Sample records for nano-sized bacterial magnetic

  1. Electrical and magnetic properties of nano-sized magnesium ferrite

    NASA Astrophysics Data System (ADS)

    T, Smitha; X, Sheena; J, Binu P.; Mohammed, E. M.

    2015-02-01

    Nano-sized magnesium ferrite was synthesized using sol-gel techniques. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. Vibration Sample Magnetometer was used to record the magnetic measurements. XRD analysis reveals the prepared sample is single phasic without any impurity. Particle size calculation shows the average crystallite size of the sample is 19nm. FTIR analysis confirmed spinel structure of the prepared samples. Magnetic measurement study shows that the sample is ferromagnetic with high degree of isotropy. Hysterisis loop was traced at temperatures 100K and 300K. DC electrical resistivity measurements show semiconducting nature of the sample.

  2. Processing of micro-nano bacterial cellulose with hydrolysis method as a reinforcing bioplastic

    NASA Astrophysics Data System (ADS)

    Maryam, Maryam; Dedy, Rahmad; Yunizurwan, Yunizurwan

    2017-01-01

    Nanotechnology is the ability to create and manipulate atoms and molecules on the smallest of scales. Their size allows them to exhibit novel and significantly improved physical, chemical, biological properties, phenomena, and processes because of their size. The purpose of this research is obtaining micro-nano bacterial cellulose as reinforcing bioplastics. Bacterial cellulose (BC) was made from coconut water for two weeks. BC was dried and grinded. Bacterial cellulose was given purification process with NaOH 5% for 6 hours. Making the micro-nano bacterial cellulose with hydrolysis method. Hydrolysis process with hydrochloric acid (HCl) at the conditions 3,5M, 55°C, 6 hours. Drying process used spray dryer. The hydrolysis process was obtained bacterial cellulose with ±7 μm. The addition 2% micro-nano bacterial cellulose as reinforcing in bioplastics composite can improve the physical characteristics.

  3. Magnetic high throughput screening system for the development of nano-sized molecularly imprinted polymers for controlled delivery of curcumin.

    PubMed

    Piletska, Elena V; Abd, Bashar H; Krakowiak, Agata S; Parmar, Anitha; Pink, Demi L; Wall, Katie S; Wharton, Luke; Moczko, Ewa; Whitcombe, Michael J; Karim, Kal; Piletsky, Sergey A

    2015-05-07

    Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.

  4. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles.

    PubMed

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-08-25

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  5. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au.

    PubMed

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-05-28

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  6. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Biswajit, E-mail: bpanda@mes.ac.in; Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH groupmore » of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.« less

  7. Particle size related bacterial recovery in immunomagnetic separation

    USDA-ARS?s Scientific Manuscript database

    Magnetic nanoparticles (MNPs) have demonstrated superior capture efficiencies in small molecule targets during immunomagnetic separation (IMS), but the potentials of MNPs in bacterial isolation have not been verified. The objective of this study was to evaluate the effect of magnetic particle size o...

  8. [Preparation and release exam of magnetic chitosan nano-spheres of doxorubicin].

    PubMed

    Han, Tao; Xiao, Qingping; Zhang, Yuanming

    2010-02-01

    Magnetic chitosan (CS) nano-spheres were prepared by the modified suspension cross-linking technique. The results demonstrated that the magnetic drug nano-spheres are mainly spherical in form with a size of 200 to 800 nm, and show good magnetic responsivity. Here, Doxorubicin was used as exam drug. Glutaraldehyde connects Doxorubicin to CS by the chemical bond (-N = C-), and the drug content is in range of 1% to 15% (w/w). The chemical bond is broken depending on pH, so pH is the important factor for the release of doxorubicin. The doxorubicin release was 22.0%, 13.4%, and 4.1% in the space of 7d, when pH was 1, 2, 4. So the nano-spheres are pH-sensitive magnetic targeting drug micro-spheres.

  9. Bias field tunable magnetic configuration and magnetization dynamics in Ni80Fe20 nano-cross structures with varying arm length

    NASA Astrophysics Data System (ADS)

    Adhikari, K.; Choudhury, S.; Mandal, R.; Barman, S.; Otani, Y.; Barman, A.

    2017-01-01

    Ferromagnetic nano-cross structures promise exotic static magnetic configurations and very rich and tunable magnetization dynamics leading towards potential applications in magnetic logic and communication devices. Here, we report an experimental study of external magnetic field tunable static magnetic configurations and magnetization dynamics in Ni80Fe20 nano-cross structures with varying arm lengths (L). Broadband ferromagnetic resonance measurements showed a strong variation in the number of spin-wave (SW) modes and mode frequencies (f) with bias field magnitude (H). Simulated static magnetic configurations and SW mode profiles explain the rich variation of the SW spectra, including mode softening, mode crossover, mode splitting, and mode merging. Such variation of SW spectra is further modified by the size of the nano-cross. Remarkably, with decreasing arm length of nano-cross structures, the onion magnetization ground state becomes more stable. Calculated magnetostatic field distributions support the above observations and revealed the non-collective nature of the dynamics in closely packed nano-cross structures. The latter is useful for their possible applications in magnetic storage and memory devices.

  10. Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics

    NASA Astrophysics Data System (ADS)

    Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham

    Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.

  11. Adhesion of gram-negative rod-shaped bacteria on 1D nano-ripple glass pattern in weak magnetic fields.

    PubMed

    Saleem, Iram; Masood, Samina; Smith, Derek; Chu, Wei-Kan

    2018-05-24

    This research project has major applications in the healthcare and biomedical industries. Bacteria reside in human bodies and play an integral role in the mechanism of life. However, their excessive growth or the invasion of similar agents can be dangerous and may cause fatal or incurable diseases. On the other hand, increased exposure to electromagnetic radiation and its impact on health and safety is a common concern to medical science. Some nanostructure materials have interesting properties regarding facilitating or impeding cell growth. An understanding of these phenomena can be utilized to establish the optimum benefit of these structures in healthcare and medical research. We focus on the commonly found rod-shaped, gram-negative bacteria and their orientation and community development on the cellular level in the presence of weak magnetic fields on one dimensional nano-ripple glass patterns to investigate the impact of nanostructures on the growth pattern of bacteria. The change in bacterial behavior on nanostructures and the impact of magnetic fields will open up new venues in the utilization of nanostructures. It is noticed that bacterial entrapment in nano-grooves leads to the growth of larger colonies on the nanostructures, whereas magnetic fields reduce the size of colonies and suppress their growth. © 2018 Texas Center for Superconductivity, University of Houston. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Detection of bisphenol A using palm-size NanoAptamer analyzer.

    PubMed

    Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2017-08-15

    We have demonstrated a palm-size NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (<1ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. Modified NanoGene assay was used as the sensing mechanism where signaling DNA and QD 655 was tethered to QD 565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD 655 from the complex and hence corresponding decrease in QD 655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Magnetic microbes: Bacterial magnetite biomineralization

    DOE PAGES

    Prozorov, Tanya

    2015-09-14

    Magnetotactic bacteria are a diverse group of prokaryotes with the ability to orient and migrate along the magnetic field lines in search for a preferred oxygen concentration in chemically stratified water columns and sediments. These microorganisms produce magnetosomes, the intracellular nanometer-sized magnetic crystals surrounded by a phospholipid bilayer membrane, typically organized in chains. Magnetosomes have nearly perfect crystal structures with narrow size distribution and species-specific morphologies, leading to well-defined magnetic properties. As a result, the magnetite biomineralization in these organisms is of fundamental interest to diverse disciplines, from biotechnology to astrobiology. As a result, this article highlights recent advances inmore » the understanding of the bacterial magnetite biomineralization.« less

  14. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

    PubMed

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe 3 O 4 and cobalt ferrite CoFe 2 O 4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10-20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%-25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal

  15. Provision of micro-nano bacterial cellulose as bio plastic filler by sonication method

    NASA Astrophysics Data System (ADS)

    Maryam; Rahmad, D.; Yunizurwan; Kasim, A.; Novelina; Emriadi

    2017-07-01

    Research and development of bioplastic has increased recently as a solution for substitution of conventional plastic which have many negative impacts to environment. However, physical properties and mechanical properties of its still lower than conventional plastic. An alternative solution for that problem is by using fillers that can increase the strength. Bacterial cellulose is considered as potential source for filler, but still need to be explored more. The privileges of bacterial cellulose are easy to get and does not have lignin, pectin, and hemicelluloses which are impurities in other celluloses. This research focused on gaining bacterial cellulose in micro-nano particle form and its impact on increasing the strength of bio plastic. Ultrasonication has been used as method to form micro-nano particle from bacterial cellulose. The result showed this method may form the particle size of bacterial cellulose approximately ± 3μm. Next step, after getting ± 3μm particle of bacterial cellulose, is making bio plastic with casting method by adding 1% of bacterial cellulose, from the total material in making bio plastic. Physical characteristic of the bio plastic which are tensile strength 11.85 MPa, modulus young 3.13 MPa, elongation 4.11% and density 0.42 g/cm3. The numbers of physical properties showwthat, by adding 1% of bacterial cellulose, the strength of bio plastic was significantly increase, even value of tensile strength has complied the international standard for bio plastic.

  16. Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.

    2017-10-01

    In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.

  17. Nano-fabricated size exclusion chromatograph

    NASA Technical Reports Server (NTRS)

    Svehla, D.; Feldman, S.; Feldman, J.; Grunthaner, F.; Shakkottai, P.; Castillo, L. del; White, V.

    2002-01-01

    This paper describes the development of a nano-fabricated size exclusion chromatograph (nSEC) based on the principle that molecules traveling through amicrocolumn containing nano-fabricated features will have characteristic elution times that directly correlate to molecular weight. Compared to conventional size exclusion chromatography, the nSEC offers greater control over the size exclusion process; mass fabrication; integration of the separation column with associated valves, pumps, and detectors; and dramatic reductions in instrument mass and power requirements.

  18. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia

    PubMed Central

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe3O4 and cobalt ferrite CoFe2O4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10–20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%–25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal

  19. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu

    2015-04-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results.

  20. Urban runoff treatment using nano-sized iron oxide coated sand with and without magnetic field applying

    PubMed Central

    2013-01-01

    Increase of impervious surfaces in urban area followed with increases in runoff volume and peak flow, leads to increase in urban storm water pollution. The polluted runoff has many adverse impacts on human life and environment. For that reason, the aim of this study was to investigate the efficiency of nano iron oxide coated sand with and without magnetic field in treatment of urban runoff. In present work, synthetic urban runoff was treated in continuous separate columns system which was filled with nano iron oxide coated sand with and without magnetic field. Several experimental parameters such as heavy metals, turbidity, pH, nitrate and phosphate were controlled for investigate of system efficiency. The prepared column materials were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDXA) instruments. SEM and EDXA analyses proved that the sand has been coated with nano iron oxide (Fe3O4) successfully. The results of SEM and EDXA instruments well demonstrate the formation of nano iron oxide (Fe3O4) on sand particle. Removal efficiency without magnetic field for turbidity; Pb, Zn, Cd and PO4 were observed to be 90.8%, 73.3%, 75.8%, 85.6% and 67.5%, respectively. When magnetic field was applied, the removal efficiency for turbidity, Pb, Zn, Cd and PO4 was increased to 95.7%, 89.5%, 79.9%, 91.5% and 75.6% respectively. In addition, it was observed that coated sand and magnetic field was not able to remove NO3 ions. Statistical analyses of data indicated that there was a significant difference between removals of pollutants in two tested columns. Results of this study well demonstrate the efficiency of nanosized iron oxide-coated sand in treatment of urban runoff quality; upon 75% of pollutants could be removed. In addition, in the case of magnetic field system efficiency can be improved significantly. PMID:24360061

  1. Magnetic bead detection using nano-transformers.

    PubMed

    Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.

  2. Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential.

    PubMed

    Esteban, Patricia Perez; Jenkins, A Toby A; Arnot, Tom C

    2016-03-01

    In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages. The first approach consists of simple calculations to determine the spatial distribution of the components, based on measurements of particle size. It was found that nano-emulsion droplets are much more numerous than bacteria or bacteriophage, and due to their size and surface area they must be covering the surface of both cells and bacteriophage particles. Stabilisation of bacteriophages due to electrostatic forces and interaction with nano-emulsion droplets is suspected, since bacteriophages may be protected against inactivation due to 'charge shielding'. Zeta potential was measured for the individual components in the system, and for all of them combined. It was concluded that the presence of nano-emulsions could be reducing electrostatic repulsion between bacterial cells and bacteriophage, both of which are very negatively 'charged'. Moreover, nano-emulsions lead to more favourable interaction between bacteriophages and bacteria, enhancing the anti-microbial or killing effect. These findings are relevant since the physicochemical properties of nano-emulsions (i.e. particle size distribution and zeta potential) are key in determining the efficacy of the formulation against infection in the context of responsive burn wound dressings-which is the main target for this work. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    NASA Astrophysics Data System (ADS)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-04-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  4. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite

    NASA Astrophysics Data System (ADS)

    Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo

    2018-03-01

    A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.

  5. Magnetization reversal modes in fourfold Co nano-wire systems

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  6. Effects of crystallite size on the structure and magnetism of ferrihydrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoming; Zhu, Mengqiang; Koopal, Luuk K.

    2015-12-15

    The structure and magnetic properties of nano-sized (1.6 to 4.4 nm) ferrihydrite samples are systematically investigated through a combination of X-ray diffraction (XRD), X-ray pair distribution function (PDF), X-ray absorption spectroscopy (XAS) and magnetic analyses. The XRD, PDF and Fe K-edge XAS data of the ferrihydrite samples are all fitted well with the Michel ferrihydrite model, indicating similar local-, medium- and long-range ordered structures. PDF and XAS fitting results indicate that, with increasing crystallite size, the average coordination numbers of Fe–Fe and the unit cell parameter c increase, while Fe2 and Fe3 vacancies and the unit cell parameter a decrease.more » Mössbauer results indicate that the surface layer is relatively disordered, which might have been caused by the random distribution of Fe vacancies. These results support Hiemstra's surface-depletion model in terms of the location of disorder and the variations of Fe2 and Fe3 occupancies with size. Magnetic data indicate that the ferrihydrite samples show antiferromagnetism superimposed with a ferromagnetic-like moment at lower temperatures (100 K and 10 K), but ferrihydrite is paramagnetic at room temperature. In addition, both the magnetization and coercivity decrease with increasing ferrihydrite crystallite size due to strong surface effects in fine-grained ferrihydrites. Smaller ferrihydrite samples show less magnetic hyperfine splitting and a lower unblocking temperature (T B) than larger samples. The dependence of magnetic properties on grain size for nano-sized ferrihydrite provides a practical way to determine the crystallite size of ferrihydrite quantitatively in natural environments or artificial systems.« less

  7. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    PubMed

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  8. Classification of Magnetic Nanoparticle Systems—Synthesis, Standardization and Analysis Methods in the NanoMag Project

    PubMed Central

    Bogren, Sara; Fornara, Andrea; Ludwig, Frank; del Puerto Morales, Maria; Steinhoff, Uwe; Fougt Hansen, Mikkel; Kazakova, Olga; Johansson, Christer

    2015-01-01

    This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles. PMID:26343639

  9. Magnetic Nano-Materials: Truly Sustainable Green Chemistry Nano Catalysis

    EPA Science Inventory

    We envisioned a novel nano-catalyst system, which can bridge the homogenous and heterogeneous system, and simultaneously be cheaper, easily accessible (sustainable) and possibly does not require elaborate work-up. Because of its nano-size, i.e. high surface area, the contact betw...

  10. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens

    PubMed Central

    Setterington, Emma B.; Alocilja, Evangelyn C.

    2012-01-01

    Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens. PMID:25585629

  11. Dark field imaging system for size characterization of magnetic micromarkers

    NASA Astrophysics Data System (ADS)

    Malec, A.; Haiden, C.; Kokkinis, G.; Keplinger, F.; Giouroudi, I.

    2017-05-01

    In this paper we demonstrate a dark field video imaging system for the detection and size characterization of individual magnetic micromarkers suspended in liquid and the detection of pathogens utilizing magnetically labelled E.coli. The system follows dynamic processes and interactions of moving micro/nano objects close to or below the optical resolution limit, and is especially suitable for small sample volumes ( 10 μl). The developed detection method can be used to obtain clinical information about liquid contents when an additional biological protocol is provided, i.e., binding of microorganisms (e.g. E.coli) to specific magnetic markers. Some of the major advantages of our method are the increased sizing precision in the micro- and nano-range as well as the setup's simplicity making it a perfect candidate for miniaturized devices. Measurements can thus be carried out in a quick, inexpensive, and compact manner. A minor limitation is that the concentration range of micromarkers in a liquid sample needs to be adjusted in such a manner that the number of individual particles in the microscope's field of view is sufficient.

  12. Synthesis, characterization and magnetic behavior of Co/MCM-41 nano-composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuello, N.; Elías, V.; CONICET

    2013-09-15

    Synthesis, structure and magnetic properties of Co/MCM-41 as magnetic nano-composites have been investigated. Mesoporous materials with different degrees of metal loading were prepared by wet impregnation and characterized by ICP, XRD, N{sub 2} adsorption, UV–vis DRS, TPR and EPMA-EDS. Cobalt oxide clusters and Co{sub 3}O{sub 4} nano-particles could be confined inside the mesopores of MCM-41, being this fact favored by the Co loading increasing. In addition, larger crystals of Co{sub 3}O{sub 4} detectable by XRD also grow on the surface when the Co loading is enhanced. The magnetic characterization was performed in a SQUID magnetometer using a maximum magnetic appliedmore » field µ{sub 0}Ha=1 T. While the samples with the higher Co loadings showed a behavior typically paramagnetic, a superparamagnetic contribution is more notorious for lower loadings, suggesting high Co species dispersion. - Graphical abstract: Room temperature hysteresis loops as a function of the Co content. Display Omitted - Highlights: • Co species as isolated Co{sup 2+}, oxide clusters and Co{sub 3}O{sub 4} nano-particles were detected. • For higher Co loads were detected, by XRD, Co{sub 3}O{sub 4} particles on the external surface. • The confining of Co species inside the mesopores was achieved by increasing Co load. • Paramagnetism from oxide clusters/nano-particles becomes dominant for higher Co loads. • Superparamagnetism can be assigned to Co species of small size and finely dispersed.« less

  13. Enhancement of integrated photonic biosensing by magnetic controlled nano-particles

    NASA Astrophysics Data System (ADS)

    Peserico, N.; Sharma, P. Pratim; Belloni, A.; Damin, F.; Chiari, M.; Bertacco, R.; Melloni, A.

    2018-02-01

    Integrated Mach-Zehnder interferometers, ring resonators, Bragg reflectors or simple waveguides are commonly used as photonic biosensing elements. They can be used for label-free detection relating the changes in the optical signal in realtime, as optical power or spectral response, to the presence and even the quantity of a target analyte on the surface of the photonic waveguide. The label-free method has advantages in term of sample preparation but it is more sensitive to spurious effects such as temperature and refractive index sample variation, biological noise, etc. Label methods can be more robust, more sensitive and able to manipulate the biological targets. In this work, we present an innovative labeled biosensing technique exploiting magnetic nano-beads for enhancement of sensitivity over integrated optic microrings. A sandwich binding is exploited to bring the magnetic labels close to the surface of the optical waveguide and interact with the optical evanescent field. The proximity and the quantity of the magnetic nano-beads are seen as a shift in the resonance of the microring. Detection of antibodies permits to reach a high level of sensitivity, down to 8 pM with a high confidence level. The sizes of the nano-beads are 50 to 250 nm. Furthermore, time-varying magnetic fields permit to manipulate the beads and even induce specific signals on the detected light to easy the processing and provide a reliable identification of the presence of the desired analyte. Multiple analytes detection is also possible.

  14. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content inmore » the spinach plants was increased when the magnetic nano particles was injected in the growing media.« less

  15. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. Themore » results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.« less

  16. Nano-sized Contrast Agents to Non-Invasively Detect Renal Inflammation by Magnetic Resonance Imaging

    PubMed Central

    Thurman, Joshua M.; Serkova, Natalie J.

    2013-01-01

    Several molecular imaging methods have been developed that employ nano-sized contrast agents to detect markers of inflammation within tissues. Renal inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active renal inflammation. However, the development of new molecular imaging methods that employ contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys, and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring renal inflammation, and recent advances in the development of nano-sized contrast agents for detection of inflammatory markers of renal disease. PMID:24206601

  17. Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna.

    PubMed

    Yang, Jing; Zhang, Jiasen

    2013-04-08

    We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.

  18. Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A

    2010-02-01

    Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size. Copyright 2009 SETAC.

  19. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads.

    PubMed

    Uddin, Rokon; Burger, Robert; Donolato, Marco; Fock, Jeppe; Creagh, Michael; Hansen, Mikkel Fougt; Boisen, Anja

    2016-11-15

    We present a biosensing platform for the detection of proteins based on agglutination of aptamer coated magnetic nano- or microbeads. The assay, from sample to answer, is integrated on an automated, low-cost microfluidic disc platform. This ensures fast and reliable results due to a minimum of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25pM with the same sample-to-answer time (15min 30s) using the two differently sized beads for the two detection methods. In both cases a sample volume of only 10µl is required. The demonstrated automation, low sample-to-answer time and portability of both detection instruments as well as integration of the assay on a low-cost disc are important steps for the implementation of these as portable tools in an out-of-lab setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis and LPG sensing properties of nano-sized cadmium oxide.

    PubMed

    Waghulade, R B; Patil, P P; Pasricha, Renu

    2007-04-30

    This paper reports the synthesis and liquid petroleum gas (LPG) sensing properties of nano-sized cadmium oxide (CdO). The nano-sized CdO powder was successfully synthesized by using a chemical co-precipitation method using cadmium acetate and the ammonium hydroxide, as starting materials and water as a carrier. The resulting nano-sized powder was characterized by X-ray diffraction (XRD) measurements and the transmission electron microscopy (TEM). The LPG sensing properties of the synthesized nano-sized CdO were investigated at different operating temperatures and LPG concentrations. It was found that the calcination temperature and the operating temperature significantly affect the sensitivity of the nano-sized CdO powder to the LPG. The sensitivity is found to be maximum when the calcination temperature was 400 degrees C. The sensitivity to 75ppm of LPG is maximum at an operating temperature 450 degrees C and it was found to be approximately 341%. The response and recovery times were found to be nearly 3-5s and 8-10s, respectively. The synthesized nano-sized CdO powder is able to detect up to 25ppm for LPG with reasonable sensitivity at an operating temperature 450 degrees C and it can be reliably used to monitor the concentration of LPG over the range (25-75ppm). The experimental results of the LPG sensing studies reveal that the nano-sized CdO powder synthesized by a simple co-precipitation method is a suitable material for the fabrication of the LPG sensor.

  1. On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining

    NASA Astrophysics Data System (ADS)

    Zawadzki, Jaroslaw; Bogacki, Jan

    2016-04-01

    Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to

  2. Nano-catalysts with Magnetic Core: Sustainable Options for Greener Synthesis

    EPA Science Inventory

    Author’s perspective on nano-catalysts with magnetic core is summarized with recent work from his laboratory. Magnetically recyclable nano-catalysts and their use in benign media is an ideal blend for the development of sustainable methodologies in organic synthesis. Water or pol...

  3. Monitoring of magnetic nano-particles in EOR by using the CSEM modeling and inversion.

    NASA Astrophysics Data System (ADS)

    Heo, J. Y.; KIM, S.; Jeong, G.; Hwang, J.; Min, D. J.

