ceramides using SRM with negligible loss of sensitivity. The quantification of C18:0-, C24:0- and C24:1-ceramides using the present method shows excellent linearity over the concentration ranges from 6 to 100, 25 to 1000 and 25 to 1000 nM, respectively. The limits of detection of C18:0-, C24:0- and C24:1-ceramides were 0.25, 0.25 and 5 fmol, respectively. The developed method was successfully applied to quantify ceramides in fetal bovine serum.

  17. Bennett ion mass spectrometers on the Pioneer Venus Bus and Orbiter

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Brinton, H. C.; Wagner, T. C. G.; Blackwell, B. H.; Cordier, G. R.

    1980-01-01

    Identical Bennett radio-frequency ion mass spectrometer instruments on the Pioneer Venus Bus and Orbiter have provided the first in-situ measurements of the detailed composition of the planet's ionosphere. The sensitivity, resolution, and dynamic range are sufficient to provide measurements of the solar-wind-induced bow-shock, the ionopause, and highly structured distributions of up to 16 thermal ion species within the ionosphere. The use of adaptive scan and detection circuits and servo-controlled logic for ion mass and energy analysis permits detection of ion concentrations as low as 5 ions/cu cm and ion flow velocities as large as 9 km/sec for O(+). A variety of commandable modes provides ion sampling rates ranging from 0.1 to 1.6 sec between measurements of a single constituent. A lightweight sensor and electronics housing are features of a compact instrument package.

  18. Recent developments in ion detection techniques for Penning trap mass spectrometry at TRIGA-TRAP

    NASA Astrophysics Data System (ADS)

    Ketelaer, J.; Blaum, K.; Block, M.; Eberhardt, K.; Eibach, M.; Ferrer, R.; George, S.; Herfurth, F.; Ketter, J.; Nagy, Sz.; Repp, J.; Schweikhard, L.; Smorra, C.; Sturm, S.; Ulmer, S.

    2009-12-01

    The highest precision in the determination of nuclear and atomic masses can be achieved by Penning trap mass spectrometry. The mass value is obtained through a measurement of the cyclotron frequency of the stored charged particle. Two different approaches are used at the Penning trap mass spectrometer TRIGA-TRAP for the mass determination: the destructive Time-Of-Flight Ion Cyclotron Resonance (TOF-ICR) technique and the non-destructive Fourier Transform Ion Cyclotron Resonance (FT-ICR) method. New developments for both techniques are described, which will improve the detection efficiency and the suppression of contaminations in the case of TOF-ICR. The FT-ICR detection systems will allow for the investigation of an incoming ion bunch from a radioactive-beam facility on the one hand, and for the detection of a single singly charged ion in the Penning trap on the other hand.

  19. A compact time-of-flight mass spectrometer for ion source characterization

    SciTech Connect

    Chen, L. Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-03-15

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters.

  20. A cheap and compact mass spectrometer for radioactive ions based on a Wien filter

    NASA Astrophysics Data System (ADS)

    Pierret, C.; Maunoury, L.; Pacquet, J. Y.; Saint-Laurent, M.-G.; Tuske, O.

    2008-10-01

    This paper presents simulations of a mass spectrometer composed of one or two Wien filters. The ion source used is MONO1000 ECRIS. This ion source can produce singly charged ions with high efficiency, especially for gaseous materials. After extraction, the ions are mass selected and can be injected either into a beam line towards an experiment area or in an N+ charge booster. Due to its compactness and simplicity the proposed spectrometer is well adapted for preparing and analyzing radioactive beams. The simulations are based on the SIMION 3D [www.simion.com/] software.

  1. Comparison of functional group selective ion-molecule reactions of trimethyl borate in different ion trap mass spectrometers

    SciTech Connect

    Habicht, S C; Vinueza, Nelson R; Amundson, Lucas M; Kenttämaa, Hilkka I

    2011-02-01

    We report here a comparison of the use of diagnostic ion–molecule reactions for the identification of oxygen-containing functional groups in Fourier-transform ion cyclotron resonance (FTICR) and linear quadrupole ion trap (LQIT) mass spectrometers. The ultimate goal of this research is to be able to identify functionalities in previously unknown analytes by using many different types of mass spectrometers. Previous work has focused on the reactions of various boron reagents with protonated oxygen-containing analytes in FTICR mass spectrometers. By using a LQIT modified to allow the introduction of neutral reagents into the helium buffer gas, this methodology has been successfully implemented to this type of an ion trap instrument. The products obtained from the reactions of trimethyl borate (TMB) with various protonated analytes are compared for the two instruments. Finally, the ability to integrate these reactions into LC-MS experiments on the LQIT is demonstrated.

  2. The modification of residual gas analyzers to produce mass-selected ion beams

    SciTech Connect

    Gilbert, J.R.

    1990-01-01

    The authors have constructed an instrument designed to trap mass-selected ions at low temperatures within a solid inert gas matrix for spectroscopic analysis. The goal was to construct a flexible instrument that would permit the study of a wide variety of mass-selected positive ions, and which could also be used to investigate the role that counterions play in the effective trapping of ionic species in inert cryogenic hosts. The instrument was designed to utilize both laser-induced fluorescence (LIF) and Fourier transform infrared (FTIR) spectroscopies to identify and investigate the structure of the trapped species. The sources employed in this experiment must produce high current ion beams for extended periods to allow the accumulation of a significant number of absorbers in the optical beam for FTIR investigation. Residual gas analyzers (RGAs) were selected as the basis for the mass-selected ion sources for this instrument. This dissertation focuses on the modification of two RGAs to produce controlled beams of mass-selected positive and negative ions that can be directed onto a remote surface for matrix isolation experiments. The discussion includes descriptions of the modifications made to the RGA ion sources and to a commercially available chemical ionization source to produce ions by surface emission, chemical ionization, and negative surface ionization. The mass-selected beams produced by the RGA quadrupoles were focused and deflected using a series of electrostatic optics. The design of these elements was optimized using computer modeling and ion beam visualization techniques. The modifications have allowed these RGAs to produce mass-selected ion beams that have been effectively used in the isolation of mass-selected ions within solid inert gas matrices.

  3. Composition measurements of the topside ionosphere using a magnetic mass spectrometer, ion mass spectrometer on ISIS-2 spacecraft

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    The ion mass spectrometer (IMS) on the ISIS-II satellite is described; it measures the composition and distribution of positive ions in the earth's ionosphere in the mass range of 1 to 64 atomic mass units. Significant data were received which show a wide variation in ion composition at night near the equator and in the daytime poleward of the plasmapause. It was found that these data enable further study of the polar wind and that the experiment produced timely data during the August, 1972 magnetic storm to show the development of a unique ionosphere above the plasmapause during the period of the storm. The scientific objectives and results of the experiment, the technical description of the instrument, a bibliography with sample papers attached, and a summary of recommendations for further study are presented.

  4. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

    1987-01-01

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

  5. Mass- and energy-analyses of ions from plasma by means of a miniature Thomson spectrometer

    SciTech Connect

    Sadowski, M. J.; Czaus, K.; Malinowski, K.; Skladnik-Sadowska, E.; Zebrowski, J.

    2009-05-15

    The paper presents an improved version of a miniature mass-spectrometer of the Thomson-type, which has been adopted for ion analysis near the dense plasma region inside a vacuum chamber. Problems connected with the separation of ions from plasma streams are considered. Input diaphragms and pumping systems, needed to ensure good vacuum inside the analyzing region, are described. The application of the miniature Thomson-type analyzer is illustrated by ion parabolas recorded in plasma-focus facility and rod plasma injector experiment. A quantitative analysis of the recorded ion parabolas is presented. Factors influencing accuracy of the ion analysis are discussed and methods of the spectrometer calibration are described.

  6. DeconMSn: A Software Tool for accurate parent ion monoisotopic mass determination for tandem mass spectra

    SciTech Connect

    Mayampurath, Anoop M.; Jaitly, Navdeep; Purvine, Samuel O.; Monroe, Matthew E.; Auberry, Kenneth J.; Adkins, Joshua N.; Smith, Richard D.

    2008-04-01

    We present a new software tool for tandem MS analyses that: • accurately calculates the monoisotopic mass and charge of high–resolution parent ions • accurately operates regardless of the mass selected for fragmentation • performs independent of instrument settings • enables optimal selection of search mass tolerance for high mass accuracy experiments • is open source and thus can be tailored to individual needs • incorporates a SVM-based charge detection algorithm for analyzing low resolution tandem MS spectra • creates multiple output data formats (.dta, .MGF) • handles .RAW files and .mzXML formats • compatible with SEQUEST, MASCOT, X!Tandem

  7. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1972-01-01

    Metal ions including Na-40(+), Mg-24(+), Si-28(+), K-39(+), Ca-40(+), Sc-45(+), Cr-52(+), Fe-56(+), and Ni-58(+) were detected in the upper atmosphere during the beta Taurids meteor shower. Abundances of these ions relative to Si(+) show agreement in most instances with chondrites. A notable exception is 45(+), which is Sc(+), is 100 times more abundant than neutral scandium found in chondrites.

  8. Comet encke: meteor metallic ion identification by mass spectrometer.

    PubMed

    Goldberg, R A; Aikin, A C

    1973-04-20

    Metal ions including 23(+) (Na(+)), 24(+) (Mg(+)) 28(+) (Si(+)), 39(+) (K(+)), 40(+) (Ca(+)), 45(+) (Sc(+)), 52(+) Cr(+)). 56(+) (Fe(+)), and 58(+) (Ni(+)) have been detected in the upper atmosphere during the period of the Beta Taurids meteor shower. The abundances of these ions relative to Si(+) show, agreement in most instances with abundances in chondrites. A notable exception is 45(+), which, if it is Sc(+), is 100 times more abundant than neutral scandium found in chondrites. PMID:17816288

  9. Comet encke: meteor metallic ion identification by mass spectrometer.

    PubMed

    Goldberg, R A; Aikin, A C

    1973-04-20

    Metal ions including 23(+) (Na(+)), 24(+) (Mg(+)) 28(+) (Si(+)), 39(+) (K(+)), 40(+) (Ca(+)), 45(+) (Sc(+)), 52(+) Cr(+)). 56(+) (Fe(+)), and 58(+) (Ni(+)) have been detected in the upper atmosphere during the period of the Beta Taurids meteor shower. The abundances of these ions relative to Si(+) show, agreement in most instances with abundances in chondrites. A notable exception is 45(+), which, if it is Sc(+), is 100 times more abundant than neutral scandium found in chondrites.

  10. High-resolution accurate mass measurements of biomolecules using a new electrospray ionization ion cyclotron resonance mass spectrometer.

    PubMed

    Winger, B E; Hofstadler, S A; Bruce, J E; Udseth, H R; Smith, R D

    1993-07-01

    A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10(-9) torr. The increased pumping speed attainable with cryopumping (> 10(5) L/s) allowed brief pressure excursions to above 10(-4) torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10-25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4(+) charge state (m/z 1434) of insulin. PMID:24227643

  11. On the transmission function of an ion-energy and mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hamers, E. A. G.; van Sark, W. G. J. H. M.; Bezemer, J.; Goedheer, W. J.; van der Weg, W. F.

    1998-01-01

    The operation of a mass spectrometer system with an electrostatic energy analyser, designed for measurements of mass-resolved ion-energy distributions, is discussed. We show how the electric fields in the different electrostatic lenses present in the system can be optimized. These lenses direct the ions entering the system into the energy filter and the quadrupole mass filter. These lenses can exhibit chromatic aberration. The conditions without chromatic aberration have been found by simulating the ion trajectories in the part of the system up to the energy filter. Also, an experimental method is presented to find these settings. We show that the energy-dependent transmission of ions through the system is mainly determined by its acceptance angle. Ionenergy spectra from an argon plasma have been measured and corrected for the transmission of the ions through the system. Published by Elsevier Science B.V.

  12. Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry: Dynamic Switching in Structures for Lossless Ion Manipulations

    PubMed Central

    2015-01-01

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows the efficient switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be efficiently directed to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 Torr. In the dynamic mode, we show that mobility-selected ions can be switched into the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. This development also provides the basis of, for example, the selection of specific mobilities for storage and accumulation, and the key component of modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations. PMID:25222548

  13. Flowing gas in mass spectrometer: method for characterization and impact on ion processing.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2014-10-21

    Mass spectrometers are complex instrumentation systems where ions are transferred though different pressure regions and mass-analyzed under high vacuum. In this work, we have investigated the impact of the gas flows that exit almost universally in all pressure regions. We developed a method that incorporates the dynamic gas field with the electric field in the simulation of ion trajectories. The scope of the electro-hydrodynamic simulation (EHS) method was demonstrated for characterizing the ion optical systems at atmospheric pressure interfaces. With experimental validation, the trapping of the externally injected ions in a linear ion trap at low pressure was also studied. Further development of the EHS method and the knowledge acquired in this research are expected to be useful in the design of hybrid instruments and the study of ion energetics. PMID:25121805

  14. Development and Evaluation of a Variable-Temperature Quadrupole Ion Trap Mass Spectrometer.

    PubMed

    Derkits, David; Wiseman, Alex; Snead, Russell F; Dows, Martina; Harge, Jasmine; Lamp, Jared A; Gronert, Scott

    2016-02-01

    A new, variable-temperature mass spectrometer system is described. By applying polyimide heating tape to the end-cap electrodes of a Bruker (Bremen, Germany) Esquire ion trap, it is possible to vary the effective temperature of the system between 40 and 100°C. The modification does not impact the operation of the ion trap and the heater can be used for extended periods without degradation of the system. The accuracy of the ion trap temperatures was assessed by examining two gas-phase equilibrium processes with known thermochemistry. In each case, the variable-temperature ion trap provided data that were in good accord with literature data, indicating the effective temperature in the ion trap environment was being successfully modulated by the changes in the set-point temperatures on the end-cap electrodes. The new design offers a convenient and effective way to convert commercial ion trap mass spectrometers into variable-temperature instruments. PMID:26483183

  15. New high-resolution electrostatic ion mass analyzer using time of flight

    NASA Technical Reports Server (NTRS)

    Hamilton, D. C.; Gloeckler, G.; Ipavich, F. M.; Lundgren, R. A.; Sheldon, R. B.

    1990-01-01

    The design of a high-resolution ion-mass analyzer is described, which is based on an accurate measurement of the time of flight (TOF) of ions within a region configured to produce a harmonic potential. In this device, the TOF, which is independent of ion energy, is determined from a start pulse from secondary electrons produced when the ion passes through a thin carbon foil at the entrance of the TOF region and at a stop pulse from the ion striking a microchannel plate upon exciting the region. A laboratory prototype instrument called 'VMASS' was built and was tested at the Goddard Space Flight Center electrostatic accelerator, showing a good mass resolution of the instrument. Sensors of the VMASS type will form part of the WIND Solar Wind and Suprathermal Ion experiment, the Soho mission, and the Advanced Composition Explorer.

  16. Flowing Gas in Mass Spectrometer: Method for Characterization and Impact on Ion Processing

    PubMed Central

    Zhou, Xiaoyu; Ouyang, Zheng

    2014-01-01

    Mass spectrometers are complex instrumentation systems with ions transferred though different pressure regions and mass analyzed at high vacuum. In this work, we have investigated the impacts of the gas flows that exit almost universally in all pressure regions and developed a method incorporating the dynamic gas field with the electric (E) field in the simulation of ion trajectories. The capability of the electro-hydrodynamic simulation (EHS) method was demonstrated for characterizing the ion optical systems in atmospheric pressure interfaces. With experimental validation, the trapping of the externally-injected ions in a linear ion trap at low pressure has also been studied. Further development of the EHS method and the knowledge acquired in this research are expected to be useful in the design of hybrid instruments and study of ion energetics. PMID:25121805

  17. Theoretical calculations for mass resolution of a quadrupole ion trap reflectron time-of-flight mass spectrometer.

    PubMed

    Choi, Chang Min; Heo, Jiyoung; Park, Chang Joon; Kim, Nam Joon

    2010-02-01

    We have developed a theoretical method of predicting the mass resolution for a quadrupole ion trap reflectron time-of-flight (QIT-reTOF) mass spectrometer as a function of the spatial and velocity distributions of ions, voltages applied to the electrodes, and dimensions of the instrument. The flight times of ions were calculated using theoretical equations derived with an assumption of uniform electric fields inside the QIT and with the analytical description of the potential including the monopole, dipole, and quadrupole components. The mass resolution was then estimated from the flight-time spread of the ions with finite spatial and velocity distributions inside the QIT. The feasibility of the theoretical method was confirmed by the reasonable agreement of the theoretical resolution with the experimental one measured by varying the extraction voltage of the QIT or the deceleration voltage of the reflectron. We found that the theoretical resolution estimated with the assumption of the uniform electric fields inside the QIT reproduced the experimental one better than that with the analytical description of the potential. The possible applications of this theoretical method include the optimization of the experimental parameters of a given QIT-reTOF mass spectrometer and the design of new instruments with higher mass resolution.

  18. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers.

    PubMed

    Snyder, Dalton T; Pulliam, Christopher J; Wiley, Joshua S; Duncan, Jason; Cooks, R Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection. Graphical Abstract ᅟ. PMID:27032650

  19. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Pulliam, Christopher J.; Wiley, Joshua S.; Duncan, Jason; Cooks, R. Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection.

  20. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers.

    PubMed

    Snyder, Dalton T; Pulliam, Christopher J; Wiley, Joshua S; Duncan, Jason; Cooks, R Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection. Graphical Abstract ᅟ.

  1. A new technique for unbiased external ion accumulation in a quadrupole two-dimensional ion trap for electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Belov, M E; Nikolaev, E N; Alving, K; Smith, R D

    2001-01-01

    External ion accumulation in a two-dimensional (2D) multipole trap has been shown to increase the sensitivity, dynamic range and duty cycle of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. However, it is important that trapped ions be detected without significant bias at longer accumulation times in the external 2D multipole trap. With increasing ion accumulation time pronounced m/z discrimination was observed when trapping ions in an accumulation quadrupole. In this work we show that superimposing lower rf-amplitude dipolar excitation over the main rf-field in the accumulation quadrupole results in disruption of the m/z discrimination and can potentially be used to achieve unbiased external ion accumulation with FTICR.

  2. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    SciTech Connect

    Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko; Popović Hadžija, Marijana; Hadžija, Mirko

    2015-08-31

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.

  3. Ion densities and composition of Titan's upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations

    NASA Astrophysics Data System (ADS)

    Mandt, Kathleen E.; Gell, David A.; Perry, Mark; Hunter Waite, J., Jr.; Crary, Frank A.; Young, David; Magee, Brian A.; Westlake, Joseph H.; Cravens, Thomas; Kasprzak, Wayne; Miller, Greg; Wahlund, Jan-Erik; Ågren, Karin; Edberg, Niklas J. T.; Heays, Alan N.; Lewis, Brenton R.; Gibson, Stephen T.; de la Haye, V.; Liang, Mao-Chang

    2012-10-01

    The Cassini Ion Neutral Mass Spectrometer (INMS) has measured both neutral and ion species in Titan's upper atmosphere and ionosphere and the Enceladus plumes. Ion densities derived from INMS measurements are essential data for constraining photochemical models of Titan's ionosphere. The objective of this paper is to present an optimized method for converting raw data measured by INMS to ion densities. To do this, we conduct a detailed analysis of ground and in-flight calibration to constrain the instrument response to ion energy, the critical parameter on which the calibration is based. Data taken by the Cassini Radio Plasma Wave Science Langmuir Probe and the Cassini Plasma Spectrometer Ion Beam Spectrometer are used as independent measurement constraints in this analysis. Total ion densities derived with this method show good agreement with these data sets in the altitude region (˜1100-1400 km) where ion drift velocities are low and the mass of the ions is within the measurement range of the INMS (1-99 Daltons). Although ion densities calculated by the method presented here differ slightly from those presented in previous INMS publications, we find that the implications for the science presented in previous publications is mostly negligible. We demonstrate the role of the INMS ion densities in constraining photochemical models and find that (1) cross sections having high resolution as a function of wavelength are necessary for calculating the initial photoionization products and (2) there are disagreements between the measured ion densities representative of the initial steps in Titan photochemistry that require further investigation.

  4. Mass Spectrometric Collisional Activation and Product Ion Mobility of Human Serum Neutral Lipid Extracts

    PubMed Central

    Hankin, Joseph A.; Barkley, Robert M.; Zemski-Berry, Karin; Deng, Yiming; Murphy, Robert C.

    2016-01-01

    A novel method for lipid analysis called CTS (collisional activation and traveling wave mass spectrometry) involving tandem mass spectrometry of all precursor ions with ion mobility determinations of all product ions was applied to a sample of human serum. The resulting four dimensional data set (precursor ion, product ion, ion mobility values, and intensity) was found to be useful for characterization of lipids as classes as well as identification of specific species. Utilization of ion mobility measurements of the product ions is a novel approach for lipid analysis. The trends and patterns of product mobility values when visually displayed yield information on lipid classes and specific species independent of mass determination. The collection of a comprehensive set of data that incorporates all precursor-product relationships combined with ion mobility measurements of all products enables data analysis where different molecular properties can be juxtaposed and analyzed to assist with class and species identification. Overall, CTS is powerful, specific, and comprehensive method for lipid analysis. PMID:27213895

  5. Interfacing an ion mobility spectrometry based explosive trace detector to a triple quadrupole mass spectrometer.

    PubMed

    Kozole, Joseph; Stairs, Jason R; Cho, Inho; Harper, Jason D; Lukow, Stefan R; Lareau, Richard T; DeBono, Reno; Kuja, Frank

    2011-11-15

    Hardware from a commercial-off-the-shelf (COTS) ion mobility spectrometry (IMS) based explosive trace detector (ETD) has been interfaced to an AB/SCIEX API 2000 triple quadrupole mass spectrometer. To interface the COTS IMS based ETD to the API 2000, the faraday plate of the IMS instrument and the curtain plate of the mass spectrometer were removed from their respective systems and replaced by a custom faraday plate, which was fabricated with a hole for passing the ion beam to the mass spectrometer, and a custom interface flange, which was designed to attach the IMS instrument onto the mass spectrometer. Additionally, the mass spectrometer was modified to increase the electric field strength and decrease the pressure in the differentially pumped interface, causing a decrease in the effect of collisional focusing and permitting a mobility spectrum to be measured using the mass spectrometer. The utility of the COTS-ETD/API 2000 configuration for the characterization of the gas phase ion chemistry of COTS-ETD equipment was established by obtaining mass and tandem mass spectra in the continuous ion flow and selected mobility monitoring operating modes and by obtaining mass-selected ion mobility spectra for the explosive standard 2,4,6 trinitrotoluene (TNT). This analysis confirmed that the product ion for TNT is [TNT - H](-), the predominant collision-induced dissociation pathway for [TNT- H](-) is the loss of NO and NO(2), and the reduced mobility value for [TNT - H](-) is 1.54 cm(2)V(-1) s(-1). Moreover, this analysis was attained for sample amounts of 1 ng and with a resolving power of 37. The objective of the research is to advance the operational effectiveness of COTS IMS based ETD equipment by developing a platform that can facilitate the understanding of the ion chemistry intrinsic to the equipment.

  6. Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Guo

    1994-01-01

    Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not

  7. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis.

    PubMed

    Hendrickson, Christopher L; Quinn, John P; Kaiser, Nathan K; Smith, Donald F; Blakney, Greg T; Chen, Tong; Marshall, Alan G; Weisbrod, Chad R; Beu, Steven C

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 (m/Δm(50%)) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users. PMID:26091892

  8. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis.

    PubMed

    Hendrickson, Christopher L; Quinn, John P; Kaiser, Nathan K; Smith, Donald F; Blakney, Greg T; Chen, Tong; Marshall, Alan G; Weisbrod, Chad R; Beu, Steven C

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 (m/Δm(50%)) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users.

  9. Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID).

    PubMed

    Kelstrup, Christian D; Frese, Christian; Heck, Albert J R; Olsen, Jesper V; Nielsen, Michael L

    2014-08-01

    Unambiguous identification of tandem mass spectra is a cornerstone in mass-spectrometry-based proteomics. As the study of post-translational modifications (PTMs) by means of shotgun proteomics progresses in depth and coverage, the ability to correctly identify PTM-bearing peptides is essential, increasing the demand for advanced data interpretation. Several PTMs are known to generate unique fragment ions during tandem mass spectrometry, the so-called diagnostic ions, which unequivocally identify a given mass spectrum as related to a specific PTM. Although such ions offer tremendous analytical advantages, algorithms to decipher MS/MS spectra for the presence of diagnostic ions in an unbiased manner are currently lacking. Here, we present a systematic spectral-pattern-based approach for the discovery of diagnostic ions and new fragmentation mechanisms in shotgun proteomics datasets. The developed software tool is designed to analyze large sets of high-resolution peptide fragmentation spectra independent of the fragmentation method, instrument type, or protease employed. To benchmark the software tool, we analyzed large higher-energy collisional activation dissociation datasets of samples containing phosphorylation, ubiquitylation, SUMOylation, formylation, and lysine acetylation. Using the developed software tool, we were able to identify known diagnostic ions by comparing histograms of modified and unmodified peptide spectra. Because the investigated tandem mass spectra data were acquired with high mass accuracy, unambiguous interpretation and determination of the chemical composition for the majority of detected fragment ions was feasible. Collectively we present a freely available software tool that allows for comprehensive and automatic analysis of analogous product ions in tandem mass spectra and systematic mapping of fragmentation mechanisms related to common amino acids.

  10. Resonant laser ablation ion trap mass spectrometry -- Recent applications for chemical analysis

    SciTech Connect

    Gill, C.G.; Garrett, A.W.; Hemberger, P.H.; Nogar, N.S.

    1995-12-31

    Resonant Laser Ablation (RLA) is a useful ionization process for selectively producing gas phase ions from a solid sample. Recent use of RLA for mass spectrometry by this group and by others has produced a wealth of knowledge and useful analytical techniques. The method relies upon the focusing of modest intensity laser pulses ({le} 10{sup 7} W {center_dot} Cm{sup {minus}2}) upon a sample surface. A small quantity of material is vaporized, and atoms of desired analyte are subsequently ionized by (n + m) photon processes in the gas phase (where n = number of photons to a resonant transition and m = number of photons to exceed the ionization limit). The authors have been using (2 + 1) resonant ionization schemes for this work. Quadrupole ion trap mass spectrometry is realizing a very prominent role in current mass spectrometric research. Ion traps are versatile, powerful and extremely sensitive mass spectrometers, capable of a variety of ionization modes, MS{sup n} type experiments, high mass ranges and high resolution, all for a fraction of the cost of other instrumentation with similar capabilities. Quadrupole ion traps are ideally suited to pulsed ionization sources such as laser ionization methods, since their normal operational method (Mass Selective Instability) relies upon the storage of ions from a finite ionization period followed by ejection and detection of these ions based upon their mass to charge ratios. The paper describes selective ionization for trace atomic analysis, selective reagent ion source for ion chemistry investigations, and the analysis of ``difficult`` environmental contaminants, i.e., TBP.

  11. A mass spectrometry study of n-octane: Electron impact ionization and ion-molecule reactions

    NASA Astrophysics Data System (ADS)

    Jiao, C. Q.; DeJoseph, C. A.; Garscadden, A.

    2001-02-01

    Electron impact ionization of n-octane over an energy range of 10-70 eV and the subsequent ion-molecule reactions with the parent molecule have been studied using Fourier-transform mass spectrometry. Molecular ion and fragment ions C1+-C6+ are produced from the electron impact with a total ionization cross section of 1.4±0.2×10-15 cm2 between 60 and 70 eV. C3H7+ is the most abundant ion at most of the ionizing energies with the exception for E⩽16 eV where C6H13+ and C6H12+ are the most abundant. Among the fragment ions only C4H7+ and smaller ions react readily with the parent molecule, primarily producing C5H11+ and C4H9+, with rate coefficients of 0.32-2.4×10-9 cm3s-1. Essentially all of the ions, including the molecular ion and the large fragment ions, undergo decomposition upon collision with neutral molecules after they are kinetically excited to an energy range of 1-5 eV, forming a variety of small hydrocarbon ions. Many of the decomposition product ions in turn are capable of further reacting with n-octane. Isotope reagents have been utilized in experiments to probe the type of the ion-molecule reactions studied.

  12. Secondary ion counting for surface-sensitive chemical analysis of organic compounds using time-of-flight secondary ion mass spectroscopy with cluster ion impact ionization

    SciTech Connect

    Hirata, K.; Saitoh, Y.; Chiba, A.; Yamada, K.; Takahashi, Y.; Narumi, K.

    2011-03-15

    We report suitable secondary ion (SI) counting for surface-sensitive chemical analysis of organic compounds using time-of-flight (TOF) SI mass spectroscopy, based on considerably higher emission yields of SIs induced by cluster ion impact ionization. A SI counting system for a TOF SI mass spectrometer was developed using a fast digital storage oscilloscope, which allows us to perform various types of analysis as all the signal pulses constituting TOF SI mass spectra can be recorded digitally in the system. Effects of the SI counting strategy on SI mass spectra were investigated for C{sub 8} and C{sub 60} cluster ion impacts on an organically contaminated silicon wafer and on polytetrafluoroethylene targets by comparing TOF SI mass spectra obtained from the same recorded signals with different SI counting procedures. Our results show that the use of a counting system, which can cope with high SI yields, is necessary for quantitative analysis of SI mass spectra obtained under high SI yield per impact conditions, including the case of cluster ion impacts on organic compounds.

