Science.gov

Sample records for nano-secondary ion mass

  1. Analysis of bacterial spore permeability to water and ions using Nano-Secondary Ion Mass Spectrometry (NanoSIMS)

    SciTech Connect

    Ghosal, S; Fallon, S; Leighton, T; Wheeler, K; Hutcheon, I; Weber, P K

    2005-11-17

    Regulation of bacterial spore solvent and solute permeability is a fundamental feature of dormancy but is poorly understood. Here we present a new technique, nano-scale secondary ion mass spectrometry (NanoSIMS) that allows the direct visualization and quantification of chemical gradients within spores. Using NanoSIMS, we demonstrate the penetration of water and a simple ionic salt, LiF, into the core of Bacillus thuringiensis israelensis (Bti) spores. The results demonstrate chemical gradients spanning the outer coat to the inner spore core that are driven by concentration-dependent ionic fluxes. Using deuterated water (D{sub 2}O), we have shown that external water is either retained or exchanged with water contained within the spore. Hydration and exchange are rapid, on a timescale of < 1 minute. Our results suggest a permeation mechanism by which short-time scale diffusion into and out of the spore can occur along hydration pathways. Additional studies are in progress to define the flux rates and mechanisms controlling these processes.

  2. A New Radio Frequency Plasma Oxygen Primary Ion Source on Nano Secondary Ion Mass Spectrometry for Improved Lateral Resolution and Detection of Electropositive Elements at Single Cell Level.

    PubMed

    Malherbe, Julien; Penen, Florent; Isaure, Marie-Pierre; Frank, Julia; Hause, Gerd; Dobritzsch, Dirk; Gontier, Etienne; Horréard, François; Hillion, François; Schaumlöffel, Dirk

    2016-07-19

    An important application field of secondary ion mass spectrometry at the nanometer scale (NanoSIMS) is the detection of chemical elements and, in particular, metals at the subcellular level in biological samples. The detection of many trace metals requires an oxygen primary ion source to allow the generation of positive secondary ions with high yield in the NanoSIMS. The duoplasmatron oxygen source is commonly used in this ion microprobe but cannot achieve the same quality of images as the cesium primary ion source used to produce negative secondary ions (C(-), CN(-), S(-), P(-)) due to a larger primary ion beam size. In this paper, a new type of an oxygen ion source using a rf plasma is fitted and characterized on a NanoSIMS50L. The performances of this primary ion source in terms of current density and achievable lateral resolution have been characterized and compared to the conventional duoplasmatron and cesium sources. The new rf plasma oxygen source offered a net improvement in terms of primary beam current density compared to the commonly used duoplasmatron source, which resulted in higher ultimate lateral resolutions down to 37 nm and which provided a 5-45 times higher apparent sensitivity for electropositive elements. Other advantages include a better long-term stability and reduced maintenance. This new rf plasma oxygen primary ion source has been applied to the localization of essential macroelements and trace metals at basal levels in two biological models, cells of Chlamydomonas reinhardtii and Arabidopsis thaliana.

  3. Atom probe tomography and nano secondary ion mass spectroscopy investigation of the segregation of boron at austenite grain boundaries in 0.5 wt.% carbon steels

    NASA Astrophysics Data System (ADS)

    Seol, J. B.; Lim, N. S.; Lee, B. H.; Renaud, L.; Park, C. G.

    2011-06-01

    The grain boundary segregation of boron atoms in high strength low alloy steels containing 50 ppm boron was accomplished using atom probe tomography (APT) and nano-beam secondary ion mass spectroscopy (SIMS). The formation of boro-carbides under an excessive addition of boron to the steels was identified through the SIMS and TEM. The APT was performed in order to evaluate the composition of the alloying elements, such as, boron and carbon, segregated at prior austenite grain boundaries. The boron contents at the prior austenite grain boundaries were approximately 1.7 ± 0.2 at.%, which was approximately 70 times more than the amount of boron added to the steels.

  4. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  5. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.

  6. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  7. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  8. The Giotto ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Balsiger, H.; Altwegg, K.; Buehler, F.; Fischer, J.; Geiss, J.; Meier, A.; Rettenmund, U.; Rosenbauer, H.; Schwenn, R.; Neugebauer, M.

    1986-01-01

    The Giotto Ion Mass Spectrometer (IMS) consists of two sensors: one optimized for the outer and the other for the inner coma, with each obtaining complementary information in the region for which it is not optimized. The outer coma is characterized by the interaction between solar wind and comentary plasmas, the inner coma by the outflow of cometary neutrals and their ionization products. Both sensors feature mass imaging characteristics, permitting simultaneous measurements of several ion species by multidetector arrays. Resultant mass-per-charge resolution is greater than or = 20. Energy per charge, and the elevation and aximuth of incident ions are measured. Calibration and in-flight solar-wind data show that the IMS will meet its scientific goals for the Halley encounter.

  9. Microscale ion trap mass spectrometer

    DOEpatents

    Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  10. High Mass Ion Detection with Charge Detector Coupled to Rectilinear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Patil, Avinash A.; Chou, Szu-Wei; Chang, Pei-Yu; Lee, Chen-Wei; Cheng, Chun-Yen; Chu, Ming-Lee; Peng, Wen-Ping

    2016-12-01

    Conventional linear ion trap mass analyzers (LIT-MS) provide high ion capacity and show their MS n ability; however, the detection of high mass ions is still challenging because LIT-MS with secondary electron detectors (SED) cannot detect high mass ions. To detect high mass ions, we coupled a charge detector (CD) to a rectilinear ion trap mass spectrometer (RIT-MS). Immunoglobulin G ions (m/z 150,000) are measured successfully with controlled ion kinetic energy. In addition, when mass-to-charge (m/z) ratios of singly charged ions exceed 10 kTh, the detection efficiency of CD is found to be greater than that of SED. The CD can be coupled to LIT-MS to extend the detection mass range and provide the potential to perform MS n of high mass ions inside the ion trap.

  11. The ion mass spectrometer on Giotto

    NASA Technical Reports Server (NTRS)

    Balsiger, H.; Altwegg, K.; Buehler, F.; Fischer, J.; Geiss, J.; Benson, J.; Hemmerich, P.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.

    1987-01-01

    The design of the Giotto ion mass spectrometer (IMS) system, its calibration, and the initial flight performance are discussed. The IMS system consists of two sensors: one optimized for the outer coma, the other for the inner coma, with each sensor obtaining complementary information in the region for which it was not optimized. Both sensors feature mass-imaging characteristics, permitting simultaneous measurements of several ion species by means of multi-detector arrays, with resultant mass per charge resolution of not less than 20. In addition to mass per charge, the energy per charge and the elevation and azimuth of the incident ions were measured during the Giotto flight.

  12. Mass spectrometry and inhomogeneous ion optics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1973-01-01

    Work done in several areas to advance the state of the art of magnetic mass spectrometers is described. The calculations and data necessary for the design of inhomogeneous field mass spectrometers, and the calculation of ion trajectories through such fields are presented. The development and testing of solid state ion detection devices providing the capability of counting single ions is discussed. New techniques in the preparation and operation of thermal-ionization ion sources are described. Data obtained on the concentrations of copper in rainfall and uranium in air samples using the improved thermal ionization techniques are presented. The design of a closed system static mass spectrometer for isotopic analyses is discussed. A summary of instrumental aspects of a four-stage mass spectrometer comprising two electrostatic and two 90 deg. magnetic lenses with a 122-cm radius used to study the interaction of ions with solids is presented.

  13. Imaging thermal ion mass and velocity analyzer

    NASA Astrophysics Data System (ADS)

    Yau, A. W.; King, E. P.; Amerl, P.; Berg, K.; Enno, G.; Howarth, A.; Wevers, I.; White, A.

    2013-11-01

    The aim of an imaging thermal ion mass and velocity analyzer is to apply imaging techniques to measure in-situ the mass composition and detailed velocity phase space distributions of a thermal plasma population in a planetary ionosphere or magnetosphere and use the measured distributions to derive the bulk plasma parameters and to detect the possible presence of non-thermal distributions. A hemispherical electrostatic analyzer (HEA) with a planar entrance aperture can sample simultaneously incident ions or electrons over an extended energy range and the full 360° range of incident azimuth, and disperse them by their energy-per-charge while retaining their incident azimuth, thus providing a means to image the 2-dimensional (2D) ion or electron energy-per-charge and angular (azimuth) distribution. Therefore an ion mass and velocity analyzer consisting of a HEA embedded with an ion-mass spectrometer is capable of imaging the 2-D detailed ion velocity distribution—and measuring the 3D distribution on a spinning spacecraft if the planar entrance aperture is aligned along the spacecraft spin axis. For 3D velocity distribution measurements on a 3-axis stabilized spacecraft, an analyzer with electrostatic deflection capability will be required to deflect ions at arbitrary incident elevation angles into the planar entrance aperture for sampling. An imaging thermal ion mass and velocity analyzer is presented that combines a HEA, a time-of-flight ion mass spectrometer, and a pair of electrostatic deflectors, and is capable of sampling low-energy ions (˜1 to 100 eV/e) of all mass species (1 to > 40 AMU/e) from all incident directions on a non-spinning platform, at up to (10% energy resolution (ΔE/E) and ˜5° angular resolution. Using the HEA to measure the energy-percharge of each detected ion and the time-of-flight gate to measure the transit time of the ion inside the analyzer, this instrument can resolve all major ion species in the ionosphere including H+, He+ and O

  14. Ions in oceanic and continental air masses

    SciTech Connect

    Tanner, D.J.; Eisele, F.L. )

    1991-01-20

    Measurements of tropospheric ions and several trace atmospheric neutral species have been performed at Cheeka Peak Research Station and at Mauna Loa Observatory. Two new positive ion species at masses 114 and 102 have been identified as protonated caprolactam and a saturated 6-carbon primary amine, respectively. In the negative ion spectrum, methane sulfonic acid (MSA) has been identified as the parent species responsible for an ion commonly observed at mass 95 during these two studies. The diurnal variations of gas phase H{sub 2}SO{sub 4} and MSA were also measured at Cheeka Peak and have typically been found to be present in the sub-ppt range. Ion assisted measurements at Mauna Loa Observatory of pyridine and ammonia indicate concentrations of 2.5 and 70 ppt, respectively, with at least a factor of 2 uncertainty. Interesting variations and potential sources of several of the observed ions are also discussed.

  15. Secondary ion coincidence in highly charged ion based secondary ion mass spectroscopy for process characterization

    SciTech Connect

    Hamza, A.V.; Schenkel, T.; Barnes, A.V.; Schneider, D.H.

    1999-01-01

    Coincidence counting in highly charged ion based secondary ion mass spectroscopy has been applied to the characterization of selective tungsten deposition via disilane reduction of tungsten hexafluoride on a patterned SiO{sub 2}/Si wafer. The high secondary ion yield and the secondary ion emission from a small area produced by highly charged ions make the coincidence technique very powerful.

  16. Secondary ion mass spectrometry: Polyatomic and molecular ion emission

    NASA Astrophysics Data System (ADS)

    Colton, Richard J.; Ross, Mark M.; Kidwell, David A.

    1986-03-01

    Secondary ion mass spectrometry (SIMS) has become a diverse tool for the study of many substances such as metals, semiconductors, inorganic compounds and organic compounds, including polymers and biomolecules. This paper discusses the formation and emission of polyatomic and molecular ions from surfaces of these materials. The mass, energy, and abundance distribution of cluster ions emitted from various solids — Van der Waals, molecular, metallic, ionic and covalent — are compared. Trends in their emission patterns are discussed in terms of a recombination or a direct emission mechanism. For example, the ion abundance of cluster ions sputtered from metals decreases monotonically with increasing cluster size due to a decreasing formation probability for large clusters. The emission from metal oxides, however, shows a broad distribution of M mO ±n cluster ions whose formation can be described by both recombination and direct emission mechanisms. Covalently bonded molecules tend to eject as intact species. The emission of molecular ions is also discussed with respect to the method of ionization and the various sample preparation and matrix-assisted and derivatization procedures used. For example, the emission of molecular ions from metal surfaces is strongly influenced by the nature of the adsorption site; and matrix-assisted and derivatization procedures enhance the ionization efficiency of the analyte.

  17. Radiocarbon positive-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Shanks, Richard P.; Donzel, Xavier; Gaubert, Gabriel

    2015-10-01

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  18. Miniaturized Linear Wire Ion Trap Mass Analyzer.

    PubMed

    Wu, Qinghao; Li, Ailin; Tian, Yuan; Zare, Richard N; Austin, Daniel E

    2016-08-02

    We report a linear ion trap (LIT) in which the electric field is formed by fine wires held under tension and accurately positioned using holes drilled in two end plates made of plastic. The coordinates of the hole positions were optimized in simulation. The stability diagram and mass spectra using boundary ejection were compared between simulation and experiment and good agreement was found. The mass spectra from experiments show peak widths (fwhm) in units of mass-to-charge of around 0.38 Th using a scan rate of 3830 Th/s. The limits of detection are 137 ppbv and 401 ppbv for benzene and toluene, respectively. Different sizes of the wire ion trap can be easily fabricated by drilling holes in scaled positions. Other distinguishing features, such as high ion and photon transmission, low capacitance, high tolerance to mechanical and assembly error, and low weight, are discussed.

  19. Ion trap mass spectrometry of externally generated ions

    SciTech Connect

    McLuckey, S.A.; Van Berkel, G.J.; Georinger, D.E. ); Glish, G.L.

    1994-07-01

    This discussion provides background for consideration of the merits of ion trap MS in conjunction with an external ion source relative to a scanning beam-type form of mass analysis. Emphasis has been placed primarily on efficiency. However, a variety of other factors can be major considerations, depending upon the application. For example, the ion trap has clear advantages over most other forms of MS in terms of size, weight, and pumping requirements. These advantages make the ion trap attractive for field applications, particularly because the performance characteristics of the ion trap need not be compromised in a compact system. One of the most significant advantages is the high efficiency obtainable with tandem MS experiments by using collisional activation via resonance excitation. Under favorable conditions, the conversion of 100% of the parent ions to product ions can be achieved, although 10-50% conversions are more typical. The analogous conversion in most beam-type tendem MS experiments is typically 1-3 orders of magnitude lower; thus, significant reductions in detection limits by use of the ion trap can be anticipated in analyses requiring two or more stages of MS. 61 refs., 3 figs.

  20. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-15

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  1. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications.

    PubMed

    Belykh, S F; Palitsin, V V; Veryovkin, I V; Kovarsky, A P; Chang, R J H; Adriaens, A; Dowsett, M G; Adams, F

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si(n)(-) and Cu(n)(-). Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  2. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  3. AFE ion mass spectrometer design study

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1989-01-01

    This final technical report covers the activities engaged in by the University of Texas at Dallas, Center for Space Sciences in conjunction with the NASA Langley Research Center, Systems Engineering Division in design studies directed towards defining a suitable ion mass spectrometer to determine the plasma parameter around the Aeroassisted Flight Experiment vehicle during passage through the earth's upper atmosphere. Additional studies relate to the use of a Langmuir probe to measure windward ion/electron concentrations and temperatures. Selected instrument inlet subsystems were tested in the NASA Ames Arc-Jet Facility.

  4. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  5. Nanospray ion mobility mass spectrometry of selected high mass species.

    PubMed

    Campuzano, Iain; Giles, Kevin

    2011-01-01

    The introduction of electrospray ionization (ESI) and in particular nano-electrospray (nESI) has enabled the routine mass spectrometric (MS) analysis of large protein complexes in native aqueous buffers. Time-of-flight (ToF) mass spectrometers, in particular the hybrid quadrupole time-of-flight (Q-ToF) instruments, are well suited to the analysis of large protein complexes. When ionized under native-MS conditions, protein complexes routinely exhibit multiple charge states in excess of m/z 6,000, well above the standard mass range of many quadrupole or ion cyclotron-based instruments. The research area of native MS has expanded considerably in the last decade and has shown particular relevance in the area of protein structure determination. Researchers are now able to routinely measure intact MS spectra of protein complexes above 1 MDa in mass. The advent of ion mobility mass spectrometry (IM-MS), in combination with molecular dynamics (MD) studies, is now allowing researchers to infer the shape of the protein complex being analyzed. Herein, we describe how to acquire IM-MS data that ranges from inorganic salt clusters of caesium iodide (CsI) to large biomolecular complexes such as the chaperone protein GroEL.

  6. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  7. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  8. Nano-Scale Secondary Ion Mass Spectrometry: Potential And Pitfalls Of This Technique For Soil Organic Matter Stabilization

    NASA Astrophysics Data System (ADS)

    Herrmann, A. M.

    2007-12-01

    The mechanisms by which organic matter is stabilized in soils are still poorly understood, and it is notable that some postulated mechanisms are currently only weakly supported by data. A major obstacle to progress is the lack of techniques of adequate sensitivity and resolution for data collection needed to further our understanding of soil organic matter stabilization at relevant scales. Nano-Secondary Ion Mass Spectrometry (NanoSIMS) is a cutting edge technology linking high resolution microscopy with isotopic analysis, which allows precise, spatially-explicit, elemental and isotopic analysis at micro-and nanoscale. The power of NanoSIMS lies in the ability of the instrument to distinguish stable isotopes of elements with a high sensitivity, i.e. concentrations in parts per million can be detected. The level of spatial resolution achievable is better than 50 nm (133Cs+ primary beam) with NanoSIMS, a significant improvement on other SIMS instruments and on X-ray micro-analytical techniques. These instruments have been applied to studies of presolar materials from meteorites, in material science, geology and mineralogy as well as biology. Recently, the potential of NanoSIMS has been demonstrated to explore in situ the biophysical interface in soils (Herrmann et al., 2007). I will present recent findings illustrating the capacity of NanoSIMS to improve our fundamental understanding of soil processes at the nano- and micro-scale, along with my experiences in the methodological approaches that need consideration with respect to experimental design and sample preparation. Herrmann, AM, Clode, PL, Fletcher, IR, Nunan N, Stockdale, EA, O'Donnell, AG, Murphy, DV, 2007. A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry 21, 29-34.

  9. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  10. Proton Transfer Reaction Ion Trap Mass Spectrometer

    SciTech Connect

    Prazeller, Peter; Palmer, Peter T.; Boscaini, Elena; Jobson, B Tom T.; Alexander, M. Lizabeth

    2003-06-11

    Proton transfer reaction mass spectrometry is a relatively new field that has attracted a great deal of interest in the last few years. This technique uses H₃Oþ as a chemical ionization (CI) reagent to measure volatile organic compounds (VOCs) in the parts per billion by volume (ppbv) to parts per trillion by volume (pptv) range. Mass spectra acquired with a proton transfer reaction mass spectrometer (PTR-MS) are simple because proton transfer chemical ionization is ‘soft’ and results in little or no fragmentation. Unfortunately, peak identification can still be difficult due to isobaric interferences. A possible solution to this problem is to couple the PTR drift tube to an ion trap mass spectrometer (ITMS). The use of an ITMS is appealing because of its ability to perform MS/MS and possibly distinguish between isomers and other isobars. Additionally, the ITMS duty cycle is much higher than that of a linear quadrupole so faster data acquisition rates are possible that will allow for detection of multiple compounds. Here we present the first results from a proton transfer reaction ion trap mass spectrometer (PTR-ITMS). The aim of this study was to investigate ion injection and storage efficiency of a simple prototype instrument in order to estimate possible detection limits of a second-generation instrument. Using this prototype a detection limit of 100 ppbv was demonstrated. Modifications are suggested that will enable further reduction in detection limits to the low-ppbv to high-pptv range. Furthermore, the applicability of MS/MS in differentiating between isobaric species was determined. MS/MS spectra of the isobaric compounds methyl vinyl ketone (MVK) and methacrolein (MACR) are presented and show fragments of different mass making differentiation possible, even when a mixture of both species is present in the same sample. However, MS/MS spectra of acetone and propanal produce fragments with the same molecular masses but with different intensity ratios

  11. Non-destructive ion trap mass spectrometer and method

    DOEpatents

    Frankevich, Vladimir E.; Soni, Manish H.; Nappi, Mario; Santini, Robert E.; Amy, Jonathan W.; Cooks, Robert G.

    1997-01-01

    The invention relates to an ion trap mass spectrometer of the type having an ion trapping volume defined by spaced end caps and a ring electrode. The ion trap includes a small sensing electrode which senses characteristic motion of ions trapped in said trapping volume and provides an image current. Ions are excited into characteristic motion by application of an excitation pulse to the trapped ions. The invention also relates to a method of operating such an ion trap.

  12. In situ secondary ion mass spectrometry analysis

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  13. THOR Ion Mass Spectrometer instrument - IMS

    NASA Astrophysics Data System (ADS)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  14. Proton Transfer Reaction Ion Trap Mass Spectrometer

    SciTech Connect

    Prazeller, Peter; Palmer, Peter T.; Boscaini, Elena; Jobson, B Tom; Alexander, M. Lizabeth

    2003-07-07

    Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a relatively new field that has attracted a great deal of interest in the last several years. This technique uses H3O+ as a chemical ionization (CI) agent for measuring volatile organic compounds (VOCs) in the parts per billion by volume (ppbv) - parts per trillion by volume (pptv) range. PTR-MS mass spectra are simple because the ionization method of proton transfer is “soft”, resulting in little or no fragmentation. Unfortunately, the simplicity of the mass spectra can cause problems in peak identification due to isobaric interferences. A possible solution to this problem is to couple the PTR drift tube to an ion trap mass spectrometer (ITMS). ITMS is appealing because of the ability to perform MS/MS and possibly distinguish between isomers and other isobars. Additionally, the ITMS duty cycle is much higher than that of a linear quadrupole so faster data acquisition rates can be realized for detection of multiple compounds. We present here the first results from a Proton Transfer Reaction Ion Trap Mass Spectrometer (PTR-ITMS). The aim of this study was to investigate ion injection and storage efficiency of a simple prototype interface in order to estimate possible detection limits of a second generation instrument. Using this prototype a detection limit of 100 ppbv was demonstrated for the PTR-ITMS. Modifications are suggested that will enable further reduction in detection limits to the low ppbv to pptv range. Furthermore the applicability of MS/MS to differentiate between isobaric species was determined. MS/MS spectra of the isobaric compounds methyl vinyl ketone (MVK) and methacrolein (MACR) are presented and show fragments of different mass making a differentiation possible even when a mixture of both species is present in the same sample. MS/MS spectra of acetone and propanal produce fragments with the same molecular weight but different ratios, allowing quantitative distinction only if one species

  15. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  16. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  17. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  18. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  19. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  20. Ion Neutral Mass Spectrometer Measurements from Titan

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Niemann, H.; Yelle, R. V.; Kasprzak, W.; Cravens, T.; Luhmann, J.; McNutt, R.; Ip, W.-H.; Gell, D.; Muller-Wordag, I. C. F.

    2005-01-01

    Introduction: The Ion Neutral Mass Spectrometer (INMS) aboard the Cassini orbiter has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, argon, and a host of stable carbon-nitrile compounds in its first flyby of Titan. The bulk composition and thermal structure of the moon s upper atmosphere do not appear to be changed since the Voyager flyby in 1979. However, the more sensitive techniques provided by modern in-situ mass spectrometry also give evidence for large-spatial-scale large-amplitude atmospheric waves in the upper atmosphere and for a plethora of stable carbon-nitrile compounds above 1174 km. Furthermore, they allow the first direct measurements of isotopes of nitrogen, carbon, and argon, which provide interesting clues about the evolution of the atmosphere. The atmosphere was first accreted as ammonia and ammonia ices from the Saturn sub-nebula. Subsequent photochemistry likely converted the atmosphere into molecular nitrogen. The early atmosphere was 1.5 to 5 times more substantial and was lost via escape over the intervening 4.5 billion years due to the reduced gravity associated with the relatively small mass of Titan. Carbon in the form of methane has continued to outgas over time from the interior with much of it being deposited in the form of complex hydrocarbons on the surface and some of it also being lost to space.

  1. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  2. Radiation Design of Ion Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Ed; Cooper, John; Christian, Eric; Moore, Tom; Sturner, Steve; Paschalidis, Nick

    2011-01-01

    In the harsh radiation environment of Jupiter and with the JUpiter ICy moon Explorer (JUICE) mission including two Europa flybys where local intensities are approx. 150 krad/month behind 100 mils of Al shielding, so background from penetrating radiation can be a serious issue for detectors inside an Ion Mass Spectrometer (IMS). This can especially be important for minor ion detection designs. Detectors of choice for time-of-flight (TOF) designs are microchannel plates (MCP) and some designs may include solid state detectors (SSD). The standard approach is to use shielding designs so background event rates are low enough that the detector max rates and lifetimes are first not exceeded and then the more stringent requirement that the desired measurement can successfully be made (i.e., desired signal is sufficiently greater than background noise after background subtraction is made). GEANT codes are typically used along with various electronic techniques, but such designs need to know how the detectors will respond to the simulated primary and secondary radiations produced within the instrument. We will be presenting some preliminary measurements made on the response of MCPs to energetic electrons (20 ke V to 1400 ke V) using a Miniature TOF (MTOF) device and the High Energy Facility at Goddard Space Flight Center which has a Van de Graaff accelerator.

  3. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  4. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  5. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  6. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  7. Collisional cooling of large ions in electrospray mass spectrometry.

    PubMed

    Chernushevich, Igor V; Thomson, Bruce A

    2004-03-15

    Collisional cooling of ions in the rf-only multipole guides has become a method of choice for coupling electrospray sources to various mass analyzers. Normally parameters of such ion guides (length, pressure) provide enough thermalization and focusing for ions in a wide mass range. Noncovalent complexes, however, have more compact conformations than denatured biomolecules of similar mass and, therefore may not be transmitted efficiently through standard ion guides, as demonstrated by theoretical analysis, simulations, and experiments. Several methods of improving collisional cooling for large compact ions have been developed on a quadrupole time-of-flight instrument, which include operating the ion guides at higher pressure and trapping ions to increase the cooling time. Improved transmission of heavy ions obtained with those methods is studied in experiments with proteasome 20S, an oligomeric protein noncovalent complex with molecular weight around 692,000, and a few other compounds.

  8. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Smith, Donald F.; Robinson, Errol W.; Tolmachev, Aleksey V.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana

    2011-12-15

    Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g. Au and Bi cluster and buckminsterfullerene (C60)) provide improved secondary ion yield and decreased fragmentation of surface species, thus accessibility to intact molecular ions. Despite developments in primary ion sources, development of mass spectrometers to fully exploit their advantages has been limited. Tandem mass spectrometry for identification of secondary ions is highly desirable, but implementation has proven to be difficult. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C60 primary ion source with the ultra-high mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100,000 (m/Δm50%) is demonstrated, with mass measurement accuracies below 3 parts-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulae can be assigned to fragment ions.

  9. Ion yield improvement for static secondary ion mass spectrometry by use of polyatomic primary ions.

    PubMed

    De Mondt, Roel; Van Vaeck, Luc; Heile, Andreas; Arlinghaus, Heinrich F; Nieuwjaer, Nicolas; Delcorte, Arnaud; Bertrand, Patrick; Lenaerts, Jens; Vangaever, Frank

    2008-05-01

    Static secondary ion mass spectrometry (S-SIMS) is one of the potentially most powerful and versatile tools for the analysis of surface components at the monolayer level. Current improvements in detection limit (LOD) and molecular specificity rely on the optimisation of the desorption-ionisation (DI) process. As an alternative to monoatomic projectiles, polyatomic primary ion (P.I.) bombardment increases ion yields non-linearly. Common P.I. sources are Ga+ (liquid metal ion gun (LMIG), SF5+ (electron ionisation) and the newer Au(n)+, Bi(n)q+ (both LMIG) and C60+ (electron ionisation) sources. In this study the ion yield improvement obtained by using the newly developed ion sources is assessed. Two dyes (zwitterionic and/or thermolabile polar functionalities on a largely conjugated backbone) were analysed as a thin layer using Ga+, SF5+, C60+, Bi+, Bi3(2+) and Bi5(2+) projectiles under static conditions. The study aims at evaluating the improvement in LOD, useful and characteristic yield and molecular specificity. The corrected total ion count values for the different P.I. sources are compared for different instruments to obtain a rough estimate of the improvements. Furthermore, tentative ionisation and fragmentation schemes are provided to describe the generation of radical and adduct ions. Characteristic ion yields are discussed for the different P.I. sources. An overview of the general appearances of the mass spectra obtained with the different P.I. sources is given to stress the major improvement provided by polyatomic P.I.s in yielding information at higher m/z values.

  10. Letter: High-mass capabilities of positive-ion and negative-ion direct analysis in real time mass spectrometry.

    PubMed

    Gross, Jürgen H

    2016-01-01

    Of the ionic liquid 1-butyl-3-methylimidazolium (C(+)) tricyanomethide (A(-)) high-mass cluster ions of both positive ([C(n)A(n-1)](+)) and negative ([C(n-1)A(n)](-)) charge were generated and detected by direct analysis in real time (DART) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). After optimization of the settings of the DART ionization source and of the mass analyzer ions of m/z values unprecedented in DART-MS were detected. Thus, the upper m/z limits of positive-ion and negative-ion DART- MS were substantially expanded. Negative-ion DART-MS delivered cluster ions up to [C(15)A(16)](-), m/z 3527 (nominal mass of monoisotopic ion), while positive-ion DART-MS even yielded ions up to [C(30)A(29)](+), m/z 6784. The identification of the cluster ions is supported by their accurate mass and exact mass differences corresponding to CA between adjacent cluster ion peaks.

  11. An ion mobility mass spectrometer for investigating photoisomerization and photodissociation of molecular ions.

    PubMed

    Adamson, B D; Coughlan, N J A; Markworth, P B; Continetti, R E; Bieske, E J

    2014-12-01

    An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the device is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.

  12. An ion mobility mass spectrometer for investigating photoisomerization and photodissociation of molecular ions

    SciTech Connect

    Adamson, B. D.; Coughlan, N. J. A.; Markworth, P. B.; Bieske, E. J.; Continetti, R. E.

    2014-12-15

    An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the device is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.

  13. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.

  14. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  15. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    SciTech Connect

    Debord, J. Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-06-09

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  16. Mass spectra of heavy ions near comet Halley

    NASA Technical Reports Server (NTRS)

    Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.

    1986-01-01

    The heavy-ion analyzer, RPA2-PICCA, aboard the Giotto spacecraft, detected the first cometary ions at a distance of about 1.05 million km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.

  17. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  18. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  19. 10 K Ring Electrode Trap - Tandem Mass Spectrometer for Infrared Spectroscopy of Mass Selected Ions

    SciTech Connect

    Goebbert, Daniel J.; Meijer, Gerard; Asmis, Knut R.

    2009-03-17

    A novel instrumental setup for measuring infrared photodissociation spectra of buffer gas cooled, mass-selected ions is described and tested. It combines a cryogenically cooled, linear radio frequency ion trap with a tandem mass spectrometer, optimally coupling continuous ion sources to pulsed laser experiments. The use of six independently adjustable DC potentials superimposed over the trapping radio frequency field provides control over the ion distribution within, as well as the kinetic energy distribution of the ions extracted from the ion trap. The scheme allows focusing the ions in space and time, such that they can be optimally irradiated by a pulsed, widely tunable infrared photodissociation laser. Ion intensities are monitored with a time-of-flight mass spectrometer mounted orthogonally to the ion trap axis.

  20. Reactions of Ions with Ionic Liquid Vapors by Selected-Ion Flow Tube Mass Spectrometry

    DTIC Science & Technology

    2016-06-07

    are observed by selected ion flow tube mass spectrometry. Free energies of the reactions involved are determined by ab initio quantum mechanical...spectrometry. Free energies of the reactions involving 1-ethyl-3-methylimidazolium bis-trifluoromethylsulfonylimide determined by ab initio...of the ion pairs should indicate potential reactivity with the above ions. Apparently, the Coulombic energy gained by ion addition or ion exchange

  1. Ion acoustic shock wave in collisional equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  2. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  3. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  4. Ion implantation of solar cell junctions without mass analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D.; Tonn, D. G.

    1981-01-01

    This paper is a summary of an investigation to determine the feasibility of producing solar cells by means of ion implantation without the use of mass analysis. Ion implants were performed using molecular and atomic phosphorus produced by the vaporization of solid red phosphorus and ionized in an electron bombardment source. Solar cell junctions were ion implanted by mass analysis of individual molecular species and by direct unanalyzed implants from the ion source. The implant dose ranged from 10 to the 14th to 10 to the 16th atoms/sq cm and the energy per implanted atom ranged from 5 KeV to 40 KeV in this study.

  5. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOEpatents

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2016-11-15

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  6. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOEpatents

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  7. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    DOE PAGES

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; ...

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting inmore » nearly lossless transmission.« less

  8. AUTOMATED DETERMINATION OF PRECURSOR ION, PRODUCT ION, AND NEUTRAL LOSS COMPOSITIONS AND DECONVOLUTION OF COMPOSITE MASS SPECTRA USING ION CORRELATION BASED ON EXACT MASSES AND RELATIVE ISOTOPIC ABUNDANCES

    EPA Science Inventory

    After a dispersive event, rapid determination of elemental compositions of ions in mass spectra is essential for tentatively identifying compounds. A Direct Analysis in Real Time (DART)® ion source interfaced to a JEOL AccuTOF® mass spectrometer provided exact masses accurate to ...

  9. Ion/Neutral, Ion/Electron, Ion/Photon, and Ion/Ion Interactions in Tandem Mass Spectrometry: Do we need them all? Are they enough?

    PubMed Central

    McLuckey, Scott A.; Mentinova, Marija

    2011-01-01

    A range of strategies and tools has been developed to facilitate the determination of primary structures of analyte molecules of interest via tandem mass spectrometry (MS/MS). The two main factors that determine the primary structural information present in an MS/MS spectrum are the type of ion generated from the analyte molecule and the dissociation method. The ion-type subjected to dissociation is determined by the ionization method/conditions and ion transformation processes that might take place after initial gas-phase ion formation. Furthermore, the range of analyte-related ion types can be expanded via derivatization reactions prior to mass spectrometry. Dissociation methods include those that simply alter the population of internal states of the mass-selected ion (i.e., activation methods like collision-induced dissociation) as well as processes that rely on transformation of the ion-type prior to dissociation (e.g., electron capture dissociation). A variety of ionic interactions has been studied for the purpose of ion dissociation and ion transformation that include ion/neutral, ion/photon, ion/electron, and ion/ion interactions. A wide range of phenomena has been observed, many of which have been explored/developed as means for structural analysis. The techniques arising from these phenomena are discussed within the context of the elements of structure determination in tandem mass spectrometry, viz., ion-type definition and dissociation. Unique aspects of the various ion interactions are emphasized along with any barriers to widespread implementation. PMID:21472539

  10. Linear electronic field time-of-flight ion mass spectrometers

    DOEpatents

    Funsten, Herbert O.

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  11. Simulating data processing for an Advanced Ion Mobility Mass Spectrometer

    SciTech Connect

    Chavarría-Miranda, Daniel; Clowers, Brian H.; Anderson, Gordon A.; Belov, Mikhail E.

    2007-11-03

    We have designed and implemented a Cray XD-1-based sim- ulation of data capture and signal processing for an ad- vanced Ion Mobility mass spectrometer (Hadamard trans- form Ion Mobility). Our simulation is a hybrid application that uses both an FPGA component and a CPU-based soft- ware component to simulate Ion Mobility mass spectrome- try data processing. The FPGA component includes data capture and accumulation, as well as a more sophisticated deconvolution algorithm based on a PNNL-developed en- hancement to standard Hadamard transform Ion Mobility spectrometry. The software portion is in charge of stream- ing data to the FPGA and collecting results. We expect the computational and memory addressing logic of the FPGA component to be portable to an instrument-attached FPGA board that can be interfaced with a Hadamard transform Ion Mobility mass spectrometer.

  12. Ion Mobility Mass Spectrometry Analysis of Isomeric Disaccharide Precursor, Product and Cluster Ions

    PubMed Central

    Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.

    2015-01-01

    RATIONALE Carbohydrates are highly variable in structure owing to differences in their anomeric configurations, monomer stereochemistry, inter-residue linkage positions and general branching features. The separation of carbohydrate isomers poses a great challenge for current analytical techniques. METHODS The isomeric heterogeneity of disaccharide ions and monosaccharideglycolaldehyde product ions evaluated using electrospray traveling wave ion mobility mass spectrometry (Synapt G2 high definition mass spectrometer) in both positive and negative ion modes investigation. RESULTS The separation of isomeric disaccharide ions was observed but not fully achieved based on their mobility profiles. The mobilities of isomeric product ions, the monosaccharide-glycolaldehydes, derived from different disaccharide isomers were measured. Multiple mobility peaks were observed for both monosaccharide-glycolaldehyde cations and anions, indicating that there was more than one structural configuration in the gas phase as verified by NMR in solution. More importantly, the mobility patterns for isomeric monosaccharide-glycolaldehyde product ions were different, which enabled partial characterization of their respective disaccharide ions. Abundant disaccharide cluster ions were also observed. The Results showed that a majority of isomeric cluster ions had different drift times and, moreover, more than one mobility peak was detected for a number of specific cluster ions. CONCLUSIONS It is demonstrated that ion mobility mass spectrometry is an advantageous method to assess the isomeric heterogeneity of carbohydrate compounds. It is capable of differentiating different types of carbohydrate ions having identical m/z values as well as multiple structural configurations of single compounds. PMID:24591031

  13. Reactions of Ions with Ionic Liquid Vapors by Selected-Ion Flow Tube Mass Spectrometry.

    PubMed

    Chambreau, Steven D; Boatz, Jerry A; Vaghjiani, Ghanshyam L; Friedman, Jeffrey F; Eyet, Nicole; Viggiano, A A

    2011-04-21

    Room-temperature ionic liquids exert vanishingly small vapor pressures under ambient conditions. Under reduced pressure, certain ionic liquids have demonstrated volatility, and they are thought to vaporize as intact cation-anion ion pairs. However, ion pair vapors are difficult to detect because their concentration is extremely low under these conditions. In this Letter, we report the products of reacting ions such as NO(+), NH4(+), NO3(-), and O2(-) with vaporized aprotic ionic liquids in their intact ion pair form. Ion pair fragmentation to the cation or anion as well as ion exchange and ion addition processes are observed by selected-ion flow tube mass spectrometry. Free energies of the reactions involving 1-ethyl-3-methylimidazolium bis-trifluoromethylsulfonylimide determined by ab initio quantum mechanical calculations indicate that ion exchange or ion addition are energetically more favorable than charge-transfer processes, whereas charge-transfer processes can be important in reactions involving 1-butyl-3-methylimidazolium dicyanamide.

  14. Design and development of a fast ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1983-01-01

    Two Fast Ion Mass Spectrometers (FIMS A and FIMS B) were developed. The design, development, construction, calibration, integration, and flight of these instruments, along with early results from the data analysis efforts are summarized. A medium energy ion mass spectrometer that covers mass velocity space with significantly higher time resolution, improved mass resolution, (particularly for heavier ions), and wider energy range than existing instruments had achieved was completed. The initial design consisted of a dual channel cylindrical electrostatic analyzer followed by a dual channel cylindrical velocity filter. The gain versus count rate characteristics of the high current channel electron multipliers (CEM's), which were chosen for ion detection, revealed a systematic behavior that can be used as a criterion for selection of CEM's for long counting lifetimes.

  15. Implementation of Ion/Ion Reactions in a Quadrupole/Time-of-Flight Tandem Mass Spectrometer

    PubMed Central

    Xia, Yu; Chrisman, Paul A.; Erickson, David E.; Liu, Jian; Liang, Xiaorong; Londry, Frank A.; Yang, Min J.; McLuckey, Scott A.

    2008-01-01

    A commercial quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been adapted for ion/ion reaction studies. To enable mutual storage of oppositely charged ions in a linear ion trap, the oscillating quadrupole field of the second quadrupole of the system (Q2) serves to store ions in the radial dimension while auxiliary RF is superposed on the end lenses of Q2 during the reaction period to create barriers in the axial dimension. A pulsed dual electrospray (ESI) source is directly coupled to the instrument interface for the purpose of proton transfer reactions. Singly and doubly charged protein ions as high in mass as 66 kDa are readily formed and observed after proton transfer reactions. For the modified instrument, the mass resolving power is about 8000 for a wide m/z range and the mass accuracy is ~20 ppm for external calibration and ~5 ppm for internal calibration after ion/ion reactions. Parallel ion parking is demonstrated with a six-component protein mixture, which shows the potential application of reducing spectral complexity and concentrating certain charge states. The current system has high flexibility with respect to defining MSn experiments involving collision-induced dissociation (CID) and ion/ion reactions. Protein precursor and CID product masses can be determined with good accuracy, providing an attractive platform for top-down proteomics. Electron transfer dissociation (ETD) ion/ion reactions are implemented by using a pulsed nano-ESI/atmospheric pressure chemical ionization (APCI) dual source for ionization. The reaction between protonated peptide ions and radical anions of 1,3-dinitrobenzene formed exclusively c- and z- type fragment ions. PMID:16771545

  16. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium

    NASA Technical Reports Server (NTRS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1991-01-01

    This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.

  17. Towards a universal product ion mass spectral library - reproducibility of product ion spectra across eleven different mass spectrometers.

    PubMed

    Hopley, Chris; Bristow, Tony; Lubben, Anneke; Simpson, Alec; Bull, Elaine; Klagkou, Katerina; Herniman, Julie; Langley, John

    2008-06-01

    Product ion spectra produced by collision-induced dissociation (CID) in tandem mass spectrometry experiments can differ markedly between instruments. There have been a number of attempts to standardise the production of product ion spectra; however, a consensus on the most appropriate approach to the reproducible production of spectra has yet to be reached. We have previously reported the comparison of product ion spectra on a number of different types of instruments - a triple quadrupole, two ion traps and a Fourier transform ion cyclotron resonance mass spectrometer (Bristow AWT, Webb KS, Lubben AT, Halket JM. Rapid Commun. Mass Spectrom. 2004; 18: 1). The study showed that a high degree of reproducibility was achievable. The goal of this study was to improve the comparability and reproducibility of CID product ion mass spectra produced in different laboratories and using different instruments. This was carried out experimentally by defining a spectral calibration point on each mass spectrometer for product ion formation. The long-term goal is the development of a universal (instrument independent) product ion mass spectral library for the identification of unknowns. The spectra of 48 compounds have been recorded on eleven mass spectrometers: six ion traps, two triple quadrupoles, a hybrid triple quadrupole, and two quadrupole time-of-flight instruments. Initially, 4371 spectral comparisons were carried out using the data from eleven instruments and the degree of reproducibility was evaluated. A blind trial has also been carried out to assess the reproducibility of spectra obtained during LC/MS/MS. The results suggest a degree of reproducibility across all instrument types using the tuning point technique. The reproducibility of the product ion spectra is increased when comparing the tandem in time type instruments and the tandem in space instruments as two separate groups. This may allow the production of a more limited, yet useful, screening library for LC

  18. Mini Mass Spectrometer Integrated with a Miniature Ion Funnel.

    PubMed

    Zhai, Yanbing; Zhang, Xiaohua; Xu, Hualei; Zheng, Yongchang; Yuan, Tao; Xu, Wei

    2017-03-14

    Previously, a continuous atmospheric pressure interfaced miniature mass spectrometer was developed in our lab. The continuous atmospheric pressure interface improves system robustness, stability, and scan speed, but it also results in limited ion transfer efficiency and reduced mass resolution. To solve these problems, a miniature ion funnel was designed and integrated into the miniature mass spectrometer for the first time. Besides ion transfer efficiency, dimension and power consumption of the ion funnel also need to be considered throughout the design process. After a systematic optimization, the designed miniature ion funnel could increase ion transfer efficiency by more than 10 times, while lowering the background pressure of ion trap by ∼2 times. As a result, sensitivity and mass resolution of the second generation miniature mass spectrometer were improved by 20 times and ∼2 times, respectively, while maintaining its high scan speed and stability. A sensitive and robust mini-MS, capable of coupling with ambient ionization sources would meet the needs of many on-site chemical analysis applications, such as in food, drug, and agricultural administrations, forensic science, homeland security, and etc.

  19. Collisional activation with random noise in ion trap mass spectrometry.

    PubMed

    McLuckey, S A; Goeringer, D E; Glish, G L

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly pronated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap.

  20. Collisional activation with random noise in ion trap mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.

  1. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    SciTech Connect

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  2. Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed Central

    Solouki, T; Russell, D H

    1992-01-01

    Matrix-assisted laser desorption ionization is used to obtain Fourier-transform ion cyclotron resonance mass spectra of model peptides (e.g., gramicidin S, angiotensin I, renin substrate, melittin, and bovine insulin). Matrix-assisted laser desorption ionization yields ions having appreciable kinetic energies. Two methods for trapping the high kinetic energy ions are described: (i) the ion signal for [M+H]+ ions is shown to increase with increasing trapping voltages, and (ii) collisional relaxation is used for the detection of [M+H]+ ions of bovine insulin. Images PMID:1378614

  3. Mass spectrometry. [in organic ion and biorganic chemistry and medicine

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Cox, R. E.; Derrick, P. J.

    1974-01-01

    Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.

  4. Miniature Ion Optics Towards a Micro Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ashish

    This PhD dissertation reports the development of miniature ion optics components of a mass spectrometer (MS) with the ultimate goal to lay the foundation for a compact low-power micromachined MS (microMS) for broad-range chemical analysis. Miniaturization of two specific components a) RF ion traps and b) an ion funnel have been investigated and miniature low-power versions of these components have been developed and demonstrated successfully in lab experiments. Power savings, simpler electronics and packaging schemes required to operate the micro-scale RF cylindrical ion traps have been the key motivation driving this research. Microfabricated cylindrical ion traps (microCITs) and arrays in silicon, silicon-on-insulator and stainless steel substrates have been demonstrated and average power of as low as 55 mW for a low mass range (28 to 136 amu) and mass spectra with better than a unit-mass-resolution have been recorded. For the ion funnel miniaturization effort, simple assembly, small form factor and ease of integration have been emphasized. A simplification of the conventional 3D ion funnel design, called the planar ion funnel, has been developed in a single plate and has been tested to demonstrate ion funneling at medium vacuum levels (1E-5 Torr) using DC voltages and power less than 0.5 W. Miniaturization of these components also enables use of other novel ion optics components, packaging and integration, which will allow a new class of microMS architectures amenable for radical miniaturization.

  5. Ion optics system incorporating radio frequency mass separation

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Carruth, M. R., Jr.

    1990-01-01

    Results of an experimental study are presented. They show that an RF mass discriminator, based on a Bennett mass spectrometer concept, can be used to discriminate between two species of ions with about a 2-to-1 charge-to-mass ratio. Such a device would be useful for separating monatomic and diatomic oxygen ions in a system designed to simulate the environment that spacecraft encounter in low earth orbit. The influence of changing mass discriminator parameters - such as the spacing of its grids, the amplitude and frequency of RF voltage signals applied to it and the current density of ions incident upon it - on its species discrimination capabilities is discussed. Experimental results are also compared to the results of a simple theoretical model to gain insight into the processes occurring in the discriminator. These results are shown to be in good agreement.

  6. The magnetic ion-mass spectrometer on Atmosphere Explorer.

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.; Hanson, W. B.; Lippincott, C. R.; Ferguson , E. E.

    1973-01-01

    The magnetic ion-mass spectrometer is designed to measure the abundances of the ambient positive ions in the ionosphere. It will be calibrated in flight against the retarding-potential analyzer and the cylindrical electrostatic probe to give absolute concentration data for the ion species detected. These parameters can be measured to approximately plus or minus 10% in well-behaved regions where concentrations are above 1000/cu cm. However, in highly structured polar regions, some degradation in accuracy may be expected. Three mass ranges, covered simultaneously by the scan of the instrument, 1 to 4, 4 to 16, and 16 to 64 amu, permit measurement of the entire mass range, 1 to 64 amu, in 1 sec in the main (peaks) mode. An alternate mode, analog-long, will extend the mass range to 90 amu with a 9-sec period.