    2016-12-01

    EOR, which injects water, CO2, or other chemical components into reservoirs to increase the production rate of oil and gas, has widely been used. To promote efficiency of EOR, it is important to monitor distribution of injected materials in reservoirs. Using nano-particles in EOR has advantages that the size of particles is smaller than the pore and particles can be characterized by various physical properties. Specifically, if we use magnetic nano-particles, we can effectively monitor nano-particles by using the electromagnetic survey. CSEM, which can control the frequency range of source, is good to monitor magnetic nano-particles under various reservoir circumstances. In this study, we first perform numerical simulation of 3D CSEM for reservoir under production. In general, two wells are used for EOR: one is for injection, and the other is for extraction. We assume that sources are applied inside the injection well, and receivers are deployed inside the extraction well. To simulate the CSEM survey, we decompose the total fields into primary and secondary fields in Maxwell's equations. For the primary fields, we calculate the analytic solutions of the layered earth. With the calculated primary fields, we compute the secondary fields due to anomalies using the edge-based finite-element method. Finally, we perform electromagnetic inversion for both conductivity and permeability to trace the distribution of magnetic nano-particles. Since these two parameters react differently according to the frequency range of sources, we can effectively describe the distribution of magnetic nano-particles by considering two parameters at the same time. Acknowledgements This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20168510030830), and by the International Cooperation (No. 2012-8510030010) of KETEP, and by the Dual Use Technology Program, granted

  4. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-03-17

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermalmore » stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO{sub 2} passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness.« less

  5. Nano-soldering of magnetically aligned three-dimensional nanowire networks.

    PubMed

    Gao, Fan; Gu, Zhiyong

    2010-03-19

    It is extremely challenging to fabricate 3D integrated nanostructures and hybrid nanoelectronic devices. In this paper, we report a simple and efficient method to simultaneously assemble and solder nanowires into ordered 3D and electrically conductive nanowire networks. Nano-solders such as tin were fabricated onto both ends of multi-segmented nanowires by a template-assisted electrodeposition method. These nanowires were then self-assembled and soldered into large-scale 3D network structures by magnetic field assisted assembly in a liquid medium with a high boiling point. The formation of junctions/interconnects between the nanowires and the scale of the assembly were dependent on the solder reflow temperature and the strength of the magnetic field. The size of the assembled nanowire networks ranged from tens of microns to millimeters. The electrical characteristics of the 3D nanowire networks were measured by regular current-voltage (I-V) measurements using a probe station with micropositioners. Nano-solders, when combined with assembling techniques, can be used to efficiently connect and join nanowires with low contact resistance, which are very well suited for sensor integration as well as nanoelectronic device fabrication.

  6. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  7. Optical spins and nano-antenna array for magnetic therapy.

    PubMed

    Thammawongsa, N; Mitatha, S; Yupapin, P P

    2013-09-01

    Magnetic therapy is an alternative medicine practice involving the use of magnetic fields subjected to certain parts of the body and stimulates healing from a range of health problems. In this paper, an embedded nano-antenna system using the optical spins generated from a particular configuration of microrings (PANDA) is proposed. The orthogonal solitons pairs corresponding to the left-hand and right-hand optical solitons (photons) produced from dark-bright soliton conversion can be simultaneously detected within the system at the output ports. Two possible spin states which are assigned as angular momentum of either +ħ or -ħ will be absorbed by an object whenever this set of orthogonal solitons is imparted to the object. Magnetic moments could indeed arise from the intrinsic property of spins. By controlling some important parameters of the system such as soliton input power, coupling coefficients and sizes of rings, output signals from microring resonator system can be tuned and optimized to be used as magnetic therapy array.

  8. Palm-size miniature superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Saho, Norihide; Matsuda, Kazuya; Nishijima, Noriyo

    The development of a small, light, powerful and energy-efficient superconducting magnet has been desired in order to realize better efficiency and manipulability in guiding magnetic nano-particles, magnetic organic cells and other items to the right place. This study focuses on the development of a high-temperature superconducting (HTS) bulk magnet characterized by comparatively low leak magnetism despite a relatively high magnetic field. On this basis, the authors developed a palm-sized superconducting bulk magnet, which is the world's smallest, lightest, and lowest power consuming, as well as a new technology to effectively magnetize such a bulk magnet in a compact Stirling-cycle cryocooler (magnet C) with a pre-magnetized HTS bulk magnet (magnet B) in a compact cryocooler. This technology is demonstrated in two steps. In the first step, magnet B is magnetized using a superconducting solenoid magnet with a high magnetic field (magnet A) via the field cooling method. In the second step, magnet C is magnetized in the high magnetic field of magnet B. The prototype magnet C weighs 1.8 kg, and measures 235 × 65 × 115 mm (L × W × H). Magnet B was magnetized to 4.9 T using a 5 T magnet, and the target, magnet C, was magnetized using magnet B so that its maximum trapped magnetic flux density reached the value of 3.15 T. The net power consumption in a steady cooling state was 23 W, which is very low and comparable to that of a laptop computer.

  9. Magnetic Nano- and Micro- Particles in Living Cells: Kinetics and Fluctuations

    NASA Astrophysics Data System (ADS)

    Pease, C.; Chiang, N.; Pierce, C.; Muthusamy, N.; Sooryakumar, R.

    2015-03-01

    Functional nano and micro materials have recently been used not only as diagnostic tools for extracellular studies but also as intracellular drug delivery vehicles and as internal probes of the cell. To realize proper cellular applications, it is important not only to achieve efficient delivery of these materials to targeted cells, but also to control their movement and activity within the confines of the cell. In this presentation, superparamagnetic nano and micro particles are utilized as probes, with their responses to weak external magnetic fields enabling them to be maneuvered within a cell. In order to generate the required local magnetic fields needed for manipulation, the fields emanating from microscopic domain walls stabilized on patterned surface profiles are used in conjunction with weak external magnetic fields to create mobile traps that can localize and transport the internalized particle. Preliminary findings on creating the mobile traps suitable for applications to probe the interior of cells, and the responses, both Brownian fluctuations and directed motion, of particles ranging in size from 200 nm to 1 micron within HS-5 cells will be presented. Future applications to probe cellular behavior within the framework of emerging biomaterials will be discussed.

  10. Shape and edge dependent electronic and magnetic properties of silicene nano-flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Brij, E-mail: brijmohanhpu@yahoo.com; Pooja,; Ahluwalia, P. K.

    2015-06-24

    We performed first-principle study of the geometric, electronic and magnetic properties of arm-chair and zigzag edge silicene nano-flakes of triangular and hexagonal shapes. Electronic properties of silicene nano-flakes show strong dependence on their edge structure and shape. The considered nanostructures shows energy gap ranging ∼ 0.4 – 1.0 eV. Zigzag edged triangular nano-flake is magnetic and semiconducting in nature with 4.0 µ{sub B} magnetic moment and ∼ 0.4 eV energy gap.

  11. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application.

    PubMed

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban

    2018-04-01

    The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.

  12. Nano-Sized Natural Colorants from Rocks and Soils

    NASA Astrophysics Data System (ADS)

    Ahmad, W. Y. W.; Ruznan, W. S.; Hamid, H. A.; Kadir, M. I. A.; Yusoh, M. K. M.; Ahmad, M. R.

    2010-03-01

    Colored rocks (lateritic) and soils (shales) are available in abundant all around Malaysia and they are from natural sources. The colorants will be useful if they can be transferred to substrates using dyeing, printing or brushing with acceptable fastness. First of all the rocks need to be crushed into powder form before coloration can take place. The sizes of the colorants particles obtained with coffee grinder were of 7-8 microns. They can be reduced to 3-5 micron using fluidized bed jetmill and to nano sizes with the help of planetary mono mill grinders. The experiment was conducted in both dyeing and printing of textiles using all three sizes (7-8 microns, 3-5 microns and nano sizes) of colorants on silk fabric. The colorants were applied on silk fabrics by dyeing and tie and dye techniques. In addition, the colorants can also be applied by brushing technique as in batik canting or batik block as well as silk screen printing. The evaluations of colored materials were based on the levelness of dyeing, fastness properties (washing, light and rubbing fastness) and color strength. The wash fastness testing shows that all colorants sizes have more or less the same fastness to washing but nano sized colorants produced better uniform dyes distribution (levelness of dyeing) and higher color strength.

  13. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Tuning bacterial hydrodynamics with magnetic fields

    NASA Astrophysics Data System (ADS)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  15. [Preparation and characterization of magnetic nano-particles with radiofrequency-induced hyperthermia for cancer treatment].

    PubMed

    Fan, Xiangshan; Zhang, Dongsheng; Zheng, Jie; Gu, Ning; Ding, Anwei; Jia, Xiupeng; Qing, Hongyun; Jin, Liqiang; Wan, Meiling; Li, Qunhui

    2006-08-01

    Mn0.5Zn0.5Fe2O4 nano-particles were prepared by the chemical co-precipitation, their characteristics were observed with transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermal analysis system, and etc. The temperature changes of the nano-particles of Mn0.5Zn0.5Fe2O4 and its magnetic fluid explored in radiofrequency(RF,200 KHz, 4 KW) were measured. The proliferation ratio of L929 cells cultured in soak of Mn0.5Zn0.5Fe2O4 nano-particles were observed. The experiment indicates that the magnetic particles were about 40 nm diameter in average, round, had strong magnetism, and were proved to be consistent with the standard data of chart of XRD. Its magnetic fluid exposed to RF could be heated up to temperature range from 40 degrees C to 51 degrees C due to the amount of the magnetic nano-particles and intensity of the alternating magnetic field. Magnetic nano-particles were found to have no obvious cytotoxicity to L929 cells.

  16. Effective Dielectric, Magnetic and Optical Properties of Isotropic and Anisotropic Suspensions of Ferroic Nano-Particles

    DTIC Science & Technology

    2013-06-01

    project focuses on the theoretical study of suspensions of nano- particles of different nature (ferroelectric, ferromagnetic , multiferroic) with size ...SUBJECT TERMS EOARD, ferroelectric, ferromagnetic and multiferroic, new photorefractive effects in liquid crystal cell, new materials and systems...magnetic, mechanical, luminescence etc absent in a pure material . The idea of doping the liquid crystals with elongated ferromagnetic particles to

  17. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    PubMed Central

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  18. Thermoresponsive magnetic nano-biosensors for rapid measurements of inorganic arsenic and cadmium.

    PubMed

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-10-18

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 µg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water.

  19. Thermoresponsive Magnetic Nano-Biosensors for Rapid Measurements of Inorganic Arsenic and Cadmium

    PubMed Central

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-01-01

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 μg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water. PMID:23202034

  20. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their

  1. Sustainable utility of magnetically recyclable nano-catalysts in water: Applications in organic synthesis

    EPA Science Inventory

    Magnetically recyclable nano-catalysts and their use in aqueous media is a perfect combination for the development of greener sustainable methodologies in organic synthesis. It is well established that magnetically separable nano-catalysts avoid waste of catalysts or reagents and...

  2. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis

    NASA Astrophysics Data System (ADS)

    Pulišová, P.; Kováč, J.; Voigt, A.; Raschman, P.

    2013-09-01

    Nano-particles of CoFe2O4, NiFe2O4 and Co0.5Ni0.5Fe2O4 were synthesized by a two step microemulsion precipitation where inverse micelles of water in hexanol were stabilized using cetyltrimethylammonium bromide. Powder X-ray diffraction analysis and Transmission electron microscopy measurements provided data to clarify the crystal structure and size of the produced nano-particles. Different measurements of magnetic properties at low temperatures of 2 K revealed that nano-particles of NiFe2O4 represent magnetically soft ferrite with a coercivity ∼40 kA/m, whereas nano-particles of CoFe2O4 and Co0.5Ni0.5Fe2O4 were magnetically harder with a coercivity of 815 and 947 kA/m, respectively. Additionally zero field cooling and field cooling measurements provided data for estimating the blocking temperature of the materials produced. For NiFe2O4 this temperature is lower, 23 K. The blocking temperature of CoFe2O4 of 238 K and Co0.5Ni0.5Fe2O4 of 268 K are higher in comparison with NiFe2O4.

  3. Size-tunable drug-delivery capsules composed of a magnetic nanoshell.

    PubMed

    Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa

    2012-01-01

    Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems.

  4. Size-tunable drug-delivery capsules composed of a magnetic nanoshell

    PubMed Central

    Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa

    2012-01-01

    Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems. PMID:23507895

  5. Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles

    PubMed Central

    Arias, Sandra L.; Shetty, Akshath R.; Senpan, Angana; Echeverry-Rendón, Mónica; Reece, Lisa M.; Allain, Jean Paul

    2016-01-01

    In this study, bacterial nanocellulose (BNC) produced by the bacteria Gluconacetobacter xylinus is synthesized and impregnated in situ with iron oxide nanoparticles (IONP) (Fe3O4) to yield a magnetic bacterial nanocellulose (MBNC). The synthesis of MBNC is a precise and specifically designed multi-step process. Briefly, bacterial nanocellulose (BNC) pellicles are formed from preserved G. xylinus strain according to our experimental requirements of size and morphology. A solution of iron(III) chloride hexahydrate (FeCl3·6H2O) and iron(II) chloride tetrahydrate (FeCl2·4H2O) with a 2:1 molar ratio is prepared and diluted in deoxygenated high purity water. A BNC pellicle is then introduced in the vessel with the reactants. This mixture is stirred and heated at 80 °C in a silicon oil bath and ammonium hydroxide (14%) is then added by dropping to precipitate the ferrous ions into the BNC mesh. This last step allows forming in situ magnetite nanoparticles (Fe3O4) inside the bacterial nanocellulose mesh to confer magnetic properties to BNC pellicle. A toxicological assay was used to evaluate the biocompatibility of the BNC-IONP pellicle. Polyethylene glycol (PEG) was used to cover the IONPs in order to improve their biocompatibility. Scanning electron microscopy (SEM) images showed that the IONP were located preferentially in the fibril interlacing spaces of the BNC matrix, but some of them were also found along the BNC ribbons. Magnetic force microscope measurements performed on the MBNC detected the presence magnetic domains with high and weak intensity magnetic field, confirming the magnetic nature of the MBNC pellicle. Young's modulus values obtained in this work are also in a reasonable agreement with those reported for several blood vessels in previous studies. PMID:27285589

  6. Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles.

    PubMed

    Arias, Sandra L; Shetty, Akshath R; Senpan, Angana; Echeverry-Rendón, Mónica; Reece, Lisa M; Allain, Jean Paul

    2016-05-26

    In this study, bacterial nanocellulose (BNC) produced by the bacteria Gluconacetobacter xylinus is synthesized and impregnated in situ with iron oxide nanoparticles (IONP) (Fe3O4) to yield a magnetic bacterial nanocellulose (MBNC). The synthesis of MBNC is a precise and specifically designed multi-step process. Briefly, bacterial nanocellulose (BNC) pellicles are formed from preserved G. xylinus strain according to our experimental requirements of size and morphology. A solution of iron(III) chloride hexahydrate (FeCl3·6H2O) and iron(II) chloride tetrahydrate (FeCl2·4H2O) with a 2:1 molar ratio is prepared and diluted in deoxygenated high purity water. A BNC pellicle is then introduced in the vessel with the reactants. This mixture is stirred and heated at 80 °C in a silicon oil bath and ammonium hydroxide (14%) is then added by dropping to precipitate the ferrous ions into the BNC mesh. This last step allows forming in situ magnetite nanoparticles (Fe3O4) inside the bacterial nanocellulose mesh to confer magnetic properties to BNC pellicle. A toxicological assay was used to evaluate the biocompatibility of the BNC-IONP pellicle. Polyethylene glycol (PEG) was used to cover the IONPs in order to improve their biocompatibility. Scanning electron microscopy (SEM) images showed that the IONP were located preferentially in the fibril interlacing spaces of the BNC matrix, but some of them were also found along the BNC ribbons. Magnetic force microscope measurements performed on the MBNC detected the presence magnetic domains with high and weak intensity magnetic field, confirming the magnetic nature of the MBNC pellicle. Young's modulus values obtained in this work are also in a reasonable agreement with those reported for several blood vessels in previous studies.

  7. Magnetic dipole moment estimation and compensation for an accurate attitude control in nano-satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Sako, Nobutada; Nakasuka, Shinichi

    2011-06-01

    Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.

  8. Nano-sized crystalline drug production by milling technology.

    PubMed

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  9. Effect of external magnetic field on locking range of spintronic feedback nano oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.

    2018-05-01

    In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.

  10. Copper Modified Magnetic Bimetallic Nano-catalysts Ligand Regulated Catalytic Activity

    EPA Science Inventory

    Postsynthetic modification of magnetic nano ferrites (Fe3O4) has been accomplished by anchoring glutathione and dopamine on the surface. The Cu nano particles immobilized over these surfaces were investigated for the coupling and cyclo addition reactions. The Fe3O4-DOPA-Cu (na...

  11. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities.

    PubMed

    Read, Daniel S; Matzke, Marianne; Gweon, Hyun S; Newbold, Lindsay K; Heggelund, Laura; Ortiz, Maria Diez; Lahive, Elma; Spurgeon, David; Svendsen, Claus

    2016-03-01

    Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.

  12. Grain Refinement and Mechanical Properties of Cu–Cr–Zr Alloys with Different Nano-Sized TiCp Addition

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-01-01

    The TiCp/Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiCp/Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu–Cr–Zr alloys to fabricate the nano-sized TiCp-reinforced Cu–Cr–Zr composites. Results show that nano-sized TiCp can effectively refine the grain size of Cu–Cr–Zr alloys. The morphologies of grain in Cu–Cr–Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiCp. The grain size decreased from 82 to 28 μm with the nano-sized TiCp content. Compared with Cu–Cr–Zr alloys, the ultimate compressive strength (σUCS) and yield strength (σ0.2) of 4 wt% TiCp-reinforced Cu–Cr–Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu–Cr–Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiCp-reinforced Cu–Cr–Zr composites decreased with the increasing TiCp content under abrasive particles. The eletrical conductivity of Cu–Cr–Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu–Cr–Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively. PMID:28786937

  13. Janus "nano-bullets" for magnetic targeting liver cancer chemotherapy.

    PubMed

    Shao, Dan; Li, Jing; Zheng, Xiao; Pan, Yue; Wang, Zheng; Zhang, Ming; Chen, Qi-Xian; Dong, Wen-Fei; Chen, Li

    2016-09-01

    Tumor-targeted delivery of anti-cancer drugs with controlled drug release function has been recognized as a promising strategy for pursuit of increased chemotherapeutic efficacy and reduced adverse effects. Development of magnetic nanoparticulates as delivery carriers to accommodate cytotoxic drugs for liver cancer treatment has evoked immense interest with respect to their convenience in biomedical application. Herein, we engineered multifunctional Janus nanocomposites, characterized by a head of magnetic Fe3O4 and a body of mesoporous SiO2 containing doxorubicin (DOX) as "nano-bullets" (M-MSNs-DOX). This nanodrug formulation possessed nanosize with controlled aspect-ratio, defined abundance in pore structures, and superior magnetic properties. M-MSN-DOX was determined to induce selective growth inhibition to the cancer cell under magnetic field rather than human normal cells due to its preferable endocytosis by the tumor cells and pH-promoted DOX release in the interior of cancer cells. Ultimately, both subcutaneous and orthotropic liver tumor models in mice have demonstrated that the proposed Janus nano-bullets imposed remarkable suppression of the tumor growth and significantly reduced systematic toxicity. Taken together, this study demonstrates an intriguing targeting strategy for liver cancer treatment based on a novel Janus nano-bullet, aiming for utilization of nanotechnology to obtain safe and efficient treatment of liver cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  15. Thermal conductivity enhancement and sedimentation reduction of magnetorheological fluids with nano-sized Cu and Al additives

    NASA Astrophysics Data System (ADS)

    Rahim, M. S. A.; Ismail, I.; Choi, S. B.; Azmi, W. H.; Aqida, S. N.

    2017-11-01

    This work presents enhanced material characteristics of smart magnetorheological (MR) fluids by utilizing nano-sized metal particles. Especially, enhancement of thermal conductivity and reduction of sedimentation rate of MR fluids those are crucial properties for applications of MR fluids are focussed. In order to achieve this goal, a series of MR fluid samples are prepared using carbonyl iron particles (CIP) and hydraulic oil, and adding nano-sized particles of copper (Cu), aluminium (Al), and fumed silica (SiO2). Subsequently, the thermal conductivity is measured by the thermal property analyser and the sedimentation of MR fluids is measured using glass tubes without any excitation for a long time. The measured thermal conductivity is then compared with theoretical models such as Maxwell model at various CIP concentrations. In addition, in order to show the effectiveness of MR fluids synthesized in this work, the thermal conductivity of MRF-132DG which is commercially available is measured and compared with those of the prepared samples. It is observed that the thermal conductivity of the samples is much better than MRF-132DG showing the 148% increment with 40 vol% of the magnetic particles. It is also observed that the sedimentation rate of the prepared MR fluid samples is less than that of MRF-132DG showing 9% reduction with 40 vol% of the magnetic particles. The mixture optimized sample with high conductivity and low sedimentation was also obtained. The magnetization of the sample recorded an enhancement of 70.5% when compared to MRF-132DG. Furthermore, the shear yield stress of the sample were also increased with and without the influence of magnetic field.

  16. Bacterial magnetic particles improve testes-mediated transgene efficiency in mice.

    PubMed

    Wang, Chao; Sun, Guanghong; Wang, Ye; Kong, Nana; Chi, Yafei; Yang, Leilei; Xin, Qiliang; Teng, Zhen; Wang, Xu; Wen, Yujun; Li, Ying; Xia, Guoliang

    2017-11-01

    Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p < 0.05). Interestingly, the motility of sperms recovered from epididymis of the founder mice from BPD group were significantly improved, as compared with the control (p < 0.01). Based on classic breeding, the ratio of transgene mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p < 0.05). TMGT in this study did not produce visible histological changes in the testis. In conclusion, nano-scaled BPDs could be an alternative strategy for efficiently producing transgene mice in vivo.

  17. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  18. Synthesis and characterization of magnetically hard Fe-Pt alloy nanoparticles and nano-islands

    NASA Astrophysics Data System (ADS)

    Hu, Xiaocao

    In this dissertation, we explored the fabrication of FePt nanoparticles and nano-islands with the face-centered tetragonal (fct, L10) phase prepared by both chemical synthesis routes and physical vapor deposition. Microstructure and magnetic properties characterizations were used to gain a fundamental understanding of the nano-structure formation and atomic ordering behavior and determine the possible applications in the next generation ultra-high density magnetic storage media. FePt nanoparticles prepared by thermal decomposition of iron pentacarbonyl [Fe(CO)5] have been widely investigated and by tuning the processing procedure monodispersed FePt nanoparticles with good assembly can be obtained. The as-made FePt nanoparticles are usually in the magnetically soft face-centered cubic (fcc) phase. To transformation to the fct phase, post-annealing at above 600°C is needed which, however, introduces undesirable agglomeration and sintering. To address this problem, we used three different fabrication processes which are discussed below. In the first fabrication experiment, the FePt nanoparticles were fabricated by a novel environmental friendly method involving crystalline saline complex hexaaquairon (II) hexachloroplatinate ([Fe(H2O)6]PtCl 6) with a special layered structure. Then the precursor was ball milled with NaCl and annealed at temperatures above 400°C under a reducing atmosphere of forming gas (95% Ar and 5% H2) FePt nanoparticles were obtained after washing away NaCl with deionized water. This method avoids the use of the very poisonous Fe(CO)5 and other organic solvents such as oleylamine and oleic acid. Instead, environmentally friendly NaCl and water were used. The size of FePt nanoparticles was controlled by varying the proportion of precursor and NaCl (from 10mg/20g to 50mg/20g). Particles with size in the range of 6.2--13.2 nm were obtained. All the nanoparticles annealed above 400°C are in the highly ordered fct phase with a coercivity range of 4

  19. Nano-layered magnesium fluoride reservoirs on biomaterial surfaces strengthen polymorphonuclear leukocyte resistance to bacterial pathogens.

    PubMed

    Guo, Geyong; Zhou, Huaijuan; Wang, Qiaojie; Wang, Jiaxing; Tan, Jiaqi; Li, Jinhua; Jin, Ping; Shen, Hao

    2017-01-05

    Biomaterial-related bacterial infections cause patient suffering, mortality and extended periods of hospitalization, imposing a substantial burden on medical systems. In this context, understanding of nanomaterials-bacteria-cells interactions is of both fundamental and clinical significance. Herein, nano-MgF 2 films were deposited on titanium substrate via magnetron sputtering. Using this platform, the antibacterial behavior and mechanism of the nano-MgF 2 films were investigated in vitro and in vivo. It was found that, for S. aureus (CA-MRSA, USA300) and S. epidermidis (RP62A), the nano-MgF 2 films possessed excellent anti-biofilm activity, but poor anti-planktonic bacteria activity in vitro. Nevertheless, both the traditional SD rat osteomyelitis model and the novel stably luminescent mouse infection model demonstrated that nano-MgF 2 films exerted superior anti-infection effect in vivo, which cannot be completely explained by the antibacterial activity of the nanomaterial itself. Further, using polymorphonuclear leukocytes (PMNs), the critical immune cells of innate immunity, a complementary investigation of MgF 2 -bacteria-PMNs co-culturing revealed that the nano-MgF 2 films improved the antibacterial effect of PMNs through enhancing their phagocytosis and stability. To our knowledge, this is the first time of exploring the antimicrobial mechanism of nano-MgF 2 from the perspective of innate immunity both in vitro and in vivo. Based on the research results, a plausible mechanism is put forward for the predominant antibacterial effect of nano-MgF 2 in vivo, which may originate from the indirect immune enhancement effect of nano-MgF 2 films. In summary, this study of surface antibacterial design using MgF 2 nanolayer is a meaningful attempt, which can promote the host innate immune response to bacterial pathogens. This may give us a new understanding towards the antibacterial behavior and mechanism of nano-MgF 2 films and pave the way towards their clinical

  20. Effect of Weak Magnetic Field on Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  1. Study of Bacterial Response to Antibiotics in Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Abdul-Moqueet, Mohammad; Albalawi, Abdullah; Masood, Samina

    Effect of low magnetic fields on bacterial growth has been well established. Current study shows how different magnetic fields effect the bacterial response to antibiotics shows that the bacterial infections treatment and disease cure is changed in the presence of weak fields. This study has focused on understanding how different types of low magnetic fields change the response the bacterium to antibiotics in a liquid medium. This low magnetic field coupled with the introduction of antibiotics to the growth medium shows a drop in the growth curve. The most significant effect of low magnetic fields was seen with the uniform electromagnetic field as compared to the similar strength of constant static magnetic field produced by a bar magnets.