  13. Tracing the atomic mass unit to the kilogram by ion accumulation

    NASA Astrophysics Data System (ADS)

    Gläser, Michael

    2003-12-01

    An experimental approach for linking the atomic mass unit to the kilogram with an uncertainty sufficiently small for a future re-definition of the kilogram is described. The concept consists of accumulation of ions from an ion beam up to a weighable mass and measurable total charge. The main problems and influencing factors connected with ion beam technology, weighing and current measurement together with the corresponding experimental solutions are discussed in detail. The first experiments with consistent results, but still large uncertainty, are described.

  14. Gas chromatographic-ion trap mass spectrometric analysis of volatile organic compounds by ion-molecule reactions using the electron-deficient reagent ion CCl3(+).

    PubMed

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl(3)(+) was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl(3)(+) could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl(3)(+) with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M+CCl(3) - HCl](+) for aromatic hydrocarbons, [M - OH](+) for saturated cyclic ether, ketone, and alcoholic compounds, [M - H](+) ion for monoterpenes, M(·+) for sesquiterpenes, [M - CH(3)CO](+) for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl(3)(+) were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds. PMID:21952897

  15. Final Report - Advanced Ion Trap Mass Spectrometry Program - Oak Ridge National Laboratory - Sandia National Laboratory

    SciTech Connect

    Whitten, W.B.

    2002-12-18

    This report covers the three main projects that collectively comprised the Advanced Ion Trap Mass Spectrometry Program. Chapter 1 describes the direct interrogation of individual particles by laser desorption within the ion trap mass spectrometer analyzer. The goals were (1) to develop an ''intelligent trigger'' capable of distinguishing particles of biological origin from those of nonbiological origin in the background and interferent particles and (2) to explore the capability for individual particle identification. Direct interrogation of particles by laser ablation and ion trap mass spectrometry was shown to have good promise for discriminating between particles of biological origin and those of nonbiological origin, although detailed protocols and operating conditions were not worked out. A library of more than 20,000 spectra of various types of biological particles has been assembled. Methods based on multivariate analysis and on neural networks were used to discriminate between particles of biological origin and those of nonbiological origin. It was possible to discriminate between at least some species of bacteria if mass spectra of several hundred similar particles were obtained. Chapter 2 addresses the development of a new ion trap mass analyzer geometry that offers the potential for a significant increase in ion storage capacity for a given set of analyzer operating conditions. This geometry may lead to the development of smaller, lower-power field-portable ion trap mass spectrometers while retaining laboratory-scale analytical performance. A novel ion trap mass spectrometer based on toroidal ion storage geometry has been developed. The analyzer geometry is based on the edge rotation of a quadrupolar ion trap cross section into the shape of a torus. Initial performance of this device was poor, however, due to the significant contribution of nonlinear fields introduced by the rotation of the symmetric ion-trapping geometry. These nonlinear resonances

  16. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry.

    PubMed

    Stauber, Jonathan; MacAleese, Luke; Franck, Julien; Claude, Emmanuelle; Snel, Marten; Kaletas, Basak Kükrer; Wiel, Ingrid M V D; Wisztorski, Maxence; Fournier, Isabelle; Heeren, Ron M A

    2010-03-01

    MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for the detection and localization of drugs, proteins, and lipids on-tissue. Nevertheless, this approach can only perform identification of low mass molecules as lipids, pharmaceuticals, and peptides. In this article, a combination of approaches for the detection and imaging of proteins and their identification directly on-tissue is described after tryptic digestion. Enzymatic digestion protocols for different kinds of tissues--formalin fixed paraffin embedded (FFPE) and frozen tissues--are combined with MALDI-ion mobility mass spectrometry (IM-MS). This combination enables localization and identification of proteins via their related digested peptides. In a number of cases, ion mobility separates isobaric ions that cannot be identified by conventional MALDI time-of-flight (TOF) mass spectrometry. The amount of detected peaks per measurement increases (versus conventional MALDI-TOF), which enables mass and time selected ion images and the identification of separated ions. These experiments demonstrate the feasibility of direct proteins identification by ion-mobility-TOF IMS from tissue. The tissue digestion combined with MALDI-IM-TOF-IMS approach allows a proteomics "bottom-up" strategy with different kinds of tissue samples, especially FFPE tissues conserved for a long time in hospital sample banks. The combination of IM with IMS marks the development of IMS approaches as real proteomic tools, which brings new perspectives to biological studies.

  17. Vacuum Ultraviolet Photodissociation and Fourier Transform-Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited.

    PubMed

    Shaw, Jared B; Robinson, Errol W; Paša-Tolić, Ljiljana

    2016-03-15

    We revisited the implementation of 193 nm ultraviolet photodissociation (UVPD) within the ion cyclotron resonance (ICR) cell of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and proteins within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing, relative to ion magnetron motion and the potential applied to an ion optical element upon which photons impinge. It is shown that UVPD yields efficient and extensive fragmentation, resulting in excellent sequence coverage for model peptide and protein cations.

  18. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  19. ANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS BY ION TRAP TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    An ion-trap mass spectrometer with a wave board and tandem mass spectrometry software was used to analyze gas chromatographically separated polycyclic aromatic hydrocarbons (PAHs) by using collision-induced dissociation (CID). The nonresonant (multiple collision) mode was used to...

  20. Experimental testing of heavy ions mass search procedure in the measurements with PIN diodes

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu V.; Kamanin, D. V.; Kondratyev, N. A.; Strekalovsky, A. O.; Ilić, S.; Alexandrov, A. A.; Alexandrova, I. A.; Mkaza, N.; Kuznetsova, E. A.; Malaza, V.; Mishinsky, G. V.; Strekalovsky, O. V.; Zhuchko, V. E.

    2016-02-01

    We discuss the quality of heavy ions (HI) mass reconstruction in the wide range of HI energies and masses using Si PIN diodes for measuring both energy and time-of-flight. The results are based on the experimental data obtained at the IC-100 accelerator in the Flerov Laboratory of the JINR (Dubna, Russia).

  1. Ion mobility-mass spectrometry of phosphorylase B ions generated with supercharging reagents but in charge-reducing buffer.

    PubMed

    Hogan, Christopher J; Ogorzalek Loo, Rachel R; Loo, Joseph A; de la Mora, Juan Fernandez

    2010-11-01

    We investigate whether "supercharging" reagents able to shift the charge state distributions (CSDs) of electrosprayed protein ions upward also influence gas-phase protein structure. A differential mobility analyzer and a mass spectrometer are combined in series (DMA-MS) to measure the mass and mobility of monomer and multimeric phosphorylase B ions (monomer molecular weight ∼97 kDa) in atmospheric pressure air. Proteins are electrosprayed from charge-reducing triethylammonium formate in water (pH = 6.8) with and without the addition of the supercharging reagent tetramethylene sulfone (sulfolane). Because the DMA measures ion mobility prior to collisional heating or declustering, it probes the structure of supercharged protein ions immediately following solvent (water) evaporation. As in prior studies, the addition of sulfolane is found to drastically increase both the mean and maximum charge state of phosphorylase B ions. Ions from all protein n-mers were found to yield mobilities that, for a given charge state, were ∼6-10% higher in the absence of sulfolane. We find that the mobility decrease which arises with sulfolane is substantially smaller than that typically observed for folded-to-unfolded transitions in protein ions (where a ∼60% decrease in mobility is typical), suggesting that supercharging reagents do not cause structural protein modifications in solution as large as noted recently by Williams and colleagues [E. R. Williams et al., J. Am. Soc. Mass Spectrom., 2010, 21, 1762-1774]. In fact, the measurements described here indicate that the modest mobility decrease observed can be partly attributed to sulfolane trapping within the protein ions during DMA measurements, and probably also in solution. As the most abundant peaks in measured mass-mobility spectra for ions produced with and without sulfolane correspond to non-covalently bound phosphorylase B dimers, we find that in spite of a change in mobility/cross section, sulfolane addition does not

  2. Broad spectrum drug screening using liquid chromatography-hybrid triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Stone, Judy

    2010-01-01

    Centrifuged urine, internal standard (promazine), and ammonium formate buffer are mixed in an autosampler vial to achieve a 10-fold dilution of the specimen. Without additional pretreatment, 10 microL of the sample is injected onto a C18 reverse phase column for gradient analysis with ammonium formate/acetonitrile mobile phases. Drugs in the column eluent become charged in the ion source using positive electrospray atmospheric pressure ionization. Pseudomolecular drug ions are analyzed by a hybrid triple quadrupole linear ion trap mass spectrometer operated with a 264-drug selected ion monitoring (SRM) acquisition method that includes an information-dependant acquisition (IDA) algorithm. PMID:20077072

  3. Searching For A Suitable Gas Ion Source For 14C Accelerator Mass Spectrometry

    SciTech Connect

    Reden, Karl von; Roberts, Mark; Han, Baoxi; Schneider, Robert; Wills, John

    2007-08-10

    This paper describes the challenges facing 14C Accelerator Mass Spectrometry (AMS) in the effort to directly analyze the combusted effluent of a chromatograph (or any other continuous source of sample material). An efficient, low-memory negative gas ion source would greatly simplify the task to make this a reality. We discuss our tests of a microwave ion source charge exchange canal combination, present an improved design, and hope to generate more interest in the negative ion source community to develop a direct-extraction negative carbon gas ion source for AMS.

  4. Method of determination of the mass composition of ring current ions

    NASA Technical Reports Server (NTRS)

    Temnyy, V. V.; Gott, Y. V.; Usikov, Y. I.

    1980-01-01

    A method for individual registration of protons, and helium and oxygen ions, with energies E for a charge on the order of 100 kev/q in the ring currents of the Earth's magnetosphere was examined. The method is based on the various specific losses in energy by these ions in matter. The ion current, selected according to E/q, is passed through a solid target, after which identification of the masses is carried out, based on the energy losses in the possibly to reliably divide the flows of protons, and helium and oxygen ions.

  5. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.

  6. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry.

    PubMed

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F; Hill, Herbert H

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC. Graphical Abstract ᅟ. PMID:26914233

  7. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry.

    PubMed

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F; Hill, Herbert H

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC. Graphical Abstract ᅟ.

  8. Charge-to-mass-ratio-dependent ion heating during magnetic reconnection in the MST RFP

    SciTech Connect

    Kumar, S. T. A.; Almagri, A. F.; Den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Terry, P. W.; Craig, D.

    2013-05-15

    Temperature evolution during magnetic reconnection has been spectroscopically measured for various ion species in a toroidal magnetized plasma. Measurements are made predominantly in the direction parallel to the equilibrium magnetic field. It is found that the increase in parallel ion temperature during magnetic reconnection events increases with the charge-to-mass ratio of the ion species. This trend can be understood if the heating mechanism is anisotropic, favoring heating in the perpendicular degree of freedom, with collisional relaxation of multiple ion species. The charge-to-mass ratio trend for the parallel temperature derives from collisional isotropization. This result emphasizes that collisional isotropization and energy transfer must be carefully modeled when analyzing ion heating measurements and comparing to theoretical predictions.

  9. Ion mobility tandem mass spectrometry enhances performance of bottom-up proteomics.

    PubMed

    Helm, Dominic; Vissers, Johannes P C; Hughes, Christopher J; Hahne, Hannes; Ruprecht, Benjamin; Pachl, Fiona; Grzyb, Arkadiusz; Richardson, Keith; Wildgoose, Jason; Maier, Stefan K; Marx, Harald; Wilhelm, Mathias; Becher, Isabelle; Lemeer, Simone; Bantscheff, Marcus; Langridge, James I; Kuster, Bernhard

    2014-12-01

    One of the limiting factors in determining the sensitivity of tandem mass spectrometry using hybrid quadrupole orthogonal acceleration time-of-flight instruments is the duty cycle of the orthogonal ion injection system. As a consequence, only a fraction of the generated fragment ion beam is collected by the time-of-flight analyzer. Here we describe a method utilizing postfragmentation ion mobility spectrometry of peptide fragment ions in conjunction with mobility time synchronized orthogonal ion injection leading to a substantially improved duty cycle and a concomitant improvement in sensitivity of up to 10-fold for bottom-up proteomic experiments. This enabled the identification of 7500 human proteins within 1 day and 8600 phosphorylation sites within 5 h of LC-MS/MS time. The method also proved powerful for multiplexed quantification experiments using tandem mass tags exemplified by the chemoproteomic interaction analysis of histone deacetylases with Trichostatin A.

  10. GlycoMob: an ion mobility-mass spectrometry collision cross section database for glycomics.

    PubMed

    Struwe, Weston B; Pagel, Kevin; Benesch, Justin L P; Harvey, David J; Campbell, Matthew P

    2016-06-01

    Ion mobility mass spectrometry (IM-MS) is a promising analytical technique for glycomics that separates glycan ions based on their collision cross section (CCS) and provides glycan precursor and fragment masses. It has been shown that isomeric oligosaccharide species can be separated by IM and identified on basis of their CCS and fragmentation. These results indicate that adding CCSs information for glycans and glycan fragments to searchable databases and analysis pipelines will increase identification confidence and accuracy. We have developed a freely accessible database, GlycoMob ( http://www.glycomob.org ), containing over 900 CCSs values of glycans, oligosaccharide standards and their fragments that will be continually updated. We have measured the absolute CCSs of calibration standards, biologically derived and synthetic N-glycans ionized with various adducts in positive and negative mode or as protonated (positive ion) and deprotonated (negative ion) ions. PMID:26314736

  11. Investigation of polymer thin films by use of Bi-cluster-ion-supported time of flight secondary ion mass spectrometry.

    PubMed

    Straif, Christoph J; Hutter, Herbert

    2009-04-01

    The investigation and analysis of polymer thin films with Bi(n)(+), n = 1-7 cluster ions has been demonstrated by means of static secondary ion mass spectrometry (SIMS). The highly specific signal enhancement of these primary ions combined with the individual fragmentation pattern of poly(4-vinylphenol) and poly(methyl methacrylate) is the basic principle for a modified approach of data reduction derived from the well-established g-SIMS procedure. Based on mass spectra, which correspond to different cluster ion sizes, not only a clear distinction between the two polymers is feasible but also a further simplification of the data can be demonstrated. It has been successfully proven that characteristic polymer-relevant species can be refined out of the large amount of unspecific and highly fragmented secondary ions, which are usually present in SIMS spectra. Therefore, a more precise and direct interpretation of complex organic fragments becomes feasible, which consequently enables the investigation of even more sophisticated samples.

  12. Solar cycle variation of some mass dependent characteristics of upflowing beams of terrestrial ions

    NASA Technical Reports Server (NTRS)

    Collin, H. L.; Peterson, W. K.; Shelley, E. G.

    1987-01-01

    Examination of the S3-3 and DE ion composition data spread over a solar cycle indicates that some characteristics of energetic upflowing terrestrial ion beams above the auroral zone show dependence on solar cycle. At solar maximum the different ion beam mass components have comparable mean energies, and O(+) dominates the beam composition. The ion energies are consistent with having been acquired from the potential drop below the satellite inferred from the electron loss cone distributions. At solar minimum the beam composition is dominated by H(+), but the O(+) has a higher mean energy and is hotter than the H(+) component. Also, the O(+) has more energy than it could itself have acquired from the potential drop. These observations are qualitatively consistent with the ion beams having acquired their energies from a parallel electric field and being partially thermalized through the two-stream instability between the two ion species, with this effect being modulated by the beam composition.

  13. False sugar sequence ions in electrospray tandem mass spectrometry of underivatized sialyl-Lewis-type oligosaccharides

    NASA Astrophysics Data System (ADS)

    Ernst, Beat; Müller, Dieter R.; Richter, Wilhelm J.

    1997-01-01

    Formation of "false" sugar sequence ions from branched tetrasaccharides of the sialyl-Lewis-type by migration of fucose towards sialic acid residues is shown to occur in [M + H]+ and [M + NH4]+ ions produced by electrospray ionization and subjected to low energy collision induced dissociation (CID). For the verification of their composition and sequence, such irregular ions were produced in the orifice region of the ion source, mass selected in Q1, and subjected to a second CID step in Q2 of a triple quadrupole analyser. When produced and analysed in the same "double CID" fashion, the branched B3 ions still containing all four sugar subunits show such migration to only a minor extent. The analysis of Bn fragment ions with high numbers for n may thus have advantages over the analysis of M-like species

  14. Oligosaccharide sequences in Quillaja saponins by electrospray ionization ion trap multiple-stage mass spectrometry.

    PubMed

    Broberg, Susanna; Nord, Lars I; Kenne, Lennart

    2004-06-01

    Ten different samples with 13 previously identified saponin structures from Quillaja saponaria Molina were investigated by electrospray ionization ion trap multiple-stage mass spectrometry (ESI-ITMS(n)) in positive and negative ion modes. Both positive and negative ion mode MS(1)-MS(4) spectra were analyzed, showing that structural information on the two oligosaccharide parts in the saponin can be obtained from positive ion mode spectra whereas negative ion mode spectra mainly gave information on one of the oligosaccharide parts. Analysis of MS(1)-MS(4) spectra identified useful key fragment ions important for the structural elucidation of Quillaja saponins. A flowchart involving a stepwise procedure based on key fragments from MS(1)-MS(3) spectra was constructed for the identification of structural elements in the saponin. Peak intensity ratios in MS(3) spectra were found to be correlated with structural features of the investigated saponins and are therefore of value for the identification of terminal monosaccharide residues.

  15. Mass determination of light ions in a Penning trap by time-of-flight detection of ion resonances

    NASA Astrophysics Data System (ADS)

    Kern, J.; Engel, T.; Hagena, D.; Werth, G.

    1992-12-01

    We describe an experimental setup to determine the cyclotron frequencies of ions confined in a Penning trap by resonant excitation of the ions eigenfrequencies and a time-of-flight detection of the resonances. Systematic shifts from trap- and B-field imperfections are discussed and methods to minimize those effects in our experiment are presented. Results on the mass ratio for 4He/D2 and 3He/H2 demonstrate the experimentally obtained precision in the ppb range, which might be further improved by modification of our apparatus.

  16. Molecular mass and location of the most abundant peak of the molecular ion isotopomeric cluster.

    PubMed

    Goraczko, Andrzej J

    2005-09-01

    The location of the most abundant peak of the molecular-ion pattern often differs from the molecular mass published in scientific databases. The location is also distinct from the value expected from average atomic masses. The cause of this phenomenon is a large number of atoms of carbon, sulfur, chlorine, bromine, silicon and boron. This due to the natural isotope abundances of some elements forming organic compounds. A parameter called location of the most abundant peak of an isotopometric cluster (LAPIC) denotes the location of the most abundant (the main) peak of an isotopomeric cluster, which is determined, e.g., by mass spectrometry and can be important for medium- and high-molecular mass compounds. The equations for LAPIC calculation are presented for elements usually observed in organic compounds. The LAPIC with elemental formula helps effectively, e.g., in mass spectra interpretation since the prediction of LAPIC allows the correct connection of the main peak of the investigated ion with the expected ion formula and the mass of the ion considered. This solution can be a substitute for the much more complex method of isotopometric analysis applied in mass spectra interpretation. [Figure: see text]. Differences of the most abundant peak location (Delta LAPIC(C)=f(n)) for carbon aggregates C(n).

  17. Double focusing ion mass spectrometer of cylindrical symmetry

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Moore, J. H.; Hoffman, R. A.

    1984-01-01

    A mass spectrometer consisting of an electric sector followed by a magnetic sector is described. The geometry is a cylindrically symmetric generalization of the Mattauch-Herzog spectrometer (1934). With its large annular entrance aperture and a position-sensitive detector, the instrument provides a large geometric factor and 100-percent duty factor, making it appropriate for spacecraft experiments.

  18. Probing effective nucleon masses with heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Coupland, D. D. S.; Youngs, M.; Chajecki, Z.; Lynch, W. G.; Tsang, M. B.; Zhang, Y. X.; Famiano, M. A.; Ghosh, T. K.; Giacherio, B.; Kilburn, M. A.; Lee, Jenny; Liu, H.; Lu, F.; Morfouace, P.; Russotto, P.; Sanetullaev, A.; Showalter, R. H.; Verde, G.; Winkelbauer, J.

    2016-07-01

    It has been generally accepted that momentum-dependent potentials for neutrons and protons at energies well away from the Fermi surface cause both to behave as if their inertial masses are effectively 70% of the vacuum values. This similarity in effective masses may no longer hold in dense neutron-rich regions within neutron stars, core-collapse supernovas, and nuclear collisions. There differences in the momentum-dependent symmetry potentials may cause neutron and proton effective masses to differ significantly. We investigate this effect by measuring the energy spectra of neutrons, protons, and charged particles emitted in 112Sn+112Sn and 124Sn+124Sn collisions at Ebeam/A =50 and 120 MeV with precision sufficient to distinguish, in principle, between effective interactions with very different values of the neutron and proton effective masses. These data and model comparisons point the way towards future advances in our capabilities to understand the density and momentum dependence of the nuclear symmetry energy.

  19. Enhancement of ion transmission and reduction of background and interferences in inductively coupled plasma mass spectrometry

    SciTech Connect

    Hu, Ke

    1992-06-09

    An inductively coupled plasma - mass spectrometer (ICP-MS) (four stages of differential pumping) is described. The large sampling orifice (1.31 mm dia.) improves signals for metal ions and resists plugging. The ion lens deflects ions off center and then back on center into the differential pumping orifice; there is no photon stop in the center. Ion trajectories calculations SIMION show that only those ions that leave the skimmer on center are transmitted, whereas most other lenses used in ICP-MS transmit only ions that leave the skimmer off axis. Background with the Daly detector is 4 counts s{sup {minus}1}. This ICP-MS yields low levels of many troublesome polyatomic ions. Signals from refractory metal oxide ions are about 1% of the corresponding metal ion signals. Grounding the first electrode of the ion lens reduces matrix effects to {approx_lt} 20% loss in signal for Co{sup +}, Y{sup +} or Cs{sup +} in presence of 10 mM Sr, Tm or Pb. This latter lens setting causes only 30% loss in sensitivity compared to biassing the first lens. Matrix effects can also be mitigated by re-adjusting the voltage on the first lens with matrix present. Floating the metal cones at various potentials can improve the ion transmission by a factor of at least four to six. Also, floating the cones extends the upper end of linearity. Net result is more sensitivity and higher ion beam intensity than with a grounded skimmer and sampler. Furthermore, mass discrimination can be reduced.

  20. Enhancement of ion transmission and reduction of background and interferences in inductively coupled plasma mass spectrometry

    SciTech Connect

    Hu, Ke.

    1992-06-09

    An inductively coupled plasma - mass spectrometer (ICP-MS) (four stages of differential pumping) is described. The large sampling orifice (1.31 mm dia.) improves signals for metal ions and resists plugging. The ion lens deflects ions off center and then back on center into the differential pumping orifice; there is no photon stop in the center. Ion trajectories calculations SIMION show that only those ions that leave the skimmer on center are transmitted, whereas most other lenses used in ICP-MS transmit only ions that leave the skimmer off axis. Background with the Daly detector is 4 counts s{sup {minus}1}. This ICP-MS yields low levels of many troublesome polyatomic ions. Signals from refractory metal oxide ions are about 1% of the corresponding metal ion signals. Grounding the first electrode of the ion lens reduces matrix effects to {approx lt} 20% loss in signal for Co{sup +}, Y{sup +} or Cs{sup +} in presence of 10 mM Sr, Tm or Pb. This latter lens setting causes only 30% loss in sensitivity compared to biassing the first lens. Matrix effects can also be mitigated by re-adjusting the voltage on the first lens with matrix present. Floating the metal cones at various potentials can improve the ion transmission by a factor of at least four to six. Also, floating the cones extends the upper end of linearity. Net result is more sensitivity and higher ion beam intensity than with a grounded skimmer and sampler. Furthermore, mass discrimination can be reduced.

  1. High Mass Resolving Power Radio Frequency Glow Discharge Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (RFGD-FTICR/MS)

    SciTech Connect

    Nichols, L.S.

    2001-01-05

    The combination of a radio frequency glow discharge (rfGD) external ion source with a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer has resulted in the ability to perform high mass resolution elemental analysis of both conductive and nonconductive materials. Samples investigated in the present study include copper, brass, and a National Institute of Standards and Technology (NIST) glass standard, SRM 1412. Analyses of both the copper and the brass materials resulted in ultra-high mass resolving power (m/Dm > 100,000). A mass resolving power of 280,000 (FWHM) was obtained for the 63Cu+ isotope of the copper sample, the highest reported to date for rfGD studies. In addition, study of the SRM 1412 glass standard revealed mass spectral peaks related to metal oxides present in the glass matrix at concentrations of approximately 4 percent (by weight). The resulting preliminary data demonstrate the capabilities of a rfGD-FTICR instrument and its promise as a powerful tool in distinguishing between isobaric and other mass spectral interferences in insulators, as well as conducting materials.

  2. Analysis of high-altitude planetary ion velocity space distributions detected by the Ion Mass Analyzer aboard Mars Express

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Liemohn, M. W.; Fraenz, M.; Curry, S.; Mitchell, D. L.

    2012-12-01

    We present observations of planetary ion velocity space distributions from the Ion Mass Analyzer (IMA) onboard Mars Express (MEX). The magnetometer data from Mars Global Surveyor is used to obtain a rough estimate of the interplanetary magnetic field (IMF) orientation. Characteristic features of the velocity space distributions will be examined and discussed for orbits aligned with the convective electric field and those in the Mars terminator plane. This study will focus on the high (keV) energy ions, as well as the relative importance of a high-altitude magnetosheath source of escaping planetary ions. Furthermore, this paper will examine various methods for converting the IMA detector counts to species-specific fluxes. After mimicking the methods previously used by researchers, we apply each of these methods of species extraction to data collected during the same time intervals. We discuss the implications for planetary ion motion around Mars, using the details of the velocity space observations to better understand the solar wind interaction with Mars. Comparisons to virtual detections using a test particle simulation will also provide insight into ion origins and trajectories.

  3. Detections of lunar exospheric ions by the LADEE neutral mass spectrometer

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Benna, M.; Mahaffy, P. R.; Elphic, R. C.; Poppe, A. R.; Delory, G. T.

    2015-07-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS), operating in ion mode, provides sensitive detections of ions from the lunar exosphere. By analyzing ion-mode data from the entire mission, utilizing Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) plasma and magnetic field measurements to organize NMS data and eliminate background sources, we identify highly significant detections of lunar ions at mass per charge of 2, 4, 12, 20, 28, 39, and 40, moderately significant detections at 14 and 23, and weak detections at 24, 25, and 36. Unlike many previous observations of Moon-derived ions, an outward pointing viewing geometry ensures that these ions originate from the exosphere, rather than directly from the surface. For species with known neutral distributions, inferred ion production rates appear consistent with expectations for both magnitude and spatial distribution, assuming photoionization as the predominant source mechanism. Unexpected signals at mass per charge 12 and 28 suggest the presence of a significant exospheric population of carbon-bearing molecules.

  4. Matrix-enhanced secondary ion mass spectrometry: The Alchemist's solution?

    NASA Astrophysics Data System (ADS)

    Delcorte, Arnaud

    2006-07-01

    Because of the requirements of large molecule characterization and high-lateral resolution SIMS imaging, the possibility of improving molecular ion yields by the use of specific sample preparation procedures has recently generated a renewed interest in the static SIMS community. In comparison with polyatomic projectiles, however, signal enhancement by a matrix might appear to some as the alchemist's versus the scientist's solution to the current problems of organic SIMS. In this contribution, I would like to discuss critically the pros and cons of matrix-enhanced SIMS procedures, in the new framework that includes polyatomic ion bombardment. This discussion is based on a short review of the experimental and theoretical developments achieved in the last decade with respect to the three following approaches: (i) blending the analyte with a low-molecular weight organic matrix (MALDI-type preparation procedure); (ii) mixing alkali/noble metal salts with the analyte; (iii) evaporating a noble metal layer on the analyte sample surface (organic molecules, polymers).

  5. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Ferguson, Carly N.; Gucinski-Ruth, Ashley C.

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.

  6. Applying secondary ion mass spectrometry to the analysis of elements in goblet cells of conjunctiva.

    PubMed

    Oba, K; Gong, H; Amemiya, T; Baba, K; Takaya, K

    2001-01-01

    We investigated the location of elements in the goblet cells of rat conjunctiva by analyzing ion images produced by secondary ion mass spectrometry (SIMS) and comparing them with those produced by energy dispersive X-ray analyser (EDX). Conjunctivas of normal Spraque-Dawley rats were quenched in propane prechilled liquid nitrogen. Semi-thin sections were made with a cryo-ultramicrotome, freeze-dried, carbon-coated and observed under a light microscope, SIMS and scanning electron microscope (SEM). In the element analysis by SIMS, images of positive ions were examined with an O2+ primary ion source and images of negative ions with a Ga+ ion source. The same sections were observed and analysed with SEM-EDX. Morphological features and images of elements with SIMS and EDX were compared. Na, Mg, K, and Ca were detected as positive ions and OH, CN, P, S, and Cl as negative ions with SIMS, but C, N, O, Na, Mg, P, S, Cl, K, and Ca were detected with EDX. The spatial resolution of SIMS in element location was higher than that of EDX. Many elements were clearly located in the goblet cells on ion images by SIMS. Element ion images were demonstrated more densely in goblet cells than in other parts within conjunctiva and by SIMS compared to EDX. SIMS is a useful method for the detection of elements and their locations in ocular tissues and cells. PMID:11592678

  7. Lunar and Asteroid Composition Using a Remote Secondary Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Funsten, H. O.; Barraclough, B. L.; Mccomas, D. J.; Nordholt, J. E.