  7. A "screened" electrostatic ion trap for enhanced mass resolution, mass accuracy, reproducibility, and upper mass limit in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Wang, M; Marshall, A G

    1989-06-01

    Until now, it was thought that the optimal static electromagnetic ion trap for Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry should be designed to produce a quadrupolar electrical potential, for which the ion cyclotron frequency is independent of the ion's preexcitation location within the trap. However, a quadrupolar potential results in a transverse (to the magnetic field) electric field that increases linearly with distance from the center of the trap. That radially linear electric field shifts the observed ICR frequency, increases the ICR orbital radius, and ultimately limits the highest mass-to-charge ratio ion that can be contained within the trap. In this paper, we propose a new static electromagnetic ion "trap" in which grounded screens placed just inside the usual "trapping" plates produce a good approximation to a "particle-in-a-box" potential (rather than the quadrupolar "harmonic oscillator" potential). SIMION calculations confirm that the electric potential of the screened trap is near zero almost everywhere within the trap. For our screened orthorhombic (2.5 in. X 2 in. X 2 in.) trap, the experimental ICR frequency shift due to trapping voltage is reduced by a factor of approximately 100, and the experimental variation of ICR frequency with ICR radius is reduced by a factor of approximately 10 compared to a conventional (unscreened) 2-in. cubic ion trap.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  9. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  10. Fundamental studies of ion injection and trapping of electrosprayed ions on a quadrupole ion trap mass spectrometer

    NASA Astrophysics Data System (ADS)

    Quarmby, Scott Thomas

    The quadrupole ion trap is a highly versatile and sensitive analytical mass spectrometer. Because of the advantages offered by the ion trap, there has been intense interest in coupling it to ionization techniques such as electrospray which form ions externally to the ion trap. In this work, experiments and computer simulations were employed to study the injection of electrosprayed ions into the ion trap of a Finnigan MAT LCQ LC/MS n mass spectrometer. The kinetic energy distribution of the ion beam was characterized and found to be relatively wide, a result of the high pressures from the atmospheric pressure source. One of the most important experimental parameters which affects ion injection efficiency is the RF voltage applied to the ring electrode. A theoretical model was fit to experimental data allowing the optimum RF voltage for trapping a given m/z ion to be predicted. Computer simulations of ion motion were performed to study the effect of various instrumental parameters on trapping efficiency. A commercially available ion optics program, SIMION v6.0, was chosen because it allowed the actual ion trap electrode geometry including endcap holes to be simulated. In contrast to previous computer simulations, SIMION provided the ability to start ions outside the ion trap and to simulate more accurately the injection of externally formed ions. The endcap holes were found to allow the RF field to penetrate out of the ion trap and affect ions as they approached the ion trap. From these simulations, a model for the process by which injected ions are trapped was developed. Using these computer simulations, techniques of improving trapping efficiency were investigated. Most previous techniques perturb ions which are already in the ion trap and therefore cannot be used to accumulate ions; the ability to accumulate ions is a necessity with ionization sources such as electrospray which form ions continuously. One such novel technique for improving trapping efficiency

  11. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  12. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  13. Mass determination of megadalton-DNA Electrospray Ions usingCharge Detection Mass Spectrometry

    SciTech Connect

    Schultz, Jocelyn C.; Hack, Christopher; Benner, Henry W.

    1997-10-01

    Charge detection mass spectrometry (CD-MS) has been used to determine the mass of double-stranded, circular DNA and single-stranded, circular DNA in the range of 2500 to 8000 base pairs (1.5-5.0 MDa). Simultaneous measurement of the charge and velocity of an electrostatically accelerated ion allows a mass determination of the ion, with instrument calibration determined independently of samples. Positive ion mass spectra of electrosprayed commercial DNA samples supplied in tris(hydroxymethyl)ethylenediamine tetraacetic acid buffer, diluted in 50 vol. percent acetonitrile, were obtained without cleanup of the sample. ACD mass spectrum constructed from 3000 ion measurements takes 10 min to acquire and yields the DNA molecular mass directly (mass resolution = 6). The data collected represent progress toward a more automatable alternative to sizing of DNA by gel electrophoresis. In addition to the mass spectra, CD-MS generates charge versus mass plots, which provide another means to investigate the creation and fate of large electrospray ions.

  14. Effect of ion-neutral collision mechanism on the trapped-ion equation of motion: a new mass spectral line shape for high-mass trapped ions

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Li, Guo-Zhong; Marshall, Alan G.

    1997-11-01

    The decay amplitude envelope of an ICR time-domain signal determines its corresponding Fourier transform mass spectral line shape. The commonly accepted FT-ICR frequency-domain unapodized Lorentzian spectral line shape originates from the Langevin ion-neutral collision model, in which an ion is treated as a point charge that induces an electric dipole moment in a neutral collision partner. The Langevin model provides a good description of reactions of low-energy collisions of low-mass positive ions with neutrals. However, the Langevin model is inappropriate for collisions of high-mass gas-phase biopolymer ions with low-mass neutrals. Here, we examine ion trajectories for both Langevin and hard-sphere ion-neutral collision models. For the Langevin model, collision frequency is independent of ion speed, leading to a linear differential equation of ion motion with a frictional damping term linearly proportional to ion velocity. For the hard-sphere model, collision frequency is proportional to ion speed and the frictional damping term is proportional to the square of ion velocity. We show that the resulting (non-linear) equation of ion motion leads to a non-exponential time-domain ICR signal whose amplitude envelope has the form, 1/(1 + [sigma]t), in which [sigma] is a constant. Dispersion-vs-absorption (DISPA) line shape analysis reveals that the `hard-sphere' spectral line shape resembles that of overlaid narrow and broad Lorentzians. We discuss several important implications of the new `hard-sphere' line shape for ICR spectral analysis, ICR signal processing, collision-based ion activation, and ion axialization. Finally, in the hard-sphere limit, a non-linear frictional damping term will also apply to ions in a Paul trap.

  15. Desalting protein ions in native mass spectrometry using supercharging reagents.

    PubMed

    Cassou, Catherine A; Williams, Evan R

    2014-10-07

    Effects of the supercharging reagents m-NBA and sulfolane on sodium ion adduction to protein ions formed using native mass spectrometry were investigated. There is extensive sodium adduction on protein ions formed by electrospray ionization from aqueous solutions containing millimolar concentrations of NaCl, which can lower sensitivity by distributing the signal of a given charge state over multiple adducted ions and can reduce mass measuring accuracy for large proteins and non-covalent complexes for which individual adducts cannot be resolved. The average number of sodium ions adducted to the most abundant ion formed from ten small (8.6-29 kDa) proteins for which adducts can be resolved is reduced by 58% or 80% on average, respectively, when 1.5% m-NBA or 2.5% sulfolane are added to aqueous solutions containing sodium compared to without the supercharging reagent. Sulfolane is more effective than m-NBA at reducing sodium ion adduction and at preserving non-covalent protein-ligand and protein-protein interactions. Desalting with 2.5% sulfolane enables detection of several glycosylated forms of 79.7 kDa holo-transferrin and NADH bound to the 146 kDa homotetramer LDH, which are otherwise unresolved due to peak broadening from extensive sodium adduction. Although sulfolane is more effective than m-NBA at protein ion desalting, m-NBA reduces salt clusters at high m/z and can increase the signal-to-noise ratios of protein ions by reducing chemical noise. Desalting is likely a result of these supercharging reagents binding sodium ions in solution, thereby reducing the sodium available to adduct to protein ions.

  16. Metabolic profiling of Escherichia coli by ion mobility-mass spectrometry with MALDI ion source.

    PubMed

    Dwivedi, Prabha; Puzon, Geoffery; Tam, Maggie; Langlais, Denis; Jackson, Shelley; Kaplan, Kimberly; Siems, William F; Schultz, Albert J; Xun, Luying; Woods, Amina; Hill, Herbert H

    2010-12-01

    Comprehensive metabolome analysis using mass spectrometry (MS) often results in a complex mass spectrum and difficult data analysis resulting from the signals of numerous small molecules in the metabolome. In addition, MS alone has difficulty measuring isobars and chiral, conformational and structural isomers. When a matrix-assisted laser desorption ionization (MALDI) source is added, the difficulty and complexity are further increased. Signal interference between analyte signals and matrix ion signals produced by MALDI in the low mass region (<1500 Da) cause detection and/or identification of metabolites difficult by MS alone. However, ion mobility spectrometry (IMS) coupled with MS (IM-MS) provides a rapid analytical tool for measuring subtle structural differences in chemicals. IMS separates gas-phase ions based on their size-to-charge ratio. This study, for the first time, reports the application of MALDI to the measurement of small molecules in a biological matrix by ion mobility-time of flight mass spectrometry (IM-TOFMS) and demonstrates the advantage of ion-signal dispersion in the second dimension. Qualitative comparisons between metabolic profiling of the Escherichia coli metabolome by MALDI-TOFMS, MALDI-IM-TOFMS and electrospray ionization (ESI)-IM-TOFMS are reported. Results demonstrate that mobility separation prior to mass analysis increases peak-capacity through added dimensionality in measurement. Mobility separation also allows detection of metabolites in the matrix-ion dominated low-mass range (m/z < 1500 Da) by separating matrix signals from non-matrix signals in mobility space.

  17. Ion mobility–mass spectrometry for structural proteomics

    PubMed Central

    Zhong, Yueyang; Hyung, Suk-Joon; Ruotolo, Brandon T

    2012-01-01

    Ion mobility coupled to mass spectrometry has been an important tool in the fields of chemical physics and analytical chemistry for decades, but its potential for interrogating the structure of proteins and multiprotein complexes has only recently begun to be realized. Today, ion mobility– mass spectrometry is often applied to the structural elucidation of protein assemblies that have failed high-throughput crystallization or NMR spectroscopy screens. Here, we highlight the technology, approaches and data that have led to this dramatic shift in use, including emerging trends such as the integration of ion mobility–mass spectrometry data with more classical (e.g., ‘bottom-up’) proteomics approaches for the rapid structural characterization of protein networks. PMID:22292823

  18. The effective temperature of ions stored in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Donald, William A; Khairallah, George N; O'Hair, Richard A J

    2013-06-01

    The extent of internal energy deposition into ions upon storage, radial ejection, and detection using a linear quadrupole ion trap mass spectrometer is investigated as a function of ion size (m/z 59 to 810) using seven ion-molecule thermometer reactions that have well characterized reaction entropies and enthalpies. The average effective temperatures of the reactants and products of the ion-molecule reactions, which were obtained from ion-molecule equilibrium measurements, range from 295 to 350 K and do not depend significantly on the number of trapped ions, m/z value, ion trap q z value, reaction enthalpy/entropy, or the number of vibrational degrees of freedom for the seven reactions investigated. The average of the effective temperature values obtained for all seven thermometer reactions is 318 ± 23 K, which indicates that linear quadrupole ion trap mass spectrometers can be used to study the structure(s) and reactivity of ions at near ambient temperature.

  19. E × B ion mass spectroscopy in magnetised plasmas

    NASA Astrophysics Data System (ADS)

    Hellblom, K. G.; Armstrong, R. J.

    1995-02-01

    A spectrometer based on the E × B drift during the transit time of the ion through a cross field region has been tested in a hydrogen plasma in the Blaamann toroidal plasma device [T. Brundtland, Vacuum 43 (1992) 185]. The magnetic field B, is the field of the device. The electric field E, which is imposed and oriented perpendicular to the magnetic field, is swept with a time long compared to the ion transit time. The ions are accelerated along the magnetic field as they enters the cross field region giving them a velocity and a transit time proportional to the charge over the mass.

  20. Ion mass spectrometer experiment for ISIS-2 spacecraft

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.

    1987-01-01

    The International Satellite for Ionospheric Studies (ISIS) program of NASA was the longest duration program in NASA history. A number of satellites were flown under this program, the last being called ISIS-2, which was launched on April 1, 1971 and operated successfully for over 13 years. An experiment called the Ion Mass Spectrometer (IMS) was flown on the ISIS-2 spacecraft. It operated for 10 years providing a large data base of positive ion composition and ion flow velocities along the orbit of the satellite, the latter being circular at 1400 km with a 90 degree inclination. The data were processed and reside in the National Space Sciences Data Center.

  1. Personal computer based Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Jones, Patrick R.

    1988-12-01

    An IBM PC AT compatible computer is used to host the interface of a Fourier transform ion cyclotron resonance mass spectrometer or FTMS. A common fast memory bank for both ion-excitation waveform and data acquisition is reserved in the computer's system memory space. All the digital electronics circuitry is assembled on an IBM PC AT extension board. Neither an external frequency synthesizer nor a waveform digitizer is needed. Ion-excitation waveforms can be generated in either frequency-sweeping or inverse-Fourier transform modes. Both excitation and data acquisition can be carried out at eight megawords per second.

  2. Analysis of VX on soil particles using ion trap secondary ion mass spectrometry.

    PubMed

    Groenewold, G S; Appelhans, A D; Gresham, G L; Olson, J E; Jeffery, M; Wright, J B

    1999-07-01

    The direct detection of the nerve agent VX (methylphosphonothioic acid, S-[2-[bis(1-methylethyl)amino]ethyl] O-ethyl ester) on milligram quantities of soil particles has been achieved using ion trap secondary ion mass spectrometry (IT-SIMS). VX is highly adsorptive toward a wide variety of surfaces; this attribute makes detection using gas-phase approaches difficult but renders the compound very amenable to surface detection. An ion trap mass spectrometer, modified to perform SIMS, was employed in the present study. A primary ion beam (ReO4-) was fired on axis through the ion trap, where it impacted the soil particle samples. [VX + H]+, [VX + H]+ fragment ions, and ions from the chemical background were sputtered into the gas-phase environment of the ion trap, where they were either scanned out or isolated and fragmented (MS2). At a surface concentration of 0.4 monolayer, intact [VX + H]+, and its fragment ions, were readily observable above background. However, at lower concentrations, the secondary ion signal from VX became obscured by ions derived from the chemical background on the surface of the soil particles. MS2 analysis using the ion trap was employed to improve detection of lower concentrations of VX: detection of the 34S isotopic ion of [VX + H]+, present at a surface concentration of approximately 0.002 monolayer, was accomplished. The study afforded the opportunity to investigate the fragmentation chemistry of VX. Semiempirical calculations suggest strongly that the molecule is protonated at the N atom. Deuterium labeling showed that formation of the base peak ion (C2H4)N(i-C3H7)2+ involves transfer of the amino proton to the phosphonothioate moiety prior to, or concurrent with, C-S bond cleavage. To manage the risk associated with working with the compound, the vacuum unit of the IT-SIMS was located in a hood, connected by cables to the externally located electronics and computer.

  3. Multiple Mass Analysis Using an Ion Trap Array (ITA) Mass Analyzer

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Chu, Yanqiu; Ling, Xing; Ding, Zhengzhi; Xu, Chongsheng; Ding, Li; Ding, Chuan-Fan

    2013-09-01

    A novel ion trap array (ITA) mass analyzer with six ion trapping and analyzing channels was investigated. It is capable of analyzing multiple samples simultaneously. The ITA was built with several planar electrodes made of stainless steel and 12 identical parallel zirconia ceramic substrates plated with conductive metal layers. Each two of the opposing ceramic electrode plates formed a boundary of an ion trap channel and six identical ion trapping and analyzing channels were placed in parallel without physical electrode between any two adjacent channels. The electric field distribution inside each channel was studied with simulation. The new design took the advantage of high precision machining attributable to the rigidity of ceramic, and the convenience of surface patterning technique. The ITA system was tested by using a two-channel electrospray ionization source, a multichannel simultaneous quadruple ion guide, and two detectors. The simultaneous analysis of two different samples with two adjacent ITA channels was achieved and independent mass spectra were obtained. For each channel, the mass resolution was tested. Additional ion trap functions such as mass-selected ion isolation and collision-induced dissociation (CID) were also tested. The results show that one ITA is well suited for multiple simultaneous mass analyses.

  4. A retarding ion mass spectrometer for the Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Wright, W.

    1985-01-01

    The Retarding Ion Mass Spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  5. Reactions of Ions with Ionic Liquid Vapors by Selected-Ion Flow Tube Mass Spectrometry

    DTIC Science & Technology

    2011-03-04

    pair to form an EMIM + NTf2 - EMIM + ion- trio (G = -21.2 kcal/mol, reaction 12, Table 1) at mass 502. Similarly, the formation of the NTf2...40.8 kcal/mol) or NO3 - EMIM + NTf2 - (mass 453, G = -28.0 kcal/mol) in reactions 6 and 7, respectively. Detection of the ion- trio ...perpendicular to the ring and is sandwiched between the EMIM + and NH4 + cations in the EMIM + NTf2 - NH4 + ion- trio . When BMIM + dca - (IP=7.4 eV

  6. UV photodissociation of trapped ions following ion mobility separation in a Q-ToF mass spectrometer.

    PubMed

    Bellina, Bruno; Brown, Jeffery M; Ujma, Jakub; Murray, Paul; Giles, Kevin; Morris, Michael; Compagnon, Isabelle; Barran, Perdita E

    2014-12-21

    An ion mobility mass spectrometer has been modified to allow optical interrogation of ions with different mass-to-charge (m/z) ratios and/or mobilities (K). An ion gating and trapping procedure has been developed which allows us to store ions for several seconds enabling UV photodissociation (UVPD).

  7. Ion/molecule reactions for detecting ammonia using miniature cylindrical ion trap mass spectrometers.

    PubMed

    Smith, Jonell N; Keil, Adam D; Noll, Robert J; Cooks, R Graham

    2011-01-07

    Gaseous ammonia, a common toxic industrial compound, is not detected readily in ion trap mass spectrometers because its molecular ion falls below the low-mass cutoff (~m/z 40) normally used when examining organic compounds. Instead, reactions of ammonia with halobenzene radical cations were used with internal electron ionization in two cylindrical ion trap miniature mass spectrometers to create a characteristic product ion by which to identify and quantify ammonia. Ammonia showed a linear response over the concentration range studied (parts per million [ppm] to parts per billion [ppb]) with limits of detection of 17 ppm and 220 ppb for experiments involving direct introduction and thermal desorption after pre-concentration, respectively. These values are comparable to ammonia's permissible exposure limit (50 ppm) and odor threshold (5 ppm). Receiver operating characteristic (ROC) curves were used to describe the method sensitivity, the probability of true positives, and the false positive rate for ammonia. A customized reaction scan function was created to select the species available for the ion/molecule reaction and set the amount of time the product ion could be accumulated in the trap. Product ion identity was verified using tandem mass spectrometry. Similar reactions with methylamine, ethylamine and the two nitriles, acetonitrile and benzonitrile, were explored.

  8. Ion-optical studies for improved ion transmission in multistage isotope-ratio mass spectrometers

    SciTech Connect

    Stoffels, J.J. ); Laue, H.J. )

    1991-10-01

    Theoretical and experimental ion-optical studies of multistage isotope-ratio mass spectrometers were conducted to determine what improvement in ion transmission efficiency might be attainable through design changes. The computer program GIOS (General Ion Optical Systems) was used to perform theoretical calculations of focusing properties and ion transmission efficiency. Actual transmission through multiple-sector instruments was determined from measurements of the ion beam vertical profile at the focus of each stage. For existing mass spectrometers with tandem magnets of normal geometry, our studies determined a feasible design change that significantly increases ion transmission through the analyzer. The use of a cylindrical einzel lens or an electrostatic quadrupole lens near the focal point between the magnets provides vertical focusing of the ion beam to achieve the improved transmission. We also established a new mass spectrometer design that give 100% transmission through tandem magnetic analyzers and through a third-stage electrostatic analyzer without the use of an intermediate focusing lens. Non-normal magnetic field boundaries provide ion beam focusing in the vertical plant to achieve this complete transmission. 19 refs., 27 figs., 3 tabs.

  9. Gated Trapped Ion Mobility Spectrometry Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Ridgeway, Mark E; Wolff, Jeremy J; Silveira, Joshua A; Lin, Cheng; Costello, Catherine E; Park, Melvin A

    2016-09-01

    Analysis of molecules by ion mobility spectrometry coupled with mass spectrometry (IMS-MS) provides chemical information on the three dimensional structure and mass of the molecules. The coupling of ion mobility to trapping mass spectrometers has historically been challenging due to the large differences in analysis time between the two devices. In this paper we present a modification of the trapped ion mobility (TIMS) analysis scheme termed "Gated TIMS" that allows efficient coupling to a Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzer. Analyses of standard compounds and the influence of source conditions on the TIMS distributions produced by ion mobility spectra of labile ubiquitin protein ions are presented. Ion mobility resolving powers up to 100 are observed. Measured collisional cross sections of ubiquitin ions are in excellent qualitative and quantitative agreement to previous measurements. Gated TIMS FT-ICR produces results comparable to those acquired using TIMS/time-of-flight MS instrument platforms as well as numerous drift tube IMS-MS studies published in the literature.

  10. Time-of-flight secondary ion mass spectrometry with transmission of energetic primary cluster ions through foil targets

    SciTech Connect

    Hirata, K.; Saitoh, Y.; Chiba, A.; Yamada, K.; Matoba, S.; Narumi, K.

    2014-03-15

    We developed time-of-flight (TOF) secondary ion (SI) mass spectrometry that provides informative SI ion mass spectra without needing a sophisticated ion beam pulsing system. In the newly developed spectrometry, energetic large cluster ions with energies of the order of sub MeV or greater are used as primary ions. Because their impacts on the target surface produce high yields of SIs, the resulting SI mass spectra are informative. In addition, the start signals necessary for timing information on primary ion incidence are provided by the detection signals of particles emitted from the rear surface of foil targets upon transmission of the primary ions. This configuration allows us to obtain positive and negative TOF SI mass spectra without pulsing system, which requires precise control of the primary ions to give the spectra with good mass resolution. We also successfully applied the TOF SI mass spectrometry with energetic cluster ion impacts to the chemical structure characterization of organic thin film targets.

  11. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    SciTech Connect

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  12. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    SciTech Connect

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time

  13. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGES

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  14. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  15. Resonance ionization of rubidium in an ion trap mass spectrometer

    SciTech Connect

    Whitten, W.B.; Ramsey, J.M.; Goeringer, D.E.; Buckley, B.T.

    1990-01-01

    We have recently initiated a study of resonance ionization processes in a quadrupole ion storage trap. The trap is a commercially available Ion Trap Detector that uses the voltage dependence of ion mass instability to obtain a mass spectrum of the trapped ions. We have modified the trap to permit laser excitation of atomic and molecular species within the quadrupole electrodes. Mass resolved resonance ionization spectra have been obtained for NO and Rb, described below. Rb was selected for this study for a number of reasons. We want to explore the potential of the ion trap for high resolution (Doppler free) resonance ionization spectroscopy with CW laser excitation. Rb can be excited to upper Rydberg levels with a series of transitions that can be induced with commercially available semiconductor diode lasers. In addition, levels in the same energy range can be reached through two-photon processes with visible wavelength tunable dye lasers or with single-photon processes after the laser is frequency doubled. The upper Rydberg levels can be ionized by photons, electric field, or collisions. Collisional ionization of a reservoir of Rydberg atoms may be a sensitive scheme for detecting electronegative species. RB has two stable isotopes with nonzero nuclear spin so that isotopic and hyperfine splittings can be used to assess the spectral resolution that is attained.

  16. Hot ions observed by the Giotto ion mass spectrometer inside the Comet Halley contact surface

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Young, D. T.; Balsiger, H.; Buehler, F.; Goldstein, B. E.; Neugebauer, M.; Rosenbauer, H.; Schwenn, R.; Shelly, E. G.

    1986-01-01

    Just inside the contact surface (approx. 4700 km) the High Energy Range Spectrometer (HERS) sensor of the Giotto ion mass spectrometer detected a sudden, intense burst of ions that lasted until the HERS sensor ceased transmitting data at a distance 3000 km from comet Halley. During this interval ions with M/Q=1, 2, 12, 14, 16, 19, 24 and 28 were observed. The heavier ions appear in two populations (in the S/C frame): a very low energy, almost omnidirectional distribution, and a more energetic (approx. < ram speed) population coming from the ram direction. The low energy ions may belong to the natural Halley environment or be generated at the spacecraft by dust and gas bombardment. The ions may also be related to spacecraft charging processes on Giotto.

  17. Laser desorption lamp ionization source for ion trap mass spectrometry.

    PubMed

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds.

  18. A Review and Bibliography of Secondary Ion Mass Spectrometry (SIMS).

    DTIC Science & Technology

    1980-01-01

    Ridge Nati. Lab., Oak Ridge, Tenn .). Int. J. Mass SSSR GDR lIM6, 411-13 (Rus). Edited by Orlov, A. N.; Spectrom. Ion Phys. 1978 26(1), 61-76 (Eng). The...Monolage. statisch, magn. Ablkg.. 10 porn . 1143 (1969). W. oxicdation, 02-Partialcirucc. 69- 11 Investigation of Oxygen Adsorption on 69 - 15

  19. Ion Mass Spectrometer Development for JEO Class Missions

    NASA Astrophysics Data System (ADS)

    Sittler, E. C.; Cooper, J. F.; Paschalidis, N.; Coplan, M. A.; Chornay, D. J.; Sturner, S. J.; Brown, S. K.; Hartle, R. E.; Paterson, W. R.

    2012-10-01

    Under the Astrobiology Instrument Development Program we have been developing an advanced 3-D ion mass spectrometer (IMS) from 10 V to 30 kV, that can be proposed for missions to Jupiter's icy moons, Uranus, Titan, asteroids, comets, and solar wind.

  20. Utilizing Ion-Mobility Data to Estimate Molecular Masses

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Kanik, Isik

    2008-01-01

    A method is being developed for utilizing readings of an ion-mobility spectrometer (IMS) to estimate molecular masses of ions that have passed through the spectrometer. The method involves the use of (1) some feature-based descriptors of structures of molecules of interest and (2) reduced ion mobilities calculated from IMS readings as inputs to (3) a neural network. This development is part of a larger effort to enable the use of IMSs as relatively inexpensive, robust, lightweight instruments to identify, via molecular masses, individual compounds or groups of compounds (especially organic compounds) that may be present in specific environments or samples. Potential applications include detection of organic molecules as signs of life on remote planets, modeling and detection of biochemicals of interest in the pharmaceutical and agricultural industries, and detection of chemical and biological hazards in industrial, homeland-security, and industrial settings.

  1. Cassini-Huygens Ion Neutral Mass Spectrometer and the Future

    NASA Astrophysics Data System (ADS)

    Waite, J. Hunter

    2014-05-01

    The Cassini-Huygens Ion Neutral Mass Spectrometer (Cassini INMS) designed and built by Hasso Niemann has revolutionized our understanding of the Saturn system and demonstrated the importance of mass spectrometry as a tool for understanding formation, evolution, and chemical processes. In this talk that honors the accomplishments of Hasso I will discuss: 1) the major discoveries of INMS at Titan, Enceladus, and the other icy moons of Saturn, 2) the new perspective this has given us on understanding the formation and evolution of the outer solar system, and 3) the implications for future studies in the outer solar system using mass spectrometry.

  2. Secondary Ion Mass Spectrometry Analysis of Renal Cell Carcinoma with Electrospray Droplet Ion Beams

    PubMed Central

    Ninomiya, Satoshi; Yoshimura, Kentaro; Chen, Lee Chuin; Takeda, Sen; Hiraoka, Kenzo

    2017-01-01

    Tissue samples from renal cell carcinoma patients were analyzed by electrospray droplet ion beam-induced secondary ion mass spectrometry (EDI/SIMS). Positively- and negatively-charged secondary ions were measured for the cancerous and noncancerous regions of the tissue samples. Although specific cancerous species could not be found in both the positive and negative secondary ion spectra, the spectra of the cancerous and noncancerous tissues presented different trends. For instance, in the m/z range of 500–800 of the positive secondary ion spectra for the cancerous tissues, the intensities for several m/z values were lower than those of the m/z+2 peaks (indicating one double bond loss for the species), whereas, for the noncancerous tissues, the inverse trend was obtained. The tandem mass spectrometry (MS/MS) was also performed on the tissue samples using probe electrospray ionization (PESI), and some molecular ions produced by PESI were found to be fragmented into the ions observed in EDI/SIMS analysis. When the positive secondary ion spectra produced by EDI/SIMS were analyzed by principal component analysis, the results for cancerous and noncancerous tissues were separated. The EDI/SIMS method can be applied to distinguish between a cancerous and a noncancerous area with high probability. PMID:28149705

  3. Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers.

    PubMed

    Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B

    2009-09-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide.

  4. Correlation between y-Type Ions Observed in Ion Trap and Triple Quadrupole Mass Spectrometers

    PubMed Central

    Sherwood, Carly A.; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B.

    2009-01-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide. PMID:19603825

  5. Compact Ion and Neutral Mass Spectrometer with Ion Drifts, Temperatures and Neutral Winds

    NASA Astrophysics Data System (ADS)

    Paschalidis, Nikolaos

    2016-07-01

    In situ measurements of atmospheric neutral and ion composition and density, temperatures, ion drifts and neutral winds, are in high demand to study the dynamics of the ionosphere-theremosphere-mesosphere system. This paper presents a compact Ion and Neutral Mass Spectrometer (INMS) with impended ion drifts and temperature, and neutral winds capability for in situ measurements of ions and neutrals H, He, N, O, N2, O2. The mass resolution M/dM is approximately 10 at an incoming energy range of 0-20eV. The goal is to resolve ion drifts in the range 0 to 3000m/sec with a resolution better than 50m/sec, and neutral winds in the range of 0 to 1000m/sec with similar resolution. For temperatures the goal is to cover a dynamic range of 0 to 5000K. The INMS is based on front end optics for ions and neutrals, pre acceleration, gated time of flight, top hat ESA, MCP detectors and compact electronics. The instrument is redundant for ions and neutrals with the ion and neutral sensor heads on opposite sides and with full electronics in the middle. The ion front end includes RPA for temperature scanning and neutral front end includes angular modulation and thermionic ionization and ion blocking grids. The electronics include fast electric gating, TOF electronics, TOF binning and C&DH digital electronics. The data package includes 400 mass bins each for ions and neutrals and key housekeeping data for instrument health and calibration. The data sampling can be commanded from 0.1 to 10 sec with 1sec nominal setting. The instrument has significant onboard storage capability and a data compression scheme. The mass spectrometer version of the instrument has been flown on the Exocube mission. The instrument occupied 1.5U volume, weighed only 560 g and required nominal power of 1.6W The ExoCube mission was designed to acquire global knowledge of in-situ densities of [H], [He], [O] and H+, He+, O+ in the upper ionosphere and lower exosphere in combination with incoherent scatter radar and

  6. Evolution of Instrumentation for the Study of Gas-Phase Ion/Ion Chemistry via Mass Spectrometry

    PubMed Central

    Xia, Yu; McLuckey, Scott A.

    2008-01-01

    The scope of gas phase ion/ion chemistry accessible to mass spectrometry is largely defined by the available tools. Due to the development of novel instrumentation, a wide range of reaction phenomenologies have been noted, many of which have been studied extensively and exploited for analytical applications. This perspective presents the development of mass spectrometry-based instrumentation for the study of the gas phase ion/ion chemistry in which at least one of the reactants is multiply-charged. The instrument evolution is presented within the context of three essential elements required for any ion/ion reaction study: the ionization source(s), the reaction vessel or environment, and the mass analyzer. Ionization source arrangements have included source combinations that allow for reactions between multiply charged ions of one polarity and singly charged ions of opposite polarity, arrangements that enable the study of reactions of multiply charged ions of opposite polarity, and most recently, arrangements that allow for ion formation from more than two ion sources. Gas phase ion/ion reaction studies have been performed at near atmospheric pressure in flow reactor designs and within electrodynamic ion traps operated in the mTorr range. With ion trap as a reaction vessel, ionization and reaction processes can be independently optimized and ion/ion reactions can be implemented within the context of MSn experiments. Spatial separation of the reaction vessel from the mass analyzer allows for the use of any form of mass analysis in conjunction with ion/ion reactions. Time-of-flight mass analysis, for example, has provided significant improvements in mass analysis figures of merit relative to mass filters and ion traps. PMID:18083527

  7. Coulomb crystal mass spectrometry in a digital ion trap

    NASA Astrophysics Data System (ADS)

    Deb, Nabanita; Pollum, Laura L.; Smith, Alexander D.; Keller, Matthias; Rennick, Christopher J.; Heazlewood, Brianna R.; Softley, Timothy P.

    2015-03-01

    We present a mass spectrometric technique for identifying the masses and relative abundances of Coulomb-crystallized ions held in a linear Paul trap. A digital radio-frequency wave form is employed to generate the trapping potential, as this can be cleanly switched off, and static dipolar fields are subsequently applied to the trap electrodes for ion ejection. Close to 100% detection efficiency is demonstrated for Ca+ and CaF+ ions from bicomponent Ca+-CaF+ Coulomb crystals prepared by the reaction of Ca+ with CH3F . A quantitative linear relationship is observed between ion number and the corresponding integrated time-of-flight (TOF) peak, independent of the ionic species. The technique is applicable to a diverse range of multicomponent Coulomb crystals—demonstrated here for Ca+-NH 3+ -NH 4+ and Ca+-CaOH +-CaOD + crystals—and will facilitate the measurement of ion-molecule reaction rates and branching ratios in complicated reaction systems.

  8. Molecular secondary ion mass spectrometry: New dimensions in chemical characterization

    NASA Astrophysics Data System (ADS)

    Colton, Richard J.; Campana, Joseph E.; Kidwell, David A.; Ross, Mark M.; Wyatt, Jeffrey R.

    1985-04-01

    Secondary ion mass spectrometry (SIMS) has become a diverse tool for the study of many substances other than metals and semiconductors. This paper discusses the emission of polyatomic and molecular ions from surfaces that contain various inorganic and organic compounds including polymers and biomolecules. The mass and abundance distribution of cluster ions emitted from various solids — Van der Waals, metallic, ionic and covalent — are compared. Trends in the emission patterns are discussed in terms of a recombination or direct emission mechanism. The emission of molecular ions is also discussed with respect to the method of ionization and the various sample preparation and matrix-assisted procedures used. The matrices include various solid-state and liquid matrices such as ammonium chloride, charcoal, glycerol and gallium. Various chemical derivatization procedures have been developed to enhance the sensitivity of molecular SIMS and to detect selectively components in mixtures. The procedures are demonstrated for the low-level detection of airborne contaminants from paints, for the analysis of drugs in biological fluids, and for the sequencing of biomolecules such as peptides and sugars. The emission of characteristic fragment ions from the surfaces of polymers is also described for thick, insulating films.

  9. Gas phase ion - molecule reactions studied by Fourier transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Ross, C.W. III.

    1993-01-01

    Intrinsic thermodynamic information of molecules can easily be determined in the low pressure FT/ICR mass spectrometer. The gas phase basicity of two carbenes were measured by isolating the protonated carbene ion and reacting it with neutral reference compounds by the bracketing method. A fundamentally new-dimensional FT/ICR/MS experiment, SWIM (stored waveform ion modulation) 2D-FT/ICR MS/MS, is described. Prior encodement of the second dimension by use of two identical excitation waveforms separated by a variable delay period is replaced by a new encodement in which each row of the two-dimensional data array is obtained by use of a single stored excitation waveform whose frequency-domain magnitude spectrum is a sinusoid whose frequency increases from one row to the next. In the two-dimensional mass spectrum, the conventional one-dimensional FT/ICR mass spectrum appears along the diagonal, and each off-diagonal peak corresponds to an ion-neutral reaction whose ionic components may be identified by horizontal and vertical projections to the diagonal spectrum. All ion-molecule reactions in a gaseous mixture may be identified from a single 2D-FT/ICR MS/MS experiment, without any prior knowledge of the system. In some endoergic reactions there is a minimum energy threshold that must overcome for a reaction to occur. Hence, a simple sinusoidal modulation of parent ion cyclotron radius leads to a clipped sinusoidal signal of the product ion abundance in the second dimension, which upon Fourier transformation produces signals with harmonic and combination ion cyclotron resonance frequencies. Moreover, ion-molecule reaction rates may vary directly within kinetic energy rather than cyclotron radius. With SWIM, it is possible to tailor the excitation profile so as to produce a sinusoidal modulation of ion kinetic energy as a function of cyclotron frequency.

  10. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  11. Secondary Ion Mass Spectrometry of Zeolite Materials: Observation of Abundant Aluminosilicate Oligomers Using an Ion Trap

    SciTech Connect

    Groenewold, Gary Steven; Kessinger, Glen Frank; Scott, Jill Rennee; Gianotto, Anita Kay; Appelhans, Anthony David; Delmore, James Edward

    2000-12-01

    Oligomeric oxyanions were observed in the secondary ion mass spectra (SIMS) of zeolite materials. The oxyanions have the general composition AlmSinO2(m+n)H(m-1)- (m + n = 2 to 8) and are termed dehydrates. For a given mass, multiple elemental compositions are possible because (Al + H) is an isovalent and isobaric substitute for Si. Using 18 keV Ga+ as a projectile, oligomer abundances are low relative to the monomers. Oligomer abundance can be increased by using the polyatomic projectile ReO4- (~5 keV). Oligomer abundance can be further increased using an ion trap (IT-) SIMS; in this instrument, long ion lifetimes (tens of ms) and relatively high He pressure result in significant collisional stabilization and increased high-mass abundance. The dehydrates rapidly react with adventitious H2O present in the IT-SIMS to form mono-, di-, and trihydrates. The rapidity of the reaction and comparison to aluminum oxyanion hydration suggest that H2O adds to the aluminosilicate oxyanions in a dissociative fashion, forming covalently bound product ions. In addition to these findings, it was noted that production of abundant oligomeric aluminosilicates could be significantly increased by substituting the countercation (NH4+) with the larger alkali ions Rb+ and Cs+. This constitutes a useful tactic for generating large aluminosilicate oligomers for surface characterization and ion-molecule reactivity studies.

  12. Linear electric field time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  13. DETERMINATION OF ION AND NEUTRAL LOSS COMPOSITIONS AND DECONVOLUTION OF PRODUCT ION MASS SPECTRA USING AN ORTHOGONAL ACCELERATION, TIME-OF-FLIGHT MASS SPECTROMETER AND AN ION CORRELATION PROGRAM

    EPA Science Inventory

    Exact masses of monoisotopic ions and the relative isotopic abundances (RIAs) of ions greater in mass by 1 and 2 Da than the monoisotopic ion are independent and complementary physical properties useful for istinguishing among ion compositions possible for a given nominal mass. U...

  14. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    SciTech Connect

    Gulyuz, Kerim; Stedwell, Corey N.; Wang Da; Polfer, Nick C.

    2011-05-15

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarily increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.

  15. Gold Ion-Angiotensin Peptide Interaction by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Jenny; Jayathilaka, Lasanthi P.; Gupta, Shalini; Huang, Jin-Sheng; Lee, Bao-Shiang

    2012-05-01

    Stimulated by the interest in developing gold compounds for treating cancer, gold ion-angiotensin peptide interactions are investigated by mass spectrometry. Under the experimental conditions used, the majority of gold ion-angiotensin peptide complexes contain gold in the oxidation states I and III. Both ESI-MS and MALDI-TOF MS detect singly/multiply charged ions for mononuclear/multinuclear gold-attached peptides, which are represented as [peptide + a Au(I) + b Au(III) + (e - a -3b) H]e+, where a,b ≥ 0 and e is charge. ESI-MS data shows singly/multiply charged ions of Au(I)-peptide and Au(III)-peptide complexes. This study reveals that MALDI-TOF MS mainly detects singly charged Au(I)-peptide complexes, presumably due to the ionization process. The electrons in the MALDI plume seem to efficiently reduce Au(III) to Au(I). MALDI also tends to enhance the higher polymeric forms of gold-peptide complexes regardless of the laser power used. Collision-induced dissociation experiments of the mononuclear and dinuclear gold-attached peptide ions for angiotensin peptides show that the gold ion (a soft acid) binding sites are in the vicinity of Cys (a soft ligand), His (a major anchor of peptide for metal ion chelation), and the basic residue Arg. Data also suggests that the abundance of gold-attached peptides increases with higher gold concentration until saturation, after which an increase in gold ion concentration leads to the aggregation and/or precipitation of gold-bound peptides.

  16. Compact ExB mass separator for heavy ion beams

    SciTech Connect

    Wada, M.; Hashino, T.; Hirata, F.; Kasuya, T.; Sakamoto, Y.; Nishiura, M.

    2008-02-15

    A compact ExB mass separator that deflects beam by 30 deg. has been designed and built to prove its principle of operation. The main part of the separator is contained in a shielding box of 11 cm long, 9 cm wide, and 1.5 cm high. An electromagnet of 7 cm pole diameter produced variable magnetic field in the mass separation region instead of a couple of permanent magnets which is to be used in the final design. The experimental result agreed well with the theoretical prediction, and larger mass ions is bent with less magnetic field with the aid of the deflection electric field. The reduction in resolving power for mass separation due to the deflection electric field has been investigated experimentally.

  17. Servo-amplifiers for ion current measurement in mass spectrometry

    USGS Publications Warehouse

    Stacey, J.S.; Russell, R.D.; Kollar, F.

    1965-01-01

    A servo-voltmeter can provide a useful alternative to the d.c. amplifier or vibrating reed electrometer for the accurate measurement of mass spectrometer ion currents, and has some advantages which recommend its use in certain applications. A generalized analysis based on servomechanism theory is presented as an aid for understanding the design criteria for this type of device. Two existing systems are described and their operation and performance are examined.

  18. Quadrupole Ion/Neutral Mass Spectrometer for Space Shuttle Applications.

    DTIC Science & Technology

    1986-04-07

    fCon linue on reverse if neeec’O ond ientify by block number) _ A Quadrupole Ion/Neutral Mass Spectrometer (QINMS) was developed for the fourth flight...The charging of spacecraft surfaces, Rev. Geophys. and Space Phys. 19:577-616. 16. Paul , W., Rheinhard, H. P., and von Zahn, U. (1958) Das elektrische...massenfilter als massenspektrometer und isotopentrenner, Z. Ph sik 152:143-182. Paul , W., and Steinwedel, H. (1953) Z. Naturforsch 8a:448. Paul , W

  19. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources.

    PubMed

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that "…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more" (Int. J. Mass Spectrom. 200: 459-478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451-4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that "super-atmospheric operation would be more preferable in space-charge-limited situations."(Int. J. Mass Spectrom. 300: 182-193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper.

  20. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources

    PubMed Central

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that “…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more” (Int. J. Mass Spectrom. 200: 459–478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451–4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that “super-atmospheric operation would be more preferable in space-charge-limited situations.”(Int. J. Mass Spectrom. 300: 182–193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912

  1. SCAPS, a two-dimensional ion detector for mass spectrometer

    NASA Astrophysics Data System (ADS)

    Yurimoto, Hisayoshi

    2014-05-01

    Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40

  2. Isotope ratio measurements by secondary ion mass spectrometry (SIMS) and glow discharge mass spectrometry (GDMS)

    NASA Astrophysics Data System (ADS)

    Betti, Maria

    2005-04-01

    The basic principles of secondary ion mass spectrometry and glow discharge mass spectrometry have been shortly revisited. The applications of both techniques as exploited for the isotope ratio measurements in several matrices have been reviewed. Emphasis has been given to research fields in expansions such as solar system studies, medicine, biology, environment and nuclear forensic. The characteristics of the two techniques are discussed in terms of sensitivity and methodology of quantification. Considerations on the different detection possibilities in SIMS are also presented.

  3. Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-02-01

    Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn + ( n = 1000-10,000) to form a mixed cluster. The `tailored beam' has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl- , allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. H-D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1-8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield.

  4. Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry

    PubMed Central

    Wucher, Andreas; Winograd, Nicholas

    2015-01-01

    Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn+ (n = 1000–10,000) to form a mixed cluster. The ‘tailored beam’ has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl−, allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. Protonation and H–D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1–8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield. PMID:26463238

  5. Final Report - Ion Production and Transport in Atmospheric Pressure Ion Source Mass Spectrometers

    SciTech Connect

    Farnsworth, Paul B.; Spencer, Ross L.

    2014-05-14

    This document is the final report on a project that focused in the general theme of atmospheric-pressure ion production and transport for mass spectrometry. Within that general theme there were two main projects: the fundamental study of the transport of elemental ions through the vacuum interface of an inductively coupled plasma mass spectrometer (ICPMS), and fundamental studies of the ionization mechanisms in ambient desorption/ionization (ADI) sources for molecular mass spectrometry. In both cases the goal was to generate fundamental understanding of key instrumental processes that would lead to the development of instruments that were more sensitive and more consistent in their performance. The emphasis on consistency derives from the need for instruments that have the same sensitivity, regardless of sample type. In the jargon of analytical chemistry, such instruments are said to be free from matrix effects. In the ICPMS work each stage of ion production and of ion transport from the atmospheric pressure to the high-vacuum mass analyzer was studied. Factors controlling ion transport efficiency and consistency were identified at each stage of pressure reduction. In the ADI work the interactions between an electrospray plume and a fluorescent sample on a surface were examined microscopically. A new mechanism for analyte ion production in desorption electrospray ionization (DESI) was proposed. Optical spectroscopy was used to track the production of reactive species in plasmas used as ADI sources. Experiments with mixed-gas plasmas demonstrated that the addition of a small amount of hydrogen to a helium ADI plasma could boost the sensitivity for some analytes by over an order of magnitude.

  6. The periodic focusing ion funnel: theory, design, and experimental characterization by high-resolution ion mobility-mass spectrometry.

    PubMed

    Fort, Kyle L; Silveira, Joshua A; Russell, David H

    2013-10-15

    Simulation-based development and experimental characterization of a DC-only ion funnel is described herein. Radial ion confinement is achieved via periodic focusing whereby a collisionally dampened effective potential is generated in the inertial frame of an ion traversing the device with appreciable velocity. The new device, termed a periodic focusing ion funnel (PF IF), provides an efficient alternative to the rf ion funnel providing high ion transmission with fewer electrodes, simplified electrical circuitry, and reduced power supply requirements. The utility of the PF IF for structural ion mobility-mass spectrometry (IM-MS) studies is demonstrated using model peptide ions (bradykinin, gramicidin S, and trpzip 1).

  7. Negative ion photodetachment and the electron effective mass in liquids

    SciTech Connect

    Baird, J.K.

    1983-07-01

    The electron photodetachment cross section for a negative ion in the gas phase is compared with the photodetachment cross section for the same ion when it is dissolved in a liquid supporting ''free'' electron propagation. The ratio of the amplitudes of these two cross sections near threshold is found to depend upon the effective mass m* of an electron in the conduction band of the liquid. We apply this result to electron photodetachment from O/sub 2//sup -/. In terms of the electron's free mass m, we find for liquid argon at 87 K (m* = 0.26 m), 2,2-dimethylbutane at 296 K (m* = 0.27 m), 2,2,4-trimethylpentane at 296 K (m* = 0.27 m), and tetramethylsilane at 296 K (m* = 0.27 m). At 200 K, the effective mass in tetramethylsilane decreases to m* = 0.21 m. In the case of liquid argon, the effective mass calculated herein agrees qualitatively with values which can be estimated from measurements of the electron mobility and exciton spectrum.

  8. Identification of carbohydrate anomers using ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K.

    2015-10-01

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  9. A hand-portable digital linear ion trap mass spectrometer.

    PubMed

    Xue, Bing; Sun, Lulu; Huang, Zhengxu; Gao, Wei; Fan, Rongrong; Cheng, Ping; Ding, Li; Ma, Li; Zhou, Zhen

    2016-10-07

    A hand-portable digital linear ion trap mass spectrometer (DLIT-MS) has been developed for VOC analysis. It has a weight of 18 kg with dimensions of 49 cm × 39 cm × 16 cm, and consumes an average power of ca. 60 W. As a result of the introduction of a digital waveform, the DLIT-MS can be driven at a lower voltage (±100 V) to cover a mass range of 30-300 Th with a unit resolution. Compact electronics has been designed to control the DLIT-MS and record mass spectra. The mass drift was reduced after the improvement in electronics to stabilize the digital waveform voltage during the mass scan. Tandem mass spectrometry (MS) has been achieved by using digital asymmetric waveform isolation (DAWI), forward and reverse scan, and collision induced dissociation (CID). The isolation and CID efficiency for methyl salicylate were 83.9% and 81.3%, respectively. A novel buffer gas inlet system was designed to enhance the sensitivity and allow easy and safe use of the instrument. Limits of detection below 1 ppbv were obtained for several mixed gaseous samples.

  10. Relative sensitivity factors for submicron secondary ion mass spectrometry with gallium primary ion beam

    NASA Astrophysics Data System (ADS)

    Satosh, Hitomi; Owari, Masanori; Nihei, Yoshimasa

    1993-08-01

    Relative sensitivity factors (RSFs) of thirteen elements in the oxide glass matrix in secondary ion mass spectrometry (SIMS) excited by a gallium focused ion beam were determined. RSFs were obtained by analyzing powder particles of standard glass samples. Whole volumes of each particles were analyzed in the 'shave-off' mode in order to avoid topographic effects. Reproducibility of RSFs was good, and sample-to-sample scattering of values was relatively small. Dependence of RSFs on the first ionization potential was shown to be reasonable. In order to with the data obtained through the bulk chemical analysis.

  11. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  12. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  13. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry.

    PubMed

    Colizza, Kevin; Mahoney, Keira E; Yevdokimov, Alexander V; Smith, James L; Oxley, Jimmie C

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression. Graphical Abstract ᅟ.

  14. In situ secondary ion mass spectrometry analysis. 1992 Summary report

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  15. Continuous time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2004-10-19

    A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.

  16. Improved Isobaric Tandem Mass Tag Quantification by Ion Mobility-Mass Spectrometry

    PubMed Central

    Li, Lingjun

    2014-01-01

    Isobaric tandem mass tags are an attractive alternative to mass difference tags and label free approaches for quantitative proteomics due to the high degree of multiplexing that can be performed with their implementation. A drawback of tandem mass tags are that the co-isolation and co-fragmentation of labeled peptide precursors can result in chimeric MS/MS spectra that can underestimate the fold-change expression of each peptide. Two methods (QuantMode and MS3) have addressed this concern for ion trap and orbitrap instruments, but there is still a need to solve this problem for quadrupole time-of-flight (Q-TOF) instruments. Ion mobility (IM) separations coupled to Q-TOF instruments have the potential to mitigate MS/MS spectra chimeracy since IM-MS has the ability to separate ions based on charge, m/z, and collision cross section (CCS). This work presents results that showcase the power of IM-MS to improve tandem mass tag peptide quantitation accuracy by resolving co-isolated differently charged and same charged peptides prior to MS/MS fragmentation. PMID:24677527

  17. Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B.