  2. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  3. Effect of Sc{sup 3+} on structural and magnetic properties of Mn-Zn nano ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angadi, Jagadeesha V.; Matteppanavar, Shidaling; Srinatha, N.

    2016-05-23

    In the present investigation, for the first time, we report on the effect of Sc{sup 3+} on the structural and magnetic properties of Mn{sub 0.5}Zn{sub 0.5}Sc{sub y}Fe{sub 2-y}O{sub 4} (y = 0.01, 0.03 and 0.05) nanoferrites synthesized by solution combustion method using the mixture of fuels. As synthesized powders were characterized for the detailed structural analysis by X-ray diffractometer (XRD), Fourier transmission infrared spectroscopy (FTIR) and room temperature magnetic properties by using vibrating sample magnetometer (VSM). The results of XRD and FTIR confirm that the formation of nano crystalline, single-phased Mn-Zn ferrite with cubic spinel structure belongs to Fd-3m spacemore » group. The room temperature magnetic studies shows that, the saturation magnetization (M{sub S}), remanence magnetization (M{sub R}) and magnetic moment (η{sub B}), magnetic particle size (D{sub m}) have found to increase with Sc{sup 3+} ion concentration up to x = 0.3 and then decrease. The values of αY-K and the magnetic particle size (D{sub m}) are found to be in the range of 68-75° and 10-19 nm respectively, with Sc{sup 3+} concentration.« less

  4. Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal nano-ferrite circulator

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Oukacha, Hassan; Fu, Enjin; Koomson, Valencia Joyner; Afsar, Mohammed N.

    2015-05-01

    Hexagonal ferrites such as M-type BaFe12O19 and SrFe12O19 have strong uniaxial anisotropic magnetic field and remanent magnetism. The nano-sized ferrite powder exhibits high compatibility and processability in composite material. New magnetic devices using the M-type ferrite materials can work in the tens of GHz frequency range from microwave to millimeter wave without the application of strong external magnetic field. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS integrated circuits as thin as several micrometers. The micro-fabrication method of such nano ferrite device is presented in this paper. A circulator working at 60 GHz is designed and integrated into the commercial CMOS process. The circulator exhibits distinct circulation properties in the frequency range from 56 GHz to 58 GHz.

  5. Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications

    PubMed Central

    Takamura, Tsukasa; Ko, Pil Ju; Sharma, Jaiyam; Yukino, Ryoji; Ishizawa, Shunji; Sandhu, Adarsh

    2015-01-01

    Magnetic particle-labeled biomaterial detection has attracted much attention in recent years for a number of reasons; easy manipulation by external magnetic fields, easy functionalization of the surface, and large surface-to-volume ratio, to name but a few. In this review, we report on our recent investigations into the detection of nano-sized magnetic particles. First, the detection by Hall magnetic sensor with lock-in amplifier and alternative magnetic field is summarized. Then, our approach to detect sub-200 nm diameter target magnetic particles via relatively large micoro-sized “columnar particles” by optical microscopy is described. Subsequently, we summarize magnetic particle detection based on optical techniques; one method is based on the scattering of the magnetically-assembled nano-sized magnetic bead chain in rotating magnetic fields and the other one is based on the reflection of magnetic target particles and porous silicon. Finally, we report recent works with reference to more familiar industrial products (such as smartphone-based medical diagnosis systems and magnetic removal of unspecific-binded nano-sized particles, or “magnetic washing”). PMID:26053747

  6. Attenuated total reflection fourier transform infrared spectroscopy towards disclosing mechanism of bacterial adhesion on thermally stabilized titanium nano-interfaces.

    PubMed

    Gopal, Judy; Chun, Sechul; Doble, Mukesh

    2016-08-01

    Titanium is widely used as medical implant material and as condenser material in the nuclear industry where its integrity is questioned due to its susceptibility to bacterial adhesion. A systematic investigation on the influence of thermally (50-800 °C) stabilized titanium (TS-Ti) nano oxide towards bacterial adhesion was carried out. The results showed that below 350 °C significant bacterio-phobicity was observed, while above 500 °C significant affinity towards bacterial cells was recorded. Conventional characterization tools such as HR-TEM and XRD did not provide much insight on the changes occurring on the oxide film with heat treatment, however, attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) of the surface showed significant changes in the spectral pattern as a function of increasing heat treatment. It was observed that elevated OH, N-H and C=O groups and rutile titania on the TS-Ti oxide films led to higher affinity for bacterial adhesion. On the other hand low temperature TS-Ti nanooxide films (<350 °C) showed high C-H groups and decreased OH groups on their surface, which possibly contributed towards their bacterio-phobicity. The TS-Ti nanooxide film grown at 50 °C was observed to be the most efficient anti-bacterial adhesion interface, while the 800 °C interface was the one showing highest affinity towards bacterial adhesion. This study confirms the successful application of ATR-FTIR technique for nano-oxide film characterization and towards understanding the variations in bacterial interaction of such nano interfaces.

  7. Magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Ziti, S.; Aouini, S.; Labrim, H.; Bahmad, L.

    2017-02-01

    We study the magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure, under the effect of an external magnetic field. We examine the magnetic properties, of this model of the spin S=1 Ising ferromagnetic in real nanostructure used in several scientific domains. For T=0, we give and discuss the ground state phase diagrams. At non null temperatures, we applied the Monte Carlo simulations giving important results summarized in the form of the phase diagrams. We also analyzed the effect of varying the external magnetic field, and found the layering transitions in the polyamidoamine (PAMAM) dendrimer nano-structure.

  8. Measurement of internal defects in aluminum using a nano-granular in-gap magnetic sensor

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Yabukami, S.; Totsuka, J.; Koyama, S.; Hayasaka, J.; Wako, N.; Arai, K. I.

    2015-05-01

    Techniques for identifying defects in metals are very important in a wide variety of manufacturing areas. The present paper reports an eddy current testing method that employs a nano-granular in-gap magnetic sensor (GIGS) to detect internal defects in aluminum boards. The GIGS consists of a tunnel magnetoresistive film with nanometer sized grains and two yokes. In the presence of an external magnetic field, the nano-granular film exhibits only a small change in resistance due to the tunnel magnetoresistive effect. However, by placing it between two yokes, the magnetic flux can be greatly concentrated, thus increasing the change in resistance. The GIGS is a magnetic-field sensor that exploits this principle to achieve enhanced sensitivity. Moreover, because it has a cross-sectional yolk area of just 80 μm × 0.5 μm, it achieves outstanding spatial resolution. In the present study, it is used in combination with an eddy-current method in order to detect internal defects in aluminum. In this method, an excitation coil is used to apply an AC magnetic field perpendicular to the aluminum surface. This induces eddy currents in the metal, which in turn give rise to an AC magnetic field, which is then measured by the GIGS. The presence of defects in the aluminum distorts the eddy current flow, causing a change in the magnitude and distribution of the magnetic field. Such changes can be detected using the GIGS. In the present study, the proposed method was used to successfully detect indentations with diameters of 5 mm on the rear surface of an aluminum plate.

  9. Superconducting properties of nano-sized SiO2 added YBCO thick film on Ag substrate

    NASA Astrophysics Data System (ADS)

    Almessiere, Munirah Abdullah; Al-Otaibi, Amal lafy; Azzouz, Faten Ben

    2017-10-01

    The microstructure and the flux pinning capability of SiO2-added YBa2Cu3Oy thick films on Ag substrates were investigated. A series of YBa2Cu3Oy thick films with small amounts (0-0.5 wt%) of nano-sized SiO2 particles (12 nm) was prepared. The thicknesses of the prepared thick films was approximately 100 µm. Phase analysis by x-ray diffraction and microstructure examination by scanning electron microscopy were performed and the critical current density dependence on the applied magnetic field Jc(H) and electrical resistivity ρ(T) were investigated. The magnetic field and temperature dependence of the critical current density (Jc) was calculated from magnetization measurements using Bean's critical state model. The results showed that the addition of a small amount (≤0.02 wt%) of SiO2 was effective in enhancing the critical current densities in the applied magnetic field. The sample with 0.01 wt% of added SiO2 exhibited a superconducting characteristics under an applied magnetic field for a temperature ranging from 10 to 77 K.

  10. Synthesis and characterization of nano-sized CaCO3 in purified diet

    NASA Astrophysics Data System (ADS)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  11. Effect of Porous Media Particle Size on Bacterial Motility and Chemotaxis

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Smith, J. A.; Ford, R. M.; Fernandez, E. J.

    2003-12-01

    Many soil-inhabiting bacteria that degrade chemical contaminants are both motile and chemotactic. Chemotaxis refers to the ability of bacteria to sense pollutant concentration gradients in water and preferentially swim toward regions of high pollutant concentration, and is thought to be important in guiding subsurface microbial populations toward chemical contaminants. Bacterial motion consists of a series of smooth-swimming runs interrupted by changes in direction. In the presence of a chemical gradient, bacteria bias their frequency of changing direction and demonstrate longer run lengths in the direction of increasing attractant concentration. One concern when studying bacterial chemotaxis in porous media is that in small pores, the porous media may interrupt the extended run lengths of bacteria swimming in the direction of a positive chemical gradient. The purpose of this study is to examine how a decrease in particle size affects the motility and chemotactic response of bacteria traveling through porous media. We employ an innovative technique for noninvasive visualization of changes in bacterial density distributions in a packed column as a function of time. Paramagnetic magnetite particles are attached to the surface of Pseudomonas putida F1 cells using an antibody. Bacterial distributions within a column of glass-coated polystyrene beads are imaged using magnetic resonance imaging (MRI), with a spatial resolution of 300 μ m. Experiments are conducted with both 250-300 μ m beads and 90-150 μ m beads. Bacteria labeled with magnetite are introduced into a specially designed chromatography column packed with glass-coated polystyrene beads. Bacterial migration is monitored over time using MRI, with and without the presence of a chemical gradient of trichloroethylene (TCE). Comparisons of the motility and chemotactic transport coefficients for Pseudomonas putida F1 cells traveling through different-sized samples of porous media in the presence of TCE will be

  12. Antiferromagnetic nano-oscillator in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Checiński, Jakub; Frankowski, Marek; Stobiecki, Tomasz

    2017-11-01

    We describe the dynamics of an antiferromagnetic nano-oscillator in an external magnetic field of any given time distribution. The oscillator is powered by a spin current originating from spin-orbit effects in a neighboring heavy metal layer and is capable of emitting a THz signal in the presence of an additional easy-plane anisotropy. We derive an analytical formula describing the interaction between such a system and an external field, which can affect the output signal character. Interactions with magnetic pulses of different shapes, with a sinusoidal magnetic field and with a sequence of rapidly changing magnetic fields are discussed. We also perform numerical simulations based on the Landau-Lifshitz-Gilbert equation with spin-transfer torque effects to verify the obtained results and find a very good quantitative agreement between analytical and numerical predictions.

  13. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code.

    PubMed

    Tekin, H O; Singh, V P; Manici, T

    2017-03-01

    In the present work the effect of tungsten oxide (WO 3 ) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO 3 and micro-WO 3 into concrete sample. The mass attenuation coefficients of pure concrete and WO 3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO 3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO 3 significanlty improve shielding properties than micro-WO 3 . It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Nano-sized Ni-doped carbon aerogel for supercapacitor.

    PubMed

    Lee, Yoon Jae; Jung, Ji Chul; Park, Sunyoung; Seo, Jeong Gil; Baeck, Sung-Hyeon; Yoon, Jung Rag; Yi, Jongheop; Song, In Kyu

    2011-07-01

    Carbon aerogel was prepared by polycondensation of resorcinol with formaldehyde using sodium carbonate as a catalyst in ambient conditions. Nano-sized Ni-doped carbon aerogel was then prepared by a precipitation method in an ethanol solvent. In order to elucidate the effect of nickel content on electrochemical properties, Ni-doped carbon aerogels (21, 35, 60, and 82 wt%) were prepared and their performance for supercapacitor electrode was investigated. Electrochemical properties of Ni-doped carbon aerogel electrodes were measured by cyclic voltammetry at a scan rate of 10 mV/sec and charge/discharge test at constant current of 1 A/g in 6 M KOH electrolyte. Among the samples prepared, 35 wt% Ni-doped carbon aerogel (Ni/CA-35) showed the highest capacitance (110 F/g) and excellent charge/discharge behavior. The enhanced capacitance of Ni-doped carbon aerogel was attributed to the faradaic redox reactions of nano-sized nickel oxide. Moreover, Ni-doped carbon aerogel exhibited quite stable cyclability, indicating long-term electrochemical stability.

  15. Magnetically levitated nano-robots: an application to visualization of nerve cells injuries.

    PubMed

    Lou, Mingji; Jonckheere, Edmond

    2007-01-01

    This paper proposes a swarm of magnetically levitated nano-robots with high sensitivity nano-sensors as a mean to detect chemical sources, specifically the chemical signals released by injured nervous cells. In the aftermath of the process, further observation by these nano-robots would be used to monitor the healing process and assess the amount of regeneration, if any, or even the repair, of the injured nervous cells.

  16. Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin.

    PubMed

    Amoli-Diva, Mitra; Pourghazi, Kamyar; Mashhadizadeh, Mohammad Hossein

    2015-02-01

    A novel pH-responsive polymer, poly(methacrylic acid-co-acrylic acid)-co-polyvinyl-pyrrolidone (polymeric nano-carrier) was synthesized and used for encapsulation of 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticles to prepare a new magnetic nano-carrier. The loading and release characteristics of both polymeric and magnetic nano-carriers were investigated using fluvastatin as the model drug. The loading behavior of the carriers was studied by varying concentration of fluvastatin in aqueous medium at 25°C and their release was followed spectrophotometrically (at 304 nm) at 37°C in three different solutions (buffered at pH1.2, 5.5 and 7.2) to simulate gastric and intestine medium. The effect of different parameters on the release of fluvastatin such as the amount of methacrylic acid monomer, cross-linker amount, initiator amount, and magnetic nanoparticles content was also studied. Considering the release kinetics and mechanism of the magnetic nanocarrier besides swelling behavior study of the polymeric nano-carrier reveal Fickian pattern and diffusion controlled mechanism for delivery of fluvastatin. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Synthesis, spectral characterization and antimicrobial studies of nano-sized oxovanadium(IV) complexes with Schiff bases derived from 5-(phenyl/substituted phenyl)-2-hydrazino-1,3,4-thiadiazole and indoline-2,3-dione.

    PubMed

    Sahani, M K; Yadava, U; Pandey, O P; Sengupta, S K

    2014-05-05

    A new class of oxovanadium(IV) complexes with Schiff bases derived by the condensation of 5-(phenyl/substituted phenyl)-2-hydrazino-1,3,4-thiadiazoles and indoline-2,3-dione have been prepared in ethanol in the presence of sodium acetate. Micro-analytical data, magnetic susceptibility, UV-Vis, IR, EPR and XRD spectral techniques were used to confirm the structures. Electronic absorption spectra of the complexes suggest a square-pyramidal geometry. The oxovanadium(IV) complexes have monoclinic crystal system and particle sizes were found to be in the range 18.0 nm to 24.0 nm (nano-size). In vitro antifungal activity of synthesized compounds was determined against fungi Aspergillus niger, Colletotrichum falcatum and Colletotrichum pallescence and in vitro antibacterial activity was determined by screening the compounds against Gram-negative (Escherichia coli and Salmonella typhi) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains. The oxovanadium(IV) complexes have higher antimicrobial effect than free ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effect of pulsed and continuous ultrasound on structural and magnetic properties of nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite

    NASA Astrophysics Data System (ADS)

    Hassen, Harzali; Adel, Megriche; Arbi, Mgaidi

    2018-03-01

    Ultrasound-assisted co-precipitation has been used to prepare nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite. Continuous (C-US) and pulsed (P-US) ultrasound modes are used at constant frequency = 20 kHz, reaction time = 2 h and pulse durations of 10 s on and 10 s off. All experiments were conducted at two temperatures 90 and 100°C. Samples were characterized by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), N2 adsorption isotherms at 77 k analysis (BET), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. A nanocrystalline single-phase with particle size in the range 12-18 nm is obtained in both modes: continuous and pulsed ultrasound mode. FT-IR measurements show two absorption bands assigned to the tetrahedral and octahedral vibrations (ν1 and ν2) characteristics of cubic spinel ferrite. The specific surface area (S BET) is in the range of 110-140 m2 g-1 and an average pore size between 5.5 and 6.5 nm. The lowest values are obtained in pulsed mode. Finally, this work shows that the magnetic properties are affected by the ultrasound conditions, without affecting the particle shape. The saturation magnetization (Ms) values obtained for all samples are comparable. In P-US mode, the saturation magnetization (Ms) increases as temperature increases. Moreover, P-US mode opens a new avenue for synthesis of NiCuZn ferrites.

  19. Synthesis of MnFe2O4 magnetic nano hollow spheres by a facile solvothermal route and its characterization

    NASA Astrophysics Data System (ADS)

    Dey, Chaitali; Chaudhuri, Arka; Goswami, Madhuri Mandal

    2018-04-01

    Herein, we report the synthesis of manganese ferrite (MnFe2O4) magnetic nano hollow sphere (NHS) by a solvothermal route. Crystalline phase was confirmed by X-ray diffraction (XRD), energy dispersive x-ray (EDX). Magnetic measurements were done in vibrating sample magnetometer (VSM) and morphological structure was analyzed by field emission high resolution scanning electron microscope (FESEM) and structural characterization was confirmed by Fourier transform infrared spectroscopy (FTIR), thermal analysis was performed by thermo-gravimetric analysis-differential thermal analysis (TGA-DTA). The size of the NHS was around 470 nm, this large size may show a potential applicability in industrial application, like dye adsorption, catalysis etc. In addition, because of its ferromagnetic character at room temperature, it can be easily separated by external magnetic field after the application is done.

  20. Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract

    NASA Astrophysics Data System (ADS)

    Russo, Flavia; Boghi, Andrea; Gori, Fabio

    2018-04-01

    Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.

  1. A size-structured model of bacterial growth and reproduction.

    PubMed

    Ellermeyer, S F; Pilyugin, S S

    2012-01-01

    We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.

  2. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  3. Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.

    PubMed

    Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E

    2014-06-01

    Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed.

  4. Applications of Bacterial Magnetic Nanoparticles in Nanobiotechnology.

    PubMed

    Chen, Chuanfang; Wang, Pingping; Li, Linlin

    2016-03-01

    The bacterial magnetic nanoparticle (BMP) has been well researched in nanobiotechnology as a new magnetic crystal. The BMPs are extracted from magnetotactic bacteria and under precise biological control. Compared with engineered magnetic nanoparticles synthesized by chemical approaches, BMPs have the properties of large production, monodispersity, high crystallinity, and close-to-bulk magnetization, which enable BMPs to be the highly promising magnetic nanoparticles for nanobiotechnology. In this paper, we review the biomedical applications of BMPs in magnetic hyperthermia, drug treatment with tumour and bioseparation. In addition, the biodistribution and toxicity are also reviewed.

  5. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    NASA Astrophysics Data System (ADS)

    Lin, Jianhan; Li, Min; Li, Yanbin; Chen, Qi

    2015-03-01

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody-antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 μg/ml and 100 μg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 102 to 105 cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are practical for rapid

  6. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    PubMed

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  7. Bacterial toxicity comparison between nano- and micro-scaled oxide particles.

    PubMed

    Jiang, Wei; Mashayekhi, Hamid; Xing, Baoshan

    2009-05-01

    Toxicity of nano-scaled aluminum, silicon, titanium and zinc oxides to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles but titanium oxide showed higher toxicity (at 20 mg/L) than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three nanoparticles, causing 100% mortality to the three tested bacteria. Al(2)O(3) nanoparticles had a mortality rate of 57% to B. subtilis, 36% to E. coli, and 70% to P. fluorescens. SiO(2) nanoparticles killed 40% of B. subtilis, 58% of E. coli, and 70% of P. fluorescens. TEM images showed attachment of nanoparticles to the bacteria, suggesting that the toxicity was affected by bacterial attachment. Bacterial responses to nanoparticles were different from their bulk counterparts; hence nanoparticle toxicity mechanisms need to be studied thoroughly.

  8. Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia.

    PubMed

    Li, Miao; Zhu, Lifei; Liu, Boming; Du, Lina; Jia, Xiaodong; Han, Li; Jin, Yiguang

    2016-05-01

    Tea tree oil (TTO) is a natural essential oil with strong antimicrobial efficacy and little drug resistance. However, the biomedical applications of TTO are limited due to its hydrophobicity and formulation problems. Here, we prepared an inhalable TTO nanoemulsion (nanoTTO) for local therapies of bacterial and fungal pneumonia. The optimal formulation of nanoTTOs consisted of TTO/Cremophor EL/water with a mean size of 12.5nm. The nanoTTOs showed strong in vitro antimicrobial activities on Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus and Candida albicans. After inhalation to the lung, the nanoTTOs had higher anti-fungal effect than fluconazole on the fungal pneumonia rat models with reduced lung injury, highly microbial clearance, blocking of leukocyte recruitment, and decrease of pro-inflammatory mediators. In the case of rat bacterial pneumonia, the nanoTTOs showed slightly lower therapeutic efficacy than penicillin though at a much lower dose. Taken together, our results show that the inhalable nanoTTOs are promising nanomedicines for local therapies of fungal and bacterial pneumonia with no obvious adverse events. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Modulation in magnetic exchange interaction, core shell structure and Hopkinson's peak with chromium substitution into Ni0.75Co0.25Fe2O4 nano particles

    NASA Astrophysics Data System (ADS)

    Uday Bhasker, S.; Choudary, G. S. V. R. K.; Reddy, M. V. Ramana

    2018-05-01

    The ever growing applications and ever evolving challenges of magnetic nano particles has been motivating the researchers from various disciplines towards this area of magnetic nano particles. Cation substitutional effect on the magnetic structure of the nanoparticles forms a crucial aspect in their applications. Here the environmentally benign auto combustion method was employed to synthesize chromium substituted nickel cobalt ferrite (Ni0.75Co0.25Fe2-xCrxO4; x = 0, 0.10, 0.15) nano particles, from aqueous metal nitrate solutions. Chromium substitution has shown its effect on the structural, magnetic and electrical properties of Ni0.75Co0.25Fe2O4. Structural and phase analysis of the prepared samples show increased phase purity of ferrite sample with increasing Cr substitution. The TEM (Transmission Electron Microscope) image confirms the nano size of the particles, EDS (Energy dispersive X-ray Spectroscopy) has supported the stoichiometry of the prepared samples and FTIR (Fourier-transform infrared spectroscopic) analysis confirms the spinel structure and also suggests cation redistributions with chromium substitution. VSM (Vibrational Sample Magnetometer) is used to study the magnetic properties through magnetic hysteresis (M-H) loop and magnetic Hopkinson effect. All samples show hysteresis and show reduction in magnetic properties with increase in chromium content. The thermo magnetic study shows Hopkinson peak(s) in the magnetization vs. temperature (M-T) graph and also shows variation in the nature of Hopkinson peak with chromium substitution. Possible reasons for the changes in the nature of the peak are discussed.

  10. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less

  11. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery.