    1992-01-01

    Laboratory experiments simulating solar wind sputtering of lunar surface materials have shown that solar wind protons sputter secondary ions in sufficient numbers to be measured from low-altitude lunar orbit. Secondary ions of Na, Mg, Al, Si, K, Ca, Mn, Ti, and Fe have been observed sputtered from sample simulants of mare and highland soils. While solar wind ions are hundreds of times less efficient than those used in standard secondary ion mass spectrometry, secondary ion fluxes expected at the Moon under normal solar wind conditions range from approximately 10 to greater than 10(exp 4) ions cm(sup -2)s(sup -1), depending on species. These secondary ion fluxes depend both on concentration in the soil and on probability of ionization; yields of easily ionized elements such as K and Na are relatively much greater than those for the more electronegative elements and compounds. Once these ions leave the surface, they are subject to acceleration by local electric and magnetic fields. For typical solar wind conditions, secondary ions can be accelerated to an orbital observing location. The same is true for atmospheric atoms and molecules that are photoionized by solar EUV. The instrument to detect, identify, and map secondary ions sputtered from the lunar surface and photoions arising from the tenuous atmosphere is discussed.

  8. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  9. Evaluation of Pulse Counting for the Mars Organic Mass Analyzer (MOMA) Ion Trap Detection Scheme

    NASA Technical Reports Server (NTRS)

    Van Amerom, Friso H.; Short, Tim; Brinckerhoff, William; Mahaffy, Paul; Kleyner, Igor; Cotter, Robert J.; Pinnick, Veronica; Hoffman, Lars; Danell, Ryan M.; Lyness, Eric I.

    2011-01-01

    The Mars Organic Mass Analyzer is being developed at Goddard Space Flight Center to identify organics and possible biological compounds on Mars. In the process of characterizing mass spectrometer size, weight, and power consumption, the use of pulse counting was considered for ion detection. Pulse counting has advantages over analog-mode amplification of the electron multiplier signal. Some advantages are reduced size of electronic components, low power consumption, ability to remotely characterize detector performance, and avoidance of analog circuit noise. The use of pulse counting as a detection method with ion trap instruments is relatively rare. However, with the recent development of high performance electrical components, this detection method is quite suitable and can demonstrate significant advantages over analog methods. Methods A prototype quadrupole ion trap mass spectrometer with an internal electron ionization source was used as a test setup to develop and evaluate the pulse-counting method. The anode signal from the electron multiplier was preamplified. The an1plified signal was fed into a fast comparator for pulse-level discrimination. The output of the comparator was fed directly into a Xilinx FPGA development board. Verilog HDL software was written to bin the counts at user-selectable intervals. This system was able to count pulses at rates in the GHz range. The stored ion count nun1ber per bin was transferred to custom ion trap control software. Pulse-counting mass spectra were compared with mass spectra obtained using the standard analog-mode ion detection. Prelin1inary Data Preliminary mass spectra have been obtained for both analog mode and pulse-counting mode under several sets of instrument operating conditions. Comparison of the spectra revealed better peak shapes for pulse-counting mode. Noise levels are as good as, or better than, analog-mode detection noise levels. To artificially force ion pile-up conditions, the ion trap was overfilled

  10. Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert P.; Tang, Keqi; Smith, Richard D.

    2012-01-01

    A front-end instrument, the laser ablation ion funnel, was developed, which would ionize rock and soil samples in the ambient Martian atmosphere, and efficiently transport the product ions into a mass spectrometer for in situ analysis. Laser ablation creates elemental ions from a solid with a high-power pulse within ambient Mars atmospheric conditions. Ions are captured and focused with an ion funnel into a mass spectrometer for analysis. The electrodynamic ion funnel consists of a series of axially concentric ring-shaped electrodes whose inside diameters (IDs) decrease over the length of the funnel. DC potentials are applied to each electrode, producing a smooth potential slope along the axial direction. Two radio-frequency (RF) AC potentials, equal in amplitude and 180 out of phase, are applied alternately to the ring electrodes. This creates an effective potential barrier along the inner surface of the electrode stack. Ions entering the funnel drift axially under the influence of the DC potential while being restricted radially by the effective potential barrier created by the applied RF. The net result is to effectively focus the ions as they traverse the length of the funnel.

  11. Time-of-flight secondary neutral & ion mass spectrometry using swift heavy ions

    NASA Astrophysics Data System (ADS)

    Breuer, L.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.

    2015-12-01

    We report on a new time-of-flight (TOF) spectrometer designed to investigate sputtering phenomena induced by swift heavy ions in the electronic stopping regime. In this experiment, particular emphasis is put on the detection of secondary ions along with their emitted neutral counterparts in order to examine the ionization efficiency of the sputtered material. For the detection of neutral species, the system is equipped with a pulsed VUV laser for post-ionization of sputtered neutral atoms and molecules via single photon ionization at a wavelength of 157 nm (corresponding to 7.9 eV photon energy). For alignment purposes and in order to facilitate comparison to nuclear sputtering conditions, the system also includes a 5 keV Ar+ ion beam directed to the same sample area. The instrument has been added to the M1-branch beam line at the German accelerator facility in Darmstadt (GSI) and was tested with 4.8 MeV/u Au26+ ions impinging onto various samples including metals, salts and organic films. It is found that secondary ion and neutral spectra obtained under both bombardment conditions can be acquired in an interleaved manner throughout a single accelerator pulse cycle, thus making efficient use of valuable beam time. In addition, the keV ion beam can be intermittently switched to dc mode between subsequent data acquisition windows and accelerator pulses in order to ensure reproducible surface conditions. For the case of a dynamically sputter cleaned metal surface, comparison of secondary ion and neutral signals obtained under otherwise identical instrumental conditions reveals a nearly identical ionization probability of atoms emitted under electronic and nuclear sputtering conditions.

  12. Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry

    PubMed Central

    Konijnenberg, Albert; Yilmaz, Duygu; Ingólfsson, Helgi I.; Dimitrova, Anna; Marrink, Siewert J.; Li, Zhuolun; Vénien-Bryan, Catherine; Sobott, Frank; Koçer, Armağan

    2014-01-01

    Mechanosensitive ion channels are sensors probing membrane tension in all species; despite their importance and vital role in many cell functions, their gating mechanism remains to be elucidated. Here, we determined the conditions for releasing intact mechanosensitive channel of large conductance (MscL) proteins from their detergents in the gas phase using native ion mobility–mass spectrometry (IM-MS). By using IM-MS, we could detect the native mass of MscL from Escherichia coli, determine various global structural changes during its gating by measuring the rotationally averaged collision cross-sections, and show that it can function in the absence of a lipid bilayer. We could detect global conformational changes during MscL gating as small as 3%. Our findings will allow studying native structure of many other membrane proteins. PMID:25404294

  13. Design of An Improved Miniature Ion Neutral Mass Spectrometer for NASA Applications

    NASA Technical Reports Server (NTRS)

    Swaminathan, Viji K.; Alig, Roger C.

    1997-01-01

    The ion optics of NASA's Ion Neutral Mass Spectrometer (INMS) sensor was simulated with three dimensional models of the open source, the quadrupole deflector, the exit lens system and the quadrupole mass analyzer to design more compact models with lower weight. Comparison of calculated transmission with experimental results shows good agreement. Transmission analyses with varying geometrical parameters and voltages throw light on possible ways of reducing the size of the sensor. Trajectories of ions of mass 1-99 amu were simulated to analyze and optimize transmission. Analysis of open source transmission with varying angle of attack shows that the angular acceptance can be considerably increased by programming the voltages on the ion trap/ collimator. Analysis of transmission sensitivity to voltages and misalignments of the quadrupole deflector rods indicate that increased transmission is possible with a geometrically asymmetrical deflector and a deflector can be designed with much lower sensitivities of transmission. Bringing the disks closer together can decrease the size of the quadrupole deflector and also increase transmission. The exit lens system can be redesigned to be smaller by eliminating at least one electrode entirely without loss of transmission. Ceramic materials were investigated to find suitable candidates for use in the construction of lighter weight mass spectrometer. A high-sensitivity, high-resolution portable gas chromatograph mass spectrometer with a mass range of 2-700 amu has been built and will be commercialized in Phase 3.

  14. Soft supercharging of biomolecular ions in electrospray ionization mass spectrometry.

    PubMed

    Chingin, Konstantin; Xu, Ning; Chen, Huanwen

    2014-06-01

    The charge states of biomolecular ions in ESI-MS can be significantly increased by the addition of low-vapor supercharging (SC) reagents into the spraying solution. Despite the considerable interest from the community, the mechanistic aspects of SC are not well understood and are hotly debated. Arguments that denaturation accounts for the increased charging observed in proteins sprayed from aqueous solutions containing SC reagent have been published widely, but often with incomplete or ambiguous supporting data. In this work, we explored ESI MS charging and SC behavior of several biopolymers including proteins and DNA oligonucleotides. Analytes were ionized from 100 mM ammonium acetate (NH4Ac) aqueous buffer in both positive (ESI+) and negative (ESI-) ion modes. SC was induced either with m-NBA or by the elevated temperature of ESI capillary. For all the analytes studied we, found striking differences in the ESI MS response to these two modes of activation. The data suggest that activation with m-NBA results in more extensive analyte charging with lower degree of denaturation. When working solution with m-NBA was analyzed at elevated temperatures, the SC effect from m-NBA was neutralized. Instead, the net SC effect was similar to the SC effect achieved by thermal activation only. Overall, our observations indicate that SC reagents enhance ESI charging of biomolecules via distinctly different mechanism compared with the traditional approaches based on analyte denaturation. Instead, the data support the hypothesis that the SC phenomenon involves a direct interaction between a biopolymer and SC reagent occurring in evaporating ESI droplets. PMID:24733276

  15. Secondary ion emission from CO2-H2O ice irradiated by energetic heavy ions: Part I. Measurement of the mass spectra

    NASA Astrophysics Data System (ADS)

    Farenzena, L. S.; Collado, V. M.; Ponciano, C. R.; da Silveira, E. F.; Wien, K.

    2005-05-01

    Secondary ion mass spectrometry is used to investigate ion emission from a frozen-gas mixture (T = 80-90 K) of CO2 and H2O bombarded by MeV nitrogen ions and by 252Cf fission fragments (FF). The aim of the experiments is to produce organic molecules in the highly excited material around the nuclear track and to detect them in the flux of sputtered particles. Such sputter processes are known to occur at the icy surfaces of planetary or interstellar objects. Time-of-flight (TOF) mass spectrometry is employed to identify the desorbed ions. Mass spectra of positive and negative ions were taken for several molecular H2O/CO2 ratios. In special, positive ions induced by MeV nitrogen beam were analyzed for 9 and 18% H2O concentrations of the CO2-H2O ice and negative ions for ~5% H2O. The ion peaks are separated to generate exclusive the spectra of CO2 specific ions, H2O specific ions and hybrid molecular ions, the latter ones corresponding to ions that contain mostly H and C atoms. In the mass range from 10 to 320 u, the latter exhibits 35 positive and 58 negative ions. The total yield of the positive ions is 0.35 and 0.57 ions/impact, respectively, and of negative ions 0.066 ions/impact. Unexpected effects of secondary ion sputtering yields on H2O/CO2 ratio are attributed to the influence of water molecules concentration on the ionization process.

  16. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  17. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  18. Fragmentation of HCN in optically selected mass spectrometry: Nonthermal ion cooling in helium nanodroplets

    SciTech Connect

    Lewis, William K.; Bemish, Raymond J.; Miller, Roger E.

    2005-10-08

    A technique that combines infrared laser spectroscopy and helium nanodroplet mass spectrometry, which we refer to as optically selected mass spectrometry, is used to study the efficiency of ion cooling in helium. Electron-impact ionization is used to form He{sup +} ions within the droplets, which go on to transfer their charge to the HCN dopant molecules. Depending upon the droplet size, the newly formed ion either fragments or is cooled by the helium before fragmentation can occur. Comparisons with gas-phase fragmentation data suggest that the cooling provided by the helium is highly nonthermal. An 'explosive' model is proposed for the cooling process, given that the initially hot ion is embedded in such a cold solvent.

  19. Developments of multiplexed and miniature two-dimensional quadrupole ion trap mass spectrometers

    NASA Astrophysics Data System (ADS)

    Smith, Scott A.

    Quadrupole ion trap mass spectrometry (QIT MS) is a powerful and commonly-employed method for the specific analysis of mass, composition, and structure of gas-phase ionic chemical species. Useful for a wide variety of tasks, applications of ion traps include environmental monitoring, surface analysis (including depth profiling and imaging), ion thermochemical property elucidation, protein and DNA sequencing, and high-resolution chemical separations (through ion soft-landing). Though the principles of QIT MS have been known for over half a century, innovations in instrumentation and applications continue. As new needs for specific and sensitive chemical analysis arise, so also do new and more efficient analytical devices and methods of analysis. Such a trend is exemplified through the construction of a dual-source QIT mass spectrometer (described herein) capable of multi-source chemical analyses for the purposes of enhanced proteomic sequence coverage and for the strictly-controlled comparison of the structural differences in ion populations generated by different ionization techniques. Furthermore, as mass spectrometry becomes increasingly commonplace outside the bounds of the analytical laboratory, demand for capable researcher equipment is also increasing. Advances in instrument performance, such as can be had through enhanced power efficiency and the enabling of chemical analysis of high mass-to-charge ratio (m/z) species (e.g., proteins), will open new doors to in situ chemical analysis hand-portable mass spectrometers. Hence, research into new mass analyzer designs and methods of fabrication using stereolithography apparatus (SLA) for the purpose of creating enhanced-performance mass spectrometers are accordingly described in the text of this dissertation.

  20. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents.

    PubMed

    Graichen, Adam M; Vachet, Richard W

    2013-06-01

    The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n](y+) complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n](2+) complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.

  1. Tailored noise waveform/collision-induced dissociation of ions stored in a linear ion trap combined with liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Vilkov, Andrey N; Bogdanov, Bogdan; Pasa-Tolić, Ljiljana; Prior, Dave C; Anderson, Gordon A; Masselon, Christophe D; Moore, Ronald J; Smith, Richard D

    2004-01-01

    A new collision-induced dissociation (CID) technique based on broadband tailored noise waveform (TNW) excitation of ions stored in a linear ion trap has been developed. In comparison with the conventional sustained off-resonance irradiation (SORI) CID method commonly used in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), this MS/MS technique increases throughput by eliminating the long pump-down delay associated with gas introduction into the high vacuum ICR cell region. In addition, the TNW-CID method speeds spectrum acquisition since it does not require Fourier transformation, calculation of resonant frequencies and generation of the excitation waveforms. We demonstrate TNW-CID coupled with on-line capillary reverse-phase liquid chromatography separations for the identification of peptides. The experimental results are compared with data obtained using conventional quadrupole ion trap MS/MS and SORI-CID MS/MS in an ICR cell.

  2. Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry.

    PubMed

    Muftakhov; Vasil'ev; Mazunov

    1999-06-01

    Appearance energies of [M-H](-) ions from carbonyl compounds R-CO-R' (R,R' = H, CH(3), NH(2), OH) have been measured by means of negative ion mass spectrometry in resonant electron capture mode. Values of electron affinity of the corresponding radicals, CH(2)&dbond;C(X)O, NH&dbond;C(X)O and O&dbond;C(X)O, have been determined. Copyright 1999 John Wiley & Sons, Ltd. PMID:10407285

  3. Research for optimizing the performance of an LEF-TOF ion energy mass analyzer

    SciTech Connect

    Tanaka, T.; Saito, Y.

    2009-06-16

    There are few in-situ heavy ion observations from lunar soil or tenuous alkali atmosphere. It is commonly thought that the heavy ions around the Moon are produced by ion-induced desorption (sputtering) or photon-stimulated desorption from the lunar surface and by photoionization from the atmosphere. These ions are picked up and transported by the solar wind. IMA (Ion Mass Analyzer) on board the SELENE satellite will measure these picked-up ions around the Moon. IMA adopts foil-based LEF (Linear Electric Field) TOF (Time Of Flight) technique for mass analysis in order to discriminate heavy ions up to mass number 60. MgO-coated metal plate is installed at the upper part of the mass analyzer to generate TOF stop electrons efficiently. Though we empirically knew that stop electron generations were enhanced by MgO-coated metal plate, quantitative analyses for the efficiency were insufficient. We compared the efficiency of electron emitter plates with different substrate materials: CuBe and Al and with different MgO thickness: 20 nm, 500 nm and 1000 nm. We also changed the surface roughness of these base plates. Our experimental results showed there are notable differences in the electron emission efficiency between MgO-coated plates and non-coated plates. We also found that the thicker MgO emits secondary electrons more efficiently. The efficient electron emission was mainly caused by the enhancement of the secondary electron yields of a single ion impact because the pulse height distribution of the stop signals generated by MgO coated plates was higher than that of non-coated plates.

  4. Intermediate Mass Fragments Emission in Peripheral Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Bini, M.; Casini, G.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Stefanini, A. A.; Taccetti, N.

    The collision 116Sn + 93Nb at 29.5 AMeV in direct and reverse kinematics has been studied at LNS in Catania. In particular the emission pattern in the νperp - νpar plane of Intermediate Mass Fragments with Z=3-7 (IMF's) shows that for peripheral reactions most of IMF's are emitted at velocities intermediate between those of the projectile- and target-like products. From coulomb trajectory calculations one can infere that these IMF's are produced mainly in the interaction zone, in a short time interval at the end of the target-projectile interaction.

  5. A gated atmospheric pressure drift tube ion mobility spectrometer-time-of-flight mass spectrometer.

    PubMed

    Heptner, Andre; Reinecke, Tobias; Langejuergen, Jens; Zimmermann, Stefan

    2014-08-22

    Identifying the compounds of an unknown gas mixture by using an ion mobility spectrometer (IMS) is a difficult task, because several ion species can be generated in the ionization process. One method to analyze the occurring peaks in an IMS spectrum is coupling an IMS to a mass spectrometer (MS). In our setup we coupled a (3)H drift tube IMS to a Bruker micrOTOF II. Therefore, the detector plate of the IMS is pierced and a transfer capillary is inserted. The ions are transferred via gas flow and electric fields into the MS. The transmission of the ions through the transfer capillary can be shuttered very precisely by increasing the electric potential of the detector generating a repulsive electric field. Thus, it is possible to transfer single ion clouds of generated IMS spectra into the mass spectrometer where a corresponding mass spectrum is generated. In this work we analyze the positive and negative IMS spectra of single analytes as well as gas mixtures and characterize the occurring ion species. PMID:25015244

  6. A gated atmospheric pressure drift tube ion mobility spectrometer-time-of-flight mass spectrometer.

    PubMed

    Heptner, Andre; Reinecke, Tobias; Langejuergen, Jens; Zimmermann, Stefan

    2014-08-22

    Identifying the compounds of an unknown gas mixture by using an ion mobility spectrometer (IMS) is a difficult task, because several ion species can be generated in the ionization process. One method to analyze the occurring peaks in an IMS spectrum is coupling an IMS to a mass spectrometer (MS). In our setup we coupled a (3)H drift tube IMS to a Bruker micrOTOF II. Therefore, the detector plate of the IMS is pierced and a transfer capillary is inserted. The ions are transferred via gas flow and electric fields into the MS. The transmission of the ions through the transfer capillary can be shuttered very precisely by increasing the electric potential of the detector generating a repulsive electric field. Thus, it is possible to transfer single ion clouds of generated IMS spectra into the mass spectrometer where a corresponding mass spectrum is generated. In this work we analyze the positive and negative IMS spectra of single analytes as well as gas mixtures and characterize the occurring ion species.

  7. Queries of MALDI-imaging global datasets identifying ion mass signatures associated with tissue compartments.

    PubMed

    Fehniger, Thomas E; Suits, Frank; Végvári, Ákos; Horvatovich, Peter; Foster, Martyn; Marko-Varga, György

    2014-04-01

    Scanning MS by MALDI MS imaging (MALDI-MSI) creates large volumetric global datasets that describe the location and identity of ions registered at each sampling location. While thousands of ion peaks are recorded in a typical whole-tissue analysis, only a fraction of these measured molecules are purposefully scrutinized within a given experimental design. To address this need, we recently reported new methods to query the full volume of MALDI-MSI data that correlate all ion masses to one another. As an example of this utility, we demonstrate that specific ion peak m/z signatures can be used to localize similar histological structures within tissue samples. In this study, we use the example of ion peak masses that are associated with tissue spaces occupied by airway bronchioles in rat lung samples. The volume of raw data was preprocessed into structures of 0.1 mass unit bins containing metadata collected at each sampling position. Interactive visualization in ParaView identified ion peaks that especially showed strong association with airway bronchioles but not vascular or parenchymal tissue compartments. Further iterative statistical correlation queries provided ranked indices of all m/z values in the global dataset regarding coincident distributions at any given X, Y position in the histological spaces occupied by bronchioles The study further provides methods for extracting important information contained in global datasets that previously was unseen or inaccessible.

  8. Traveling Wave Ion Mobility Mass Spectrometry and Ab Initio Calculations of Phosphoric Acid Clusters

    NASA Astrophysics Data System (ADS)

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH] z+ or [(H3PO4)n - zH] z- , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  9. Traveling wave ion mobility mass spectrometry and ab initio calculations of phosphoric acid clusters.

    PubMed

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH](z+) or [(H3PO4)n - zH](z-), with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  10. DtaRefinery: a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra datasets

    SciTech Connect

    Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.; Polpitiya, Ashoka D.; Purvine, Samuel O.; Anderson, Gordon A.; Camp, David G.; Smith, Richard D.

    2009-12-16

    Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that can estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.

  11. Differentiation of microorganisms based on pyrolysis-ion trap mass spectrometry using chemical ionization.

    PubMed

    Barshick, S A; Wolf, D A; Vass, A A

    1999-02-01

    The ability to differentiate microorganisms using pyrolysision trap mass spectrometry was demonstrated for five Gram-negative disease-causing organisms: Brucella melitensis, Brucella suis, Vibrio cholera, Yersinia pestis, and Francisella tularensis. Bacterial profiles were generated for gamma-irradiated bacterial samples using pyrolytic methylation and compared for electron ionization and chemical ionization using several liquid reagents with increasing proton affinities. Electron ionization combined with pyrolysis caused extensive fragmentation, resulting in a high abundance of lower mass ions and diminishing the diagnostic value of the technique for compound identification and bacterial profiling. Chemical ionization reduced the amount of fragmentation due to ionization while enhancing the molecular ion region of the fatty acids. As the proton affinity of the reagent increased, the protonated molecular ions of the fatty acids became the predominant ions observed in the mass spectrum. As a result, chemical ionization was shown to be more effective than electron ionization in bacterial profiling. Whereas the bacteria could be distinguished at the Genera level using electron ionization, further differentiation to the subspecies level was possible using chemical ionization. The greatest separation among the five test organisms, in terms of Euclidean distances, was obtained using ethanol as the chemical ionization reagent and using pooled masses representing specific fatty acid biomarkers rather than total ion profiles. PMID:9989380

  12. Fourier transform ion cyclotron resonance versus time of flight for precision mass measurements

    SciTech Connect

    Kouzes, R.T.

    1993-02-01

    Both Fourier Transform Ion Cyclotron Resonance and ICR Time-of-Flight mass spectroscopy (FTICR-MS and ICR-TOF-MS, respectively) have been applied to precision atomic mass measurements. This paper reviews the status of these approaches and compares their limitations. Comparisons are made of FTICR-MS and ICR-TOF-MS for application to precision atomic mass measurements of stable and unstable nuclei, where the relevant scale is an accuracy of 1 keV and where halflives are longer than 10 milliseconds (optimistically). The atomic mass table is built up from mass chains, and ICR-MS brings a method of producing new types of mass chains to the mass measurement arena.

  13. Resonance activation and collision-induced-dissociation of ions using rectangular wave dipolar potentials in a digital ion trap mass spectrometer.

    PubMed

    Xu, Fuxing; Wang, Liang; Dai, Xinhua; Fang, Xiang; Ding, Chuan-Fan

    2014-04-01

    Collision-induced dissociation (CID) of ions by resonance activation in a quadrupole ion trap is usually accomplished by resonance exciting the ions to higher kinetic energy, whereby the high kinetic energy ions collide with a bath gas, such as helium or argon, inside the trap and dissociate to fragments. A new ion activation method using a well-defined rectangular wave dipolar potential formed by dividing down the trapping rectangular waveform is developed and examined herein. The mass-selected parent ions are resonance excited to high kinetic energies by simply changing the frequency of the rectangular wave dipolar potential and dissociation proceeds. A relationship between the ion mass and the activation waveform frequency is also identified and described. This highly efficient (CID) procedure can be realized by simply changing the waveform frequency of the dipolar potential, which could certainly simplify tandem mass spectrometry analysis methods.

  14. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    PubMed

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  15. Improved atmospheric trace gas measurements with an aircraft-based tandem mass spectrometer: Ion identification by mass-selected fragmentation studies

    NASA Astrophysics Data System (ADS)

    Reiner, Thomas; MöHler, Ottmar; Arnold, Frank

    1998-12-01

    We have built and employed an aircraft-borne triple quadrupole mass spectrometer (TQMS) for fragmentation studies of mass-selected ions in the upper troposphere and lower stratosphere. The fragmentation studies included both ambient and artificially produced ions relevant for the measurement of atmospheric trace gases by ion molecule reaction mass spectrometry (IMRMS) and led to an unambiguous identification of the chemical composition of important ions used for IMRMS measurements. Among these are the product ions of ion molecule reactions of CO3-(H2O)n and H3O+(H2O)n ions with HNO3, SO2, acetone, HCN, and methyl cyanide. These reactions have been studied in the laboratory, and ions having the same masses as the expected product ions have been previously observed in atmospheric IMRMS spectra. The present fragmentation studies are the first to actually identify the chemical composition of these ions during aircraft measurements in the upper troposphere and lower stratosphere and demonstrate that these ions can reliably be used for atmospheric trace gas measurements. Furthermore, the fragmentation studies gave indications for the existence and the possible identification of previously unknown ions. Among these the tentative identification of CO3-H2O2 offers the possibility for sensitive measurements of H2O2 by IMRMS. The fragmentation studies were accompanied by IMRMS measurements of atmospheric trace gases using the TQMS. Altitude profiles of HNO3, SO2, and lower limits for H2O2 are shown.

  16. Geochemical mass-balance relationships for selected ions in precipitation and stream water, Catoctin Mountains, Maryland.

    USGS Publications Warehouse

    Katz, B.G.; Bricker, O.P.; Kennedy, M.M.

    1985-01-01

    Results of a study of input/output mass balances for major ions based on the chemical composition of precipitation and stream-water, geochemical reactions with different loading rates of hydrogen ion, and watershed processes influencing the chemical character of stream-waters in two small watershed areas are reported with a view to predicting the effect of additions of acidic rain to the watershed systems. Geochemical weathering processes account for the observed changes in the chemistry of stream flow. Although present in bedrock in extremely small quantities, calcite plays an important role in neutralization of the total hydrogen-ion input.-M.S.

  17. Airborne nanoparticle characterization with a digital ion trap-reflectron time of flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Shenyi; Johnston, Murray V.

    2006-12-01

    A digital ion trap-reflectron time of flight mass spectrometer is described for airborne nanoparticle characterization. Charged particles sampled into this nanoaerosol mass spectrometer (NAMS) are captured in the ion trap and ablated with a high fluence laser pulse to reach the "complete ionization limit". Atomic ions produced from the trapped particle(s) are mass analyzed by time of flight, and the elemental composition is determined from the relative signal intensities in the mass spectrum. The particle size range captured in the ion trap is selected by the frequency applied to the ring electrode. Size selection is based on the mass normalized particle diameter, defined as the diameter of a spherical particle with unit density that has the same mass as the particle being analyzed. For the current instrument configuration, ring electrode frequencies between 5 and 140 kHz allow selective trapping of particles with a mass normalized diameter between 7 and 25 nm with a geometric standard deviation of about 1.1. The particle detection efficiency, defined as the fraction of charged particles entering the mass spectrometer that are subsequently captured and analyzed, is between l x l0-4 and 3 x l0-4 over this size range. The effective particle density can be determined from simultaneous measurement of the mobility and mass normalized diameters. Test nanoparticles composed of sucrose, polyethylene glycol, polypropylene glycol, sodium chloride, ammonium sulfate and copper(II) chloride are investigated. In most cases, the measured elemental compositions match the expected elemental compositions within +/-5% or less and the measured compositions do not change with particle size. The one exception is copper chloride, which does not yield a well-developed plasma when it is irradiated by the laser pulse.

  18. Instrument manual for the retarding ion mass spectrometer on Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Baugher, C. R.; Chappell, C. R.; Reasoner, D. L.; Hammack, H. D.; Wright, W. W.; Hoffman, J. H.