    2017-02-01

    1,4-Hydroquinone and several other phenolic compounds generate (M - 2) -• radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H• and H+, it can be termed oxidative ionization. The superoxide radical-anion (O2 -•), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2 -• adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) - ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2 -• present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained.

  18. Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions.

    PubMed

    Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B

    2017-02-01

    1,4-Hydroquinone and several other phenolic compounds generate (M - 2) (-•) radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H(•) and H(+), it can be termed oxidative ionization. The superoxide radical-anion (O2(-•)), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2(-•) adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) (-) ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2(-•) present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained. Graphical Abstract ᅟ.

  19. Identification of isobaric product ions in electrospray ionization mass spectra of fentanyl using multistage mass spectrometry and deuterium labeling.

    PubMed

    Wichitnithad, Wisut; McManus, Terence J; Callery, Patrick S

    2010-09-15

    Isobaric product ions cannot be differentiated by exact mass determinations, although in some cases deuterium labeling can provide useful structural information for identifying isobaric ions. Proposed fragmentation pathways of fentanyl were investigated by electrospray ionization ion trap mass spectrometry coupled with deuterium labeling experiments and spectra of regiospecific deuterium labeled analogs. The major product ion of fentanyl under tandem mass spectrometry (MS/MS) conditions (m/z 188) was accounted for by a neutral loss of N-phenylpropanamide. 1-(2-Phenylethyl)-1,2,3,6-tetrahydropyridine (1) was proposed as the structure of the product ion. However, further fragmentation (MS(3)) of the fentanyl m/z 188 ion gave product ions that were different from the product ion in the MS/MS fragmentation of synthesized 1, suggesting that the m/z 188 product ion from fentanyl includes an isobaric structure different from the structure of 1. MS/MS fragmentation of fentanyl in deuterium oxide moved one of the isobars to 1 Da higher mass, and left the other isobar unchanged in mass. Multistage mass spectral data from deuterium-labeled proposed isobaric structures provided support for two fragmentation pathways. The results illustrate the utility of multistage mass spectrometry and deuterium labeling in structural assignment of isobaric product ions.

  20. Light ion mass spectrometer for space-plasma investigations

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.; Chappell, C. R.; Fields, S. A.; Lewter, W. J.

    1982-01-01

    Direct satellite measurements and ground-based techniques have given a comprehensive view of the density distribution of the cold plasma population in the earth's magnetosphere. There were, however, no direct measurements of the low-energy plasma mass composition, temperature, density, pitch-angle distribution, or plasma flow velocity. A description is presented of the evolution and development of an instrument, the Light Ion Mass Spectrometer (LIMS), designed to make these low-energy plasma measurements. The instrument was developed for flight on the spacecraft SCA-THA, a satellite to study satellite charging at high altitudes. This satellite, whose primary mission was to study spacecraft-plasma interactions and electrostatic charging, was launched into a near-geosynchronous orbit. The design requirements regarding the instrument are discussed, and attention is given to the calibration procedures, the flight configuration, and some examples of flight data.

  1. Non-mass-analyzed ion implantation from a solid phosphorus source

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    A phosphorus ion beam, extracted from a Freeman ion source charged with elemental phosphorus, has been investigated for use in solar cell fabrication. Mass spectroscopy of the beam indicates the absence of both minority-carrier lifetime degrading impurities and hydrogen. The ion beam, without mass analysis, was used for ion implantation of solar cells, and performance for all cells was found to be equivalent to mass-analyzed controls.

  2. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    SciTech Connect

    Manuel J. Manard, Stephan Weeks, Kevin Kyle

    2010-05-27

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  3. Solvent extraction, ion chromatography, and mass spectrometry of molybdenum isotopes.

    PubMed

    Dauphas, N; Reisberg, L; Marty, B

    2001-06-01

    A procedure was developed that allows precise determination of molybdenum isotope abundances in natural samples. Purification of molybdenum was first achieved by solvent extraction using di(2-ethylhexyl) phosphate. Further separation of molybdenum from isobar nuclides was obtained by ion chromatography using AG1-X8 strongly basic anion exchanger. Finally, molybdenum isotopic composition was measured using a multiple collector inductively coupled plasma hexapole mass spectrometer. The abundances of molybdenum isotopes 92, 94, 95, 96, 97, 98, and 100 are 14.8428(510), 9.2498(157), 15.9303(133), 16.6787(37), 9.5534(83), 24.1346(394), and 9.6104(312) respectively, resulting in an atomic mass of 95.9304(45). After internal normalization for mass fractionation, no variation of the molybdenum isotopic composition is observed among terrestrial samples within a relative precision on the order of 0.00001-0.0001. This demonstrates the reliability of the method, which can be applied to searching for possible isotopic anomalies and mass fractionation.

  4. Nanowire dopant measurement using secondary ion mass spectrometry

    SciTech Connect

    Chia, A. C. E.; Boulanger, J. P.; Wood, B. A.; LaPierre, R. R.; Dhindsa, N.; Saini, S. S.

    2015-09-21

    A method is presented to improve the quantitative determination of dopant concentration in semiconductor nanowire (NW) arrays using secondary ion mass spectrometry (SIMS). SIMS measurements were used to determine Be dopant concentrations in a Be-doped GaAs thin film and NW arrays of various pitches that were dry-etched from the same film. A comparison of these measurements revealed a factor of 3 to 12 difference, depending on the NW array pitch, between the secondary Be ion yields of the film and the NW arrays, despite being identically doped. This was due to matrix effects and ion beam mixing of Be from the NWs into the surrounding benzocyclobutene that was used to fill the space between the NWs. This indicates the need for etched NWs to be used as doping standards instead of 2D films when evaluating NWs of unknown doping by SIMS. Using the etched NWs as doping standards, NW arrays of various pitches grown by the vapour-liquid-solid mechanism were characterized by SIMS to yield valuable insights into doping mechanisms.

  5. Development of a linear ion trap/orthogonal-time-of-flight mass spectrometer for time-dependent observation of product ions by ultraviolet photodissociation of peptide ions.

    PubMed

    Kim, Tae-Young; Schwartz, Jae C; Reilly, James P

    2009-11-01

    A hybrid linear ion trap/orthogonal time-of-flight (TOF) mass spectrometer has been developed to observe time-dependent vacuum ultraviolet photodissociation product ions. In this apparatus, a reflectron TOF mass analyzer is orthogonally interfaced to an LTQ using rf-only octopole and dc quadrupole ion guides. Precursor ions are generated by electrospray ionization and isolated in the ion trap. Subsequently they are directed to the TOF source where photodissociation occurs and product ions are extracted for mass analysis. To detect photodissociation product ions having axially divergent trajectories, a large rectangular detector is utilized. With variation of the time between photodissociation and orthogonal extraction in the TOF source, product ions formed over a range of times after photoexcitation can be sampled. Time-dependent observation of product ions following 157 nm photodissociation of a singly charged tryptic peptide ion (NWDAGFGR) showed that prompt photofragment ions (x- and v-type ions) dominate the tandem mass spectrum up to 1 micros after the laser shot, but the intensities of low energy thermal fragment ions (y-type ions) become comparable several microseconds later. Different proton mobilization time scales were observed for arginine- and lysine-terminated tryptic peptides.

  6. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    SciTech Connect

    Lentz, Nicholas B.

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  7. High efficiency tandem mass spectrometry analysis using dual linear ion traps.

    PubMed

    Li, Linfan; Zhou, Xiaoyu; Hager, James W; Ouyang, Zheng

    2014-10-07

    Tandem mass spectrometry (MS/MS) plays an essential role in modern chemical analysis. It is used for differentiating isomers and isobars and suppressing chemical noise, which allows high precision quantitation. The MS/MS analysis has been typically applied by isolating the target precursor ions, while disregarding other ions, followed by a fragmentation process that produces the product ions. In this study, configurations of dual linear ion traps were explored to develop high efficiency MS/MS analysis. The ions trapped in the first linear ion trap were axially, mass-selectively transferred to the second linear ion trap for MS/MS analysis. Ions from multiple compounds simultaneously introduced into the mass spectrometer could be sequentially analyzed. This development enables highly efficient use of the sample. For miniature ion trap mass spectrometers with discontinuous atmospheric pressure interfaces, the analysis speed and the quantitation precision can be significantly improved.

  8. Performance Evaluation of a Dual Linear Ion Trap-Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for Proteomics Research

    PubMed Central

    Weisbrod, Chad R.; Hoopmann, Michael R.; Senko, Michael W.; Bruce, James E.

    2014-01-01

    A novel dual cell linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) and its performance characteristics are reported. A linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer has been modified to incorporate a LTQ-Velos mass spectrometer. This modified instrument features efficient ion accumulation and fast MS/MS acquisition capabilities of dual cell linear RF ion trap instruments coupled to the high mass accuracy, resolution, and dynamic range of a FT-ICR for improved proteomic coverage. The ion accumulation efficiency is demonstrated to be an order of magnitude greater than that observed with LTQ-FT Ultra instrumentation. The proteome coverage with yeast was shown to increase over the previous instrument generation by 50% (100% increase on the peptide level). In addition, many lower abundance level yeast proteins were only detected with this modified instrument. This novel configuration also enables beam type CID fragmentation using a dual cell RF ion trap mass spectrometer. This technique involves accelerating ions between traps while applying an elevated DC offset to one of the traps to accelerate ions and induce fragmentation. This instrument design may serve as a useful option for labs currently considering purchasing new instrumentation or upgrading existing instruments. PMID:23590889

  9. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    PubMed

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-09

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.

  10. Ion composition experiment. [ISEE-C solar wind ion mass spectroscopy

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Ogilvie, K. W.; Bochsler, P. A.; Geiss, J.

    1978-01-01

    An investigation using a novel ion mass spectrometer for measuring the ionic composition of the solar wind from the ISEE-C spacecraft is described. The resolution and dynamic range of the instrument are sufficient to be able to resolve up to twelve individual ions or groups of ions. This will permit the solution of a number of fundamental problems related to solar abundances and the formation of the solar wind. The spectrometer is composed of a stigmatic Wien filter and hemispherical electrostatic energy analyzer. The use of curved electric field plates in the filter results in a substantial saving of weight with respect to a conventional filter of the same resolution and angular acceptance. The spectrometer is controlled by a microprocessor based on a special purpose computer which has three modes of operations: full and partial survey modes and a search mode. In the search mode, the instrument locks on to the solar wind. This allows four times the time resolution of the full survey mode and yields a full mass spectrum every 12.6 min.

  11. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  12. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry.

    PubMed

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure. Graphical Abstract ᅟ.

  13. Characterization of Membrane Protein-Lipid Interactions by Mass Spectrometry Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Cong, Xiao; Liu, Wen; Laganowsky, Arthur

    2016-12-01

    Lipids in the biological membrane can modulate the structure and function of integral and peripheral membrane proteins. Distinguishing individual lipids that bind selectively to membrane protein complexes from an ensemble of lipid-bound species remains a daunting task. Recently, ion mobility mass spectrometry (IM-MS) has proven to be invaluable for interrogating the interactions between protein and individual lipids, where the complex undergoes collision induced unfolding followed by quantification of the unfolding pathway to assess the effect of these interactions. However, gas-phase unfolding experiments for membrane proteins are typically performed on the entire ensemble (apo and lipid bound species), raising uncertainty to the contribution of individual lipids and the species that are ejected in the unfolding process. Here, we describe the application of mass spectrometry ion mobility mass spectrometry (MS-IM-MS) for isolating ions corresponding to lipid-bound states of a model integral membrane protein, ammonia channel (AmtB) from Escherichia coli. Free of ensemble effects, MS-IM-MS reveals that bound lipids are ejected as neutral species; however, no correlation was found between the lipid-induced stabilization of complex and their equilibrium binding constants. In comparison to data obtained by IM-MS, there are surprisingly limited differences in stability measurements from IM-MS and MS-IM-MS. The approach described here to isolate ions of membrane protein complexes will be useful for other MS methods, such as surface induced dissociation or collision induced dissociation to determine the stoichiometry of hetero-oligomeric membrane protein complexes.

  14. Detection of Large Ions in Time-of-Flight Mass Spectrometry: Effects of Ion Mass and Acceleration Voltage on Microchannel Plate Detector Response

    NASA Astrophysics Data System (ADS)

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M.

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv3.1 (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  15. Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response.

    PubMed

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv(3.1) (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  16. Characterization of environmental samples using ion trap-secondary ion mass spectrometry

    SciTech Connect

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.

    1998-02-01

    The detection of chemical warfare agent residues on environmental surfaces is an important analytical activity because of the potential for proliferation of these weapons, and for environmental monitoring in areas where they are stored. Historically, one of the most widely used agents has been bis(2-chloroethyl) sulfide, also known as mustard gas and HD. It was initially used in combat in 1917; by the end of the First World War, more than 16% of all casualties were due to chemicals, in most cases mustard. Manufacture of mustard is continuing to this day; consequently, there are ongoing opportunities for exposure. 2-Chloroethyl ethyl sulfide (CEES) is used as a simulant for mustard (HD) in a study to develop secondary ion mass spectrometry (SIMS) for rapid, semi-quantitative detection of mustard on soil. Using SIMS with single stage mass spectrometry, a signature for CEES can be unequivocally observed only at the highest concentrations (0.1 monolayer and above). Selectivity and sensitivity are markedly improved employing multiple-stage mass spectrometry using an ion trap. C{sub 2}H{sub 5}SC{sub 2}H{sub 4}{sup +} from CEES eliminates C{sub 2}H{sub 4} and H{sub 2}S, which are highly diagnostic. CEES was detected at 0.0012 monolayer on soil. A single analysis could be conducted in under 5 minutes.

  17. Relative Sensitivity Factors for Submicron Secondary Ion Mass Spectrometry with Gallium Primary Ion Beam

    NASA Astrophysics Data System (ADS)

    Satoh, Hitomi; Owari, Masanori; Nihei, Yoshimasa

    1993-08-01

    Relative sensitivity factors (RSFs) of thirteen elements in the oxide glass matrix in secondary ion mass spectrometry (SIMS) excited by a gallium focused ion beam were determined. RSFs were obtained by analyzing powder particles of standard glass samples. Whole volumes of each particles were analyzed in the “shave-off” mode in order to avoid topographic effects. Reproducibility of RSFs was good, and sample-to-sample scattering of values was relatively small. Dependence of RSFs on the first ionization potential was shown to be reasonable. In order to check the validity of the RSFs, coal fly ash particles were analyzed. The results were in reasonable agreement with the data obtained through the bulk chemical analysis.

  18. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  19. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, David P.; Browning, James F.

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  20. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, David P.; Browning, James F.

    1998-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  1. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  2. Interrogating viral capsid assembly with ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.

    2011-02-01

    Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.

  3. Ion Mass Spectrometer for Sporadic-E Rocket Experiments

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Earle, G. D.; Pfaff, Robert

    2000-01-01

    NASA grant NAG5-5086 provided funding for the William B. Hanson Center for Space Sciences at the University of Texas at Dallas (UTD) to design, fabricate, calibrate, and ultimately fly two ion mass spectrometer instruments on a pair of sounding rocket payloads. Drs. R.A. Heelis and G.D. Earle from UTD were co-investigators on the project. The principal investigator for both rocket experiments was Dr. Robert Pfaff of the Goddard Space Flight Center. The overall project title was "Rocket/Radar Investigation of Lower Ionospheric Electrodynamics Associated with Intense Mid-Latitude Sporadic-E Layers". This report describes the overall objectives of the project, summarizes the instrument design and flight experiment details, and presents representative data obtained during the flights.

  4. Secondary ion mass spectrometry of irradiated nuclear fuel and cladding

    NASA Astrophysics Data System (ADS)

    Portier, S.; Brémier, S.; Walker, C. T.

    2007-06-01

    The principles and operating modes of secondary ion mass spectrometry (SIMS) are first described after which the different methods of quantification are summarised. Some current applications of SIMS in nuclear fuel and cladding research are then reviewed after briefly considering the modifications that are needed to allow a SIMS instrument to be used for the analysis of highly radioactive materials. Amongst the applications reported are the investigation of the behaviour of fission gas xenon and the volatile fission products tellurium, iodine and caesium in UO2 nuclear fuel, measurement of the radial distribution of Pu isotopes in mixed oxide (MOX) fuel and of the radial distribution of Gd isotopes in (U,Gd)O2 fuel, and determination of the distribution of Li and B in the external oxide layer on Zircaloy cladding. It is evident from the large amount of new information gained that SIMS is a powerful complementary technique to electron probe microanalysis (EPMA) in these fields of study.

  5. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell.

    PubMed

    Allen, Samuel J; Giles, Kevin; Gilbert, Tony; Bush, Matthew F

    2016-02-07

    Ion mobility mass spectrometry experiments enable the characterization of mass, assembly, and shape of biological molecules and assemblies. Here, a new radio-frequency confining drift cell is characterized and used to measure the mobilities of peptide, protein, and protein complex ions. The new drift cell replaced the traveling-wave ion mobility cell in a Waters Synapt G2 HDMS. Methods for operating the drift cell and determining collision cross section values using this experimental set up are presented within the context of the original instrument control software. Collision cross sections for 349 cations and anions are reported, 155 of which are for ions that have not been characterized previously using ion mobility. The values for the remaining ions are similar to those determined using a previous radio-frequency confining drift cell and drift tubes without radial confinement. Using this device under 2 Torr of helium gas and an optimized drift voltage, denatured and native-like ions exhibited average apparent resolving powers of 14.2 and 16.5, respectively. For ions with high mobility, which are also low in mass, the apparent resolving power is limited by contributions from ion gating. In contrast, the arrival-time distributions of low-mobility, native-like ions are not well explained using only contributions from ion gating and diffusion. For those species, the widths of arrival-time distributions are most consistent with the presence of multiple structures in the gas phase.

  6. Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging.

    PubMed

    McDonnell, Liam A; Heeren, Ron M A; de Lange, Robert P J; Fletcher, Ian W

    2006-09-01

    To expand the role of high spatial resolution secondary ion mass spectrometry (SIMS) in biological studies, numerous developments have been reported in recent years for enhancing the molecular ion yield of high mass molecules. These include both surface modification, including matrix-enhanced SIMS and metal-assisted SIMS, and polyatomic primary ions. Using rat brain tissue sections and a bismuth primary ion gun able to produce atomic and polyatomic primary ions, we report here how the sensitivity enhancements provided by these developments are additive. Combined surface modification and polyatomic primary ions provided approximately 15.8 times more signal than using atomic primary ions on the raw sample, whereas surface modification and polyatomic primary ions yield approximately 3.8 and approximately 8.4 times more signal. This higher sensitivity is used to generate chemically specific images of higher mass biomolecules using a single molecular ion peak.

  7. Toward Plasma Proteome Profiling with Ion Mobility-Mass Spectrometry

    SciTech Connect

    Valentine, Stephen J.; Plasencia, Manolo D.; Liu, Xiaoyun; Krishnan, Meera; Naylor, Stephen; Udseth, Harold R.; Smith, Richard D.; Clemmer, David E.

    2006-11-01

    Differential, functional, and mapping proteomic analyses of complex biological mixtures suffer from a lack of component resolution. Here we describe the application of ion mobility-mass spectrometry (IMSMS) to this problem. With this approach, components that are separated by liquid chromatography are dispersed based on differences in their mobilities through a buffer gas prior to being analyzed by MS. The inclusion of the gas-phase dispersion provides more than an order of magnitude enhancement in component resolution at no cost to data acquisition time. Additionally, the mobility separation often removes high-abundance species from spectral regions containing low-abundance species, effectively increasing measurement sensitivity and dynamic range. Finally, collision-induced dissociation of all ions can be recorded in a single experimental sequence while conventional MS methods sequentially select precursors. The approach is demonstrated in a single, rapid (3.3 h) analysis of a plasma digest sample where abundant proteins have not been removed. Protein database searches have yielded 731 high confidence peptide assignments corresponding to 438 unique proteins. Results have been compiled into an initial analytical map to be used -after further augmentation and refinement- for comparative plasma profiling studies.

  8. The effects of analyte mass and collision gases on ion beam formation in an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Larsen, Jessica J.; Edmund, Alisa J.; Farnsworth, Paul B.

    2016-11-01

    Planar laser induced fluorescence (PLIF) was used to evaluate the effect of matrix components on the formation and focusing of a Ba ion beam in a commercial inductively coupled plasma mass spectrometer. Cross sections of the ion beams were taken in the second vacuum stage, in front of the entrance to the mass analyzer. Under normal operating conditions, the addition of Pb shifted the position of the Ba ion beam to the right. PLIF was also used to evaluate the effect of a collision reaction interface (CRI) on Ca and Ba ion beams. A wider velocity distribution of ions and a decrease in overall intensity were observed for the CRI images. The fluorescence and mass spectrometer signals decreased with increased CRI flow rates. These effects were most obvious for Ca ions with He gas.

  9. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  10. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    van Agthoven, Maria A.; Barrow, Mark P.; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A.; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B.

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.

  11. Ion sponge: a 3-dimentional array of quadrupole ion traps for trapping and mass-selectively processing ions in gas phase.

    PubMed

    Xu, Wei; Li, Linfan; Zhou, Xiaoyu; Ouyang, Zheng

    2014-05-06

    In this study, the concept of ion sponge has been explored for developing 3D arrays of large numbers of ion traps but with simple configurations. An ion sponge device with 484 trapping units in a volume of 10 × 10 × 3.2 cm has been constructed by simply stacking 9 meshes together. A single rf was used for trapping ions and mass-selective ion processing. The ion sponge provides a large trapping capacity and is highly transparent for transfer of ions, neutrals, and photons for gas phase ion processing. Multiple layers of quadrupole ion traps, with 121 trapping units in each layer, can operate as a single device for MS or MS/MS analysis, or as a series of mass-selective trapping devices with interlayer ion transfers facilitated by AC and DC voltages. Automatic sorting of ions to different trapping layers based on their mass-to-charge (m/z) ratios was achieved with traps of different sizes. Tandem-in-space MS/MS has also been demonstrated with precursor ions and fragment ions trapped in separate locations.

  12. Protein identification via ion-trap collision-induced dissociation and examination of low-mass product ions.

    PubMed

    Bowers, Jeremiah J; Liu, Jian; Gunawardena, Harsha P; McLuckey, Scott A

    2008-01-01

    A whole-protein tandem mass spectrometry approach for protein identification based on precursor ion charge state concentration via ion/ion reactions, ion-trap collisional activation, ion/ion proton-transfer reactions involving the product ions, and mass analysis over a narrow m/z range (up to m/z 2000) is described and evaluated. The experiments were carried out with a commercially available electrospray ion-trap instrument that has been modified to allow for ion/ion reactions. Reaction conditions and the approach to searching protein databases were developed with the assumption that the resolving power of the mass analyzer is insufficient to distinguish charge states on the basis of the isotope spacings. Ions derived from several charge states of cytochrome c, myoglobin, ribonuclease A, and ubiquitin were used to evaluate the approach for protein identification and to develop a two-step procedure to database searching to optimize specificity. The approach developed with the model proteins was then applied to whole cell lysate fractions of Saccharomyces cerevisiae. The results are illustrated with examples of assignments made for three a priori unknown proteins, each selected randomly from a lysate fraction. Two of the three proteins were assigned to species present in the database, whereas one did not match well any database entry. The combination of the mass measurement and the product ion masses suggested the possibility for the oxidation of two methionine residues of a protein in the database. The examples show that this limited whole-protein characterization approach can provide insights that might otherwise be lacking with approaches based on complete enzymatic digestion.

  13. Carbohydrate Structure Characterization by Tandem Ion Mobility Mass Spectrometry (IMMS)2

    PubMed Central

    Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.

    2013-01-01

    A high resolution ion mobility spectrometer was interfaced to a Synapt G2 high definition mass spectrometer (HDMS) to produce IMMS-IMMS analysis. The hybrid instrument contained an electro-spray ionization source, two ion gates, an ambient pressure linear ion mobility drift tube, a quadrupole mass filter, a traveling wave ion mobility spectrometer (TWIMS) and a time of flight mass spectrometer. The dual gate drift tube ion mobility spectrometer (DTIMS) could be used to acquire traditional IMS spectra, but also could selectively transfer specific mobility selected precursor ions to the Synapt G2 HDMS for mass filtration (quadrupole). The mobility and mass selected ions could then be introduced into a collision cell for fragmentation followed by mobility separation of the fragment ions with the traveling wave ion mobility spectrometer. These mobility separated fragment ions are finally mass analyzed using a time-of-flight mass spectrometer. This results in an IMMS-IMMS analysis and provides a method to evaluate the isomeric heterogeneity of precursor ions by both DTIMS and TWIMS, to acquire a mobility-selected and mass-filtered fragmentation pattern and to additionally obtain traveling wave ion mobility spectra of the corresponding product ions. This new IMMS2 instrument enables the structural diversity of carbohydrates to be studied in greater detail. The physical separation of isomeric oligosaccharide mixtures was achieved by both DTIMS and TWIMS, with DTIMS demonstrating higher resolving power (70~80) than TWIMS (30~40). Mobility selected MS/MS spectra were obtained, and TWIMS evaluation of product ions showed that isomeric forms of fragment ions existed for identical m/z values. PMID:23330948

  14. Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS)2.

    PubMed

    Li, Hongli; Bendiak, Brad; Siems, William F; Gang, David R; Hill, Herbert H

    2013-03-05

    A high resolution ion mobility spectrometer was interfaced to a Synapt G2 high definition mass spectrometer (HDMS) to produce IMMS-IMMS analysis. The hybrid instrument contained an electrospray ionization source, two ion gates, an ambient pressure linear ion mobility drift tube, a quadrupole mass filter, a traveling wave ion mobility spectrometer (TWIMS), and a time-of-flight mass spectrometer. The dual gate drift tube ion mobility spectrometer (DTIMS) could be used to acquire traditional IMS spectra but also could selectively transfer specific mobility selected precursor ions to the Synapt G2 HDMS for mass filtration (quadrupole). The mobility and mass selected ions could then be introduced into a collision cell for fragmentation followed by mobility separation of the fragment ions with the traveling wave ion mobility spectrometer. These mobility separated fragment ions are finally mass analyzed using a time-of-flight mass spectrometer. This results in an IMMS-IMMS analysis and provides a method to evaluate the isomeric heterogeneity of precursor ions by both DTIMS and TWIMS to acquire a mobility-selected and mass-filtered fragmentation pattern and to additionally obtain traveling wave ion mobility spectra of the corresponding product ions. This new IMMS(2) instrument enables the structural diversity of carbohydrates to be studied in greater detail. The physical separation of isomeric oligosaccharide mixtures was achieved by both DTIMS and TWIMS, with DTIMS demonstrating higher resolving power (70-80) than TWIMS (30-40). Mobility selected MS/MS spectra were obtained, and TWIMS evaluation of product ions showed that isomeric forms of fragment ions existed for identical m/z values.

  15. Modeling vapor uptake induced mobility shifts in peptide ions observed with transversal modulation ion mobility spectrometry-mass spectrometry.

    PubMed

    Rawat, Vivek K; Vidal-de-Miguel, Guillermo; Hogan, Christopher J

    2015-10-21

    Low field ion mobility spectrometry-mass spectrometry (IMS-MS) techniques exhibit low orthogonality, as inverse mobility often scales with mass to charge ratio. This inadequacy can be mitigated by adding vapor dopants, which may cluster with analyte ions and shift their mobilities by amounts independent of both mass and mobility of the ion. It is therefore important to understand the interactions of vapor dopants with ions, to better quantify the extent of dopant facilitated mobility shifts. Here, we develop predictive models of vapor dopant facilitated mobility shifts, and compare model calculations to measurements of mobility shifts for peptide ions exposed to variable gas phase concentrations of isopropanol. Mobility measurements were made at atmospheric pressure and room temperature using a recently developed transversal modulation ion mobility spectrometer (TMIMS). Results are compared to three separate models, wherein mobility shifts due to vapor dopants are attributed to changes in gas composition and (I) no vapor dopant uptake is assumed, (II) site-specific dopant uptake by the ion is assumed (approximated via a Langmuir adsorption model), and (III) site-unspecific dopant uptake by the ion is assumed (approximated via a classical nucleation model). We find that mobility shifts in peptide ions are in excellent agreement with model II, site-specific binding predictions. Conversely, mobility shifts of tetraalkylammonium ions from previous measurements were compared with these models and best agreement was found with model III predictions, i.e. site-unspecific dopant uptake.

  16. Analysis of high mass-to-charge ions in a quadrupole ion trap mass spectrometer via an end-cap quadrupolar direct current downscan.

    PubMed

    Prentice, Boone M; McLuckey, Scott A

    2012-09-04

    A method for performing mass-selective instability analysis in a three-dimensional (3-D) quadrupole ion trap is described that involves scanning a direct current (dc) voltage applied to the end-cap electrodes while holding the radio frequency (rf) potential at a fixed value. Rather than eject at the ß(z) = 1 instability line by ramping the amplitude of the drive rf potential applied to the ring electrode, as with the original mass-selective instability scan, this approach effects ion ejection along the ß(z) = 0 instability line in a process identical in principle (though it varies in its method of implementation) to the previously termed "downscan" ( Todd , J. F. J. ; Penman , A. D. ; Smith , R. D. Int. J. Mass Spectrom. Ion Processes 1991 , 106 , 117 - 135 ). A linear scan of the dc amplitude results in a nonlinear mass scale, unlike the conventional resonance ejection scan with a linear scan of the rf amplitude, and the ejection of ions in the direction of high mass-to-charge (m/z) to low m/z. However, the downscan offers some advantages over the traditional rf scan for ions of high m/z values. These include a larger scannable mass range, as well as the opportunity for improved resolution at high mass. These characteristics are demonstrated with ions of m/z 10(4)-10(5).

  17. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/ trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  18. Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions.

    PubMed

    McEwen, Charles N; Larsen, Barbara S; Trimpin, Sarah

    2010-06-15

    Multiply charged ions, similar to those obtained with electrospray ionization, are produced at atmospheric pressure (AP) using standard MALDI conditions of laser fluence and reflective geometry. Further, the charge state can be switched to singly charged ions nearly instantaneously by changing the voltage applied to the MALDI target plate. Under normal AP-MALDI operating conditions in which a voltage is applied to the target plate, primarily singly charged ions are observed, but at or near zero volts, highly charged ions are observed for peptides and proteins. Thus, switching between singly and multiply charged ions requires only manipulation of a single voltage. As in ESI, multiple charging, produced using the AP-MALDI source, allows compounds with molecular weights beyond the mass-to-charge limit of the mass spectrometer to be observed and improves the fragmentation relative to singly charged ions.

  19. Laser Induced-Plasma Ion Mass Spectrometry for Characterization of Lunar and Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Blacic, J. D.; Cremers, D. A.; Ritzau, S. M.; Nordholt, J. E.; Funsten, H. O.

    1999-03-01

    LIMS is being developed to perform isotopic and elemental analysis of lunar and planetary surfaces at standoff distances. It uses an advanced ion mass spectrometer to obtain mass and energy spectra from the ionized plume produced by a laser.

  20. Infrared multiphoton dissociation of peptide cations in a dual pressure linear ion trap mass spectrometer.

    PubMed

    Gardner, Myles W; Smith, Suncerae I; Ledvina, Aaron R; Madsen, James A; Coon, Joshua J; Schwartz, Jae C; Stafford, George C; Brodbelt, Jennifer S

    2009-10-01

    A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells-the first a high pressure cell operated at nominally 5 x 10(-3) Torr and the second a low pressure cell operated at nominally 3 x 10(-4) Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y(1) fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of approximately 100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra.

  1. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer

    PubMed Central

    Gardner, Myles W.; Smith, Suncerae I.; Ledvina, Aaron R.; Madsen, James A.; Coon, Joshua J.; Schwartz, Jae C.; Stafford, George C.; Brodbelt, Jennifer S.

    2009-01-01

    A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells - the first a high pressure cell operated at nominally 5 × 10-3 Torr and the second a low pressure cell operated at nominally 3 × 10-4 Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y1 fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of ~100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra. PMID:19739654

  2. Determination of N-linked Glycosylation in Viral Glycoproteins by Negative Ion Mass Spectrometry and Ion Mobility.

    PubMed

    Bitto, David; Harvey, David J; Halldorsson, Steinar; Doores, Katie J; Pritchard, Laura K; Huiskonen, Juha T; Bowden, Thomas A; Crispin, Max

    2015-01-01

    Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans.

  3. Determination of N-linked glycosylation in viral glycoproteins by negative ion mass spectrometry and ion mobility

    PubMed Central

    Bitto, David; Harvey, David J.; Halldorsson, Steinar; Doores, Katie J.; Pritchard, Laura K.; Huiskonen, Juha T.; Bowden, Thomas A.; Crispin, Max

    2016-01-01

    Summary Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans. PMID:26169737

  4. Structurally selective imaging mass spectrometry by imaging ion mobility-mass spectrometry.

    PubMed

    McLean, John A; Fenn, Larissa S; Enders, Jeffrey R

    2010-01-01

    This chapter describes the utility of structurally based separations combined with imaging mass spectrometry (MS) by ion mobility-MS (IM-MS) approaches. The unique capabilities of combining rapid (mus-ms) IM separations with imaging MS are detailed for an audience ranging from new to potential practitioners in IM-MS technology. Importantly, imaging IM-MS provides the ability to rapidly separate and elucidate various types of endogenous and exogenous biomolecules (e.g., nucleotides, carbohydrates, peptides, and lipids), including isobaric species. Drift tube and traveling wave IM-MS instrumentation are described and specific protocols are presented for calculating ion-neutral collision cross sections (i.e., apparent ion surface area or structure) from experimentally obtained IM-MS data. Special emphasis is placed on the use of imaging IM-MS for the analysis of samples in life sciences research (e.g., thin tissue sections), including selective imaging for peptide/protein and lipid distributions. Future directions for rapid and multiplexed imaging IM-MS/MS are detailed.

  5. A novel approach to collision-induced dissociation (CID) for ion mobility-mass spectrometry experiments.

    PubMed

    Becker, Christopher; Fernandez-Lima, Francisco A; Gillig, Kent J; Russell, William K; Cologna, Stephanie M; Russell, David H

    2009-06-01

    Collision induced dissociation (CID) combined with matrix assisted laser desorption ionization-ion mobility-mass spectrometry (MALDI-IM-MS) is described. In this approach, peptide ions are separated on the basis of mobility in a 15 cm drift cell. Following mobility separation, the ions exit the drift cell and enter a 5 cm vacuum interface with a high field region (up to 1000 V/cm) to undergo collisional activation. Ion transmission and ion kinetic energies in the interface are theoretically evaluated accounting for the pressure gradient, interface dimensions, and electric fields. Using this CID technique, we have successfully fragmented and sequenced a number of model peptide ions as well as peptide ions obtained by a tryptic digest. This instrument configuration allows for the simultaneous determination of peptide mass, peptide-ion sequence, and collision-cross section of MALDI-generated ions, providing information critical to the identification of unknown components in complex proteomic samples.

  6. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    NASA Astrophysics Data System (ADS)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-12-01

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700).

  7. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    SciTech Connect

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-10-12

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158 molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).

  8. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  9. An electrodynamic ion funnel interface for greater sensitivity and higher throughput with linear ion trap mass spectrometers

    NASA Astrophysics Data System (ADS)

    Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-09-01

    An electrospray ionization interface incorporating an electrodynamic ion funnel has been designed and implemented on a linear ion trap mass spectrometer (Thermo Electron, LTQ). We found ion transmission to be greatly improved by replacing the standard capillary-skimmer interface with the capillary-ion funnel interface. An infusion study using a serial dilution of a reserpine solution showed that ion injection (accumulation) times to fill the ion trap at a given automatic gain control (AGC) target value were reduced by ~90% which resulted in an ~10-fold increase in peak intensities. In liquid chromatography tandem MS (LC-MS/MS) experiments performed using a global protein digest sample from the bacterium, Shewanella oneidensis, more peptides and proteins were identified when the ion funnel interface was used in place of the standard interface. This improvement was most pronounced at lower sample concentrations, where extended ion accumulation times are required, resulting in an ~2-fold increase in the number of protein identifications. Implementation of the ion funnel interface on a LTQ Fourier transform (FT) mass spectrometer showed a ~25-50% reduction in spectrum acquisition time. The duty cycle improvement in this case was due to the ion accumulation event contributing a larger portion to the total spectrum acquisition time.

  10. Comparison of mono- and polyatomic primary ions for the characterization of organic dye overlayers with static secondary ion mass spectrometry.

    PubMed

    Lenaerts, Jens; Van Vaeck, Luc; Gijbels, Renaat; Van Luppen, Jaymes

    2004-01-01

    Organic carbocyanine dye coatings have been analyzed by time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) using three types of primary ions: Ga(+) operating at 25 keV, and Xe(+) and SF(5) (+) both operating at 9 keV. Secondary ion yields obtained with these three primary ions have been compared for coatings with different layer thickness, varying from (sub)-monolayer to multilayers, on different substrates (Si, Ag and AgBr cubic microcrystals). For (sub)-monolayers deposited on Ag, Xe(+) and SF(5) (+) primary ions generate similar precursor ion intensities, but with Ga(+) slightly lower precursor ion intensities were obtained. Thick coatings on Ag as well as mono- and multilayers on Si produce the highest precursor and fragment ion intensities with the polyatomic primary ion. The yield difference between SF(5) (+) and Xe(+) can reach a factor of 6. In comparison with Ga(+), yield enhancements by up to a factor of 180 are observed with SF(5) (+). For the mass spectrometric analysis of dye layers on AgBr microcrystals, SF(5) (+) again proves to be the primary ion of choice.

  11. Determination of Cu Concentrations in CdTe/CdS Devices by High Mass Resolution Secondary Ion Mass Spectrometry

    SciTech Connect

    Asher, S. E.; Reedy, R. C.; Dhere, R.; Gessert, t. A.; Young, M. R.

    2000-01-01

    We have used secondary ion mass spectrometry (SIMS) to quantitatively determine the concentration of Cu in CdTe/CdS devices. Empirical standards were fabricated by ion implantation of Cu into single-crystal and polycrystalline CdTe and single-crystal CdS.

  12. An electrodynamic ion funnel interface for greater sensitivity and higher throughput with linear ion trap mass spectrometers

    SciTech Connect

    Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-09-01

    An electrospray ionization interface incorporating an electrodynamic ion funnel has been designed and implemented in conjunction with a linear ion trap mass spectrometer (Thermo Electron, LTQ). We found ion transmission to be greatly improved by replacing the standard capillary-skimmer interface with the capillary-ion funnel interface. An infusion study using a serial dilution of a reserpine solution showed that ion injection times to fill the ion trap were reduced by ~90% which resulted in an ~10-fold increase in reported peak intensities. In liquid chromatography (LC)-MS and LC tandem MS (MS/MS) experiments performed using a proteomic sample from the bacterium, Shewanella oneidensis, the ion funnel interface provided an ~7-fold reduction in ion injection (accumulation) times. In a series of LC-MS/MS experiments we found that more dilute S. oneidensis samples provided more peptide and protein identifications when the ion funnel interface was used in place of the standard interface. This improvement was most pronounced at lower sample concentrations, where extended ion accumulation times are required, resulting in an ~2-fold increase in the number of protein identifications. Implementation of the ion funnel interface with a LTQ Fourier transform (FT) MS requiring much greater ion populations resulted in spectrum acquisition times reduced by ~25 to 50%.

  13. Improving Secondary Ion Mass Spectrometry Image Quality with Image Fusion

    NASA Astrophysics Data System (ADS)

    Tarolli, Jay G.; Jackson, Lauren M.; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure.

  14. Improving Secondary Ion Mass Spectrometry Image Quality with Image Fusion

    PubMed Central

    Tarolli, Jay G.; Jackson, Lauren M.; Winograd, Nicholas

    2014-01-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images, but also by detection sensitivity. As the probe size is reduced to below 1 µm, for example, a low signal in each pixel limits lateral resolution due to counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure. PMID:24912432

  15. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.

    PubMed

    Kozole, Joseph; Levine, Lauren A; Tomlinson-Phillips, Jill; Stairs, Jason R

    2015-08-01

    The gas phase ion chemistry for an ion mobility spectrometer (IMS) based explosive detector has been elucidated using tandem mass spectrometry. The IMS system, which is operated with hexachloroethane and isobutyramide reagent gases and an ion shutter type gating scheme, is connected to the atmospheric pressure interface of a triple quadrupole mass spectrometer (MS/MS). Product ion masses, daughter ion masses, and reduced mobility values for a collection of nitro, nitrate, and peroxide explosives measured with the IMS/MS/MS instrument are reported. The mass and mobility data together with targeted isotopic labeling experiments and information about sample composition and reaction environment are leveraged to propose molecular formulas, structures, and ionization pathways for the various product ions. The major product ions are identified as [DNT-H](-) for DNT, [TNT-H](-) for TNT, [RDX+Cl](-) and [RDX+NO2](-) for RDX, [HMX+Cl](-) and [HMX+NO2](-) for HMX, [NO3](-) for EGDN, [NG+Cl](-) and [NG+NO3](-) for NG, [PETN+Cl](-) and [PETN+NO3](-) for PETN, [HNO3+NO3](-) for NH4NO3, [NO2](-) for DMNB, [HMTD-NC3H6O3+H+Cl](-) and [HMTD+H-CH2O-H2O2](+) for HMTD, and [(CH3)3CO2](+) for TATP. In general, the product ions identified for the IMS system studied here are consistent with the product ions reported previously for an ion trap mobility spectrometer (ITMS) based explosive trace detector, which is operated with dichloromethane and ammonia reagent gases and an ion trap type gating scheme. Differences between the explosive trace detectors include the [NG+Cl](-) and [PETN+Cl](-) product ions being major ions in the IMS system compared to minor ions in the ITMS system as well as the major product ion for TATP being [(CH3)3CO2](+) for the IMS system and [(CH3)2CNH2](+) for the ITMS system.

  16. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory

    NASA Astrophysics Data System (ADS)

    Martens, Jonathan; Berden, Giel; Gebhardt, Christoph R.; Oomens, Jos

    2016-10-01

    We report on modifications made to a Paul-type quadrupole ion trap mass spectrometer and discuss its application in infrared ion spectroscopy experiments. Main modifications involve optical access to the trapped ions and hardware and software coupling to a variety of infrared laser sources at the FELIX infrared free electron laser laboratory. In comparison to previously described infrared ion spectroscopy experiments at the FELIX laboratory, we find significant improvements in efficiency and sensitivity. Effects of the trapping conditions of the ions on the IR multiple photon dissociation spectra are explored. Enhanced photo-dissociation is found at lower pressures in the ion trap. Spectra obtained under reduced pressure conditions are found to more closely mimic those obtained in the high-vacuum conditions of an Fourier transform ion cyclotron resonance mass spectrometer. A gas-mixing system is described enabling the controlled addition of a secondary gas into helium buffer gas flowing into the trap and allows for ion/molecule reactions in the trap. The electron transfer dissociation (ETD) option of the mass spectrometer allows for IR structure characterization of ETD-generated peptide dissociation products.

  17. Comparison of primary monoatomic with primary polyatomic ions for the characterisation of polyesters with static secondary ion mass spectrometry.

    PubMed

    Van Royen, Pieter; Taranu, Anca; Van Vaeck, Luc

    2005-01-01

    Static secondary ion mass spectrometry (S-SIMS) emerges as one of the most adequate methods for the surface characterisation of polymers with an information depth of essentially one monolayer. The continuing search for increased analytical sensitivity and specificity has led to exploring the use of polyatomic primary ions as an alternative to the traditionally applied monoatomic projectiles. As part of a systematic investigation on polyatomic bombardment of organic and inorganic solids, this paper focuses on selected polyesters. Mass spectra and ion yields are compared for layers deposited on silicon wafers by spincoating solutions with different concentrations of poly(epsilon-caprolactone) (PCL), poly(butylene adipate) (PBA) and poly(ethylene adipate) (PEA). Accurate mass measurements have been used to support the assignment of the ions and link the composition of the detected ions to the analyte structure. Use of polyatomic projectiles increases the yield of structural ions with a factor of +/-15, +/-30 and +/-10 for PCL, PBA and PEA, respectively, in comparison to bombardment with Ga+ primary ions, while the molecular specificity is improved by the detection of additional high m/z ions.

  18. Increased Ion Transmission for Differential Ion Mobility Combined with Mass Spectrometry by Implementation of a Flared Inlet Capillary

    NASA Astrophysics Data System (ADS)

    Campbell, Matthew T.; Glish, Gary L.

    2017-01-01

    Differential ion mobility spectrometry (DIMS) is capable of separating components of complex mixtures prior to mass spectrometric analysis, thereby increasing signal-to-noise and signal-to-background ratios on millisecond timescales. However, adding a DIMS device to the front end of a mass spectrometer can reduce the signal intensity of subsequent mass spectrometric analysis. This is a result, in part, of ions lost due to inefficient transfer of ions from the DIMS device through the aperture leading into the mass spectrometer. This problem of transferring ions can be at least partially corrected by modifying the front end of the inlet capillary leading to the vacuum of the mass spectrometer. The inner diameter of the ion-sampling end of the inlet capillary was enlarged by drilling into the face. This results in a conical flare at the front end of the capillary, while the other end of the capillary remains unmodified. These flared capillaries allow for a greater number of ions from the DIMS device to be sampled relative to the unmodified standard capillary. Four flare dimensions were tested, differing by the angle between the wall of the flare and the outer wall of the inlet capillary. All flared capillaries showed greater signal intensity than the standard capillary with a DIMS device present without reducing the resolving power. It was also observed that the signal intensity increased as the flare angle decreased. The flared capillary with the smallest flare angle showed greater than a fivefold increase in signal intensity compared with the standard capillary.

  19. Ion-Surface Collisions in Mass Spectrometry: Where Analytical Chemistry Meets Surface Science

    SciTech Connect

    Laskin, Julia

    2015-02-01

    This article presents a personal perspective regarding the development of key concepts in understanding hyperthermal collisions of polyatomic ions with surfaces as a unique tool for mass spectrometry applications. In particular, this article provides a historic overview of studies focused on understanding the phenomena underlying surface-induced dissociation (SID) and mass-selected deposition of complex ions on surfaces. Fast energy transfer in ion-surface collisions makes SID especially advantageous for structural characterization of large complex molecules, such as peptides, proteins, and protein complexes. Soft, dissociative, and reactive landing of mass-selected ions provide the basis for preparatory mass spectrometry. These techniques enable precisely controlled deposition of ions on surfaces for a variety of applications. This perspective article shows how basic concepts developed in the 1920s and 1970s have evolved to advance promising mass-spectrometry-based applications.

  20. Design and performance of an electrospray ion source for magnetic-sector mass spectrometers

    NASA Astrophysics Data System (ADS)

    Belov, Mikhail E.; Colburn, Alex W.; Derrick, Peter J.

    1998-03-01

    An electrospray ion (ESI) source capable of operating at accelerating potentials of up to 11 kV has been designed and fabricated. The ESI source has been shown to deliver ion beams with a total current up to 20 pA and an emittance of 2-3 mm mrad in analysis of the peptide gramicidin S (molecular mass 1140.7 Da) and the protein bovine insulin B chain (molecular mass 3495.9 Da). Coupled to a two-sector tandem mass spectrometer, the ESI source produced efficiently the multiply charged ions of proteins, such as bovine ubiquitin (molecular mass 8564.8 Da) and cytochrome c (molecular mass 12327 Da). The high ion currents and high kinetic energies of the electrospray ions (up to 200 keV) characterize this ESI source as a powerful tool to be used in structural analysis of macromolecules by collision-induced dissociation.

  1. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  2. The role of fiber optics in mass spectrometer electro-optical ion detection

    NASA Technical Reports Server (NTRS)

    Norris, D. D.; Giffin, C. E.

    1976-01-01

    This paper describes the development of an electro-optical ion detector combining the best features of photographic and electrical ion detection (i.e., wide mass range coverage and low ion detection threshold respectively). A nineteen fold fiber optic image dissector is discussed which reformats the 1 mm x 361 mm mass spectrometer focal plane format to a 19 mm x 19 mm format suitable for vidicon imaging and electronic display of the data.

  3. Surpassing the mass restriction of buffer gas cooling: Cooling of low mass ions by localized heavier atoms

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Sawant, Rahul; Rangwala, S. A.

    2016-05-01

    Cooling of trapped ions has resulted in fascinating science including the realization of some of the most accurate atomic clocks. It has also found widespread application, for example, in mass spectrometry and cold chemistry. Among the different methods for cooling ions, cooling by elastic collisions with ultracold neutral atoms is arguably the most generic. However, in spite of its widespread application, there is confusion with regards the collisional heating/cooling of light ions by heavier neutral atoms. We address the question experimentally and demonstrate, for the first time, cooling of light ions by co-trapped heavy atoms. We show that trapped 39 K+ ions are cooled by localized ultracold neutral 85 Rb atoms. The atom-ion mass ratio (= 2.18) is well beyond any theoretical predictions so far. We further argue that cooling of ions by localized cold atoms is possible for any mass ratio. The result opens up the possibility of reaching the elusive s-wave collision regime in atom-ion collisions. S.D. is supported by DST-INSPIRE Faculty Fellowship, India.