    PubMed

    Nguyen, Dai Hai; Lee, Jung Seok; Choi, Jong Hoon; Park, Kyung Min; Lee, Yunki; Park, Ki Dong

    2016-04-15

    Nanoparticle-based imaging and therapy are of interest for theranostic nanomedicine. In particular, superparamagnetic iron oxide (SPIO) nanoparticles (NPs) have attracted much attention in cancer imaging, diagnostics, and treatment because of their superior imagability and biocompatibility (approved by the Food and Drug Administration). Here, we developed SPIO nanoparticles (NPs) that self-assembled into magnetic nanoclusters (SAMNs) in aqueous environments as a theranostic nano-system. To generate multi-functional SPIO NPs, we covalently conjugated β-cyclodextrin (β-CD) to SPIO NPs using metal-adhesive dopamine groups. Polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. The core-shell structure of the magnetic nanoclusters was elucidated based on the condensed SPIO core and a PEG shell using electron microscopy and the composition was analyzed by thermogravimetric analysis (TGA). Our results indicate that nanocluster size could be readily controlled by changing the SPIO/PEG ratio in the assemblies. Interestingly, we observed a significant enhancement in magnetic resonance contrast due to the large cluster size and dense iron oxide core. In addition, tethering a tumor-targeting peptide to the SAMNs enhanced their uptake into tumor cells. PTX was efficiently loaded into β-CDs and released in a controlled manner when exposed to competitive guest molecules. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. In this study, we developed multi-functional SPIO NPs that self-assembled into magnetic nanoclusters (SAMNs) in aqueous conditions as a theranostic nano-system. The beta-cyclodextrin (β-CD) was immobilized on the surfaces of SPIO NPs and RGD-conjugated polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. We found that nanocluster size could be

  12. Brood size modifications affect plumage bacterial assemblages of European starlings.

    PubMed

    Lucas, Françoise S; Moureau, Benoit; Jourdie, Violaine; Heeb, Philipp

    2005-02-01

    During reproduction, birds face trade-offs between time and energy devoted to parental effort and traits associated with self-maintenance. We manipulated brood sizes to investigate the effects of such trade-offs on feather bacterial densities and the structure of bacterial assemblages on feathers in adult European starlings, Sturnus vulgaris, and in vitro feather degradation. As predicted by a trade-off between parental effort and self-maintenance, we found that birds with enlarged broods had more free-living bacteria on their feathers than birds with reduced broods. Furthermore, we found a significant interaction between brood manipulation and original brood size on free-living bacterial densities suggesting that the trade-off is mediated by the adults' initial reproductive investment. In contrast, brood size manipulations had no significant effect on densities of attached bacteria. Using ribosomal intergenic spacer analysis (RISA), we demonstrated that brood manipulations significantly modified the structure (band pattern) of feather-degrading bacterial assemblages, but had no significant effect on their richness (number of bands) or the in vitro feather degradation. In vitro feather degradation varied in relation to the premanipulation brood size and positively with the richness of the feather degrading bacterial community. Besides brood manipulation effect, we found that ecological factors and individual traits, such as the age, the nest location or the capture date, shaped bacterial assemblages and feather degradation capacities.

  13. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity.

    PubMed

    Peng, Dungeng; Zhang, Jinsong; Liu, Qingliang; Taylor, Ethan Will

    2007-10-01

    It has been shown that 36 nm Nano-Se has lower toxicity than selenite or selenomethionine, but these forms of selenium (Se) all possess similar ability to increase selenoenzyme levels. The size of nanoparticles plays an important role in their biological activity: as expected, 5-200 nm Nano-Se can directly scavenge free radicals in vitro in a size-dependent fashion. However, in Se-deficient cells and Se-deficient mice, the size effect of Nano-Se on increasing selenoenzymes and liver Se disappears unexpectedly. We hypothesize that under conditions of Se deficiency, the avidity of Se uptake mechanisms may be increased to maintain the biosynthesis of selenoenzymes, which are fundamental for redox homeostasis. This increased avidity may override the potential advantage of small size Nano-Se seen under Se-replete conditions, thereby eliminating the size effect. Once selenoenzymes have been saturated, Se uptake mechanisms may downregulate; accordingly, the size effect of Nano-Se can then reappear. To test this hypothesis, Se-deficient mice were administered either 36 or 90 nm Nano-Se at supranutritional doses, in both a short-term model and a single-dose model. Under these conditions, Nano-Se showed a size effect on Se accumulation and glutathione S-transferase (GST) activity. A size effect of Nano-Se was found in 15 out of 18 total comparisons between sizes at the same dose and time in the two models. Furthermore, the magnitude of the size effect was more prominent on Se accumulation than on GST activity. GST is strictly regulated by transcriptional and translational mechanisms, so its increase in activity normally does not exceed 3-fold. In contrast, the homeostasis of Se accumulation is not as tightly controlled. In the present experiments, GST activity had reached or was approaching saturation, but liver Se was far below saturation. Therefore, our results strongly suggest that the saturation profile of the tested biomarker has an impact on the size effect of Nano

  14. Stacking faults density driven collapse of magnetic energy in hcp-cobalt nano-magnets

    NASA Astrophysics Data System (ADS)

    Nong, H. T. T.; Mrad, K.; Schoenstein, F.; Piquemal, J.-Y.; Jouini, N.; Leridon, B.; Mercone, S.

    2017-06-01

    Cobalt nanowires with different shape parameters were synthesized via the polyol process. By calculating the magnetic energy product (BH max) both for dried nano-powder and for nanowires in their synthesis solution, we observed unexpected independent BH max values from the nanowires shape. A good alignment of the nanowires leads to a higher BH max value. Our results show that the key parameter driving the magnetic energy product of the cobalt nanowires is the stacking fault density. An exponential collapse of the magnetic energy is observed at very low percentage of structural faults. Cobalt nanowires with almost perfect hcp crystalline structures should present high magnetic energy, which is promising for application in rare earth-free permanent magnets. Oral talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  15. Magnetization enhancement due to incorporation of non-magnetic nitrogen content in (Co{sub 84}Zr{sub 16})N{sub x} nano-composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jitendra, E-mail: jitendra@ceeri.ernet.in; Akhtar, Jamil; Academy of Scientific and Innovative Research, New Delhi 110001

    We report the magnetic, electronic, and structural properties of nano-composite (Co{sub 84}Zr{sub 16})N{sub x} or CZN films prepared by reactive co-sputter deposition method. As-deposited CZN films have shown enhancement in magnetization (M{sub s}) with incorporation of nitrogen content, which is related to the evolution of nano-composite phase. X-ray diffraction study has confirmed poly-crystalline growth of CZN films with fcc(331) and fcc(422) phases. High-resolution transmission electron microscope study reveals that CZN films are composed of ordered and crystalline ferromagnetic Co nano-clusters, which are embedded in the nano-composite matrix. Photoemission measurements show the change in the intensity near the Fermi level mostmore » likely due to defects and shift in the core-levels binding energy with nitrogen concentration. Raman spectroscopy data show an increase in the intensity of the Raman lines with nitrogen concentration upto 20%. However, the intensity is significantly lower for 30% sample. This indicates that less nitrogen or defect states are being substituted into the lattice above 20% and is consistent with the observed magnetic behavior. Our studies indicate that defects induced due to the incorporation of non-magnetic nitrogen content play a key role to enhance the magnetization.« less

  16. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites

    PubMed Central

    Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan

    2015-01-01

    Nano-sized TiCx/2009Al composites (with 5, 7, and 9 vol% TiCx) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiCx particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiCx particles in 2009Al as well as the tensile properties of nano-sized TiCx/2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiCx particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiCx/2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiCx/2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiCx particles and tensile properties of composites. PMID:28793749

  17. Nano-Sized Grain Refinement Using Friction Stir Processing

    DTIC Science & Technology

    2013-03-01

    friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During

  18. Novel Magnetic Fluids for Breast Cancer Therapy

    DTIC Science & Technology

    2005-04-01

    synthesis and characterization efforts concerning nickel-based alloys have been reported previously [5]. Nano-material has been obtained using an inverse...gar gel d ork his task regularly accompanies the synthesis work. Characterization analysis includes size, composition, magnetic pro perties. The...currently available magnetic fluids used in hyperthermia. The specific goals are: 1. Develop a synthesis process to fabricate magnetic nano

  19. Investigation of magnetic microdiscs for bacterial pathogen detection

    NASA Astrophysics Data System (ADS)

    Castillo-Torres, Keisha Y.; Garraud, Nicolas; Arnold, David P.; McLamore, Eric S.

    2016-05-01

    Despite strict regulations to control the presence of human pathogens in our food supply, recent foodborne outbreaks have heightened public concern about food safety and created urgency to improve methods for pathogen detection. Herein we explore a potentially portable, low-cost system that uses magnetic microdiscs for the detection of bacterial pathogens in liquid samples. The system operates by optically measuring the rotational dynamics of suspended magnetic microdiscs functionalized with pathogen-binding aptamers. The soft ferromagnetic (Ni80Fe20) microdiscs exhibit a closed magnetic spin arrangement (i.e. spin vortex) with zero magnetic stray field, leading to no disc agglomeration when in free suspension. With very high surface area for functionalization and volumes 10,000x larger than commonly used superparamagnetic nanoparticles, these 1.5-μm-diameter microdiscs are well suited for tagging, trapping, actuating, or interrogating bacterial targets. This work reports a wafer-level microfabrication process for fabrication of 600 million magnetic microdiscs per substrate and measurement of their rotational dynamics response. Additionally, the biofunctionalization of the microdiscs with DNA aptamers, subsequent binding to E. coli bacteria, and their magnetic manipulation is reported.

  20. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites.

    PubMed

    Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan

    2015-12-17

    Nano-sized TiC x /2009Al composites (with 5, 7, and 9 vol% TiC x ) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiC x particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiC x particles in 2009Al as well as the tensile properties of nano-sized TiC x /2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiC x particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiC x /2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiC x /2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiC x particles and tensile properties of composites.

  1. Ultrasonic agitation-floating classification of nano-sized Ba-Mg ferrites particles formed by using self-propagating high temperature synthesis and fabrication of nickel-ferrites thin sheet by pulse-electroforming.

    PubMed

    Choi, Yong

    2013-01-01

    Nickel-nano-sized ferrites composites sheet for electromagnetic shielding was produced by pulse-electroforming in a modified nickel sulfamate solution. The ferrite particles were prepared by self-propagating high temperature synthesis (SHS) followed by mechanical milling, and classified with an ultrasonic agitation-floating unit to obtain about 100 nm in size. Average combustion temperature and combustion propagating rate during SHS reaction were 1190 K and 5.8 mm/sec at the oxygen pressure of 1.0 MPa, respectively. The nickel-ferrite composite sheet had preferred orientation which (100) pole clearly concentrated to normal direction, whereas, (110) and (111) poles tended to split to the longitudinal direction, respectively. Maximum magnetization, residual magnetization and coercive force of the nano-sized ferrites were 27.13 A x m2/kg, 6.4 A x m2/kg and 14.58 kA/m, respectively. Complex permeability of the composites decreased with an increase in frequency, and its real value (mu'r) had the maximum at about 0.3 GHz. The dielectric constants of the composites were epsilon'r = 6.7 and epsilon"r = 0.

  2. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive.

    PubMed

    Peters, Ruud; Kramer, Evelien; Oomen, Agnes G; Rivera, Zahira E Herrera; Oegema, Gerlof; Tromp, Peter C; Fokkink, Remco; Rietveld, Anton; Marvin, Hans J P; Weigel, Stefan; Peijnenburg, Ad A C M; Bouwmeester, Hans

    2012-03-27

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products subjected to in vitro digestion included (i) hot water, (ii) coffee with powdered creamer, (iii) instant soup, and (iv) pancake which either contained silica as the food additive E551, or to which a form of synthetic amorphous silica or 32 nm SiO(2) particles were added. The results showed that, in the mouth stage of the digestion, nano-sized silica particles with a size range of 5-50 and 50-500 nm were present in food products containing E551 or added synthetic amorphous silica. However, during the successive gastric digestion stage, this nano-sized silica was no longer present for the food matrices coffee and instant soup, while low amounts were found for pancakes. Additional experiments showed that the absence of nano-sized silica in the gastric stage can be contributed to an effect of low pH combined with high electrolyte concentrations in the gastric digestion stage. Large silica agglomerates are formed under these conditions as determined by DLS and SEM experiments and explained theoretically by the extended DLVO theory. Importantly, in the subsequent intestinal digestion stage, the nano-sized silica particles reappeared again, even in amounts higher than in the saliva (mouth) digestion stage. These findings suggest that, upon consumption of foods containing E551, the gut epithelium is most likely exposed to nano-sized silica. © 2012 American Chemical Society

  3. Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms

    PubMed Central

    Galhoum, Ahmed A.; Mafhouz, Mohammad G.; Abdel-Rehem, Sayed T.; Gomaa, Nabawia A.; Atia, Asem A.; Vincent, Thierry; Guibal, Eric

    2015-01-01

    Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea. PMID:28347004

  4. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice.

    PubMed

    Zhang, Jinsong; Wang, Huali; Bao, Yongping; Zhang, Lide

    2004-05-28

    We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice.

  5. Magnetic properties of Dy nano-islands on graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron

    Here, we have determined the magnetic properties of epitaxially grown Dy islands on graphene/SiC(0001) that are passivated by a gold film (deposited in the ultra-high vacuum growth chamber) for ex-situ X-ray magnetic circular dichroism (XMCD). Our sum-rule analysis of the Dy M 4,5 XMCD spectra at low temperatures ( T = 15 K) as a function of magnetic field assuming Dy 3+ (spin configuration 6 H 15/2) indicate that the projection of the magnetic moment along an applied magnetic field of 5 T is 3.5(3) μ B. Temperature dependence of the magnetic moment (extracted from the M 5 XMCD spectra)more » shows an onset of a change in magnetic moment at about 175 K in proximity of the transition from paramagnetic to helical magnetic structure at T H = 179 K in bulk Dy. No feature at the vicinity of the ferromagnetic transition of hcp bulk Dy at T c = 88 K is observed. However, below ~130 K, the inverse magnetic moment (extracted from the XMCD) is linear in temperature as commonly expected from a paramagnetic system suggesting different behavior of Dy nano-island than bulk Dy.« less

  6. Magnetic properties of Dy nano-islands on graphene

    DOE PAGES

    Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron; ...

    2017-04-07

    Here, we have determined the magnetic properties of epitaxially grown Dy islands on graphene/SiC(0001) that are passivated by a gold film (deposited in the ultra-high vacuum growth chamber) for ex-situ X-ray magnetic circular dichroism (XMCD). Our sum-rule analysis of the Dy M 4,5 XMCD spectra at low temperatures ( T = 15 K) as a function of magnetic field assuming Dy 3+ (spin configuration 6 H 15/2) indicate that the projection of the magnetic moment along an applied magnetic field of 5 T is 3.5(3) μ B. Temperature dependence of the magnetic moment (extracted from the M 5 XMCD spectra)more » shows an onset of a change in magnetic moment at about 175 K in proximity of the transition from paramagnetic to helical magnetic structure at T H = 179 K in bulk Dy. No feature at the vicinity of the ferromagnetic transition of hcp bulk Dy at T c = 88 K is observed. However, below ~130 K, the inverse magnetic moment (extracted from the XMCD) is linear in temperature as commonly expected from a paramagnetic system suggesting different behavior of Dy nano-island than bulk Dy.« less

  7. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  8. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  9. Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles

    PubMed Central

    Rogers, Hunter B.; Anani, Tareq; Choi, Young Suk; Beyers, Ronald J.; David, Allan E.

    2015-01-01

    Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, subsequent in vitro experiments were unable to reproduce the predicted results. Magnetic field-flow fractionation, however, was found to be an effective method for the separation of polydisperse suspensions of iron oxide nanoparticles with diameters greater than 20 nm. While similar methods have been used to separate magnetic nanoparticles before, no previous work has been done with magnetic nanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used to confirm the size of the MNPs. Further development of this work could lead to MNPs with the narrow size distributions necessary for their in vitro and in vivo optimization. PMID:26307980

  10. Sintered magnetic cores of high Bs Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy with a lamellar microstructure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Sharma, Parmanand; Makino, Akihiro

    2014-05-01

    Fabrication of bulk cores of nano-crystalline Fe84.3Si4B8P3Cu0.7 alloy with a lamellar type of microstructure is reported. Amorphous ribbon flakes of size ˜1.0-2.0 mm were compacted in the bulk form by spark plasma sintering technique at different sintering temperatures. High density (˜96.4%) cores with a uniform nano-granular structure made from α-Fe (˜31 nm) were obtained. These cores show excellent mechanical and soft magnetic properties. The lamellar micro-structure is shown to be important in achieving significantly lower magnetic core loss than the non-oriented silicon steel sheets, commercial powder cores and even the core made of the same alloy with finer and randomly oriented powder particles.

  11. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection.

    PubMed

    Zheng, Laibao; Wan, Yi; Qi, Peng; Sun, Yan; Zhang, Dun; Yu, Liangmin

    2017-05-15

    The detection of pathogenic bacteria is essential in various fields, such as food safety, water environmental analysis, or clinical diagnosis. Although rapid and selective techniques have been achieved based on the fast and specific binding of recognitions elements and target, the sensitive detection of bacterial pathogens was limited by their low targets-binding efficiency. The three-dimensional (3D) nano-biointerface, compared with the two-dimensional (2D) flat substrate, has a much higher binding capacity, which can offer more reactive sites to bind with bacterial targets, resulting in a great improvement of detection sensitivity. Herein, a lectin functionalized ZnO nanorod (ZnO-NR) array has been fabricated and employed as a 3D nano-biointerface for Escherichia coli (E. coli) capture and detection by multivalent binding of concanavalin A (ConA) with polysaccharides on the cellular surface of E. coli. The 3D lectin functionalized ZnO-NR array-based assay shows reasonable detection limit and efficiently expanded linear range (1.0×10 3 to 1.0×10 7 cfumL -1 ) for pathogen detection. The platform has a potential for further applications and provides an excellent sensitivity approach for detection of pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Jitter reduction of a reaction wheel by management of angular momentum using magnetic torquers in nano- and micro-satellites

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Wang, Jihe; Saisutjarit, Phongsatorn; Nakasuka, Shinichi

    2013-07-01

    Nowadays, nano- and micro-satellites, which are smaller than conventional large satellites, provide access to space to many satellite developers, and they are attracting interest as an application of space development because development is possible over shorter time period at a lower cost. In most of these nano- and micro-satellite missions, the satellites generally must meet strict attitude requirements for obtaining scientific data under strict constraints of power consumption, space, and weight. In many satellite missions, the jitter of a reaction wheel degrades the performance of the mission detectors and attitude sensors; therefore, jitter should be controlled or isolated to reduce its effect on sensor devices. In conventional standard-sized satellites, tip-tilt mirrors (TTMs) and isolators are used for controlling or isolating the vibrations from reaction wheels; however, it is difficult to use these devices for nano- and micro-satellite missions under the strict power, space, and mass constraints. In this research, the jitter of reaction wheels is reduced by using accurate sensors, small reaction wheels, and slow rotation frequency reaction wheel instead of TTMs and isolators. The objective of a reaction wheel in many satellite missions is the management of the satellite's angular momentum, which increases because of attitude disturbances. If the magnitude of the disturbance is reduced in orbit or on the ground, the magnitude of the angular momentum that the reaction wheels gain from attitude disturbances in orbit becomes smaller; therefore, satellites can stabilize their attitude using only smaller reaction wheels or slow rotation speed, which cause relatively smaller vibration. In nano- and micro-satellite missions, the dominant attitude disturbance is a magnetic torque, which can be cancelled by using magnetic actuators. With the magnetic compensation, the satellite reduces the angular momentum that the reaction wheels gain, and therefore, satellites do

  13. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    PubMed

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    NASA Astrophysics Data System (ADS)

    Yoo, Haneul; Lee, Dong Jun; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Tak Cho, Young; Park, Jae Yeol; Chen, Xing; Hong, Seunghun

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species.

  15. Magnetic levitating polymeric nano/microparticular substrates for three-dimensional tumor cell culture.

    PubMed

    Lee, Woong Ryeol; Oh, Kyung Taek; Park, So Young; Yoo, Na Young; Ahn, Yong Sik; Lee, Don Haeng; Youn, Yu Seok; Lee, Deok-Keun; Cha, Kyung-Hoi; Lee, Eun Seong

    2011-07-01

    Herein, we describe magnetic cell levitation models using conventional polymeric microparticles or nanoparticles as a substrate for the three-dimensional tumor cell culture. When the magnetic force originating from the ring-shaped magnets overcame the gravitational force, the magnetic field-levitated KB tumor cells adhered to the surface area of magnetic iron oxide (Fe(3)O(4))-encapsulated nano/microparticles and concentrated clusters of levitated cells, ultimately developing tumor cells to tumor spheroids. These simple cell culture models may prove useful for the screening of anticancer drugs and their formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Synthesis, structural, dielectric and magnetic properties of polyol assisted copper ferrite nano particles

    NASA Astrophysics Data System (ADS)

    Pavithradevi, S.; Suriyanarayanan, N.; Boobalan, T.

    2017-03-01

    Nanocrystalline copper ferrite CuFe2O4 is synthesized by co-precipitation method in ethylene glycol as chelating agent, using sodium Hydroxide as precipitator at pH 8. The as synthesized CuFe2O4 is annealed at temperatures of 350 °C, 700 °C, and 1050 °C for 2 h respectively. The thermal analysis of the synthesized sample is done by TG technique. It is shown that at 260 °C ethylene glycol has evaporated completely and after 715 °C, spinel ferrite is formed with a cubic structure. The calculated lattice parameters are in agreement with the reported values. FTIR spectra of CuFe2O4 nano particles are as synthesized and annealed at 1050 °C and recorded between 400 cm-1 and 4000 cm-1. It shows that when the temperature increases ethylene glycol gradually evaporates. Finally, nano crystalline single phase spinel ferrite is obtained. X-ray diffraction (XRD) and electron diffraction (EDS) studies show that the sample is indexed as the face centered cubic spinel structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the particles are flaky and spherical with the crystallite size in the range of 25-34 nm. From the dielectric studies, the dielectric constant decreases as the frequency increases. Low value of dielectric loss at higher frequencies suggests that the material is suitable for high frequency applications. AC conductivity increases with frequency. The magnetic properties of the samples are measured using a vibrating sample magnetometer (VSM) at room temperature, which shows that the sample exhibited a typical super paramagnetic behavior at low temperature. The saturation magnetization, remanant magnetism, and coercivity increases with applied field.

  17. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria?

    PubMed

    Kadri, Hani El; Devanthi, Putu Virgina Partha; Overton, Tim W; Gkatzionis, Konstantinos

    2017-11-01

    Nano-emulsions (typically droplet diameter<1μm) are common in foods, and have been extensively reported to present antimicrobial activity, however, the mechanism is not well defined, and some studies reported no effect. A review of the literature was conducted and revealed strongly contradictory reports regarding the antimicrobial effect of nano-emulsions even in reference to similar microbial species and formulations. Following up, this study aimed to investigate the effect of nano-emulsions on four bacterial species (Staphylococcus epidermidis, Bacillus cereus, Lactobacillus acidophilus and five Escherichia coli strains) possessing different surface charge and hydrophobicity. Model oil-in-water (O/W) emulsions with different size of oil droplets were prepared with sunflower oil stabilised by polysorbate 80 (Tween80) emulsifier (hydrophilic), using high shear mixing followed by ultrasonication. The viability of bacteria was monitored by culture, membrane integrity was assessed with flow cytometric analysis with propidium iodide (PI) staining and fluorescence microscopy monitored the spatial distribution of cells within the O/W emulsions. The stability of the nano-O/W emulsions in the presence of bacteria was assessed by monitoring the droplet size [D (4, 3)] and creaming height. In contrast to other reports the survival and growth of bacteria was not affected by the size of the oil droplets, no damage to the bacterial membrane was evident with flow cytometry and emulsion stability was not affected by the presence of bacteria during 7days of storage. Furthermore, the antimicrobial activity of caprylic acid (CA) was compared between O/W coarse and nano-emulsions while varying the concentration of the hydrophilic surfactant Tween80. The activity of CA was similar in nano-emulsion and coarse emulsion; however, it was higher than in bulk oil and was reduced with increasing Tween80 concentration, suggesting that its efficacy is dictated by formulation rather than oil

  18. On the Size Dependence of Molar and Specific Properties of Independent Nano-phases and Those in Contact with Other Phases

    NASA Astrophysics Data System (ADS)

    Kaptay, George

    2018-05-01

    Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.