    1982-01-01

    The retarding ion mass spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  19. Focusing of intense and divergent ion beams in a magnetic mass analyzer

    SciTech Connect

    Jianlin, Ke; Changgeng, Zhou; Rui, Qiu; Yonghong, Hu

    2014-07-15

    A magnetic mass analyzer is used to determine the beam composition of a vacuum arc ion source. In the analyzer, we used the concentric multi-ring electrodes to focus the intense and divergent ion beams. We describe the principle, design, and the test results of the focusing device. The diameter of the beam profile is less than 20 mm when the accelerating voltage is 30 kV and the focusing voltage is about 2.0 kV. The focusing device has been successfully used in the magnetic mass analyzer to separate Ti{sup +}, Ti{sup 2+}, and Ti{sup 3+}.

  20. Continuum flow sampling mass spectrometer for elemental analysis with an inductively coupled plasma ion source

    SciTech Connect

    Olivares, J.A.

    1985-01-01

    The sampling of ions from an atmospheric pressure inductively coupled plasma for mass spectrometry (ICP-MS) with a supersonic nozzle and skimmer is shown to follow similar behavior found for neutral beam studies and of ion extraction from other plasmas and flames. The dependence of count rates for metal oxide and doubly charged ions on ICP operating parameters, and sampling interface configuration are discussed for this instrument. A simple method is described for the approximate measurement of the ion energy distribution in ICP-MS. The average ion kinetic energy, kinetic energy spread, and maximum kinetic energy are evaluated from a plot of ion signal as a function of retarding voltage applied to the quadrupole mass analyzer. The effects of plasma operating parameters on ion signals and energies are described. The interference on the ionization of cobalt by five salts, NaCl, MgCl/sub 2/, NH/sub 4/I, NH/sub 4/Br and NH/sub 4/Cl, in an ICP is first considered theoretically and subsequently the theoretical trends are established experimentally by ICP-MS. The interference trends are found to be in the order of the most easily ionized element in the matrix salt, i.e., Na > Mg > I > Br > Cl.

  1. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer

    PubMed Central

    Chen, Lee Chuin; Rahman, Md. Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4–5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper. PMID:26819896

  2. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    PubMed

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper.

  3. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    PubMed

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper. PMID:26819896

  4. Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime.

    PubMed

    Nikolić, Dragan; Madzunkov, Stojan M; Darrach, Murray R

    2015-12-01

    We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program's efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra. Graphical Abstract ᅟ. PMID:26286456

  5. Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime

    NASA Astrophysics Data System (ADS)

    Nikolić, Dragan; Madzunkov, Stojan M.; Darrach, Murray R.

    2015-12-01

    We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program's efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra.

  6. Liquid Beam Ion Desorption Mass Spectrometry for Evaluating CASSINI Data

    NASA Astrophysics Data System (ADS)

    Stolz, Ferdinand; Reviol, Rene; Srama, Ralf; Trieloff, Mario; Postberg, Frank; Abel, Bernd

    2013-04-01

    Saturn's moon Enceladus emits plumes of ice particles from an area near its south pole which are detected and chemically analyzed by the Cosmic Dust Analyzer (CDA) on board the CASSINI spacecraft. Studying these ice particles provides unique insights into Enceladus geological properties. Technically the CDA is a time-of-flight mass spectrometer which delivers mass spectra of the particles and their fragments. Since interpretation of the available CDA data is particularly challenging we employ a laboratory experiment to imitate experimental conditions in space. Key part of our experimental setup is a micron-sized water beam in high vacuum. This beam is rapidly heated up by an infrared laser pulse, which is tuned to excite the OH-stretch vibration of water molecules. This causes the water beam to dissipate into small droplets, some of which carry a net charge even though the laser energy is well below the molecular ionisation energy. The charged droplets are then analyzed in a time-of-flight mass spectrometer. With this experimental setup we successfully simulated the space born ice particles measured at Enceladus. By varying the laser intensity in our experiments, we can vary the amount of energy deposited in the liquid beam, and thus model different particle velocities. Also, variation of solute concentration in the water beam provides valuable information about ice particle composition. Some examples for anorganic solutes studied so far are sodium chloride, ammonia and hydrogen sulfite. A special feature of our experimental technique is that desorption of particles from the liquid beam is particularly soft. This is explained by the fact that all laser energy is absorbed by the water molecules. In this way molecular bonds of solutes stay intact and molecular solutes are transferred into the droplet phase without getting destroyed. This is particularly interesting in the context of analyzing organic compounds - some of which have been detected at Enceladus. Using

  7. Operational Parameters, Considerations, and Design Decisions for Resource-Constrained Ion Trap Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Danell, Ryan M.; VanAmerom, Friso H. W.; Pinnick, Veronica; Cotter, Robert J.; Brickerhoff, William; Mahaffy, Paul

    2011-01-01

    Mass spectrometers are increasingly finding applications in new and unique areas, often in situations where key operational resources (i.e. power, weight and size) are limited. One such example is the Mars Organic Molecule Analyzer (MOMA). This instrument is a joint venture between NASA and the European Space Agency (ESA) to develop an ion trap mass spectrometer for chemical analysis on Mars. The constraints on such an instrument are significant as are the performance requirements. While the ideal operating parameters for an ion trap are generally well characterized, methods to maintain analytical performance with limited power and system weight need to be investigated and tested. Methods Experiments have been performed on two custom ion trap mass spectrometers developed as prototypes for the MOMA instrument. This hardware consists of quadrupole ion trap electrodes that are 70% the size of common commercial instrumentation. The trapping RF voltage is created with a custom tank circuit that can be tuned over a range of RF frequencies and is driven using laboratory supplies and amplifiers. The entire instrument is controlled with custom Lab VIEW software that allows a high degree of flexibility in the definition of the scan function defining the ion trap experiment. Ions are typically generated via an internal electron ionization source, however, a laser desorption source is also in development for analysis of larger intact molecules. Preliminary Data The main goals in this work have been to reduce the power required to generate the radio frequency trapping field used in an ion trap mass spectrometer. Generally minimizing the power will also reduce the volume and mass of the electronics to support the instrument. In order to achieve optimum performance, commercial instruments typically utilize RF frequencies in the 1 MHz range. Without much concern for power usage, they simply generate the voltage required to access the mass range of interest. In order to reduce the

  8. IonCCD detector for miniature sector-field mass spectrometer: investigation of peak shape and detector surface artifacts induced by keV ion detection.

    PubMed

    Hadjar, Omar; Schlathölter, Thomas; Davila, Stephen; Catledge, Shane A; Kuhn, Ken; Kassan, Scott; Kibelka, Gottfried; Cameron, Chad; Verbeck, Guido F

    2011-10-01

    A recently described ion charge coupled device detector IonCCD (Sinha and Wadsworth, Rev. Sci. Instrum. 76(2), 2005; Hadjar, J. Am. Soc. Mass Spectrom. 22(4), 612-624, 2011) is implemented in a miniature mass spectrometer of sector-field instrument type and Mattauch-Herzog (MH)-geometry (Rev. Sci. Instrum. 62(11), 2618-2620, 1991; Burgoyne, Hieftje and Hites J. Am. Soc. Mass Spectrom. 8(4), 307-318, 1997; Nishiguchi, Eur. J. Mass Spectrom. 14(1), 7-15, 2008) for simultaneous ion detection. In this article, we present first experimental evidence for the signature of energy loss the detected ion experiences in the detector material. The two energy loss processes involved at keV ion kinetic energies are electronic and nuclear stopping. Nuclear stopping is related to surface modification and thus damage of the IonCCD detector material. By application of the surface characterization techniques atomic force microscopy (AFM) and X-ray photoelectrons spectroscopy (XPS), we could show that the detector performance remains unaffected by ion impact for the parameter range observed in this study. Secondary electron emission from the (detector) surface is a feature typically related to electronic stopping. We show experimentally that the properties of the MH-mass spectrometer used in the experiments, in combination with the IonCCD, are ideally suited for observation of these stopping related secondary electrons, which manifest in reproducible artifacts in the mass spectra. The magnitude of the artifacts is found to increase linearly as a function of detected ion velocity. The experimental findings are in agreement with detailed modeling of the ion trajectories in the mass spectrometer. By comparison of experiment and simulation, we show that a detector bias retarding the ions or an increase of the B-field of the IonCCD can efficiently suppress the artifact, which is necessary for quantitative mass spectrometry.

  9. Low-energy ion implantation: Large mass fractionation of argon

    NASA Technical Reports Server (NTRS)

    Ponganis, K. V.; Graf, TH.; Marti, K.

    1993-01-01

    The isotropic signatures of noble gases in the atmospheres of the Earth and other planets are considerably evolved when compared to signatures observed in the solar wind. The mechanisms driving the evolution of planetary volatiles from original compositions in the solar accretion disk are currently poorly understood. Modeling of noble-gas compositional histories requires knowledge of fractionating processes that may have operated through the evolutionary stages. Since these gases are chemically inert, information on noble-gas fractionation processes can be used as probes. The importance of understanding these processes extends well beyond 'noble-gas planetology.' Trapped argon acquired by low-energy implantation (approximately less than 100 eV) into solids is strongly mass fractionated (approximately greater than or equal to 3 percent/amu). This has potential implications for the origin and evolution of terrestrial planet atmospheres.

  10. Fourier Transfrom Ion Cyclotron Resonance Mass Spectrometry at High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-03-01

    At high magnetic field (9.4 tesla at NHMFL), Fourier transform ion cyclotron resonance mass spectrometry performance improves dramatically: mass resolving power, axialization efficiency, and scan speed (each proportional to B), maximum ion mass, dynamic range, ion trapping period, kinetic energy, and electron self-cooling rate for sympathetic cooling (each proportional to B^2), and ion coalescence tendency (proportional 1/B^2). These advantages may apply singly (e.g., unit mass resolution for proteins of >100,000 Da), or compound (e.g., 10-fold improvement in S/N ratio for 9.4 T vs. 6 T at the same resolving power). Examples range from direct determination of molecular formulas of diesel fuel components by accurate mass measurement (=B10.1 ppm) to protein structure and dynamics probed by H/D exchange. This work was supported by N.S.F. (CHE-93-22824; CHE-94-13008), N.I.H. (GM-31683), Florida State University, and the National High Magnetic Field Laboratory in Tallahassee, FL.

  11. Application of Ion Mobility-Mass Spectrometry to the Study of Ionic Clusters: Investigation of Cluster Ions with Stable Sizes and Compositions

    PubMed Central

    Ohshimo, Keijiro; Komukai, Tatsuya; Takahashi, Tohru; Norimasa, Naoya; Wu, Jenna Wen Ju; Moriyama, Ryoichi; Koyasu, Kiichirou; Misaizu, Fuminori

    2014-01-01

    Stable cluster sizes and compositions have been investigated for cations and anions of ionic bond clusters such as alkali halides and transition metal oxides by ion mobility-mass spectrometry (IM-MS). Usually structural information of ions can be obtained from collision cross sections determined in IM-MS. In addition, we have found that stable ion sizes or compositions were predominantly produced in a total ion mass spectrum, which was constructed from the IM-MS measurement. These stable species were produced as a result of collision induced dissociations of the ions in a drift cell. We have confirmed this result in the sodium fluoride cluster ions, in which cuboid magic number cluster ions were predominantly observed. Next the stable compositions, which were obtained for the oxide systems of the first row transition metals, Ti, Fe, and Co, are characteristic for each of the metal oxide cluster ions. PMID:26819887

  12. Development and Deployment of Retrofit PolarisQ Ion Trap Mass Spectrometer for Isotope Ratio Measurements

    SciTech Connect

    Thompson, Cyril V.; Whitten, William B.

    2015-11-01

    This report describes Oak Ridge National Laboratory’s (ORNL) FY15 progress in support of National Nuclear Security Administration’s (NNSA) Portable Mass Spectrometer project. A retrofit PolarisQ ion trap mass spectrometer (RPMS) has been assembled from components of two PolarisQ ion trap mass spectrometers used in previous isotope ratio programs. The retrofit mass spectrometer includes a custom Hastelloy vacuum chamber which is about ¼ the size of the standard aluminum vacuum chamber and reduces the instrument weight from the original by nine pounds. In addition, the new vacuum chamber can be independently heated to reduce impurities such as water, which reacts with UF6 to produce HF in the vacuum chamber. The analyzer and all components requiring service are mounted on the chamber lid, facilitating quick and easy replacement of consumable components such as the filament and electron multiplier.

  13. Enhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry.

    PubMed

    Brown, Lauren J; Smith, Robert W; Toutoungi, Danielle E; Reynolds, James C; Bristow, Anthony W T; Ray, Andrew; Sage, Ashley; Wilson, Ian D; Weston, Daniel J; Boyle, Billy; Creaser, Colin S

    2012-05-01

    Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (FAIMS) is used for the selective transmission of differential mobility-selected ions prior to in-source collision-induced dissociation (CID) and time-of-flight mass spectrometry (TOFMS) analysis. The FAIMS-in-source collision induced dissociation-TOFMS (FISCID-MS) method requires only minor modification of the ion source region of the mass spectrometer and is shown to significantly enhance analyte detection in complex mixtures. Improved mass measurement accuracy and simplified product ion mass spectra were observed following FAIMS preselection and subsequent in-source CID of ions derived from pharmaceutical excipients, sufficiently close in m/z (17.7 ppm mass difference) that they could not be resolved by TOFMS alone. The FISCID-MS approach is also demonstrated for the qualitative and quantitative analysis of mixtures of peptides with FAIMS used to filter out unrelated precursor ions thereby simplifying the resulting product ion mass spectra. Liquid chromatography combined with FISCID-MS was applied to the analysis of coeluting model peptides and tryptic peptides derived from human plasma proteins, allowing precursor ion selection and CID to yield product ion data suitable for peptide identification via database searching. The potential of FISCID-MS for the quantitative determination of a model peptide spiked into human plasma in the range of 0.45-9.0 μg/mL is demonstrated, showing good reproducibility (%RSD < 14.6%) and linearity (R(2) > 0.99).

  14. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction.

    PubMed

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 micros. Accordingly, the sample is under excitation in 10(-4) part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 10(10) V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the

  15. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction

    SciTech Connect

    Hars, Gyoergy; Dobos, Gabor

    2010-03-15

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 {mu}s. Accordingly, the sample is under excitation in 10{sup -4} part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 10{sup 10} V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of

  16. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction

    NASA Astrophysics Data System (ADS)

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 μs. Accordingly, the sample is under excitation in 10-4 part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 1010 V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the mathematical

  17. Ion beam induced surface patterns due to mass redistribution and curvature-dependent sputtering

    NASA Astrophysics Data System (ADS)

    Bobes, Omar; Zhang, Kun; Hofsäss, Hans

    2012-12-01

    Recently it was reported that ion-induced mass redistribution would solely determine nano pattern formation on ion-irradiated surfaces. We investigate the pattern formation on amorphous carbon thin films irradiated with Xe ions of energies between 200 eV and 10 keV. Sputter yield as well as number of displacements within the collision cascade vary strongly as function of ion energy and allow us to investigate the contributions of curvature-dependent erosion according to the Bradley-Harper model as well as mass redistribution according to the Carter-Vishnyakov model. We find parallel ripple orientations for an ion incidence angle of 60° and for all energies. A transition to perpendicular pattern orientation or a rather flat surface occurs around 80° for energies between 1 keV and 10 keV. Our results are compared with calculations based on both models. For the calculations we extract the shape and size of Sigmund's energy ellipsoid (parameters a, σ, μ), the angle-dependent sputter yield, and the mean mass redistribution distance from the Monte Carlo simulations with program SDTrimSP. The calculated curvature coefficients Sx and Sy describing the height evolution of the surface show that mass redistribution is dominant for parallel pattern formation in the whole energy regime. Furthermore, the angle where the parallel pattern orientation starts to disappear is related to curvature-dependent sputtering. In addition, we investigate the case of Pt erosion with 200 eV Ne ions, where mass redistribution vanishes. In this case, we observe perpendicular ripple orientation in accordance with curvature-dependent sputtering and the predictions of the Bradley-Harper model.

  18. Comparison of particle-in-cell simulations with experimentally observed frequency shifts between ions of the same mass-to-charge in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Leach, Franklin E; Kharchenko, Andriy; Heeren, Ron M A; Nikolaev, Eugene; Amster, I Jonathan

    2010-02-01

    It has been previously observed that the measured frequency of ions in a Fourier transform mass spectrometry experiment depend upon the number of trapped ions, even for populations consisting exclusively of a single mass-to-charge. Since ions of the same mass-to-charge are thought not to exert a space-charge effect among themselves, the experimental observation of such frequency shifts raises questions about their origin. To determine the source of such experimentally observed frequency shifts, multiparticle ion trajectory simulations have been conducted on monoisotopic populations of Cs(+) ranging from 10(2) ions to 10(6) ions. A close match to experimental behavior is observed. By probing the effect of ion number and orbital radius on the shift in the cyclotron frequency, it is shown that for a monoisotopic population of ions, the frequency shift is caused by the interaction of ions with their image-charge. The addition of ions of a second mass-to-charge to the simulation allows the comparison of the magnitude of the frequency shift resulting from space-charge (ion-ion) effects versus ion interactions with their image charge.

  19. DtaRefinery, a Software Tool for Elimination of Systematic Errors from Parent Ion Mass Measurements in Tandem Mass Spectra Data Sets*

    PubMed Central

    Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.; Polpitiya, Ashoka D.; Purvine, Samuel O.; Anderson, Gordon A.; Camp, David G.; Smith, Richard D.

    2010-01-01

    Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and high throughput MS/MS fragmentation have become widely available in recent years, allowing for significantly better discrimination between true and false MS/MS peptide identifications by the application of a relatively narrow window for maximum allowable deviations of measured parent ion masses. To fully gain the advantage of highly accurate parent ion mass measurements, it is important to limit systematic mass measurement errors. Based on our previous studies of systematic biases in mass measurement errors, here, we have designed an algorithm and software tool that eliminates the systematic errors from the peptide ion masses in MS/MS data. We demonstrate that the elimination of the systematic mass measurement errors allows for the use of tighter criteria on the deviation of measured mass from theoretical monoisotopic peptide mass, resulting in a reduction of both false discovery and false negative rates of peptide identification. A software implementation of this algorithm called DtaRefinery reads a set of fragmentation spectra, searches for MS/MS peptide identifications using a FASTA file containing expected protein sequences, fits a regression model that can estimate systematic errors, and then corrects the parent ion mass entries by removing the estimated systematic error components. The output is a new file with fragmentation spectra with updated parent ion masses. The software is freely available. PMID:20019053

  20. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry

    PubMed Central

    Prokai, Laszlo; Stevens, Stanley M.

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  1. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry.

    PubMed

    Prokai, Laszlo; Stevens, Stanley M

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  2. Visualization of acetaminophen-induced liver injury by time-of-flight secondary ion mass spectrometry.

    PubMed

    Murayama, Yohei; Satoh, Shuya; Hashiguchi, Akinori; Yamazaki, Ken; Hashimoto, Hiroyuki; Sakamoto, Michiie

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (MS) provides secondary ion images that reflect distributions of substances with sub-micrometer spatial resolution. To evaluate the use of time-of-flight secondary ion MS to capture subcellular chemical changes in a tissue specimen, we visualized cellular damage showing a three-zone distribution in mouse liver tissue injured by acetaminophen overdose. First, we selected two types of ion peaks related to the hepatocyte nucleus and cytoplasm using control mouse liver. Acetaminophen-overdosed mouse liver was then classified into three areas using the time-of-flight secondary ion MS image of the two types of peaks, which roughly corresponded to established histopathological features. The ion peaks related to the cytoplasm decreased as the injury became more severe, and their origin was assumed to be mostly glycogen based on comparison with periodic acid-Schiff staining images and reference compound spectra. This indicated that the time-of-flight secondary ion MS image of the acetaminophen-overdosed mouse liver represented the chemical changes mainly corresponding to glycogen depletion on a subcellular scale. In addition, this technique also provided information on lipid species related to the injury. These results suggest that time-of-flight secondary ion MS has potential utility in histopathological applications.

  3. Ionic liquid matrix-enhanced secondary ion mass spectrometry: the role of proton transfer.

    PubMed

    Dertinger, Jennifer J; Walker, Amy V

    2013-03-01

    Room temperature ionic liquids (ILs) are effective matrices in secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption ionization (MALDI). In this paper, we examine the role of proton transfer in the mechanism of secondary ion enhancement using IL matrices in SIMS. We employ hydrogenated and deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as analytes to investigate the origin of proton transfer. The data indicate that protons from the IL anion transfer to the analyte in solution leading to an increase in the secondary ion intensity of the protonated molecular ion. The chemical identity of the matrix cation also affects analyte signal intensities. Using deuterated DPPC we observe that protons (deuterium) from the DPPC tail group react with the cation of the IL liquid leading to an increase in (cation + D)(+) ion intensities. Further, the data suggest that the transfer kinetics of deuterium (hydrogen) is correlated with the secondary ion enhancements observed. The highest secondary ion enhancements are observed for the least sterically hindered cation. Neither the proton affinity nor the pKa of the IL cation have a large effect on the analyte ion intensities, suggesting that steric factors are important in determining the efficacy of IL matrices for a given analyte.

  4. Investigating ion-surface collisions with a niobium superconducting tunnel junction detector in a time-of-flight mass spectrometer

    SciTech Connect

    Westmacott, G.; Zhong, F.; Frank, M.; Friedrich, S.; Labov, S.; Benner, W.H.

    1999-12-01

    The performance of an energy sensitive, niobium superconducting tunnel junction detector is investigated by measuring the pulse height produced by impacting molecular and atomic ions at different kinetic energies. Ions are produced by laser resorption and matrix-assisted laser desorption in a time-of-flight mass spectrometer. Results show that the STJ detector pulse height decreases for increasing molecular ion mass, passes through a minimum at around 2000 Da, and the increases with increasing mass of molecular ions above 2000Da. The detector does not show a decline in sensitivity for high mass ions as is observed with microchannel plate ion detectors. These detector plus height measurements are discussed in terms of several physical mechanisms involved in an ion-surface collision.

  5. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  6. Advanced Ion Mass Spectrometer for Giant Planet Ionospheres, Magnetospheres and Moons

    NASA Astrophysics Data System (ADS)

    Sittler, EC; Cooper, JF; Paschalidis, N.; Jones, SL; Rodriguez, M.; Ali, A.; Coplan, MA; Chornay, DJ; Sturner; Bateman, FB; Andre, N.; Fedorov, A.; Wurz, P.

    2015-10-01

    The Advanced Ion Composition Spectrometer (AIMS) has been under development from various NASA sources (NASA LWSID, NASA ASTID, NASA Goddard IRADs) to measure elemental, isotopic, and simple molecular composition abundances of 1 eV/e to 25 keV/e hot ions with wide field-of-view (FOV) in the 1 - 60 amu mass range at mass resolution M/ΔM ≤ 60 over a wide dynamic range of intensities and penetrating radiation background from the inner magnetospheres of Jupiter and Saturn to the outer magnetospheric boundary regions and the upstream solar wind. This instrument will work for both spinning spacecraft and 3-axis stabilized spacecraft with wide field-of-view capability in both cases. It will measure the ion velocity distribution functions (IVDF) for the individual ion species; ion velocity moments of the IVDF will give the fluid parameters (density, flow velocity and temperature) of the individual ion species. Outer planet mission applications are Io Observer, Jupiter Europa Orbiter/Europa Clipper, Enceladus Orbiter, and Uranus Orbiter as described in the decadal survey, but would also be valuable for inclusion on other missions to outer planet destinations such as Saturn- Titan and Neptune-Triton and for future missions to terrestrial planets, Venus and Mars, the Moon, asteroids, and comets, and of course for geospace applications to the Earth.

  7. Multiplexed Ion Mobility Spectrometry - Orthogonal Time-Of-Flight Mass Spectrometry

    SciTech Connect

    Belov, Mikhail E.; Buschbach, Michael A.; Prior, David C.; Tang, Keqi; Smith, Richard D.

    2007-03-15

    Ion mobility spectrometry (IMS) coupled to orthogonal time-of-flight mass spectrometry (TOF) has shown significant promise for the characterization of complex biological mixtures. The enormous complexity of biological samples (e.g. from proteomics) and the need for both biological and technical analysis replicates imposes major challenges for multidimensional separation platforms in regard to both sensitivity and sample throughput. A major potential attraction of the IMS-TOF MS platform is separation speeds exceeding that of conventional condensed-phase separations by orders of magnitude. Known limitations of the IMS-TOF MS platforms that presently mitigate this attraction include the need for extensive signal averaging due to factors that include significant ion losses in the IMS-TOF interface and an ion utilization efficiency of less than ~1% with continuous ion sources (e.g. ESI). We have developed a new multiplexed ESI-IMS-TOF mass spectrometer that enables lossless ion transmission through the IMS-TOF as well as a utilization efficiency of >50% for ions from the ESI source. Initial results with a mixture of peptides show a ~10-fold increase in signal-to-noise ratio with the multiplexed approach compared to a signal averaging approach, with no reduction in either IMS or TOF MS resolution.

  8. QconCAT standard for calibration of ion mobility-mass spectrometry systems.

    PubMed

    Chawner, Ross; McCullough, Bryan; Giles, Kevin; Barran, Perdita E; Gaskell, Simon J; Eyers, Claire E

    2012-11-01

    Ion mobility-mass spectrometry (IM-MS) is a useful technique for determining information about analyte ion conformation in addition to mass/charge ratio. The physical principles that govern the mobility of an ion through a gas in the presence of a uniform electric field are well understood, enabling rotationally averaged collision cross sections (Ω) to be directly calculated from measured drift times under well-defined experimental conditions. However, such "first principle" calculations are not straightforward for Traveling Wave (T-Wave) mobility separations due to the range of factors that influence ion motion through the mobility cell. If collision cross section information is required from T-Wave mobility separations, then calibration of the instruments using known standards is essential for each set of experimental conditions. To facilitate such calibration, we have designed and generated an artificial protein based on the QconCAT technology, QCAL-IM, which upon proteolysis can be used as a universal ion mobility calibration standard. This single unique standard enables empirical calculation of peptide ion collision cross sections from the drift time on a T-Wave mobility instrument.

  9. Ion Funnel Trap Interface for Orthogonal Time-of-Flight Mass Spectrometry

    SciTech Connect

    Ibrahim, Yehia M.; Belov, Mikhail E.; Tolmachev, Aleksey V.; Prior, David C.; Smith, Richard D.

    2007-10-15

    A combined electrodynamic ion funnel and ion trap coupled to an orthogonal acceleration (oa)-time-of-flight mass spectrometer was developed and characterized. The ion trap was incorporated through the use of added terminal electrodynamic ion funnel electrodes enabling control over the axial dc gradient in the trap section. The ion trap operates efficiently at a pressure of ~1 Torr, and measurements indicate a maximum charge capacity of ~3 × 107 charges. An order of magnitude increase in sensitivity was observed in the analysis of low concentration peptides mixtures with orthogonal acceleration (oa)-time-of-flight mass spectrometry (oa-TOF MS) in the trapping mode as compared to the continuous regime. A signal increase in the trapping mode was accompanied by reduction in the chemical background, due to more efficient desolvation of, for example, solvent related clusters. Controlling the ion trap ejection time was found to result in efficient removal of singly charged species and improving signal-to-noise ratio (S/N) for the multiply charged analytes.

  10. Secondary ion mass spectrometry and X-ray photoelectron spectroscopy of derivitized coal surfaces

    SciTech Connect

    Martin, R.R.; Mc Intyre, N.S.; Mac Phee, J.A.; Aye, K.T.

    1987-04-01

    Secondary Ion Mass Spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS) have been used to study the low temperature oxidation of coal. /sup 18/O has been used to trace the oxygen distribution on the coal surface. Several chemical derivations have been observed on the oxidized coal surface and the reactivity of specific regions have been monitored.

  11. DETERMINATION OF BROMATE IN DRINKING WATERS BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...

  12. Shedding light on the mercury mass discrepancy by weighing Hg 52+ ions in a Penning trap

    NASA Astrophysics Data System (ADS)

    Fritioff, T.; Bluhme, H.; Schuch, R.; Bergström, I.; Björkhage, M.

    2003-07-01

    In their nuclear tables Audi and Wapstra have pointed out a serious mass discrepancy between their extrapolated values for the mercury isotopes and those from a direct measurement by the Manitoba group. The values deviate by as much as 85 ppb from each other with claimed uncertainties of about 16 and 7 ppb, respectively. In order to decide which values are correct the masses of the 198Hg and 204Hg isotopes have been measured in the Stockholm Penning trap mass spectrometer SMILETRAP using 52+ ions. This charge state corresponds to a filled Ni electron configuration for which the electron binding energy can be accurately calculated. The mass values obtained are 197.966 768 44(43) u for 198Hg and 203.973 494 10(39) u for 204Hg. These values agree with those measured by the Manitoba group, with a 3 times lower uncertainty. This measurement was made possible through the implementation of a cooling technique of the highly charged mercury ions during charge breeding in the electron beam ion source used for producing the Hg 52+ ions.

  13. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory

    When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...