  4. Simultaneous hydrogen and heavier element isotopic ratio images with a scanning submicron ion probe and mass resolved polyatomic ions.

    PubMed

    Slodzian, Georges; Wu, Ting-Di; Bardin, Noémie; Duprat, Jean; Engrand, Cécile; Guerquin-Kern, Jean-Luc

    2014-04-01

    In situ microanalysis of solid samples is often performed using secondary ion mass spectrometry (SIMS) with a submicron ion probe. The destructive nature of the method makes it mandatory to prevent information loss by using instruments combining efficient collection of secondary ions and a mass spectrometer with parallel detection capabilities. The NanoSIMS meets those requirements with a magnetic spectrometer but its mass selectivity has to be improved for accessing opportunities expected from polyatomic secondary ions. We show here that it is possible to perform D/H ratio measurement images using 12CD-/12CH-, 16OD-/16OH-, or 12C2D-/12C2H- ratios. These polyatomic species allow simultaneous recording of D/H ratios and isotopic compositions of heavier elements like 15N/14N (via 12C15N-/12C14N-) and they provide a powerful tool to select the phase of interest (e.g., mineral versus organics). We present high mass resolution spectra and an example of isotopic imaging where D/H ratios were obtained via the 12C2D-/12C2H- ratio with 12C2D- free from neighboring mass interferences. Using an advanced mass resolution protocol, a "conventional" mass resolving power of 25,000 can be achieved. Those results open many perspectives for isotopic imaging at a fine scale in biology, material science, geochemistry, and cosmochemistry.

  5. Effect of ion and ion-beam mass ratio on the formation of ion-acoustic solitons in magnetized plasma in the presence of electron inertia

    SciTech Connect

    Kalita, B. C.; Barman, S. N.

    2009-05-15

    The propagation of ion-acoustic solitary waves in magnetized plasma with cold ions and ion-beams together with electron inertia has been investigated theoretically through the Korteweg-de Vries equation. Subject to the drift velocity of the ion beam, the existence of compressive solitons is found to become extinct as {alpha} (=cold ion mass/ion-beam mass) tends to 0.01 when {gamma}=0.985 ({gamma} is the beam velocity/phase velocity). Interestingly, a transitional direction of propagation of solitary waves has been unearthed for change over, from compressive solitons to rarefactive solitons based on {alpha} and {sigma}{sub {upsilon}}(=cosine of the angle {theta} made by the wave propagation direction {xi} with the direction of the magnetic field) for fixed Q(=electron mass/ion mass). Further, the direction of propagation of ion-acoustic waves is found to be the deterministic factor to admit compressive or rarefactive solitons subject to beam outsource.

  6. Optimized precursor ion selection for labile ions in a linear ion trap mass spectrometer and its impact on quantification using selected reaction monitoring.

    PubMed

    Lee, Hyun-Seok; Shin, Kyong-Oh; Jo, Sung-Chan; Lee, Yong-Moon; Yim, Yong-Hyeon

    2014-12-01

    The fragmentation of fragile ions during the application of an isolation waveform for precursor ion selection and the resulting loss of isolated ion intensity is well-known in ion trap mass spectrometry (ITMS). To obtain adequate ion intensity in the selected reaction monitoring (SRM) of fragile precursor ions, a wider ion isolation width is required. However, the increased isolation width significantly diminishes the selectivity of the channels chosen for SRM, which is a serious problem for samples with complex matrices. The sensitive and selective quantification of many lipid molecules, including ceramides from real biological samples, using a linear ion trap mass spectrometer is also hindered by the same problem because of the ease of water loss from protonated ceramide ions. In this study, a method for the reliable quantification of ceramides using SRM with near unity precursor ion isolation has been developed for ITMS by utilizing alternative precursor ions generated by in-source dissociation. The selected precursor ions allow the isolation of ions with unit mass width and the selective analysis of ceramides using SRM with negligible loss of sensitivity. The quantification of C18:0-, C24:0- and C24:1-ceramides using the present method shows excellent linearity over the concentration ranges from 6 to 100, 25 to 1000 and 25 to 1000 nM, respectively. The limits of detection of C18:0-, C24:0- and C24:1-ceramides were 0.25, 0.25 and 5 fmol, respectively. The developed method was successfully applied to quantify ceramides in fetal bovine serum.

  7. Liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometric characterization of protein kinase C phosphorylation.

    PubMed

    Chalmers, Michael J; Quinn, John P; Blakney, Greg T; Emmett, Mark R; Mischak, Harold; Gaskell, Simon J; Marshall, Alan G

    2003-01-01

    A vented column, capillary liquid chromatography (LC) microelectrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR (9.4 T)) mass spectrometry (MS) approach to phosphopeptide identification is described. A dual-ESI source capable of rapid (approximately 200 ms) switching between two independently controlled ESI emitters was constructed. The dual-ESI source, combined with external ion accumulation in a linear octopole ion trap, allowed for internal calibration of every mass spectrum during LC. LC ESI FT-ICR positive-ion MS of protein kinase C (PKC) revealed four previously unidentified phosphorylated peptides (one within PKC(alpha), one within PKC(delta), and two within PKC(zeta)). Internal calibration improved the mass accuracy for LC MS spectra from an absolute mean (47 peptide ions) of 11.5 ppm to 1.5 ppm. Five additional (out of eight known) activating sites of PKC phosphorylation, not detected in positive-ion experiments, were observed by subsequent negative-ion direct infusion nanoelectrospray. Extension of the method to enable infrared multiphoton dissociation of all ions in the ICR cell prior to every other mass measurement revealed the diagnostic neutral loss of H3PO4 from phosphorylated peptide ions. The combination of accurate-mass MS and MS/MS offers a powerful new tool for identifying the presence and site(s) of phosphorylation in peptides, without the need for additional wet chemical derivatization.

  8. Titan's Topside Ionospheric Composition: Cassini Plasma Spectrometer Ion Mass Spectrometer Measurements

    NASA Astrophysics Data System (ADS)

    Sittler, Edward; Hartle, Richard; Ali, Ashraf; Cooper, John; Lipatov, Alexander; Simpson, David; Sarantos, Menelaos; Chornay, Dennis; Smith, Todd

    2017-01-01

    We present ion composition measurements of Titan's topside ionosphere using both T9 and T15 Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) measurements. The IMS is able to make measurements of Titan's ionosphere due to ionospheric outflows as originally reported for the T9 flyby. This allows one to take advantage of the unique capabilities of the CAPS IMS which measures both the mass-per-charge (M/Q) of the ions and the fragments of the ions produced inside the sensor such as carbon, nitrogen and oxygen fragments. Specific attention will be given to such ions as NH4 +, N +, O +, CH4 +, CxHy +, and HCNH + ions as examples. The CAPS IMS uses a time-of-flight (TOF) technique which accelerates ions up to 14.6 kV, so they can pass through ultra-thin carbon foils. Neutral fragments are used to measure the ion M/Q and positive fragments to measure the atomic components. We preliminarily find, by using IMS measurements of T9 and T15 ionospheric outflows, evidence for methane group ions, nitrogen ions, ammonium ions, water group ions and CnHm + ions with n = 2, 3, and 4 within Titan's topside ionosphere. E.C. Sittler acknowledges support at Goddard Space Flight Center by the CAPS Cassini Project from JPL funds under contract # NAS703001TONMO711123/1405851.

  9. High precision electric gate for time-of-flight ion mass spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  10. Study of surface reactions in plasma etching using mass-analyzed ion beams

    NASA Astrophysics Data System (ADS)

    Karahashi, Kazuhiro

    2001-10-01

    We have constructed a new mass-analyzed low-energy ion beam etching apparatus (MALIEA) for investigate desorption products from silicon or silicon dioxide surfaces during CFx+ (x=1-3) ion bombardments. In this paper, we describe this newly developed ion beam apparatus, and results of CF3+ ion bombardment experiments. The apparatus consists of an ion beam source, an ultra high vacuum (UHV) process chamber, and a detector chamber. As there are three differentially pumping stages between the source and process chamber, the process chamber was maintained at UHV condition during all experiments. Therefore, experiments were not affected by contaminations form the ion source. Pure ion beams such as F+, CF+, CF2+ and CF3+, were obtained with good mass resolutions by a 90\\x81‹ mass-selecting electromagnet. The sample is mounted on a manipulator, located at the foci of a hemispherical energy analyzer and x-ray sources to allow chemical analysis of irradiated surfaces. The desorption products and scattered ions were detected by a rotatable differentially pumped quadrupole mass spectrometer (QMS). In experiments of CF3+ irradiation on silicon dioxide surface\\x81@at 1000eV, etching rate was about 1.1 atoms/ion, and silicon flourides for etching products were detected by QMS. Therefore, it is possible to investigate the interaction between silicon or silicon dioxide surfaces and low-energy CFx+(x=1-3) ions with a well-defined energy. This work was supported by NEDO.

  11. Characterization of a Distributed Plasma Ionization Source (DPIS) for Ion Mobility Spectrometry and Mass Spectrometry

    SciTech Connect

    Waltman, Melanie J.; Dwivedi, Prabha; Hill, Herbert; Blanchard, William C.; Ewing, Robert G.

    2008-10-15

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry and ion mobility spectrometry. The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions depending on the polarity of the applied potential. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3-, NO3-, NO2-, O3- and O2- of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and environmental pollutants were selected to evaluate the new ionization source. The source was operated continuously for several months and although deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions. The results indicated that the DPIS may have a longer operating life than a conventional corona discharge.

  12. Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry.

    PubMed

    Waltman, Melanie J; Dwivedi, Prabha; Hill, Herbert H; Blanchard, William C; Ewing, Robert G

    2008-10-19

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H(2)O)(n)H(+) with (H(2)O)(2)H(+) as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO(3)(-), NO(3)(-), NO(2)(-), O(3)(-) and O(2)(-) of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions.

  13. Electron capture dissociation in a digital ion trap mass spectrometer.

    PubMed

    Ding, Li; Brancia, Francesco L

    2006-03-15

    Electron capture dissociation was implemented in a digital ion trap without using any magnetic field to focus the electrons. Since rectangular waveforms are employed in the DIT for both trapping and dipole excitation, electrons can be injected into the trap when the electric field is constant. Following deceleration, electrons reach the precursor ion cloud. The fragment ions produced by interactions with the electron beam are subsequently analyzed by resonant ejection. [Glu(1)]-Fibrinopeptide B and substance P were used to evaluate the performance of the current design. Fragmentation efficiency of 5.5% was observed for substance P peptide ions. Additionally, analysis of the monophosphorylated peptide FQ[pS]EEQQQTEDELQDK shows that in the resulting c- and z-type ions, the phosphate group is retained on the phophoserine residue, providing information on which amino acid residue the modification is located.

  14. Ion trap mass spectrometry in the structural analysis of haemoglobin peptides modified by epichlorohydrin and diepoxybutane.

    PubMed

    Miraglia, Nadia; Basile, Adriana; Pieri, Maria; Acampora, Antonio; Malorni, Livia; De Giulio, Beatrice; Sannolo, Nicola

    2002-01-01

    Ion trap mass spectrometry has been shown to be particularly suitable for the structural analysis of high molecular weight peptides directly fragmented in the mass analyser without needing further sub-digestion reactions. Here we report the advantages of using multi-stage ion trap mass spectrometry in the structural characterisation of haemoglobin alkylated with epichlorohydrin and diepoxybutane. Alkylated globins were digested with trypsin and the peptide mixtures were analysed by MS(3). This technique allows the sequential fragmentation of peptides under analysis, giving rise to MS(3) product ion spectra with additional information with respect to MS(2) mass spectra. The results obtained complete the previously reported structural characterisation of alkylated haemoglobin, demonstrating the potential of ion trap mass spectrometry.

  15. A compact time-of-flight mass spectrometer for ion source characterization

    SciTech Connect

    Chen, L. Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-03-15

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters.

  16. Highly sensitive solids mass spectrometer uses inert-gas ion source

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Mass spectrometer provides a recorded analysis of solid material surfaces and bulk. A beam of high-energy inert-gas ions bombards the surface atoms of a sample and converts a percentage into an ionized vapor. The mass spectrum analyzer separates the vapor ionic constituents by mass-to-charge ratio.

  17. Spontaneous Mass and Charge Losses from Single Multi-Megadalton Ions Studied by Charge Detection Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Keifer, David Z.; Alexander, Andrew W.; Jarrold, Martin F.

    2017-01-01

    Spontaneous mass and charge losses from individual multi-megadalton ions have been observed with charge detection mass spectrometry (CDMS) by trapping single hepatitis B virus (HBV) capsids for 3 s. Gradual increases in the oscillation frequency of single ions in the ion trap are attributed mainly to mass loss (probably solvent, water, and/or salt). The total mass lost during the 3 s trapping period peaks at around 20 kDa for 4 MDa HBV T = 4 capsids. Discrete frequency drops punctuate the gradual increases in the oscillation frequencies. The drops are attributed to a sudden loss of charge. In most cases a single positive charge is lost along with some mass (on average around 1000 Da). Charge loss occurs for over 40% of the trapped ions. It usually occurs near the beginning of the trapping event, and it occurs preferentially in regions of the trap with strong electric fields, indicating that external electric fields promote charge loss. This process may contribute to the decrease in m/z resolution that often occurs with megadalton ions.

  18. Spontaneous Mass and Charge Losses from Single Multi-Megadalton Ions Studied by Charge Detection Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Keifer, David Z.; Alexander, Andrew W.; Jarrold, Martin F.

    2017-03-01

    Spontaneous mass and charge losses from individual multi-megadalton ions have been observed with charge detection mass spectrometry (CDMS) by trapping single hepatitis B virus (HBV) capsids for 3 s. Gradual increases in the oscillation frequency of single ions in the ion trap are attributed mainly to mass loss (probably solvent, water, and/or salt). The total mass lost during the 3 s trapping period peaks at around 20 kDa for 4 MDa HBV T = 4 capsids. Discrete frequency drops punctuate the gradual increases in the oscillation frequencies. The drops are attributed to a sudden loss of charge. In most cases a single positive charge is lost along with some mass (on average around 1000 Da). Charge loss occurs for over 40% of the trapped ions. It usually occurs near the beginning of the trapping event, and it occurs preferentially in regions of the trap with strong electric fields, indicating that external electric fields promote charge loss. This process may contribute to the decrease in m/ z resolution that often occurs with megadalton ions.

  19. Decomposition of cyclohexane ion induced by intense femtosecond laser fields by ion-trap time-of-flight mass spectrometry

    SciTech Connect

    Yamazaki, Takao; Watanabe, Yusuke; Kanya, Reika; Yamanouchi, Kaoru

    2016-01-14

    Decomposition of cyclohexane cations induced by intense femtosecond laser fields at the wavelength of 800 nm is investigated by ion-trap time-of-flight mass spectrometry in which cyclohexane cations C{sub 6}H{sub 12}{sup +} stored in an ion trap are irradiated with intense femtosecond laser pulses and the generated fragment ions are recorded by time-of-flight mass spectrometry. The various fragment ion species, C{sub 5}H{sub n}{sup +} (n = 7, 9), C{sub 4}H{sub n}{sup +} (n = 5–8), C{sub 3}H{sub n}{sup +} (n = 3–7), C{sub 2}H{sub n}{sup +} (n = 2–6), and CH{sub 3}{sup +}, identified in the mass spectra show that decomposition of C{sub 6}H{sub 12}{sup +} proceeds efficiently by the photo-irradiation. From the laser intensity dependences of the yields of the fragment ion species, the numbers of photons required for producing the respective fragment ions are estimated.

  20. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

    1987-01-01

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

  1. Dual electrospray ion source for electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer.

    PubMed

    Williams, D Keith; McAlister, Graeme C; Good, David M; Coon, Joshua J; Muddiman, David C

    2007-10-15

    A dual electrospray ionization source (ESI) has been modified to simultaneously produce cations and anions, one from each emitter, for performing rapid electron-transfer dissociation (ETD) ion/ion reactions on a hybrid linear ion trap-orbitrap mass spectrometer. Unlike the pulsed dual ESI sources that were used to generate ETD reagent ions, this source separates the emitters in space, rather than time, by physically switching which one is in front of the atmospheric inlet. The new arrangement allows for substantially enhanced spray stability and decreased switching times (ions from multiply protonated peptide cations.

  2. Passive and active fragment ion mass defect labeling: distinct proteomics potential of iodine-based reagents.

    PubMed

    Shi, Yu; Bajrami, Bekim; Yao, Xudong

    2009-08-01

    The exact mass of a peptide differs characteristically from its nominal mass by a value called the mass defect. Limited by possible elemental compositions, the mass defect of peptides has a restricted range, resulting in an unoccupied mass spectral space in every mass-to-charge unit. The method of fragment ion mass defect labeling (FIMDL) places characteristic fragment ions of modified peptides as reporters into unused spectral space where no native peptide fragment ions exist. In this labeling method, peptides are chemically modified in solution and the modified peptides, upon gas-phase collision in a mass spectrometer, generate fragment ions with significantly shifted mass defects. In this work, the efficiency of iodine stable isotope-containing reagents for shifting mass defects of peptide fragment ions was systematically investigated, through derivatization of peptide N-termini with various reagents containing one or more chlorine, bromine, or iodine atoms. The observed efficiency for the iodine atom placing the labeled fragment ions into unoccupied spectral space agreed well with theoretical predictions from averagine-scaling analysis of ion masses. On the basis of the gas-phase stability of different labeling groups and their involvement in collisional dissociation of modified peptides, peptide modifications were classified into three categories: passive, type I active, and type II active. Each modification type has its unique potential in different proteome analyses. Possible proteomics applications of FIMDL are discussed and compared with proteome analyses currently being practiced in the field. Principles obtained from this survey study will provide a guideline in developing novel FIMDL reagents for advanced proteomics analysis.

  3. Composition measurements of the topside ionosphere using a magnetic mass spectrometer, ion mass spectrometer on ISIS-2 spacecraft

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    The ion mass spectrometer (IMS) on the ISIS-II satellite is described; it measures the composition and distribution of positive ions in the earth's ionosphere in the mass range of 1 to 64 atomic mass units. Significant data were received which show a wide variation in ion composition at night near the equator and in the daytime poleward of the plasmapause. It was found that these data enable further study of the polar wind and that the experiment produced timely data during the August, 1972 magnetic storm to show the development of a unique ionosphere above the plasmapause during the period of the storm. The scientific objectives and results of the experiment, the technical description of the instrument, a bibliography with sample papers attached, and a summary of recommendations for further study are presented.

  4. Comet encke: meteor metallic ion identification by mass spectrometer.

    PubMed

    Goldberg, R A; Aikin, A C

    1973-04-20

    Metal ions including 23(+) (Na(+)), 24(+) (Mg(+)) 28(+) (Si(+)), 39(+) (K(+)), 40(+) (Ca(+)), 45(+) (Sc(+)), 52(+) Cr(+)). 56(+) (Fe(+)), and 58(+) (Ni(+)) have been detected in the upper atmosphere during the period of the Beta Taurids meteor shower. The abundances of these ions relative to Si(+) show, agreement in most instances with abundances in chondrites. A notable exception is 45(+), which, if it is Sc(+), is 100 times more abundant than neutral scandium found in chondrites.

  5. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1972-01-01

    Metal ions including Na-40(+), Mg-24(+), Si-28(+), K-39(+), Ca-40(+), Sc-45(+), Cr-52(+), Fe-56(+), and Ni-58(+) were detected in the upper atmosphere during the beta Taurids meteor shower. Abundances of these ions relative to Si(+) show agreement in most instances with chondrites. A notable exception is 45(+), which is Sc(+), is 100 times more abundant than neutral scandium found in chondrites.

  6. Advanced Ion Mass Spectrometer for Giant Planet Ionosphere, Magnetospheres and Moons

    NASA Astrophysics Data System (ADS)

    Sittler, Edward; Cooper, John; Paschalidis, Nick; Jones, Sarah; Brinkerhoff, William; Paterson, William; Ali, Ashraf; Coplan, Michael; Chornay, Dennis; Sturner, Steve; Benna, Mehdi; Bateman, Fred; Fontaine, Dominique; Verdeil, Christophe; Andre, Nicolas; Blanc, Michel; Wurz, Peter

    2017-01-01

    We present our Advanced Ion Mass Spectrometer (AIMS) for outer planet missions which has been under development from various NASA sources (NASA Living with a Star Instrument Development (LWSID), NASA Astrobiology Instrument Development (ASTID), NASA Goddard Internal Research and Development (IRAD)s) to measure elemental, isotopic, and simple molecular composition abundances of 1 V to 25 kV hot ions with wide field-of-view (FOV) in the 1 - 60 amu mass range at mass resolution M/ ΔM <= 60 over a wide dynamic range of particle intensities and penetrating radiation background from the inner magnetospheres of Jupiter and Saturn to the outer magnetospheric boundary regions and the upstream solar wind. This instrument will work for both spinning spacecraft and 3-axis stabilized spacecraft. AIMS will measure the ion velocity distribution functions (VDF) for the individual ion species from which velocity moments will give their ion density, flow velocity and temperature.

  7. Flowing gas in mass spectrometer: method for characterization and impact on ion processing.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2014-10-21

    Mass spectrometers are complex instrumentation systems where ions are transferred though different pressure regions and mass-analyzed under high vacuum. In this work, we have investigated the impact of the gas flows that exit almost universally in all pressure regions. We developed a method that incorporates the dynamic gas field with the electric field in the simulation of ion trajectories. The scope of the electro-hydrodynamic simulation (EHS) method was demonstrated for characterizing the ion optical systems at atmospheric pressure interfaces. With experimental validation, the trapping of the externally injected ions in a linear ion trap at low pressure was also studied. Further development of the EHS method and the knowledge acquired in this research are expected to be useful in the design of hybrid instruments and the study of ion energetics.

  8. Fragmentation of multiply-charged intact protein ions using MALDI TOF-TOF mass spectrometry.

    PubMed

    Liu, Zhaoyang; Schey, Kevin L

    2008-02-01

    Top down proteomics in a TOF-TOF instrument was further explored by examining the fragmentation of multiply charged precursors ions generated by matrix-assisted laser desorption ionization. Evaluation of sample preparation conditions allowed selection of solvent/matrix conditions and sample deposition methods to produce sufficiently abundant doubly and triply charged precursor ions for subsequent CID experiments. As previously reported, preferential cleavage was observed at sites C-terminal to acidic residues and N-terminal to proline residues for all ions examined. An increase in nonpreferential fragmentation as well as additional low mass product ions was observed in the spectra from multiply charged precursor ions providing increased sequence coverage. This enhanced fragmentation from multiply charged precursor ions became increasingly important with increasing protein molecular weight and facilitates protein identification using database searching algorithms. The useable mass range for MALDI TOF-TOF analysis of intact proteins has been expanded to 18.2 kDa using this approach.

  9. Development and Evaluation of a Variable-Temperature Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Derkits, David; Wiseman, Alex; Snead, Russell F.; Dows, Martina; Harge, Jasmine; Lamp, Jared A.; Gronert, Scott

    2016-02-01

    A new, variable-temperature mass spectrometer system is described. By applying polyimide heating tape to the end-cap electrodes of a Bruker (Bremen, Germany) Esquire ion trap, it is possible to vary the effective temperature of the system between 40 and 100°C. The modification does not impact the operation of the ion trap and the heater can be used for extended periods without degradation of the system. The accuracy of the ion trap temperatures was assessed by examining two gas-phase equilibrium processes with known thermochemistry. In each case, the variable-temperature ion trap provided data that were in good accord with literature data, indicating the effective temperature in the ion trap environment was being successfully modulated by the changes in the set-point temperatures on the end-cap electrodes. The new design offers a convenient and effective way to convert commercial ion trap mass spectrometers into variable-temperature instruments.

  10. New high-resolution electrostatic ion mass analyzer using time of flight

    NASA Technical Reports Server (NTRS)

    Hamilton, D. C.; Gloeckler, G.; Ipavich, F. M.; Lundgren, R. A.; Sheldon, R. B.

    1990-01-01

    The design of a high-resolution ion-mass analyzer is described, which is based on an accurate measurement of the time of flight (TOF) of ions within a region configured to produce a harmonic potential. In this device, the TOF, which is independent of ion energy, is determined from a start pulse from secondary electrons produced when the ion passes through a thin carbon foil at the entrance of the TOF region and at a stop pulse from the ion striking a microchannel plate upon exciting the region. A laboratory prototype instrument called 'VMASS' was built and was tested at the Goddard Space Flight Center electrostatic accelerator, showing a good mass resolution of the instrument. Sensors of the VMASS type will form part of the WIND Solar Wind and Suprathermal Ion experiment, the Soho mission, and the Advanced Composition Explorer.

  11. Flowing Gas in Mass Spectrometer: Method for Characterization and Impact on Ion Processing

    PubMed Central

    Zhou, Xiaoyu; Ouyang, Zheng

    2014-01-01

    Mass spectrometers are complex instrumentation systems with ions transferred though different pressure regions and mass analyzed at high vacuum. In this work, we have investigated the impacts of the gas flows that exit almost universally in all pressure regions and developed a method incorporating the dynamic gas field with the electric (E) field in the simulation of ion trajectories. The capability of the electro-hydrodynamic simulation (EHS) method was demonstrated for characterizing the ion optical systems in atmospheric pressure interfaces. With experimental validation, the trapping of the externally-injected ions in a linear ion trap at low pressure has also been studied. Further development of the EHS method and the knowledge acquired in this research are expected to be useful in the design of hybrid instruments and study of ion energetics. PMID:25121805

  12. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Pulliam, Christopher J.; Wiley, Joshua S.; Duncan, Jason; Cooks, R. Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection.

  13. A Plasmaspheric Mass Density Model and Constraints on its Heavy Ion Concentration

    NASA Technical Reports Server (NTRS)

    Berube, D.; Moldwin, M. B.; Green, J. L.

    2004-01-01

    The first empirical model of the equatorial mass density of the plasmasphere is constructed using ground-based ULF wave diagnostics. Plasmaspheric mass density between L=l.7 and L=3.2 has been determined using over 5200 hours of data from pairs of stations in the MEASURE array of ground magnetometers. The least-squares fit to the data as a function of L shows that mass density falls logarithmically with L. Average ion mass as a function of L is also estimated by combining the mass density model with plasmaspheric electron density profiles determined from the IMAGE Radio Plasma Imager (RPI). Additionally, we use the RPI electron density database to examine how the average ion mass changes under different levels of geomagnetic activity. We find that average ion mass is greatest under the most disturbed conditions. This result indicates that heavy ion concentrations are enhanced during large geomagnetic disturbances, and therefore play an important role in storm-time plasmaspheric dynamics. The average ion mass is also used to constrain the concentrations of He(+) and O(+). Estimates of the He(+) concentration determined this way can be useful for interpreting IMAGE Extreme Ultraviolet Imager (EUV) images.

  14. Implementation of electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer.

    PubMed

    McAlister, Graeme C; Phanstiel, Doug; Good, David M; Berggren, W Travis; Coon, Joshua J

    2007-05-15

    We describe the adaptation of a hybrid quadrupole linear ion trap-orbitrap mass spectrometer to accommodate electron-transfer ion/ion reactions (ETD) for peptide and protein characterization. The method utilizes pulsed, dual electrospray ion sources and requires minimal instrument modification. Switching between cation and reagent anion injection schemes is automated and accomplished within a few hundred milliseconds. Ion/ion reactions are conducted within the linear ion trap, after which the c- and z-type product ions are passed to the orbitrap for high-resolution m/z analysis. With this arrangement, mass accuracies are typically measured to within 2 ppm at a resolving power of approximately 60 000. Using large peptides and intact proteins, we demonstrate such capabilities will accelerate our ability to interrogate high-mass species. To illustrate compatibility with automated data-dependent analysis and subsequent data processing, we couple the technique with an online chromatographic separation of a yeast whole-cell lysate followed by peptide identification using ProSight PC. Fairly long pulsing times and relatively low ET efficiency, as compared to conventional ETD instrumentation, are the main drawbacks of this approach. Still, our results suggest that the implementation of ETD on sensitive, high-resolution, and high-mass accuracy hybrid instrumentation, such as the orbitrap, will substantially propel the emergent fields of middle- and top-down proteomics.

  15. A 3T external source quadrupole Fourier transform mass spectrometer for ion/molecule reactions and analysis

    NASA Astrophysics Data System (ADS)

    McCullough, Sési M.; Gard, Eric; Lebrilla, Carlito B.

    1991-06-01

    A versatile quadrupole Fourier transform mass spectrometry instrument for both ion/molecule chemistry and analysis is described. Preliminary results show that despite the relatively low field (3T), a large mass range (up to m/z 16 000) and high resolution (41 000 FWHH at m/z 1692) are obtained. Metal ions (e.g. Fe+) for ion/molecule chemistry and organic ions (e.g. maltose) for analysis are routinely produced via secondary ion mass spectrometry (and liquid secondary ion mass spectrometry) in the external source.

  16. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    SciTech Connect

    Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko; Popović Hadžija, Marijana; Hadžija, Mirko

    2015-08-31

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.

  17. Utility of Higher Harmonics in Electrospray Ionization Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometry.

    PubMed

    Dziekonski, Eric T; Johnson, Joshua T; McLuckey, Scott A

    2017-03-30

    Mass resolution (M/ΔM fwhm) is observed to linearly increase with harmonic order in a Fourier transform electrostatic linear ion trap (ELIT) mass spectrometer. This behavior was predicted by Grosshans and Marshall for frequency-multiple detection in a Fourier transform ion cyclotron resonance mass spectrometer only for situations when the prominent mechanism for signal decay is ion ejection from the trap. As the analyzer pressure in our ELIT chamber is relatively high, such that collisional scattering and collision-induced dissociation are expected to underlie much of the ion loss, we sought to explore the relationship between harmonic order and mass resolution. Mass resolutions of 36 900 (fundamental), 75 850 (2nd harmonic), and 108 200 (3rd harmonic) were obtained for GdO(+) (avg. m/z 173.919) with a transient length of 300 ms. To demonstrate that the mass resolution was truly increasing with harmonic order, the unresolved isotopes at the fundamental distribution of cytochrome c(+8) (m/z ∼ 1549) were nearly baseline, resolved at the third harmonic (mass resolution ≈ 23 000) with a transient length of only 200 ms. This experiment demonstrates that, when the ion density is sufficiently low, ions with frequency differences of less than 4 Hz remain uncoalesced. Higher harmonics can be used to increase the effective mass resolution for a fixed transient length and thereby may enable the resolution of closely spaced masses, determination of a protein ion's charge state, and study of the onset of peak coalescence when the resolution at the fundamental frequency is insufficient.

  18. A microcantilever-based silver ion sensor using DNA-functionalized gold nanoparticles as mass amplifier.

    PubMed

    You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo

    2017-04-13

    Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been researched over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine-based DNA and gold nanoparticle as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a 'MAIS' (Mass Amplifier Ion Sensor), with the simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions for the environment.

  19. Secondary ion counting for surface-sensitive chemical analysis of organic compounds using time-of-flight secondary ion mass spectroscopy with cluster ion impact ionization

    SciTech Connect

    Hirata, K.; Saitoh, Y.; Chiba, A.; Yamada, K.; Takahashi, Y.; Narumi, K.

    2011-03-15

    We report suitable secondary ion (SI) counting for surface-sensitive chemical analysis of organic compounds using time-of-flight (TOF) SI mass spectroscopy, based on considerably higher emission yields of SIs induced by cluster ion impact ionization. A SI counting system for a TOF SI mass spectrometer was developed using a fast digital storage oscilloscope, which allows us to perform various types of analysis as all the signal pulses constituting TOF SI mass spectra can be recorded digitally in the system. Effects of the SI counting strategy on SI mass spectra were investigated for C{sub 8} and C{sub 60} cluster ion impacts on an organically contaminated silicon wafer and on polytetrafluoroethylene targets by comparing TOF SI mass spectra obtained from the same recorded signals with different SI counting procedures. Our results show that the use of a counting system, which can cope with high SI yields, is necessary for quantitative analysis of SI mass spectra obtained under high SI yield per impact conditions, including the case of cluster ion impacts on organic compounds.

  20. Collision-induced dissociation of glycero phospholipids using electrospray ion-trap mass spectrometry.

    PubMed

    Larsen, A; Uran, S; Jacobsen, P B; Skotland, T

    2001-01-01

    Characterisation of phospholipids was achieved using collision-induced dissociation (CID) with an ion-trap mass spectrometer. The product ions were compared with those obtained with a triple quadrupole mass spectrometer. In the negative ion mode the product ions were mainly sn-1 and sn-2 lyso-phospholipids with neutral loss of ketene in combination with neutral loss of the polar head group. Less abundant product ions were sn-1 and sn-2 carboxylate anions. CID using a triple quadrupole mass spectrometer, however, gave primarily the sn-1 and sn-2 carboxylate anions together with lyso-phosphatidic acid with neutral loss of water. For the ion trap a charge-remote-type mechanism is proposed for formation of the lyso-phospholipid product ions by loss of alpha-hydrogen on the fatty acid moiety, electron rearrangement and neutral loss of ketene. A second mechanism involves nucleophilic attack of the phosphate oxygen on the sn-1 and sn-2 glycerol backbone to form carboxylate anions with neutral loss of cyclo lyso-phospholipids. CID (MS(3) and MS(4)) of the lyso-phospholipids using the ion-trap gave the same carboxylate anions as those obtained with a triple quadrupole instrument where multiple collisions in the collision cell are expected to occur. The data demonstrate that phospholipid species determination can be performed by using LC/MS(n) with an ion-trap mass spectrometer with detection of the lyso-phospholipid anions. The ion-trap showed no loss in sensitivity in full scan MS(n) compared to multiple reaction monitoring data acquisition. In combination with on-line liquid chromatography this feature makes the ion-trap useful in the scanning modes for rapid screening of low concentrations of phospholipid species in biological samples as recently described (Uran S, Larsen A, Jacobsen PB, Skotland T. J. Chromatogr. B 2001; 758: 265).

  1. Complete structural characterization of ceramides as [M-H](-) ions by multiple-stage linear ion trap mass spectrometry.

    PubMed

    Hsu, Fong-Fu

    2016-11-01

    Ceramide is a huge lipid family consisting of diversified structures including various modifications in the fatty acyl chain and the long chain base (LCB). In this contribution, negative-ion ESI linear ion-trap multiple-stage mass spectrometric method (LIT MS(n)) towards complete structural determination of ceramides in ten major families characterized as the [M-H](-) ions is described. Multiple sets of fragment ions reflecting the fatty acyl chain and LCB were observed in the CID MS(2) spectrum, while the sequential MS(3) and MS(4) spectra contain structural information for locating the double bond and the functional groups, permitting realization of the fragmentation processes. Thereby, differentiation of ceramide molecules varied by chain length, the LCB (sphingosine, phytosphigosine, 6-hydroxy-sphingosine), and by the modification (α-hydroxy-, β-hydroxy-, ω-hydroxy-FA) can be achieved; and many isomeric structures in the biological specimen can be revealed in detail.

  2. Resonant laser ablation ion trap mass spectrometry -- Recent applications for chemical analysis

    SciTech Connect

    Gill, C.G.; Garrett, A.W.; Hemberger, P.H.; Nogar, N.S.

    1995-12-31

    Resonant Laser Ablation (RLA) is a useful ionization process for selectively producing gas phase ions from a solid sample. Recent use of RLA for mass spectrometry by this group and by others has produced a wealth of knowledge and useful analytical techniques. The method relies upon the focusing of modest intensity laser pulses ({le} 10{sup 7} W {center_dot} Cm{sup {minus}2}) upon a sample surface. A small quantity of material is vaporized, and atoms of desired analyte are subsequently ionized by (n + m) photon processes in the gas phase (where n = number of photons to a resonant transition and m = number of photons to exceed the ionization limit). The authors have been using (2 + 1) resonant ionization schemes for this work. Quadrupole ion trap mass spectrometry is realizing a very prominent role in current mass spectrometric research. Ion traps are versatile, powerful and extremely sensitive mass spectrometers, capable of a variety of ionization modes, MS{sup n} type experiments, high mass ranges and high resolution, all for a fraction of the cost of other instrumentation with similar capabilities. Quadrupole ion traps are ideally suited to pulsed ionization sources such as laser ionization methods, since their normal operational method (Mass Selective Instability) relies upon the storage of ions from a finite ionization period followed by ejection and detection of these ions based upon their mass to charge ratios. The paper describes selective ionization for trace atomic analysis, selective reagent ion source for ion chemistry investigations, and the analysis of ``difficult`` environmental contaminants, i.e., TBP.

  3. A novel aircraft-based tandem mass spectrometer for atmospheric ion and trace gas measurements

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Reiner, Th.; Arnold, F.

    1993-05-01

    The general design and operation of a novel aircraft-based triple-quadrupole mass spectrometer (TQMS) developed for the improved detection and collisional analysis of atmospheric ions and trace gases are described. The instrument is also suitable for laboratory collision-induced dissociation measurements, studies of ion-molecule reactions, and analytical applications. Highly sensitive and selective trace gas detection by chemical ionization mass spectrometry is also possible using a novel ion injection technique. Result of aircraft-based measurements made with the TQMS are summarized.

  4. Polyatomic ion/surface collisions: new methodology in tandem mass spectrometry

    SciTech Connect

    Mabud, M.A.

    1987-01-01

    The excitation of a gas phase ion to induce fragmentation is an important aspect of tandem mass spectrometry. Investigations have been made by using metal surfaces as collision partners to activate polyatomic ions by using ions of 20-150 eV kinetic energy. Among the phenomena investigated are dissociation of the polyatomic ions upon collision with metal surfaces. The extent of dissociation can be controlled by selection of the impact energy. Collision with a surface gives rise to a narrower range of internal energies than do the corresponding ion/gaseous target collisions. Very large amounts of energy can be deposited in polyatomic ions upon collision with a metal target. Even at modest laboratory kinetic energies, the average internal energy deposited in ion/surface collisions exceeds that in gaseous collisions. Charge-exchange of multiply-charged species at the surface also occurs. Although simple charge exchange is observed, dissociative charge exchange is dominant in the cases studied. Dissociation and charge exchange of polyatomic ions in ion/surface collision are also accompanied by reactive collisions between organic ions and gas-covered metal surfaces. Utility of polyatomic ion/surface interaction technique for isomeric ion characterization has also been investigated. The ion/surface interaction technique appears to have excellent ability to distinguish isomeric ions. One advantage of SID is isomeric ion characterization lies in the fact that reactive collisions occur simultaneously and add a new dimension of information to the daughter spectra recorded. The hydrogen and methyl radical abstraction reactions assist in distinguishing closely related isomeric ions.

  5. Ion mobility-mass spectrometry of phosphorylase B ions generated with supercharging reagents but in charge-reducing buffer.

    PubMed

    Hogan, Christopher J; Ogorzalek Loo, Rachel R; Loo, Joseph A; de la Mora, Juan Fernandez

    2010-11-07

    We investigate whether "supercharging" reagents able to shift the charge state distributions (CSDs) of electrosprayed protein ions upward also influence gas-phase protein structure. A differential mobility analyzer and a mass spectrometer are combined in series (DMA-MS) to measure the mass and mobility of monomer and multimeric phosphorylase B ions (monomer molecular weight ∼97 kDa) in atmospheric pressure air. Proteins are electrosprayed from charge-reducing triethylammonium formate in water (pH = 6.8) with and without the addition of the supercharging reagent tetramethylene sulfone (sulfolane). Because the DMA measures ion mobility prior to collisional heating or declustering, it probes the structure of supercharged protein ions immediately following solvent (water) evaporation. As in prior studies, the addition of sulfolane is found to drastically increase both the mean and maximum charge state of phosphorylase B ions. Ions from all protein n-mers were found to yield mobilities that, for a given charge state, were ∼6-10% higher in the absence of sulfolane. We find that the mobility decrease which arises with sulfolane is substantially smaller than that typically observed for folded-to-unfolded transitions in protein ions (where a ∼60% decrease in mobility is typical), suggesting that supercharging reagents do not cause structural protein modifications in solution as large as noted recently by Williams and colleagues [E. R. Williams et al., J. Am. Soc. Mass Spectrom., 2010, 21, 1762-1774]. In fact, the measurements described here indicate that the modest mobility decrease observed can be partly attributed to sulfolane trapping within the protein ions during DMA measurements, and probably also in solution. As the most abundant peaks in measured mass-mobility spectra for ions produced with and without sulfolane correspond to non-covalently bound phosphorylase B dimers, we find that in spite of a change in mobility/cross section, sulfolane addition does not

  6. Final Report - Advanced Ion Trap Mass Spectrometry Program - Oak Ridge National Laboratory - Sandia National Laboratory

    SciTech Connect

    Whitten, W.B.

    2002-12-18

    This report covers the three main projects that collectively comprised the Advanced Ion Trap Mass Spectrometry Program. Chapter 1 describes the direct interrogation of individual particles by laser desorption within the ion trap mass spectrometer analyzer. The goals were (1) to develop an ''intelligent trigger'' capable of distinguishing particles of biological origin from those of nonbiological origin in the background and interferent particles and (2) to explore the capability for individual particle identification. Direct interrogation of particles by laser ablation and ion trap mass spectrometry was shown to have good promise for discriminating between particles of biological origin and those of nonbiological origin, although detailed protocols and operating conditions were not worked out. A library of more than 20,000 spectra of various types of biological particles has been assembled. Methods based on multivariate analysis and on neural networks were used to discriminate between particles of biological origin and those of nonbiological origin. It was possible to discriminate between at least some species of bacteria if mass spectra of several hundred similar particles were obtained. Chapter 2 addresses the development of a new ion trap mass analyzer geometry that offers the potential for a significant increase in ion storage capacity for a given set of analyzer operating conditions. This geometry may lead to the development of smaller, lower-power field-portable ion trap mass spectrometers while retaining laboratory-scale analytical performance. A novel ion trap mass spectrometer based on toroidal ion storage geometry has been developed. The analyzer geometry is based on the edge rotation of a quadrupolar ion trap cross section into the shape of a torus. Initial performance of this device was poor, however, due to the significant contribution of nonlinear fields introduced by the rotation of the symmetric ion-trapping geometry. These nonlinear resonances

  7. A minimum thickness gate valve with integrated ion optics for mass spectrometry.

    PubMed

    Pittman, Jason L; O'Connor, Peter B

    2005-04-01

    A minimum thickness gate valve design for mass spectrometry is described in detail. The ion optics required to transmit ions from the source to the ICR cell are integrated into the design to minimize fringe field effects on the ions as they travel through the gate valve. The total thickness of the complete gate valve assembly is 1.03 in. (26.2 mm) with a maximum fringe field distance of 0.065 in. (1.7 mm). The gate valve is able to maintain a vacuum of <10(-10) mbar at the ICR cell when the source is vented to atmosphere and the estimated ion transfer efficiency is >95%.

  8. Searching For A Suitable Gas Ion Source For 14C Accelerator Mass Spectrometry

    SciTech Connect

    Reden, Karl von; Roberts, Mark; Han, Baoxi; Schneider, Robert; Wills, John

    2007-08-10

    This paper describes the challenges facing 14C Accelerator Mass Spectrometry (AMS) in the effort to directly analyze the combusted effluent of a chromatograph (or any other continuous source of sample material). An efficient, low-memory negative gas ion source would greatly simplify the task to make this a reality. We discuss our tests of a microwave ion source charge exchange canal combination, present an improved design, and hope to generate more interest in the negative ion source community to develop a direct-extraction negative carbon gas ion source for AMS.

  9. Pharmaceutical metabolite profiling using quadrupole/ion mobility spectrometry/time-of-flight mass spectrometry.

    PubMed

    Chan, Eric C Y; New, Lee Sun; Yap, Chun Wei; Goh, Lin Tang

    2009-02-01

    The use of hybrid quadrupole ion mobility spectrometry time-of-flight mass spectrometry (Q/IMS/TOFMS) in the metabolite profiling of leflunomide (LEF) and acetaminophen (APAP) is presented. The IMS drift times (T(d)) of the drugs and their metabolites were determined in the IMS/TOFMS experiments and correlated with their exact monoisotopic masses and other in silico generated structural properties, such as connolly molecular area (CMA), connolly solvent-excluded volume (CSEV), principal moments of inertia along the X, Y and Z Cartesian coordinates (MI-X, MI-Y and MI-Z), inverse mobility and collision cross-section (CCS). The correlation of T(d) with these parameters is presented and discussed. IMS/TOF tandem mass spectrometry experiments (MS(2) and MS(3)) were successfully performed on the N-acetyl-p-benzoquinoneimine glutathione (NAPQI-GSH) adduct derived from the in vitro microsomal metabolism of APAP. As comparison, similar experiments were also performed using hybrid triple quadrupole linear ion trap mass spectrometry (QTRAPMS) and quadrupole time-of-flight mass spectrometry (QTOFMS). The abilities to resolve the product ions of the metabolite within the drift tube and fragment the ion mobility resolved product ions in the transfer travelling wave-enabled stacked ring ion guide (TWIG) demonstrated the potential applicability of the Q/IMS/TOFMS technique in pharmaceutical metabolite profiling.

  10. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.

  11. Studies of polyisobutylene using time-of-flight secondary ion mass spectrometry (TOF-SIMS)

    NASA Astrophysics Data System (ADS)

    Xu, Keyang; Proctor, Andrew; Hercules, David M.

    1995-05-01

    A series of polyisobutylenes (PIBs) with average molecular weights from 800 to 4 × 105 were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The PIB spectra consist of a sequence of repeating patterns. Four clusters are observed within each pattern. Each cluster corresponds to several species, which are neutral fragments generated from polymer chain scission, cationized by a silver ion. The species formed have various numbers of double bonds and/or rings, and are separated by two mass units. The data indicate that the average molecular weight of PIB affects the ion formation. It changes the relative cluster intensities in a pattern, and also varies the cluster structures. More fragment-ion species can be detected from a high molecular weight polymer, and the unsaturated fragments are predominant. In addition to the large fragments, small fragment ions also provide information about some structurally important features.

  12. Ion Mobility Tandem Mass Spectrometry Enhances Performance of Bottom-up Proteomics

    PubMed Central

    Helm, Dominic; Vissers, Johannes P. C.; Hughes, Christopher J.; Hahne, Hannes; Ruprecht, Benjamin; Pachl, Fiona; Grzyb, Arkadiusz; Richardson, Keith; Wildgoose, Jason; Maier, Stefan K.; Marx, Harald; Wilhelm, Mathias; Becher, Isabelle; Lemeer, Simone; Bantscheff, Marcus; Langridge, James I.; Kuster, Bernhard

    2014-01-01

    One of the limiting factors in determining the sensitivity of tandem mass spectrometry using hybrid quadrupole orthogonal acceleration time-of-flight instruments is the duty cycle of the orthogonal ion injection system. As a consequence, only a fraction of the generated fragment ion beam is collected by the time-of-flight analyzer. Here we describe a method utilizing postfragmentation ion mobility spectrometry of peptide fragment ions in conjunction with mobility time synchronized orthogonal ion injection leading to a substantially improved duty cycle and a concomitant improvement in sensitivity of up to 10-fold for bottom-up proteomic experiments. This enabled the identification of 7500 human proteins within 1 day and 8600 phosphorylation sites within 5 h of LC-MS/MS time. The method also proved powerful for multiplexed quantification experiments using tandem mass tags exemplified by the chemoproteomic interaction analysis of histone deacetylases with Trichostatin A. PMID:25106551

  13. Charge-to-mass-ratio-dependent ion heating during magnetic reconnection in the MST RFP

    SciTech Connect

    Kumar, S. T. A.; Almagri, A. F.; Den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Terry, P. W.; Craig, D.

    2013-05-15

    Temperature evolution during magnetic reconnection has been spectroscopically measured for various ion species in a toroidal magnetized plasma. Measurements are made predominantly in the direction parallel to the equilibrium magnetic field. It is found that the increase in parallel ion temperature during magnetic reconnection events increases with the charge-to-mass ratio of the ion species. This trend can be understood if the heating mechanism is anisotropic, favoring heating in the perpendicular degree of freedom, with collisional relaxation of multiple ion species. The charge-to-mass ratio trend for the parallel temperature derives from collisional isotropization. This result emphasizes that collisional isotropization and energy transfer must be carefully modeled when analyzing ion heating measurements and comparing to theoretical predictions.

  14. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  15. ANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS BY ION TRAP TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    An ion-trap mass spectrometer with a wave board and tandem mass spectrometry software was used to analyze gas chromatographically separated polycyclic aromatic hydrocarbons (PAHs) by using collision-induced dissociation (CID). The nonresonant (multiple collision) mode was used to...