  19. Effect of drying environment on grain size of titanium dioxide nano-powder synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Zandi, Pegah; Hosseini, Elham; Rashchi, Fereshteh

    2018-01-01

    Titanium dioxide Nano powder has been synthesized from titanium isopropoxide (TTIP) in chloride media by sol-gel method. In this research, the effect of the drying environment, from air to oven drying at 100 °C, calcination time and temperature on nano TiO2 grain size was investigated. The synthesized powder was analyzed by x-ray diffraction and scanning electron microscope. Based on the results, the powder has been crystallized in anatase and rutile phases, due to different calcination temperatures. At temperatures above 600 °C, the Titanium dioxide nano powder has been crystallized as rutile. The crystalline structure of titanium dioxide nano powder changed because of the different calcination temperatures and time applied. The average particle size of the powder dried in air was larger than the powder dried in oven. The minimum particle size of the powder dried in air was 50 nm and in the oven was 9 nm, observed and calculated Williamson-Hall equation. All in all, with overall increasing of calcination time and temperature the grain size increased. Moreover, in the case of temperature, after a certain temperature, the grain size became constant and didn't change significantly.

  20. Development of a Tumor Histologic-Specific, Nano-Encapsulated Contrast for Enhancing Magnetic Resonance Imaging of Prostate Cancer

    DTIC Science & Technology

    2008-04-01

    Nano-Encapsulated Contrast for Enhancing Magnetic Resonance Imaging of Prostate Cancer PRINCIPAL INVESTIGATOR: Joel W. Slaton, M.D...2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of a Tumor Histologic-Specific, Nano-Encapsulated Contrast for Enhancing Magnetic...carry a contrast agent to human CaP cells growing in mice to enhance MR detection of cancer. Our work in the first year has focused on in vitro

  1. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems.

    PubMed

    Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao

    2017-07-01

    The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.

  2. High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach

    PubMed Central

    Cao, Derang; Li, Hao; Pan, Lining; Li, Jianan; Wang, Xicheng; Jing, Panpan; Cheng, Xiaohong; Wang, Wenjie; Wang, Jianbo; Liu, Qingfang

    2016-01-01

    We have demonstrated the synthesis of γ-Fe2O3 nano-particles through a facile and novel calcination process in the air. There is no pH regulation, gas atmosphere, additive, centrifugation or other complicated procedures during the preparing process. A detailed formation process of the nano-particles is proposed, and DMF as a polar solvent may slower the reaction process of calcination. The structures, morphologies, and magnetic properties of γ-Fe2O3 nano-particles were investigated systematically, and the pure γ-Fe2O3 nano-particles obtained at 200 °C display uniform morphology good magnetic property. The saturation magnetization of obtained pure γ-Fe2O3 is about 74 emu/g, which is comparable with bulk material (76 emu/g) and larger than other results. In addition, the photocatalytic activity for degradation of methylene blue is also studied, which shows proper photocatalytic activity. PMID:27581732

  3. Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.

    Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less

  4. Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations

    DOE PAGES

    Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.; ...

    2016-08-29

    Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less

  5. Effect of Particle Size and Impact Velocity on Collision Behaviors Between Nano-Scale TiN Particles: MD Simulation.

    PubMed

    Yao, Hai-Long; Hu, Xiao-Zhen; Yang, Guan-Jun

    2018-06-01

    Inter-particle bonding formation which determines qualities of nano-scale ceramic coatings is influenced by particle collision behaviors during high velocity collision processes. In this study, collision behaviors between nano-scale TiN particles with different diameters were illuminated by using Molecular Dynamics simulation through controlling impact velocities. Results show that nano-scale TiN particles exhibit three states depending on particle sizes and impact velocities, i.e., bonding, bonding with localized fracturing, and rebounding. These TiN particles states are summarized into a parameter selection map providing an overview of the conditions in terms of particle sizes and velocities. Microstructure results show that localized atoms displacement and partial fracture around the impact region are main reasons for bonding formation of nano-scale ceramic particles, which shows differences from conventional particles refining and amorphization. A relationship between the adhesion energy and the rebound energy is established to understand bonding formation mechanism for nano-scale TiN particle collision. Results show that the energy relationship is depended on the particle sizes and impact velocities, and nano-scale ceramic particles can be bonded together as the adhesion energy being higher than the rebound energy.

  6. Membrane fouling by extracellular polymeric substances after ozone pre-treatment: Variation of nano-particles size.

    PubMed

    Yu, Wenzheng; Zhang, Dizhong; Graham, Nigel J D

    2017-09-01

    The application of ozone pre-treatment for ultrafiltration (UF) in drinking water treatment has been studied for more than 10 years, but its performance in mitigating or exacerbating membrane fouling has been inconclusive, and sometimes contradictory. To help explain this, our study considers the significance of the influent organic matter and its interaction with ozone on membrane fouling, using solutions of two representative types of extracellular polymeric substances (EPS), alginate and bovine serum albumin (BSA), and samples of surface water. The results show that at typical ozone doses there is no measurable mineralization of alginate and BSA, but substantial changes in their structure and an increase in the size of nano-particle aggregates (micro-flocculation). The impact of ozonation on membrane fouling, as indicated by the membrane flux, was markedly different for the two types of EPS and found to be related to the size of the nano-particle aggregates formed in comparison with the UF pore size. Thus, for BSA, ozonation created aggregate sizes similar to the UF pore size (100 k Dalton) which led to an increase in fouling. In contrast, ozonation of alginate created the nano-particle aggregates greater than the UF pore size, giving reduced membrane fouling/greater flux. For solutions containing a mixture of the two species of EPS the overall impact of ozonation on UF performance depends on the relative proportion of each, and the ozone dose, and the variable behaviour has been demonstrated by the surface water. These results provide new information about the role of nano-particle aggregate size in explaining the reported ambiguity over the benefits of applying ozone as pre-treatment for ultrafiltration. Copyright © 2017. Published by Elsevier Ltd.

  7. Electrochemical Nanoparticle Sizing Via Nano-Impacts: How Large a Nanoparticle Can be Measured?

    PubMed Central

    Bartlett, Thomas R; Sokolov, Stanislav V; Compton, Richard G

    2015-01-01

    The field of nanoparticle (NP) sizing encompasses a wide array of techniques, with electron microscopy and dynamic light scattering (DLS) having become the established methods for NP quantification; however, these techniques are not always applicable. A new and rapidly developing method that addresses the limitations of these techniques is the electrochemical detection of NPs in solution. The ‘nano-impacts’ technique is an excellent and qualitative in situ method for nanoparticle characterization. Two complementary studies on silver and silver bromide nanoparticles (NPs) were used to assess the large radius limit of the nano-impact method for NP sizing. Noting that by definition a NP cannot be larger than 100 nm in diameter, we have shown that the method quantitatively sizes at the largest limit, the lower limit having been previously reported as ∼6 nm.1 PMID:26491639

  8. Preparation of nano fluids by mechanical method

    NASA Astrophysics Data System (ADS)

    Boopathy, J.; Pari, R.; Kavitha, M.; Angelo, P. C.

    2012-07-01

    Nanofluids are conventional heat transfer fluids that contain nano particles of metals, oxides, carbides, nitrides, or nanotubes. Nanofluids exhibit enhanced thermal conductivity and heat transfer coefficients compared to the base fluids. This paper presents the procedure for preparing nanofluids consisting of Copper and Aluminium nano powders in base fluids. Copper and Aluminium nano powders were produced by planetary ball wet milling at 300rpm for 50hrs. Toluene was added to ensure wet milling. These powders were characterized in XRD and SEM for their purity, particle size and shape. The XRD results confirmed the final particle sizes of Copper and Aluminium in the nano range. Then the 0.01 gm of nano metal powders was added in 150 ml of double distilled water and magnetic stirring was done at 1500 rpm for 15 minutes. Sodium lauryl sulphate (0.05%) was added in water as surfactant to ensure the stability of the dispersion. Ultrasonication in the 3000 watts bath was done for 10 minutes to enhance the uniform dispersion of metal powders in water. The pH, dynamic viscosity, ionic conductivity and the stability of the fluids were determined for further usage of synthesized nanofluids as coolant during grinding operation.

  9. Nano-magnetic particles used in biomedicine: core and coating materials.

    PubMed

    Karimi, Z; Karimi, L; Shokrollahi, H

    2013-07-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Development of low loss soft nano magnetic system for antenna miniaturization at ultra high frequency

    NASA Astrophysics Data System (ADS)

    Manhas, Anita; Daya, K. S.; Singh, M.

    2018-05-01

    Sol gel auto combustion processed nano magnetic system of Co2Z hexaferrite of composition Ba3-xSrxCo2InyFe24-yO41 (x=1.5 and y=0.1) was investigated for microwave antenna miniaturization in the frequency range 2 GHz to 3.43 GHz. The structural properties performed by XRD and TEM with SAED clearly indicate the formation of single phased Z-type hexagonal nanoferrite with high crystallization. The magnetic property was measured using VSM show a typical feature of magnetically soft material with low coercivity. Successfully obtained appreciable microwave properties using network analyzer, as the nano magnetic system Ba1.5Sr1.5Co2In0.1Fe23.90O41 attained best results were μ' = 5.4 and ɛ' = 4.6 at 2GHz with controlled magnetic and electric loss tangents close to zero i.e. 0.005 and 0.008, respectively. Microwave results are explained on the basis of relevant existing theories and models.

  11. Preparation of magnetic TNT-imprinted polymer nanoparticles and their accumulation onto magnetic carbon paste electrode for TNT determination.

    PubMed

    Alizadeh, Taher

    2014-11-15

    In this study, the TNT-imprinted polymer shell was created on nano-sized Fe3O4 cores in order to construct the nano-sized magnetic molecularly imprinted polymer (nano-MMIP). For this purpose, the surface of the synthesized magnetic nanoparticles was modified with methacrylic acid. The modified particles were then utilized as the core on which the TNT-imprinted polymeric shell was synthesized. The synthesized materials were then characterized by scanning electron microscopy, FT-IR and thermal gravimetric analysis (TGA). The resulting nano-MMIP particles were suspended in TNT solution and then collected on the surface of a carbon paste electrode via a permanent magnet, situated within the CP electrode. The extracted TNT was analyzed on the CP electrode by applying square wave voltammetry (SWV). It was found that the oxidative signal of TNT is much favorable for TNT detection on the resulting magnetic carbon paste electrode. The electrode with nano-MMIP showed distinctly higher signal to TNT, compared to that containing magnetic non-imprinted polymer (MNIP) nanoparticles. All parameters influencing the method performance including extraction pH, extraction time and sorbent amount were evaluated and optimized. The developed method showed a dynamic linear concentration range of 1.0-130.0 nM for TNT measurement. The detection limit of the method was calculated to be 0.5 nM. The method showed appropriate capability for TNT analysis in real water samples. Copyright © 2014. Published by Elsevier B.V.

  12. Investigation on Tc tuned nano particles of magnetic oxides for hyperthermia applications.

    PubMed

    Giri, Jyotsnendu; Ray, Amlan; Dasgupta, S; Datta, D; Bahadur, D

    2003-01-01

    Superparamagnetic as well as fine ferrimagnetic particles such as Fe3O4, have been extensively used in magnetic field induced localized hyperthermia for the treatment of cancer. The magnetic materials with Curie temperature (Tc) between 42 and 50 degrees C, with sufficient biocompatibility are the best candidates for effective treatment such that during therapy it acts as in vivo temperature control switch and thus over heating could be avoided. Ultrafine particles of substituted ferrite Co(1-a)Zn(a)Fe2O4 and substituted yttrium-iron garnet Y3Fe(5-x)Al(x)O12 have been prepared through microwave refluxing and citrate-gel route respectively. Single-phase compounds were obtained with particle size below 100 nm. In order to make these magnetic nano particles biocompatible, we have attempted to coat these above said composition by alumina. The coating of alumina was done by hydrolysis method. The coating of hydrous aluminium oxide has been done over the magnetic particles by aging the preformed solid particles in the solution of aluminium sulfate and formamide at elevated temperatures. In vitro study is carried out to verify the innocuousness of coated materials towards cells. In vitro biocompatibility study has been carried out by cell culture method for a period of three days using human WBC cell lines. Study of cell counts and SEM images indicates the cells viability/growth. The in vitro experiments show that the coated materials are biocompatible.

  13. Effect of size on bulk and surface cohesion energy of metallic nano-particles

    NASA Astrophysics Data System (ADS)

    Yaghmaee, M. S.; Shokri, B.

    2007-04-01

    The knowledge of nano-material properties not only helps us to understand the extreme behaviour of small-scale materials better (expected to be different from what we observe from their bulk value) but also helps us to analyse and design new advanced functionalized materials through different nano technologies. Among these fundamental properties, the cohesion (binding) energy mainly describes most behaviours of materials in different environments. In this work, we discuss this fundamental property through a nano-thermodynamical approach using two algorithms, where in the first approach the size dependence of the inner (bulk) cohesion energy is studied, and in the second approach the surface cohesion energy is considered too. The results, which are presented through a computational demonstration (for four different metals: Al, Ga, W and Ag), can be compared with some experimental values for W metallic nano-particles.

  14. Immobilization of Magnetic Nanoparticles onto Amine-Modified Nano-Silica Gel for Copper Ions Remediation

    PubMed Central

    Elkady, Marwa; Hassan, Hassan Shokry; Hashim, Aly

    2016-01-01

    A novel nano-hybrid was synthesized through immobilization of amine-functionalized silica gel nanoparticles with nanomagnetite via a co-precipitation technique. The parameters, such as reagent concentrations, reaction temperature and time, were optimized to accomplish the nano-silica gel chelating matrix. The most proper amine-modified silica gel nanoparticles were immobilized with magnetic nanoparticles. The synthesized magnetic amine nano-silica gel (MANSG) was established and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and vibrating sample magnetometry (VSM). The feasibility of MANSG for copper ions’ remediation from wastewater was examined. MANSG achieves a 98% copper decontamination from polluted water within 90 min. Equilibrium sorption of copper ions onto MANSG nanoparticles obeyed the Langmuir equation compared to the Freundlich, Temkin, Elovich and Dubinin-Radushkevich (D-R) equilibrium isotherm models. The pseudo-second-order rate kinetics is appropriate to describe the copper sorption process onto the fabricated MANSG. PMID:28773583

  15. Nano-sized, quaternary titanium(IV) metal-organic frameworks with multidentate ligands.

    PubMed

    Baranwal, Balram Prasad; Singh, Alok Kumar

    2010-12-01

    Some mononuclear nano-sized, quaternary titanium(IV) complexes having the general formula [Ti(acac)(OOCR)2(SB)] (where Hacac=acetylacetone, R=C15H31 or C17H35, HSB=Schiff bases) have been synthesized using different multidentate ligands. These were characterized by elemental analyses, molecular weight determinations and spectral (FTIR, 1H NMR and powder XRD) studies. Conductance measurement indicated their non-conducting nature which may behave like insulators. Structural parameters like the values of limiting indices h, k, l, cell constants a, b, c, angles α, β, γ and particle size are calculated from powder XRD data for complex 1 which indicated nano-sized triclinic system in them. Bidentate chelating nature of acetylacetone, carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. On the basis of physico-chemical studies, coordination number 8 was assigned for titanium(IV) in the complexes. Transmission electron microscopy (TEM) and the selected area electron diffraction (SAED) studies indicated spherical particles with poor crystallinity. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements

    NASA Astrophysics Data System (ADS)

    Aadinath, W.; Ghosh, Triroopa; Anandharamakrishnan, C.

    2016-03-01

    Iron oxide nanoparticles (IONPs) have been a propitious topic for cancer treatment in recent years because of its multifunctional theranostic applications under magnetic field. Two such widely used applications in cancer biology are gradient magnetic field guided targeting and alternative magnetic field (AMF) induced local hyperthermia. Gradient magnetic field guided targeting is a mode of active targeting of therapeutics conjugated with iron oxide nanoparticles. These particles also dissipate heat in presence of AMF which causes thermal injury to the cells of interest, for example tumour cells and subsequent death. Clinical trials divulge the feasibility of such magnetic nano-carrier as a promising candidate in cancer biology. However, these techniques need further investigations to curtail certain limitations manifested. Recent progresses in response have shrunken the barricade to certain extent. In this context, principles, challenges associated with these applications and recent efforts made in response will be discussed.

  17. Magnetic properties of Magneto-Rheological fluids with uniformly dispersed Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Poddar, P.; Wilson, J. L.; Srikanth, H.; Wereley, N. M.; Radhakrishnan, R.

    2003-03-01

    A systematic study of the magnetic properties of MR fluids containing micron-size and nano-size iron particles is presented. Nano-particles with a size range of 15-20 nm were prepared using microwave plasma technique. The MR-fluids were prepared with hydraulic oil as the carrier liquid and lecithin as an effective surfactant medium that promotes uniform particle dispersion. Static and dynamic magnetic measurements clearly indicate that the replacement of the micron-size particles by nano-particles results in a much better suspension. The magnetization in the nanoparticulate MR fluid is dominated by superparamagnetic particle response. In addition, collective behavior due to strong dipolar interactions associated with chaining of the particles in the field direction was also observed. A sharp drop in susceptibility at 250K was noted and this is ascribed to the carrier fluid freezing transition. We also present optical micrographs of showing chain formation and rheological performance as measured by field-dependent yield stress experiments. Sharper magnetic response to applied fields and lower field requirement for saturation make nano-particles attractive candidates for improved MR-fluid based sensors, actuators and microfluidics for clinical diagnostics. HS acknowledges support from NSF through grants ECS-0140047 and ECS-0102622. NMW and RR acknowledge support from NSF grant DMI-0110447.

  18. Effect of vanadium doping on structural and magnetic properties of defective nano-nickel ferrite

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher; Almalowi, M. I.

    2018-04-01

    Nano-nickel ferrites defected by vanadium doping (NiV x Fe2-1.67 x O4, 0 ≤ x ≤ 0.25) were prepared using a simple sol gel method. Rietveld analysis revealed a nonmonotonic change in lattice parameter, oxygen parameter and magnetization upon doping with vanadium. Cation distributions suggested from either Rietveld analysis or from experimental magnetic moments were in a good agreement. For low doping values ( x = 0.05), vanadium was residing mainly in octahedral sites, while for samples with vanadium content ( x ≥ 0.1) a significant part of vanadium ions resided at tetrahedral sites; a result which has been confirmed by the analysis of Fourier-transform infrared (FTIR) spectrums obtained for the samples. The transmission electron microscope (TEM) image showed fine spherical particles with size of ˜ 11 nm. All samples showed a superparamagnetic nature with a nonmonotonic change of either magnetization ( M S) or coercivity (H C) with the content of nonmagnetic V5+. The cation occupancies indicated presence of an enormous number of vacancies through doping with high valence cation V5+, making present samples potential electrodes for Li- or Na-ion batteries.

  19. High-Resolution, Large-Area, Nano Imprint Lithography

    DTIC Science & Technology

    2009-08-27

    oxides as the seed layers can provide implication as the general synthetic route for the spontaneous growth of metal - silicide nanowires in large...nano-island array preparation , we have successfully fabricated patterned magnetic recording media as described in Fig. 2. About ~30 nm diameter Si...that we fabricated at UCSD with 5-50 nm diameter magnetic islands was used, since a large- area, hard disk size preparation was necessary, and since a

  20. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review

    PubMed Central

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.

    2012-01-01

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849

  1. Preparation of Nano-sized Bismuth-Doped Fe3O4 as an Excellent Magnetic Material for Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Aghazadeh, Mustafa; Karimzadeh, Isa; Ganjali, Mohammad Reza

    2018-03-01

    Nano-sized Bi3+-doped iron oxide (n-Bi-IO) particles were prepared through a one-pot electrochemical procedure, and the product was evaluated using x-ray diffraction, field-emission scanning electron microscopy and energy-dispersive x-ray spectroscopy. Based on the analyses, the average size of the n-Bi-IO was determined to be 10 nm. Galvanostatic charge-discharge (GCD) evaluations revealed that the specific capacitance of the material reached 235 F g-1 at a discharge condition of 0.2 A g-1. n-Bi-IO had a 94.2% capacity retention after 2000 GCD cycles. Further vibrating sample magnetometery analyses showed that the product has enhanced superparamagnetic qualities (i.e. M r = 0.15 emu g-1 and H Ci = 2.71 G) in comparison to iron oxide nanoparticles (i.e. M r = 0.95 emu g-1 and H Ci = 14.62 G). Given the results, the product is considered to be a promising material for developing high performance supercapacitor electrodes.

  2. Biological Experiments in Microgravity Conditions Using Magnetic Micro- and Nano-Particles

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Kuznetsov, Oleg

    2016-07-01

    Gravity affects all living organisms on Earth, and plays a role in multiple processes in them. In microgravity conditions (e.g., on board of a spacecraft) many of these processes are disturbed, e.g., spatial orientation is lost, mass and heat exchange is distorted, many adaptive mechanisms no longer function, etc. Negation of these adverse effects by creation of pseudo-gravity to by centrifugation is complicated, expensive and unpractical. We propose to use naturally occurring magnetic heterogeneity of all living cells and high gradient magnetic fields as an alternative approach to negating the adverse effects of microgravity on living systems. In non-uniform magnetic field, magnetically heterogeneous objects experience a system of ponderomotive forces. For a weak magnetic particle, the net ponderomotive magnetic force: Fm = Δχ•V•grad(H2/2), where Δχ is the difference of susceptibilities of the particle and the surrounding media, V is the volume of the particle, grad(H2/2) is the dynamic factor of the magnetic field. We studied magnetic heterogeneity of plant gravity receptor cells, prepared and conducted experiments on board of the space station "Mir" on providing a gravity-like stimulus for flax seedlings using high gradient magnetic field ("Magnetogravistat" experiment). Later, a more sophisticated version of this experiment was flown on STS-107. These experiments provided new data on the mechanisms of plant gravity reception and created a method for substituting gravity for a living organism by a force of a different physical nature, to negate the adverse effects of microgravity. Since the ponderomotive force is proportional to the dynamic factor of the field grad(H2/2), the stronger the field, and the faster it changes over distance, the higher is the dynamic factor and the stronger the ponderomotive force. Therefore, in the small vicinity of a small ferromagnetic particle (preferably metallic micro or nano-particles), the forces are very significant

  3. The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance

    NASA Astrophysics Data System (ADS)

    Clausen, Carol A.; Kartal, S. Nami; Arango, Rachel A.; Green, Frederick

    2011-06-01

    Historically most residential wood preservatives were aqueous soluble metal formulations, but recently metals ground to submicron size and dispersed in water to give particulate formulations have gained importance. In this study, the specific role nano-zinc oxide (ZnO) particle size and leach resistance plays in termite mortality resulting from exposure to particulate ZnO-treated wood was investigated. Southern yellow pine (SYP) sapwood impregnated with three concentrations of two particle sizes (30 and 70 nm) of ZnO were compared to wood treated with soluble zinc sulphate (ZnSO4) preservative for leach resistance and termite resistance. Less than four percent leached from the particulate nano-ZnO-treated specimens, while 13 to 25% of the zinc sulphate leached from the soluble treated wood. Nano-ZnO was essentially non-leachable from wood treated with 5% formulation for the 30-nm particle size. In a no-choice laboratory test, eastern subterranean termites ( Reticulitermes flavipes) consumed less than 10% of the leached nano-ZnO-treated wood with 93 to 100% mortality in all treatment concentrations. In contrast, termites consumed 10 to 12% of the leached ZnSO4-treated wood, but with lower mortality: 29% in the 1% treatment group and less than 10% (5 and 8%, respectively) in the group of wood blocks treated with 2.5 and 5.0% ZnSO4. We conclude that termites were repelled from consuming wood treated with nano-ZnO, but when consumed it was more toxic to eastern subterranean termites than wood treated with the soluble metal oxide formulation. There were no differences in leaching or termite mortality between the two particle sizes of nano-ZnO.

  4. Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification.