  14. Multiplex Mass Spectrometric Imaging with Polarity Switching for Concurrent Acquisition of Positive and Negative Ion Images

    NASA Astrophysics Data System (ADS)

    Korte, Andrew R.; Lee, Young Jin

    2013-06-01

    We have recently developed a multiplex mass spectrometry imaging (MSI) method which incorporates high mass resolution imaging and MS/MS and MS3 imaging of several compounds in a single data acquisition utilizing a hybrid linear ion trap-Orbitrap mass spectrometer (Perdian and Lee, Anal. Chem. 82, 9393-9400, 2010). Here we extend this capability to obtain positive and negative ion MS and MS/MS spectra in a single MS imaging experiment through polarity switching within spiral steps of each raster step. This methodology was demonstrated for the analysis of various lipid class compounds in a section of mouse brain. This allows for simultaneous imaging of compounds that are readily ionized in positive mode (e.g., phosphatidylcholines and sphingomyelins) and those that are readily ionized in negative mode (e.g., sulfatides, phosphatidylinositols and phosphatidylserines). MS/MS imaging was also performed for a few compounds in both positive and negative ion mode within the same experimental set-up. Insufficient stabilization time for the Orbitrap high voltage leads to slight deviations in observed masses, but these deviations are systematic and were easily corrected with a two-point calibration to background ions.

  15. Observations of the Nightside Venus Ionosphere: Final Encounter of the Pioneer Venus Orbiter Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.; Kramer, L.; Taylor, H. A., Jr.

    1993-01-01

    During the last orbital sequences of the Pioneer Venus spacecraft prior to final encounter and atmospheric entry, data were obtained by the Orbiter Ion Mass Spectrometer (OIMS) at the lowest periapsis altitudes of the mission. These data verified OIMS observations of the nightside ionospheric peak reported-earlier in the mission, and revealed additional details related to composition, energetics and maintenance of the nightside ionosphere. OIMS observations of the ion peak during the final encounter sequence are compared with radio occultation data and OIMS peak observations obtained earlier. OIMS ion density and Orbiter Electron Temperature Probe (OETP) electron density are found to correlate near the peak. Coupling of mass channels 30 and 32 during nightside passes is observed and its interpretation considered. Changes in high altitude composition of the nightside ionosphere, especially the relative changes in O(+) and H(+), are described.

  16. Observations of the nightside Venus ionosphere: Final encounter of the Pioneer Venus Orbiter Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.; Kramer, L.; Taylor, H. A., Jr.

    1993-01-01

    During the last orbital sequences of the Pioneer-Venus spacecraft prior to final encounter and atmospheric entry, data were obtained by the Orbiter Ion Mass Spectrometer (OIMS) at the lowest periapsis altitudes of the mission. These data verified OIMS observations of the nightside ionospheric peak reported earlier in the mission, and revealed additional details related to composition, energetics and maintenance of the nightside ionosphere. OIMS observations of the ion peak during the final encounter sequence are compared with radio occultation data and OIMS peak observations obtained earlier. OIMS ion density and Orbiter Electron Temperature Probe (OETP) electron density are found to correlate near the peak. Coupling of mass channels 30 and 32 during nightside passes is observed and its interpretation considered. Changes in high altitude composition of the nightside ionosphere, especially the relative changes in O(+) and H(+), are described.

  17. Arrival time distributions of product ions reveal isomeric ratio of deprotonated molecules in ion mobility-mass spectrometry of hyaluronan-derived oligosaccharides.

    PubMed

    Hermannová, Martina; Iordache, Andreea-Maria; Slováková, Kristína; Havlíček, Vladimír; Pelantová, Helena; Lemr, Karel

    2015-06-01

    Hyaluronic acid is a naturally occurring linear polysaccharide with substantial medical potential. In this work, discrimination of tyramine-based hyaluronan derivatives was accessed by ion mobility-mass spectrometry of deprotonated molecules and nuclear magnetic resonance spectroscopy. As the product ion mass spectra did not allow for direct isomer discrimination in mixture, the reductive labeling of oligosaccharides as well as stable isotope labeling was performed. The ion mobility separation of parent ions together with the characteristic fragmentation for reduced isomers providing unique product ions allowed us to identify isomers present in a mixture and determine their mutual isomeric ratio. The determination used simple recalculation of arrival time distribution areas of unique ions to areas of deprotonated molecules. Mass spectrometry data were confirmed by nuclear magnetic resonance spectroscopy.

  18. Design and Performance Evaluation of a Linear Ion Trap Mass Analyzer Featuring Half Round Rod Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxu; Zhang, Xiaohua; Yao, Rujiao; He, Yang; Zhu, Yongyong; Qian, Jie

    2015-05-01

    A novel linear ion trap mass analyzer featuring half round rod electrodes (HreLIT) has been built. It is mainly composed of two pairs of stainless steel electrodes which have a cross-section of half round rod and a pair of end electrodes. The HreLIT has a simple structure and so it could be assembled by hand with relatively high mechanical accuracy. The external dimension of HreLIT is 50 mm × 29.5 mm × 28 mm (length × width × height) and its internal volume is about 3.8 cm3. A home-made HreLIT mass spectrometer with three-stage vacuum system was built and the performance of HreLIT was characterized using reserpine solution and PPG standard solution. When the scan rate was 254 u/s, mass peak with FWHM of 0.14 u was achieved for ions with m/z 609, which corresponds to a mass resolution of 4350. The HreLIT was also operated at a low q value of 0.28 to extend its mass range. The experiment result showed a mass range of over 2800 u and the amplitude of radio frequency (rf) signal was only 1560 V (0-p). Three-stage tandem mass spectrometry was successfully performed in the HreLIT, and the collision-induced dissociation (CID) efficiencies of MS2 (CID of ions with m/z 609) and MS3 (CID of ions with m/z 448) were 78% and 59%, respectively.

  19. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.

  20. Evaluation of ion trap mass spectrometry for the determination of ambient nicotine

    SciTech Connect

    Wise, M.B.; Higgins, C.E.; Ilgner, R.H.; Guerin, M.R.

    1989-01-01

    A thermal desorption unit has been interfaced directly with a Finnigan Ion Trap mass spectrometer (ITMS) for the identification and quantification of trace organics in air. No chromatographic separation of the desorbed constituents is performed prior to introduction into the mass spectrometer. Instead, positive identification of a compound is made based on its collision induced dissociation (CID) tandem (MS/MS) mass spectrum. Using this technique, as little as 50 pg of a constituent desorbed from resin trap can be characterized and quantified with a sample turnaround time of only 2--3 minutes. 3 refs.

  1. Plasticizer contamination from vacuum system O-rings in a quadrupole ion trap mass spectrometer.

    PubMed

    Verge, Kent M; Agnes, George R

    2002-08-01

    The outgassing of plasticizers from Buna-N and Viton o-rings under vacuum lead to undesired ion-molecule chemistry in an Electrospray Quadrupole Ion Trap Mass Spectrometer. In experiments with the helium bath gas pressure >1.2 mTorr, or whenever analyte ions were stored for >100 ms, extensive loss of analyte ions by proton transfer or adduction with o-ring plasticizers bis(2-ethylhexyl) phthalate and bis(2-ethylhexyl) adipate occurred. A temporary solution to this contamination problem was found to be overnight refluxing in hexane of all the o-rings in the vacuum system. This procedure alleviated this plasticizer contamination for approximately 100 hours of operation. These results, and those that lead to identification of the contamination as plasticizers outgassing from o-rings are described. PMID:12216729

  2. Unfolding of Hydrated Alkyl Diammonium Cations Revealed by Cryogenic Ion Mobility-Mass Spectrometry.

    PubMed

    Servage, Kelly A; Fort, Kyle L; Silveira, Joshua A; Shi, Liuqing; Clemmer, David E; Russell, David H

    2015-07-22

    Hydration of the ammonium ion plays a key role in determining the biomolecular structure as well as local structure of water in aqueous environments. Experimental data obtained by cryogenic ion mobility-mass spectrometry (cryo-IM-MS) show that dehydration of alkyl diammonium cations induces a distinct unfolding transition at a critical number of water molecules, n = 21 to 23, n = 24 to 26, and n = 27 to 29, for 1,7-diaminoheptane, 1,8-diaminooctane, and 1,10-diaminodecane, respectively. Results are also presented that reveal compelling evidence for unique structural transitions of hydrated ammonium ions associated with the development of the hydrogen-bond network around individual charged groups. The ability to track the evolution of structure upon stepwise dehydration provides direct insight into the intricate interplay between solvent-molecule interactions that are responsible for defining conformations. Such insights are potentially valuable in understanding how ammonium ion solvation influences conformation(s) of larger biomolecules.

  3. Photoluminescence Spectroscopy of Mass-Selected Electrosprayed Ions Embedded in Cryogenic Rare-Gas Matrixes.

    PubMed

    Kern, Bastian; Greisch, Jean-François; Strelnikov, Dmitry; Weis, Patrick; Böttcher, Artur; Ruben, Mario; Schäfer, Bernhard; Schooss, Detlef; Kappes, Manfred M

    2015-12-01

    An apparatus is presented which combines nanoelectrospray ionization for isolation of large molecular ions from solution, mass-to-charge ratio selection in gas-phase, low-energy-ion-beam deposition into a (co-condensed) inert gas matrix and UV laser-induced visible-region photoluminescence (PL) of the matrix isolated ions. Performance is tested by depositing three different types of lanthanoid diketonate cations including also a dissociation product species not directly accessible by chemical synthesis. For these strongly photoluminescent ions, accumulation of some femto- to picomoles in a neon matrix (over a time scale of tens of minutes to several hours) is sufficient to obtain well-resolved dispersed emission spectra. We have ruled out contributions to these spectra due to charge neutralization or fragmentation during deposition by also acquiring photoluminescence spectra of the same ionic species in the gas phase. PMID:26553589

  4. Mass Spectrometric Observation of Doubly Charged Alkaline-Earth Argon Ions.

    PubMed

    Hattendorf, Bodo; Gusmini, Bianca; Dorta, Ladina; Houk, Robert S; Günther, Detlef

    2016-09-01

    Doubly charged diatomic ions MAr(2+) where M=Mg, Ca, Sr or Ba have been observed by mass spectrometry with an inductively coupled plasma ion source. Abundance ratios are quite high, 0.1 % for MgAr(2+) , 0.4 % for CaAr(2+) , 0.2 % for SrAr(2+) and 0.1 % for BaAr(2+) relative to the corresponding doubly charged atomic ions M(2+) . It is assumed that these molecular ions are formed through reactions of the doubly charged metal ions with neutral argon atoms within the ion source. Bond dissociation energies (D0 ) were calculated and agree well with previously published values. The abundance ratios MAr(+) /M(+) and MAr(2+) /M(2+) generally follow the predicted bond dissociation energies with the exception of MgAr(2+) . Mg(2+) should form the strongest bond with Ar [D0 (MgAr(2+) )=124 to 130 kJ mol(-1) ] but its relative abundance is similar to that of the weakest bound BaAr(2+) (D0 =34 to 42 kJ mol(-1) ). The relative abundances of the various MAr(2+) ions are higher than those expected from an argon plasma at T=6000 K, indicating that collisions during ion extraction reduce the abundance of the MAr(2+) ions relative to the composition in the source. The corresponding singly charged MAr(+) ions are also observed but occur at about three orders of magnitude lower intensity than MAr(2+) . PMID:27252087

  5. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles.

    PubMed

    Marty, Michael T; Baldwin, Andrew J; Marklund, Erik G; Hochberg, Georg K A; Benesch, Justin L P; Robinson, Carol V

    2015-04-21

    Interpretation of mass spectra is challenging because they report a ratio of two physical quantities, mass and charge, which may each have multiple components that overlap in m/z. Previous approaches to disentangling the two have focused on peak assignment or fitting. However, the former struggle with complex spectra, and the latter are generally computationally intensive and may require substantial manual intervention. We propose a new data analysis approach that employs a Bayesian framework to separate the mass and charge dimensions. On the basis of this approach, we developed UniDec (Universal Deconvolution), software that provides a rapid, robust, and flexible deconvolution of mass spectra and ion mobility-mass spectra with minimal user intervention. Incorporation of the charge-state distribution in the Bayesian prior probabilities provides separation of the m/z spectrum into its physical mass and charge components. We have evaluated our approach using systems of increasing complexity, enabling us to deduce lipid binding to membrane proteins, to probe the dynamics of subunit exchange reactions, and to characterize polydispersity in both protein assemblies and lipoprotein Nanodiscs. The general utility of our approach will greatly facilitate analysis of ion mobility and mass spectra.

  6. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  7. Characterization of elusive neutrals and ions by neutralization-reionization mass spectrometry

    SciTech Connect

    Fura, A.

    1992-01-01

    Neutralization-reionization mass spectrometry (NRMS) provides a dilute gas phase environment where a variety of neutral species can be produced and characterized. In NRMS fast neutrals are produced from mass-selected precursor ions. The neutrals can undergo isomerization or dissociation by using a low ionization-energy target for neutralization or by angular resolution. The neutrals are reionized to positive or negative ions that are mass analyzed and detected. Angular resolution is used here to obtain NR spectra of isomeric butenes and N-hexenes. A study of oxirane produced an energy surface of five isomers, showing C-C favored over C-O bond rupture. [center dot]CH[sub 2]CH[sub 2]O[center dot], [sup +]CH[sub 2]CH[sub 2]O[center dot], and the oxirane cation represent bound structures, as do [center dot]CH[sub 2]CH[sub 2]O[sup [minus

  8. Ion attachment mass spectrometry combined with infrared image furnace for thermal analysis: evolved gas analysis studies.

    PubMed

    Kitahara, Yuki; Takahashi, Seiji; Kuramoto, Noriyuki; Sala, Martin; Tsugoshi, Takahisa; Sablier, Michel; Fujii, Toshihiro

    2009-04-15

    A well-established ion attachment mass spectrometer (IAMS) is combined with an in-house single-atom infrared image furnace (IIF) specifically for thermal analysis studies. Besides the detection of many chemical species at atmospheric pressure, including free radical intermediates, the ion attachment mass spectrometer can also be used for the analysis of products emanating from temperature-programmed pyrolysis. The performance and applicability of the IIF-IAMS is illustrated with poly(tetrafluoroethylene) (PTFE) samples. The potential of the system for the analysis of oxidative pyrolysis is also considered. Temperature-programmed decomposition of PTFE gave constant slopes of the plots of temperature versus signal intensity in a defined region and provided an apparent activation energy of 28.8 kcal/mol for the PTFE decomposition product (CF(2))(3). A brief comparison with a conventional pyrolysis gas chromatography/mass spectrometry system is also given.

  9. Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane) which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (TOF-SIMS) it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-

  10. Enhancement of the molecular ion yield in plasma desorption mass spectrometry using explosive matrices.

    PubMed

    Zubarev, R A; Håkansson, P; Sundqvist, B; Talrose, V L

    1997-01-01

    The working hypothesis of this study was that the chemical energy of matrix material may be released, although only on a microscale, under MeV ion bombardment and may assist ejection of large intact bioorganic molecules. To test the hypothesis, the performance of several common explosives, as matrices in plasma desorption mass spectrometry, was compared to the standard matrix, nitrocellulose (NC), which is also a high explosive. Two explosives, RDX and HMX, were found to be new, effective matrices for peptides and proteins. While the performance of RDX was comparable with that of nitrocellulose, HMX gave a superior molecular ion yield and a higher average charge state of desorbed molecular ions compared with NC. Noth RDX and HMX have a similar chemical composition and structure, although the latter is a more powerful explosive. The measured total ion yield allows the conclusion that the increase in the amount of ejected material, due to the chemical energy release in high explosives under MeV ion bombardment, is limited, perhaps to a factor of 2 to 3. The fact that not all tested explosives gave molecular ions from peptides and proteins suggests that other factors, such as gas-phase chemistry, may play a significant role in molecular ion formation.

  11. Relative Stability of Peptide Sequence Ions Generated by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Hendrickson, Christopher L.; Marshall, Alan G.

    2012-04-01

    We report the use of unimolecular dissociation by infrared radiation for gaseous multiphoton energy transfer to determine relative activation energy (Ea,laser) for dissociation of peptide sequence ions. The sequence ions of interest are mass-isolated; the entire ion cloud is then irradiated with a continuous wave CO2 laser, and the first order rate constant, kd, is determined for each of a series of laser powers. Provided these conditions are met, a plot of the natural logarithm of kd versus the natural logarithm of laser power yields a straight line, whose slope provides a measure of Ea,laser. This method reproduces the Ea values from blackbody radiative dissociation (BIRD) for the comparatively large, singly and doubly protonated bradykinin ions (nominally y 9 and y 9 2+ ). The comparatively small sequence ion systems produce Ea,laser values that are systematic underestimates of theoretical barriers calculated with density functional theory (DFT). However, the relative Ea,laser values are in qualitative agreement with the mobile proton model and available theory. Additionally, novel protonated cyclic-dipeptide (diketopiperazine) fragmentation reactions are analyzed with DFT. FT-ICR MS provides access to sequence ions generated by electron capture dissociation, infrared multiphoton dissociation, and collisional activation methods (i.e., b n , y m , c n , z m • ions).

  12. Quantitative Fourier transform ion cyclotron resonance mass spectrometry--the determination of creatinine by isotope dilution mass spectrometry.

    PubMed

    Bristow, Tony; Stokes, Peter; O'Connor, Gavin

    2005-01-01

    Accurate quantitation has been demonstrated on many different types of mass spectrometer. However, quantitative applications of Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) have been limited. In this study, the quantitative potential of FTICRMS has been investigated using an exact matching isotope dilution method for the determination of creatinine in serum. Creatinine is an important clinical biomarker and its measurement is used as an assessment of renal function. The quantitation of creatinine was selected because a high-accuracy high-performance liquid chromatography/mass spectrometry (HPLC/MS) determination using a triple quadrupole mass spectrometer has already been successfully developed in-house. Therefore, a direct comparison of the quantitative capability of FTICRMS could be made against an established method. The accuracy of the quantitation of creatinine was found to be equivalent to that obtained using LC/MS. However, the expanded measurement uncertainty (k = 2) was larger, at 6%, when using FTICRMS compared with 1% when using HPLC/MS with the triple quadrupole mass spectrometer.

  13. A novel isotope analysis of oxygen in uranium oxides: comparison of secondary ion mass spectrometry, glow discharge mass spectrometry and thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pajo, L.; Tamborini, G.; Rasmussen, G.; Mayer, K.; Koch, L.

    2001-05-01

    The natural variation of the oxygen isotopic composition is used among geologists to determine paleotemperatures and the origin of minerals. In recent studies, oxygen isotopic composition has been recognized as a possible tool for identification of the origin of seized uranium oxides in nuclear forensic science. In the last 10 years, great effort has been made to develop new direct and accurate n( 18O)/ n( 16O) measurements methods. Traditionally, n( 18O)/ n( 16O) analyses are performed by gas mass spectrometry. In this work, a novel oxygen isotope analysis by thermal ionization mass spectrometry (TIMS), using metal oxide ion species (UO +), is compared to the direct methods: glow discharge mass spectrometry (GDMS) and secondary ion mass spectrometry (SIMS). Because of the possible application of the n( 18O)/ n( 16O) ratio in nuclear forensics science, the samples were solid, pure UO 2 or U 3O 8 particles. The precision achieved using TIMS analysis was 0.04%, which is similar or even better than the one obtained using the SIMS technique (0.05%), and clearly better if compared to that of GDMS (0.5%). The samples used by TIMS are micrograms in size. The suitability of TIMS as a n( 18O)/ n( 16O) measurement method is verified by SIMS measurements. In addition, TIMS results have been confirmed by characterizing the n( 18O)/ n( 16O) ratio of UO 2 sample also by the traditional method of static vacuum mass spectrometry at the University of Chicago.

  14. Screening and identification of glyceollins and their metabolites by electrospray ionization tandem mass spectrometry with precursor ion scanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method has been developed for screening glyceollins and their metabolites based upon precursor ion scanning. Under higher-energy collision conditions, employing a triple quadrupole mass spectrometer in the negative ion mode, deprotonated glyceollin precursors yield a diagnostic radical product ion...

  15. Ion trace detection algorithm to extract pure ion chromatograms to improve untargeted peak detection quality for liquid chromatography/time-of-flight mass spectrometry-based metabolomics data.

    PubMed

    Wang, San-Yuan; Kuo, Ching-Hua; Tseng, Yufeng J

    2015-03-01

    Able to detect known and unknown metabolites, untargeted metabolomics has shown great potential in identifying novel biomarkers. However, elucidating all possible liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) ion signals in a complex biological sample remains challenging since many ions are not the products of metabolites. Methods of reducing ions not related to metabolites or simply directly detecting metabolite related (pure) ions are important. In this work, we describe PITracer, a novel algorithm that accurately detects the pure ions of a LC/TOF-MS profile to extract pure ion chromatograms and detect chromatographic peaks. PITracer estimates the relative mass difference tolerance of ions and calibrates the mass over charge (m/z) values for peak detection algorithms with an additional option to further mass correction with respect to a user-specified metabolite. PITracer was evaluated using two data sets containing 373 human metabolite standards, including 5 saturated standards considered to be split peaks resultant from huge m/z fluctuation, and 12 urine samples spiked with 50 forensic drugs of varying concentrations. Analysis of these data sets show that PITracer correctly outperformed existing state-of-art algorithm and extracted the pure ion chromatograms of the 5 saturated standards without generating split peaks and detected the forensic drugs with high recall, precision, and F-score and small mass error.

  16. A Proteomics Grade Electron Transfer Dissociation-enabled Hybrid Linear Ion Trap-orbitrap Mass Spectrometer

    PubMed Central

    McAlister, Graeme C.; Berggren, W. Travis; Horning, Stevan; Makarov, Alexander; Phanstiel, Doug; Griep-Raming, Jens; Stafford, George; Swaney, Danielle L.; Syka, John E. P.; Zabrouskov, Vlad

    2008-01-01

    Here we describe the modification of a quadrupole linear ion trap-orbitrap hybrid (QLT-orbitrap) mass spectrometer to accommodate a negative chemical ionization (NCI) source. The NCI source is used to produce fluoranthene radical anions for imparting electron transfer dissociation (ETD). The anion beam is stable, robust, and intense so that a sufficient amount of reagents can be injected into the QLT in only 4 - 8 ms. Following ion/ion reaction in the QLT, ETD product ions are mass-to-charge (m/z) analyzed in either the QLT (for speed and sensitivity) or the orbitrap (for mass resolution and accuracy). Here we describe the physical layout of this device, parametric optimization of anion transport, an evaluation of relevant ETD figures of merit, and the application of this instrument to protein sequence analysis. Described proteomic applications include complex peptide mixture analysis, post-translational modification (PTM) site identification, isotope-encoded quantitation, large peptide characterization, and intact protein analysis. From these experiments we conclude the ETD-enabled orbitrap will provide the proteomic field with several new opportunities and represents an advance in protein sequence analysis technologies. PMID:18613715

  17. A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps

    SciTech Connect

    Greenwood, J. B.; Kelly, O.; Calvert, C. R.; Duffy, M. J.; King, R. B.; Belshaw, L.; Graham, L.; Alexander, J. D.; Williams, I. D.; Bryan, W. A.; Turcu, I. C. E.; Cacho, C. M.; Springate, E.

    2011-04-15

    In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components.

  18. Static secondary ion mass spectrometry characterization of nail polish and paint surfaces

    NASA Astrophysics Data System (ADS)

    Gresham, Garold L.; Groenewold, Gary S.; Bauer, William F.; Ingram, Jani C.; Avci, Recep

    1999-02-01

    A variety of paint and fingernail polish samples, which were visually similar, but had different chemical compositions, were analyzed using three static secondary ion mass spectrometry (SIMS) techniques. These techniques included: (1) high spatial resolution/high mass resolution imaging time-of-flight SIMS; (2) analysis of stabilized high mass secondary ions with an ion trap SIMS capable of MS/MS; (3) qualitative characterization using a quadrupole SIMS with `pulsed extraction' charge compensation. In some cases, distinguishing between different coatings was easily achieved because of the presence of dominant ions derived from the components of the coating materials in the SIMS spectra. In other instances, coating distinction was difficult within a product group because of spectral complexity; for this reason, multivariate statistical techniques were employed, which allowed meaningful classification of spectra. Partial Least Squares and Principle Component Analysis were applied to quadrupole SIMS data. When using Partial Least Squares analysis reasonably accurate coating identification was achieved with the preliminary data with overall correct identifications at greater than 90% sensitivity.

  19. Advanced Automation for Ion Trap Mass Spectrometry-New Opportunities for Real-Time Autonomous Analysis

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, C. M.; Salmonson, J. D.; Yost, R. A.; Griffin, T. P.; Yates, N. A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    The utility of MS/MS for both target compound analysis and the structure elucidation of unknowns has been described in a number of references. A broader acceptance of this technique has not yet been realized as it requires large, complex, and costly instrumentation which has not been competitive with more conventional techniques. Recent advancements in ion trap mass spectrometry promise to change this situation. Although the ion trap's small size, sensitivity, and ability to perform multiple stages of mass spectrometry have made it eminently suitable for on-line, real-time monitoring applications, advance automation techniques are required to make these capabilities more accessible to non-experts. Towards this end we have developed custom software for the design and implementation of MS/MS experiments. This software allows the user to take full advantage of the ion trap's versatility with respect to ionization techniques, scan proxies, and ion accumulation/ejection methods. Additionally, expert system software has been developed for autonomous target compound analysis. This software has been linked to ion trap control software and a commercial data system to bring all of the steps in the analysis cycle under control of the expert system. These software development efforts and their utilization for a number of trace analysis applications will be described.

  20. Selective injection and isolation of ions in quadrupole ion trap mass spectrometry using notched waveforms created using the inverse Fourier transform

    SciTech Connect

    Soni, M.H.; Cooks, R.G. )

    1994-08-01

    Broad-band excitation of ions is accomplished in the quadrupole ion trap mass spectrometer using notched waveforms created by the SWIFT (stored waveform inverse Fourier transform) technique. A series of notched SWIFT pulses are applied during the period of ion injection from an external Cs[sup +] source to resonantly eject all ions whose resonance frequencies fall within the frequency range of the pulse while injecting only those analyte ions whose resonance frequencies fall within the limits of the notch. This allows selective injection and accumulation of the ions of interest and continuous ejection of the unwanted ions. This is shown to result in significant improvement in S/N ratio, resolution, and sensitivity for the analyte ions of interest. Selective ion injection is demonstrated by injecting the protonated molecules of peptides VSV and gramicidin S and the intact cation of l-carnitine hydrochloride, using singly notched SWIFT pulses. Multiply notched SWIFT pulses are used to simultaneously inject ions of different m/z values of l-carnitine hydrochloride into the ion trap. A new coarse/fine ion isolation procedure, which employs a doubly notched SWIFT pulse, is demonstrated for isolating ions of a single m/z value of 4-bromobiphenyl from a population of trapped ions. 36 refs., 10 figs., 2 tabs.

  1. Characterization of Polylactides with Different Stereoregularity Using Electrospray Ionization Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Lee, Jong Wha; Chang, Taihyun; Kim, Hugh I.

    2014-10-01

    We investigated the effect of stereoregularity on the gas-phase conformations of linear and cyclic polylactides (PLA) using electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) combined with molecular dynamics simulations. IM-MS analysis of PLA ions shows intriguing difference between the collision cross section (ΩD) value of poly-L-lactide (PLLA) and poly-LD-lactide (PLDLA) ions with respect to their chain architecture and stereoregularity. In the singly sodiated linear PLA ( l-PLA•Na+) case, both l-PLLA and l-PLDLA up to 11mer have very similar ΩD values, but the ΩD values of l-PLLA are greater than that of l-PLDLA ions for larger ions. In the case of cyclic PLA ( c-PLA), c-PLLA•Na+ is more compact than c-PLDLA•Na+ for short PLA ions. However, c-PLLA exhibits larger ΩD value than c-PLDLA for PLA ions longer than 13mer. The origin of difference in the ΩD values was investigated using theoretical investigation of PLAs in the gas phase. The gas-phase conformation of PLA ions is influenced by Na+-oxygen coordination and the weak intramolecular hydrogen bond interaction, which are more effectively formed in more flexible chains. Therefore, the less flexible PLLA has a larger ΩD value than PLDLA. However, for short c-PLA, concomitant maximization of both Na+-oxygen coordination and hydrogen bond interaction is difficult due to the constricted chain freedom, which makes the ΩD value of PLAs in this range show a different trend compared with other PLA ions. Our study facilitates the understanding of correlation between stereoregularity of PLAs and their structure, providing potential utility of IM-MS to characterize stereoisomers of polymers.