  16. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farenc, Mathilde; Witt, Matthias; Craven, Kirsten; Barrère-Mangote, Caroline; Afonso, Carlos; Giusti, Pierre

    2017-03-01

    Polyolefins such as polyethylene (PE) and polypropylene (PP) are often characterized from their pyrolysis products by Py-MS. Nowadays the development of plasma-based direct probe atmospheric pressure sources allow the direct analysis of these polymers. These sources operate at atmospheric pressure, which implies a limited control of the ionization conditions. It was shown that side reactions could occur with species present in air, such as O2, which may lead to the formation of oxidized compounds. In this work, ion mobility-mass spectrometry (IM-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR) were used for the exhaustive characterization of the PP and PE pyrolysis ions produced using plasma-based atmospheric pressure ion sources. Both PP and PE yielded distributions of pyrolysis products presenting different amounts of unsaturation but also different numbers of oxygen atoms. In addition, the ions produced from PP presented a lower collision cross-section (CCS) than those produced from PE. In the same way, both PP and PE present repeated patterns separated by 14 m/z in the bidimensional drift time versus m/z plots. Within these plots, several trend lines can be evidenced, which are specific of each polymer investigated. Differences were observed between isotactic and atactic samples concerning the pyrolysis profile relative abundance and collision cross-section.

  17. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farenc, Mathilde; Witt, Matthias; Craven, Kirsten; Barrère-Mangote, Caroline; Afonso, Carlos; Giusti, Pierre

    2017-01-01

    Polyolefins such as polyethylene (PE) and polypropylene (PP) are often characterized from their pyrolysis products by Py-MS. Nowadays the development of plasma-based direct probe atmospheric pressure sources allow the direct analysis of these polymers. These sources operate at atmospheric pressure, which implies a limited control of the ionization conditions. It was shown that side reactions could occur with species present in air, such as O2, which may lead to the formation of oxidized compounds. In this work, ion mobility-mass spectrometry (IM-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR) were used for the exhaustive characterization of the PP and PE pyrolysis ions produced using plasma-based atmospheric pressure ion sources. Both PP and PE yielded distributions of pyrolysis products presenting different amounts of unsaturation but also different numbers of oxygen atoms. In addition, the ions produced from PP presented a lower collision cross-section (CCS) than those produced from PE. In the same way, both PP and PE present repeated patterns separated by 14 m/z in the bidimensional drift time versus m/z plots. Within these plots, several trend lines can be evidenced, which are specific of each polymer investigated. Differences were observed between isotactic and atactic samples concerning the pyrolysis profile relative abundance and collision cross-section.

  18. An electrospray ionization source for thermochemical investigation with the guided ion beam mass spectrometer.

    PubMed

    Moision, R M; Armentrout, P B

    2007-06-01

    An electrospray ionization (ESI) source developed for use with the guided ion beam tandem mass spectrometer (GIBMS) is described. For accurate determination of thermochemistry using threshold collision-induced dissociation (TCID), it is essential that any source produces ions with four exacting characteristics: (1) high intensity, (2) stable signal, and well-defined energies both (3) kinetic, and (4) internal. To accomplish these objectives, the ions generated by the electrospray are collected using a radio frequency electrodynamic ion funnel and are then transferred into a hexapole ion guide where they are thermalized and subsequently passed into higher-vacuum regions for analysis. The resulting ion intensities using this source can exceed 10(6) ions/s. Stable beams (<10% variation in signal) can be generated over multiple hours. The kinetic energy distribution of ions emerging from this source has been shown to be well described by a Gaussian distribution with a full width half maximum (FWHM) of about 0.1-0.2 eV in the laboratory frame of reference. Finally, TCID results for ions generated with this source show excellent agreement with previously reported threshold values for ions generated using a variety of sources and experimental methodologies. This confirms that internal energies of the ions are well described by a Maxwell-Boltzmann distribution at room temperature.

  19. A feasibility study of ion implantation techniques for mass spectrometer calibration

    NASA Technical Reports Server (NTRS)

    Koslin, M. E.; Krycuk, G. A.; Schatz, J. G., Jr.; White, F. A.; Wood, G. M.

    1978-01-01

    An experimental study was undertaken to examine the feasibility of using ion-implanted filaments doped with either an alkali metal or noble gas for in situ recalibration of onboard mass spectrometers during extended space missions. Implants of rubidium and krypton in rhenium ribbon filaments were subsequently tested in a bakeable 60 deg sector mass spectrometer operating in the static mode. Surface ionization and electron impact ion sources were both used, each yielding satisfactory results. The metallic implant with subsequent ionization provided a means of mass scale calibration and determination of system operating parameters, whereas the noble gas thermally desorbed into the system was more suited for partial pressure and sensitivity determinations.

  20. Vacuum Ultraviolet Photodissociation and Fourier Transform–Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited

    SciTech Connect

    Shaw, Jared B.; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2016-02-16

    We revisited the implementation of UVPD within the ICR cell of a FT-ICR mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and small protein within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing relative to ion magnetron motion and the potential applied to an ion optical element that photons impinge on. It is shown that UVPD yields efficient and extensive fragmentation resulting in excellent sequence coverage for model peptide and protein cations.

  1. Secondary Ion Mass Spectrometry Imaging of Tissues, Cells, and Microbial Systems

    PubMed Central

    Gamble, Lara J.; Anderton, Christopher R.

    2016-01-01

    Secondary ion mass spectrometry (SIMS) is a technique capable of imaging tissues, single cells, and microbes revealing chemical species with sub-micrometer spatial resolution. The recently developed Fourier transform ion cyclotron resonance (FTICR) SIMS instrument provides high mass resolving power and mass accuracy, ToF-SIMS can generate chemical maps with an order of magnitude better lateral resolution than the FTICR-SIMS, and the NanoSIMS instrument offers sub-100 nm spatial resolution in chemical imaging. Many commercial ToF-SIMS instruments are also capable of depth profiling that allows three-dimensional reconstructions of cell and tissue structure. PMID:27660591

  2. Imaging and Rapid-Scanning Ion Mass Spectrometer (IRM) for the CASSIOPE e-POP Mission

    NASA Astrophysics Data System (ADS)

    Yau, Andrew W.; Howarth, Andrew; White, Andrew; Enno, Greg; Amerl, Peter

    2015-06-01

    The imaging and rapid-scanning ion mass spectrometer (IRM) is part of the Enhanced Polar Outflow Probe (e-POP) instrument suite on the Canadian CASSIOPE small satellite. Designed to measure the composition and detailed velocity distributions of ions in the ˜1-100 eV/q range on a non-spinning spacecraft, the IRM sensor consists of a planar entrance aperture, a pair of electrostatic deflectors, a time-of-flight (TOF) gate, a hemispherical electrostatic analyzer, and a micro-channel plate (MCP) detector. The TOF gate measures the transit time of each detected ion inside the sensor. The hemispherical analyzer disperses incident ions by their energy-per-charge and azimuth in the aperture plane onto the detector. The two electrostatic deflectors may be optionally programmed to step through a sequence of deflector voltages, to deflect ions of different incident elevation out of the aperture plane and energy-per-charge into the sensor aperture for sampling. The position and time of arrival of each detected ion at the detector are measured, to produce an image of 2-dimensional (2D), mass-resolved ion velocity distribution up to 100 times per second, or to construct a composite 3D velocity distribution by combining successive images in a deflector voltage sequence. The measured distributions are then used to investigate ion composition, density, drift velocity and temperature in polar ion outflows and related acceleration and transport processes in the topside ionosphere.

  3. Solar cycle variation of some mass dependent characteristics of upflowing beams of terrestrial ions

    NASA Technical Reports Server (NTRS)

    Collin, H. L.; Peterson, W. K.; Shelley, E. G.

    1987-01-01

    Examination of the S3-3 and DE ion composition data spread over a solar cycle indicates that some characteristics of energetic upflowing terrestrial ion beams above the auroral zone show dependence on solar cycle. At solar maximum the different ion beam mass components have comparable mean energies, and O(+) dominates the beam composition. The ion energies are consistent with having been acquired from the potential drop below the satellite inferred from the electron loss cone distributions. At solar minimum the beam composition is dominated by H(+), but the O(+) has a higher mean energy and is hotter than the H(+) component. Also, the O(+) has more energy than it could itself have acquired from the potential drop. These observations are qualitatively consistent with the ion beams having acquired their energies from a parallel electric field and being partially thermalized through the two-stream instability between the two ion species, with this effect being modulated by the beam composition.

  4. Design of a Laser Ablation Ion Source for High-Precision Penning Trap Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hunt, Curtis; Ratnayake, Ishara; Hawks, Paul; Bryce, Richard; Redshaw, Matthew

    2014-05-01

    High-precision atomic mass measurements provide important data for a wide range of fields including atomic, nuclear and neutrino physics, determination of fundamental constants, and metrology. At Central Michigan University we are building a Penning trap system that will utilize ions produced by external ion sources to allow access to a wide range of isotopes, including long-lived radioactive isotopes and isotopes with low natural abundances. The ions will be transported to a ``capture'' trap, before being transferred to double precision-measurement trap structure. In this poster we will present the design of a laser ablation ion source and the ion extraction and transport optics. We will report on the current status of the construction and operation of the ion source and the CMU Penning trap. This work supported in part by NSF award no. 1307233.

  5. False sugar sequence ions in electrospray tandem mass spectrometry of underivatized sialyl-Lewis-type oligosaccharides

    NASA Astrophysics Data System (ADS)

    Ernst, Beat; Müller, Dieter R.; Richter, Wilhelm J.

    1997-01-01

    Formation of "false" sugar sequence ions from branched tetrasaccharides of the sialyl-Lewis-type by migration of fucose towards sialic acid residues is shown to occur in [M + H]+ and [M + NH4]+ ions produced by electrospray ionization and subjected to low energy collision induced dissociation (CID). For the verification of their composition and sequence, such irregular ions were produced in the orifice region of the ion source, mass selected in Q1, and subjected to a second CID step in Q2 of a triple quadrupole analyser. When produced and analysed in the same "double CID" fashion, the branched B3 ions still containing all four sugar subunits show such migration to only a minor extent. The analysis of Bn fragment ions with high numbers for n may thus have advantages over the analysis of M-like species

  6. ILMA: Ion Laser Mass Analyser. A Mass-Spectrometer for In-Situ Characterization of a Near Earth Object (NEO)

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Arezki, B.; Berthelier, J. J.; Bouabdellah, A.; Boukrara, A.; Briois, C.; Carrasco, N.; Gilbert, P.; Engrand, C.; Grand, N.; Hilchenbach, M.; Krüger, H.; Makarov, A.; Pennanech, C.; Puget, P.; Quirico, E.; Szopa, C.; Thirkell, L.; Zapf, P.; Thissen, R.

    Like other small bodies of the Solar System, asteroids are the remnants of planet formation. Their compositions are inherited from the Solar Nebula at the time of planetesimals accretion into planets, 4.5 billion years ago. They are valuable objects to assess the physicochemical conditions prevailing at the time and place of their formation in the Solar Nebula. Among them, some are known to be rich in carbon and volatile species (including water), which suggests that they never underwent major heating and differentiation events. Their organic content is also of prime interest because the chemical evolution leading to life on Earth may have been initiated by the delivery of extraterrestrial organic compounds into primitive oceans. For these reasons, several space missions are currently considered by ESA and JAXA for a sample return mission to a primitive carbonaceous Near-Earth Object (NEO): MARCO POLO, HAYABUZA 2, etc... Their goal is to characterize a NEO at multiple scales via in-situ measurements by a science payload onboard an orbiter and a lander, and to bring samples back to Earth. ILMA is a concept for a new generation high resolution mass spectrometer, proposed to be part of a lander payload for in situ science. This instrument will be a Fourier Transform ion trap mass spectrometer using Laser Desorption and Ionization Mass Spectrometry (LDIMS) into a single platform. To this end, an Orbitrap mass analyser (developed by the Thermofisher Company) will be coupled to a laser source. The sample will be exposed to the laser beam producing desorbed ions which will be collected into the ion trap using the orbital trapping method. Ions will be stabilized in the trap by purely electrostatic quadro-logarithmic electrical fields and the detection undertaken by a non destructive measurement of the ion oscillation frequency inside the trap. Indeed, the trapped ions induce a periodic signal converted using Fourier Transform (FT) into an ultra-high mass resolution

  7. Analysis of high-altitude planetary ion velocity space distributions detected by the Ion Mass Analyzer aboard Mars Express

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Liemohn, M. W.; Fraenz, M.; Curry, S.; Mitchell, D. L.

    2012-12-01

    We present observations of planetary ion velocity space distributions from the Ion Mass Analyzer (IMA) onboard Mars Express (MEX). The magnetometer data from Mars Global Surveyor is used to obtain a rough estimate of the interplanetary magnetic field (IMF) orientation. Characteristic features of the velocity space distributions will be examined and discussed for orbits aligned with the convective electric field and those in the Mars terminator plane. This study will focus on the high (keV) energy ions, as well as the relative importance of a high-altitude magnetosheath source of escaping planetary ions. Furthermore, this paper will examine various methods for converting the IMA detector counts to species-specific fluxes. After mimicking the methods previously used by researchers, we apply each of these methods of species extraction to data collected during the same time intervals. We discuss the implications for planetary ion motion around Mars, using the details of the velocity space observations to better understand the solar wind interaction with Mars. Comparisons to virtual detections using a test particle simulation will also provide insight into ion origins and trajectories.

  8. Application of mass-separated focused ion beams in nano-technology

    NASA Astrophysics Data System (ADS)

    Bischoff, L.

    2008-04-01

    FIB applications like writing ion implantation, ion beam mixing or ion beam synthesis in the μm- or nm range often require ion species other than gallium. Therefore alloy liquid metal ion sources (LMIS) have to be developed and applied in FIB tools. The energy distribution of ions emitted from an alloy LMIS is one of the crucial parameters for the performance of a FIB column. Different source materials like AuGe, AuSi, AuGeSi, CoNd, ErNi, ErFeNiCr, MnGe, GaBi, GaBiLi, SnPb, … were investigated with respect to the energy spread of the different ion species as a function of emission current, ion mass and emitter temperature. Different alloy LMIS's have been developed and used in the FZD - FIB system especially for writing implantation to fabricate sub-μm pattern without any lithographic steps. Co and various other ion species were applied to generate CoSi2 nano-structures, like dots and wires by ion beam synthesis or to manipulate the properties of magnetic films. Additionally, the possibility of varying the flux in the FIB by changing the pixel dwell-time can be used for the investigation of the radiation damage and dynamic annealing in Si, Ge and SiC at elevated implantation temperatures. Furthermore, a broad spectrum of ions was employed to study in a fast manner the sputtering process depending on temperature, angle of incidence and ion mass on a couple of target materials. These studies are important for the 3D-fabrication of various kinds of micro-tools by FIB milling.

  9. Double focusing ion mass spectrometer of cylindrical symmetry

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Moore, J. H.; Hoffman, R. A.

    1984-01-01

    A mass spectrometer consisting of an electric sector followed by a magnetic sector is described. The geometry is a cylindrically symmetric generalization of the Mattauch-Herzog spectrometer (1934). With its large annular entrance aperture and a position-sensitive detector, the instrument provides a large geometric factor and 100-percent duty factor, making it appropriate for spacecraft experiments.

  10. Matrix-enhanced secondary ion mass spectrometry: The Alchemist's solution?

    NASA Astrophysics Data System (ADS)

    Delcorte, Arnaud

    2006-07-01

    Because of the requirements of large molecule characterization and high-lateral resolution SIMS imaging, the possibility of improving molecular ion yields by the use of specific sample preparation procedures has recently generated a renewed interest in the static SIMS community. In comparison with polyatomic projectiles, however, signal enhancement by a matrix might appear to some as the alchemist's versus the scientist's solution to the current problems of organic SIMS. In this contribution, I would like to discuss critically the pros and cons of matrix-enhanced SIMS procedures, in the new framework that includes polyatomic ion bombardment. This discussion is based on a short review of the experimental and theoretical developments achieved in the last decade with respect to the three following approaches: (i) blending the analyte with a low-molecular weight organic matrix (MALDI-type preparation procedure); (ii) mixing alkali/noble metal salts with the analyte; (iii) evaporating a noble metal layer on the analyte sample surface (organic molecules, polymers).

  11. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  12. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins.

    PubMed

    Donohoe, Gregory C; Khakinejad, Mahdiar; Valentine, Stephen J

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  13. Lunar and Asteroid Composition Using a Remote Secondary Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Funsten, H. O.; Barraclough, B. L.; Mccomas, D. J.; Nordholt, J. E.

    1992-01-01

    Laboratory experiments simulating solar wind sputtering of lunar surface materials have shown that solar wind protons sputter secondary ions in sufficient numbers to be measured from low-altitude lunar orbit. Secondary ions of Na, Mg, Al, Si, K, Ca, Mn, Ti, and Fe have been observed sputtered from sample simulants of mare and highland soils. While solar wind ions are hundreds of times less efficient than those used in standard secondary ion mass spectrometry, secondary ion fluxes expected at the Moon under normal solar wind conditions range from approximately 10 to greater than 10(exp 4) ions cm(sup -2)s(sup -1), depending on species. These secondary ion fluxes depend both on concentration in the soil and on probability of ionization; yields of easily ionized elements such as K and Na are relatively much greater than those for the more electronegative elements and compounds. Once these ions leave the surface, they are subject to acceleration by local electric and magnetic fields. For typical solar wind conditions, secondary ions can be accelerated to an orbital observing location. The same is true for atmospheric atoms and molecules that are photoionized by solar EUV. The instrument to detect, identify, and map secondary ions sputtered from the lunar surface and photoions arising from the tenuous atmosphere is discussed.

  14. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies.

    PubMed

    Ferguson, Carly N; Gucinski-Ruth, Ashley C

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics. Graphical Abstract ᅟ.

  15. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Ferguson, Carly N.; Gucinski-Ruth, Ashley C.

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.

  16. Evaluation of Pulse Counting for the Mars Organic Mass Analyzer (MOMA) Ion Trap Detection Scheme

    NASA Technical Reports Server (NTRS)

    Van Amerom, Friso H.; Short, Tim; Brinckerhoff, William; Mahaffy, Paul; Kleyner, Igor; Cotter, Robert J.; Pinnick, Veronica; Hoffman, Lars; Danell, Ryan M.; Lyness, Eric I.

    2011-01-01

    The Mars Organic Mass Analyzer is being developed at Goddard Space Flight Center to identify organics and possible biological compounds on Mars. In the process of characterizing mass spectrometer size, weight, and power consumption, the use of pulse counting was considered for ion detection. Pulse counting has advantages over analog-mode amplification of the electron multiplier signal. Some advantages are reduced size of electronic components, low power consumption, ability to remotely characterize detector performance, and avoidance of analog circuit noise. The use of pulse counting as a detection method with ion trap instruments is relatively rare. However, with the recent development of high performance electrical components, this detection method is quite suitable and can demonstrate significant advantages over analog methods. Methods A prototype quadrupole ion trap mass spectrometer with an internal electron ionization source was used as a test setup to develop and evaluate the pulse-counting method. The anode signal from the electron multiplier was preamplified. The an1plified signal was fed into a fast comparator for pulse-level discrimination. The output of the comparator was fed directly into a Xilinx FPGA development board. Verilog HDL software was written to bin the counts at user-selectable intervals. This system was able to count pulses at rates in the GHz range. The stored ion count nun1ber per bin was transferred to custom ion trap control software. Pulse-counting mass spectra were compared with mass spectra obtained using the standard analog-mode ion detection. Prelin1inary Data Preliminary mass spectra have been obtained for both analog mode and pulse-counting mode under several sets of instrument operating conditions. Comparison of the spectra revealed better peak shapes for pulse-counting mode. Noise levels are as good as, or better than, analog-mode detection noise levels. To artificially force ion pile-up conditions, the ion trap was overfilled

  17. EBIT in the Magnetic Trapping Mode: Mass Spectrometry, Atomic Lifetime Measurements, and Charge Transfer Reactions of Highly Charged Atomic Ions

    SciTech Connect

    Schweikhard, L; Beiersdorfer, P; Trabert, E

    2001-07-10

    Although it may sound like a contradiction in terms, the electron beam ion trap (EBIT) works as an ion trap even when the electron beam is switched off. We present various experiments that exploit the ''magnetic trapping mode'' for investigations of ion confinement, charge exchange processes, atomic lifetime and ion mass measurements.

  18. Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert P.; Tang, Keqi; Smith, Richard D.

    2012-01-01

    A front-end instrument, the laser ablation ion funnel, was developed, which would ionize rock and soil samples in the ambient Martian atmosphere, and efficiently transport the product ions into a mass spectrometer for in situ analysis. Laser ablation creates elemental ions from a solid with a high-power pulse within ambient Mars atmospheric conditions. Ions are captured and focused with an ion funnel into a mass spectrometer for analysis. The electrodynamic ion funnel consists of a series of axially concentric ring-shaped electrodes whose inside diameters (IDs) decrease over the length of the funnel. DC potentials are applied to each electrode, producing a smooth potential slope along the axial direction. Two radio-frequency (RF) AC potentials, equal in amplitude and 180 out of phase, are applied alternately to the ring electrodes. This creates an effective potential barrier along the inner surface of the electrode stack. Ions entering the funnel drift axially under the influence of the DC potential while being restricted radially by the effective potential barrier created by the applied RF. The net result is to effectively focus the ions as they traverse the length of the funnel.

  19. Time-of-flight secondary neutral & ion mass spectrometry using swift heavy ions

    NASA Astrophysics Data System (ADS)

    Breuer, L.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.

    2015-12-01

    We report on a new time-of-flight (TOF) spectrometer designed to investigate sputtering phenomena induced by swift heavy ions in the electronic stopping regime. In this experiment, particular emphasis is put on the detection of secondary ions along with their emitted neutral counterparts in order to examine the ionization efficiency of the sputtered material. For the detection of neutral species, the system is equipped with a pulsed VUV laser for post-ionization of sputtered neutral atoms and molecules via single photon ionization at a wavelength of 157 nm (corresponding to 7.9 eV photon energy). For alignment purposes and in order to facilitate comparison to nuclear sputtering conditions, the system also includes a 5 keV Ar+ ion beam directed to the same sample area. The instrument has been added to the M1-branch beam line at the German accelerator facility in Darmstadt (GSI) and was tested with 4.8 MeV/u Au26+ ions impinging onto various samples including metals, salts and organic films. It is found that secondary ion and neutral spectra obtained under both bombardment conditions can be acquired in an interleaved manner throughout a single accelerator pulse cycle, thus making efficient use of valuable beam time. In addition, the keV ion beam can be intermittently switched to dc mode between subsequent data acquisition windows and accelerator pulses in order to ensure reproducible surface conditions. For the case of a dynamically sputter cleaned metal surface, comparison of secondary ion and neutral signals obtained under otherwise identical instrumental conditions reveals a nearly identical ionization probability of atoms emitted under electronic and nuclear sputtering conditions.

  20. Ion Mobility Separations of Isomers based upon Long Path Length Structures for Lossless Ion Manipulations Combined with Mass Spectrometry

    SciTech Connect

    Deng, Liulin; Ibrahim, Yehia M.; Baker, Erin S.; Aly, Noor A.; Hamid, Ahmed M.; Zhang, Xing; Zheng, Xueyun; Garimella, Sandilya V. B.; Webb, Ian K.; Prost, Spencer A.; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Smith, Richard D.

    2016-07-01

    Mass spectrometry (MS)-based multi-omic measurements, including proteomics, metabolomics, lipidomics, and glycomics, are increasingly transforming our ability to characterize and understand biological systems, but, presently have limitations due to the chemical diversity and range of abundances of biomolecules in complex samples. Advances addressing these challenges increasingly are based upon the ability to quickly separate, react and otherwise manipulate sample components for analysis by MS. Here we report on a new approach using Structures for Lossless Ion Manipulations (SLIM) to enable long serpentine path ion mobility spectrometry (IMS) separations followed by MS analyses. This approach provides previously unachieved mobility biomolecule isomer separations for biomolecular species, in conjunction with more effective ion utilization, and producing a basis for the improved characterization of very small samples.

  1. Capillary electrophoresis/mass spectrometry determination of inorganic ions using an ion spray-sheath flow interface.

    PubMed

    Huggins, T G; Henion, J D

    1993-01-01

    The determination of inorganic cations and anions by capillary electrophoresis/mass spectrometry (CE/MS) is reported using an ion spray-sheath flow interface coupling. A twelve-component synthetic mixture of cations which included the positive ions of K, Ba, Ca, Mn, Cd, Co, Pb, Cr, Ni, Zn, Ag, and Cu was loaded into the capillary column at levels ranging from 30 to 300 pg, separated by CE, and detected by indirect UV and in the full-scan (m/z 35-450) positive ion CE/MS mode using an aqueous buffer containing 30 mM creatinine and 8 mM alpha-hydroxyisobutyric acid, pH 4.8. Creatinine forms adducts with the cations which are observed in the gas phase and requires rather high (120 electron volts) declustering energy to dissociate. This produces a reduction in charge state to form the free, singly charged, inorganic cations which are observed in the mass spectra. CE/MS analysis of an aqueous acidic extract of used aircraft engine oil revealed high levels of lead as well as lower levels of chromium and nickel. CE-indirect UV analysis of a synthetic mixture containing 300 pg each of 11 inorganic ions, which included the anions of Br, Cl, NO2, NO3, S2O3, N3, SCN, SO4, SeO4, oxalate, and MoO4, is shown. The running buffer which affected this separation contained 5 mM ammonium dichromate, 10 mM ammonium acetate, and 20 mM diethylenetriamine at pH 9.3. Although indirect UV detection revealed good separation of these anions, CE/MS analysis of this mixture was complicated by interfering ion current signals from the cluster ions formed by the interaction between the additives and the analytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Using Metal Complex Ion-Molecule Reactions in a Miniature Rectilinear Ion Trap Mass Spectrometer to Detect Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Graichen, Adam M.; Vachet, Richard W.

    2013-06-01

    The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n]y+ complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n]2+ complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.

  3. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents.

    PubMed

    Graichen, Adam M; Vachet, Richard W

    2013-06-01

    The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n](y+) complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n](2+) complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.

  4. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  5. Time-of-flight mass spectrographs—From ions to neutral atoms

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Galvin, A. B.; Kistler, L. M.; Kucharek, H.; Popecki, M. A.

    2016-12-01

    After their introduction to space physics in the mid 1980s time-of-flight (TOF) spectrographs have become a main staple in spaceborne mass spectrometry. They have largely replaced magnetic spectrometers, except when extremely high mass resolution is required to identify complex molecules, for example, in the vicinity of comets or in planetary atmospheres. In combination with electrostatic analyzers and often solid state detectors, TOF spectrographs have become key instruments to diagnose space plasma velocity distributions, mass, and ionic charge composition. With a variety of implementation schemes that also include isochronous electric field configurations, TOF spectrographs can respond to diverse science requirements. This includes a wide range in mass resolution to allow the separation of medium heavy isotopes or to simply provide distributions of the major species, such as H, He, and O, to obtain information on source tracers or mass fluxes. With a top-hat analyzer at the front end, or in combination with deflectors for three-axis stabilized spacecraft, the distribution function of ions can be obtained with good time resolution. Most recently, the reach of TOF ion mass spectrographs has been extended to include energetic neutral atoms. After selecting the arrival direction with mechanical collimation, followed by conversion to ions, adapted TOF sensors form a new branch of the spectrograph family tree. We review the requirements, challenges, and implementation schemes for ion and neutral atom spectrographs, including potential directions for the future, while largely avoiding overlap with complementary contributions in this special issue.

  6. Design of An Improved Miniature Ion Neutral Mass Spectrometer for NASA Applications

    NASA Technical Reports Server (NTRS)

    Swaminathan, Viji K.; Alig, Roger C.

    1997-01-01

    The ion optics of NASA's Ion Neutral Mass Spectrometer (INMS) sensor was simulated with three dimensional models of the open source, the quadrupole deflector, the exit lens system and the quadrupole mass analyzer to design more compact models with lower weight. Comparison of calculated transmission with experimental results shows good agreement. Transmission analyses with varying geometrical parameters and voltages throw light on possible ways of reducing the size of the sensor. Trajectories of ions of mass 1-99 amu were simulated to analyze and optimize transmission. Analysis of open source transmission with varying angle of attack shows that the angular acceptance can be considerably increased by programming the voltages on the ion trap/ collimator. Analysis of transmission sensitivity to voltages and misalignments of the quadrupole deflector rods indicate that increased transmission is possible with a geometrically asymmetrical deflector and a deflector can be designed with much lower sensitivities of transmission. Bringing the disks closer together can decrease the size of the quadrupole deflector and also increase transmission. The exit lens system can be redesigned to be smaller by eliminating at least one electrode entirely without loss of transmission. Ceramic materials were investigated to find suitable candidates for use in the construction of lighter weight mass spectrometer. A high-sensitivity, high-resolution portable gas chromatograph mass spectrometer with a mass range of 2-700 amu has been built and will be commercialized in Phase 3.

  7. Soft Supercharging of Biomolecular Ions in Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chingin, Konstantin; Xu, Ning; Chen, Huanwen

    2014-06-01

    The charge states of biomolecular ions in ESI-MS can be significantly increased by the addition of low-vapor supercharging (SC) reagents into the spraying solution. Despite the considerable interest from the community, the mechanistic aspects of SC are not well understood and are hotly debated. Arguments that denaturation accounts for the increased charging observed in proteins sprayed from aqueous solutions containing SC reagent have been published widely, but often with incomplete or ambiguous supporting data. In this work, we explored ESI MS charging and SC behavior of several biopolymers including proteins and DNA oligonucleotides. Analytes were ionized from 100 mM ammonium acetate (NH4Ac) aqueous buffer in both positive (ESI+) and negative (ESI-) ion modes. SC was induced either with m-NBA or by the elevated temperature of ESI capillary. For all the analytes studied we, found striking differences in the ESI MS response to these two modes of activation. The data suggest that activation with m-NBA results in more extensive analyte charging with lower degree of denaturation. When working solution with m-NBA was analyzed at elevated temperatures, the SC effect from m-NBA was neutralized. Instead, the net SC effect was similar to the SC effect achieved by thermal activation only. Overall, our observations indicate that SC reagents enhance ESI charging of biomolecules via distinctly different mechanism compared with the traditional approaches based on analyte denaturation. Instead, the data support the hypothesis that the SC phenomenon involves a direct interaction between a biopolymer and SC reagent occurring in evaporating ESI droplets.

  8. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of metal-ion selected dynamic protein libraries.

    PubMed

    Cooper, Helen J; Case, Martin A; McLendon, George L; Marshall, Alan G

    2003-05-07

    The application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the investigation of the relative stabilities (and thus packing efficiencies) of Fe-bound trihelix peptide bundles is demonstrated. Small dynamic protein libraries are created by metal-ion assisted assembly of peptide subunits. Control of the trimeric aggregation state is coupled to stability selection by exploiting the coordination requirements of Fe(2+) in the presence of bidentate 2,2'-bipyridyl ligands covalently appended to the peptide monomers. At limiting metal-ion concentration, the most thermodynamically stable, optimally packed peptide trimers dominate the mass spectrum. The identities of optimally stable candidate trimers observed in the ESI FT-ICR mass spectra are confirmed by resynthesis of exchange-inert analogues and measurement of their folding free energies. The peptide composition of the trimers may be determined by infrared multiphoton dissociation (IRMPD) MS(3) experiments. Additional sequence information for the peptide subunits is obtained from electron capture dissociation (ECD) of peptides and metal-bound trimers. The experiments also suggest the presence of secondary structure in the gas phase, possibly due to partial retention of the solution-phase coiled coil structure.

  9. Determination of epichlorohydrin by sulfite derivatization and ion chromatography: characterization of the sulfite derivatives by ion chromatography-mass spectrometry.

    PubMed

    Bruzzoniti, Maria Concetta; Andrensek, Samo; Novic, Milko; Perrachon, Daniela; Sarzanini, Corrado

    2004-04-23

    This work is an upgrade of a previously developed method (J. Chromatogr. A 884 (2000) 251] for epichlorohydrin determination by ion chromatography (IC) and conductivity detection. Here, an ion chromatography-mass spectrometry (IC-MS) coupling has been employed for the separation and the identification of products of epichlorohydrin when reacted with the nucleophilic agent SO3(2-). The high capacity column (IonPac AS11-HC) used for separation provided good resolution. This allowed evaluation of the IC behavior and mass spectrometric identification of epichlorohydrin sulfite derivatives. By using atmospheric pressure interfaces (ESI and APCI) the following species were tentatively identified: 2,3-dihydroxy-1-propanesulfonic, 2,3-epoxy-1-propanesulfonic,1,3-dihydroxy-2-propanesulfonic and 3-oxetanesulfonic acids and 2-hydroxy-1,3-propanedisulfonic acid (or its isomer 3-hydroxy-1,2-propanedisulfonic acid). The study showed that chlorine atoms are displaced from epichlorohydrin during the reaction, while mass spectrometry confirmed that none of the products formed contains chlorine atoms.

  10. Detection of alkylmethylphosphonic acids on leaf surfaces by static secondary ion mass spectrometry

    SciTech Connect

    Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.; Delmore, J.E.; Dahl, D.A. )

    1995-01-01

    Detection of environmental degradation products of nerve agents directly from the surface of plant leaves using static secondary ion mass spectrometry (SIMS) is demonstrated. Pinacolylmethylphosphonic acid (PMPA), isopropylmethylphosphonic acid (IMPA), and ethylmethylphosphonic acid (EMPA) were spiked from aqueous solutions onto philodendron leaves prior to analysis by static SIMS. Fragment ions were observed in the anion SIMS spectra from all three compounds at m/z 63, 77, 79, and 95, which are attributed to PO[sub 2][sup [minus

  11. Research for optimizing the performance of an LEF-TOF ion energy mass analyzer

    SciTech Connect

    Tanaka, T.; Saito, Y.

    2009-06-16

    There are few in-situ heavy ion observations from lunar soil or tenuous alkali atmosphere. It is commonly thought that the heavy ions around the Moon are produced by ion-induced desorption (sputtering) or photon-stimulated desorption from the lunar surface and by photoionization from the atmosphere. These ions are picked up and transported by the solar wind. IMA (Ion Mass Analyzer) on board the SELENE satellite will measure these picked-up ions around the Moon. IMA adopts foil-based LEF (Linear Electric Field) TOF (Time Of Flight) technique for mass analysis in order to discriminate heavy ions up to mass number 60. MgO-coated metal plate is installed at the upper part of the mass analyzer to generate TOF stop electrons efficiently. Though we empirically knew that stop electron generations were enhanced by MgO-coated metal plate, quantitative analyses for the efficiency were insufficient. We compared the efficiency of electron emitter plates with different substrate materials: CuBe and Al and with different MgO thickness: 20 nm, 500 nm and 1000 nm. We also changed the surface roughness of these base plates. Our experimental results showed there are notable differences in the electron emission efficiency between MgO-coated plates and non-coated plates. We also found that the thicker MgO emits secondary electrons more efficiently. The efficient electron emission was mainly caused by the enhancement of the secondary electron yields of a single ion impact because the pulse height distribution of the stop signals generated by MgO coated plates was higher than that of non-coated plates.

  12. Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films

    NASA Astrophysics Data System (ADS)

    Creasy, William R.; Brenna, J. T.

    1990-02-01

    Three materials were studied by laser ablation/Fourier transform mass spectrometry, using 266 nm laser radiation: a copolymer of ethylene and tetrafluoroethylene (ETFE), polyphenylene sulfide (PPS), and a diamond-like carbon film (DLC). In each case, positive ion mass spectra exhibit primarily even-numbered, high mass carbon clusters (``fullerenes'') of the type previously reported for graphite ablation. In the case of ETFE, a large C+60 peak (``buckminsterfullerene'') was observed. The polymer spectra showed a strong dependence on the number of laser pulses on one spot and the laser power density. For ETFE, the fullerene ion relative intensity first increases and then decreases as a function of the number of laser pulses. For the DLC film, fullerenes are observed with a single laser pulse on a fresh spot of the sample. The results are interpreted in terms of a gas phase growth model for the fullerene ion formation.

  13. Charge Breeding Techniques in an Electron Beam Ion Trap for High Precision Mass Spectrometry at TITAN

    NASA Astrophysics Data System (ADS)

    MacDonald, T. D.; Simon, M. C.; Bale, J. C.; Chowdhury, U.; Eibach, M.; Gallant, A. T.; Lennarz, A.; Simon, V. V.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Schultz, B. E.; Dilling, J.

    2012-10-01

    Penning trap mass spectrometry is the most accurate and precise method available for performing atomic mass measurements. TRIUMF's Ion Trap for Atomic and Nuclear science is currently the only facility to couple its Penning trap to a rare isotope facility and an electron beam ion trap (EBIT). The EBIT is a valuable tool for beam preparation: since the precision scales linearly with the charge state, it takes advantage of the precision gained by using highly charged ions. However, this precision gain is contingent on fast and efficient charge breeding. An optimization algorithm has been developed to identify the optimal conditions for running the EBIT. Taking only the mass number and half-life of the isotope of interest as inputs, the electron beam current density, charge breeding time, charge state, and electron beam energy are all specified to maximize this precision. An overview of the TITAN charge breeding program, and the results of charge breeding simulations will be presented.

  14. Resonance activation and collision-induced-dissociation of ions using rectangular wave dipolar potentials in a digital ion trap mass spectrometer.

    PubMed

    Xu, Fuxing; Wang, Liang; Dai, Xinhua; Fang, Xiang; Ding, Chuan-Fan

    2014-04-01

    Collision-induced dissociation (CID) of ions by resonance activation in a quadrupole ion trap is usually accomplished by resonance exciting the ions to higher kinetic energy, whereby the high kinetic energy ions collide with a bath gas, such as helium or argon, inside the trap and dissociate to fragments. A new ion activation method using a well-defined rectangular wave dipolar potential formed by dividing down the trapping rectangular waveform is developed and examined herein. The mass-selected parent ions are resonance excited to high kinetic energies by simply changing the frequency of the rectangular wave dipolar potential and dissociation proceeds. A relationship between the ion mass and the activation waveform frequency is also identified and described. This highly efficient (CID) procedure can be realized by simply changing the waveform frequency of the dipolar potential, which could certainly simplify tandem mass spectrometry analysis methods.

  15. Giotto ion mass spectrometer measurements at comet P/Grigg-Skjellerup

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Altwegg, K.; Fuselier, S. A.; Goldstein, B. E.; Balsiger, H.; Jost, F.; Coates, A.; Neubauer, F. M.; Rosenbauer, H.

    1994-01-01

    The Giotto ion mass spectrometer high-intensity spectrometer (IMS-HIS) measured fluxes of ions from about 260,000 km before (1008:37 UT spacecraft time) to about 86,000 km after (1701:33 UT spacecraft time) closest approach to comet P/Grigg-Skjellerup during the encounter on July 10, 1992. Although the HIS sensor was not designed to measure protons, these ions were measured far from the comet. Close in to the comet, the ions observed were probably also protons, although heavier ions cannot be completely ruled out. Considerable temporal structure appears in the data, well-correlated with the data of other instruments onboard, especially those of the magnetometer. In particular, the ion count rate correlates with the direction of the magnetic field. This strong modulation at the water group ion cyclotron period (approx. 90 s) inside the inbound bow wave indicates a very narrow ion pitch angle distribution. Hence at Grigg-Skjellerup the ions appear to experience very little pitch angle scattering. This may result from strong compression in the rapidly increasing magnetic field.

  16. Evaluation and optimization of electron capture dissociation efficiency in fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    McFarland, Melinda A; Chalmers, Michael J; Quinn, John P; Hendrickson, Christopher L; Marshall, Alan G

    2005-07-01

    Electron capture dissociation (ECD) efficiency has typically been lower than for other dissociation techniques. Here we characterize experimental factors that limit ECD and seek to improve its efficiency. Efficiency of precursor to product ion conversion was measured for a range of peptide (approximately 15% efficiency) and protein (approximately 33% efficiency) ions of differing sizes and charge states. Conversion of precursor ions to products depends on electron irradiation period and maximizes at approximately 5-30 ms. The optimal irradiation period scales inversely with charge state. We demonstrate that reflection of electrons through the ICR cell is more efficient and robust than a single pass, because electrons can cool to the optimal energy for capture, which allows for a wide range of initial electron energy. Further, efficient ECD with reflected electrons requires only a short (approximately 500 micros) irradiation period followed by an appropriate delay for cooling and interaction. Reflection of the electron beam results in electrons trapped in or near the ICR cell and thus requires a brief (approximately 50 micros) purge for successful mass spectral acquisition. Further electron irradiation of refractory precursor ions did not result in further dissociation. Possibly the ion cloud and electron beam are misaligned radially, or the electron beam diameter may be smaller than that of the ion cloud such that remaining precursor ions do not overlap with the electron beam. Several ion manipulation techniques and use of a large, movable dispenser cathode reduce the possibility that misalignment of the ion and electron beams limits ECD efficiency.

  17. T-wave ion mobility-mass spectrometry: basic experimental procedures for protein complex analysis.

    PubMed

    Michaelevski, Izhak; Kirshenbaum, Noam; Sharon, Michal

    2010-07-31

    Ion mobility (IM) is a method that measures the time taken for an ion to travel through a pressurized cell under the influence of a weak electric field. The speed by which the ions traverse the drift region depends on their size: large ions will experience a greater number of collisions with the background inert gas (usually N(2;)) and thus travel more slowly through the IM device than those ions that comprise a smaller cross-section. In general, the time it takes for the ions to migrate though the dense gas phase separates them, according to their collision cross-section (Omega). Recently, IM spectrometry was coupled with mass spectrometry and a traveling-wave (T-wave) Synapt ion mobility mass spectrometer (IM-MS) was released. Integrating mass spectrometry with ion mobility enables an extra dimension of sample separation and definition, yielding a three-dimensional spectrum (mass to charge, intensity, and drift time). This separation technique allows the spectral overlap to decrease, and enables resolution of heterogeneous complexes with very similar mass, or mass-to-charge ratios, but different drift times. Moreover, the drift time measurements provide an important layer of structural information, as Omega is related to the overall shape and topology of the ion. The correlation between the measured drift time values and Omega is calculated using a calibration curve generated from calibrant proteins with defined cross-sections(1). The power of the IM-MS approach lies in its ability to define the subunit packing and overall shape of protein assemblies at micromolar concentrations, and near-physiological conditions(1). Several recent IM studies of both individual proteins(2,3) and non-covalent protein complexes(4-9), successfully demonstrated that protein quaternary structure is maintained in the gas phase, and highlighted the potential of this approach in the study of protein assemblies of unknown geometry. Here, we provide a detailed description of IMS

  18. Spiking structure of amplitude characteristics for ion trajectories in hyperboloidal mass spectrometers: the theory.

    PubMed

    Sheretov, Ernst P; Philippov, Igor V; Karnav, Tatiana B; Kolotilin, Boris I; Ivanov, Vladimir W

    2002-01-01

    We present a theory that describes a 'spiking' structure of the amplitude characteristics for trajectories of ions within a hyperboloidal mass spectrometer (HMS) discovered and reported recently. This effect, as well as modulation parametric resonance, relates directly to a fine structure of the stability diagram for a HMS. A method of extremum characteristic solutions of the Hill equation (developed in our laboratory earlier) has been used in this work. Simple expressions determined the shape of narrow dips (or reversed peaks) in the amplitude of ion oscillation versus stability parameter curves and conditions of their appearance are presented. The results that were calculated from analytical expressions are compared with those obtained from direct computations of ion trajectories in a HMS. This effect with respect to a nature of 'black holes' or 'black canyons' observed earlier in investigations of trapping efficiency and ion trapping within ion traps is discussed.

  19. Geochemical mass-balance relationships for selected ions in precipitation and stream water, Catoctin Mountains, Maryland.

    USGS Publications Warehouse

    Katz, B.G.; Bricker, O.P.; Kennedy, M.M.

    1985-01-01

    Results of a study of input/output mass balances for major ions based on the chemical composition of precipitation and stream-water, geochemical reactions with different loading rates of hydrogen ion, and watershed processes influencing the chemical character of stream-waters in two small watershed areas are reported with a view to predicting the effect of additions of acidic rain to the watershed systems. Geochemical weathering processes account for the observed changes in the chemistry of stream flow. Although present in bedrock in extremely small quantities, calcite plays an important role in neutralization of the total hydrogen-ion input.-M.S.

  20. DtaRefinery: a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra datasets

    SciTech Connect

    Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.; Polpitiya, Ashoka D.; Purvine, Samuel O.; Anderson, Gordon A.; Camp, David G.; Smith, Richard D.

    2009-12-16

    Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that can estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.

  1. Instrument manual for the retarding ion mass spectrometer on Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Baugher, C. R.; Chappell, C. R.; Reasoner, D. L.; Hammack, H. D.; Wright, W. W.; Hoffman, J. H.

    1982-01-01

    The retarding ion mass spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  2. Broadscale resolving power performance of a high precision uniform field ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Dodds, James N; Kurulugama, Ruwan T; Stafford, George C; Fjeldsted, John C; McLean, John A

    2015-10-21

    An extensive study of two current ion mobility resolving power theories ("conditional" and "semi-empirical") was undertaken using a recently developed drift tube ion mobility-mass spectrometer. The current study investigates the quantitative agreement between experiment and theory at reduced pressure (4 Torr) for a wide range of initial ion gate widths (100 to 500 μs), and ion mobility values (K0 from 0.50 to 3.0 cm(2) V(-1) s(-1)) representing measurements obtained in helium, nitrogen, and carbon dioxide drift gas. Results suggest that the conditional resolving power theory deviates from experimental results for low mobility ions (e.g., high mass analytes) and for initial ion gate widths beyond 200 μs. A semi-empirical resolving power theory provided close-correlation of predicted resolving powers to experimental results across the full range of mobilities and gate widths investigated. Interpreting the results from the semi-empirical theory, the performance of the current instrumentation was found to be highly linear for a wide range of analytes, with optimal resolving powers being accessible for a narrow range of drift fields between 14 and 17 V cm(-1). While developed using singly-charged ion mobility data, preliminary results suggest that the semi-empirical theory has broader applicability to higher-charge state systems.

  3. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    PubMed

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper.

  4. Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime

    NASA Astrophysics Data System (ADS)

    Nikolić, Dragan; Madzunkov, Stojan M.; Darrach, Murray R.

    2015-12-01

    We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program's efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra.

  5. Computer Modeling of an Ion Trap Mass Analyzer, Part I: Low Pressure Regime.

    PubMed

    Nikolić, Dragan; Madzunkov, Stojan M; Darrach, Murray R

    2015-12-01

    We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program's efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra. Graphical Abstract ᅟ.

  6. Improved atmospheric trace gas measurements with an aircraft-based tandem mass spectrometer: Ion identification by mass-selected fragmentation studies

    NASA Astrophysics Data System (ADS)

    Reiner, Thomas; MöHler, Ottmar; Arnold, Frank

    1998-12-01

    We have built and employed an aircraft-borne triple quadrupole mass spectrometer (TQMS) for fragmentation studies of mass-selected ions in the upper troposphere and lower stratosphere. The fragmentation studies included both ambient and artificially produced ions relevant for the measurement of atmospheric trace gases by ion molecule reaction mass spectrometry (IMRMS) and led to an unambiguous identification of the chemical composition of important ions used for IMRMS measurements. Among these are the product ions of ion molecule reactions of CO3-(H2O)n and H3O+(H2O)n ions with HNO3, SO2, acetone, HCN, and methyl cyanide. These reactions have been studied in the laboratory, and ions having the same masses as the expected product ions have been previously observed in atmospheric IMRMS spectra. The present fragmentation studies are the first to actually identify the chemical composition of these ions during aircraft measurements in the upper troposphere and lower stratosphere and demonstrate that these ions can reliably be used for atmospheric trace gas measurements. Furthermore, the fragmentation studies gave indications for the existence and the possible identification of previously unknown ions. Among these the tentative identification of CO3-H2O2 offers the possibility for sensitive measurements of H2O2 by IMRMS. The fragmentation studies were accompanied by IMRMS measurements of atmospheric trace gases using the TQMS. Altitude profiles of HNO3, SO2, and lower limits for H2O2 are shown.