    PubMed

    Liu, Wei; Yang, Xiang-Liang; Ho, W S Winston

    2011-01-01

    Much attention has in recent years been paid to fine applications of drug delivery systems, such as multiple emulsions, micro/nano solid lipid and polymer particles (spheres or capsules). Precise control of particle size and size distribution is especially important in such fine applications. Membrane emulsification can be used to prepare uniform-sized multiple emulsions and micro/nano particulates for drug delivery. It is a promising technique because of the better control of size and size distribution, the mildness of the process, the low energy consumption, easy operation and simple equipment, and amendable for large scale production. This review describes the state of the art of membrane emulsification in the preparation of monodisperse multiple emulsions and micro/nano particulates for drug delivery in recent years. The principles, influence of process parameters, advantages and disadvantages, and applications in preparing different types of drug delivery systems are reviewed. It can be concluded that the membrane emulsification technique in preparing emulsion/particulate products for drug delivery will further expand in the near future in conjunction with more basic investigations on this technique. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  5. Measuring bacterial cells size with AFM

    PubMed Central

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837

  6. Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles

    NASA Astrophysics Data System (ADS)

    Hsiao, I.-Lun; Huang, Yuh-Jeen

    2013-09-01

    Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum—in this case, fetal bovine serum—in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-sized (<1 μm) ZnO on human lung epithelial cells (A549). The nano- and micro-sized ZnO both exhibited their highest toxicity when exposed to serum-free media, in contrast to exposure in media containing 5 or 10 % serum. This mainly comes not only from the fact that ZnO particles in the serum-free media have a higher dosage-per-cell ratio, which results from large aggregates of particles, rapid sedimentation, absence of protein protection, and lower cell growth rate, but also that extracellular Zn2+ release contributes to cytotoxicity. Although more extracellular Zn2+ release was observed in serum-containing media, it did not contribute to nano-ZnO cytotoxicity. Furthermore, non-dissolved particles underwent size-dependent particle agglomeration, resulting in size-dependent toxicity in both serum-containing and serum-free media. A low correlation between cytotoxicity and inflammation endpoints in the serum-free medium suggested that some signaling pathways were changed or induced. Since cell growth, transcription behavior for protein production, and physicochemical properties of ZnO particles all were altered in serum-free media, we recommend the use of a serum-containing medium when evaluating the cytotoxicity of NPs.

  7. Magnetic properties of nano-multiferroic materials

    NASA Astrophysics Data System (ADS)

    Ramam, Koduri; Diwakar, Bhagavathula S.; Varaprasad, Kokkarachedu; Swaminadham, Veluri; Reddy, Venu

    2017-11-01

    Latent magnetization in the multiferroics can be achieved via the structural distortion with respect to particle size and destroying the spiral spin structure, which plays the vital role in high-performance applications. In this investigation, multifunctional single phase Bi1-xLaxFe1-yCoyO3 nanomaterials were synthesized by co-precipitation technique. The chemical composition, phase genesis, morphology and thermal characteristics of the Bi1-xLaxFe1-yCoyO3 were studied by FTIR, XRD, SEM/EDS, TEM and TGA. XRD studies confirmed single phase distorted rhombohedral structure in Bi1-xLaxFe1-yCoyO3. The novelty in magnetic behavior of the Bi0.85La0.15Fe0.75Co0.25O3 multiferroic at room temperature showed both ferro and anti-ferromagnetic nature with higher order remanent magnetization among other nanocomposites in this study. This magnetic anomaly in Bi0.85La0.15Fe0.75Co0.25O3 is due to doping and size effects on the crystal structure that leads to spin-orbit interactions. Besides, Bi0.85La0.15Fe0.75Co0.25O3 integrated graphene oxide (GO) nanocomposite has shown the change in the magnetic hysteresis that indicates the effect of the semiconducting behavior of GO on the ordered magnetic moments in the multiferroic. This kind of magnetic anomaly could form advanced multiferroic devices.

  8. Controlling the size and magnetic properties of nano CoFe2O4 by microwave assisted co-precipitation method

    NASA Astrophysics Data System (ADS)

    Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.

    2018-02-01

    In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.

  9. Structural, morphological, magnetic and dielectric characterization of nano-phased antimony doped manganese zinc ferrites

    NASA Astrophysics Data System (ADS)

    Sridhar, Ch. S. L. N.; Lakshmi, Ch. S.; Govindraj, G.; Bangarraju, S.; Satyanarayana, L.; Potukuchi, D. M.

    2016-05-01

    Nano-phased doped Mn-Zn ferrites, viz., Mn0.5-x/2Zn0.5-x/2SbXFe2O4 for x=0 to 0.3 (in steps of 0.05) prepared by hydrothermal method are characterized by X-ray diffraction, Infrared and scanning electron microscopy. XRD and SEM infer the growth of nano-crystalline cubic and hematite (α-Fe2O3) phase structures. IR reveals the ferrite phase abundance and metal ion replacement with dopant. Decreasing trend of lattice constant with dopant reflects the preferential replacement of Fe3+ions by Sb5+ion. Doping is found to cause for the decrease (i.e., 46-14 nm) of grain size. An overall trend of decreasing saturation magnetization is observed with doping. Low magnetization is attributed to the diamagnetic nature of dopant, abundance of hematite (α-Fe2O3) phase, non-stoichiometry and low temperature (800 °C) sintering conditions. Increasing Yafet-Kittel angle reflects surface spin canting to pronounce lower Ms. Lower coercivity is observed for x≤0.1, while a large Hc results for higher concentrations. High ac resistivity (~106 ohm-cm) and low dielectric loss factor (tan δ~10-2-10-3) are witnessed. Resistivity is explained on the base of a transformation in the Metal Cation-to-Oxide anion bond configuration and blockade of conductivity path. Retarded hopping (between adjacent B-sites) of carriers across the grain boundaries is addressed. Relatively higher resistivity and low dielectric loss in Sbdoped Mn-Zn ferrite systems pronounce their utility in high frequency applications.

  10. Micromagnetic study of equilibrium states in nano hemispheroidal shells

    NASA Astrophysics Data System (ADS)

    Schultz, Keren; Schultz, Moty

    2017-11-01

    We present results of micromagnetic simulations of thin ferromagnetic nano hemispheroidal shells with sizes ranging from 5 to 50 nm (inside dimensions). Depending on the geometrical and magnetic parameters of the hemispheroidal shell, there exist three different magnetic phases: easy axis, onion and vortex. The profile for the vortex magnetization distribution is analyzed and the limitations and applicability of different vortex ansatzes are discussed. In addition, we investigate the total energy density for each of the magnetic distributions as a function of the hemispheroidal shell dimensions.

  11. Support for the initial attachment, growth and differentiation of MG-63 cells: a comparison between nano-size hydroxyapatite and micro-size hydroxyapatite in composites

    PubMed Central

    Filová, Elena; Suchý, Tomáš; Sucharda, Zbyněk; Šupová, Monika; Žaloudková, Margit; Balík, Karel; Lisá, Věra; Šlouf, Miroslav; Bačáková, Lucie

    2014-01-01

    Hydroxyapatite (HA) is considered to be a bioactive material that favorably influences the adhesion, growth, and osteogenic differentiation of osteoblasts. To optimize the cell response on the hydroxyapatite composite, it is desirable to assess the optimum concentration and also the optimum particle size. The aim of our study was to prepare composite materials made of polydimethylsiloxane, polyamide, and nano-sized (N) or micro-sized (M) HA, with an HA content of 0%, 2%, 5%, 10%, 15%, 20%, 25% (v/v) (referred to as N0–N25 or M0–M25), and to evaluate them in vitro in cultures with human osteoblast-like MG-63 cells. For clinical applications, fast osseointegration of the implant into the bone is essential. We observed the greatest initial cell adhesion on composites M10 and N5. Nano-sized HA supported cell growth, especially during the first 3 days of culture. On composites with micro-size HA (2%–15%), MG-63 cells reached the highest densities on day 7. Samples M20 and M25, however, were toxic for MG-63 cells, although these composites supported the production of osteocalcin in these cells. On N2, a higher concentration of osteopontin was found in MG-63 cells. For biomedical applications, the concentration range of 5%–15% (v/v) nano-size or micro-size HA seems to be optimum. PMID:25125978

  12. Origin of Capacity Fading in Nano-Sized Co3O4 Electrodes: Electrochemical Impedance Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Gu; Ko, Young-Dae; Park, Jae-Gwan; Kim, Dong-Wan

    2008-10-01

    Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4 with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4 anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  13. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOEpatents

    Huber, Dale L [Albuquerque, NM

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  14. Photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide.

    PubMed

    Liu, Zongkuan; He, Yanling; Li, Feng; Liu, Yonghong

    2006-09-01

    The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC-UV) at regular time intervals under simulated sunlight. The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described

  15. Targeted Therapy for Acute Autoimmune Myocarditis with Nano-Sized Liposomal FK506 in Rats.

    PubMed

    Okuda, Keiji; Fu, Hai Ying; Matsuzaki, Takashi; Araki, Ryo; Tsuchida, Shota; Thanikachalam, Punniyakoti V; Fukuta, Tatsuya; Asai, Tomohiro; Yamato, Masaki; Sanada, Shoji; Asanuma, Hiroshi; Asano, Yoshihiro; Asakura, Masanori; Hanawa, Haruo; Hao, Hiroyuki; Oku, Naoto; Takashima, Seiji; Kitakaze, Masafumi; Sakata, Yasushi; Minamino, Tetsuo

    2016-01-01

    Immunosuppressive agents are used for the treatment of immune-mediated myocarditis; however, the need to develop a more effective therapeutic approach remains. Nano-sized liposomes may accumulate in and selectively deliver drugs to an inflammatory lesion with enhanced vascular permeability. The aims of this study were to investigate the distribution of liposomal FK506, an immunosuppressive drug encapsulated within liposomes, and the drug's effects on cardiac function in a rat experimental autoimmune myocarditis (EAM) model. We prepared polyethylene glycol-modified liposomal FK506 (mean diameter: 109.5 ± 4.4 nm). We induced EAM by immunization with porcine myosin and assessed the tissue distribution of the nano-sized beads and liposomal FK506 in this model. After liposomal or free FK506 was administered on days 14 and 17 after immunization, the cytokine expression in the rat hearts along with the histological findings and hemodynamic parameters were determined on day 21. Ex vivo fluorescent imaging revealed that intravenously administered fluorescent-labeled nano-sized beads had accumulated in myocarditic but not normal hearts on day 14 after immunization and thereafter. Compared to the administration of free FK506, FK506 levels were increased in both the plasma and hearts of EAM rats when liposomal FK506 was administered. The administration of liposomal FK506 markedly suppressed the expression of cytokines, such as interferon-γ and tumor necrosis factor-α, and reduced inflammation and fibrosis in the myocardium on day 21 compared to free FK506. The administration of liposomal FK506 also markedly ameliorated cardiac dysfunction on day 21 compared to free FK506. Nano-sized liposomes may be a promising drug delivery system for targeting myocarditic hearts with cardioprotective agents.

  16. The use of nano-sized eggshell powder for calcium fortification of cow?s and buffalo?s milk yogurts.

    PubMed

    El-Shibiny, Safinaze; El-Gawad, Mona Abd El-Kader Mohamed Abd; Assem, Fayza Mohamed; El-Sayed, Samah Mosbah

    2018-01-01

    Calcium is an essential element for the growth, activity, and maintenance of the human body. Eggshells are a waste product which has received growing interest as a cheap and effective source of dietary calcium. Yogurt is a food which can be fortified with functional additives, including calcium. The aim of this study was to produce yogurt with a high calcium content by fortification with nano-sized eggshell powder (nano-ESP). Nano-sized ESP was prepared from pre-boiled and dried eggshell, using a ball mill. Yogurt was prepared from cow’s milk supplemented with 3% skimmed milk powder, and from buffalo’s milk fortified with 0.1, 0.2 and 0.3% and 0.1, 0.3 and 0.5% nano-ESP respectively. Electron microscopic transmission showed that the powder consisted of nano-sized crystalline struc- tures (~10 nm). Laser scattering showed that particles followed a normal distribution pattern with z-average of 590.5 nm, and had negative zeta-potential of –9.33 ±4.2 mV. Results regarding changes in yogurt composi- tion, acid development, calcium distribution, biochemical changes, textural parameters and sensory attributes have been presented and discussed. The addition of up to 0.3% nano-ESP made cow and buffalo high-calcium yogurts with an acceptable composition and quality. High-calcium yogurt may offer better health benefits, such as combating osteoporosis.

  17. Nano-graphene in biomedicine: theranostic applications.

    PubMed

    Yang, Kai; Feng, Liangzhu; Shi, Xiaoze; Liu, Zhuang

    2013-01-21

    Owing to their unique physical and chemical properties, graphene and its derivatives such as graphene oxide (GO), reduced graphene oxide (RGO) and GO-nanocomposites have attracted tremendous interest in many different fields including biomedicine in recent years. With every atom exposed on its surface, single-layered graphene shows ultra-high surface area available for efficient molecular loading and bioconjugation, and has been widely explored as novel nano-carriers for drug and gene delivery. Utilizing the intrinsic near-infrared (NIR) optical absorbance, in vivo graphene-based photothermal therapy has been realized, achieving excellent anti-tumor therapeutic efficacy in animal experiments. A variety of inorganic nanoparticles can be grown on the surface of nano-graphene, obtaining functional graphene-based nanocomposites with interesting optical and magnetic properties useful for multi-modal imaging and imaging-guided cancer therapy. Moreover, significant efforts have also been devoted to study the behaviors and toxicology of functionalized nano-graphene in animals. It has been uncovered that both surface chemistry and sizes play key roles in controlling the biodistribution, excretion, and toxicity of nano-graphene. Biocompatibly coated nano-graphene with ultra-small sizes can be cleared out from body after systemic administration, without rendering noticeable toxicity to the treated mice. In this review article, we will summarize the latest progress in this rapidly growing field, and discuss future prospects and challenges of using graphene-based materials for theranostic applications.

  18. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    NASA Astrophysics Data System (ADS)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  19. Synthesis, structural and magnetic properties of Mg0.6Zn0.4CrxFe2-xO4 (0.0 ≤ x ≤ 2.0) nano ferrite

    NASA Astrophysics Data System (ADS)

    Verma, R.; Kane, S. N.; Raghuvanshi, S.; Satalkar, M.; Modak, S. S.; Mazaleyrat, F.

    2018-05-01

    Present study reports, effect on structural, magnetic properties of Cr doped Mg-Zn nano-ferrite: Mg0.6Zn0.4CrxFe2-xO4 (0.0≤ x≤2.0), synthesized by sol-gel auto combustion method. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were utilized to monitor the effect of Cr substitution on structural, magnetic properties, and correlation between them. XRD confirms the formation of single phase spinel nano ferrite with particle size ranging between 3.9 - 40.5 nm, whereas EDS confirms the formation of the estimated ferrite composition. Distribution of Mg, Zn, Cr, Fe cations on tetrahedral (A), octahedral (B) site show mixed spinel structure. Increase of Cr content leads to increase of specific surface area (4.35 - 28.28 m2/g), decrease of experimental saturation magnetization at 300 K (varies between 0.57 - 40.95 Am2/kg), and theoretical magnetization at 0 K (range between 13.37 - 56.77 Am2/kg). Observed changes in coercivity values reflect soft magnetic nature of the studied ferrites.

  20. Role of nano and micron-sized inclusions on the oxygen controlled preform optimized infiltration growth processed YBCO superconductors

    NASA Astrophysics Data System (ADS)

    Pavan Kumar Naik, S.; Bai, V. Seshu

    2017-02-01

    In the present work, with the aim of improving the local flux pinning at the unit cell level in the YBa2Cu3O7-δ (YBCO) bulk superconductors, 20 wt% of nanoscale Sm2O3 and micron sized (Nd, Sm, Gd)2BaCuO5 secondary phase particles were added to YBCO and processed in oxygen controlled preform optimized infiltration growth process. Nano Dispersive Sol Casting method is employed to homogeneously distribute the nano Sm2O3 particles of 30-50 nm without any agglomeration in the precursor powder. Microstructural investigations on doped samples show the chemical fluctuations as annuli cores in the 211 phase particles. The introduction of mixed rare earth elements at Y-site resulted in compositional fluctuations in the superconducting matrix. The associated lattice mismatch defects have provided flux pinning up to large magnetic fields. Magnetic field dependence of current density (Jc(H)) at different temperatures revealed that the dominant pinning mechanism is caused by spatial variations of critical temperatures, due to the spatial fluctuations in the matrix composition. As the number of rare earth elements increased in the YBCO, the peak field position in the scaling of the normalized pinning force density (Fp/Fp max) significantly gets shifted towards the higher fields. The curves of Jc(H) and Fp/Fp max at different temperatures clearly indicate the LRE substitution for LRE' or Ba-sites for δTc pinning.

  1. Forging of metallic nano-objects for the fabrication of submicron-size components

    NASA Astrophysics Data System (ADS)

    Rösler, J.; Mukherji, D.; Schock, K.; Kleindiek, S.

    2007-03-01

    In recent years, nanoscale fabrication has developed considerably, but the fabrication of free-standing nanosize components is still a great challenge. The fabrication of metallic nanocomponents utilizing three basic steps is demonstrated here. First, metallic alloys are used as factories to produce a metallic raw stock of nano-objects/nanoparticles in large numbers. These objects are then isolated from the powder containing thousands of such objects inside a scanning electron microscope using manipulators, and placed on a micro-anvil or a die. Finally, the shape of the individual nano-object is changed by nanoforging using a microhammer. In this way free-standing, high-strength, metallic nano-objects may be shaped into components with dimensions in the 100 nm range. By assembling such nanocomponents, high-performance microsystems can be fabricated, which are truly in the micrometre scale (the size ratio of a system to its component is typically 10:1).

  2. Characteristics of nano-sized yttria powder synthesized by a polyvinyl alcohol solution route at low temperature.

    PubMed

    Lee, Sang-Jin; Jung, Choong-Hwan

    2012-01-01

    Nano-sized yttria (Y2O3) powders were successfully synthesized at a low temperature of 400 degrees C by a simple polymer solution route. PVA polymer, as an organic carrier, contributed to an atom-scale homogeneous precursor gel and it resulted in fully crystallized, nano-sized yttria powder with high specific surface area through the low temperature calcination. In this process, the content of PVA, calcination temperature and heating time affected the microstructure and crystallization behavior of the powders. The development of crystalline phase and the final particle size were strongly dependant on the oxidation reaction from the polymer burn-out step and the PVA content. In this paper, the PVA solution technique for the fabrication of nano-sized yttria powders is introduced. The effects of PVA content and holding time on the powder morphology and powder specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, SEM, TEM and nitrogen gas adsorption. The yttria powder synthesized from the PVA content of 3:1 ratio and calcined at 400 degrees C had a crystallite size of about 20 nm or less with a high surface areas of 93.95-120.76 m2 g(-1).

  3. Effects of exposure to nano and bulk sized TiO2 and CuO in Lemna minor.

    PubMed

    Dolenc Koce, Jasna

    2017-10-01

    Nanoparticles of TiO 2 and CuO are among most commonly used nanoparticles, and elevated concentrations of them are expected to be found in all environments, including aquatic. A standard growth inhibition test ISO/CD 20079 was used to determine the toxicity of nano sized and larger micro sized (bulk) particles in the concentrations of 0.1, 1, 10, 100 and 1000 μM CuO and TiO 2 on common duckweed (Lemna minor L.). Both nano and bulk CuO particles caused changes in the structure and function of treated plants. The number of fronds and colonies decreased by as much as 78%, the length of roots and fronds decreased by 99% and 14%, respectively. Furthermore, photochemical efficiency was reduced by up to 35%, and the activities of antioxidative enzymes guaiacol peroxidase, ascorbate peroxidase and glutathione reductase increased by more than 240%. The altered physiological state of the CuO exposed plants was also reflected in the elevated occurrence of necrosis and bleaching in the duckweed colonies. Nano sized particles of CuO proved more phytotoxic than bulk particles, and the effects of both studied CuO sizes were concentration dependent. On the other hand, both bulk and nano sized particles of TiO 2 caused no severe phytotoxic effects, there was no concentration dependence and they could be considered as non-harmful to common duckweed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Superior model for fault tolerance computation in designing nano-sized circuit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com; Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalizationmore » of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.« less

  5. The nature of nano-sized precipitates in ferritic/martensitic steel P92 produced by thermomechanical treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn

    Thermomechanical treatment (TMT) can effectively improve the mechanical properties of high-Cr ferritic/martensitic (F/M) steels, which has been mainly attributed to a dense dispersion of nano-sized precipitates. Precipitate phases in high-Cr F/M steels produced by TMT require further investigations. Precipitates in commercial F/M steel P92 produced by a TMT process, warm-rolled at 650 °C plus tempered at 650 °C for 1 h, were investigated by transmission electron microscopy. Nano-sized precipitates with a high number density in the steel after the TMT were found to be Cr-rich M{sub 2}(C,N) carbonitride, rather than MX or M{sub 23}C{sub 6} phase. The M{sub 2}(C,N) carbonitridemore » has a hexagonal lattice with the lattice parameters about a/c = 0.299/0.463 nm. These M{sub 2}(C,N) carbonitrides with a typical composition of (Cr{sub 0.85}V{sub 0.06}Fe{sub 0.06}Mo{sub 0.03}){sub 2}(C,N) have an average diameter smaller than 30 nm, and mainly distribute on dislocations and at the boundaries of equiaxed ferrite grains in the TMT steel. The TMT process inhibits the precipitation of M{sub 23}C{sub 6} and M{sub 5}C{sub 2} phases. Enhanced creep properties of the P92 steel after the TMT, as reported previously, were considered to be mainly attributed to plenty of nano-sized Cr-rich M{sub 2}(C,N) carbonitrides produced by the TMT rather than to MX and M{sub 23}C{sub 6} precipitates. - Graphical abstract: TEM micrographs of precipitates on extraction carbon replicas prepared from ferritic/martensitic (F/M) steel P92. (a) After conventional heat treatment, normalized at 1050 °C for 30 min plus tempered at 765 °C for 1 h. (b) After a thermomechanical treatment (TMT), warm-rolled at 650 °C plus tempered at 650 °C for 1 h. Nano-sized precipitates with a high number density in the steel produced by the TMT were found to be Cr-rich M{sub 2}(C,N) carbonitride, rather than MX or M{sub 23}C{sub 6} phase. The TMT process inhibits the precipitation of M{sub 23}C{sub 6} and M

  6. Structural and Morphological Evaluation of Nano-Sized MoSi2 Powder Produced by Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Sameezadeh, Mahmood; Farhangi, Hassan; Emamy, Masoud

    Nano-sized intermetallic powders have received great attention owing to their property advantages over conventional micro-sized counterparts. In the present study nano-sized MoSi2 powder has been produced successfully from commercially available MoSi2 (3 μm) by a mechanical milling process carried out for a period of 100 hours. The effects of milling time on size and morphology of the powders were studied by SEM and TEM and image analyzing system. The results indicate that the as-received micrometric powder with a wide size distribution of irregular shaped morphology changes to a narrow size distribution of nearly equiaxed particles with the progress of attrition milling up to 100 h, reaching an average particle size of 71 nm. Structural evolution of milled samples was characterized by XRD to determine the crystallite size and lattice microstrain using Williamson-Hall method. According to the results, the crystallite size of the powders decreases continuously down to 23 nm with increasing milling time up to 100 h and this size refinement is more rapid at the early stages of the milling process. On the other hand, the lattice strain increases considerably with milling up to 65 h and further milling causes no significant changes of lattice strain.

  7. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    EPA Science Inventory

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  8. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    PubMed Central

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  9. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae.

    PubMed

    Bergami, Elisa; Bocci, Elena; Vannuccini, Maria Luisa; Monopoli, Marco; Salvati, Anna; Dawson, Kenneth A; Corsi, Ilaria

    2016-01-01

    Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on the impact of nano-sized plastics on marine organisms. Therefore, the present study aims to evaluate the effects of 40nm anionic carboxylated (PS-COOH) and 50nm cationic amino (PS-NH2) polystyrene nanoparticles (PS NPs) on brine shrimp Artemia franciscana larvae. No signs of mortality were observed at 48h of exposure for both PS NPs at naplius stage but several sub-lethal effects were evident. PS-COOH (5-100μg/ml) resulted massively sequestered inside the gut lumen of larvae (48h) probably limiting food intake. Some of them were lately excreted as fecal pellets but not a full release was observed. Likewise, PS-NH2 (5-100µg/ml) accumulated in larvae (48h) but also adsorbed at the surface of sensorial antennules and appendages probably hampering larvae motility. In addition, larvae exposed to PS-NH2 undergo multiple molting events during 48h of exposure compared to controls. The activation of a defense mechanism based on a physiological process able to release toxic cationic NPs (PS-NH2) from the body can be hypothesized. The general observed accumulation of PS NPs within the gut during the 48h of exposure indicates a continuous bioavailability of nano-sized PS for planktonic species as well as a potential transfer along the trophic web. Therefore, nano-sized PS might be able to impair food uptake (feeding), behavior (motility) and physiology (multiple molting) of brine shrimp larvae with consequences not only at organism and population level but on the overall ecosystem based on the key role of zooplankton on marine food webs. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity.

    PubMed

    Maghsoudi, Amirhossein; Fakharzadeh, Saideh; Hafizi, Maryam; Abbasi, Maryam; Kohram, Fatemeh; Sardab, Shima; Tahzibi, Abbas; Kalanaky, Somayeh; Nazaran, Mohammad Hassan

    2015-03-01

    Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results.