  2. Microfabricated ion trap mass spectrometry for characterization of organics and potential biomarkers

    NASA Astrophysics Data System (ADS)

    Austin, Daniel

    Mass spectrometry is a powerful analytical technique with a strong history in planetary exploration, and is the method of choice for detection and identification of organic and biological molecules. MS instrumentation can also be combined with techniques such as gas chromatography, liquid chromatography, or chiral separation, which are particularly important for analysis of complex mixtures or possible homochirality. Ion traps have several inherent advantages, including speed of analysis (important for GC-MS), MS/MS capabilities (important to identification of unknown compounds), excellent sensitivity, and ease of coupling with ambient ionization techniques that are under development for biomolecule detection. We report on progress in using microfabrication techniques to produce radiofrequency quadrupole ion traps that are much smaller, lighter, and lower power than existing instruments. We produce ion traps using an assembly of two ceramic plates, the facing surfaces of which are lithographically patterned with electrodes. This approach allows great flexibility in the trap geometry, and we have demonstrated working mass spectrometers with quadrupole, linear, and toroidal trapping fields. The approach also allows correction of higher-order terms in the electric field. With this system, mass resolution of up to 1300 has been demonstrated, which is adequate for identification of a wide range of potential biomarkers. Capabilities such as tandem analysis have also been demonstrated. Of particular interest is an ion trap that contains both quadrupole and toroidal trapping regions simultaneously and coaxially. Ions can be trapped as a large reservoir in the toroidal region and introduced in small batches to the quadrupole region for mass analysis. This capability is particularly valuable where the sample of interest is very small, such as microfossil with trace organics, and where the organic inventory is both complex and unknown. Development and results of this device

  3. Characterization of phosphoantigens by high-performance anion-exchange chromatography-electrospray ionization ion trap mass spectrometry and nanoelectrospray ionization ion trap mass spectrometry.

    PubMed

    Pont, F; Luciani, B; Belmant, C; Fournié, J J

    2001-08-01

    New phosphorylated microbial metabolites referred to as phosphoantigens activate immune responses in humans. Although these molecules have leading applications in medical research, no direct method allows their rapid and unambiguous structural identification. Here, we interfaced online HPAEC (high performance anion-exchange chromatography) with ESI-ITMS (electrospray ionization ion trap mass spectrometry) to identify such pyrophosphorylated molecules. A self-regenerating anion suppressor located upstream of electrospray ionization enabled the simultaneous detection of pyrophosphoester by conductimetry, UV and MS. By HPAEC-ITMS and HPAEC-ITMS2, a single run permitted characterization of reference phosphoantigens and of related structures. Although all compounds were resolved by HPAEC, MS enabled their detection and identification by [M-H]- and fragment ions. Isobaric phosphoantigen analogues were also separated by HPAEC and distinguished by MS2. The relevance of this device was demonstrated for phosphoantigens analysis in human urine and plasma. Furthermore, identification of natural phosphoantigens by automatically generated 2D mass spectra from nano-ESI-ITMS is presented. This last technique permits the simultaneous performance of molecular screening of natural phosphoantigen extracts and their identification.

  4. Ion funnel augmented Mars atmospheric pressure photoionization mass spectrometry for in situ detection of organic molecules.

    PubMed

    Johnson, Paul V; Hodyss, Robert; Beauchamp, J L

    2014-11-01

    Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility.

  5. Ion trap mass spectrometry on a comet nucleus: the Ptolemy instrument and the Rosetta space mission.

    PubMed

    Todd, John F J; Barber, Simeon J; Wright, Ian P; Morgan, Geraint H; Morse, Andrew D; Sheridan, Simon; Leese, Mark R; Maynard, Jon; Evans, Suzanne T; Pillinger, Colin T; Drummond, Duncan L; Heys, Samantha C; Huq, S Ejaz; Kent, Barry J; Sawyer, Eric C; Whalley, Martin S; Waltham, Nicholas R

    2007-01-01

    In May 2014, the Rosetta spacecraft is scheduled to rendezvous with the comet Churyumov-Gerasimenko ('67P'). One of the instruments on board the 'Lander' which will descend on to the surface of the comet is a miniaturised GC/MS system that incorporates an ion trap mass spectrometer, specially developed for isotope ratio analysis. This article describes the development and optimisation of the ion trap for this unique application, and presents a summary of the range of pre-programmed experiments that will contribute to the characterisation of the solid and volatile cometary materials.

  6. The Spontaneous Loss of Coherence Catastrophe in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Aizikov, Konstantin; Mathur, Raman; O’Connor, Peter B.

    2009-01-01

    The spontaneous loss of coherence catastrophe (SLCC) is a frequently observed, yet poorly studied, space-charge related effect in Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). This manuscript presents an application of the filter diagonalization method (FDM) in the analysis of this phenomenon. The temporal frequency behavior reproduced by frequency shift analysis using the FDM shows the complex nature of the SLCC, which can be explained by a combination of factors occurring concurrently, governed by electrostatics and ion packet trajectories inside the ICR cell. PMID:19013078

  7. Development of an ion attachment mass spectrometer for direct detection of intermediates in combustion flames.

    PubMed

    Torii, Takahiro; Nishimura, Takashi; Nakamura, Megumi; Shiokawa, Yoshiro; Matsumoto, Kozo; Kitagawa, Kuniyuki

    2008-11-01

    A system with Li+ ion attachment (IA) ionization has been developed for the direct detection of intermediates formed in burning flames by mass spectrometry. Dimethyl ether (DME) among alternative fuels was selected as a test substance to examine the capability of the system. As a result, intermediates generated in a premixed DME-air flame were directly detectable as Li+ adduct ions. By moving the burner on an X-Y stage, spatial distribution profiles of different species, including unburned DME and formaldehyde, were obtained for three types of flames: diffusion, partially premixed, and premixed.

  8. Ion trap mass spectrometry on a comet nucleus: the Ptolemy instrument and the Rosetta space mission.

    PubMed

    Todd, John F J; Barber, Simeon J; Wright, Ian P; Morgan, Geraint H; Morse, Andrew D; Sheridan, Simon; Leese, Mark R; Maynard, Jon; Evans, Suzanne T; Pillinger, Colin T; Drummond, Duncan L; Heys, Samantha C; Huq, S Ejaz; Kent, Barry J; Sawyer, Eric C; Whalley, Martin S; Waltham, Nicholas R

    2007-01-01

    In May 2014, the Rosetta spacecraft is scheduled to rendezvous with the comet Churyumov-Gerasimenko ('67P'). One of the instruments on board the 'Lander' which will descend on to the surface of the comet is a miniaturised GC/MS system that incorporates an ion trap mass spectrometer, specially developed for isotope ratio analysis. This article describes the development and optimisation of the ion trap for this unique application, and presents a summary of the range of pre-programmed experiments that will contribute to the characterisation of the solid and volatile cometary materials. PMID:17154436

  9. Determination of interfering triazine degradation products by gas chromatography-ion trap mass spectrometry.

    PubMed

    Magnuson, M L; Speth, T F; Kelty, C A

    2000-01-28

    Deethylatrazine (DEA), an atrazine degradation product, has been added to the US Environmental Protection Agency's Drinking Water Contaminant Candidate List (CCL). In its gas chromatographic analysis, DEA can coelute with deisopropylatrazine (DIA), another degradation product. The present work demonstrates that the coelution of DEA and DIA can induce a significant (up to approximately 50%) positive bias in the DEA determination, when using an ion-trap mass spectrometer as the detector. The DIA determination is unaffected by the coelution within experimental error. This may be explained in terms of gas-phase ion fragment populations. A correction factor to the observed DEA concentration may be developed based on the measured DIA concentration.

  10. Electrospray liquid chromatography quadrupole ion trap mass spectrometry determination of phenyl urea herbicides in water.

    PubMed

    Draper, W M

    2001-06-01

    Phenyl urea herbicides were determined in water by electrospray quadrupole ion trap liquid chromatography-mass spectrometry (ES-QIT-LC-MS). Over a wide concentration range [M - H](-) and MH(+) ions were prominent in ES spectra. At high concentrations dimer and trimer ions appeared, and sodium, potassium, and ammonium adducts also were observed. In the case of isopturon, source collision-induced dissociation (CID) fragmentation with low offset voltages increased the ion current associated with MH(+) and diminished dimer and trimer ion abundance. In the mass analyzer CID involved common pathways, for example, daughter ions of [M - H](-) resulted from loss of R(2)NH in N',N'-dialkyl ureas or loss of C(3)H(5)NO(2) (87 amu) in N'-methoxy ureas. A 2 mm (i.d.) x 15 cm C(18) reversed phase column was used for LC-MS with a linear methanol/water gradient and 0.5 mL/min flow rate. Between 1 and 100 pg/microg/L the response was highly linear with instrument detection limits ranging from <10 to 50 pg injected. Whereas the positive ES signal intensity was greater for each of the compounds except fluometuron, negative ion monitoring gave the highest signal-to-noise ratio. Analysis of spiked Colorado River water, a source high in total dissolved solids and total organic carbon, demonstrated that ES-QIT-LC-MS was routinely capable of quantitative analysis at low nanogram per liter concentrations in conjunction with a published C(18) SPE method. Under these conditions experimental method detection limits were between 8.0 and 36 ng/L, and accuracy for measurements in the 20-50 parts per trillion range was from 77 to 96%. Recoveries were slightly lower in surface water (e.g., 39-76%), possibly due to suppression of ionization. PMID:11409961

  11. Mass analysis addition to the Differential Ion Flux Probe (DIFP) study

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Jolley, Richard

    1994-01-01

    The objective of this study is to develop a technique to measure the characteristics of space plasmas under highly disturbed conditions; e.g., non-Maxwellian plasmas with strong drifting populations and plasmas contaminated by spacecraft outgassing. The approach, conducted in conjunction with current MSFC activities, is to extend the capabilities of the Differential Ion Flux Probe (DIFP) to include a high throughput mass measurement that does not require either high voltage or contamination sensitive devices such as channeltron electron multipliers or microchannel plates. This will significantly reduce the complexity and expense of instrument fabrication, testing, and integration of flight hardware compared to classical mass analyzers. The feasibility of the enhanced DIFP has been verified by using breadboard test models in a controlled plasma environment. The ability to manipulate particles through the instrument regardless of incident angle, energy, or ionic component has been amply demonstrated. The energy analysis mode is differential and leads directly to a time-of-flight mass measurement. With the new design, the DIFP will separate multiple ion streams and analyze each stream independently for ion flux intensity, velocity (including direction of motion), mass, and temperature (or energy distribution). In particular, such an instrument will be invaluable on follow-on electrodynamic TSS missions and, possibly, for environmental monitoring on the space station.

  12. Simultaneous Deposition of Mass Selected Anions and Cations: Improvements in Ion Delivery for Matrix Isolation Experiments

    NASA Astrophysics Data System (ADS)

    Goodrich, Michael E.; Moore, David T.

    2016-06-01

    A focus of the research in our group has been to develop improved methods for ion delivery in matrix isolation experiments. We have previously reported a method to co-deposit low energy, mass selected metal anions and a rare gas counter cation.a A modification allowing for mass selection of both the anion and cation will be discussed. Results from preliminary experiments of mass selected, low energy Cu- and SF5+ will also be highlighted. To our knowledge, these experiments are the first time two mass selected beams of ions have been simultaneously deposited into a cryogenic matrix. Co-deposition of the ions into an argon matrix doped with 0.02% CO at 20K resulted in the observation of bands assigned to SF5+ and anionic copper carbonyl complexes, Cu(CO)n- (n=1-3). Upon irradiation of the matrix with a narrow band, blue LED, the copper carbonyl complexes are converted to the neutral analogues, while the fate of the photodetached electrons can be directly tracked, as a decrease of the SF5+ band and a growth of the neutral SF5 band are observed. aLudwig, R. M.; Moore, D. T.; J. Chem. Phys. 139, 244202 (2013).

  13. Probing the spatial and temporal variability of Enceladus mass-loading from ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Wei, H.; Russell, C. T.; Powell, R. L.; Cowee, M.; Leisner, J. S.; Jia, Y.; Dougherty, M. K.

    2013-12-01

    Enceladus plays a critical role in the Saturnian system by loading a significant amount of neutrals, ions and dust into the inner magnetosphere. Enceladus is also considered as the ultimate source for the dusty E-ring and the extended neutral cloud from 3.5 to 6.5 Saturn radii. When the freshly-added neutrals are ionized and accelerated by the electric and magnetic fields, left-handed electromagnetic waves, called ion cyclotron waves (ICW), grow from the free energy of the highly anisotropic distribution of these ions. The ICWs have been widely used to probe the rate of mass loading in different plasma environments in the solar system, because the wave power is proportional to the density and energy of the pickup ions. At Enceladus, ICWs are detected by Cassini not only near the moon but throughout the extended neutral cloud in all local times. However, the wave power is largely enhanced near the moon's longitude rather than far away from it. This indicates that on top of the relatively azimuthally-symmetric mass-loading source of the neutral cloud, there is a much denser cloud of neutrals centered on the moon and rotating with it. The latter source is the instantaneous mass-loading from plume of Enceladus, and it leads to asymmetry and dynamics in the magnetosphere. We investigate all available Cassini Enceladus flyby data to obtain a 3D spatial profile of the ICW power near the moon. By comparing with waves at longitudes far away from the moon, we investigate how significant is the plume mass-loading with respect to the neutral cloud mass-loading. We also compare the waves along several groups of identical trajectories to examine the temporal variability of the plume.

  14. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Ferguson, Jill Wisnewski

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO+), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  15. Quadrupole mass filter with means to generate a noise spectrum exclusive of the resonant frequency of the desired ions to deflect stable ions

    NASA Technical Reports Server (NTRS)

    Langmuir, R. V. (Inventor)

    1967-01-01

    A mass spectrometer for the separation or separate indication of ions of different specific electric charges is reported. The instrument uses a periodically varying electric field in its analyzing section to excite the injected ions into oscillations while traveling along their trajectories which are either stable or unstable depending on specific parameters. Only stable trajectory ions pass through the electric field to the collector for indication.

  16. Characterizing the gas phase ion chemistry of an ion trap mobility spectrometry based explosive trace detector using a tandem mass spectrometer.

    PubMed

    Kozole, Joseph; Tomlinson-Phillips, Jill; Stairs, Jason R; Harper, Jason D; Lukow, Stefan R; Lareau, Richard T; Boudries, Hacene; Lai, Hanh; Brauer, Carolyn S

    2012-09-15

    A commercial-off-the-shelf (COTS) ion trap mobility spectrometry (ITMS) based explosive trace detector (ETD) has been interfaced to a triple quadrupole mass spectrometer (MS/MS) for the purpose of characterizing the gas phase ion chemistry intrinsic to the ITMS instrument. The overall objective of the research is to develop a fundamental understanding of the gas phase ionization processes in the ITMS based ETD to facilitate the advancement of its operational effectiveness as well as guide the development of next generation ETDs. Product ion masses, daughter ion masses, and reduced mobility values measured by the ITMS/MS/MS configuration for a suite of nitro, nitrate, and peroxide containing explosives are reported. Molecular formulas, molecular structures, and ionization pathways for the various product ions are inferred using the mass and mobility data in conjunction with density functional theory. The predominant product ions are identified as follows: [TNT-H](-) for trinitrotoluene (TNT), [RDX+Cl](-) for cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), [NO(3)](-) for ethylene glycol dinitrate (EGDN), [NG+NO(3)](-) for nitroglycerine (NG), [PETN+NO(3)](-) for pentaerythritol tetranitrate (PETN), [HNO(3)+NO(3)](-) for ammonium nitrate (NH(4)NO(3)), [HMTD-NC(3)H(6)O(3)+H+Cl](-) for hexamethylene triperoxide diamine (HMTD), and [(CH(3))(2)CNH(2)](+) for triacetone triperoxide (TATP). The predominant ionization pathways for the formation of the various product ions are determined to include proton abstraction, ion-molecule attachment, autoionization, first-order and multi-order thermolysis, and nucleophilic substitution. The ion trapping scheme in the reaction region of the ITMS instrument is shown to increase predominant ion intensities relative to the secondary ion intensities when compared to non-ion trap operation. PMID:22967626

  17. Proposal for a novel method of precisely determining the atomic mass unit by the accumulation of ions

    NASA Astrophysics Data System (ADS)

    Gläser, Michael

    1991-10-01

    An experiment for direct measurement of the atomic mass unit is proposed. A mononuclidic ion flux is collected and accumulated to an amount that can be weighed with high accuracy. Simultaneously, the ion current is measured and integrated. By means of voltage and resistance references based on the Josephson and the quantum Hall effect, the mass is then related to atomic mass by frequency counting over a certain time interval. This experiment may enable a new, physical definition of the kilogram.

  18. High Spatial Resolution Isotopic Abundance Measurements by Secondary Ion Mass Spectrometry: Status and Prospects

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.

    2007-12-01

    Secondary Ion Mass Spectrometry, SIMS or ion microprobe analysis, has become an important tool for geochemistry because of its ability study the distributions of elemental and isotopic abundances in situ on polished samples with high (typically a few microns to sub-micron) spatial resolution. In addition, SIMS exhibits high sensitivity for a wide range of elements (H to Pu) so that isotope analyses can sometimes be performed for elements that comprise only trace quantities of some mineral phase (e.g., Pb in zircon) or on major and/or minor elements in very small samples (e.g., presolar dust grains). Offsetting these positive attributes are analytical difficulties due to the complexity of the sputtering source of analyte ions: (1) relatively efficient production of molecular ion species (especially from a complex matrix such as most natural minerals) that cause interferences at the same nominal mass as atomic ions of interest, and (2) quantitation problems caused by variations in the ionization efficiencies of different elements and/or isotopes depending upon the chemical state of the sample surface during sputtering--the so-called "matrix effects". Despite the availability of high mass resolution instruments (e.g., SHRIMP II/RG, CAMECA 1270/1280/NanoSIMS), the molecular ion interferences effectively limit the region of the mass table that can be investigated in most samples to isotope systems at Ni or lighter or at Os or heavier. The matrix effects and the sensitivity of instrumental mass discrimination to the physical state of the sample surface can hamper reproducibility and have contributed to a view that SIMS analyses, especially for so- called stable isotopes, are most appropriate for extraterrestrial samples which are often small, rare, and can exhibit large magnitude isotopic effects. Recent improvements in instrumentation and technique have extended the scope of SIMS isotopic analyses and applications now range from geochronology to paleoclimatology to

  19. Nonlinear calibration curves in secondary ion mass spectrometry for quantitative analysis of gesi heterostructures with nanoclusters

    NASA Astrophysics Data System (ADS)

    Drozdov, M. N.; Drozdov, Yu. N.; Novikov, A. V.; Yunin, P. A.; Yurasov, D. V.

    2016-03-01

    For the first time in the practice of secondary ion mass spectrometry, we obtained a nonlinear calibration curve for the ratio of the cluster and elementary secondary ions of germanium Ge2/Ge without secondary ions of silicon, which enables the quantification of germanium in Ge x Si1- x heterostructures in the entire range of 0 < x ≤ 1. We developed a method for quantitative lateral analysis based on the plotting of a lateral map of x. An algorithm to identify and analyze the lateral heterogeneity of x in Ge x Si1- x heterostructures with 3D clusters by comparing the results of depth profiling analysis, obtained using linear and nonlinear calibration curves, is developed, and concentration x in the self-assembled nanoislands is determined.

  20. EVIDENCE FOR LOCAL ACCELERATION OF SUPRATHERMAL HEAVY ION OBSERVATIONS DURING INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect

    Gruesbeck, Jacob R.; Lepri, Susan T.; Zurbuchen, Thomas H.; Christian, Eric R.

    2015-01-20

    Suprathermal particles are an important seed population for a variety of energetic particles found throughout the heliosphere, but their origin is in debate. We present, for the first time, high-cadence observations of suprathermal heavy ions during interplanetary coronal mass ejections (ICMEs), from the Suprathermal Ion Composition Spectrometer on board the Wind spacecraft, and investigate their ionic composition and compare it to the bulk solar wind plasma composition, observed from the Solar Wind Ion Composition Spectrometer on board the Advanced Composition Explorer. We find that the composition of the suprathermal plasma is related to the local bulk solar wind plasma and not to the plasma upstream of the ICME. This implies that the suprathermal plasma is accelerated from the local bulk solar wind plasma and not the upstream solar wind plasma.

  1. Human Biomonitoring of DNA Adducts by Ion Trap Multistage Mass Spectrometry.

    PubMed

    Guo, Jingshu; Turesky, Robert J

    2016-01-01

    Humans are continuously exposed to hazardous chemicals in the environment. These chemicals or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. The identification of DNA adducts is required for understanding exposure and the etiological role of a genotoxic chemical in cancer risk. The analytical chemist is confronted with a great challenge because the levels of DNA adducts generally occur at <1 adduct per 10(7) nucleotides, and the amount of tissue available for measurement is limited. Ion trap mass spectrometry has emerged as an important technique to screen for DNA adducts because of the high level sensitivity and selectivity, particularly when employing multi-stage scanning (MS(n) ). The product ion spectra provide rich structural information and corroborate the adduct identities even at trace levels in human tissues. Ion trap technology represents a significant advance in measuring DNA adducts in humans. © 2016 by John Wiley & Sons, Inc. PMID:27584705

  2. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    DOE PAGESBeta

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts andmore » noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.« less

  3. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    NASA Astrophysics Data System (ADS)

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin S.; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-12-01

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm employs an analytical approach to identify and remove artifacts from the data, decreasing the likelihood of false identifications in subsequent data processing. Following application of the algorithm, IMS-MS measurement sensitivity is greatly increased and artifacts that previously limited the utility of applying the Hadamard transform to IMS are avoided. [Figure not available: see fulltext.

  4. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  5. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    SciTech Connect

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

  6. Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs.

    PubMed

    Wu, C; Siems, W F; Hill, H H

    2000-01-15

    A secondary electrospray ionization (SESI) method was developed as a nonradioactive ionization source for ion mobility spectrometry (IMS). This SESI method relied on the gas-phase interaction between charged particles created by electrospray ionization (ESI) and neutral gaseous sample molecules. Mass spectrometry (MS) was used as the detection method after ion mobility separation for ion identification. Preliminary investigations focussed on understanding the ionization process of SESI. The performance of ESI-IMS and SESI-IMS for illicit drug detection was evaluated by determining the analytical figures of merit. In general, SESI had a higher ionization efficiency for small volatile molecules compared with the electrospray method. The potential of developing a universal interface for both GC- and LC-MS with an addition stage of mobility separation was demonstrated.

  7. Organic secondary ion mass spectrometry: signal enhancement by water vapor injection.

    PubMed

    Mouhib, Taoufiq; Delcorte, Arnaud; Poleunis, Claude; Bertrand, Patrick

    2010-12-01

    The enhancement of the static secondary ion mass spectrometry (SIMS) signals resulting from the injection, closely to the sample surface, of H(2)O vapor at relatively high-pressure, was investigated for a set of organic materials. While the ion signals are generally improved with increasing H(2)O pressure upon 12 keV Ga(+) bombardment, a specific enhancement of the protonated ion intensity is clearly demonstrated in each case. For instance, the presence of H(2)O vapor induces an enhancement by one order of magnitude of the [M + H](+) static SIMS intensity for the antioxidant Irgafos 168 and a ∼1.5-fold increase for polymers such as poly(vinyl pyrrolidone).

  8. Electrospray ionization ion-trap multiple-stage mass spectrometry of Quillaja saponins.

    PubMed

    Bankefors, Johan; Broberg, Susanna; Nord, Lars I; Kenne, Lennart

    2011-07-01

    Fifteen identified C-18 fatty acyl-containing saponin structures from Quillaja saponaria Molina have been investigated by electrospray ionization ion-trap multiple-stage mass spectrometry (ESI-IT-MS(n)) in positive ion mode. Their MS(1)-MS(3) spectra were analyzed and ions corresponding to useful fragments, important for the structural identification of Quillaja saponins, were recognized. A few key fragments could describe the structural variations in the C-3 and the C-28 oligosaccharides of the Quillaja saponins. A flowchart involving a stepwise procedure based on key fragments from the MS(1)-MS(3) spectra of these saponins, together with key fragments from these saponins and 13 previously investigated saponins, was constructed for the identification of structural elements in Quillaja saponins. Peak intensity ratios in MS(3) spectra were found to be correlated to structural features of the investigated saponins and is therefore of value for the identification of regioisomers.

  9. Automated Gain Control Ion Funnel Trap for Orthogonal Time-of-Flight Mass Spectrometry

    PubMed Central

    Ibrahim, Yehia M.; Belov, Mikhail E.; Liyu, Andrei V.; Smith, Richard D.

    2009-01-01

    Time-of-flight mass spectrometry (TOF MS) is increasingly used in proteomics research. Herein, we report on the development and characterization of a TOF MS instrument with improved sensitivity equipped with an electrodynamic ion funnel trap (IFT) that employs an automated gain control (AGC) capability. The IFT-TOF MS was coupled to a reversed-phase capillary liquid chromatography (RPLC) separation and evaluated in experiments with complex proteolytic digests. When applied to a global tryptic digest of Shewanella oneidensis proteins, an order-of-magnitude increase in sensitivity compared to that of the conventional continuous mode of operation was achieved due to efficient ion accumulation prior to TOF MS analysis. As a result of this sensitivity improvement and related improvement in mass measurement accuracy, the number of unique peptides identified in the AGC-IFT mode was 5-fold greater than that obtained in the continuous mode. PMID:18512944

  10. Characterization of dihydrostreptomycin-related substances by liquid chromatography coupled to ion trap mass spectrometry.

    PubMed

    Pendela, Murali; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2009-06-01

    Dihydrostreptomycin sulphate (DHS) is a water-soluble, broad-spectrum aminoglycoside antibiotic. For quantitative analysis, the European Pharmacopoeia (Ph. Eur.) prescribes an ion-pairing liquid chromatography/ultraviolet (LC/UV) method using a C18 stationary phase. Several unknown compounds were detected in commercial samples. Hence, for characterization of these unknown peaks in a commercial DHS sample, the Ph. Eur. method was coupled to mass spectrometry (MS). However, since the Ph. Eur. method uses a non-volatile mobile phase, each peak eluted was collected and desalted before introduction into the mass spectrometer. The desalting procedure was applied to remove the non volatile salt, buffer and ion-pairing reagent in the collected fraction. In total, 20 impurities were studied and 14 of them were newly characterized. Five impurities which are already reported in the literature were also traced in this LC/UV method. PMID:19449319

  11. Ion Mobility-Mass Spectrometry Differentiates Protein Quaternary Structures Formed in Solution and in Electrospray Droplets.

    PubMed

    Han, Linjie; Ruotolo, Brandon T

    2015-07-01

    Electrospray ionization coupled to mass spectrometry is a key technology for determining the stoichiometries of multiprotein complexes. Despite highly accurate results for many assemblies, challenging samples can generate signals for artifact protein-protein binding born of the crowding forces present within drying electrospray droplets. Here, for the first time, we study the formation of preferred protein quaternary structures within such rapidly evaporating nanodroplets. We use ion mobility and tandem mass spectrometry to investigate glutamate dehydrogenase dodecamers and serum amyloid P decamers as a function of protein concentration, along with control experiments using carefully chosen protein analogues, to both establish the formation of operative mechanisms and assign the bimodal conformer populations observed. Further, we identify an unprecedented symmetric collision-induced dissociation pathway that we link directly to the quaternary structures of the precursor ions selected.

  12. Avogadro constant and ion accumulation: steps towards a redefinition of the SI unit of mass

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Gläser, Michael

    2003-08-01

    This paper summarizes the activities of the several national metrology institutes and one transnational institute in replacing the kilogram artefact by the mass of a certain number of atoms. This task is based on two different experiments: a very accurate determination of the Avogadro constant, NA, and the accumulation of decelerated gold ions, which lead to the atomic mass of silicon and gold respectively. The relative uncertainties reached so far are in the first case two parts in 107, and in the latter of the order of 1% due to the early state of the research work.

  13. Enhancement of molecular ions in mass spectrometry using an ultrashort optical pulse in multiphoton ionization.

    PubMed

    Shimizu, Takashi; Watanabe-Ezoe, Yuka; Yamaguchi, Satoshi; Tsukatani, Hiroko; Imasaka, Tomoko; Zaitsu, Shin-Ichi; Uchimura, Tomohiro; Imasaka, Totaro

    2010-05-01

    The spectral domain of an ultraviolet femtosecond laser was expanded by stimulated Raman scattering/four-wave Raman mixing, and the resulting laser pulse was compressed using a pair of gratings. The pulse width was then measured using an autocorrelator comprised of a Michelson interferometer equipped with a multiphoton ionization/mass spectrometer which was used as a two-photon detector. A gas chromatograph/mass spectrometer was employed to analyze triacetone triperoxide (TATP), and the molecular ion induced by multiphoton ionization was substantially enhanced by decreasing the laser pulse width. PMID:20364824

  14. Measurement of the summed residual projectile mass in relativistic heavy-ion collisions

    SciTech Connect

    Stevenson, J.D.; Martinis, J.; Price, P.B.

    1981-10-05

    Measurements of the summed mass of projectile fragments, M/sub s/ = summationM/sub pf/, are reported for 2.1-GeV/nucleon /sup 20/Ne+C and /sup 20/Ne+Mo. Unlike previous measurements of cross sections for individual projectile fragments, these measurements are quite sensitive to the size of the target nucleus. The distribution of summed residual projectile mass, M/sub s/, provides the first conclusive evidence of the validity of the geometrical ''abrasion'' model of relativistic heavy-ion collisions.

  15. Ion neutral mass spectrometer results from the first flyby of Titan.

    PubMed

    Waite, J Hunter; Niemann, Hasso; Yelle, Roger V; Kasprzak, Wayne T; Cravens, Thomas E; Luhmann, Janet G; McNutt, Ralph L; Ip, Wing-Huen; Gell, David; De La Haye, Virginie; Müller-Wordag, Ingo; Magee, Brian; Borggren, Nathan; Ledvina, Steve; Fletcher, Greg; Walter, Erin; Miller, Ryan; Scherer, Stefan; Thorpe, Rob; Xu, Jing; Block, Bruce; Arnett, Ken

    2005-05-13

    The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.