  7. Liquid Beam Ion Desorption Mass Spectrometry for Evaluating CASSINI Data

    NASA Astrophysics Data System (ADS)

    Stolz, Ferdinand; Reviol, Rene; Srama, Ralf; Trieloff, Mario; Postberg, Frank; Abel, Bernd

    2013-04-01

    Saturn's moon Enceladus emits plumes of ice particles from an area near its south pole which are detected and chemically analyzed by the Cosmic Dust Analyzer (CDA) on board the CASSINI spacecraft. Studying these ice particles provides unique insights into Enceladus geological properties. Technically the CDA is a time-of-flight mass spectrometer which delivers mass spectra of the particles and their fragments. Since interpretation of the available CDA data is particularly challenging we employ a laboratory experiment to imitate experimental conditions in space. Key part of our experimental setup is a micron-sized water beam in high vacuum. This beam is rapidly heated up by an infrared laser pulse, which is tuned to excite the OH-stretch vibration of water molecules. This causes the water beam to dissipate into small droplets, some of which carry a net charge even though the laser energy is well below the molecular ionisation energy. The charged droplets are then analyzed in a time-of-flight mass spectrometer. With this experimental setup we successfully simulated the space born ice particles measured at Enceladus. By varying the laser intensity in our experiments, we can vary the amount of energy deposited in the liquid beam, and thus model different particle velocities. Also, variation of solute concentration in the water beam provides valuable information about ice particle composition. Some examples for anorganic solutes studied so far are sodium chloride, ammonia and hydrogen sulfite. A special feature of our experimental technique is that desorption of particles from the liquid beam is particularly soft. This is explained by the fact that all laser energy is absorbed by the water molecules. In this way molecular bonds of solutes stay intact and molecular solutes are transferred into the droplet phase without getting destroyed. This is particularly interesting in the context of analyzing organic compounds - some of which have been detected at Enceladus. Using

  8. Operational Parameters, Considerations, and Design Decisions for Resource-Constrained Ion Trap Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Danell, Ryan M.; VanAmerom, Friso H. W.; Pinnick, Veronica; Cotter, Robert J.; Brickerhoff, William; Mahaffy, Paul

    2011-01-01

    Mass spectrometers are increasingly finding applications in new and unique areas, often in situations where key operational resources (i.e. power, weight and size) are limited. One such example is the Mars Organic Molecule Analyzer (MOMA). This instrument is a joint venture between NASA and the European Space Agency (ESA) to develop an ion trap mass spectrometer for chemical analysis on Mars. The constraints on such an instrument are significant as are the performance requirements. While the ideal operating parameters for an ion trap are generally well characterized, methods to maintain analytical performance with limited power and system weight need to be investigated and tested. Methods Experiments have been performed on two custom ion trap mass spectrometers developed as prototypes for the MOMA instrument. This hardware consists of quadrupole ion trap electrodes that are 70% the size of common commercial instrumentation. The trapping RF voltage is created with a custom tank circuit that can be tuned over a range of RF frequencies and is driven using laboratory supplies and amplifiers. The entire instrument is controlled with custom Lab VIEW software that allows a high degree of flexibility in the definition of the scan function defining the ion trap experiment. Ions are typically generated via an internal electron ionization source, however, a laser desorption source is also in development for analysis of larger intact molecules. Preliminary Data The main goals in this work have been to reduce the power required to generate the radio frequency trapping field used in an ion trap mass spectrometer. Generally minimizing the power will also reduce the volume and mass of the electronics to support the instrument. In order to achieve optimum performance, commercial instruments typically utilize RF frequencies in the 1 MHz range. Without much concern for power usage, they simply generate the voltage required to access the mass range of interest. In order to reduce the

  9. Application of Ion Mobility-Mass Spectrometry to the Study of Ionic Clusters: Investigation of Cluster Ions with Stable Sizes and Compositions

    PubMed Central

    Ohshimo, Keijiro; Komukai, Tatsuya; Takahashi, Tohru; Norimasa, Naoya; Wu, Jenna Wen Ju; Moriyama, Ryoichi; Koyasu, Kiichirou; Misaizu, Fuminori

    2014-01-01

    Stable cluster sizes and compositions have been investigated for cations and anions of ionic bond clusters such as alkali halides and transition metal oxides by ion mobility-mass spectrometry (IM-MS). Usually structural information of ions can be obtained from collision cross sections determined in IM-MS. In addition, we have found that stable ion sizes or compositions were predominantly produced in a total ion mass spectrum, which was constructed from the IM-MS measurement. These stable species were produced as a result of collision induced dissociations of the ions in a drift cell. We have confirmed this result in the sodium fluoride cluster ions, in which cuboid magic number cluster ions were predominantly observed. Next the stable compositions, which were obtained for the oxide systems of the first row transition metals, Ti, Fe, and Co, are characteristic for each of the metal oxide cluster ions. PMID:26819887

  10. Low-energy ion implantation: Large mass fractionation of argon

    NASA Technical Reports Server (NTRS)

    Ponganis, K. V.; Graf, TH.; Marti, K.

    1993-01-01

    The isotropic signatures of noble gases in the atmospheres of the Earth and other planets are considerably evolved when compared to signatures observed in the solar wind. The mechanisms driving the evolution of planetary volatiles from original compositions in the solar accretion disk are currently poorly understood. Modeling of noble-gas compositional histories requires knowledge of fractionating processes that may have operated through the evolutionary stages. Since these gases are chemically inert, information on noble-gas fractionation processes can be used as probes. The importance of understanding these processes extends well beyond 'noble-gas planetology.' Trapped argon acquired by low-energy implantation (approximately less than 100 eV) into solids is strongly mass fractionated (approximately greater than or equal to 3 percent/amu). This has potential implications for the origin and evolution of terrestrial planet atmospheres.

  11. Enhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry.

    PubMed

    Brown, Lauren J; Smith, Robert W; Toutoungi, Danielle E; Reynolds, James C; Bristow, Anthony W T; Ray, Andrew; Sage, Ashley; Wilson, Ian D; Weston, Daniel J; Boyle, Billy; Creaser, Colin S

    2012-05-01

    Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (FAIMS) is used for the selective transmission of differential mobility-selected ions prior to in-source collision-induced dissociation (CID) and time-of-flight mass spectrometry (TOFMS) analysis. The FAIMS-in-source collision induced dissociation-TOFMS (FISCID-MS) method requires only minor modification of the ion source region of the mass spectrometer and is shown to significantly enhance analyte detection in complex mixtures. Improved mass measurement accuracy and simplified product ion mass spectra were observed following FAIMS preselection and subsequent in-source CID of ions derived from pharmaceutical excipients, sufficiently close in m/z (17.7 ppm mass difference) that they could not be resolved by TOFMS alone. The FISCID-MS approach is also demonstrated for the qualitative and quantitative analysis of mixtures of peptides with FAIMS used to filter out unrelated precursor ions thereby simplifying the resulting product ion mass spectra. Liquid chromatography combined with FISCID-MS was applied to the analysis of coeluting model peptides and tryptic peptides derived from human plasma proteins, allowing precursor ion selection and CID to yield product ion data suitable for peptide identification via database searching. The potential of FISCID-MS for the quantitative determination of a model peptide spiked into human plasma in the range of 0.45-9.0 μg/mL is demonstrated, showing good reproducibility (%RSD < 14.6%) and linearity (R(2) > 0.99).

  12. Identification of metallothionein subisoforms in HPLC using accurate mass and online sequencing by electrospray hybrid linear ion trap-orbital ion trap mass spectrometry.

    PubMed

    Mounicou, Sandra; Ouerdane, Laurent; L'Azou, Béatrice; Passagne, Isabelle; Ohayon-Courtès, Céline; Szpunar, Joanna; Lobinski, Ryszard

    2010-08-15

    A comprehensive approach to the characterization of metallothionein (MT) isoforms based on microbore HPLC with multimodal detection was developed. MTs were separated as Cd(7) complexes, detected by ICP MS and tentatively identified by molecular mass measured with 1-2 ppm accuracy using Orbital ion trap mass spectrometry. The identification was validated by accurate mass of the corresponding apo-MTs after postcolumn acidification and by their sequences acquired online by higher-energy collision dissociation MS/MS. The detection limits down to 10 fmol and 45 fmol could be obtained by ESI MS for apo- and Cd(7)-isoforms, respectively, and were lower than those obtained by ICP MS (100 fmol). The individual MT isoforms could be sequenced at levels as low as 200 fmol with the sequence coverage exceeding 90%. The approach was successfully applied to the identification of MT isoforms induced in a pig kidney cell line (LLC-PK(1)) exposed to CdS nanoparticles.

  13. Fourier-Transform ion cyclotron mass spectrometry (FT-ICR MS)

    SciTech Connect

    Robinson, Errol W.

    2014-03-28

    FT-ICR MS achieves the highest resolution and best mass measurement accuracy of any mass spectrometry method. These remarkable achievements are due to several factors, including multi-channel detection, measurement of frequency, magnetic field stability, and dependence of cyclotron frequency on only the magnetic field and ion mass to charge ratio, not on ion kinetic energy and other factors. Significant advances in magnet technology, instrument design and construction continue to enhance the capabilities of FT-ICR MS. FT-ICR has been applied to a variety of analytical challenges and is particularly suited to the analysis of complex mixtures and in applications where high resolution and mass measurement accuracy are critical analytical parameters.

  14. Development and Deployment of Retrofit PolarisQ Ion Trap Mass Spectrometer for Isotope Ratio Measurements

    SciTech Connect

    Thompson, Cyril V.; Whitten, William B.

    2015-11-01

    This report describes Oak Ridge National Laboratory’s (ORNL) FY15 progress in support of National Nuclear Security Administration’s (NNSA) Portable Mass Spectrometer project. A retrofit PolarisQ ion trap mass spectrometer (RPMS) has been assembled from components of two PolarisQ ion trap mass spectrometers used in previous isotope ratio programs. The retrofit mass spectrometer includes a custom Hastelloy vacuum chamber which is about ¼ the size of the standard aluminum vacuum chamber and reduces the instrument weight from the original by nine pounds. In addition, the new vacuum chamber can be independently heated to reduce impurities such as water, which reacts with UF6 to produce HF in the vacuum chamber. The analyzer and all components requiring service are mounted on the chamber lid, facilitating quick and easy replacement of consumable components such as the filament and electron multiplier.

  15. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction

    NASA Astrophysics Data System (ADS)

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 μs. Accordingly, the sample is under excitation in 10-4 part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 1010 V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the mathematical

  16. Comparison of particle-in-cell simulations with experimentally observed frequency shifts between ions of the same mass-to-charge in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Leach, Franklin E; Kharchenko, Andriy; Heeren, Ron M A; Nikolaev, Eugene; Amster, I Jonathan

    2010-02-01

    It has been previously observed that the measured frequency of ions in a Fourier transform mass spectrometry experiment depend upon the number of trapped ions, even for populations consisting exclusively of a single mass-to-charge. Since ions of the same mass-to-charge are thought not to exert a space-charge effect among themselves, the experimental observation of such frequency shifts raises questions about their origin. To determine the source of such experimentally observed frequency shifts, multiparticle ion trajectory simulations have been conducted on monoisotopic populations of Cs(+) ranging from 10(2) ions to 10(6) ions. A close match to experimental behavior is observed. By probing the effect of ion number and orbital radius on the shift in the cyclotron frequency, it is shown that for a monoisotopic population of ions, the frequency shift is caused by the interaction of ions with their image-charge. The addition of ions of a second mass-to-charge to the simulation allows the comparison of the magnitude of the frequency shift resulting from space-charge (ion-ion) effects versus ion interactions with their image charge.

  17. Ion beam induced surface patterns due to mass redistribution and curvature-dependent sputtering

    NASA Astrophysics Data System (ADS)

    Bobes, Omar; Zhang, Kun; Hofsäss, Hans

    2012-12-01

    Recently it was reported that ion-induced mass redistribution would solely determine nano pattern formation on ion-irradiated surfaces. We investigate the pattern formation on amorphous carbon thin films irradiated with Xe ions of energies between 200 eV and 10 keV. Sputter yield as well as number of displacements within the collision cascade vary strongly as function of ion energy and allow us to investigate the contributions of curvature-dependent erosion according to the Bradley-Harper model as well as mass redistribution according to the Carter-Vishnyakov model. We find parallel ripple orientations for an ion incidence angle of 60° and for all energies. A transition to perpendicular pattern orientation or a rather flat surface occurs around 80° for energies between 1 keV and 10 keV. Our results are compared with calculations based on both models. For the calculations we extract the shape and size of Sigmund's energy ellipsoid (parameters a, σ, μ), the angle-dependent sputter yield, and the mean mass redistribution distance from the Monte Carlo simulations with program SDTrimSP. The calculated curvature coefficients Sx and Sy describing the height evolution of the surface show that mass redistribution is dominant for parallel pattern formation in the whole energy regime. Furthermore, the angle where the parallel pattern orientation starts to disappear is related to curvature-dependent sputtering. In addition, we investigate the case of Pt erosion with 200 eV Ne ions, where mass redistribution vanishes. In this case, we observe perpendicular ripple orientation in accordance with curvature-dependent sputtering and the predictions of the Bradley-Harper model.

  18. Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization.

    PubMed

    Todd, P J; Schaaff, T G; Chaurand, P; Caprioli, R M

    2001-04-01

    Organic secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry can be used to produce molecular images of samples. This is achieved through ionization from a clearly identified point on a flat sample, and performing a raster of the sample by moving the point of ionization over the sample surface. The unique analytical capabilities of mass spectrometry for mapping a variety of biological samples at the tissue level are discussed. SIMS provides information on the spatial distribution of the elements and low molecular mass compounds as well as molecular structures on these compounds, while MALDI yields spatial information about higher molecular mass compounds, including their distributions in tissues at very low levels, as well as information on the molecular structures of these compounds. Application of these methods to analytical problems requires appropriate instrumentation, sample preparation methodology, and a data presentation usually in a three-coordinate plot where x and y are physical dimensions of the sample and z is the signal amplitude. The use of imaging mass spectrometry is illustrated with several biological systems.

  19. Investigating ion-surface collisions with a niobium superconducting tunnel junction detector in a time-of-flight mass spectrometer

    SciTech Connect

    Westmacott, G.; Zhong, F.; Frank, M.; Friedrich, S.; Labov, S.; Benner, W.H.

    1999-12-01

    The performance of an energy sensitive, niobium superconducting tunnel junction detector is investigated by measuring the pulse height produced by impacting molecular and atomic ions at different kinetic energies. Ions are produced by laser resorption and matrix-assisted laser desorption in a time-of-flight mass spectrometer. Results show that the STJ detector pulse height decreases for increasing molecular ion mass, passes through a minimum at around 2000 Da, and the increases with increasing mass of molecular ions above 2000Da. The detector does not show a decline in sensitivity for high mass ions as is observed with microchannel plate ion detectors. These detector plus height measurements are discussed in terms of several physical mechanisms involved in an ion-surface collision.

  20. Characterization of an Airborne Laser-Spark Ion Source for Ambient Mass Spectrometry.

    PubMed

    Bierstedt, Andreas; Kersten, Hendrik; Glaus, Reto; Gornushkin, Igor; Panne, Ulrich; Riedel, Jens

    2017-03-07

    An airborne laser plasma is suggested as an ambient ion source for mass spectrometry. Its fundamental physical properties, such as an excellent spatial and temporal definition, high electron and ion densities and a high effective cross section in maintaining the plasma, make it a promising candidate for future applications. For deeper insights into the plasma properties, the optical plasma emission is examined and compared to mass spectra. The results show a seemingly contradictory behavior, since the emitted light reports the plasma to almost entirely consist of hot elemental ions, while the corresponding mass spectra exhibit the formation of intact molecular species. Further experiments, including time-resolved shadowgraphy, spatially resolved mass spectrometry, as well as flow-dependent emission spectroscopy and mass spectrometry, suggest the analyte molecules to be formed in the cold plasma vicinity upon interaction with reactive species formed inside the hot plasma center. Spatial separation is maintained by concentrically expanding pressure waves, inducing a strong unidirectional diffusion. The accompanying rarefaction inside the plasma center can be compensated by a gas stream application. This replenishing results in a strong increase in emission brightness, in local reactive species concentration, and eventually in direct mass spectrometric sensitivity. To determine the analytical performance of the new technique, a comparison with an atmospheric pressure chemical ionization (APCI) source was conducted. Two kitchen herbs, namely, spearmint and basil, were analyzed without any sample pretreatment. The presented results demonstrate a considerably higher sensitivity of the presented laser-spark ionization technique.

  1. High mass positive ions and molecules in capacitively-coupled radio-frequency CF4 plasmas

    NASA Astrophysics Data System (ADS)

    Schwarzenbach, W.; Cunge, G.; Booth, J. P.

    1999-06-01

    The positive ions and neutral radicals arriving at the earthed walls of a capacitively-coupled radio-frequency pure CF4 plasma were analyzed using a quadrupole mass spectrometer adapted for high masses. Experiments were performed at 50 and 200 mTorr, in an empty reactor and with Si and SiO2-coated Si substrates on the powered electrode. High mass ions and neutrals were detected, up to 500 and 300 amu, respectively. The abundance of high-mass species was greatest in the presence of silicon wafers and at higher pressure. The observed ion masses can be separated into distinct series, originating from different initial bases to which successive CF2 units have been added. We, therefore, propose that these high-mass species are the result of a gas phase polymerization process consisting of CF2 addition reactions, in agreement with a model proposed recently by our group. The influence of a silicon substrate derives primarily from the strong decrease that it induces in the concentration of F atoms, which otherwise limit the concentration of CF2 and of chain initiating species.

  2. Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Ramachandran, K.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S.; Palshetkar, C. S.; Rafferty, D. C.; Simenel, C.; Wakhle, A.; Khuyagbaatar, J.; Düllmann, Ch. E.; Lommel, B.; Kindler, B.

    2015-06-01

    Background: Mass-asymmetric fission has been observed in low energy fission of 180Hg . Calculations predicted the persistence of asymmetric fission in this region even at excitation energies of 30-40 MeV. Purpose: To investigate fission mass distributions by populating different isotopes of Hg using heavy ion fusion reactions. Methods: Fission fragment mass-angle distributions have been measured for two reactions, 40Ca+142Nd and 13C+182W , populating 182Hg and 195Hg , respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Measurements were made at beam energies around the capture barrier for the two reactions and mass ratio distributions were obtained using the kinematic reconstruction method. Results: Asymmetric fission has been observed following the population of 182Hg at an excitation energy of 22.8 MeV above the saddle point. A symmetric peaked mass ratio distribution was observed for 195Hg nuclei at a similar excitation energy above the saddle point. Conclusions: Mass-asymmetric fission has been observed in neutron deficient Hg nuclei populated via heavy ion fusion for the first time. The results are consistent with observations from beta-delayed fission measurements and provide a proof-of-principle for expanding experimental studies of the influence of shell effects on the fission processes.

  3. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  4. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry

    PubMed Central

    Prokai, Laszlo; Stevens, Stanley M.

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  5. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry.

    PubMed

    Prokai, Laszlo; Stevens, Stanley M

    2016-01-16

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae.

  6. Arrival time distributions of product ions reveal isomeric ratio of deprotonated molecules in ion mobility-mass spectrometry of hyaluronan-derived oligosaccharides.

    PubMed

    Hermannová, Martina; Iordache, Andreea-Maria; Slováková, Kristína; Havlíček, Vladimír; Pelantová, Helena; Lemr, Karel

    2015-06-01

    Hyaluronic acid is a naturally occurring linear polysaccharide with substantial medical potential. In this work, discrimination of tyramine-based hyaluronan derivatives was accessed by ion mobility-mass spectrometry of deprotonated molecules and nuclear magnetic resonance spectroscopy. As the product ion mass spectra did not allow for direct isomer discrimination in mixture, the reductive labeling of oligosaccharides as well as stable isotope labeling was performed. The ion mobility separation of parent ions together with the characteristic fragmentation for reduced isomers providing unique product ions allowed us to identify isomers present in a mixture and determine their mutual isomeric ratio. The determination used simple recalculation of arrival time distribution areas of unique ions to areas of deprotonated molecules. Mass spectrometry data were confirmed by nuclear magnetic resonance spectroscopy.

  7. Multiplexed Ion Mobility Spectrometry - Orthogonal Time-Of-Flight Mass Spectrometry

    SciTech Connect

    Belov, Mikhail E.; Buschbach, Michael A.; Prior, David C.; Tang, Keqi; Smith, Richard D.

    2007-03-15

    Ion mobility spectrometry (IMS) coupled to orthogonal time-of-flight mass spectrometry (TOF) has shown significant promise for the characterization of complex biological mixtures. The enormous complexity of biological samples (e.g. from proteomics) and the need for both biological and technical analysis replicates imposes major challenges for multidimensional separation platforms in regard to both sensitivity and sample throughput. A major potential attraction of the IMS-TOF MS platform is separation speeds exceeding that of conventional condensed-phase separations by orders of magnitude. Known limitations of the IMS-TOF MS platforms that presently mitigate this attraction include the need for extensive signal averaging due to factors that include significant ion losses in the IMS-TOF interface and an ion utilization efficiency of less than ~1% with continuous ion sources (e.g. ESI). We have developed a new multiplexed ESI-IMS-TOF mass spectrometer that enables lossless ion transmission through the IMS-TOF as well as a utilization efficiency of >50% for ions from the ESI source. Initial results with a mixture of peptides show a ~10-fold increase in signal-to-noise ratio with the multiplexed approach compared to a signal averaging approach, with no reduction in either IMS or TOF MS resolution.

  8. Advanced Ion Mass Spectrometer for Giant Planet Ionospheres, Magnetospheres and Moons

    NASA Astrophysics Data System (ADS)

    Sittler, EC; Cooper, JF; Paschalidis, N.; Jones, SL; Rodriguez, M.; Ali, A.; Coplan, MA; Chornay, DJ; Sturner; Bateman, FB; Andre, N.; Fedorov, A.; Wurz, P.

    2015-10-01

    The Advanced Ion Composition Spectrometer (AIMS) has been under development from various NASA sources (NASA LWSID, NASA ASTID, NASA Goddard IRADs) to measure elemental, isotopic, and simple molecular composition abundances of 1 eV/e to 25 keV/e hot ions with wide field-of-view (FOV) in the 1 - 60 amu mass range at mass resolution M/ΔM ≤ 60 over a wide dynamic range of intensities and penetrating radiation background from the inner magnetospheres of Jupiter and Saturn to the outer magnetospheric boundary regions and the upstream solar wind. This instrument will work for both spinning spacecraft and 3-axis stabilized spacecraft with wide field-of-view capability in both cases. It will measure the ion velocity distribution functions (IVDF) for the individual ion species; ion velocity moments of the IVDF will give the fluid parameters (density, flow velocity and temperature) of the individual ion species. Outer planet mission applications are Io Observer, Jupiter Europa Orbiter/Europa Clipper, Enceladus Orbiter, and Uranus Orbiter as described in the decadal survey, but would also be valuable for inclusion on other missions to outer planet destinations such as Saturn- Titan and Neptune-Triton and for future missions to terrestrial planets, Venus and Mars, the Moon, asteroids, and comets, and of course for geospace applications to the Earth.

  9. Dipole moments and orientation polarizabilities of diatomic molecular ions for precision atomic mass measurement

    NASA Astrophysics Data System (ADS)

    Cheng, Michelle; Brown, John M.; Rosmus, Pavel; Linguerri, Roberto; Komiha, Najia; Myers, Edmund G.

    2007-01-01

    In high precision Penning trap mass spectrometry the cyclotron frequency of a polarizable ion is perturbed due to the Stark interaction with the motional electric field. For polar diatomic molecular ions, which have adjacent rotational levels of opposite parity, these shifts can be particularly large—especially for the lowest rotational levels, which are those occupied by ions stored for many hours in cryogenic Penning traps. In order to provide corrections to precision atomic mass measurements, we consider the calculation of orientation polarizabilities of CO+ and the positive ions of the first and second row diatomic hydrides, LiH+ to ArH+ . Dipole moments for these ions have been calculated using the restricted coupled cluster method with perturbative triples and large basis sets. Using these dipoles and an effective Hamiltonian, we have obtained rotational-state dependent polarizabilities of the open-shell diatomic ions CO+ , NH+ , OH+ , FH+ , PH+ , SH+ , and ClH+ . Results are given for those rotational levels that are significantly populated at 4.2K , for magnetic fields up to 10T . For the remaining first and second row hydride cations, polarizabilities at the magnetic fields of interest can be obtained from a simple formula valid for closed-shell molecules. Conversely, in cases where the polarizability shifts can be measured, our results enable experimental determination of dipole moments.

  10. Photoelectron emission as an alternative electron impact ionization source for ion trap mass spectrometry.

    PubMed

    Gamez, Gerardo; Zhu, Liang; Schmitz, Thomas A; Zenobi, Renato

    2008-09-01

    Electron impact ionization has several known advantages; however, heated filament electron sources have pressure limitations and their power consumption can be significant for certain applications, such as in field-portable instruments. Herein, we evaluate a VUV krypton lamp as an alternative source for ionization inside the ion trap of a mass spectrometer. The observed fragmentation patterns are more characteristic of electron impact ionization than photoionization. In addition, mass spectra of analytes with ionization potentials higher than the lamp's photon energy (10.6 eV) can be easily obtained. A photoelectron impact ionization mechanism is suggested by the observed data allowed by the work function of the ion trap electrodes (4.5 eV), which is well within the lamp's photon energy. In this case, the photoelectrons emitted at the surface of the ion trap end-cap electrode are accelerated by the applied rf field to the ring electrode. This allows the photoelectrons to gain sufficient energy to ionize compounds with high ionization potentials to yield mass spectra characteristic of electron impact. In this manner, electron impact ionization can be used in ion trap mass spectrometers at low powers and without the limitations imposed by elevated pressures on heated filaments.

  11. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory

    When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...

  12. DETERMINATION OF BROMATE IN DRINKING WATERS BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...

  13. Analysis of Microorganisms by Oxidative and Non-Oxidative Pyrolysis Gas Chromatography Ion Trap Mass Spectrometry.

    DTIC Science & Technology

    1992-04-01

    Bacillus subtilis, Bacillus pumilus , Bacillus lichenformis, and Bacillus amyloliquefaciens by Pyrolysis-gas Liquid Chromatography, Deoxyribonucleic...FIGURES Number Page 1. Curie point pyrolysis GC-ITD data for Bacillus subtilis ................... 16 2. Total Ion Chromatograms for Bacillus subtilis...under oxidative and non-oxidative pyrolysis conditions ................................... 17 3. Total Lipid Mass Spectra for Bacillus subtilis under

  14. Static secondary ion mass spectrometry to monitor solid-phase peptide synthesis.

    PubMed

    Maux, D; Enjalbal, C; Martinez, J; Aubagnac, J L; Combarieu, R

    2001-10-01

    Insights into the direct monitoring of supported peptide synthesis were realized through the design of time of flight static secondary ion mass spectrometry (TOF-S-SIMS) experiments. The mass spectrometric method was carried out at the resin bead level and was found reproducible (intra- and inter-day assays), sensitive (femtomol level) and non-destructive (only 0.01% of the peptides were destroyed by the primary ion beam bombardment). The nature of the peptide-resin linkage governed the recovery of ions characterizing the whole peptide sequence. A S-SIMS cleavable bond was thus required solely in that position to achieve the release of the growing structures from the insoluble support into the gas phase without any fragmentation. Results are presented with standard solid-phase resins allowing linkage through an amide or an ester bond. The latter was orthogonally broken upon the bombardment and thus constituted a convenient S-SIMS cleavable bond.

  15. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.

  16. Ion chemistry of VX surrogates and ion energetics properties of VX: new suggestions for VX chemical ionization mass spectrometry detection.

    PubMed

    Midey, Anthony J; Miller, Thomas M; Viggiano, A A; Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji

    2010-05-01

    Room temperature rate constants and product ion branching ratios have been measured for the reactions of numerous positive and negative ions with VX chemical warfare agent surrogates representing the amine (triethylamine) and organophosphonate (diethyl methythiomethylphosphonate (DEMTMP)) portions of VX. The measurements have been supplemented by theoretical calculations of the proton affinity, fluoride affinity, and ionization potential of VX and the simulants. The results show that many proton transfer reactions are rapid and that the proton affinity of VX is near the top of the scale. Many proton transfer agents should detect VX selectively and sensitively in chemical ionization mass spectrometers. Charge transfer with NO(+) should also be sensitive and selective since the ionization potential of VX is small. The surrogate studies confirm these trends. Limits of detection for commercial and research grade CIMS instruments are estimated at 80 pptv and 5 ppqv, respectively.

  17. Commercial intermediate pressure MALDI ion mobility spectrometry mass spectrometer capable of producing highly charged laserspray ionization ions.

    PubMed

    Inutan, Ellen D; Wang, Beixi; Trimpin, Sarah

    2011-02-01

    The first examples of highly charged ions observed under intermediate pressure (IP) vacuum conditions are reported using laser ablation of matrix/analyte mixtures. The method and results are similar to those obtained at atmospheric pressure (AP) using laserspray ionization (LSI) and/or matrix assisted inlet ionization (MAII). Electrospray ionization (ESI), LSI, and MAII are methods operating at AP and have been shown, with or without the use of a voltage or a laser, to produce highly charged ions with very similar ion abundance and charge states. A commercial matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) mass spectrometry (MS) instrument (SYNAPT G2) was used for the IP developments. The necessary conditions for producing highly charged ions of peptides and small proteins at IP appear to be a pressure drop region and the use of suitable matrixes and laser fluence. Ionization to produce these highly charged ions under the low pressure conditions of IP does not require specific heating or a special inlet ion transfer region. However, under the current setup, ubiquitin is the highest molecular weight protein observed. These findings are in accord with the need to provide thermal energy in the pressure drop region, similar to LSI and MAII, to improve sensitivity and extend the types of compounds that produce highly charged ions. The practical utility of IP-LSI in combination with IMS-MS is demonstrated for the analysis of model mixtures composed of a lipid, peptides, and a protein. Further, endogenous multiply charged peptides are observed directly from delipified mouse brain tissue with drift time distributions that are nearly identical in appearance to those obtained from a synthesized neuropeptide standard analyzed by either LSI- or ESI-IMS-MS at AP. Efficient solvent-free gas-phase separation enabled by the IMS dimension separates the multiply charged peptides from lipids that remained on the delipified tissue. Lipid and peptide

  18. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions.

    PubMed

    Thomas, Michael C; Mitchell, Todd W; Harman, David G; Deeley, Jane M; Nealon, Jessica R; Blanksby, Stephen J

    2008-01-01

    Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including [M+H]+, [M+Li]+, [M+Na]+, and [M-H]-: in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z-18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.

  19. Mass dependence of the real optical model potential for light ions

    NASA Astrophysics Data System (ADS)

    Srivastava, D. K.; Ganguly, N. K.; Basu, D. N.

    1983-06-01

    The observed target mass dependence of the volume integral per interacting nucleon pair of the real optical model potential for deuterons, helium-3 and alpha particles is explained in terms of the density dependence of the effective projectile-nucleon interaction. A mass dependence function for light ions is derived, which for density dependent forces consists of a volume, a surface, a curvature, and a higher order correction term. For non-saturating forces, this has only the volume term and fails to account for the observed mass dependence.

  20. Monitoring chloramines and bromamines in a humid environment using selected ion flow tube mass spectrometry.

    PubMed

    Hu, Wan-Ping; Langford, Vaughan S; McEwan, Murray J; Milligan, Daniel B; Storer, Malina K; Dummer, Jack; Epton, Michael J

    2010-06-30

    The selectivity and sensitivity of selected ion flow tube mass spectrometry (SIFT-MS) for individual breath analysis of haloamines has been improved by heating the flow tube in a commercial instrument to around 106 degrees C. Data is presented showing the marked reduction in the number density of water clusters of product ions of common breath metabolites that are isobaric with the product ions from monochloramine and monobromamine that are used to monitor the haloamine concentrations. These results have direct relevance to the real-time monitoring of chloramines in drinking water, swimming pools and food processing plants. However, once the isobaric overlaps from water cluster ions are reduced at the higher temperatures, there is no conclusive evidence showing the presence of haloamines on single breath exhalations in the mid parts per trillion range from examination of the breaths of volunteers.

  1. Plasticizer contamination from vacuum system O-rings in a quadrupole ion trap mass spectrometer.

    PubMed

    Verge, Kent M; Agnes, George R

    2002-08-01

    The outgassing of plasticizers from Buna-N and Viton o-rings under vacuum lead to undesired ion-molecule chemistry in an Electrospray Quadrupole Ion Trap Mass Spectrometer. In experiments with the helium bath gas pressure >1.2 mTorr, or whenever analyte ions were stored for >100 ms, extensive loss of analyte ions by proton transfer or adduction with o-ring plasticizers bis(2-ethylhexyl) phthalate and bis(2-ethylhexyl) adipate occurred. A temporary solution to this contamination problem was found to be overnight refluxing in hexane of all the o-rings in the vacuum system. This procedure alleviated this plasticizer contamination for approximately 100 hours of operation. These results, and those that lead to identification of the contamination as plasticizers outgassing from o-rings are described.

  2. Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry.

    PubMed

    Wagner, M S

    2005-02-01

    The low penetration depth and high sputter rates obtained using polyatomic primary ions have facilitated their use for the molecular depth profiling of some spin-cast polymer films by secondary ion mass spectrometry (SIMS). In this study, dual-beam time-of-flight (TOF) SIMS (sputter ion, 5 keV SF(5)(+); analysis ion, 10 keV Ar(+)) was used to depth profile spin-cast multilayers of poly(methyl methacrylate) (PMMA), poly(2-hydroxyethyl methacrylate) (PHEMA), and trifluoroacetic anhydride-derivatized poly(2-hydroxyethyl methacrylate) (TFAA-PHEMA) on silicon substrates. Characteristic positive and negative secondary ions were monitored as a function of depth using SF(5)(+) primary ion doses necessary to sputter through the polymer layer and uncover the silicon substrate (>5 x10(14) ions/cm(2)). The sputter rates of the polymers in the multilayers were typically less than for corresponding single-layer films, and the order of the polymers in the multilayer affected the sputter rates of the polymers. Multilayer samples with PHEMA as the outermost layer resulted in lowered sputter rates for the underlying polymer layer due to increased ion-induced damage accumulation rates in PHEMA. Additionally, the presence of a PMMA or PHEMA overlayer significantly decreased the sputter rate of TFAA-PHEMA underlayers due to ion-induced damage accumulation in the overlayer. Typical interface widths between adjacent polymer layers were 10-15 nm for bilayer films and increased with depth to approximately 35 nm for the trilayer films. The increase in interface width and observations using optical microscopy showed the formation of sputter-induced surface roughness during the depth profiles of the trilayer polymer films. This study shows that polyatomic primary ions can be used for the molecular depth profiling of some multilayer polymer films and presents new opportunities for the analysis of thin organic films using TOF-SIMS.

  3. Utilizing artificial neural networks in MATLAB to achieve parts-per-billion mass measurement accuracy with a fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Williams, D Keith; Kovach, Alexander L; Muddiman, David C; Hanck, Kenneth W

    2009-07-01

    Fourier transform ion cyclotron resonance mass spectrometry has the ability to realize exceptional mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement, as well as relative ion abundance of a given species. Artificial neural network calibration in conjunction with automatic gain control (AGC) is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. In addition, artificial neural network calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level.

  4. A Rocket-borne Ion Mass Spectrometer for the Mesosphere That is Pumped by Rocket Aerodynamics

    NASA Astrophysics Data System (ADS)

    Smith, S.; Robertson, S.; Sternovsky, Z.

    2007-12-01

    Rocket-borne mass spectrometers for ions have been flown that were evacuated by cryogenic vacuum pumps with liquid helium or neon. There have not been flights since 1993 because these instruments required expensive deliveries of cryogens and frequent refillings. Advances in (1) aerodynamic modeling, (2) mass spectrometer design, and (3) ion detection technology make possible a new approach to mass spectrometry in the mesosphere in which the spectrometer is pumped by the flow around the rocket. First, the Direct Simulation Monte-Carlo method has been applied to simulating the air flow around the rocket payload. We find that if the forward deck of the payload is supported on a stalk of smaller diameter (10 cm for example), that a low-density void is created below the forward deck by the flow around the payload, assuming that the payload is pointed in the ram direction. The air density below the deck is reduced from ambient by a factor 7 and 15 at altitudes of 80 and 90 km, respectively. The mass spectrometer is exhausted into this void which acts as a pump. In a conservative scenario, the spectrometer is kept evacuated on the upleg then opened at the apogee both at the inlet and exit. Data are acquired on the downleg to 70 km, below which the pressure in the low-density void becomes too high. Second, we use the rotating field mass spectrometer which operates at higher pressure (up to 30 mTorr) than the quadrupole spectrometer because the ion path length is shorter (2 cm) and because a larger ion acceleration potential is used that reduces the ion-neutral collision cross section. Third, we use a new design of channel electron multiplier that has been shown to operate at pressures up to 10 mTorr in the lab, corresponding to the number density at approximately 80 km in the arctic winter.

  5. Development of a novel mass spectrometer equipped with an electron cyclotron resonance ion source.

    PubMed

    Kidera, Masanori; Takahashi, Kazuya; Enomoto, Shuichi; Mitsubori, Youhei; Goto, Akira; Yano, Yasushige

    2007-01-01

    The ionization efficiency of an electron cyclotron resonance ion source (ECRIS) is generally high, and all elements can be fundamentally ionized by the high-temperature plasma. We focused our attention on the high potentiality of ECRIS as an ion source for mass spectrometers and attempted to customize the mass spectrometer equipped with an ECRIS. Precise measurements were performed by using an ECRIS that was specialized and customized for elemental analysis. By using the charge-state distribution and the isotope ratio, the problem of overlap such as that observed in the spectra of isobars could be solved without any significant improvement in the mass resolution. When the isotope anomaly (or serious mass discrimination effect) was not observed in ECR plasma, the system was found to be very effective for isotope analysis. In this paper, based on the spectrum (ion current as a function of an analyzing magnet current) results of low charged state distributions (2+, 3+, 4+, ...) of noble gases, we discuss the feasibility of an elemental analysis system employing an ECRIS, particularly for isotopic analysis. The high-performance isotopic analysis obtained for ECRIS mass spectrometer in this study suggests that it can be widely applied to several fields of scientific study that require elemental or isotopic analyses with high sensitivity.

  6. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  7. Mass spectrometric detection of trace anions: The evolution of paired-ion electrospray ionization (PIESI).

    PubMed

    Breitbach, Zachary S; Berthod, Alain; Huang, Ke; Armstrong, Daniel W

    2016-01-01

    The negative-ion mode of electrospray ionization mass spectrometry (ESI-MS) is intrinsically less sensitive than the positive-ion mode. The detection and quantitation of anions can be performed in positive-ion mode by forming specific ion-pairs during the electrospray process. The paired-ion electrospray ionization (PIESI) method uses specially synthesized multifunctional cations to form positively charged adducts with the anions to be analyzed. The adducts are detected in the positive-ion mode and at higher m/z ratios to produce excellent signal-to-noise ratios and limits of detection that often are orders of magnitude better than those obtained with native anions in the negative-ion mode. This review briefly summarizes the different analytical approaches to detect and separate anions. It focuses on the recently introduced PIESI method to present the most effective dicationic, tricationic, and tetracationic reagents for the detection of singly and multiply charged anions and some zwitterions. The mechanism by which specific structural molecular architectures can have profound effects on signal intensities is also addressed.

  8. Relative Stability of Peptide Sequence Ions Generated by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Hendrickson, Christopher L.; Marshall, Alan G.

    2012-04-01

    We report the use of unimolecular dissociation by infrared radiation for gaseous multiphoton energy transfer to determine relative activation energy (Ea,laser) for dissociation of peptide sequence ions. The sequence ions of interest are mass-isolated; the entire ion cloud is then irradiated with a continuous wave CO2 laser, and the first order rate constant, kd, is determined for each of a series of laser powers. Provided these conditions are met, a plot of the natural logarithm of kd versus the natural logarithm of laser power yields a straight line, whose slope provides a measure of Ea,laser. This method reproduces the Ea values from blackbody radiative dissociation (BIRD) for the comparatively large, singly and doubly protonated bradykinin ions (nominally y 9 and y 9 2+ ). The comparatively small sequence ion systems produce Ea,laser values that are systematic underestimates of theoretical barriers calculated with density functional theory (DFT). However, the relative Ea,laser values are in qualitative agreement with the mobile proton model and available theory. Additionally, novel protonated cyclic-dipeptide (diketopiperazine) fragmentation reactions are analyzed with DFT. FT-ICR MS provides access to sequence ions generated by electron capture dissociation, infrared multiphoton dissociation, and collisional activation methods (i.e., b n , y m , c n , z m • ions).

  9. Characterization of impurities in spiramycin by liquid chromatography/ion trap mass spectrometry.

    PubMed

    Pendela, Murali; Govaerts, Cindy; Diana, José; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2007-01-01

    A reversed-phase liquid chromatography/tandem mass spectrometry method is described for the investigation of spiramycin and related substances. The method uses an XTerra C18 column (250 x 4.6 mm i.d.), 5 microm, and a mobile phase consisting of acetonitrile, methanol, water and ammonium acetate solution, pH 6.5. Mass spectral data were acquired on an LCQ ion trap mass spectrometer equipped with atmospheric pressure chemical ionization (APCI) operated in the positive ion mode. Using this method, the fragmentation behavior of spiramycin and its related substances was studied and the unknown impurities occurring in commercial samples were investigated. In total 17 compounds were identified, among which three reported as specified impurities in the European Pharmacopoeia. The other impurities showed mainly a modification in the forosamine sugar or in the substituent at C-3 and C-6 positions. In one impurity, the mycarose sugar is absent.

  10. Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane) which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (TOF-SIMS) it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-

  11. Resonance enhanced multiphoton ionization/secondary neutral mass spectrometry and cesium attachment secondary ion mass spectrometry of bronze : a comparison.

    SciTech Connect

    McCann, M. P.; Calaway, W. F.; Pellin, M. J.; Veryovkin, I. V.; Constantinides, I.; Adriaens, A.; Adams, F.; Materials Science Division; Sam Houston State Univ.; Univ. of Antwerp

    2002-05-01

    Archaeologists have considerable interests in ancient bronzes. They want to know how these alloys were produced and how they corroded with time. Modern bronzes, with compositions very close to that of some ancient bronzes, have been produced and two methods were examined to characterize one of these modern bronzes. Analysis of this modern bronze using resonance enhanced multiphoton ionization/secondary neutral mass spectrometry (REMPI/SNMS) is examined in detail and compared to cesium attachment secondary ion mass spectrometry (CsAMS) results. Both REMPI/SNMS and CsAMS were used to quantify the composition of Fe, Ni and Mn in a modern quaternary bronze designed to serve as a certified reference material for an ancient bronze. Both methods exhibit reduced matrix effects when compared to secondary ion mass spectrometry (SIMS) and thus quantification should be simplified. It was found that when relative sensitivity factors obtained from a standard bronze material are used to calibrate the instruments, the REMPI/SNMS measurements yield results that were more sensitive and more accurate.

  12. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra.

    PubMed

    Stenson, Alexandra C; Marshall, Alan G; Cooper, William T

    2003-03-15

    Molecular formulas have been assigned for 4626 individual Suwannee River fulvic acids based on accurate mass measurements from ions generated by electrospray ionization and observed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). Formula assignments were possible because of the mass accuracy of FTICR MS at high field (9.4 T) and the regular mass spacing patterns found in fulvic acid mixtures. Sorting the 4626 individually observed ions according to Kendrick mass defect and nominal mass series (z* score) revealed that all could be assigned to 1 of 266 distinct homologous series that differ in oxygen content and double bond equivalence. Tandem mass spectrometry based on infrared multiphoton dissociation identified labile fragments of fulvic acid molecules, whose chemical formulas led to plausible structures consistent with degraded lignin as a source of Suwannee River fulvic acids.

  13. Screening and identification of glyceollins and their metabolites by electrospray ionization tandem mass spectrometry with precursor ion scanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method has been developed for screening glyceollins and their metabolites based upon precursor ion scanning. Under higher-energy collision conditions, employing a triple quadrupole mass spectrometer in the negative ion mode, deprotonated glyceollin precursors yield a diagnostic radical product ion...

  14. Fragment formula calculator (FFC): determination of chemical formulas for fragment ions in mass spectrometric data.

    PubMed

    Wegner, André; Weindl, Daniel; Jäger, Christian; Sapcariu, Sean C; Dong, Xiangyi; Stephanopoulos, Gregory; Hiller, Karsten

    2014-02-18

    The accurate determination of mass isotopomer distributions (MID) is of great significance for stable isotope-labeling experiments. Most commonly, MIDs are derived from gas chromatography/electron ionization mass spectrometry (GC/EI-MS) measurements. The analysis of fragment ions formed during EI, which contain only specific parts of the original molecule can provide valuable information on the positional distribution of the label. The chemical formula of a fragment ion is usually applied to derive the correction matrix for accurate MID calculation. Hence, the correct assignment of chemical formulas to fragment ions is of crucial importance for correct MIDs. Moreover, the positional distribution of stable isotopes within a fragment ion is of high interest for stable isotope-assisted metabolomics techniques. For example, (13)C-metabolic flux analyses ((13)C-MFA) are dependent on the exact knowledge of the number and position of retained carbon atoms of the unfragmented molecule. Fragment ions containing different carbon atoms are of special interest, since they can carry different flux information. However, the process of mass spectral fragmentation is complex, and identifying the substructures and chemical formulas for these fragment ions is nontrivial. For that reason, we developed an algorithm, based on a systematic bond cleavage, to determine chemical formulas and retained atoms for EI derived fragment ions. Here, we present the fragment formula calculator (FFC) algorithm that can calculate chemical formulas for fragment ions where the chemical bonding (e.g., Lewis structures) of the intact molecule is known. The proposed algorithm is able to cope with general molecular rearrangement reactions occurring during EI in GC/MS measurements. The FFC algorithm is able to integrate stable isotope labeling experiments into the analysis and can automatically exclude candidate formulas that do not fit the observed labeling patterns.1 We applied the FFC algorithm to create

  15. Selective injection and isolation of ions in quadrupole ion trap mass spectrometry using notched waveforms created using the inverse Fourier transform

    SciTech Connect

    Soni, M.H.; Cooks, R.G. )

    1994-08-01

    Broad-band excitation of ions is accomplished in the quadrupole ion trap mass spectrometer using notched waveforms created by the SWIFT (stored waveform inverse Fourier transform) technique. A series of notched SWIFT pulses are applied during the period of ion injection from an external Cs[sup +] source to resonantly eject all ions whose resonance frequencies fall within the frequency range of the pulse while injecting only those analyte ions whose resonance frequencies fall within the limits of the notch. This allows selective injection and accumulation of the ions of interest and continuous ejection of the unwanted ions. This is shown to result in significant improvement in S/N ratio, resolution, and sensitivity for the analyte ions of interest. Selective ion injection is demonstrated by injecting the protonated molecules of peptides VSV and gramicidin S and the intact cation of l-carnitine hydrochloride, using singly notched SWIFT pulses. Multiply notched SWIFT pulses are used to simultaneously inject ions of different m/z values of l-carnitine hydrochloride into the ion trap. A new coarse/fine ion isolation procedure, which employs a doubly notched SWIFT pulse, is demonstrated for isolating ions of a single m/z value of 4-bromobiphenyl from a population of trapped ions. 36 refs., 10 figs., 2 tabs.

  16. Relative Information Content and Top-down Proteomics by Mass Spectrometry: The Utility of Ion/Ion Proton-transfer Reactions in Electrospray-based Approaches

    PubMed Central

    Liu, Jian; Chrisman, Paul A.; Erickson, David E.; McLuckey, Scott A.

    2008-01-01

    Computer simulations of electrospray ionization (ESI) and collision-induced dissociation (CID) experiments were employed to examine the informing power associated with “top-down” proteomics implemented with some commonly used mass analyzers, i.e. the quadrupole ion trap (QIT), the Fourier transform-ion cyclotron resonance mass spectrometer (FT-ICRMS) and the time-of-flight (TOF) mass spectrometer. Using a ratio of the separated (or resolved) peaks to the total number of predicted peaks as a measure of informing power, the ESI/MS simulation of a mixture of proteins showed that the FT-ICRMS exhibited the highest informing power among the three instruments being studied, with the QIT giving the lowest informing power, which was expected from the analysis of the “component capacity” of the three approaches. Also as expected on the basis of resolving elements per component, a dramatic increase in the informing power of the approach was obtained when ion/ion proton-transfer reactions were used to reduce the number of peaks and to minimize overlap between ions of different mass and charge but similar mass-to-charge ratio. With the assumptions made in this study, the informing power of the TOF+ion/ion approach rivaled or even exceeded that of the FT-ICRMS approach, despite significantly lower mass resolution. This result stemmed both from a reduction in the number of peaks and their dispersion over a much wider range of mass-to-charge ratios. Similar results were obtained from the CID simulation, where the informing power of different approaches was evaluated on the basis of the ratio of the number of ions for which a mass could be determined unambiguously to the total number of ions in the spectra. PMID:17263338

  17. Dynamic collision-induced dissociation of peptides in a quadrupole ion trap mass spectrometer.

    PubMed

    Collin, Olivier L; Beier, Matthias; Jackson, Glen P

    2007-07-15

    The fragmentation of natural peptides using dynamic collision-induced dissociation (DCID), a novel fragmentation method for quadrupole ion traps, is demonstrated. Using leucine enkephalin as a diagnostic molecule, the fragmentation efficiencies and energetics of DCID are compared with other methods of collisional activation in ion traps such as conventional on-resonance excitation and high-amplitude short-time excitation (HASTE). A typical fragmentation efficiency of approximately 20% is achieved for DCID, which is significantly lower than conventional CID (maximum near 80%). Tandem mass spectra of two other peptides, substance P and oxidized insulin alpha-chain, demonstrate that product ion spectra for DCID are comparable to conventional or HASTE CID. Because DCID achieves fragmentation during the standard mass acquisition scan, no extra time is necessary for on-resonance excitation or product ion collection, so analysis times are reduced by a minimum of 10-15% depending on the scanning conditions. DCID therefore offers more tandem mass spectra per second than conventional methods of collisional activation, which could be highly advantageous for bottom-up proteomics separations.

  18. A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps

    SciTech Connect

    Greenwood, J. B.; Kelly, O.; Calvert, C. R.; Duffy, M. J.; King, R. B.; Belshaw, L.; Graham, L.; Alexander, J. D.; Williams, I. D.; Bryan, W. A.; Turcu, I. C. E.; Cacho, C. M.; Springate, E.