  11. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    NASA Astrophysics Data System (ADS)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  12. Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite

    NASA Astrophysics Data System (ADS)

    El-Sayed, Karimat; Mohamed, Mohamed Bakr; Hamdy, Sh.; Ata-Allah, S. S.

    2017-02-01

    Nano-crystalline NiFe2O4 was synthesized by citrate and sol-gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution.

  13. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs

    NASA Astrophysics Data System (ADS)

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-01

    A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.

  14. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs.

    PubMed

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-05

    A magnetic fluorescent probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was prepared using CdTe QDs and Fe 3 O 4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe 3 O 4 @MIPs were spherical with average diameter around 53nm, and a core-shell structure was well-shaped with several Fe 3 O 4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe 3 O 4 @MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λ em 598nm. The fluorescence of CdTe QDs/nano-Fe 3 O 4 @MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5μmolL -1 . The detection limit was 0.014μmolL -1 . The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe 3 O 4 @MIPs could be used as a probe to the detection of trace MG in fish samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Fe–Ni solid solutions in nano-size dimensions: Effect of hydrogen annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Asheesh, E-mail: asheeshk@barc.gov.in; Meena, S.S.; Banerjee, S.

    Highlights: • Fe–Ni solid solution with nano-size dimensions were prepared and characterized. • Both as prepared and hydrogenated solid solutions have FCC structure of Ni. • Paramagnetic and ferromagnetic domains coexist in these samples. - Abstract: Nanoparticles of Ni{sub 0.50}Fe{sub 0.50} and Ni{sub 0.75}Fe{sub 0.25} alloys were prepared by chemical reduction in ethylene glycol medium. XRD and {sup 57}Fe Mössbauer studies have confirmed the formation of Fe–Ni solid solution in nano-size dimensions with FCC structure. These samples consist of both ferromagnetic and paramagnetic domains which have been attributed to the coexistence of large and small particles as confirmed by atomicmore » force microscopic (AFM) and {sup 57}Fe Mössbauer spectroscopic studies. Improved extent of Fe–Fe exchange interaction existing in Ni{sub 0.50}Fe{sub 0.50} alloy compared to Ni{sub 0.75}Fe{sub 0.25} alloy explains the observed increase in the relative extent of ferromagnetic domains compared to paramagnetic domains in the former sample. Increase in the relative extent of ferromagnetic domains for hydrogenated alloys is due to increase in particle size brought about by the high temperature activation prior to hydrogenation.« less

  16. Sonochemical syntheses of a new nano-sized porous lead(II) coordination polymer as precursor for preparation of lead(II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjbar, Zohreh Rashidi; Morsali, Ali

    2009-11-01

    Nano-scale of a new Pb(II) coordination polymer, {[Pb(bpacb)(OAc)]·DMF} n ( 1); bpacbH = 3,5-bis[(4-pyridylamino)carbonyl]benzoic acid], were synthesized by a sonochemical method. The nano-material was characterized by scanning electron microscopy, X-ray powder diffraction (XRD), 1H, 13C NMR, IR spectroscopy and elemental analyses. Crystal structure of compound 1 was determined by X-ray crystallography. Calcination of the nano-sized compound 1 at 700 °C under air atmospheres yields PbO nanoparticles. Thermal stability of nano-sized and single crystalline samples of compound 1 were studied and compared with each other.

  17. Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.

    PubMed

    Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2012-04-01

    High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (< 100 nm) that had a hardness similar to diamond in a nickel-based material. The co-electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.

  18. Electron tomography and nano-diffraction enabling the investigation of individual magnetic nanoparticles inside fibers of MR visible implants

    NASA Astrophysics Data System (ADS)

    Slabu, I.; Wirch, N.; Caumanns, T.; Theissmann, R.; Krüger, M.; Schmitz-Rode, T.; Weirich, T. E.

    2017-08-01

    Superparamagnetic iron oxide nanoparticles (SPIONPs) incorporated into the base material of implants are used as contrast agents in magnetic resonance imaging for the delineation of the implants from the surrounding tissue. However, the delineation quality is strongly related to the structural characteristics of the incorporated SPIONPs and their interparticle interaction as well as their interaction with the polymer matrix of the implant. Consequently, a profound knowledge of the formation of aggregates inside the polymer matrix, which are responsible for strong interparticle interactions, and of their structural characteristics, is required for controlling the magnetic resonance image quality of the implants. In this work, transmission electron microscopy methods such as electron tomography and nano-electron diffraction were used to depict SPIONP aggregates inside the melt-spin polyvinylidene fluoride fibers used for the assembly of implants and to determine the crystal structure of individual nanocrystals inside these aggregates, respectively. Using these techniques it was possible for the first time to characterize the aggregates inside the fibers of implants and to validate the magnetization measurements that have been previously used to assess the interaction phenomena inside the fibers of implants. With electron tomography, inhomogeneously sized distributed aggregates were delineated and 3D models of these aggregates were constructed. Furthermore, the distribution of the aggregates inside the fibers was verified by means of magnetic force microscopy. With nano-diffraction measurements, the SPIONP crystal structure inside the fibers of the implant could not be clearly assigned to that of magnetite (Fe3O4) or maghemite (γ-Fe2O3). Therefore, additional electron energy loss spectroscopy measurements were performed, which revealed the presence of both phases of Fe3O4 and γ-Fe2O3, probably caused by oxidation processes during the manufacture of the fibers by

  19. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites

    EPA Science Inventory

    Magnetic nano-catalysts have been prepared using simple modification of iron ferrites wherein their quasi-homogeneous state, because of nm size range, facilitates the catalysis process as increased surface is available for reaction; the easy separation of the catalysts by externa...

  20. Particles size distribution in diluted magnetic fluids

    NASA Astrophysics Data System (ADS)

    Yerin, Constantine V.

    2017-06-01

    Changes in particles and aggregates size distribution in diluted kerosene based magnetic fluids is studied by dynamic light scattering method. It has been found that immediately after dilution in magnetic fluids the system of aggregates with sizes ranging from 100 to 250-1000 nm is formed. In 50-100 h after dilution large aggregates are peptized and in the sample stationary particles and aggregates size distribution is fixed.

  1. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    PubMed

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Drug delivery systems using nano-sized drug carriers].

    PubMed

    Nakayama, Masamichi; Okano, Teruo

    2005-07-01

    Nanotechnology has attracted great attention all over the world in recent several years and has led to the establishment of the novel technical field of "nanomedicine" through collaboration with advanced medical technology. Particularly, site-specific drug targeting using particle drug carrier systems has made substantial progress and been actively developed. This review explains the essential factors (size and chemical character) of drug carriers to allow long circulation in the bloodstream avoiding the reticuloendothelial system, and shows the present status and future perspective of several types of nano-carrier systems (water-soluble polymer, liposome and polymeric micelle). We also introduce the novel concept of multi-targeting system (combination of two or more targeting methodologies) for ideal drug therapies.

  3. Comparative study of structural and magnetic properties of nano-crystalline Li 0.5Fe 2.5O 4 prepared by various methods

    NASA Astrophysics Data System (ADS)

    Verma, Vivek; Pandey, Vibhav; Singh, Sukhveer; Aloysius, R. P.; Annapoorni, S.; Kotanala, R. K.

    2009-08-01

    Lithium ferrite has been considered as one of the highly strategic magnetic material. Nano-crystalline Li 0.5Fe 2.5O 4 was prepared by four different techniques and characterized by X-ray diffraction, vibrating sample magnetometer (VSM), transmission electron microscope (TEM) and Fourier transform infrareds (FTIR). The effect of annealing temperature (700, 900 and 1050 °C) on microstructure has been correlated to the magnetic properties. From X-ray diffraction patterns, it is confirmed that the pure phase of lithium ferrite began to form at 900 °C annealing. The particle size of as-prepared lithium ferrite was observed around 40, 31, 22 and 93 nm prepared by flash combustion, sol-gel, citrate precursor and standard ceramic technique, respectively. Lithium ferrite prepared by citrate precursor method shows a maximum saturation magnetization 67.6 emu/g at 5 KOe.

  4. New method in muon-hadron absorption on Thx DUO2 nano material structure at 561 MHz quantum gyro-magnetic

    NASA Astrophysics Data System (ADS)

    Hardiyanto, M.; Ermawaty, I. R.

    2018-01-01

    We present an experimental of muan-hadron tunneling chain investigation with new methods of Thx DUO2 nano structure based on Josephson’s tunneling and Abrikosov-Balseiro-Russel (ABR) formulation with quantum quadrupole interacting with a strongly localized high gyro-magnetic optical field as encountered in high-resolution near-field optical microscopy for 1.2 nano meter lambda-function. The strong gradients of these localized gyro-magnetic fields suggest that higher-order multipolar interactions will affect the standard magnetic quadrupole transition rates in 1.8 x 103 currie/mm fuel energy in nuclear moderator pool and selection rules with quatum dot. For muan-hadron absorption in Josephson’s tunnelling quantum quadrupole in the strong confinement limit we calculated the inter band of gyro-magnetic quadrupole absorption rate and the associated selection rules. Founded that the magnetic quadrupole absorption rate is comparable with the absorption rate calculated in the gyro-magneticdipole approximation of ThxDUO2 nano material structure. This implies that near-field optical techniques can extend the range of spectroscopic measurements for 545 MHz at quantum gyro-magnetic field until 561 MHz deployment quantum field at B around 455-485 tesla beyond the standard dipole approximation. However, we also show that spatial resolution could be improved by the selective excitation of ABR formulation in quantum quadrupole transitions.

  5. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; Vanleeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui

    2015-07-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.

  6. Thermal effects in nano-sized adsorbate islands growth processes at vapor deposition

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Dvornichenko, Alina V.

    2016-02-01

    We study a model of pattern formation in adsorptive systems with a local change in the surface temperature due to adsorption/desorption processes. It is found that thermal effects shrink the domain of main system parameters, when pattern formation is possible. It is shown that an increase in a surface reheat efficiency delays ordering processes. We have found that a distribution of adsorbate islands over sizes depends on relaxation and reheat processes. We have shown that the mean linear size of stationary adsorbate islands is of nano-meter range.

  7. Compressible liquid flow in nano- or micro-sized circular tubes considering wall-liquid Lifshitz-van der Waals interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing

    2018-06-01

    Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.

  8. Nano-sized ZnO powders prepared by co-precipitation method with various pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro,

    2016-04-19

    In this work, nano-sized ZnO powders have been synthesized by the co-precipitation method with Zn(CH3COOH)2.2H2O, HCl, and NH3.H2O as raw materials in various pH ranging from 8 to 10. The purity, microstructure, chemical group analysis, morphology of the prepared ZnO powders were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), energy dispersive X-ray spectrometry (EDX), and scanning electron microscope (SEM), respectively. Rietveld refinement of XRD data showed that ZnO crystallizes in the wurtzite structure with high purity. The obtained powders were nano-sized particles with the average crystallite size about 17.9 ± 2.1 nm synthesized with pH of 9.5, atmore » 85°C, and stirring time of 6 h. The SEM results have visualied the morphology of ZnO nanoparticles with spherical-like shape. The effect of processing conditions on morphology of ZnO was also discussed.« less

  9. The dependence of Schottky junction (I-V) characteristics on the metal probe size in nano metal-semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Rezeq, Moh'd.; Ali, Ahmed; Patole, Shashikant P.; Eledlebi, Khouloud; Dey, Ripon Kumar; Cui, Bo

    2018-05-01

    We have studied the dependence of Schottky junction (I-V) characteristics on the metal contact size in metal-semiconductor (M-S) junctions using different metal nanoprobe sizes. The results show strong dependence of (I-V) characteristics on the nanoprobe size when it is in contact with a semiconductor substrate. The results show the evolution from sub-10 nm reversed Schottky diode behavior to the normal diode behavior at 100 nm. These results also indicate the direct correlation between the electric field at the M-S interface and the Schottky rectification behavior. The effect of the metal contact size on nano-Schottky diode structure is clearly demonstrated, which would help in designing a new type of nano-devices at sub-10 nm scale.

  10. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-06-01

    This paper is dedicated to investigate the effect of Co2+ ions in magnetite Fe3O4 nano-particles with stoichiometric formula CoxFe3-xO4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV-Vis Spectrometer (UV-Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of CoxFe3-xO4 nanoparticles with the major band at 887 cm-1, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co2+ content. The decrease in enthalpy with increase in Co2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co2+ content in B-site of Fe3O4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of CoxFe3-xO4 nanoparticles are significantly increased. From UV-Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  11. Engineered nano-magnetic iron oxide-urea-activated carbon nanolayer sorbent for potential removal of uranium (VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed E.; Khalifa, Mohamed A.; El Wakeel, Yasser M.; Header, Mennatllah S.; Abdel-Fattah, Tarek M.

    2017-04-01

    A novel magnetic nanosorbent was designed using chemical grafting of nano-magnetite (Nano-Fe3O4) with nanolayer of activated carbon (AC) via urea intermediate for the formation of Nano-Fe3O4-Urea-AC. Characterizing was carried out using FT-IR, SEM, HR-TEM, TGA, point of zero charge (Pzc) and surface area analysis. The designed sorbent maintained its magnetic properties and nanosized structure in the range of 8.7-14.1 nm. The surface area was identified as 389 m2/g based on the BET method. Sorption of uranyl ions from aqueous solutions was studied and evaluated in different experimental conditions. Removal of uranyl ions increased with increasing in pH value and the maximum percentage removal was established at pH 5.0. The removal and sorption processes of uranyl ions by Nano-Fe3O4-Urea-AC sorbent were studied and optimized using the batch technique. The key variables affecting removal of uranyl ions were studied including the effect of the contact time, dosage of Nano-Fe3O4-Urea-AC sorbent, reaction temperature, initial uranyl ions concentration and interfering anions and cations.

  12. Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes

    NASA Astrophysics Data System (ADS)

    Larkin, K.; Ghommem, M.; Abdelkefi, A.

    2018-05-01

    Capacitive-based sensing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) gyroscopes have significant advantages over conventional gyroscopes, such as low power consumption, batch fabrication, and possible integration with electronic circuits. However, inadequacies in the modeling of these inertial sensors have presented issues of reliability and functionality of micro-/nano-scale gyroscopes. In this work, a micromechanical model is developed to represent the unique microstructure of nanocrystalline materials and simulate the response of micro-/nano-gyroscope comprising an electrostatically-actuated cantilever beam with a tip mass at the free end. Couple stress and surface elasticity theories are integrated into the classical Euler-Bernoulli beam model in order to derive a size-dependent model. This model is then used to investigate the influence of size-dependent effects on the static pull-in instability, the natural frequencies and the performance output of gyroscopes as the scale decreases from micro-to nano-scale. The simulation results show significant changes in the static pull-in voltage and the natural frequency as the scale of the system is decreased. However, the differential frequency between the two vibration modes of the gyroscope is observed to drastically decrease as the size of the gyroscope is reduced. As such, the frequency-based operation mode may not be an efficient strategy for nano-gyroscopes. The results show that a strong coupling between the surface elasticity and material structure takes place when smaller grain sizes and higher void percentages are considered.

  13. Oxidative stress, cytoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions.

    PubMed

    Cornejo-Garrido, Hilda; Kibanova, Daria; Nieto-Camacho, Antonio; Guzmán, José; Ramírez-Apan, Teresa; Fernández-Lomelín, Pilar; Garduño, Maria Laura; Cervini-Silva, Javiera

    2011-09-01

    This paper reports on the effect of aqueous and nano-particulated Pb on oxidative stress (lipid peroxidation), cytoxicity, and cell mortality. As determined by the Thiobarbituric Acid Reactive Substances (TBARS) method, only 6h after incubation aqueous suspensions bearing nano-sized PbO(2), soluble Pb(II), and brain-homogenate only suspensions, were determined to contain as much as ca. 7, 5, and 1 nmol TBARS mg protein(-1), respectively. Exposure of human cells (central nervous system, prostate, leukemia, colon, breast, lung cells) to nano-PbO(2) led to cell-growth inhibition values (%) ca. ≤18.7%. Finally, as estimated by the Artemia salina test, cell mortality values were found to show high-survival larvae rates. Microscopic observations revealed that Pb particles were swallowed, but caused no mortality, however. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Self-assembled Ag nanoparticle network passivated by a nano-sized ZnO layer for transparent and flexible film heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Kim, Min-Yi

    2015-12-15

    We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, themore » TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.« less

  15. On the role of the grain size in the magnetic behavior of sintered permanent magnets

    NASA Astrophysics Data System (ADS)

    Efthimiadis, K. G.; Ntallis, N.

    2018-02-01

    In this work the finite elements method is used to simulate, by micromagnetic modeling, the magnetic behavior of sintered anisotropic magnets. Hysteresis loops were simulated for different grain sizes in an oriented multigrain sample. By keeping out other parameters that contribute to the magnetic microstructure, such as the sample size, the grain morphology and the grain boundaries mismatch, it has been found that the grain size affects the magnetic properties only if the grains are exchange-decoupled. In this case, as the grain size decreases, a decrease in the nucleation field of a reverse magnetic domain is observed and an increase in the coercive field due to the pinning of the magnetic domain walls at the grain boundaries.

  16. Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite.

    PubMed

    Barros, J; Grenho, L; Fernandes, M H; Manuel, C M; Melo, L F; Nunes, O C; Monteiro, F J; Ferraz, M P

    2015-06-01

    Nanohydroxyapatite possesses exceptional biocompatibility and bioactivity regarding bone cells and tissues, justifying its use as a coating material or as a bone substitute. Unfortunately, this feature may also encourage bacterial adhesion and biofilm formation. Surface functionalization with antimicrobials is a promising strategy to reduce the likelihood of bacterial infestation and colonization on medical devices. Chlorhexidine digluconate is a common and effective antimicrobial agent used for a wide range of medical applications. The purpose of this work was the development of a nanoHA biomaterial loaded with CHX to prevent surface bacterial accumulation and, simultaneously, with good cytocompatibility, for application in the medical field. CHX (5-1500 mg/L) was loaded onto nanoHA discs and the materials were evaluated for CHX adsorption and release profile, physic-chemical features, antibacterial activity against Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis, and cytocompatibility toward L929 fibroblasts. Results showed that the adsorption of CHX on nanoHA surface occurred by electrostatic interactions between the cationic group of CHX and the phosphate group of nanoHA. The release of CHX from CHX-loaded nanoHA showed a fast initial rate followed by a slower kinetics release, due to constraints caused by dilution and diffusion-limiting processes. NanoHA.50 to nanoHA.1500 showed strong anti-sessile activity, inhibiting bacterial adhesion and the biofilm formation. CHX-nanoHA caused a dose- and time-dependent inhibitory effect on the proliferation of fibroblasts for nanoHA.100 to nanoHA.1500. Cellular behavior on nanoHA.5 and nanoHA.50 was similar to control. Therefore, CHX-loaded nanoHA surfaces appear as a promising alternative to prevention of devices-related infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. BACTERIAL PREFERENCES OF THE BACTERIVOROUS SOIL NEMATODE CEPHALOBUS BREVICAUDA (CEPHALOBIDAE): EFFECT OF BACTERIAL TYPE AND SIZE

    EPA Science Inventory

    Cell size and type may affect availability of bacteria for consumption by bacterivorous nematodes in the soil and in culture. This study explored the bacterial preferences of the bacterivorous soil nematode Cephalobus brevicauda (Cephalobidae) by comparing bactgeria isolated dir...

  18. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia

    NASA Astrophysics Data System (ADS)

    Rahbar, Mona; Shannon, Lesley; Gray, Bonnie L.

    2014-02-01

    We present a new micromixer based on highly magnetic, flexible, high aspect-ratio, artificial cilia that are fabricated as individual micromixer elements or in arrays for improved mixing performance. These new cilia enable high efficiency, fast mixing in a microchamber, and are controlled by small electromagnetic fields. The artificial cilia are fabricated using a new micromolding process for nano-composite polymers. Cilia fibers with aspect-ratios as high as 8:0.13 demonstrate the fabrication technique's capability in creating ultra-high aspect-ratio microstructures. Cilia, which are realized in polydimethylsiloxane doped with rare-earth magnetic powder, are magnetized to produce permanent magnetic structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled by electromagnetic fields. Due to the high magnetization level of the polarized nano-composite polymer, we are able to use miniature electromagnets providing relatively small magnetic fields of 1.1 to 7 mT to actuate the cilia microstructures over a very wide motion range. Mixing performances of a single cilium, as well as different arrays of multiple cilia ranging from 2 to 8 per reaction chamber, are characterized and compared with passive diffusion mixing performance. The mixer cilia are actuated at different amplitudes and frequencies to optimize mixing performance. We demonstrate that more than 85% of the total volume of the reaction chamber is fully mixed after 3.5 min using a single cilium mixer at 7 mT compared with only 20% of the total volume mixed with passive diffusion. The time to achieve over 85% mixing is further reduced to 70 s using an array of eight cilia microstructures. The novel microfabrication technique and use of rare-earth permanently-magnetizable nano-composite polymers in mixer applications has not been reported elsewhere by other researchers. We further demonstrate improved mixing over other cilia micromixers as enabled by the high aspect

  19. Study on Locally Confined Deposition of Si Nanocrystals in High-Aspect-Ratio Si Nano-Pillar Arrays for Nano-Electronic and Nano-Photonic Applications II

    DTIC Science & Technology

    2010-12-03

    photoluminescence characteristics of equivalent-size controlled silicon quantum dots by employing a nano-porous aluminum oxide membrane as the template for growing...synthesis of Si quantum dots (Si-QDs) embedded in low-temperature (500oC) annealed Si-rich SiOx nano-rod deposited in nano-porous anodic aluminum oxide ...characteristics of the equivalent-size controlled Si-QDs by employing the nano-porous AAO membrane as the template for growing Si-rich SiOx nano-rods

  20. Magnetic domain walls as reconfigurable spin-wave nano-channels

    NASA Astrophysics Data System (ADS)

    Wagner, Kai

    Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.

  1. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver.

    PubMed

    Gulyas, G; Csosz, E; Prokisch, J; Javor, A; Mezes, M; Erdelyi, M; Balogh, K; Janaky, T; Szabo, Z; Simon, A; Czegledi, L

    2017-06-01

    The nano-sized (100-500 nm) selenium has higher bioavailability and relatively lower toxicity compared to other selenium forms. The objective of the present study was to compare liver proteome profiles of broiler chicken fed with control diet without Se supplementation and diet supplemented with nano-Se with 4.25 mg/kg DM. Differential proteome analyses were performed by two-dimensional gel electrophoresis (2D-PAGE) followed by tryptic digestion and protein identification by liquid chromatography-mass spectrometry (LC-MS). Seven hundred and eight spots were detected, and 18 protein spots showed significant difference in their intensity (p < 0.05) between the two groups. In response to nano-Se supplementation, the expression of 8 proteins was higher, and 5 proteins were lower in nano-Se supplemented group compared to control group. The functions of the differentially expressed proteins indicate that the high dose of selenium supplementation induced a dietary stress. Selenium supplementation may influence the metabolism of fatty acids and carbohydrates and antioxidant system, and increase the quantity of cytoskeletal actin and the expression of actin regulatory protein as well. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  2. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.

    PubMed

    Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E

    2011-01-01

    Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.

  3. Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films

    PubMed Central

    Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.

    2013-01-01

    We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies. PMID:28348346

  4. Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Sahu, B. N.; Suresh, K. G.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.

    2018-05-01

    Single phase nano-crystalline zinc ferrite (ZnFe2O4) thin films were deposited on fused quartz substrate using the pulsed laser deposition technique. The films were deposited at different substrate temperatures. The field dependence of magnetization at 10 K shows hysteresis loops for all the samples. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) magnetization indicated irreversible behavior between the FC and ZFC data, and the irreversibility depends on the measuring magnetic field. The thermo-magnetic irreversibility in the magnetization data is correlated with the magnitude of the applied field and the coercivity (HC) obtained from the M-H loops.

  5. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material.

    PubMed

    Marins, Jéssica A; Soares, Bluma G; Barud, Hernane S; Ribeiro, Sidney J L

    2013-10-01

    Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe3O4 nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10±1 to 13±1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g(-1) and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar

    2014-07-01

    The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.