  16. Ion Neutral Mass Spectrometer Results from the First Flyby of Titan

    NASA Astrophysics Data System (ADS)

    Waite, J. Hunter; Niemann, Hasso; Yelle, Roger V.; Kasprzak, Wayne T.; Cravens, Thomas E.; Luhmann, Janet G.; McNutt, Ralph L.; Ip, Wing-Huen; Gell, David; De La Haye, Virginie; Müller-Wordag, Ingo; Magee, Brian; Borggren, Nathan; Ledvina, Steve; Fletcher, Greg; Walter, Erin; Miller, Ryan; Scherer, Stefan; Thorpe, Rob; Xu, Jing; Block, Bruce; Arnett, Ken

    2005-05-01

    The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.

  17. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2013-10-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x<6) were found to dominate the Cxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1ions C1+/C3+ could be used to predict whether significant Cxn+ signals with x>5 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was <0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  18. Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Yao-Min; G Nicolau, Bruno; Esbenshade, Jennifer L; Gewirth, Andrew A

    2016-07-19

    The solid electrolyte interface (SEI) formed via electrolyte decomposition on the anode of lithium ion batteries is largely responsible for the stable cycling of conventional lithium ion batteries. Similarly, there is a lesser-known analogous layer on the cathode side of a lithium ion battery, termed the cathode electrolyte interface (CEI), whose composition and role are debated. To confirm the existence and composition of the CEI, desorption electrospray ionization mass spectrometry (DESI-MS) is applied to study common lithium ion battery cathodes. We observe CEI formation on the LiMn2O4 cathode material after cycling between 3.5 and 4.5 V vs Li/Li(+) in electrolyte solution containing 1 M LiPF6 or LiClO4 in 1:1 (v/v) ethylene carbonate (EC) and dimethyl carbonate (DMC). Intact poly(ethylene glycol) dimethyl ether is identified as the electrolyte degradation product on the cathode surface by the high mass-resolution Orbitrap mass spectrometer. When EC is paired with ethyl methyl carbonate (EMC), poly(ethylene glycol) dimethyl ether, poly(ethylene glycol) ethyl methyl ether, and poly(ethylene glycol) are found on the surface simultaneously. The presence of ethoxy and methoxy end groups indicates both methoxide and ethoxide are produced and involved in the process of oligomerization. Au surfaces cycled under different electrochemical windows as model systems for Li-ion battery anodes are also examined. Interestingly, the identical oligomeric species to those found in the CEI are found on Au surfaces after running five cycles between 2.0 and 0.1 V vs Li/Li(+) in half-cells. These results show that DESI-MS provides intact molecular information on battery electrodes, enabling deeper understanding of the SEI or CEI composition.

  19. Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Yao-Min; G Nicolau, Bruno; Esbenshade, Jennifer L; Gewirth, Andrew A

    2016-07-19

    The solid electrolyte interface (SEI) formed via electrolyte decomposition on the anode of lithium ion batteries is largely responsible for the stable cycling of conventional lithium ion batteries. Similarly, there is a lesser-known analogous layer on the cathode side of a lithium ion battery, termed the cathode electrolyte interface (CEI), whose composition and role are debated. To confirm the existence and composition of the CEI, desorption electrospray ionization mass spectrometry (DESI-MS) is applied to study common lithium ion battery cathodes. We observe CEI formation on the LiMn2O4 cathode material after cycling between 3.5 and 4.5 V vs Li/Li(+) in electrolyte solution containing 1 M LiPF6 or LiClO4 in 1:1 (v/v) ethylene carbonate (EC) and dimethyl carbonate (DMC). Intact poly(ethylene glycol) dimethyl ether is identified as the electrolyte degradation product on the cathode surface by the high mass-resolution Orbitrap mass spectrometer. When EC is paired with ethyl methyl carbonate (EMC), poly(ethylene glycol) dimethyl ether, poly(ethylene glycol) ethyl methyl ether, and poly(ethylene glycol) are found on the surface simultaneously. The presence of ethoxy and methoxy end groups indicates both methoxide and ethoxide are produced and involved in the process of oligomerization. Au surfaces cycled under different electrochemical windows as model systems for Li-ion battery anodes are also examined. Interestingly, the identical oligomeric species to those found in the CEI are found on Au surfaces after running five cycles between 2.0 and 0.1 V vs Li/Li(+) in half-cells. These results show that DESI-MS provides intact molecular information on battery electrodes, enabling deeper understanding of the SEI or CEI composition. PMID:27346184

  20. AN ION CORRELATION PROGRAM FOR DECONVOLUTING COMPOSITE MASS SPECTRA ACQUIRED USING A DIRECT SURFACE IONIZATION SOURCE INTERFACED TO A TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    The rapid sampling provided by the DART in ambient air will allow rapid delineation of areas of dispersed chemicals after natural or man-made disasters. Exact masses and RIAs of dimer, precursor, and product ions measured by the oa-TOFMS entered dinto the Ion Correlation Program...

  1. Instrumentation and method for ultrahigh resolution field desorption ionization fourier transform ion cyclotron resonance mass spectrometry of nonpolar species.

    PubMed

    Schaub, Tanner M; Hendrickson, Christopher L; Quinn, John P; Rodgers, Ryan P; Marshall, Alan G

    2005-03-01

    We describe the construction and application of a 9.4-T FT-ICR mass spectrometer interfaced to a commercial field desorption ion source for high-resolution, high-mass accuracy measurements of nonpolar species. The FT-ICR MS instrument includes a liquid injection field desorption ionization source, octopole ion guides, external octopole ion trap capable of an axial potential gradient for ion ejection, capacitively coupled open cylindrical ion trap, and pulsed gas valve for ion cooling. Model compound responses with regard to various source and instrument conditions provide a basis for interpretation of broadband mass spectra of complex mixtures. As an example, we demonstrate broadband speciation of a Gulf Coast crude oil, with respect to numerous heteroatomic classes, compound types (rings plus double bonds), and carbon number distributions.

  2. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  3. Distance-of-Flight Mass Spectrometry with IonCCD Detection and an Inductively Coupled Plasma Source

    NASA Astrophysics Data System (ADS)

    Dennis, Elise A.; Ray, Steven J.; Enke, Christie G.; Gundlach-Graham, Alexander W.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2016-03-01

    Distance-of-flight mass spectrometry (DOFMS) is demonstrated for the first time with a commercially available ion detector—the IonCCD camera. Because DOFMS is a velocity-based MS technique that provides spatially dispersive, simultaneous mass spectrometry, a position-sensitive ion detector is needed for mass-spectral collection. The IonCCD camera is a 5.1-cm long, 1-D array that is capable of simultaneous, multichannel ion detection along a focal plane, which makes it an attractive option for DOFMS. In the current study, the IonCCD camera is evaluated for DOFMS with an inductively coupled plasma (ICP) ionization source over a relatively short field-free mass-separation distance of 25.3-30.4 cm. The combination of ICP-DOFMS and the IonCCD detector results in a mass-spectral resolving power (FWHM) of approximately 900 and isotope-ratio precision equivalent to or slightly better than current ICP-TOFMS systems. The measured isotope-ratio precision in % relative standard deviation (%RSD) was ≥0.008%RSD for nonconsecutive isotopes at 10-ppm concentration (near the ion-signal saturation point) and ≥0.02%RSD for all isotopes at 1-ppm. Results of DOFMS with the IonCCD camera are also compared with those of two previously characterized detection setups.

  4. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    PubMed

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates.

  5. Reduction of plyatomic ion interferences in indictively coupled plasma mass spectrometry with cryogenic desolvation

    SciTech Connect

    Alves, L.C.

    1993-09-01

    A desolvation scheme for introducing aqueous and organic samples into an argon inductively coupled plasma is described; the aerosol generated by nebulizer is heated (+140 C) and cooled ({minus}80 C) repeatedly, and the dried aerosol is then injected into the mass spectrometer. Polyatomic ions are greatly suppressed. This scheme was validated with analysis of seawater and urine reference samples. Finally, the removal of organic solvents by cryogenic desolvation was studied.

  6. Secondary Ion Mass Spectrometry for Mg Tracer Diffusion: Issues and Solutions

    SciTech Connect

    Tuggle, Jay; Giordani, Andrew; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Coffey, Kevin; Sohn, Yong Ho; HunterJr., Jerry

    2014-01-01

    A Secondary Ion Mass Spectrometry (SIMS) method has been developed to measure stable Mg isotope tracer diffusion. This SIMS method was then used to calculate Mg self- diffusivities and the data was verified against historical data measured using radio tracers. The SIMS method has been validated as a reliable alternative to the radio-tracer technique for the measurement of Mg self-diffusion coefficients and can be used as a routine method for determining diffusion coefficients.

  7. Modeling of the mass transfer rates of metal ions across supported liquid membranes. 1: Theory

    SciTech Connect

    Elhassadi, A.A.; Do, D.D.

    1999-01-01

    This paper deals with the modeling of the transport and separation of metal ions across supported liquid membranes. The mass transfer resistance at the liquid-membrane interfaces and the interfacial chemical reactions at both the extracting side and the stripping side are taken into account in the model equations. Simple analysis of the time scale of the system shows the influence of various important parameters and their interactions on the overall transport rate. Parametric studies are also dealt with in this paper.

  8. Secondary ion mass spectroscopy determination of oxygen diffusion coefficient in heavily Sb doped Si

    NASA Astrophysics Data System (ADS)

    Pagani, M.

    1990-10-01

    The diffusion coefficient of oxygen in heavily antimony doped Czochralski Si was measured in the temperature range 950-1100 °C by using secondary ion mass spectroscopy (SIMS). The diffusion coefficient, obtained from SIMS oxygen concentration profiles in samples submitted to out diffusion, shows no dependence on antimony concentration. The combined data give an activation energy of 2.68 eV, which is in good agreement with published results.

  9. Non-mass-analyzed ion implantation equipment for high volume solar cell production

    NASA Technical Reports Server (NTRS)

    Armini, A. J.; Bunker, S. N.; Spitzer, M. B.

    1982-01-01

    Equipment designed for junction formation in silicon solar cells is described. The equipment, designed for a production level of approximately one megawatt per year, consists of an ion implanter and annealer. Low cost is achieved by foregoing the use of mass analysis during the implantation, and by the use of a belt furnace for annealing. Results of process development, machine design and cost analysis are presented.

  10. Uranium passivation by C+ implantation: a photoemission and secondary ion mass spectrometry study

    SciTech Connect

    Nelson, A J; Felter, T E; Wu, K J; Evans, C; Ferreira, J; Siekhaus, W; McLean, W

    2005-01-20

    Implantation of 33 keV C{sup +} ions into polycrystalline U{sup 238} with a dose of 4.3 x 10{sup 17} cm{sup -2} produces a physically and chemically modified surface layer that prevents further air oxidation and corrosion. X-ray photoelectron spectroscopy and secondary ion mass spectrometry were used to investigate the surface chemistry and electronic structure of this C{sup +} ion implanted polycrystalline uranium and a non-implanted region of the sample, both regions exposed to air for more than a year. In addition, scanning electron microscopy was used to examine and compare the surface morphology of the two regions. The U 4f, O 1s and C 1s core-level and valence band spectra clearly indicate carbide formation in the modified surface layer. The time-of-flight secondary ion mass spectrometry depth profiling results reveal an oxy-carbide surface layer over an approximately 200 nm thick UC layer with little or no residual oxidation at the carbide layer/U metal transitional interface.

  11. Discrimination of large maltooligosaccharides from isobaric dextran and pullulan using ion mobility mass spectrometry

    PubMed Central

    Rashid, Abdul M; Saalbach, Gerhard; Bornemann, Stephen

    2013-01-01

    RATIONALE Ion mobility mass spectrometry (IMMS) has previously been shown to resolve small isobaric oligosaccharides, but larger alpha-oligoglucans are also abundant in biology and are of industrial importance. If conformational differences between such isomers are retained in the gas phase, IMMS could be used to address questions in biology and industry. METHODS Negative mode electrospray ionization (ESI) travelling-wave IMMS was used to resolve large isobaric α-glucan ions on the basis of their different gas-phase conformations. α,ω-Dicarboxy-terminated polystyrene was used to calibrate the instrument allowing the collision cross-sections (CCSs) of ions to be determined. RESULTS α-1,4-Linked maltooligosaccharides with a degree of polymerisation of up to 35 could be discriminated from α-1,6-linked dextran and α-1,4/1,6-linked pullulan using IMMS. Fragmentation spectra of ions separated by IMMS could also distinguish isomers. Two conformational isomers of maltohexaose were resolvable by IMMS, likely reflecting extended and V6 helical conformations. IMMS was also able to identify a product within a mixture of maltooligosaccharides treated with the potential anti-tuberculosis drug target Mycobacterium tuberculosis GlgB branching enzyme. CONCLUSIONS Biological samples of complex isobaric oligosaccharides can be analysed using IMMS in the negative mode providing facile analyses and high sensitivity without the need for either derivatisation or chromatographic separation. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:24338967

  12. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    SciTech Connect

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  13. Supported Membrane Composition Analysis by Secondary Ion Mass Spectrometry with High Lateral Resolution

    PubMed Central

    Galli Marxer, Carine; Kraft, Mary L.; Weber, Peter K.; Hutcheon, Ian D.; Boxer, Steven G.

    2005-01-01

    The lateral organization of lipid components within membranes is usually investigated with fluorescence microscopy, which, though highly sensitive, introduces bulky fluorophores that might alter the behavior of the components they label. Secondary ion mass spectroscopy performed with a NanoSIMS 50 instrument also provides high lateral resolution and sensitivity, and many species can be observed in parallel without the use of bulky labels. A tightly focused beam (∼100 nm) of Cs ions is scanned across a sample, and up to five of the resulting small negative secondary ions can be simultaneously analyzed by a high-resolution mass spectrometer. Thin layers of 15N- and 19F-labeled proteins were microcontact-printed on an oxidized silicon substrate and imaged using the NanoSIMS 50, demonstrating the sensitivity and selectivity of this approach. Supported lipid bilayers were assembled on an oxidized silicon substrate, then flash-frozen and freeze-dried to preserve their lateral organization. Lipid bilayers were analyzed with the NanoSIMS 50, where the identity of each specific lipid was determined through detection of its unique secondary ions, including 12C1H−, 12C2H−, 13C−, 12C14N−, and 12C15N−. Steps toward obtaining quantitative composition analysis of lipid membranes that varied spatially in isotopic composition are presented. This approach has the potential to provide a composition-specific analysis of membrane organization that compliments other imaging modalities. PMID:15695628

  14. Tailored ion radius distribution for increased dynamic range in FT-ICR mass analysis of complex mixtures.

    PubMed

    Kaiser, Nathan K; McKenna, Amy M; Savory, Joshua J; Hendrickson, Christopher L; Marshall, Alan G

    2013-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) typically utilizes an m/z-independent excitation magnitude to excite all ions to the same cyclotron radius, so that the detected signal magnitude is directly proportional to the relative ion abundance. However, deleterious space charge interaction between ion clouds is maximized for clouds of equal radius. To minimize ion cloud interactions, we induce an m/z-dependent ion radius distribution (30%-45% of the maximum cell radius) that results in a 3-fold increase in mass spectral dynamic range for complex mixtures, consistent with increased ion cloud lifetime for less-abundant ion clouds. Further, broadband frequency-sweep (chirp) excitation that contains the second and/or third harmonic frequency of an excited ion cloud swept from low-to-high frequency produces systematic variations in accurate mass measurement not observed when the sweep direction is reversed. The ion cyclotron radius distribution induces an m/z-dependent frequency shift that can be corrected to provide a root-mean-square (rms) mass measurement error of <100 ppb on petroleum-based mixtures that contain tens of thousands of identified peaks.

  15. Fragmentation reactions of labeled and untabeled Rhodamine B in a high-resolution Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Clemen, Martin; Gernert, Claus; Peters, Jonathan; Grotemeyer, Jürgen

    2013-01-01

    The fragmentation reactions of Rhodamine B have been investigated by the use of electrospray ionization mass spectra in a high mass resolving ion cyclotron resonance mass spectrometer. Using high resolution, it could be shown that the loss of 44 mass units from the molecular ion is due to propane; the measured masses were inconsistent with loss of carbon dioxide. These conclusions are supported using deuterium-labeled Rhodamine B. This sample again only shows the loss of fully-deuterated propane verifying the high-resolution data. These findings illustrate very clearly that the conclusions based solely on low resolution spectra were false. The general implication on fragmentations of aromatic acids is discussed.

  16. Gas-phase ions produced by freezing water or methanol for analysis using mass spectrometry.

    PubMed

    Pagnotti, Vincent S; Chakrabarty, Shubhashis; Wang, Beixi; Trimpin, Sarah; McEwen, Charles N

    2014-08-01

    Introducing water or methanol containing a low concentration of volatile or nonvolatile analyte into an inlet tube cooled with dry ice linking atmospheric pressure and the first vacuum stage of a mass spectrometer produces gas-phase ions even of small proteins that can be detected by mass spectrometry. Collision-induced dissociation experiments conducted in the first vacuum region of the mass spectrometer suggest analyte ions being protected by a solvent cage. The charges may be produced by processes similar to those proposed for charge separation under freezing conditions in thunderclouds. By this process, the surface of an ice pellet is charged positive and the interior negative so that removal of surface results in charge separation. A reversal of surface charge is expected for a heated droplet surface, and this is observed by heating rather than cooling the inlet tube. These observations are consistent with charged supercooled droplets or ice particles as intermediates in the production of analyte ions under freezing conditions. PMID:25014489

  17. The Laser Ablation Ion Funnel: Sampling for in situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.

    2011-01-01

    A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.

  18. Matrix-assisted ionization vacuum for high-resolution Fourier transform ion cyclotron resonance mass spectrometers.

    PubMed

    Wang, Beixi; Tisdale, Evgenia; Trimpin, Sarah; Wilkins, Charles L

    2014-07-15

    Matrix-assisted ionization vacuum (MAIV) produces charge states similar to electrospray ionization (ESI) from the solid state without requiring high voltage or added heat. MAIV differs from matrix-assisted laser desorption/ionization (MALDI) in that no laser is needed and abundant multiply charged ions are produced from molecules having multiple basic sites such as proteins. Here we introduce simple modifications to the commercial vacuum MALDI and ESI sources of a 9.4 T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to perform MAIV from both intermediate and atmospheric pressure. The multiply charged ions are shown for the proteins bovine insulin, ubiquitin, and lysozyme using 3-nitrobenzonitrile as matrix. These are the first examples of MAIV operating at pressures as low as 10(-6) mbar in an FT-ICR mass spectrometer source, and the expected mass resolving power of 100000 to 400000 is achieved. Identical protein charge states are observed with and without laser ablation indicating minimal, if any, role of photochemical ionization for the compounds studied.

  19. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions

    PubMed Central

    Vanbellingen, Quentin P.; Elie, Nicolas; Eller, Michael J.; Della‐Negra, Serge; Touboul, David

    2015-01-01

    Rationale In Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS), pulsed and focused primary ion beams enable mass spectrometry imaging, a method which is particularly useful to map various small molecules such as lipids at the surface of biological samples. When using TOF‐SIMS instruments, the focusing modes of the primary ion beam delivered by liquid metal ion guns can provide either a mass resolution of several thousand or a sub‐µm lateral resolution, but the combination of both is generally not possible. Methods With a TOF‐SIMS setup, a delayed extraction applied to secondary ions has been studied extensively on rat cerebellum sections in order to compensate for the effect of long primary ion bunches. Results The use of a delayed extraction has been proven to be an efficient solution leading to unique features, i.e. a mass resolution up to 10000 at m/z 385.4 combined with a lateral resolution of about 400 nm. Simulations of ion trajectories confirm the experimental determination of optimal delayed extraction and allow understanding of the behavior of ions as a function of their mass‐to‐charge ratio. Conclusions Although the use of a delayed extraction has been well known for many years and is very popular in MALDI, it is much less used in TOF‐SIMS. Its full characterization now enables secondary ion images to be recorded in a single run with a submicron spatial resolution and with a mass resolution of several thousand. This improvement is very useful when analyzing lipids on tissue sections, or rare, precious, or very small size samples. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26395603

  20. Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Purves, Randy W.; Guevremont, Roger; Day, Stephen; Pipich, Charles W.; Matyjaszczyk, Matthew S.

    1998-12-01

    Ion mobility spectrometry (IMS) has become an important method for the detection of many compounds because of its high sensitivity and amenability to miniaturization for field-portable monitoring; applications include detection of narcotics, explosives, and chemical warfare agents. High-field asymmetric waveform ion mobility spectrometry (FAIMS) differs from IMS in that the electric fields are applied using a high-frequency periodic asymmetric waveform, rather than a dc voltage. Furthermore, in FAIMS the compounds are separated by the difference in the mobility of ions at high electric field relative to low field, rather than by compound to compound differences in mobility at low electric field (IMS). We report here the first cylindrical-geometry-FAIMS interface with mass spectrometry (FAIMS-MS) and the MS identification of the peaks observed in a FAIMS compensation voltage (CV) spectrum. Using both an electrometer-based-FAIMS (FAIMS-E) and FAIMS-MS, several variables that affect the sensitivity of ion detection were examined for two (polarity reversed) asymmetric waveforms (modes 1 and 2) each of which yields a unique spectrum. An increase in the dispersion voltage (DV) was found to improve the sensitivity and separation observed in the FAIMS CV spectrum. This increase in sensitivity and the unexpected dissimilarity in modes 1 and 2 suggest that atmospheric pressure ion focusing is occurring in the FAIMS analyzer. The sensitivity and peak locations in the CV spectra were affected by temperature, gas flow rates, operating pressure, and analyte concentration.

  1. Rapid determination of nicotine in urine by direct thermal desorption ion trap mass spectrometry

    SciTech Connect

    Wise, M.B.; Ilgner, R.H.; Guerin, M.R.

    1990-01-01

    The measurement of nicotine and cotinine in physiological fluids (urine, blood serum, and saliva) is widely used as a means of assessing human exposure to environmental tobacco smoke (ETS). Although numerous analytical methods exist for these measurements, they generally involve extensive sample preparation which increases cost and decreases sample throughput. We report the use of thermal desorption directly into an ion trap mass spectrometer (ITMS) for the rapid determination of nicotine and cotinine in urine. A 1{mu}L aliquot of urine is injected into a specially designed inlet and flash vaporized directly into an ITMS through an open-split capillary restrictor interface. Isobutane chemical ionization is used to generate (M+H){sup +} ions of the analytes and collision induced dissociation is used to generate characteristic fragment ions which are used to confirm their identity. Quantification is achieved by integrating the ion current for the characteristic ions and comparing with an external working curve. Detection limits are approximately 50 pg per analyte and the sample turnaround time is approximately 3 minutes without the need for extensive sample preparation. 12 refs., 5 figs.

  2. Large-scale collision cross-section profiling on a travelling wave ion mobility mass spectrometer

    PubMed Central

    Lietz, Christopher B.; Yu, Qing; Li, Lingjun

    2014-01-01

    Ion mobility (IM) is a gas-phase electrophoretic method that separates ions according to charge and ion-neutral collision cross-section (CCS). Herein, we attempt to apply a travelling wave (TW) IM polyalanine calibration method to shotgun proteomics and create a large peptide CCS database. Mass spectrometry methods that utilize IM, such as HDMSE, often use high transmission voltages for sensitive analysis. However, polyalanine calibration has only been demonstrated with low voltage transmission used to prevent gas-phase activation. If polyalanine ions change conformation under higher transmission voltages used for HDMSE, the calibration may no longer be valid. Thus, we aimed to characterize the accuracy of calibration and CCS measurement under high transmission voltages on a TW IM instrument using the polyalanine calibration method and found that the additional error was not significant. We also evaluated the potential error introduced by liquid chromatography (LC)-HDMSE analysis, and found it to be insignificant as well, validating the calibration method. Finally, we demonstrated the utility of building a large-population peptide CCS database by investigating the effects of terminal lysine position, via LysC or LysN digestion, on the formation of two structural sub-families formed by triply charged ions. PMID:24845359

  3. Large-Scale Collision Cross-Section Profiling on a Traveling Wave Ion Mobility Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Lietz, Christopher B.; Yu, Qing; Li, Lingjun

    2014-12-01

    Ion mobility (IM) is a gas-phase electrophoretic method that separates ions according to charge and ion-neutral collision cross-section (CCS). Herein, we attempt to apply a traveling wave (TW) IM polyalanine calibration method to shotgun proteomics and create a large peptide CCS database. Mass spectrometry methods that utilize IM, such as HDMSE, often use high transmission voltages for sensitive analysis. However, polyalanine calibration has only been demonstrated with low voltage transmission used to prevent gas-phase activation. If polyalanine ions change conformation under higher transmission voltages used for HDMSE, the calibration may no longer be valid. Thus, we aimed to characterize the accuracy of calibration and CCS measurement under high transmission voltages on a TW IM instrument using the polyalanine calibration method and found that the additional error was not significant. We also evaluated the potential error introduced by liquid chromatography ( LC)-HDMSE analysis, and found it to be insignificant as well, validating the calibration method. Finally, we demonstrated the utility of building a large-population peptide CCS database by investigating the effects of terminal lysine position, via LysC or LysN digestion, on the formation of two structural sub-families formed by triply charged ions.

  4. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    SciTech Connect

    Haakonsen, Christian Bernt Hutchinson, Ian H. Zhou, Chuteng

    2015-03-15

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effects can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.

  5. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.

    PubMed

    Lee, Jihyeon; Park, Sehwan; Cho, Soo Gyeong; Goh, Eun Mee; Lee, Sungman; Koh, Sung-Suk; Kim, Jeongkwon

    2014-03-01

    Corona discharge ionization combined with ion mobility spectrometry-mass spectrometry (IMS-MS) was utilized to investigate five common explosives: cyclonite (RDX), trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX), and 2,4-dinitrotoluene (DNT). The MS scan and the selected ion IMS analyses confirmed the identities of the existing ion species and their drift times. The ions observed were RDX·NO3(-), TNT(-), PETN·NO3(-), HMX·NO3(-), and DNT(-), with average drift times of 6.93 ms, 10.20 ms, 9.15 ms, 12.24 ms, 11.30 ms, and 8.89 ms, respectively. The reduced ion mobility values, determined from a standard curve calculated by linear regression of (normalized drift times)(-1) versus literature K0 values, were 2.09, 1.38, 1.55, 1.15, 1.25, and 1.60 cm(2) V(-1) s(-1), respectively. The detection limits were found to be 0.1 ng for RDX, 10 ng for TNT, 0.5 ng for PETN, 5.0 ng for HMX, and 10 ng for DNT. Simplified chromatograms were observed when nitrogen, as opposed to air, was used as the drift gas, but the detection limits were approximately 10 times worse (i.e., less sensitivity of detection).

  6. Analysis of nucleic acids by capillary ion-pair reversed-phase HPLC coupled to negative-ion electrospray ionization mass spectrometry.

    PubMed

    Huber, C G; Krajete, A

    1999-09-01

    Ion-pair reversed-phase high-performance liquid chromatography was successfully coupled to negative-ion electrospray ionization mass spectrometry by using 60 × 0.20 mm i.d. capillary columns packed with 2.3-μm micropellicular, octadecylated poly(styrene/divinylbenzene) particles as stationary phase and gradients of acetonitrile in 50 mM aqueous triethylammonium bicarbonate as mobile phase. Systematic variation of the eluent composition, such as concentration of ion-pair reagent, anion in the ion-pair reagent, solution pH, and acetonitrile concentration led to the conclusion that most parameters have opposite effects on chromatographic and mass spectrometric performances. The use of acetonitrile as sheath liquid enabled the rapid and highly efficient separation and detection of phosphorylated and nonphosphorylated oligonucleotides ranging in size from 8 to 40 nucleotides. High-quality full-scan mass spectra showing little cation adduction were acquired from which the molecular masses of the separated oligonucleotides were calculated with an accuracy of 0.011%. With calibration curves being linear over at least 2 orders of magnitude, the lower limits of detection for a oligodeoxythymidine 16-mer were 104 fmol with full scan and 710 amol with selected-ion-monitoring data acquisition. The potential of ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry was demonstrated for mixed-sequence oligomers by the characterization of a reaction mixture from solid-phase synthesis of a 40-mer oligonucleotide.

  7. Initial velocity distribution of MALDI/LDI ions measured by internal MALDI source Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chagovets, Vitaliy; Frankevich, Vladimir; Zenobi, Renato

    2014-11-01

    A new method for measuring the ion velocity distribution using an internal matrix-assisted laser desorption/ionization (MALDI) source Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer is described. The method provides the possibility of studying ion velocities without any influence of electric fields in the direction of the instrument axis until the ions reach the ICR cell. It also allows to simultaneously account for and to estimate not only the velocity distribution but the angular distribution as well. The method was demonstrated using several types of compounds in laser desorption/ionization (LDI) mode.

  8. Systematic Temperature Effects in the Argon Cluster Ion Sputter Depth Profiling of Organic Materials Using Secondary Ion Mass Spectrometry.