    2011-04-15

    In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components.

  19. Predicting molecular formulas of fragment ions with isotope patterns in tandem mass spectra.

    PubMed

    Zhang, Jingfen; Gao, Wen; Cai, Jinjin; He, Simin; Zeng, Rong; Chen, Runsheng

    2005-01-01

    A number of different approaches have been proposed to predict elemental component formulas (or molecular formulas) of molecular ions in low and medium resolution mass spectra. Most of them rely on isotope patterns, enumerate all possible formulas for an ion, and exclude certain formulas violating chemical constraints. However, these methods cannot be well generalized to the component prediction of fragment ions in tandem mass spectra. In this paper, a new method, FFP (Fragment ion Formula Prediction), is presented to predict elemental component formulas of fragment ions. In the FFP method, the prediction of the best formulas is converted into the minimization of the distance between theoretical and observed isotope patterns. And, then, a novel local search model is proposed to generate a set of candidate formulas efficiently. After the search, FFP applies a new multiconstraint filtering to exclude as many invalid and improbable formulas as possible. FFP is experimentally compared with the previous enumeration methods, and shown to outperform them significantly. The results of this paper can help to improve the reliability of de novo in the identification of peptide sequences.

  20. Advanced Automation for Ion Trap Mass Spectrometry-New Opportunities for Real-Time Autonomous Analysis

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, C. M.; Salmonson, J. D.; Yost, R. A.; Griffin, T. P.; Yates, N. A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    The utility of MS/MS for both target compound analysis and the structure elucidation of unknowns has been described in a number of references. A broader acceptance of this technique has not yet been realized as it requires large, complex, and costly instrumentation which has not been competitive with more conventional techniques. Recent advancements in ion trap mass spectrometry promise to change this situation. Although the ion trap's small size, sensitivity, and ability to perform multiple stages of mass spectrometry have made it eminently suitable for on-line, real-time monitoring applications, advance automation techniques are required to make these capabilities more accessible to non-experts. Towards this end we have developed custom software for the design and implementation of MS/MS experiments. This software allows the user to take full advantage of the ion trap's versatility with respect to ionization techniques, scan proxies, and ion accumulation/ejection methods. Additionally, expert system software has been developed for autonomous target compound analysis. This software has been linked to ion trap control software and a commercial data system to bring all of the steps in the analysis cycle under control of the expert system. These software development efforts and their utilization for a number of trace analysis applications will be described.

  1. Microfabricated ion trap mass spectrometry for characterization of organics and potential biomarkers

    NASA Astrophysics Data System (ADS)

    Austin, Daniel

    Mass spectrometry is a powerful analytical technique with a strong history in planetary exploration, and is the method of choice for detection and identification of organic and biological molecules. MS instrumentation can also be combined with techniques such as gas chromatography, liquid chromatography, or chiral separation, which are particularly important for analysis of complex mixtures or possible homochirality. Ion traps have several inherent advantages, including speed of analysis (important for GC-MS), MS/MS capabilities (important to identification of unknown compounds), excellent sensitivity, and ease of coupling with ambient ionization techniques that are under development for biomolecule detection. We report on progress in using microfabrication techniques to produce radiofrequency quadrupole ion traps that are much smaller, lighter, and lower power than existing instruments. We produce ion traps using an assembly of two ceramic plates, the facing surfaces of which are lithographically patterned with electrodes. This approach allows great flexibility in the trap geometry, and we have demonstrated working mass spectrometers with quadrupole, linear, and toroidal trapping fields. The approach also allows correction of higher-order terms in the electric field. With this system, mass resolution of up to 1300 has been demonstrated, which is adequate for identification of a wide range of potential biomarkers. Capabilities such as tandem analysis have also been demonstrated. Of particular interest is an ion trap that contains both quadrupole and toroidal trapping regions simultaneously and coaxially. Ions can be trapped as a large reservoir in the toroidal region and introduced in small batches to the quadrupole region for mass analysis. This capability is particularly valuable where the sample of interest is very small, such as microfossil with trace organics, and where the organic inventory is both complex and unknown. Development and results of this device

  2. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses

    SciTech Connect

    Zheng, Xueyun; Zhang, Xing; Schocker, Nathaniel S.; Renslow, Ryan S.; Orton, Daniel J.; Khamsi, Jamal; Ashmus, Roger A.; Almeida, Igor C.; Tang, Keqi; Costello, Catherine E.; Smith, Richard D.; Michael, Katja; Baker, Erin S.

    2016-09-07

    Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules such as proteins and lipids, and alter their properties and functions, so understanding the effect glycans have on cellular systems is essential. However the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycan standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS.

  3. Ion funnel augmented Mars atmospheric pressure photoionization mass spectrometry for in situ detection of organic molecules.

    PubMed

    Johnson, Paul V; Hodyss, Robert; Beauchamp, J L

    2014-11-01

    Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility.

  4. Ion trap mass spectrometry on a comet nucleus: the Ptolemy instrument and the Rosetta space mission.

    PubMed

    Todd, John F J; Barber, Simeon J; Wright, Ian P; Morgan, Geraint H; Morse, Andrew D; Sheridan, Simon; Leese, Mark R; Maynard, Jon; Evans, Suzanne T; Pillinger, Colin T; Drummond, Duncan L; Heys, Samantha C; Huq, S Ejaz; Kent, Barry J; Sawyer, Eric C; Whalley, Martin S; Waltham, Nicholas R

    2007-01-01

    In May 2014, the Rosetta spacecraft is scheduled to rendezvous with the comet Churyumov-Gerasimenko ('67P'). One of the instruments on board the 'Lander' which will descend on to the surface of the comet is a miniaturised GC/MS system that incorporates an ion trap mass spectrometer, specially developed for isotope ratio analysis. This article describes the development and optimisation of the ion trap for this unique application, and presents a summary of the range of pre-programmed experiments that will contribute to the characterisation of the solid and volatile cometary materials.

  5. A novel principle for an ion mirror design in time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Scherer, S.; Altwegg, K.; Balsiger, H.; Fischer, J.; Jäckel, A.; Korth, A.; Mildner, M.; Piazza, D.; Reme, H.; Wurz, P.

    2006-03-01

    A novel design for a gridless two-stage ion mirror, or reflectron, for time-of-flight mass spectrometry (TOFMS) will be presented. The development of this novel design was driven by the stringent engineering requirements for the ion mirror's utilization by the reflectron time-of-flight (RTOF) sensor in the Rosetta orbiter spectrometer for ion and neutral analysis (ROSINA) instrument package of the Rosetta cometary mission launched by the European Space Agency in March 2004. The reflectron consists of ceramic and titanium alloy components joined by brazing and welding processes. The device serves as both the mechanical structure and as an ultra-high-vacuum (UHV) enclosure for the TOFMS system. The electrostatic fields of the reflectron are generated along two individually adjustable sections of a resistor helix applied to the inner surface of a ceramic cylinder. This design allows for increased homogeneity of the electrostatic fields, and minimizes fringe fields close to the cylindrical boundary of the reflectron structure. Thus, the usable inner diameter of ion flight path for a given outer diameter is maximized; a feature required by spacecraft constraints. An additional electrostatic lens in front of the reflectron allows the geometrical alteration of the shape of the ion beam, and its direction with regard to the ion optical axis. This makes it possible to switch the operation of the TOFMS system between a single-reflection and a triple-reflection mode, the latter using an additional ion mirror. Typically, mass resolutions of up to 5000 at full width at half maximum (FWHM) have been achieved in the triple-reflection mode for an overall sensor dimension of 1 m. Experimental results in the single-reflection mode and in the triple-reflection mode will be presented. Environmental constraints for space applications will also be discussed.

  6. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    PubMed

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  7. Simultaneous Deposition of Mass Selected Anions and Cations: Improvements in Ion Delivery for Matrix Isolation Experiments

    NASA Astrophysics Data System (ADS)

    Goodrich, Michael E.; Moore, David T.

    2016-06-01

    A focus of the research in our group has been to develop improved methods for ion delivery in matrix isolation experiments. We have previously reported a method to co-deposit low energy, mass selected metal anions and a rare gas counter cation.a A modification allowing for mass selection of both the anion and cation will be discussed. Results from preliminary experiments of mass selected, low energy Cu- and SF5+ will also be highlighted. To our knowledge, these experiments are the first time two mass selected beams of ions have been simultaneously deposited into a cryogenic matrix. Co-deposition of the ions into an argon matrix doped with 0.02% CO at 20K resulted in the observation of bands assigned to SF5+ and anionic copper carbonyl complexes, Cu(CO)n- (n=1-3). Upon irradiation of the matrix with a narrow band, blue LED, the copper carbonyl complexes are converted to the neutral analogues, while the fate of the photodetached electrons can be directly tracked, as a decrease of the SF5+ band and a growth of the neutral SF5 band are observed. aLudwig, R. M.; Moore, D. T.; J. Chem. Phys. 139, 244202 (2013).

  8. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2017-02-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences.

  9. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Ferguson, Jill Wisnewski

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO+), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  10. Effect of microstructure of graphite on the nonreductive thermal ion emission in thermal ionization mass spectrometry.

    PubMed

    Wei, H Z; Jiang, S Y; Xiao, Y K

    2010-02-25

    The emission behavior of polyatomic ions in the ionization source of thermal ionization mass spectrometry (TIMS) was investigated. The results suggest that the presence of a graphite promoter plays a key role for the formation and stable emission of polyatomic ions, such as M(2)X(+), M(2)BO(2)(+), Cs(2)NO(2)(+), and Cs(2)CNO(+). Our data further implied that the intensity of M(2)X(+) and M(2)BO(2)(+) increases and the emission temperature decreases with increasing cationic and anionic radius. During the boron isotopic measurement using the Cs(2)BO(2)(+)-graphite-PTIMS method, the isobaric interference ion Cs(2)CNO(+) cannot be transformed from nitrate or organic compounds containing an amide group but can be induced by the existence of trace amounts of boron because of its special electron-deficiency property (B(3+)). Characterization on the planar crystalline structure of various graphite samples with SEM, TEM, and Raman spectroscopy confirmed the relationship of the emission capacity of polyatomic ions and the crystal microstructure of graphite and provides direct evidence that graphite with a perfect parallel and equidistant layer orientation shows a beneficial effect on the emission of polyatomic ions in TIMS. The mechanism study on the formation of polyatomic ions opens the possibility to establish high precision methods for isotopic composition analysis of more nonmetal elements with the TIMS technique.

  11. Higher-Pressure Ion Funnel Trap Interface for Orthogonal Time-of-Flight Mass Spectrometry

    PubMed Central

    Ibrahim, Yehia; Belov, Mikhail E.; Tolmachev, Aleksey V.; Prior, David C.; Smith, Richard D.

    2008-01-01

    A combined electrodynamic ion funnel and ion trap coupled to an orthogonal acceleration (oa)-time-of-flight mass spectrometer (oa-TOF MS) was developed and characterized. The ion trap was incorporated through the use of added terminal electrodynamic ion funnel electrodes enabling control over the axial DC gradient in the trap section. The ion trap operates efficiently at a pressure of 1 Torr, and measurements indicate a maximum charge capacity of ~3×107 charges. An order of magnitude increase in sensitivity was observed in the analysis of low concentration peptides mixtures with oa-TOF MS in the trapping mode as compared to the continuous regime. A signal increase in the trapping mode was accompanied by reduction in the background chemical noise, due to more efficient desolvation of e.g., solvent related clusters. Controlling the ion trap ejection time was found to result in efficient removal of singly charged species and improving signal-to-noise ratio (S/N) for the multiply charged analytes. PMID:17850113

  12. Characterization and ion-induced degradation of cross-linked poly(methyl methacrylate) studied using time of flight secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wagner, M. S.; Lenghaus, K.; Gillen, G.; Tarlov, M. J.

    2006-12-01

    In this study, a series of random copolymers of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) were prepared as surface-initiated polymer (SIP) films on silicon substrates using atom transfer radical polymerization. Positive and negative ion static time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to characterize SIP films with different MMA/EGDMA monomer ratios in an attempt to quantify their surface composition. However, matrix effects in the positive and negative ion modes led to preferential secondary ion generation from the EGDMA monomer and suppression of secondary ions characteristic of the MMA monomer, precluding accurate quantification using standard linear quantification methods. Ion-induced degradation of these films under 5 keV SF 5+ bombardment was also examined to determine the effect of cross-linking on the accumulation of ion-induced damage. Increasing incorporation of the EGDMA cross-linker in the SIP films decreased the sputter rate and increased the rate of damage accumulation under extended (>10 14 ions/cm 2) 5 keV SF 5+ bombardment. Comparison of the ion bombardment data with thermal degradation of cross-linked PMMA suggests that the presence of the cross-linker impedes degradation by depolymerization, resulting in ion-induced damage accumulation. The increased rate of ion-induced damage accumulation with increased cross-link density also suggests that polymers that can form cross-links during ion bombardment are less amenable to depth profiling using polyatomic primary ions.

  13. Orbitrap-based mass analyser for in-situ characterization of asteroids: ILMA, Ion Laser Mass Analyser

    NASA Astrophysics Data System (ADS)

    Briois, C.; Cotti, H.; Thirkell, L.; Space Orbitrap Consortium[K. Aradj, French; Bouabdellah, A.; Boukrara, A.; Carrasco, N.; Chalumeau, G.; Chapelon, O.; Colin, F.; Coll, P.; Engrand, C.; Grand, N.; Kukui, A.; Lebreton, J.-P.; Pennanech, C.; Szopa, C.; Thissen, R.; Vuitton, V.; Zapf], P.; Makarov, A.

    2014-07-01

    Since about a decade the boundaries between comets and carbonaceous asteroids are fading [1,2]. No doubt that the Rosetta mission should bring a new wealth of data on the composition of comets. But as promising as it may look, the mass resolving power of the mass spectrometers onboard (so far the best on a space mission) will only be able to partially account for the diversity of chemical structures present. ILMA (Ion-Laser Mass Analyser) is a new generation high mass resolution LDI-MS (Laser Desorption-Ionization Mass Spectrometer) instrument concept using the Orbitrap technique, which has been developed in the frame of the two Marco Polo & Marco Polo-R proposals to the ESA Cosmic Vision program. Flagged by ESA as an instrument concept of interest for the mission in 2012, it has been under study for a few years in the frame of a Research and Technology (R&T) development programme between 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) [3,4], partly funded by the French Space Agency (CNES). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercialises Orbitrap-based laboratory instruments. The R&T activities are currently concentrating on the core elements of the Orbitrap analyser that are required to reach a sufficient maturity level for allowing design studies of future space instruments. A prototype is under development at LPC2E and a mass resolution (m/Δm FWHM) of 100,000 as been obtained at m/z = 150 for a background pressure of 10^{-8} mbar. ILMA would be a key instrument to measure the molecular, elemental and isotopic composition of objects such as carbonaceous asteroids, comets, or other bodies devoid of atmosphere such as the surface of an icy satellite, the Moon, or Mercury.

  14. Preparation and in situ characterization of surfaces using soft landing in a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Alvarez, Jormarie; Cooks, R Graham; Barlow, S E; Gaspar, Daniel J; Futrell, Jean H; Laskin, Julia

    2005-06-01

    Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2-keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly protonated peptide ion, peptide fragment ions, and peaks characteristic of the surface in all cases. In some experiments, multiply protonated peptide ions and [M + Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25-keV Ga+ time-of-flight-secondary ion mass spectrometry (TOF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis and enables very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.

  15. High Spatial Resolution Isotopic Abundance Measurements by Secondary Ion Mass Spectrometry: Status and Prospects

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.

    2007-12-01

    Secondary Ion Mass Spectrometry, SIMS or ion microprobe analysis, has become an important tool for geochemistry because of its ability study the distributions of elemental and isotopic abundances in situ on polished samples with high (typically a few microns to sub-micron) spatial resolution. In addition, SIMS exhibits high sensitivity for a wide range of elements (H to Pu) so that isotope analyses can sometimes be performed for elements that comprise only trace quantities of some mineral phase (e.g., Pb in zircon) or on major and/or minor elements in very small samples (e.g., presolar dust grains). Offsetting these positive attributes are analytical difficulties due to the complexity of the sputtering source of analyte ions: (1) relatively efficient production of molecular ion species (especially from a complex matrix such as most natural minerals) that cause interferences at the same nominal mass as atomic ions of interest, and (2) quantitation problems caused by variations in the ionization efficiencies of different elements and/or isotopes depending upon the chemical state of the sample surface during sputtering--the so-called "matrix effects". Despite the availability of high mass resolution instruments (e.g., SHRIMP II/RG, CAMECA 1270/1280/NanoSIMS), the molecular ion interferences effectively limit the region of the mass table that can be investigated in most samples to isotope systems at Ni or lighter or at Os or heavier. The matrix effects and the sensitivity of instrumental mass discrimination to the physical state of the sample surface can hamper reproducibility and have contributed to a view that SIMS analyses, especially for so- called stable isotopes, are most appropriate for extraterrestrial samples which are often small, rare, and can exhibit large magnitude isotopic effects. Recent improvements in instrumentation and technique have extended the scope of SIMS isotopic analyses and applications now range from geochronology to paleoclimatology to

  16. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    SciTech Connect

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

  17. Coronal Mass Ejections, Ion Drag and Rotational Bursting of the Dust

    NASA Astrophysics Data System (ADS)

    Misconi, N. Y.

    2004-12-01

    The effects of plasma-dust interactions resulting from the high density of protons in Coronal Mass Ejections (CMEs) are surveyed. In particular, two effects are discussed: one is the rotational bursting of F coronal dust and the other is the increased ion-drag on the orbiting dust. Rotational bursting of the dust can occur from radiation pressure on the irregularly shaped dust particles and from protons in CMEs. Numerical simulations were used to study the rotational bursting of circumsolar dust in both circular and eccentric orbits. Model calculations were used to assess the increased ion-drag due to protons from CMEs. Thus the efficiency and implications of both mechanisms are assessed. Increased ion-drag from protons in CMEs was shown to be capable of forming density waves of F-coronal dust that can give rise to transient and certainly not permanent dust rings around the Sun.

  18. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    DOE PAGES

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; ...

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts andmore » noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.« less

  19. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  20. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Astrophysics Data System (ADS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Johnson, Christopher S.; Kellogg, James; Kimvilakani, Patrick; Lefavor, Matthew; Hengemihle, Jerome; Jaeger, Ferzan; Lyness, Eric; Maurer, John; Melak, Anthony; Noreiga, Felix; Noriega, Marvin; Patel, Kiran; Prats, Benito; Raaen, Eric; Tan, Florence; Weidner, Edwin; Gundersen, Cynthia; Battel, Steven; Block, Bruce P.; Arnett, Ken; Miller, Ryan; Cooper, Curt; Edmonson, Charles; Nolan, J. Thomas

    2015-12-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  1. Label free biochemical 2D and 3D imaging using secondary ion mass spectrometry.

    PubMed

    Fletcher, John S; Vickerman, John C; Winograd, Nicholas

    2011-10-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides a method for the detection of native and exogenous compounds in biological samples on a cellular scale. Through the development of novel ion beams the amount of molecular signal available from the sample surface has been increased. Through the introduction of polyatomic ion beams, particularly C(60), ToF-SIMS can now be used to monitor molecular signals as a function of depth as the sample is eroded thus proving the ability to generate 3D molecular images. Here we describe how this new capability has led to the development of novel instrumentation for 3D molecular imaging while also highlighting the importance of sample preparation and discuss the challenges that still need to be overcome to maximise the impact of the technique.

  2. EVIDENCE FOR LOCAL ACCELERATION OF SUPRATHERMAL HEAVY ION OBSERVATIONS DURING INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect

    Gruesbeck, Jacob R.; Lepri, Susan T.; Zurbuchen, Thomas H.; Christian, Eric R.

    2015-01-20

    Suprathermal particles are an important seed population for a variety of energetic particles found throughout the heliosphere, but their origin is in debate. We present, for the first time, high-cadence observations of suprathermal heavy ions during interplanetary coronal mass ejections (ICMEs), from the Suprathermal Ion Composition Spectrometer on board the Wind spacecraft, and investigate their ionic composition and compare it to the bulk solar wind plasma composition, observed from the Solar Wind Ion Composition Spectrometer on board the Advanced Composition Explorer. We find that the composition of the suprathermal plasma is related to the local bulk solar wind plasma and not to the plasma upstream of the ICME. This implies that the suprathermal plasma is accelerated from the local bulk solar wind plasma and not the upstream solar wind plasma.

  3. Automated Gain Control Ion Funnel Trap for Orthogonal Time-of-Flight Mass Spectrometry

    PubMed Central

    Ibrahim, Yehia M.; Belov, Mikhail E.; Liyu, Andrei V.; Smith, Richard D.

    2009-01-01

    Time-of-flight mass spectrometry (TOF MS) is increasingly used in proteomics research. Herein, we report on the development and characterization of a TOF MS instrument with improved sensitivity equipped with an electrodynamic ion funnel trap (IFT) that employs an automated gain control (AGC) capability. The IFT-TOF MS was coupled to a reversed-phase capillary liquid chromatography (RPLC) separation and evaluated in experiments with complex proteolytic digests. When applied to a global tryptic digest of Shewanella oneidensis proteins, an order-of-magnitude increase in sensitivity compared to that of the conventional continuous mode of operation was achieved due to efficient ion accumulation prior to TOF MS analysis. As a result of this sensitivity improvement and related improvement in mass measurement accuracy, the number of unique peptides identified in the AGC-IFT mode was 5-fold greater than that obtained in the continuous mode. PMID:18512944

  4. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-01-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M•+, MH+, [M - H2O]+, and solvent adducts were observed in positive LPPI, [M - H]- and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure.

  5. Ion neutral mass spectrometer results from the first flyby of Titan.

    PubMed

    Waite, J Hunter; Niemann, Hasso; Yelle, Roger V; Kasprzak, Wayne T; Cravens, Thomas E; Luhmann, Janet G; McNutt, Ralph L; Ip, Wing-Huen; Gell, David; De La Haye, Virginie; Müller-Wordag, Ingo; Magee, Brian; Borggren, Nathan; Ledvina, Steve; Fletcher, Greg; Walter, Erin; Miller, Ryan; Scherer, Stefan; Thorpe, Rob; Xu, Jing; Block, Bruce; Arnett, Ken

    2005-05-13

    The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.

  6. Design and construction of a nanoelectrospray ion source for a triple quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Troxler, Heinz; Wetzel, Erich; Kuster, Thomas; Heizmann, Claus W.

    1999-05-01

    The design and construction of a nanoelectrospray ion source for a triple quadrupole mass spectrometer that is used for identification and analysis of minimum peptide amounts is described. This interface exhibits several improvements over commercially available devices: a new capillary holder that allows very simple loading and placement of the spray capillary, and a rotary stage that enables reproducible adjustment of the capillary's angle at the orifice of the mass spectrometer. We also introduced a pressure-regulating system for fast and reproducible adjustment of the static backing air pressure onto the sample solution in the spray capillary. Furthermore, an electric safety circuit increases handling and operation safety of the nanoelectrospray interface.

  7. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  8. Thiolated cyclodextrin self-assembled monolayer-like characterized with secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Rabara, L.; Aranyosiova, M.; Velic, D.

    2011-01-01

    In the work the focus is on the preparation of self-assembled monolayer-like films consisting of thiolated cyclodextrin on gold substrate and a characterization by using secondary ion mass spectrometry. The short (1 min) and long (1 h) time preparations of self-assembled monolayer-like films, resulting in submonolayer and monolayer regimes, are investigated, respectively. The observed species of thiolated cyclodextrin (M as molecular ion) self-assembled monolayer-like films are assigned to three groups: Au xH yS z clusters, fragments with origin in cyclodextrin molecule associated with Au, and molecular ions. The group of Au xH yS z ( x = 2-17, y = 0-2, z = 1-5) clusters have higher intensities than other species in the positive and even more in negative mass spectra. Interestingly, the dependence between the number of Au and S atoms shows that with the increasing size of Au xH yS z clusters up to 11 Au atoms, the number of associated S atoms is also increasing and then decreasing. Molecular species as (M-S+H)Na +, (M+H)Na +, AuMNa +, (M 2-S)Na +, and M 2Na + are determined, and also in cationized forms with K +. The intensities of thiolated cyclodextrin fragments at the long time preparation are approximately 10 times higher than the intensities of the same fragments observed at the short time. The largest observed ions in thiolated cyclodextrin self-assembled monolayer-like films are AuM 2 and Au 2M. The thiolated cyclodextrin molecular ions are compared with hexadecanethiol molecular ions in the form of Au xM w where the values of x and w are smaller for thiolated cyclodextrin than for hexadecanethiol. This result is supported with larger, more compact, and more stabile thiolated cyclodextrin molecule.

  9. AN ION CORRELATION PROGRAM FOR DECONVOLUTING COMPOSITE MASS SPECTRA ACQUIRED USING A DIRECT SURFACE IONIZATION SOURCE INTERFACED TO A TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    The rapid sampling provided by the DART in ambient air will allow rapid delineation of areas of dispersed chemicals after natural or man-made disasters. Exact masses and RIAs of dimer, precursor, and product ions measured by the oa-TOFMS entered dinto the Ion Correlation Program...

  10. Repeatability and reproducibility of product ion abundances in electron capture dissociation mass spectrometry of peptides.

    PubMed

    Ben Hamidane, Hisham; Vorobyev, Aleksey; Tsybin, Yury O

    2011-01-01

    Site-specific reproducibility and repeatability of electron capture dissociation (ECD) in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) are of fundamental importance for product ion abundance (PIA)-based peptide and protein structure analysis. However, despite the growing interest in ECD PIA-based applications, these parameters have not yet been investigated in a consistent manner. Here, we first provide a detailed description of the experimental parameters for ECD-based tandem mass spectrometry performed on a hybrid linear ion trap (LTQ) FT-ICR MS. In the following, we describe the evaluation and comparison of ECD and infrared multiphoton dissociation (IRMPD) PIA methodologies upon variation of a number of experimental parameters, for example, cathode potential (electron energy), laser power, electron and photon irradiation periods and pre- irradiation delays, as well as precursor ion number. Ranges of experimental parameters that yielded an average PIA variation below 5% and 15% were determined for ECD and IRMPD, respectively. We report cleavage site-dependent ECD PIA variation below 20% and correlation coefficients between fragmentation patterns superior to 0.95 for experiments performed on three FT-ICR MS instruments. Overall, the encouraging results obtained for ECD PIA reproducibility and repeatability support the use of ECD PIA as a complementary source of information to m/z data in radical-induced dissociation applied for peptide and protein structure analysis.

  11. Uranium passivation by C+ implantation: a photoemission and secondary ion mass spectrometry study

    SciTech Connect

    Nelson, A J; Felter, T E; Wu, K J; Evans, C; Ferreira, J; Siekhaus, W; McLean, W

    2005-01-20

    Implantation of 33 keV C{sup +} ions into polycrystalline U{sup 238} with a dose of 4.3 x 10{sup 17} cm{sup -2} produces a physically and chemically modified surface layer that prevents further air oxidation and corrosion. X-ray photoelectron spectroscopy and secondary ion mass spectrometry were used to investigate the surface chemistry and electronic structure of this C{sup +} ion implanted polycrystalline uranium and a non-implanted region of the sample, both regions exposed to air for more than a year. In addition, scanning electron microscopy was used to examine and compare the surface morphology of the two regions. The U 4f, O 1s and C 1s core-level and valence band spectra clearly indicate carbide formation in the modified surface layer. The time-of-flight secondary ion mass spectrometry depth profiling results reveal an oxy-carbide surface layer over an approximately 200 nm thick UC layer with little or no residual oxidation at the carbide layer/U metal transitional interface.

  12. Enhanced Sensitivity for High Spatial Resolution Lipid Analysis by Negative Ion Mode MALDI Imaging Mass Spectrometry

    PubMed Central

    Angel, Peggi M.; Spraggins, Jeffrey M.; Baldwin, H. Scott; Caprioli, Richard

    2012-01-01

    We have achieved enhanced lipid imaging to a ~10 μm spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6.4, or ammonium acetate, pH 6.7, significantly increases signal intensity and number of analytes recorded from adult mouse brain tissue sections. Major lipid species measured were glycerophosphoinositols, glycerophosphates, glycerolphosphoglycerols, glycerophosphoethanolamines, glycerophospho-serines, sulfatides, and gangliosides. Ion images from adult mouse brain sections that compare washed and unwashed sections are presented and show up to fivefold increases in ion intensity for washed tissue. The sample preparation protocol has been found to be applicable across numerous organ types and significantly expands the number of lipid species detectable by imaging mass spectrometry at high spatial resolution. PMID:22243218

  13. Dyeing regions of oxidative hair dyes in human hair investigated by nanoscale secondary ion mass spectrometry.

    PubMed

    Kojima, Toru; Yamada, Hiromi; Yamamoto, Toshihiko; Matsushita, Yasuyuki; Fukushima, Kazuhiko

    2013-06-01

    To develop more effective oxidative hair coloring products, it is important to understand the localization of colored chromophores, which are formed from oxidative dyes, in the fine structure of hair. However, the dyeing regions of oxidative hair dyes in the fine structure of hair have not been extensively examined. In this study, we investigated the distribution and localization of colored chromophores formed by an oxidative hair coloring product in the fine structure of human hair by using a stable isotope-labeled oxidative dye with nanoscale secondary ion mass spectrometry (NanoSIMS). First, formation of the colored chromophore from a deuterium-labeled oxidative dye was examined by visible spectra similarly to a study of its formation using nonlabeled oxidative dye. Furthermore, the formation of binuclear indo dye containing deuterium in its chemical structure was confirmed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. As a result of the NanoSIMS image on a cross-sectional dyed hair, although deuterium ions were detected in whole hair cross-section, quite a few of them were detected at particulate regions. These particulate regions of the dyed black hair in which deuterium ions were intensely detected were identified as melanin granules, by comparing the dyeing behaviors of black and white hair. NanoSIMS analysis revealed that melanin granules of black human hair are important dyeing regions in oxidative hair coloring.

  14. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    SciTech Connect

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  15. Single-Ion Deconvolution of Mass Peak Overlaps for Atom Probe Microscopy.

    PubMed

    London, Andrew J; Haley, Daniel; Moody, Michael P

    2017-03-16

    Due to the intrinsic evaporation properties of the material studied, insufficient mass-resolving power and lack of knowledge of the kinetic energy of incident ions, peaks in the atom probe mass-to-charge spectrum can overlap and result in incorrect composition measurements. Contributions to these peak overlaps can be deconvoluted globally, by simply examining adjacent peaks combined with knowledge of natural isotopic abundances. However, this strategy does not account for the fact that the relative contributions to this convoluted signal can often vary significantly in different regions of the analysis volume; e.g., across interfaces and within clusters. Some progress has been made with spatially localized deconvolution in cases where the discrete microstructural regions can be easily identified within the reconstruction, but this means no further point cloud analyses are possible. Hence, we present an ion-by-ion methodology where the identity of each ion, normally obscured by peak overlap, is resolved by examining the isotopic abundance of their immediate surroundings. The resulting peak-deconvoluted data are a point cloud and can be analyzed with any existing tools. We present two detailed case studies and discussion of the limitations of this new technique.

  16. Non-mass-analyzed ion implantation equipment for high volume solar cell production

    NASA Technical Reports Server (NTRS)

    Armini, A. J.; Bunker, S. N.; Spitzer, M. B.

    1982-01-01

    Equipment designed for junction formation in silicon solar cells is described. The equipment, designed for a production level of approximately one megawatt per year, consists of an ion implanter and annealer. Low cost is achieved by foregoing the use of mass analysis during the implantation, and by the use of a belt furnace for annealing. Results of process development, machine design and cost analysis are presented.

  17. Secondary Ion Mass Spectrometry for Mg Tracer Diffusion: Issues and Solutions

    SciTech Connect

    Tuggle, Jay; Giordani, Andrew; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Coffey, Kevin; Sohn, Yong Ho; HunterJr., Jerry

    2014-01-01

    A Secondary Ion Mass Spectrometry (SIMS) method has been developed to measure stable Mg isotope tracer diffusion. This SIMS method was then used to calculate Mg self- diffusivities and the data was verified against historical data measured using radio tracers. The SIMS method has been validated as a reliable alternative to the radio-tracer technique for the measurement of Mg self-diffusion coefficients and can be used as a routine method for determining diffusion coefficients.

  18. An unprecedented silver-decavanadate dimer investigated using ion-mobility mass spectrometry.

    PubMed

    McGlone, Thomas; Thiel, Johannes; Streb, Carsten; Long, De-Liang; Cronin, Leroy

    2012-01-11

    A silver(I)-linked decavanadate system has been synthesised, and characterised in both the solid-state and solution showing that two cluster units are held in a specific, dimeric arrangement wholly supported by cooperative hydrogen bonds, and ion-mobility mass spectrometry (IM-MS) was used to analyse the system yielding significant information on the secondary building units and aggregation behaviour supported by hydrogen bonding.

  19. Reduction of plyatomic ion interferences in indictively coupled plasma mass spectrometry with cryogenic desolvation

    SciTech Connect

    Alves, Luis C.

    1993-09-01

    A desolvation scheme for introducing aqueous and organic samples into an argon inductively coupled plasma is described; the aerosol generated by nebulizer is heated (+140 C) and cooled (-80 C) repeatedly, and the dried aerosol is then injected into the mass spectrometer. Polyatomic ions are greatly suppressed. This scheme was validated with analysis of seawater and urine reference samples. Finally, the removal of organic solvents by cryogenic desolvation was studied.

  20. Structural Investigation of Fluoridated POSS Cages Using Ion Mobility Mass Spectrometry and Molecular Mechanics (Preprint)

    DTIC Science & Technology

    2008-01-09

    organic polymer. For example, the low surface energy properties of fluorinated POSS compounds have been used to augment both fluorinated and non... fluorinated polymers.10-13 Many POSS monomers have been successfully characterized using MALDI techniques14-16 in conjunction with ion mobility mass...nucleophilic attack, are shown in blue. Negative contours, showing susceptibility to electrophilic attack, are shown in red. The positive contour of

  1. Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions.

    PubMed

    Johnson, Grant E; Priest, Thomas; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas phase, and mass selection was employed to isolate a single ionic cluster species (Au(11)L(5)(3+), L = 1,3-bis(diphenylphosphino)propane), which was delivered to surfaces at well-controlled kinetic energies. Using in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS), it is demonstrated that the Au(11)L(5)(3+) cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-perfluorodecanethiol self-assembled monolayer (FSAM) on gold. In contrast, when deposited onto 16-mercaptohexadecanoic acid (COOH-SAM) and 1-dodecanethiol (HSAM) surfaces on gold, the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the FSAM and HSAM surfaces are investigated using in situ Fourier transform ion cyclotron resonance (FT-ICR) SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the FSAM surface while an almost instantaneous neutralization takes place on the surface of the HSAM. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto carefully selected substrates.

  2. Control and Data Transmission System for a Balloon-Borne Ion Mass Spectrometer,

    DTIC Science & Technology

    1980-10-01

    BALLOON-4ORNE ON .MASSSPECTROMETER. - . Raimundas / SukY l(- J, Spencer IRochefort Northeastern University Electronics Research W6ratory Boston...ONG REPORT ,MR 1. AUlpORj.) CLir6ACT OR. GRN UNS! RV R. SUKYS F19628-78-C-021 8 0.5. ROCHEFORT VP:REORMING ONG ANIZAIIOM NPIME AND ADDRESS " PAOGNAm Et...FOR A BALLOON-BORNE ION MASS SPECTROMETER Raimundas Sukys and J. Spencer Rochefort Department of Electrical Engineering / Northeastern University

  3. Control Electronics for an Ion Mass Filter in the Lower Ionosphere Payload Development Program.

    DTIC Science & Technology

    1985-09-30

    CONTRCL ELECTRONICS FOR AN ION MASS FILTER %% IN THE T- LOWER IONOSPHERE PAYLOAD DEVELOPMENT PROGRAM by Raimundas Sukys J. Spencer Rochefort DTIC s. dI...12.PEcRSOA AUTORISI )y~~~n rir 12 PRSNA ATNR()R. Sukys , J.S. Rochefort 13a. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (𔃻...Spencer Rochefort, Professor of Electrical and Computer Engineering and Principal Investigator. Raimundas Sukys , Senior Research Associate, Engineer. -83

  4. Sizing Large Proteins and Protein Complexes by Electrospray Ionization Mass Spectrometry and Ion Mobility

    PubMed Central

    Kaddis, Catherine S.; Lomeli, Shirley H.; Yin, Sheng; Berhane, Beniam; Apostol, Marcin I.; Kickhoefer, Valerie A.; Rome, Leonard H.; Loo, Joseph A.

    2009-01-01

    Mass spectrometry (MS) and ion mobility with electrospray ionization (ESI) have the capability to measure and detect large noncovalent protein-ligand and protein-protein complexes. Using an ion mobility method termed GEMMA (Gas-Phase Electrophoretic Mobility Molecular Analysis), protein particles representing a range of sizes can be separated by their electrophoretic mobility in air. Highly charged particles produced from a protein complex solution using electrospray can be manipulated to produce singly charged ions which can be separated and quantified by their electrophoretic mobility. Results from ESI-GEMMA analysis from our laboratory and others were compared to other experimental and theoretically determined parameters, such as molecular mass and cryoelectron microscopy and x-ray crystal structure dimensions. There is a strong correlation between the electrophoretic mobility diameter determined from GEMMA analysis and the molecular mass for protein complexes up to 12 MDa, including the 93 kDa enolase dimer, the 480 kDa ferritin 24-mer complex, the 4.6 MDa cowpea chlorotic mottle virus (CCMV), and the 9 MDa MVP-vault assembly. ESI-GEMMA is used to differentiate a number of similarly sized vault complexes that are composed of different N-terminal protein tags on the MVP subunit. The average effective density of the proteins and protein complexes studied was 0.6 g/cm3. Moreover, there is evidence that proteins and protein complexes collapse or become more compact in the gas phase in the absence of water. PMID:17434746

  5. Miniaturized Ion and Neutral Mass Spectrometer for CubeSat Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Rodriguez, M.; Paschalidis, N.; Jones, S.; Sittler, E.; Chornay, D.; Uribe, P.; Cameron, T.

    2016-01-01

    To increase the number of single point in-situ measurements of thermosphere and exosphere ion and neutral composition and density, miniaturized instrumentation is in high demand to take advantage of the increasing platform opportunities available in the smallsat/cubesat industry. The INMS (Ion-Neutral Mass Spectrometer) addresses this need by providing simultaneous measurements of both the neutral and ion environment, essentially providing two instruments in one compact model. The 1.3U volume, 570 gram, 1.8W nominal power INMS instrument makes implementation into cubesat designs (3U and above) practical and feasible. With high dynamic range (0.1-500eV), mass dynamic range of 1-40amu, sharp time resolution (0.1s), and mass resolution of MdM16, the INMS instrument addresses the atmospheric science needs that otherwise would have required larger more expensive instrumentation. INMS-v1 (version 1) launched on Exocube (CalPoly 3U cubesat) in 2015 and INMS-v2 (version 2) is scheduled to launch on Dellingr (GSFC 6U cubesat) in 2017. New versions of INMS are currently being developed to increase and add measurement capabilities, while maintaining its smallsat/cubesat form.

  6. The Laser Ablation Ion Funnel: Sampling for in situ Mass Spectrometry on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.

    2011-01-01

    A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.

  7. [Probabilistic calculations of biomolecule charge states that generate mass spectra of multiply charged ions].

    PubMed

    Raznikova, M O; Raznikov, V V

    2015-01-01

    In this work, information relating to charge states of biomolecule ions in solution obtained using the electrospray ionization mass spectrometry of different biopolymers is analyzed. The data analyses have mainly been carried out by solving an inverse problem of calculating the probabilities of retention of protons and other charge carriers by ionogenic groups of biomolecules with known primary structures. The approach is a new one and has no known to us analogues. A program titled "Decomposition" was developed and used to analyze the charge distribution of ions of native and denatured cytochrome c mass spectra. The possibility of splitting of the charge-state distribution of albumin into normal components, which likely corresponds to various conformational states of the biomolecule, has been demonstrated. The applicability criterion for using previously described method of decomposition of multidimensional charge-state distributions with two charge carriers, e.g., a proton and a sodium ion, to characterize the spatial structure of biopolymers in solution has been formulated. In contrast to known mass-spectrometric approaches, this method does not require the use of enzymatic hydrolysis or collision-induced dissociation of the biopolymers.

  8. Preparation and in situ Characterization of Surfaces Using Soft-Landing in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    SciTech Connect

    Alvarez, Jormarie; Cooks, Robert G.; Barlow, Stephan E.; Gaspar, Dan J.; Futrell, Jean H.; Laskin, Julia

    2005-06-01

    Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft-landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2 keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly-protonated peptide fragment ions and peaks characteristic of the surfaces in all cases. In some experiments multiply-protonated peptide ions and [M+Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25 kV Ga+ time of flight ? secondary ion mass spectrometry (ToF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to Coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.

  9. Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Purves, Randy W.; Guevremont, Roger; Day, Stephen; Pipich, Charles W.; Matyjaszczyk, Matthew S.

    1998-12-01

    Ion mobility spectrometry (IMS) has become an important method for the detection of many compounds because of its high sensitivity and amenability to miniaturization for field-portable monitoring; applications include detection of narcotics, explosives, and chemical warfare agents. High-field asymmetric waveform ion mobility spectrometry (FAIMS) differs from IMS in that the electric fields are applied using a high-frequency periodic asymmetric waveform, rather than a dc voltage. Furthermore, in FAIMS the compounds are separated by the difference in the mobility of ions at high electric field relative to low field, rather than by compound to compound differences in mobility at low electric field (IMS). We report here the first cylindrical-geometry-FAIMS interface with mass spectrometry (FAIMS-MS) and the MS identification of the peaks observed in a FAIMS compensation voltage (CV) spectrum. Using both an electrometer-based-FAIMS (FAIMS-E) and FAIMS-MS, several variables that affect the sensitivity of ion detection were examined for two (polarity reversed) asymmetric waveforms (modes 1 and 2) each of which yields a unique spectrum. An increase in the dispersion voltage (DV) was found to improve the sensitivity and separation observed in the FAIMS CV spectrum. This increase in sensitivity and the unexpected dissimilarity in modes 1 and 2 suggest that atmospheric pressure ion focusing is occurring in the FAIMS analyzer. The sensitivity and peak locations in the CV spectra were affected by temperature, gas flow rates, operating pressure, and analyte concentration.

  10. Large-scale collision cross-section profiling on a travelling wave ion mobility mass spectrometer

    PubMed Central

    Lietz, Christopher B.; Yu, Qing; Li, Lingjun

    2014-01-01

    Ion mobility (IM) is a gas-phase electrophoretic method that separates ions according to charge and ion-neutral collision cross-section (CCS). Herein, we attempt to apply a travelling wave (TW) IM polyalanine calibration method to shotgun proteomics and create a large peptide CCS database. Mass spectrometry methods that utilize IM, such as HDMSE, often use high transmission voltages for sensitive analysis. However, polyalanine calibration has only been demonstrated with low voltage transmission used to prevent gas-phase activation. If polyalanine ions change conformation under higher transmission voltages used for HDMSE, the calibration may no longer be valid. Thus, we aimed to characterize the accuracy of calibration and CCS measurement under high transmission voltages on a TW IM instrument using the polyalanine calibration method and found that the additional error was not significant. We also evaluated the potential error introduced by liquid chromatography (LC)-HDMSE analysis, and found it to be insignificant as well, validating the calibration method. Finally, we demonstrated the utility of building a large-population peptide CCS database by investigating the effects of terminal lysine position, via LysC or LysN digestion, on the formation of two structural sub-families formed by triply charged ions. PMID:24845359

  11. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    SciTech Connect

    Haakonsen, Christian Bernt Hutchinson, Ian H. Zhou, Chuteng

    2015-03-15

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effects can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.

  12. Rapid determination of nicotine in urine by direct thermal desorption ion trap mass spectrometry

    SciTech Connect

    Wise, M.B.; Ilgner, R.H.; Guerin, M.R.

    1990-01-01

    The measurement of nicotine and cotinine in physiological fluids (urine, blood serum, and saliva) is widely used as a means of assessing human exposure to environmental tobacco smoke (ETS). Although numerous analytical methods exist for these measurements, they generally involve extensive sample preparation which increases cost and decreases sample throughput. We report the use of thermal desorption directly into an ion trap mass spectrometer (ITMS) for the rapid determination of nicotine and cotinine in urine. A 1{mu}L aliquot of urine is injected into a specially designed inlet and flash vaporized directly into an ITMS through an open-split capillary restrictor interface. Isobutane chemical ionization is used to generate (M+H){sup +} ions of the analytes and collision induced dissociation is used to generate characteristic fragment ions which are used to confirm their identity. Quantification is achieved by integrating the ion current for the characteristic ions and comparing with an external working curve. Detection limits are approximately 50 pg per analyte and the sample turnaround time is approximately 3 minutes without the need for extensive sample preparation. 12 refs., 5 figs.

  13. Online deuterium hydrogen exchange and protein digestion coupled with ion mobility spectrometry and tandem mass spectrometry.

    PubMed

    Donohoe, Gregory C; Arndt, James R; Valentine, Stephen J

    2015-05-19

    Online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) is demonstrated using drift tube ion mobility spectrometry (DTIMS) coupled with linear ion trap (LTQ) mass spectrometry (MS) with electron transfer dissociation (ETD) capabilities. DHX of deuterated ubiquitin, followed by subsequent quenching and digestion, is performed within ∼60 s, yielding 100% peptide sequence coverage. The high reproducibility of the IMS separation allows spectral feature matching between two-dimensional IMS-MS datasets (undeuterated and deuterated) without the need for dataset alignment. Extracted ion drift time distributions (XIDTDs) of deuterated peptic peptides are mobility-matched to corresponding XIDTDs of undeuterated peptic peptides that were identified using collision-induced dissociation (CID). Matching XIDTDs allows a straightforward identification and deuterium retention evaluation for labeled peptides. Aside from the mobility separation, the ion trapping capabilities of the LTQ, combined with ETD, are demonstrated to provide single-residue resolution. Deuterium retention for the c- series ions across residues M(1)-L(15) and N(25)-R(42) are in good agreement with the known secondary structural elements within ubiquitin.

  14. Secondary Ion Mass Spectrometry Imaging of Tissues, Cells, and Microbial Systems

    SciTech Connect

    Gamble, Lara J.; Anderton, Christopher R.

    2016-03-18

    Mass spectrometry imaging (MSI) techniques are increasingly being utilized within many biological fields, including medicine, pathology, microbial ecology, and more. Of the MSI methods available, secondary ion mass spectrometry (SIMS) offers the highest lateral resolution of any technique. Moreover, SIMS versatility in the number of different operating modes and types of mass spectrometers available has made it an increasing popular method for bio-related measurements. Here, we discuss SIMS ability to image tissues, single cells, and microbes with a particular emphasis on the types chemical and spatial information that can be ascertained by the different types of SIMS instruments and methods. The recently developed Fourier transform ion cyclotron resonance (FTICR) SIMS located at PNNL is capable of generating molecular maps of tissues with an unprecedented mass resolving power and mass accuracy, with respect to SIMS measurements. ToF-SIMS can generate chemical maps, where detection of small molecules and fragments can be acquired with an order of magnitude better lateral resolution than the FTICR-SIMS. Furthermore, many of commercially available ToF-SIMS instruments are capable of depth profiling measurements, offering the ability to attain three-dimensional information of one’s sample. The NanoSIMS instrument offers the highest lateral resolution of any MSI method available. In practice, NanoSIMS regularly achieves sub-100 nm resolution of atomic and diatomic secondary ions within biological samples. The strengths of the different SIMS methods are more and more being leveraged in both multimodal-imaging endeavors that use complementary MSI techniques as well with optical, fluorescence, and force microscopy methods.

  15. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions

    PubMed Central

    Vanbellingen, Quentin P.; Elie, Nicolas; Eller, Michael J.; Della‐Negra, Serge; Touboul, David

    2015-01-01

    Rationale In Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS), pulsed and focused primary ion beams enable mass spectrometry imaging, a method which is particularly useful to map various small molecules such as lipids at the surface of biological samples. When using TOF‐SIMS instruments, the focusing modes of the primary ion beam delivered by liquid metal ion guns can provide either a mass resolution of several thousand or a sub‐µm lateral resolution, but the combination of both is generally not possible. Methods With a TOF‐SIMS setup, a delayed extraction applied to secondary ions has been studied extensively on rat cerebellum sections in order to compensate for the effect of long primary ion bunches. Results The use of a delayed extraction has been proven to be an efficient solution leading to unique features, i.e. a mass resolution up to 10000 at m/z 385.4 combined with a lateral resolution of about 400 nm. Simulations of ion trajectories confirm the experimental determination of optimal delayed extraction and allow understanding of the behavior of ions as a function of their mass‐to‐charge ratio. Conclusions Although the use of a delayed extraction has been well known for many years and is very popular in MALDI, it is much less used in TOF‐SIMS. Its full characterization now enables secondary ion images to be recorded in a single run with a submicron spatial resolution and with a mass resolution of several thousand. This improvement is very useful when analyzing lipids on tissue sections, or rare, precious, or very small size samples. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26395603

  16. Initial velocity distribution of MALDI/LDI ions measured by internal MALDI source Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chagovets, Vitaliy; Frankevich, Vladimir; Zenobi, Renato

    2014-11-01

    A new method for measuring the ion velocity distribution using an internal matrix-assisted laser desorption/ionization (MALDI) source Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer is described. The method provides the possibility of studying ion velocities without any influence of electric fields in the direction of the instrument axis until the ions reach the ICR cell. It also allows to simultaneously account for and to estimate not only the velocity distribution but the angular distribution as well. The method was demonstrated using several types of compounds in laser desorption/ionization (LDI) mode.

  17. Use of monoatomic and polyatomic projectiles for the characterisation of polylactic acid by static secondary ion mass spectrometry.

    PubMed

    Boschmans, Bart; Van Royen, Pieter; Van Vaeck, Luc

    2005-01-01

    The application of polyatomic primary ions is a strongly developing branch of static secondary ion mass spectrometry (S-SIMS), since these projectiles allow a significant increase in the secondary ion yields to be achieved. However, the different limitations and possibilities of certain polyatomic primary ions for use on specific functional classes of samples are still not completely known. This paper compares the use of monoatomic and polyatomic primary ions in S-SIMS for thin layers of polylactic acid (PLA), obtained by spin-coating solutions on silicon wafers. Bombardment with Ga+, Xe+ and SF5+ primary ions allowed the contribution of the projectile mass and number of atoms in the gain in ion yield and molecular specificity (relative importance of high m/z and low m/z signals) to be assessed. Samples obtained by spin-coating solutions with increasing concentration showed that optimal layer thickness depended on the primary ion used. In comparison with the use of Ga+ projectiles, the yield of structural ions increased by a factor of about 1.5 to 2 and by about 7 to 12 when Xe+ and SF5+ primary ion bombardment were applied, respectively. A detailed fragmentation pattern was elaborated to interpret ion signal intensity changes for different projectiles in terms of energy deposition and collective processes in the subsurface, and the internal energy of radical and even-electron precursor ions.

  18. A Compact Ion and Neutral Mass Spectrometer for the Exocube Mission

    NASA Astrophysics Data System (ADS)

    Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.

    2014-12-01

    Demand is high for in situ measurements of atmospheric neutral and ion composition and density, not only for studies of the dynamic ionosphere-theremosphere-mesosphere system but simply to define the steady state background atmospheric conditions. The ExoCube mission is designed to acquire global knowledge of in-situ densities of [H], [He], [O] and [H+], [He+], [O+] in the upper ionosphere and lower exosphere in combination with incoherent scatter radar ground stations distributed in the north polar region. The Heliophysic Division of GSFC has developed a compact Ion and Neutral Mass Spectrometer (INMS) for in situ measurements of ions and neutrals H, He, N, O, N2, O2 with M/dM of approximately 10 at an incoming energy range of 0-50eV. The INMS is based on front end optics, post acceleration, gated time of flight, ESA and CEM or MCP detectors. The compact sensor has a dual symmetric configuration with the ion and neutral sensor heads on opposite sides and with full electronics in the middle. The neutral front end optics includes thermionic emission ionization and ion blocking grids, and the ion front end optics includes spacecraft potential compensation grids. The electronics include front end, fast gating, HVPS, ionizer, TOF binning and full bi directional C&DH digital electronics. The data package includes 400 mass bins each for ions and neutrals and key housekeeping data for instrument health and calibration. The data sampling can be commanded as fast as 10 msec per frame (corresponding to ~80 m spatial separation) in burst mode, and has significant onboard storage capability and data compression scheme. Experimental data from instrument testing with both ions and neutrals will be presented. The instrument is successfully integrated in the CubeSat and passed vibration, thermal and shock testing. The ExoCube mission is scheduled to fly in Nov 2014 in a 445 x 670 km polar orbit with the INMS aperture oriented in the ram direction. This miniaturized instrument (1

  19. Design of a new multi-turn ion optical system 'IRIS' for a time-of-flight mass spectrometer.

    PubMed

    Nishiguchi, Masaru; Ueno, Yoshihiro; Toyoda, Michisato; Setou, Mitsutoshi

    2009-05-01

    A new multi-turn ion optical system 'IRIS' has been designed for use with a high-performance time-of-flight (TOF) mass spectrometer, which satisfies the new design concepts of time focusing and phase space stability. It has an elliptical flight path composed of four toroidal electric sectors, with a flight path length for one lap of 0.974 m. Dimensions and voltages of sector electrodes have been optimized to satisfy theoretical requirements by simulations using surface charge method. Generally, multi-turn instruments require an injection and ejection system to inject and eject ions. On the basis of this ion optical study, we have designed an injection and ejection ion optical system, which achieves time focusing for the total system. Furthermore, we have designed novel field-adjusting electrodes (FAEs) for the perforated sectors in the injection and ejection systems, which accurately correct the electric potential around the perforated sector's hole. We have also used simulations to evaluate mass resolving power and ion transmissions for various lap numbers or flight path lengths. Through these we have confirmed that mass resolving powers of over 100,000 can be achieved with reasonable ion transmissions for a given set of initial conditions. Usually a multi-turn TOF mass spectrometer with a closed optic axis has mass range limitations from overtaking ions. To solve this problem, a TOF segmentation method is proposed that identifies all peaks in a TOF spectrum, including those from overtaking ions.

  20. Advances in ion mobility spectrometry–mass spectrometry reveal key insights into amyloid assembly☆

    PubMed Central

    Woods, L.A.; Radford, S.E.; Ashcroft, A.E.

    2013-01-01

    Interfacing ion mobility spectrometry to mass spectrometry (IMS–MS) has enabled mass spectrometric analyses to extend into an extra dimension, providing unrivalled separation and structural characterization of lowly populated species in heterogeneous mixtures. One biological system that has benefitted significantly from such advances is that of amyloid formation. Using IMS–MS, progress has been made into identifying transiently populated monomeric and oligomeric species for a number of different amyloid systems and has led to an enhanced understanding of the mechanism by which small molecules modulate amyloid formation. This review highlights recent advances in this field, which have been accelerated by the commercial availability of IMS–MS instruments. This article is part of a Special Issue entitled: Mass spectrometry in structural biology. PMID:23063533

  1. Identification of hemoglobin variants by top-down mass spectrometry using selected diagnostic product ions.

    PubMed

    Coelho Graça, Didia; Hartmer, Ralf; Jabs, Wolfgang; Beris, Photis; Clerici, Lorella; Stoermer, Carsten; Samii, Kaveh; Hochstrasser, Denis; Tsybin, Yury O; Scherl, Alexander; Lescuyer, Pierre

    2015-04-01

    Hemoglobin disorder diagnosis is a complex procedure combining several analytical steps. Due to the lack of specificity of the currently used protein analysis methods, the identification of uncommon hemoglobin variants (proteoforms) can become a hard task to accomplish. The aim of this work was to develop a mass spectrometry-based approach to quickly identify mutated protein sequences within globin chain variants. To reach this goal, a top-down electron transfer dissociation mass spectrometry method was developed for hemoglobin β chain analysis. A diagnostic product ion list was established with a color code strategy allowing to quickly and specifically localize a mutation in the hemoglobin β chain sequence. The method was applied to the analysis of rare hemoglobin β chain variants and an (A)γ-β fusion protein. The results showed that the developed data analysis process allows fast and reliable interpretation of top-down electron transfer dissociation mass spectra by nonexpert users in the clinical area.

  2. Broad-Spectrum Drug Screening Using Liquid Chromatography-Hybrid Triple-Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Stone, Judy

    2016-01-01

    Urine is processed with a simple C18 solid-phase extraction (SPE) and reconstituted in mobile phase. The liquid chromatography system (LC) injects 10 μL of extracted sample onto a reverse-phase LC column for gradient analysis with ammonium formate/acetonitrile mobile phases. Drugs in the column eluent become charged in the ion source using positive electrospray ionization (ESI). Pseudomolecular ions (M + H) are analyzed by a hybrid triple-quadrupole linear ion trap (QqQ and QqLIT) mass spectrometer using an SRM-IDA-EPI acquisition. An initial 125 compound selected ion monitoring (SRM) survey scan (triple quadrupole or QqQ mode) is processed by the information-dependent acquisition (IDA) algorithm. The IDA algorithm selects SRM signals from the survey scan with a peak height above the threshold (the three most abundant SRM signals above 1000 cps) to define precursor ions for subsequent dependent scanning. In the dependent QqLIT scan(s), selected precursor ion(s) are passed through the first quadrupole (Q1), fragmented with three different collision energies in the collision cell (Q2 or q), and product ions are collected in the third quadrupole (Q3), now operating as a linear ion trap (LIT). The ions are scanned out of the LIT in a mass dependent manner to produce a full-scan product ion spectrum (m/z 50-700) defined as an Enhanced (meaning acquired in LIT mode) Product Ion (EPI) spectrum (Mueller et al., Rapid Commun Mass Spectrom 19:1332-1338, 2005). Each EPI spectrum is linked to its precursor ion and to the associated SRM peak from the survey scan. EPI spectra are automatically searched against a 125 drug library of reference EPI spectra for identification. When the duty cycle is complete (one survey scan of 125 SRMs plus 0-3 dependent IDA-EPI scans) the mass spectrometer begins another survey scan of the 125 SRMs.

  3. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.

    PubMed

    Tomlinson-Phillips, Jill; Wooten, Alfred; Kozole, Joseph; Deline, James; Beresford, Pamela; Stairs, Jason

    2014-09-01

    Identification of the fragment ion species associated with the ion reaction mechanism of triacetone triperoxide (TATP), a homemade peroxide-based explosive, is presented. Ion mobility spectrometry (IMS) has proven to be a key analytical technique in the detection of trace explosive material. Unfortunately, IMS alone does not provide chemical identification of the ions detected; therefore, it is unknown what ion species are actually formed and separated by the IMS. In IMS, ions are primarily characterized by their drift time, which is dependent on the ion׳s mass and molecular cross-section; thus, IMS as a standalone technique does not provide structural signatures, which is in sharp contrast to the chemical and molecular information that is generally obtained from other customary analytical techniques, such as NMR, Raman and IR spectroscopy and mass spectrometry. To help study the ion chemistry that gives rise to the peaks observed in IMS, the hardware of two different commercial IMS instruments has been directly coupled to triple quadrupole (QQQ) mass spectrometers, in order to ascertain each ion׳s corresponding mass/charge (m/z) ratios with different dopants at two temperatures. Isotope labeling was then used to help identify and confirm the molecular identity of the explosive fragment and adduct ions of TATP. The m/z values and isotope labeling experiments were used to help propose probable molecular formulas for the ion fragments. In this report, the fragment and adduct ions m/z 58 and 240 of TATP have been confirmed to be [C3H6NH·H](+) and [TATP·NH4](+), respectively; while the fragment ions m/z 73 and 89 of TATP are identified as having the molecular formulas [C4H9NH2](+) and [C4H9O2](+), respectively. It is anticipated that the work in this area will not only help to facilitate improvements in mobility-based detection (IMS and MS), but also aid in the development and optimization of MS-based detection algorithms for TATP.

  4. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    SciTech Connect

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  5. NEGATIVE ION ELECTROSPRAY OF BROMO- AND CHLORACETIC ACIDS AND AN EVALUATION OF EXACT MASS MEASUREMENTS WITH A BENCH-TOP TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    The negative ion electrospray mass spectra of six bromo- and chloroacetic acids were measured using two different electrospray interfaces and single quadrupole and bench-top time-of-flight mass spectrometers. With each acid at 50 ug/mL in aqueous methanol at pH 10, the anions ob...

  6. Evaluating Multiplexed Quantitative Phosphopeptide Analysis on a Hybrid Quadrupole Mass Filter/Linear Ion Trap/Orbitrap Mass Spectrometer

    PubMed Central

    2015-01-01

    As a driver for many biological processes, phosphorylation remains an area of intense research interest. Advances in multiplexed quantitation utilizing isobaric tags (e.g., TMT and iTRAQ) have the potential to create a new paradigm in quantitative proteomics. New instrumentation and software are propelling these multiplexed workflows forward, which results in more accurate, sensitive, and reproducible quantitation across tens of thousands of phosphopeptides. This study assesses the performance of multiplexed quantitative phosphoproteomics on the Orbitrap Fusion mass spectrometer. Utilizing a two-phosphoproteome model of precursor ion interference, we assessed the accuracy of phosphopeptide quantitation across a variety of experimental approaches. These methods included the use of synchronous precursor selection (SPS) to enhance TMT reporter ion intensity and accuracy. We found that (i) ratio distortion remained a problem for phosphopeptide analysis in multiplexed quantitative workflows, (ii) ratio distortion can be overcome by the use of an SPS-MS3 scan, (iii) interfering ions generally possessed a different charge state than the target precursor, and (iv) selecting only the phosphate neutral loss peak (single notch) for the MS3 scan still provided accurate ratio measurements. Remarkably, these data suggest that the underlying cause of interference may not be due to coeluting and cofragmented peptides but instead from consistent, low level background fragmentation. Finally, as a proof-of-concept 10-plex experiment, we compared phosphopeptide levels from five murine brains to five livers. In total, the SPS-MS3 method quantified 38 247 phosphopeptides, corresponding to 11 000 phosphorylation sites. With 10 measurements recorded for each phosphopeptide, this equates to more than 628 000 binary comparisons collected in less than 48 h. PMID:25521595

  7. Plasma pencil atmospheric mass spectrometry detection of positive ions from micronutrients emitted from surfaces.

    PubMed

    Stein, M Jeanette; Lo, Edward; Castner, David G; Ratner, Buddy D

    2012-02-07

    Analysis and detection of micronutrients is important for the reduction of the global burden of malnutrition-related disease. A relatively new technique, plasma pencil atmospheric mass spectrometry (PPAMS) was applied in a comprehensive evaluation for rapid, simultaneous detection of the key micronutrients zinc, iron, folate, vitamin A, and iodine. PPAMS was performed through the coupling of a low-temperature plasma pencil to an atmospheric mass spectrometer. The effectiveness of the PPAMS system was demonstrated through the generation of characteristic mass spectra and tandem mass spectra on neat micronutrient powders suspended on double-sided tape. The analytical performance and ability to qualitatively separate out the nutrients from a complex biological solution and each other was then assessed through the application of PPAMS on a sample matrix of micronutrients in porcine plasma in which nutrient concentration is varied from high blood level concentrations (HBLCs) to low blood level concentrations (LBLCs). A multivariate analysis method, principal component analysis (PCA), was then used to qualitatively separate the fragments obtained by nutrient type. The resulting plots of PCA scores of the positive-ion spectra from each mixed sample showed excellent separation of HBLCs and LBLCs of single nutrients at the 95% confidence level (Wagner et al. Langmuir 2001, 17, 4649-4660). The associated plots of PCA loadings showed that key loadings could be attributed to the expected micronutrient fragments. The PPAMS technique was successfully demonstrated and compared with traditional MS techniques: time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electrospray ionization mass spectrometry (ESI-MS). Separation of the nutrients at concentrations relevant for human blood-based nutrient detection was possible by both ESI-MS and PPAMS. However, only PPAMS could detect the nutrients at physiological concentrations from porcine plasma. ToF-SIMS could detect the

  8. Structural Characterization of Anticancer Drug Paclitaxel and Its Metabolites Using Ion Mobility Mass Spectrometry and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hong Hee; Hong, Areum; Cho, Yunju; Kim, Sunghwan; Kim, Won Jong; Kim, Hugh I.

    2016-02-01

    Paclitaxel (PTX) is a popular anticancer drug used in the treatment of various types of cancers. PTX is metabolized in the human liver by cytochrome P450 to two structural isomers, 3'- p-hydroxypaclitaxel (3 p-OHP) and 6α-hydroxypaclitaxel (6α-OHP). Analyzing PTX and its two metabolites, 3 p-OHP and 6α-OHP, is crucial for understanding general pharmacokinetics, drug activity, and drug resistance. In this study, electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) and collision induced dissociation (CID) are utilized for the identification and characterization of PTX and its metabolites. Ion mobility distributions of 3 p-OHP and 6α-OHP indicate that hydroxylation of PTX at different sites yields distinct gas phase structures. Addition of monovalent alkali metal and silver metal cations enhances the distinct dissociation patterns of these structural isomers. The differences observed in the CID patterns of metalated PTX and its two metabolites are investigated further by evaluating their gas-phase structures. Density functional theory calculations suggest that the observed structural changes and dissociation pathways are the result of the interactions between the metal cation and the hydroxyl substituents in PTX metabolites.

  9. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions.

    PubMed

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is noted for its ability to produce primarily singly charged ions. This is an attribute when using direct ionization for complex mixtures such as protein digests or synthetic polymers. However, the ability to produce multiply charged ions, as with electrospray ionization (ESI), has advantages such as extending the mass range on mass spectrometers with limited mass-to-charge (m/z) range and enhancing fragmentation for structural characterization. We designed and fabricated a novel field free transmission geometry atmopsheric pressure (AP) MALDI source mounted to a high-mass resolution Orbitrap Exactive mass spectrometer. We report the ability to produce at will either singly charged ions or highly charged ions using a MALDI process by simply changing the matrix or the matrix preparation conditions. Mass spectra with multiply charged ions very similar to those obtained with ESI of proteins such as cytochrome c and ubiquitin are obtained with low femtomole amounts applied to the MALDI target plate and for peptides such as angiotensin I and II with application of attomole amounts. Single scan acquisitions produce sufficient ion current even from proteins.

  10. Metabolite identification for mass spectrometry-based metabolomics using multiple types of correlated ion information.

    PubMed

    Lynn, Ke-Shiuan; Cheng, Mei-Ling; Chen, Yet-Ran; Hsu, Chin; Chen, Ann; Lih, T Mamie; Chang, Hui-Yin; Huang, Ching-jang; Shiao, Ming-Shi; Pan, Wen-Harn; Sung, Ting-Yi; Hsu, Wen-Lian

    2015-02-17

    Metabolite identification remains a bottleneck in mass spectrometry (MS)-based metabolomics. Currently, this process relies heavily on tandem mass spectrometry (MS/MS) spectra generated separately for peaks of interest identified from previous MS runs. Such a delayed and labor-intensive procedure creates a barrier to automation. Further, information embedded in MS data has not been used to its full extent for metabolite identification. Multimers, adducts, multiply charged ions, and fragments of given metabolites occupy a substantial proportion (40-80%) of the peaks of a quantitation result. However, extensive information on these derivatives, especially fragments, may facilitate metabolite identification. We propose a procedure with automation capability to group and annotate peaks associated with the same metabolite in the quantitation results of opposite modes and to integrate this information for metabolite identification. In addition to the conventional mass and isotope ratio matches, we would match annotated fragments with low-energy MS/MS spectra in public databases. For identification of metabolites without accessible MS/MS spectra, we have developed characteristic fragment and common substructure matches. The accuracy and effectiveness of the procedure were evaluated using one public and two in-house liquid chromatography-mass spectrometry (LC-MS) data sets. The procedure accurately identified 89% of 28 standard metabolites with derivative ions in the data sets. With respect to effectiveness, the procedure confidently identified the correct chemical formula of at least 42% of metabolites with derivative ions via MS/MS spectrum, characteristic fragment, and common substructure matches. The confidence level was determined according to the fulfilled identification criteria of various matches and relative retention time.

  11. Nano-Scale Secondary Ion Mass Spectrometry - A new analytical tool in biogeochemistry and soil ecology

    SciTech Connect

    Herrmann, A M; Ritz, K; Nunan, N; Clode, P L; Pett-Ridge, J; Kilburn, M R; Murphy, D V; O'Donnell, A G; Stockdale, E A

    2006-10-18

    Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecological function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review the areas of

  12. Identifying important ions and positions in mass spectrometry imaging data using CUR matrix decompositions.

    PubMed

    Yang, Jiyan; Rübel, Oliver; Prabhat; Mahoney, Michael W; Bowen, Benjamin P

    2015-01-01

    Mass spectrometry imaging enables label-free, high-resolution spatial mapping of the chemical composition of complex, biological samples. Typical experiments require selecting ions and/or positions from the images: ions for fragmentation studies to identify keystone compounds and positions for follow up validation measurements using microdissection or other orthogonal techniques. Unfortunately, with modern imaging machines, these must be selected from an overwhelming amount of raw data. Existing techniques to reduce the volume of data, the most popular of which are principle component analysis and non-negative matrix factorization, have the disadvantage that they return difficult-to-interpret linear combinations of actual data elements. In this work, we show that CX and CUR matrix decompositions can be used directly to address this selection need. CX and CUR matrix decompositions use empirical statistical leverage scores of the input data to provide provably good low-rank approximations of the measured data that are expressed in terms of actual ions and actual positions, as opposed to difficult-to-interpret eigenions and eigenpositions. We show that this leads to effective prioritization of information for both ions and positions. In particular, important ions can be found either by using the leverage scores as a ranking function and using a deterministic greedy selection algorithm or by using the leverage scores as an importance sampling distribution and using a random sampling algorithm; however, selection of important positions from the original matrix performed significantly better when they were chosen with the random sampling algorithm. Also, we show that 20 ions or 40 locations can be used to reconstruct the original matrix to a tolerance of 17% error for a widely studied image of brain lipids; and we provide a scalable implementation of this method that is applicable for analysis of the raw data where there are often more than a million rows and/or columns

  13. Ion Mobility-Mass Correlation Trend Line Separation of Glycoprotein Digests without Deglycosylation

    PubMed Central

    Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.

    2013-01-01

    A high-throughput ion mobility mass spectrometer (IMMS) was used to rapidly separate and analyze peptides and glycopeptides derived from glycoproteins. Two glycoproteins, human α-1-acid glycoprotein and antithrombin III were digested with trypsin and subjected to electrospray traveling wave IMMS analysis. No deglycosylation steps were performed; samples were complex mixtures of peptides and glycopeptides. Peptides and glycosylated peptides with different charge states (up to 4 charges) were observed and fell on distinguishable trend lines in 2-D IMMS spectra in both positive and negative modes. The trend line separation patterns matched between both modes. Peptide sequence was identified based on the corresponding extracted mass spectra and collision induced dissociated (CID) experiments were performed for selected compounds to prove class identification. The signal-to-noise ratio of the glycopeptides was increased dramatically with ion mobility trend line separation compared to non-trend line separation, primarily due to selection of precursor ion subsets within specific mobility windows. In addition, isomeric mobility peaks were detected for specific glycopeptides. IMMS demonstrated unique capabilities and advantages for investigating and separating glycoprotein digests in this study and suggests a novel strategy for rapid glycoproteomics studies in the future. PMID:23914139

  14. Detection of tyrosine phosphorylated peptides via skimmer collision-induced dissociation/ion trap mass spectrometry.

    PubMed

    Zolodz, Melissa D; Wood, Karl V

    2003-03-01

    Phosphorylation of proteins is an important post-translational protein modification in cellular response to environmental change and occurs in both prokaryotes and eukaryotes. Identification of the amino acid on individual proteins that become phosphorylated in response to extracellular stimulus is essential for understanding the mechanisms involved in the intracellular signals that these modifications facilitate. Most protein kinases catalyze the phosphorylation of proteins on serine, threonine or tyrosine. Although tyrosine phosphorylation is often the least abundant of the three major phosphorylation sites, it is important owing to its role in signal pathways. Currently available methods for the identification of phosphorylation sites can often miss low levels of tyrosine phosphorylations. This paper describes a method for the identification of phosphotyrosine-containing peptides using electrospray ionization on an ion trap mass spectrometer. Skimmer-activated collision-induced dissociation (CID) was used to generate the phosphotyrosine immonium ion at m/z 216. This method is gentle enough that the protonated molecule of the intact peptide is still observed. In-trap CID was employed for the verification of the phosphotyrosine immonium ion. Using this technique, low levels of phosphotyrosine-containing peptides can be identified from peptide mixtures separated by nanoflow micro liquid chromatography/mass spectrometry.

  15. Afterglow of a microwave microstrip plasma as an ion source for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Kevin P.; White, Allen; Broekaert, José A. C.; Hieftje, Gary M.

    2015-01-01

    A microwave-induced plasma that was previously used for optical emission spectrometry has been repurposed as an afterglow ion source for mass spectrometry. This compact microwave discharge, termed the microstrip plasma (MSP), is operated at 20-50 W and 2.45 GHz in helium at a flow of 300 mL/min. The primary background ions present in the afterglow are ionized and protonated water clusters. An exponential dilution chamber was used to introduce volatile organic compounds into the MSP afterglow and yielded limits of detection in the 40 ppb to 7 ppm range (v/v). A hydride-generation system was also utilized for detection of volatile hydride-forming elements (arsenic, antimony, tin) in the afterglow and produced limits of detection in the 10-100 ppb range in solution. The MSP afterglow was found capable of desorption and ionization of analyte species directly from a solid substrate, suggesting its use as an ion source for ambient desorption/ionization mass spectrometry.

  16. Chemical Imaging of Lipid Domains by High-Resolution Secondary Ion Mass Spectrometry

    SciTech Connect

    Kraft, M L; Weber, P K; Longo, M L; Hutcheon, I D; Boxer, S G

    2005-09-30

    Lipid microdomains within supported lipid bilayers composed of binary phosphocholine mixtures were chemically imaged by high-resolution secondary ion mass spectrometry performed with the NanoSIMS 50 (Cameca Instruments). This instrument images the sample components based on the elemental or isotopic composition of their atomic and small molecular secondary ions. Up to five different secondary ions can be simultaneously detected, and a lateral resolution of 50 nm can be achieved with high sensitivity at high mass resolution. In our experiments, the NanoSIMS 50 extensively fragmented the supported membrane, therefore an isotopic labeling strategy was used to encode the identities of the lipid components. Supported lipid membranes that contained distinct lipid microdomains were freeze-dried to preserve their lateral organization and analyzed with the NanoSIMS 50. Lipid microdomains as small as 100 nm in diameter were successfully imaged, and this was validated by comparison to AFM images taken at the same region prior to chemical imaging. Quantitative information on the lipid distribution within the domain was also determined by calibrating against supported membranes of known composition. We believe this will be a valuable approach for analyzing the composition of complex membrane domains with high spatial resolution.

  17. Precursor ion scan profiles of acylcarnitines by atmospheric pressure thermal desorption chemical ionization tandem mass spectrometry.

    PubMed

    Paglia, Giuseppe; D'Apolito, Oceania; Corso, Gaetano

    2008-12-01

    The fatty acyl esters of L-carnitine (acylcarnitines) are useful biomarkers for the diagnosis of some inborn errors of metabolism analyzed by liquid chromatography/tandem mass spectrometry. In this study the acylcarnitines were analyzed by atmospheric pressure thermal desorption chemical ionization using a commercial tandem mass spectrometer (APTDCI-MS/MS). The method is based on the precursor ion scan mode determination of underivatized acylcarnitines desorbed from samples by a hot desolvation gas flow and ionized by a corona pin discharge. During desorption/ionization step the temperature induces the degradation of acylcarnitines; nevertheless, the common fragment to all acylcarnitines [MH-59](+) is useful for analyzing their profile. APTDCI parameters, including angle of collection and incidence, gas flows and temperatures, were optimized for acylcarnitines. The experiments were performed drying 2 microL of an equimolar mixture of acylcarnitine standards on a glass slide. The specificity was evaluated by comparing product ion spectra and the precursor ion spectra of 85 m/z of acylcarnitines obtained by the APTDCI method and by electrospray ionization flow injection analysis (ESI-FIA). The method was also employed to analyze acylcarnitines extracted from a pathological dried blood spot and a control. The method enables analysis of biological samples and recognition of some acylcarnitines that are diagnostic markers of inherited metabolic diseases. The intrinsic high-throughput analysis of the ambient desorption ionization methods offers a new opportunity either for its potential application in clinical chemistry and for the expanded screening of some inborn errors of metabolism.

  18. Optimizing a microwave gas ion source for continuous-flow accelerator mass spectrometry.

    PubMed

    von Reden, K F; Roberts, M L; Burton, J R; Beaupré, S R

    2012-02-01

    A 2.45 GHz microwave ion source coupled with a magnesium charge exchange canal (C × C) has been successfully adapted to a large acceptance radiocarbon accelerator mass spectrometry system at the National Ocean Sciences Accelerator Mass Spectrometry (AMS) Facility, Woods Hole Oceanographic Institution. CO(2) samples from various preparation sources are injected into the source through a glass capillary at 370 μl∕min. Routine system parameters are about 120-140 μA of negative (12)C current after the C × C, leading to about 400 (14)C counts per second for a modern sample and implying a system efficiency of 0.2%. While these parameters already allow us to perform high-quality AMS analyses on large samples, we are working on ways to improve the output of the ion source regarding emittance and efficiency. Modeling calculations suggest modifications in the extraction triode geometry, shape, and size of the plasma chamber could improve emittance and, hence, ion transport efficiency. Results of experimental tests of these modifications are presented.

  19. Rapid identification of triphenylmethane dyes by ion mobility time-of-flight mass spectrometry.

    PubMed

    Sysoev, Alexey A; Poteshin, Sergey S; Chernyshev, Denis M; Sysoev, Alexander A

    2016-01-01

    An ion mobility time-of-flight mass spectrometry (IM-TOFMS)-based method has been preliminarily investigated for the identification of triphenylmethane ballpoint pen dyes on paper. The dyes were sampled from one-year-old ballpoint pen ink entries. The entries were written on paper documents stored in the dark in a bookcase. Sample solutions were prepared by extraction of dyes in a vial. Basic violet 2, Methyl violet 6B, Methyl violet 2B and Crystal violet were characterized by IM-TOFMS. Since the ballpoint ink dyes contain ionic compounds, the studied compounds were expected to form stable peaks in the atmospheric pressure drift tube ion mobility spectrometry, and this was experimentally verified. The studied dyes produce [M - Cl](+) ions in electrospray and form stable individual mass-selective reduced mobility peaks. The values of the characteristic reduced mobility are: 1.187 cm(2)/(V·s) for Basic violet 2 (m/z 330.20), 1.165 cm(2)/(V·s) for Methyl violet 6B (m/z 344.21), 1.156 cm(2)/(V·s) for Methyl violet 2B (m/z 358.23), 1.123 cm(2)/(V·s) for Crystal violet (m/z 372.24). IM-TOFMS is expected to be a promising tool for fast and reliable analysis of dyes in complex matrixes.

  20. Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex.

    PubMed

    Loo, Joseph A; Berhane, Beniam; Kaddis, Catherine S; Wooding, Kerry M; Xie, Yongming; Kaufman, Stanley L; Chernushevich, Igor V

    2005-07-01

    Mass spectrometry and gas phase ion mobility [gas phase electrophoretic macromolecule analyzer (GEMMA)] with electrospray ionization were used to characterize the structure of the noncovalent 28-subunit 20S proteasome from Methanosarcina thermophila and rabbit. ESI-MS measurements with a quadrupole time-of-flight analyzer of the 192 kDa alpha7-ring and the intact 690 kDa alpha7beta7beta7alpha7 are consistent with their expected stoichiometries. Collisionally activated dissociation of the 20S gas phase complex yields loss of individual alpha-subunits only, and it is generally consistent with the known alpha7beta7beta7alpha7 architecture. The analysis of the binding of a reversible inhibitor to the 20S proteasome shows the expected stoichiometry of one inhibitor for each beta-subunit. Ion mobility measurements of the alpha7-ring and the alpha7beta7beta7alpha7 complex yield electrophoretic diameters of 10.9 and 15.1 nm, respectively; these dimensions are similar to those measured by crystallographic methods. Sequestration of multiple apo-myoglobin substrates by a lactacystin-inhibited 20S proteasome is demonstrated by GEMMA experiments. This study suggests that many elements of the gas phase structure of large protein complexes are preserved upon desolvation, and that methods such as mass spectrometry and ion mobility analysis can reveal structural details of the solution protein complex.

  1. Mass Spectrometric Study on Sodium Ion Induced Central Nucleotide Deletion in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Flosadóttir, Helga Dögg; Gíslason, Kristmann; Sigurdsson, Snorri Thor; Ingólfsson, Oddur

    2012-04-01

    We report a mass spectrometric study on sodium ion induced central nucleotide deletion from protonated oligonucleotides (ONTs) and the concurrent recombination of the terminal nucleotides. To shed some light on the mechanism behind this intriguing fragmentation channel, we have studied the metastable decay of a number of different protonated hexameric and octameric oligonucleotides with 0-6 and 0-8 of their exchangeable protons replaced with sodium ions, respectively. In selected cases, we have also studied the further fragmentation of the parent ions after initial base loss. Our findings are concurrent with a reaction mechanism where the initial step is the elimination of a protonated, high proton affinity (PA) base from the center of the ONTs. This is followed by an elimination of a (next neighbour) nucleotide that contains a second high PA base and the concurrent recombination of the terminal nucleotides. To our knowledge, such central nucleotide deletion in the gas phase has only been reported in one previous study (Flosadóttir et al., J. Am. Soc. Mass Spectrom 20:689-696, 2009), and this is the first systematic approach to understand the mechanism behind this channel.

  2. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    SciTech Connect

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  3. A combined nuclear magnetic resonance and computational study of monohydroxyflavones applied to product ion mass spectra.

    PubMed

    Burns, Darcy C; Ellis, David A; Li, Hongxia; Lewars, Errol G; March, Raymond E

    2007-01-01

    A method is presented for the estimation of 13C-chemical shifts for carbon atoms in protonated and deprotonated molecules; in principle, this method can be applied to ions in general. Experimental 13C-chemical shifts were found to vary linearly with computed atomic charges using the PM3 method. Pseudo-13C-chemical shifts for atoms in protonated and deprotonated molecules can be estimated from computed atomic charges for such atoms using the above linear relationship. The pseudo-13C-chemical shifts obtained were applied to the rationalization of product ion mass spectra of protonated and deprotonated molecules of flavone and 3-, 5-, 6-, 7-, 2'-, 3'-, and 4'-hydroxyflavones, where product ion formation is due to either cross-ring cleavage of the C-ring (retro-Diels-Alder reaction) or to cleavage of a C-ring bond followed by loss of either a small neutral molecule or a radical. The total product ion abundance ratio of C-ring cross cleavage to C-ring bond cleavage, gamma, varied by a factor of 660 for deprotonated monohydroxyflavones, i.e., from 0.014:1 to 9.27:1. The magnitude of gamma, which is dependent on the relative bond orders within the C-ring of the protonated and deprotonated molecules of monohydroxyflavones, can be rationalized on the basis of the magnitudes of the 13C- and 1H-chemical shifts as determined by nuclear magnetic resonance spectroscopy.

  4. Preliminary evaluation of an SF5+ polyatomic primary ion beam for analysis of organic thin films by secondary ion mass spectrometry.

    PubMed

    Gillen, G; Roberson, S

    1998-01-01

    Organic vapor deposited thin films of pure biomolecules, polymer films and biomolecules dispersed in gelatin and biological tissue have been analyzed in a magnetic sector secondary ion mass spectrometer using an SF5+ primary ion beam at keV impact energies. In comparison to Ar+ bombardment under identical conditions, bombardment with SF5+ gives a 10 to 50 fold enhancement in the secondary ion yields for characteristic molecular ions. The SF5+ primary ion beam can be focussed to a small spot allowing molecular ion images to be obtained at micrometer spatial resolution with enhanced sensitivity. More importantly, the decay in molecular ion signal as a function of primary ion dose commonly observed in SIMS using monoatomic primary ions is either eliminated or greatly reduced, allowing molecular depth profiles to be obtained of organic thin films. By continuing to sample intact molecules as sputtering proceeds into the sample, the total number of detected characteristic secondary ions is increased by as much as a factor of approximately 700 for SF5+ bombardment as compared to Ar+ bombardment under identical analytical conditions. This effect is thought to be a result of the high erosion rate and the low penetration depth inherent in the use of a polyatomic primary projectile.

  5. The investigation of ionization conditions in the trace amounts detection of heterocyclic compounds by ion mobility spectrometry and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shaltaeva, Y. R.; Sysoev, A. A.; Poteshin, S. S.; Negru, K. I.; Grishin, S. S.; Trefilova, V. V.; Zuev, M. I.; Baberkina, E. P.

    2016-10-01

    The first part of paper is devoted to the detection of New Psychoactive Substances by ion mobility mass spectrometry study. In the second part of the paper presents a promising approach to prevent the spread of narcotic substances, consisting in the use of field-portable ion mobility spectrometers and finding the correlation between the peaks of the spectrograms of ion mobility and the chemical structure of the compound.

  6. Mass analysis of neutral particles and ions released during electrical breakdowns on spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1985-01-01

    Charged-particle fluxes from breakdown events were studied. Methods to measure mass spectra and total emitted flux of neutral particles were developed. The design and construction of the specialized mass spectrometer was completed. Electrical breakdowns were initiated by a movable blunt contact touching the insulating surface. The contact discharge apparatus was used for final development of two different high-speed recording systems and for measurements of the composition of the materials given off by the discharge. It was shown that intense instantaneous fluxes of neutral particles were released from the sites of electrical breakdown events. A laser micropulse mass analyzer showed that visible discoloration at breakdown sites were correllated with the presence of iron on the polymer side of the film, presumably caused by punch-through to the Inconel backing. Kapton samples irradiated by an oxygen ion beam were tested. The irradiated samples were free of surface hydrocarbon contamination but otherwise behaved in the same way as the Kapton samples tested earlier. Only the two samples exposed to oxygen ion bombardment were relatively clean. This indicates an additional variable that should be considered when testing spacecraft materials in the laboratory.

  7. Quantification of Fumaria officinalis isoquinoline alkaloids by nonaqueous capillary electrophoresis-electrospray ion trap mass spectrometry.

    PubMed

    Sturm, Sonja; Strasser, Eva-Maria; Stuppner, Hermann

    2006-04-21

    A capillary electrophoresis (CE) method using non-aqueous (NA) separation solutions combined with an ion trap mass spectrometer (MS and MS/MS) as detection device is presented for the separation, identification and quantification of isoquinoline alkaloids from Fumaria officinalis. The best results were obtained with a mixture of acetonitrile-methanol (9:1, v/v) containing 60mM ammonium acetate and 2.2M acetic acid as running electrolyte and an applied voltage of 30 kV. Electrospray MS measurements were performed in the positive ionization mode with isopropanol-water (1:1, v/v) as sheath liquid at a flow rate of 3 microl/min. Alkaloids were detected as [M+H](+)-ions and showed typical fragmentation patterns in MS/MS experiments. The developed assay was used for the quantification of seven isoquinoline alkaloids representing different structural subtypes in Fumariae herba extracts and F. herba containing phytopharmaceuticals.

  8. Accelerator mass spectrometer with ion selection in high-voltage terminal

    NASA Astrophysics Data System (ADS)

    Rastigeev, S. A.; Goncharov, A. D.; Klyuev, V. F.; Konstantinov, E. S.; Kutnyakova, L. A.; Parkhomchuk, V. V.; Petrozhitskii, A. V.; Frolov, A. R.

    2016-12-01

    The folded electrostatic tandem accelerator with ion selection in a high-voltage terminal is the basis of accelerator mass spectrometry (AMS) at the BINP. Additional features of the BINP AMS are the target based on magnesium vapors as a stripper without vacuum deterioration and a time-of-flight telescope with thin films for reliable ion identification. The acceleration complex demonstrates reliable operation in a mode of 1 MV with 50 Hz counting rate of 14C+3 radiocarbon for modern samples (14C/12C 1.2 × 10-12). The current state of the AMS has been considered and the experimental results of the radiocarbon concentration measurements in test samples have been presented.

  9. Evaluation of C60 secondary ion mass spectrometry for the chemical analysis and imaging of fingerprints.

    PubMed

    Sisco, Edward; Demoranville, Leonard T; Gillen, Greg

    2013-09-10

    The feasibility of using C60(+) cluster primary ion bombardment secondary ion mass spectrometry (C60(+) SIMS) for the analysis of the chemical composition of fingerprints is evaluated. It was found that C60(+) SIMS could be used to detect and image the spatial localization of a number of sebaceous and eccrine components in fingerprints. These analyses were also found to not be hindered by the use of common latent print powder development techniques. Finally, the ability to monitor the depth distribution of fingerprint constituents was found to be possible - a capability which has not been shown using other chemical imaging techniques. This paper illustrates a number of strengths and potential weaknesses of C60(+) SIMS as an additional or complimentary technique for the chemical analysis of fingerprints.

  10. Determination of the deposition order of overlapping latent fingerprints and inks using secondary ion mass spectrometry.

    PubMed

    Bright, Nicholas J; Webb, Roger P; Bleay, Stephen; Hinder, Steven; Ward, Neil I; Watts, John F; Kirkby, Karen J; Bailey, Melanie J

    2012-05-01

    A new protocol using time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been developed to identify the deposition order of a fingerprint overlapping an ink line on paper. By taking line scans of fragment ions characteristic of the ink molecules (m/z 358.2 and 372.2) where the fingerprint and ink overlap and by calculating the normalized standard deviation of the intensity variation across the line scan, it is possible to determine whether or not a fingerprint is above ink on a paper substrate. The protocol adopted works for a selection of fingerprints from four donors tested here and for a fingerprint that was aged for six months; for one donor, the very faint fingerprints could not be visualized using either standard procedures (ninhydrin development) or SIMS, and therefore the protocol correctly gives an inconclusive result.

  11. In Situ Ion-Transmission Mass Spectrometry for Paper-Based Analytical Devices.

    PubMed

    Zhao, Yaoyao; Wei, Zhenwei; Zhao, Hansen; Jia, Jia; Chen, Zhenzhen; Zhang, Sichun; Ouyang, Zheng; Ma, Xiaoxiao; Zhang, Xinrong

    2016-11-15

    Current detection methods for paper-based analytical devices (PADs) rely on spectroscopic and electrochemical properties, which place special requirements on the analyte or need analyte labeling. Here, ion-transmission mass spectrometry (MS) was proposed for coupling with PADs to enable rapid in situ MS analysis of the sample on paper. The sample was analyzed directly on paper via analyte ionization by ions transmitted through the paper, generated by a low-temperature plasma probe. Prior to MS analysis, the sample can be separated by paper electrophoresis or by paper chromatography, among a variety of other features offered by PADs. The versatility of this technique was demonstrated by MS analysis of a paper microarray, a mixture of amino acids, and whole blood doped with drugs on PADs.

  12. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    DOE PAGES

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; ...

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ionmore » injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.« less

  13. Advances in Charge-Compensation in Secondary Ion Mass Spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Hervig, R. L.; Chen, J.; Schauer, S.; Stanley, B. D.; Moore, G. M.; Roggensack, K.

    2012-12-01

    In secondary ion mass spectrometry (SIMS), a sample is bombarded by a charged particle beam (the primary ion) and sputtered positive or negative secondary ions are analyzed in a mass spectrometer. When the target is not conducting (like many geological materials), sample charging can result in variable deflection of secondary ions away from the mass spectrometer and a low, unstable, or absent signal. Applying a thin conducting coat (e.g., C, Au) to polished samples is required, and if the primary ion beam is negatively-charged, the build-up of negative charge can be alleviated by secondary electrons draining to the conducting coat at the edge of the crater (if a positive potential is applied to the sample for the collection of positive secondary ions) or accelerated away from the crater (if a negative potential is applied for negative ion study). Unless the sputtered crater in the conducting coat becomes too large, sample charging can be kept at a controllable level, and high-quality trace element analyses and isotope ratios have been obtained using this technique over the past 3+ decades. When a positive primary beam is used, the resulting build-up of positive charge in the sample requires an electron gun to deliver sufficient negative charge to the sputtered crater. While there are many examples of successful analyses using this approach, the purpose of this presentation is to describe a very simple technique for aligning the electron gun on Cameca nf and 1270/80 SIMS instruments. This method allows reproducible analyses of insulating phases with a Cs+ primary beam and detection of negative secondary ions. Normally, the filament voltage on the E-gun is the same as the sample voltage; thus electrons do not strike the sample except when a positive charge has built up (e.g., in the analysis crater!). In this method, we decrease the sample voltage by 3 or more kV, so that the impact energy of the electrons is sufficient to induce a cathodoluminescent (CL) image on an

  14. A Secondary Ion Mass Analyzer for Remote Surface Composition Analysis of the Galilean Moons

    NASA Technical Reports Server (NTRS)

    Krueger, H.; Srama, R.; Johnson, T. V.; Henkel, H.; vonHoerner, H.; Koch, A.; Horanyi, M.; Gruen, E.; Kissel, J.; Krueger, F.

    2003-01-01

    Galileo in-situ dust measurements have shown that the Galilean moons are surrounded by tenuous dust clouds formed by collisional ejecta from their icy surfaces, kicked up by impacts of interplanetary micrometeoroids. The majority of the ejecta dust particles have been sensed at altitudes below five between 0.5 and 1 micron, just above the detector threshold, indicating a size distribution decreasing towards bigger particles. their parent bodies. They carry information about the properties of the surface from which they have been kicked up. In particular, these grains may carry organic compounds and other chemicals of biological relevance if they exist on the icy Galilean moons. In-situ analysis of the grain composition with a sophisticated dust analyzer instrument flying on a Jupiter Icy Moons Orbiter can provide important information about geochemical and geophysical processes during the evolutionary histories of these moons which are not accessible with other techniques from an orbiter spacecraft. Thus, spacecraft-based in-situ dust measurements can be used as a diagnostic tool for the analysis of the surface composition of the moons. This way, the in-situ measurements turn into a remote sensing technique by using the dust instrument like a telescope for surface investigation. An instrument capable of very high resolution composition analysis of dust particles is the Cometary Secondary Ion Mass Analyzer (COSIMA). The instrument was originally developed for the Comet Rendezvous and Asteroid Flyby (CRAF) mission and has now been built for ESA'S comet orbiter Rosetta. Dust particles are collected on a target and are later located by an optical microscope camera. A pulsed primary indium ion gun partially ionizes the dust grains. The generated secondary ions are accelerated in an electric field and travel through a reflectron-type time-of-flight ion mass spectrometer.

  15. Characterisation of polyacetylenes isolated from carrot (Daucus carota) extracts by negative ion tandem mass spectrometry.

    PubMed

    Rai, Dilip K; Brunton, Nigel P; Koidis, Anastasios; Rawson, Ashish; McLoughlin, Padraig; Griffiths, William J

    2011-08-15

    The potential use of negative electrospray ionisation mass spectrometry (ESI-MS) in the characterisation of the three polyacetylenes common in carrots (Daucus carota) has been assessed. The MS scans have demonstrated that the polyacetylenes undergo a modest degree of in-source decomposition in the negative ionisation mode while the positive ionisation mode has shown predominantly sodiated ions and no [M+H](+) ions. Tandem mass spectrometric (MS/MS) studies have shown that the polyacetylenes follow two distinct fragmentation pathways: one that involves cleavage of the C3-C4 bond and the other with cleavage of the C7-C8 bond. The cleavage of the C7-C8 bond generated product ions m/z 105.0 for falcarinol, m/z 105/107.0 for falcarindiol, m/z 147.0/149.1 for falcarindiol-3-acetate. In addition to these product ions, the transitions m/z 243.2 → 187.1 (falcarinol), m/z 259.2 → 203.1 (falcarindiol), m/z 301.2 → 255.2/203.1 (falcarindiol-3-acetate), mostly from the C3-C4 bond cleavage, can form the basis of multiple reaction monitoring (MRM)-quantitative methods which are poorly represented in the literature. The 'MS(3) ' experimental data confirmed a less pronounced homolytic cleavage site between the C11-C12 bond in the falcarinol-type polacetylenes. The optimised liquid chromatography (LC)/MS conditions have achieved a baseline chromatographic separation of the three polyacetylenes investigated within 40 min total run-time.

  16. The significance of monoisotopic and carbon-13 isobars for the identification of a 19-component dodecapeptide library by positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ramjit, H G; Kruppa, G H; Spier, J P; Ross, C W; Garsky, V M

    2000-01-01

    Harnessing the ultra high resolution capabilities of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and positive ion electrospray, we have demonstrated the significance and utility of cumulative mass defect high resolution mass separation stable isotope distribution, exact mass measurement and elemental formula as a means of simultaneously identifying 19 components of the dodecapeptide library Ac-ANKISYQS[X]STE-NH(2). With an instrument resolution of 275 000 (average), isobaric multiplets attributed to monoisotopic and carbon-13 components of peptides: Ac approximately SLS approximately NH(2); Ac approximately SNS approximately NH(2); Ac approximately SOS approximately NH(2); Ac approximately SDS approximately NH(2); within the mass window of 1380-1385 Da, and Ac approximately SQS approximately NH(2); Ac approximately SKS approximately NH(2); Ac approximately SES approximately NH(2); Ac approximately SMS approximately NH(2), within the mass window 1395-1400 Da, were mass resolved, accurately mass measured and identified from the computed molecular formulas. This experimental procedure enabled the separation of monoisotopic and carbon-13 isobars yielding enhanced selectivity and specificity and serves to illustrate the significance of monoisotopic and carbon-13 isobars in final product analysis. Chromatographic separation (HPLC) was of limited utility except for monitoring the overall extent of reaction and apparent product distribution. Positive ion electrospray-FTICR-MS and fast atom bombardment (FAB) MS were used to assess final product quality and apparent component distribution.