    PubMed

    Seah, Martin P; Havelund, Rasmus; Gilmore, Ian S

    2016-08-01

    A study is presented of the effects of sample temperature on the sputter depth profiling of two organic materials, NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and Irganox 1010, using a 5 keV Ar2000 (+) cluster ion beam and analysis by secondary ion mass spectrometry. It is shown that at low temperatures, the yields increase slowly with temperature in accordance with the Universal Sputtering Yield equation where the energy term is now modified by Trouton's rule. This occurs up to a transition temperature, T T, which is, in turn, approximately 0.8T M, where T M is the sample melting temperature in Kelvin. For NPB and Irganox 1010, these transition temperatures are close to 15 °C and 0 °C, respectively. Above this temperature, the rate of increase of the sputtering yield rises by an order of magnitude. During sputtering, the depth resolution also changes with temperature with a very small change occurring below T T. At higher temperatures, the depth resolution improves but then rapidly degrades, possibly as a result first of local crater surface diffusion and then of bulk inter-diffusion. The secondary ion spectra also change with temperature with the intensities of the molecular entities increasing least. This agrees with a model in which the molecular entities arise near the crater rim. It is recommended that for consistent results, measurements for organic materials are always made at temperatures significantly below T T or 0.8 T M, and this is generally below room temperature. Graphical Abstract ᅟ. PMID:27106601

  9. Systematic Temperature Effects in the Argon Cluster Ion Sputter Depth Profiling of Organic Materials Using Secondary Ion Mass Spectrometry.

    PubMed

    Seah, Martin P; Havelund, Rasmus; Gilmore, Ian S

    2016-08-01

    A study is presented of the effects of sample temperature on the sputter depth profiling of two organic materials, NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and Irganox 1010, using a 5 keV Ar2000 (+) cluster ion beam and analysis by secondary ion mass spectrometry. It is shown that at low temperatures, the yields increase slowly with temperature in accordance with the Universal Sputtering Yield equation where the energy term is now modified by Trouton's rule. This occurs up to a transition temperature, T T, which is, in turn, approximately 0.8T M, where T M is the sample melting temperature in Kelvin. For NPB and Irganox 1010, these transition temperatures are close to 15 °C and 0 °C, respectively. Above this temperature, the rate of increase of the sputtering yield rises by an order of magnitude. During sputtering, the depth resolution also changes with temperature with a very small change occurring below T T. At higher temperatures, the depth resolution improves but then rapidly degrades, possibly as a result first of local crater surface diffusion and then of bulk inter-diffusion. The secondary ion spectra also change with temperature with the intensities of the molecular entities increasing least. This agrees with a model in which the molecular entities arise near the crater rim. It is recommended that for consistent results, measurements for organic materials are always made at temperatures significantly below T T or 0.8 T M, and this is generally below room temperature. Graphical Abstract ᅟ.

  10. Systematic Temperature Effects in the Argon Cluster Ion Sputter Depth Profiling of Organic Materials Using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Seah, Martin P.; Havelund, Rasmus; Gilmore, Ian S.

    2016-08-01

    A study is presented of the effects of sample temperature on the sputter depth profiling of two organic materials, NPB ( N,N'-Di(1-naphthyl)- N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and Irganox 1010, using a 5 keV Ar2000 + cluster ion beam and analysis by secondary ion mass spectrometry. It is shown that at low temperatures, the yields increase slowly with temperature in accordance with the Universal Sputtering Yield equation where the energy term is now modified by Trouton's rule. This occurs up to a transition temperature, T T, which is, in turn, approximately 0.8 T M, where T M is the sample melting temperature in Kelvin. For NPB and Irganox 1010, these transition temperatures are close to 15 °C and 0 °C, respectively. Above this temperature, the rate of increase of the sputtering yield rises by an order of magnitude. During sputtering, the depth resolution also changes with temperature with a very small change occurring below T T. At higher temperatures, the depth resolution improves but then rapidly degrades, possibly as a result first of local crater surface diffusion and then of bulk inter-diffusion. The secondary ion spectra also change with temperature with the intensities of the molecular entities increasing least. This agrees with a model in which the molecular entities arise near the crater rim. It is recommended that for consistent results, measurements for organic materials are always made at temperatures significantly below T T or 0.8 T M, and this is generally below room temperature.

  11. MEMS Fabrication of Micro Cylindrical Ion Trap Mass Spectrometer for CubeSats Application

    NASA Astrophysics Data System (ADS)

    Zheng, Y.

    2015-10-01

    Microelectromechanical Systems (MEMS) technology is used to fabricate arrays of micro Cylindrical Ion Traps (μCIT) which are integrated into a miniaturized mass spectrometer (MS). The micro μCITs are built from silicon wafers and requires high machining precision, smooth surface, and high dimensional uniformity across the array for optimum mass spectrometer performance. In order to build these 3D miniature structures several MEMS processing techniques were explored and a process was developed and tested. By using the developed MEMS process, the required μCIT 4 x 4 arrays were fabricated. This included a chip design variation in which mechanical locking pits and posts were machined in the Ring Electrode (RE) chip and End Plate (EP) chips respectively, for self-assembly. The size of the assembled μCIT is only 12 mm x 12 mm x 1.5 mm. It is a key component for the miniature mass spectrometer. The micro cylindrical ion trap mass spectrometer has the advantages of low-power operation, simpler electronics and less-stringent vacuum system requirements. The MEMS batch production capabilities will also greatly lower the cost. It is a promising candidate for CubeSat and nanoSats applications for exploration of chemical distributions in space.

  12. Mass-transfer mechanisms for zeolite ion exchange in wastewater treatment

    SciTech Connect

    Robinson, S.M.; Arnold, W.D.; Byers, C.H. )

    1994-12-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent ion exchange, understanding of the basic mass-transfer processes associated with multicomponent zeolite systems is quite limited. This study evaluates Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficient are determined from experimental batch-reactor data for binary and multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models are compared with the experimental data to determine values for intraparticle diffusivities. Effective diffusivities obtained accurately predict experimental data sing a variety of models. Only the model accounting for micropore and macropore diffusion occurring in series accurately predict multicomponent data using diffusivities from the binary system. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities are concentration-dependent for the system of interest.

  13. A Compact Ion and Neutral Mass Spectrometer for the Exocube Mission

    NASA Astrophysics Data System (ADS)

    Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.

    2014-12-01

    Demand is high for in situ measurements of atmospheric neutral and ion composition and density, not only for studies of the dynamic ionosphere-theremosphere-mesosphere system but simply to define the steady state background atmospheric conditions. The ExoCube mission is designed to acquire global knowledge of in-situ densities of [H], [He], [O] and [H+], [He+], [O+] in the upper ionosphere and lower exosphere in combination with incoherent scatter radar ground stations distributed in the north polar region. The Heliophysic Division of GSFC has developed a compact Ion and Neutral Mass Spectrometer (INMS) for in situ measurements of ions and neutrals H, He, N, O, N2, O2 with M/dM of approximately 10 at an incoming energy range of 0-50eV. The INMS is based on front end optics, post acceleration, gated time of flight, ESA and CEM or MCP detectors. The compact sensor has a dual symmetric configuration with the ion and neutral sensor heads on opposite sides and with full electronics in the middle. The neutral front end optics includes thermionic emission ionization and ion blocking grids, and the ion front end optics includes spacecraft potential compensation grids. The electronics include front end, fast gating, HVPS, ionizer, TOF binning and full bi directional C&DH digital electronics. The data package includes 400 mass bins each for ions and neutrals and key housekeeping data for instrument health and calibration. The data sampling can be commanded as fast as 10 msec per frame (corresponding to ~80 m spatial separation) in burst mode, and has significant onboard storage capability and data compression scheme. Experimental data from instrument testing with both ions and neutrals will be presented. The instrument is successfully integrated in the CubeSat and passed vibration, thermal and shock testing. The ExoCube mission is scheduled to fly in Nov 2014 in a 445 x 670 km polar orbit with the INMS aperture oriented in the ram direction. This miniaturized instrument (1

  14. Nitrogen Doping of Single-Walled Carbon Nanotube by Using Mass-Separated Low-Energy Ion Beams

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Kamimura, Takafumi; Matsumoto, Kazuhiko

    2005-04-01

    Mass-separated nitrogen ions with the mass number of 14 were irradiated to the single-walled carbon nanotubes (SWCNTs) under an ultra high-vacuum pressure of 10-7 Pa for the purpose of achieving nitrogen doping in nanotubes. The incident angle of the ion beam was normal to the target nanotube, and the ion beam energy was 30 eV, which was close to the displacement energy of graphite. The dependence of the structure of SWCNTs on the ion dose was investigated. The ion dose ranged from 2.8× 1014 to 2.2× 1016 ions/cm2. The nitrogen ions are incorporated into graphite sheets of SWCNTs after irradiation at 2.8× 1014 ions/cm2. The graphite structure is distorted and many defects are induced in the nanotube by the nitrogen incorporation. The structure is changed to amorphous after irradiation at 2.2× 1016 ions/cm2. The nitrogen ions with the ion energy of 25 eV are irradiated to the field effect transistor device with the nanotube channel. The n-type characteristic appears upon ion irradiation, and the device exhibits ambipolar behavior.

  15. Advances in ion mobility spectrometry–mass spectrometry reveal key insights into amyloid assembly☆

    PubMed Central

    Woods, L.A.; Radford, S.E.; Ashcroft, A.E.

    2013-01-01

    Interfacing ion mobility spectrometry to mass spectrometry (IMS–MS) has enabled mass spectrometric analyses to extend into an extra dimension, providing unrivalled separation and structural characterization of lowly populated species in heterogeneous mixtures. One biological system that has benefitted significantly from such advances is that of amyloid formation. Using IMS–MS, progress has been made into identifying transiently populated monomeric and oligomeric species for a number of different amyloid systems and has led to an enhanced understanding of the mechanism by which small molecules modulate amyloid formation. This review highlights recent advances in this field, which have been accelerated by the commercial availability of IMS–MS instruments. This article is part of a Special Issue entitled: Mass spectrometry in structural biology. PMID:23063533

  16. Characterization of gunpowder samples using time-of-flight secondary ion mass spectrometry (TOF-SIMS).

    PubMed

    Mahoney, Christine M; Gillen, Greg; Fahey, Albert J

    2006-04-20

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was utilized to obtain characteristic mass spectra from three different smokeless powders and six different black powder samples. In these mass spectra, peaks indicative of both the organic and inorganic additive constituents in the gunpowders were observed. TOF-SIMS was able to successfully differentiate between the different black and smokeless gunpowder samples analyzed with the aid of principal components analysis (PCA), a multivariate statistical analysis approach often used to reduce the dimensionality of complex data. TOF-SIMS was also used to obtain information about the spatial distribution of the various additives contained within the gunpowder samples. SIMS imaging demonstrated that that the samples could potentially be characterized by their 2-D structure, which varied from sample to sample. These results clearly demonstrate the feasibility of utilizing TOF-SIMS as a tool for the characterization and differentiation of gunpowder samples for general forensic applications.

  17. Identification of hemoglobin variants by top-down mass spectrometry using selected diagnostic product ions.

    PubMed

    Coelho Graça, Didia; Hartmer, Ralf; Jabs, Wolfgang; Beris, Photis; Clerici, Lorella; Stoermer, Carsten; Samii, Kaveh; Hochstrasser, Denis; Tsybin, Yury O; Scherl, Alexander; Lescuyer, Pierre

    2015-04-01

    Hemoglobin disorder diagnosis is a complex procedure combining several analytical steps. Due to the lack of specificity of the currently used protein analysis methods, the identification of uncommon hemoglobin variants (proteoforms) can become a hard task to accomplish. The aim of this work was to develop a mass spectrometry-based approach to quickly identify mutated protein sequences within globin chain variants. To reach this goal, a top-down electron transfer dissociation mass spectrometry method was developed for hemoglobin β chain analysis. A diagnostic product ion list was established with a color code strategy allowing to quickly and specifically localize a mutation in the hemoglobin β chain sequence. The method was applied to the analysis of rare hemoglobin β chain variants and an (A)γ-β fusion protein. The results showed that the developed data analysis process allows fast and reliable interpretation of top-down electron transfer dissociation mass spectra by nonexpert users in the clinical area.

  18. Evaluating Multiplexed Quantitative Phosphopeptide Analysis on a Hybrid Quadrupole Mass Filter/Linear Ion Trap/Orbitrap Mass Spectrometer

    PubMed Central

    2015-01-01

    As a driver for many biological processes, phosphorylation remains an area of intense research interest. Advances in multiplexed quantitation utilizing isobaric tags (e.g., TMT and iTRAQ) have the potential to create a new paradigm in quantitative proteomics. New instrumentation and software are propelling these multiplexed workflows forward, which results in more accurate, sensitive, and reproducible quantitation across tens of thousands of phosphopeptides. This study assesses the performance of multiplexed quantitative phosphoproteomics on the Orbitrap Fusion mass spectrometer. Utilizing a two-phosphoproteome model of precursor ion interference, we assessed the accuracy of phosphopeptide quantitation across a variety of experimental approaches. These methods included the use of synchronous precursor selection (SPS) to enhance TMT reporter ion intensity and accuracy. We found that (i) ratio distortion remained a problem for phosphopeptide analysis in multiplexed quantitative workflows, (ii) ratio distortion can be overcome by the use of an SPS-MS3 scan, (iii) interfering ions generally possessed a different charge state than the target precursor, and (iv) selecting only the phosphate neutral loss peak (single notch) for the MS3 scan still provided accurate ratio measurements. Remarkably, these data suggest that the underlying cause of interference may not be due to coeluting and cofragmented peptides but instead from consistent, low level background fragmentation. Finally, as a proof-of-concept 10-plex experiment, we compared phosphopeptide levels from five murine brains to five livers. In total, the SPS-MS3 method quantified 38 247 phosphopeptides, corresponding to 11 000 phosphorylation sites. With 10 measurements recorded for each phosphopeptide, this equates to more than 628 000 binary comparisons collected in less than 48 h. PMID:25521595

  19. Structural Characterization of Anticancer Drug Paclitaxel and Its Metabolites Using Ion Mobility Mass Spectrometry and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hong Hee; Hong, Areum; Cho, Yunju; Kim, Sunghwan; Kim, Won Jong; Kim, Hugh I.

    2016-02-01

    Paclitaxel (PTX) is a popular anticancer drug used in the treatment of various types of cancers. PTX is metabolized in the human liver by cytochrome P450 to two structural isomers, 3'- p-hydroxypaclitaxel (3 p-OHP) and 6α-hydroxypaclitaxel (6α-OHP). Analyzing PTX and its two metabolites, 3 p-OHP and 6α-OHP, is crucial for understanding general pharmacokinetics, drug activity, and drug resistance. In this study, electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) and collision induced dissociation (CID) are utilized for the identification and characterization of PTX and its metabolites. Ion mobility distributions of 3 p-OHP and 6α-OHP indicate that hydroxylation of PTX at different sites yields distinct gas phase structures. Addition of monovalent alkali metal and silver metal cations enhances the distinct dissociation patterns of these structural isomers. The differences observed in the CID patterns of metalated PTX and its two metabolites are investigated further by evaluating their gas-phase structures. Density functional theory calculations suggest that the observed structural changes and dissociation pathways are the result of the interactions between the metal cation and the hydroxyl substituents in PTX metabolites.

  20. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    SciTech Connect

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  1. TITAN: An ion trap facility for on-line mass measurement experiments

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Andreoiu, C.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Delheij, P.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Gwinner, G.; Jang, F.; Lennarz, A.; Ma, T.; Mané, E.; Pearson, M. R.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2014-01-01

    Precision determinations of ground state or even isomeric state masses reveal fingerprints of nuclear structure. In particular, at the limits of existence for very neutron-rich or -deficient isotopes, one can extract detailed information about nuclear structure from separation energies or binding energies. Mass measurements are important to uncover new phenomena, to test new theoretical predictions, or to refine model approaches. For example, the N = 28 shell has proven more stable than previously expected; however, the predicted new "magic" number at N = 34 in the K and Ca isotopes has yet to be confirmed experimentally. For these neutron-rich nuclei, the inclusion of three-body forces leads to significantly better predictions of the ground-state mass. Similarly, halo nuclei present an excellent application for ab-initio theory, where ground state properties, like masses and radii, test our understanding of nuclear structure. Precision mass determinations at TRIUMF are carried out with the TITAN (TRIUMF's Ion Traps for Atomic and Nuclear science) facility. It is an ion-trap setup coupled to the on-line facility ISAC. TITAN has measured masses of isotopes as short-lived as 9 ms (almost an order of magnitude shorter-lived than any other Penning trap system), and it is the only one with charge breeding capabilities, which allow us to boost the precision by almost 2 orders of magnitude. We recently made use of this feature by measuring short-lived, proton-rich Rb-isotopes, up to 74Rb while reaching the 12 + charge state, which together with other improvements led to an increase in precision by a factor 36.

  2. Determining the isomeric heterogeneity of neutral oligosaccharide-alditols of bovine submaxillary mucin using negative ion traveling wave ion mobility mass spectrometry.

    PubMed

    Li, Hongli; Bendiak, Brad; Siems, William F; Gang, David R; Hill, Herbert H

    2015-02-17

    Negative ions produced by electrospray ionization were used to evaluate the isomeric heterogeneity of neutral oligosaccharide-alditols isolated from bovine submaxillary mucin (BSM). The oligosaccharide-alditol mixture was preseparated on an off-line high-performance liquid chromatography (HPLC) column, and the structural homogeneity of individual LC fractions was investigated using a Synapt G2 traveling wave ion mobility spectrometer coupled between quadupole and time-of-flight mass spectrometers. Mixtures of isomers separated by both chromatography and ion mobility spectrometry were studied. Tandem mass spectrometry (MS/MS) of multiple mobility peaks having the same mass-to-charge ratio (m/z) demonstrated the presence of different structural isomers and not differences in ion conformations due to charge site location. Although the oligosaccharide-alditol mixture was originally separated by HPLC, multiple ion mobility peaks due to structural isomers were observed for a number of oligosaccharide-alditols from single LC fractions. The collision-induced dissociation cells located in front of and after the ion mobility separation device enabled oligosaccharide precursor or product ions to be separated by ion mobility and independent fragmentation spectra to be acquired for isomeric carbohydrate precursor or product ions. MS/MS spectra so obtained for independent mobility peaks at a single m/z demonstrated the presence of structural variants or stereochemical isomers having the same molecular formula. This was observed both for oligosaccharide precursor and product ions. In addition, mobilities of both [M - H](-) and [M + Cl](-) ions, formed by adding NH4OH or NH4Cl to the electrospray solvent, were examined and compared for selected oligosaccharide-alditols. Better separation among structural isomers appeared to be achieved for some [M + Cl](-) anions.

  3. Screening volatile organics by direct sampling ion trap and glow discharge mass spectrometry

    SciTech Connect

    Wise, M.B.; Hurst, G.B.; Thompson, C.V.; Buchanan, M.V.; Guerin, M.R.

    1991-01-01

    Two different types of direct sampling mass spectrometers are currently being evaluated in our laboratory for use as rapid screening tools for volatile organics in a wide range of environmental matrices. These include a commercially available ITMS ion trap mass spectrometer and a specially designed tandem source glow discharge quadrupole mass spectrometer. Both of these instruments are equipped with versatile sampling interfaces which enable direct monitoring of volatile organics at part-per-billion (ppb) levels in air, water, and soil samples. Direct sampling mass spectrometry does not utilize chromatographic or other separation steps prior to admission of samples into the analyzer. Instead, individual compounds are measured using one or more of the following methods: spectral subtraction, selective chemical ionization, and tandem mass spectroscopy (MS/MS). For air monitoring applications, an active sniffer'' probe is used to achieve instantaneous response. Water and soil samples are analyzed by means of high speed direct purge into the mass spectrometer. Both instruments provide a range of ionization options for added selectivity and the ITMS can also provide high efficiency collision induced dissociation MS/MS for target compound analysis. Detection limits and response factors have been determined for a large number volatile organics in air, water, and number of different soil types. 4 refs., 14 figs., 3 tabs.

  4. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.

    PubMed

    Tomlinson-Phillips, Jill; Wooten, Alfred; Kozole, Joseph; Deline, James; Beresford, Pamela; Stairs, Jason

    2014-09-01

    Identification of the fragment ion species associated with the ion reaction mechanism of triacetone triperoxide (TATP), a homemade peroxide-based explosive, is presented. Ion mobility spectrometry (IMS) has proven to be a key analytical technique in the detection of trace explosive material. Unfortunately, IMS alone does not provide chemical identification of the ions detected; therefore, it is unknown what ion species are actually formed and separated by the IMS. In IMS, ions are primarily characterized by their drift time, which is dependent on the ion׳s mass and molecular cross-section; thus, IMS as a standalone technique does not provide structural signatures, which is in sharp contrast to the chemical and molecular information that is generally obtained from other customary analytical techniques, such as NMR, Raman and IR spectroscopy and mass spectrometry. To help study the ion chemistry that gives rise to the peaks observed in IMS, the hardware of two different commercial IMS instruments has been directly coupled to triple quadrupole (QQQ) mass spectrometers, in order to ascertain each ion׳s corresponding mass/charge (m/z) ratios with different dopants at two temperatures. Isotope labeling was then used to help identify and confirm the molecular identity of the explosive fragment and adduct ions of TATP. The m/z values and isotope labeling experiments were used to help propose probable molecular formulas for the ion fragments. In this report, the fragment and adduct ions m/z 58 and 240 of TATP have been confirmed to be [C3H6NH·H](+) and [TATP·NH4](+), respectively; while the fragment ions m/z 73 and 89 of TATP are identified as having the molecular formulas [C4H9NH2](+) and [C4H9O2](+), respectively. It is anticipated that the work in this area will not only help to facilitate improvements in mobility-based detection (IMS and MS), but also aid in the development and optimization of MS-based detection algorithms for TATP.

  5. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.

    PubMed

    Tomlinson-Phillips, Jill; Wooten, Alfred; Kozole, Joseph; Deline, James; Beresford, Pamela; Stairs, Jason

    2014-09-01

    Identification of the fragment ion species associated with the ion reaction mechanism of triacetone triperoxide (TATP), a homemade peroxide-based explosive, is presented. Ion mobility spectrometry (IMS) has proven to be a key analytical technique in the detection of trace explosive material. Unfortunately, IMS alone does not provide chemical identification of the ions detected; therefore, it is unknown what ion species are actually formed and separated by the IMS. In IMS, ions are primarily characterized by their drift time, which is dependent on the ion׳s mass and molecular cross-section; thus, IMS as a standalone technique does not provide structural signatures, which is in sharp contrast to the chemical and molecular information that is generally obtained from other customary analytical techniques, such as NMR, Raman and IR spectroscopy and mass spectrometry. To help study the ion chemistry that gives rise to the peaks observed in IMS, the hardware of two different commercial IMS instruments has been directly coupled to triple quadrupole (QQQ) mass spectrometers, in order to ascertain each ion׳s corresponding mass/charge (m/z) ratios with different dopants at two temperatures. Isotope labeling was then used to help identify and confirm the molecular identity of the explosive fragment and adduct ions of TATP. The m/z values and isotope labeling experiments were used to help propose probable molecular formulas for the ion fragments. In this report, the fragment and adduct ions m/z 58 and 240 of TATP have been confirmed to be [C3H6NH·H](+) and [TATP·NH4](+), respectively; while the fragment ions m/z 73 and 89 of TATP are identified as having the molecular formulas [C4H9NH2](+) and [C4H9O2](+), respectively. It is anticipated that the work in this area will not only help to facilitate improvements in mobility-based detection (IMS and MS), but also aid in the development and optimization of MS-based detection algorithms for TATP. PMID:24913870

  6. Nano-Scale Secondary Ion Mass Spectrometry - A new analytical tool in biogeochemistry and soil ecology

    SciTech Connect

    Herrmann, A M; Ritz, K; Nunan, N; Clode, P L; Pett-Ridge, J; Kilburn, M R; Murphy, D V; O'Donnell, A G; Stockdale, E A

    2006-10-18

    Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecological function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review the areas of

  7. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  8. Selectivity of negative ion chemical ionization mass spectrometry for benzo(a)pyrene

    SciTech Connect

    Hilpert, L.R.; Byrd, G.D.; Vogt, C.R.

    1984-09-01

    Gas chromatography/negative ion chemical ionization mass spectrometry (GC/NICIMS) was used as a selective and sensitive technique for the detection of benzo(a)pyrene (BaP). Under optimized conditions, the molecular anion, M/sup -/, of BaP was more than 3 orders of magnitude more abundant than that of its isomer benzo(e)pyrene (BeP) using methane as the reagent gas. Quantities of BaP as low as 1 pg can easily be detected in the selected ion monitoring mode and the response vs. concentration was linear over a range of 3 orders of magnitude. The absolute sensitivity and the selectivity for detection were found to depend on the pressure and temperature in the ion source of the mass spectrometer. NICIMS was used for the quantitative determination of BaP, indeno(1,2,3-cd)pyrene, and benzo(ghl)perylene in a sample of petroleum crude oil as part of the process of certifying the oil as a Standard Reference Material.

  9. Tools and procedures for quantitative microbeam isotope ratio imaging by secondary ion mass spectrometry.

    PubMed

    Gillen, Greg; Bright, David

    2003-01-01

    In this work we demonstrate the use of secondary ion mass spectrometry (SIMS) combined with the Lispix image processing program (Bright 1995) to generate quantitative isotope ratio images from a test sample of a calcium-aluminum rich inclusion from the Allende meteorite that is known to contain discrete mineral grains with perturbed Mg isotopic ratios. Using 19.5 keV impact O- primary ion bombardment and detection of positive secondary ions, microbeam imaging SIMS has allowed us to identify, from the isotope ratio images, enrichments in the 26Mg/24Mg isotope ratio of approximately 5-15% in selected mineral grains. Using custom image processing software, each isotopic ratio image is corrected on an individual pixel basis for a number of factors including detector dead-time, mass bias effects, and isobaric interferences. We have developed procedures for correlating the isotopic images with polarized optical microscopy so that targeted mineral grains could be identified for further SIMS analysis. Finally, additional image processing tools have been developed to allow for pixel-by-pixel evaluation of the influence of detector dead-time and count rate errors on the isotopic ratio images and for correlation of the isotopic images with elemental distribution maps.

  10. Nano-electrospray and microbore liquid chromatography-ion trap mass spectrometry studies of copper complexation with MHC restricted peptides.

    PubMed

    Creaser, C S; Lill, J R; Bonner, P L; Hill, S C; Rees, R C

    2000-04-01

    The formation of copper/peptide complex ions by nano-electrospray and microbore HPLC-electrospray mass spectrometry has been investigated for major histocompatibility complex (MHC) class I and class II restricted peptides. Post-column addition of copper(II) acetate following microbore HPLC-MS separation was carried out using a mixing T-piece or via the sheath flow inlet of the electrospray source. Optimal analytical conditions for copper complex ion formation were determined by variation of copper concentration, pH, nebulization gas supply and spray voltage. Tandem mass spectrometry of copper/peptide complex ions provides peptide sequence information and insight into the peptide chelation sites. Copper associated y fragment ions dominate the product ion spectrum for non-histidine containing peptides, but both b and y copper complex ions were observed for the histidine containing MHC class I associated peptide gp70. PMID:10892016

  11. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    PubMed

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).

  12. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    PubMed

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice

  13. Ion mobility mass spectrometry enables the efficient detection and identification of halogenated natural products from cyanobacteria with minimal sample preparation.

    PubMed

    Esquenazi, Eduardo; Daly, Michael; Bahrainwala, Tasneem; Gerwick, William H; Dorrestein, Pieter C

    2011-11-15

    Direct observation of halogenated natural products produced by different strains of marine cyanobacteria was accomplished by electrospray ionization and matrix assisted laser desorption ionization and gas phase separation via ion mobility mass spectrometry of extracts as well as intact organisms.

  14. Humidity affects relative ion abundance in direct analysis in real time mass spectrometry of hexamethylene triperoxide diamine.

    PubMed

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2014-12-16

    Unstable explosive hexamethylene triperoxide diamine (HMTD) is dangerous in quantity and benefits from the minimal sampling handling associated with atmospheric pressure chemical ionization for mass spectral analysis. Seasonal variation observed in HMTD mass spectra suggested a humidity dependence. Therefore, direct analysis in real time (DART) ionization mass spectra were acquired at a range of humidity values. An enclosure was designed to fit around the ion source and mass spectrometer inlet at atmospheric pressure. The enclosure was supplied with controlled amounts of humidified air from a test atmosphere generator to create programmable conditions for ambient analysis. The relative abundance and fragmentation of analyte ions were observed to change reliably with changing humidity values and, to a lesser degree, temperature. Humidity at such plasma-based ion sources should be regulated to avoid ∼90% shifts in relative ion abundance and provide stability and reproducibility of HMTD analysis.

  15. Study of the Interactions Between Transition Metal Ions and Peptides by CALIFORNIUM-252 Plasma Desorption Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hu, Zhaohong

    This dissertation focuses on the study of interactions between transition metal ions (Cu(II), Zn(II), Pd(II), Pt(II)) and peptides (bradykinins and angiotensins). Chapter I provides an overview on the fundamental issues related to and techniques used for studying trans