  7. Bacterial exposure to metal-oxide nanoparticles: Methods, physical interactions, and biological effects

    NASA Astrophysics Data System (ADS)

    Horst, Allison Marie

    Nanotechnology is a major endeavor of this century, with proposed applications in fields ranging from agriculture to energy to medicine. Nanoscale titanium dioxide (nano-TiO2) is among the most widely produced nanoparticles worldwide, and already exists in consumer products including impermanent personal care products and surface coatings. Inevitably, nano-TiO2 will be transported into the environment via consumer or industrial waste, where its effects on organisms are largely unknown. Out of concern for the possible ill-effects of nanoparticles in the environment, there is now a field of study in nanotoxicology. Bacteria are ideal organisms for nanotoxicology research because they are environmentally important, respond rapidly to intoxication, and provide evidence for effects in higher organisms. My doctoral research focuses on the effects and interactions of nano-TiO2 in aqueous systems with planktonic bacteria. This dissertation describes four projects and the outcomes of the research: (1) A discovery, using a combination of environmental- and cryogenic-scanning electron microscopy and dynamic light scattering (DLS), that initially agglomerated nano-TiO2 is dispersed upon bacterial contact, as nanoparticles preferentially sorbed to cell surfaces. (2) Establishment of a method to disperse nanoparticles in an aqueous culture medium for nanotoxicology studies. A combination of electrostatic repulsion, steric hindrance and sonication yielded a high initial level of nano-TiO2 dispersion (i.e. < 300 nm average agglomerate size) and reduced nanoparticle sedimentation. The approach is described in the context of general considerations for dispersion that are transferable to other nanoparticle and media chemistries. (3) Assessment and optimization of optically-based assays to simultaneously study effects of nanoparticles on bacterial membranes (membrane potential, membrane permeability, and electron transport chain function) and generation of reactive oxygen species. A

  8. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules.

    PubMed

    Meredith, Alicea N; Harper, Bryan; Harper, Stacey L

    2016-01-01

    Encapsulation technology involves entrapping a chemical active ingredient (a.i.) inside a hollow polymeric shell and has been applied to commercial pesticide manufacturing for years to produce capsule suspension (CS) formulations with average particle sizes in the micron-scale. The few literature sources that investigate the environmental fate and toxicity to non-target organisms of encapsulated commercially available pesticide products with regard to capsule size report on average sizes between 20 and 50 μm. Here, we have identified a CS formulation with an average capsule size of approximately 2 μm with some capsules extending into the nanometer scale (~200 nm). Determining how carrier size influences toxicity is important to understanding if current pesticide risk assessments are sufficient to protect against products that incorporate encapsulation technology. Here, a commercial pyrethroid CS pesticide with lambda-cyhalothrin (λ-Cy) as the a.i. was separated into two suspensions, a fraction consisting of nano-sized capsules (~250 nm) and a fraction of micron-sized capsules (~2200 nm) in order to investigate the influence of capsule size on toxicity to embryonic zebrafish, Danio rerio. Toxicity was evaluated 24h after exposure to equivalent amounts of a.i. by the presence and severity of pyrethroid-specific tremors, 14 sublethal developmental impacts and mortality. Fish exposed to greater than 20 μg a.i. L(-1) technical λ-Cy or formulated product experienced curvature of the body axis, pericardial edema, craniofacial malformations, and mortality. Exposure to the unfractionated formulation, micro fraction, nano fraction and technical a.i. resulted in no significant differences in the occurrence of sublethal impacts or mortality; however, the technical a.i. exposure resulted in significantly less fish experiencing tremors and shorter tremors compared to any of the formulated product exposures. This suggests that the capsule size does not influence the toxic

  9. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  10. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers.

    PubMed

    Zhao, Jian; Liu, Chang-Sheng; Yuan, Yuan; Tao, Xin-Yi; Shan, Xiao-Qian; Sheng, Yan; Wu, Fan

    2007-03-01

    Hb (hemoglobin)-loaded particles (HbP) encapsulated by a biodegradable polymer used as oxygen carrier were prepared. A modified double emulsion and solvent diffusion/evaporation method was adopted. All experiments were performed based on two types of biodegradable polymers, poly(epsilon-caprolactone) (PCL) and poly(epsilon-caprolactone-ethylene glycol) (PCL-PEG). The biodistribution and the survival time in blood of the particles were investigated in a mouse model. Encapsulation efficiency and pore-connecting efficiency were evaluated by a novel sulfocyanate potassium method. The influence of process parameters on the particle size and pore-connecting efficiency (PCE%) of nanoparticles have been discussed. The prepared conditions: solvent, external aqueous phase, pressure were discussed. The system utilizing dichloromethane (DCM)/ethyl acetate (EA) as a solvent with an unsaturated external aqueous phase yielded the highest encapsulation efficiency (87.35%) with a small mean particle size (153 nm). The formation of porous channels was attributed to the diffusion of solvent. The PCE% was more sensitive to the rate of solvent diffusion that was obviously affected by the preparation temperature. The PCE% reached 87.47% when PCL-PEG was employed at 25 degrees C. P(50) of HbP was 27 mmHg, which does not seem to be greatly affected by the encapsulation procedure. In vivo, following intravenous injection of 6-coumarin labeled HbP, the major organ accumulating Hb-loaded particles was the liver. The half-life of nano-sized PCL HbP was 3.1 times as long as the micro-sized PCL HbP. Also, Nano-sized as well as a PEGylated surface on HbP is beneficial for prolonged blood residence (7.2 fold increase).

  11. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  12. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A.

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained andmore » agreement between theory and experiment are good.« less

  13. Effect of fluoride toothpaste with nano-sized trimetaphosphate on enamel demineralization: An in vitro study.

    PubMed

    Danelon, Marcelle; Pessan, Juliano Pelim; Souza-Neto, Francisco Nunes; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo

    2017-06-01

    This study evaluated the effect of toothpastes containing 1100ppm F associated or not with micrometric or nano-sized sodium trimetaphosphate (TMP) on enamel demineralization in vitro, using a pH cycling model. Bovine enamel blocks (4mm×4mm, n=96) were randomly allocated into eight groups (n=12), according to the test toothpastes: Placebo (without fluoride or TMP); 1100ppm F (1100F); 1100F plus micrometric TMP at concentrations of 1%, 3% or 6%; and 1100F plus nanosized TMP at 1%, 3% or 6%. Blocks were treated 2×/day with slurries of toothpastes and submitted to a pH cycling regimen for five days. Next, final surface hardness (SHf), integrated hardness loss (IHL), differential profile of integrated hardness loss (ΔIHL) and enamel fluoride (F) concentrations were determined. Data were analyzed by ANOVA and Student-Newman-Keuls' test (p<0.05). The use of 1100F/3%TMPnano led to SHf 30% higher (p<0.001) and IHL∼80% lower (p<0.001) when compared to 1100F. This toothpaste also resulted in ∼64% reduction of mineral loss (ΔIHL) when compared to 1100F. Moreover, the addition of nano-sized TMP promoted increases in enamel F uptake of 90%, 160% and 100%, respectively for the concentrations of 1%, 3% and 6%, when compared to 1100F (p<0.001). The addition of nano-sized TMP at 3% to a conventional toothpaste significantly decreased enamel demineralization when compared to its counterparts without TMP or supplemented with micrometric TMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Magnetic and Optical Properties of Submicron-Size Hollow Spheres

    PubMed Central

    Ye, Quan-Lin; Yoshikawa, Hirofumi; Awaga, Kunio

    2010-01-01

    Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials), and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.

  15. Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Inverardi, Luca; Ricordi, Camillo; Stabler, Cherie L

    2012-10-01

    Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Nano-plastics in the aquatic environment.

    PubMed

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  17. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindarajan, A.G.; Lindow, S.E.

    1988-03-01

    Four bacterial species are known to catalyze ice formation at temperatures just below 0/sup 0/C. To better understand the relationship between the molecular structure of bacterial ice-nucleation site(s) and the quantitative and qualitative features of the ice-nucleation-active phenotype, the authors determined by ..gamma..-radiation analysis the in situ size of ice-nucleation sites in strains of Pseudomonas syringae and Erwinia herbicola and in Escherichia coli HB101 carrying the plasmid pICE1.1. Lyophilized cells of each bacterial strain were irradiated with a flux of ..gamma.. radiation from 0 to 10.2 Mrad. Differential concentrations of active ice nuclei decreased as a first-order function of radiationmore » dose in all strains as temperature was decreased from -2/sup 0/C to -14/sup 0/C in 1/sup 0/C intervals. Sizes of ice nuclei were calculated from the /sup +/-radiation flux at which 37% of initial ice nuclei active within each 1/sup 0/C temperature interval remained. The minimum mass of a functional ice nucleus was about 150 kDa for all strains. The size of ice nuclei increased logarithmically with increasing temperature from -12/sup 0/CC to -2/sup 0/C, where the estimated nucleant mass was 19,000 kDa. The ice nucleant in these three bacterial species may represent an oligomeric structure, composed at least in part of an ice gene product that can self-associate to assume many possible sizes.« less

  18. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    PubMed

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  19. Synergistic Effects of Nano-Sized Titanium Dioxide and Zinc on the Photosynthetic Capacity and Survival of Anabaena sp.

    PubMed Central

    Tang, Yulin; Li, Shuyan; Qiao, Junlian; Wang, Hongtao; Li, Lei

    2013-01-01

    Anabaena sp. was used to examine the toxicity of exposure to a nano-TiO2 suspension, Zn2+ solution, and mixtures of nano-TiO2 and Zn2+ suspensions. Typical chlorophyll fluorescence parameters, including effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse-amplitude modulated fluorometer. Nano-TiO2 particles exhibited no significant toxicity at concentrations lower than 10.0 mg/L. The 96 h concentration for the 50% maximal effect (EC50) of Zn2+ alone to Anabaena sp. was 0.38 ± 0.004 mg/L. The presence of nano-TiO2 at low concentrations (<1.0 mg/L) significantly enhanced the toxicity of Zn2+ and consequently reduced the EC50 value to 0.29 ± 0.003 mg/L. However, the toxicity of the Zn2+/TiO2 system decreased with increasing nano-TiO2 concentration because of the substantial adsorption of Zn2+ by nano-TiO2. The toxicity curve of the Zn2+/TiO2 system as a function of incremental nano-TiO2 concentrations was parabolic. The toxicity significantly increased at the initial stage, reached its maximum, and then decreased with increasing nano-TiO2 concentration. Hydrodynamic sizes, concentration of nano-TiO2 and Zn2+ loaded nano-TiO2 were the main parameters for synergistic toxicity. PMID:23852017

  20. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    PubMed

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection.

    PubMed

    Singha, Debal Kanti; Mahata, Partha

    2017-08-29

    Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.

  2. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  3. Synthesis of HAP nano rods and processing of nano-size ceramic reinforced poly(L)lactic acid composites

    NASA Astrophysics Data System (ADS)

    Flanigan, Kyle Yusef

    2000-09-01

    Bone is unique among the various connective tissues in that it is a composite of organic and inorganic components. Calcium phosphates occur principally in the form of hydroxyapatite crystals {Ca10(PO4) 6(OH)2}. Secreted apatite crystals are integral to the structural rigidity of the bone. When a bone breaks, there is often a need to implant an orthotic device to support the broken bone during remodeling. Current technologies use either metal pins and screws that need to be removed (by surgery) once the healing is complete or polymeric materials that either get resorbed or are porous enough to allow bone ingrowth. Poly(L)Lactic acid and copolymers of polyglycolic acid (PGA) are thermoplastics which show promise as the matrix material in biosorbable/load bearing implants. In service this material is hydrolyzed generating water and L-lactate. Orthoses composed of neat PLLA resins require greater than three years for complete resorbtion, however; 95% of strength is lost in 2 to 3 weeks in-vitro. This has limited the deployment of load bearing PLLA to screws, pins or short bracing spans. There exists a need for the development of an implantable and biosorbable orthotic device which will retain its structural integrity long enough for remodeling and healing process to generate new bone material, about 10 weeks. The scope of this dissertation is the development of HAP nano-whisker reinforcement and a HAP/PLLA thermoplastic composite. As proof of the feasibility of generating nano-reinforcement PLLA-composites, the surface of a galleried clay, montmorillonite, was modified and clay/PLLA composites processed and then characterized. Hydroxyapatite nano-whiskers were synthesized and functionalized using organosilanes and Menhaden fish-oil (common organic dispersant). The functionalized nano-fibers were used to process HAP/PLLA composites. Characterization techniques included thermal analysis, magnetic spectroscopy, XRD and ICP analysis and electron microscopy. The

  4. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays.

    PubMed

    Yuan, Yuan; Zhang, Yugen

    2017-10-01

    Cicada wing surfaces are covered with dense patterns of nano-pillar structure that prevent bacterial growth by rupturing adhered microbial cells. To mimic the natural nano-pillar structure, we developed a general and simple method to grow metal organic framework (MOF) nano-dagger arrays on a wide range of surfaces. These nano-daggers possess high bactericidal activity, with log reduction >7 for Escherichia coli and Staphylococcus aureus. It was hypothesized that the positively-charged ZIF-L nano-dagger surfaces enhance bacterial cell adhesion, facilitating selective and efficient bacteria killing by the rigid and sharp nano-dagger tips. This research provides a safe and clean antimicrobial surface technology which does not require external chemicals and will not cause drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Nano-sized graphene flakes: insights from experimental synthesis and first principles calculations.

    PubMed

    Lin, Pin-Chun; Chen, Yi-Rui; Hsu, Kuei-Ting; Lin, Tzu-Neng; Tung, Kuo-Lun; Shen, Ji-Lin; Liu, Wei-Ren

    2017-03-01

    In this study, we proposed a cost-effective method for preparing graphene nano-flakes (GNFs) derived from carbon nanotubes (CNTs) via three steps (pressing, homogenization and sonication exfoliation processes). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), laser scattering, as well as ultraviolet-visible and photoluminescence (PL) measurements were carried out. The results indicated that the size of as-synthesized GNFs was approximately 40-50 nm. Furthermore, we also used first principles calculations to understand the transformation from CNTs to GNFs from the viewpoints of the edge formation energies of GNFs in different shapes and sizes. The corresponding photoluminescence measurements of GNFs were carried out in this work.

  6. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method

    PubMed Central

    2012-01-01

    Background Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate) on the particles growth is investigated. Methods For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and inductively coupled plasma atomic emission spectrometer (ICP-AES) techniques were used to characterize the samples. Results The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature. Conclusions Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of NiFe2O4 nanoparticles

  7. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method.

    PubMed

    Nejati, Kamellia; Zabihi, Rezvanh

    2012-03-30

    Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate) on the particles growth is investigated. For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and inductively coupled plasma atomic emission spectrometer (ICP-AES) techniques were used to characterize the samples. The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature. Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of NiFe2O4 nanoparticles decreased in comparison with surfactant

  8. Ordering, thermal excitations and phase transitions in dipolar coupled mono-domain magnet arrays

    NASA Astrophysics Data System (ADS)

    Kapaklis, Vassilios

    2015-03-01

    Magnetism has provided a fertile test bed for physical models, such as the Heisenberg and Ising models. Most of these investigations have focused on solid materials and relate to their atomic properties such as the atomic magnetic moments and their interactions. Recently, advances in nanotechnology have enabled the controlled patterning of nano-sized magnetic particles, which can be arranged in extended lattices. Tailoring the geometry and the magnetic material of these lattices, the magnetic interactions and magnetization reversal energy barriers can be tuned. This enables interesting interaction schemes to be examined on adjustable length and energy scales. As a result such nano-magnetic systems represent an ideal playground for the study of physical model systems, being facilitated by direct magnetic imaging techniques. One particularly interesting case is that of systems exhibiting frustration, where competing interactions cannot be simultaneously satisfied. This results in a degeneracy of the ground state and intricate thermodynamic properties. An archetypical frustrated physical system is water ice. Similar physics can be mirrored in nano-magnetic arrays, by tuning the arrangement of neighboring magnetic islands, referred to as artificial spin ice. Thermal excitations in such systems resemble magnetic monopoles. In this presentation key concepts related to nano-magnetism and artificial spin ice will be introduced and discussed, along with recent experimental and theoretical developments.

  9. Nano-solenoid: helicoid carbon-boron nitride hetero-nanotube

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Yue; Miao, Chunyang; Guo, Wanlin

    2013-11-01

    As a fundamental element of a nanoscale passive circuit, a nano-inductor is proposed based on a hetero-nanotube consisting of a spiral carbon strip and a spiral boron nitride strip. It is shown by density functional theory associated with nonequilibrium Green function calculations that the nanotube exhibits attractive transport properties tunable by tube chirality, diameter, component proportion and connection manner between the two strips, with excellent `OFF' state performance and high current on the order of 10-100 μA. All the hetero-nanotubes show negative differential resistance. The transmission peaks of current are absolutely derived from the helicoid carbon strips or C-BN boundaries, giving rise to a spiral current analogous with an energized nano-solenoid. According to Ampere's Law, the energized nano-solenoid can generate a uniform and tremendous magnetic field of more than 1 tesla, closing to that generated by the main magnet of medical nuclear magnetic resonance. Moreover, the magnitude of magnetic field can be easily modulated by bias voltage, providing great promise for a nano-inductor to realize electromagnetic conversion at the nanoscale.As a fundamental element of a nanoscale passive circuit, a nano-inductor is proposed based on a hetero-nanotube consisting of a spiral carbon strip and a spiral boron nitride strip. It is shown by density functional theory associated with nonequilibrium Green function calculations that the nanotube exhibits attractive transport properties tunable by tube chirality, diameter, component proportion and connection manner between the two strips, with excellent `OFF' state performance and high current on the order of 10-100 μA. All the hetero-nanotubes show negative differential resistance. The transmission peaks of current are absolutely derived from the helicoid carbon strips or C-BN boundaries, giving rise to a spiral current analogous with an energized nano-solenoid. According to Ampere's Law, the energized nano

  10. High resolution photolithography using arrays of polystyrene and SiO2 micro- and nano-sized spherical lenses

    NASA Astrophysics Data System (ADS)

    Dvoretckaia, L. N.; Mozharov, A. M.; Mukhin, I. S.

    2017-11-01

    Photolithography mask made of close-packed array of micro- and nano-sized spherical lenses allows to obtain the ordered structures and provides highest “optical resolution/cost” ratio between all existing photolithography and laser direct writing methods. In this letter, we present results of modeling the propagation of a plane wave falling on the array of quartz (SiO2) microspherical lenses and focusing in the image reverse photoresist layer. We present here experimental results on fabrication of ordered arrays of submicron wells and columns and substrate preparation for growth of monocrystalline nanowires on metal surface using photolithography with mask of SiO2 microspheres. Such ordered nano-sized arrays of wells and columns can be used in fabrication of further growth of monocrystalline nanowires, quantum dots and production of plasmon structures.

  11. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  12. Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings

    NASA Astrophysics Data System (ADS)

    Zhu, Dong

    2017-10-01

    Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.

  13. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    PubMed Central

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  14. Reduction in bearing size due to superconductors in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Lewis, Paul; Dill, James F.

    1991-01-01

    A design concept that reduces the size of magnetic bearings is assessed. The small size will enable magnetic bearings to fit into limited available bearing volume of cryogenic machinery. The design concept, called SUPERC, uses (high Tc) superconductors or high-purity aluminum conductors in windings instead of copper. The relatively high-current density of these conductors reduces the slot radial thickness for windings, which reduces the size of the bearings. MTI developed a sizing program called SUPERC that translates the high-current density of these conductors into smaller sized bearings. This program was used to size a superconducting bearing to carry a 500 lb. load. The sizes of magnetic bearings needed by various design concepts are as follows: SUPERC design concept = 3.75 in.; magnet-bias design concept = 5.25 in.; and all electromagnet design concept = 7.0 in. These results indicate that the SUPERC design concept can significantly reduce the size of the bearing. This reduction, in turn, reduces the weight and yields a lighter bearing. Since the superconductors have inherently near-zero resistance, they are also expected to save power needed for operation considerably.

  15. Study on the Particle Size Distribution Nano-Particles of Mining Minerals on Whiteness of Triaxial Body

    NASA Astrophysics Data System (ADS)

    Mathur, Ravi; Soni, Aditi

    White wares produced worldwide represent the foundation of much of the ceramic industry; Porcelain bodies fabricated from triaxial mixtures of clay, quartz and feldspar with different size and amounts of nano particles were investigated. Although the purity of raw materials has a strong effect on the colour of the fired bodies, the particle size of raw materials also effect the whiteness The raw material mining minerals china Clay, Feldspar, quarts were prepared of various sized nano particles contains 10.60 -20.22%, 56.84- 70.80 % and 34.87-50.76 % of 100nm respectively. The fired bodies of raw mining minerals and triaxial bodies were subjected to colour measurement. The differences in whiteness were compared and discussed. The studies so far carried out is upto 400 mesh size while the present study has included up to 100nm particle size. A statistical correlation between whiteness of feldspar and triaxial body was also carried out. The correlation between china clay and triaxial body are 0.53, 0.57 and 0.66 for china clay similarly correlation for feldspar is 0.49, 0.73 and 0.83 for triaxial body it are 0.97, 0.84 and 0.75 for A1, A2 and A3 samples. Correlation between china clay and feldspar with triaxial body are 0.79 and 0.92 respectively.

  16. Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk

    NASA Astrophysics Data System (ADS)

    Boghi, Andrea; Russo, Flavia; Gori, Fabio

    2017-09-01

    Magnetic nano drug targeting, through the use of an external magnetic field, is a new technique for the treatment of several diseases, which can potentially avoid the dispersion of drugs in undesired locations of the body. Nevertheless, due to the limitations on the intensity of the magnetic field applied, the hydrodynamic forces can reduce the effectiveness of the procedure. This technique is studied in this paper with the Computational Fluid Dynamics (CFD), focusing on the influence of the magnetic probe position, and the direction of the circulating electric current. A single rectangular coil is used to generate the external magnetic field. A patient-specific geometry of the coeliac trunk is reconstructed from DICOM images, with the use of VMTK. A new solver, coupling the Lagrangian dynamics of the nanoparticles with the Eulerian dynamics of the blood, is implemented in OpenFOAM to perform the simulations. The resistive pressure, the Womersley's profile for the inlet velocity and the magnetic field of a rectangular coil are implemented in the software as boundary conditions. The results show the influence of the position of the probe, as well as the limitations associated with the rectangular coil configuration.

  17. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  18. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinementmore » of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.« less

  19. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    NASA Astrophysics Data System (ADS)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  20. Micro-size antenna structure with vertical nanowires for wireless power transmission and communication.

    PubMed

    Kang, Jong-Gu; Jeong, Yeri; Shin, Jeong Hee; Choi, Ji-Woong; Sohn, Jung Inn; Cha, Seung Nam; Jang, Jae Eun

    2014-11-01

    For biomedical implanted devices, a wireless power or a signal transmission is essential to protect an infection and to enhance durability. In this study, we present a magnetic induction technique for a power transmission without any wire connection between transmitter (Tx) and receiver (Rx) in a micro scale. Due to a micro size effect of a flat spiral coil, a magnetic inductance is not high. To enhance the magnetic inductance, a three dimensional magnetic core is added to an antenna structure, which is consisted of ZnO nano wires coated by a nickel (Ni) layer. ZnO nano wires easily supply a large effective surface area with a vertical structural effect to the magnetic core structure, which induces a higher magnetic inductance with a ferro-magnetic material Ni. The magnetic induction antenna with the magnetic core shows a high inductance value, a low reflection power and a strong power transmission. The power transmission efficiencies are tested under the air and the water medium are almost the same values, so that the magnetic induction technique is quite proper to body implanted systems.

  1. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  2. Preparation and characterization of a new lipid nano-emulsion containing two cosurfactants, sodium palmitate for droplet size reduction and sucrose palmitate for stability enhancement.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Kawada, Hiroto; Matsumoto, Yu; Kitade, Tatsuya; Ishida, Hiroharu; Nagata, Chieyo

    2008-08-01

    A new lipid nano-emulsion (LNE) was prepared from soybean oil and phosphatidylcholine (PC) employing two cosurfactants, sodium palmitate (PA) for reduced droplet size and sucrose palmitate (SP) for stability enhancement. The mean droplet size of LNEs prepared at a PA/PC (w/w) ratio of larger than 1/10 was found to be ca. 50 nm by dynamic light scattering and atomic force microscopy. However, during the 12-month storage, the PA/PC (1/10)-LNE showed an increase in mean droplet size and broadening of the droplet size distribution due to coalescence of the LNE particles. In a saline solution, the coalescence proceeded very rapidly, i.e., the mean droplet size increased to more than 150 nm within 0.5 h. To suppress the coalescence of LNE particles, four sucrose fatty acid esters of different chain lengths were examined as candidate cosurfactants. The results showed that PA/SP/PC (1/4/10)-LNE could maintain a mean droplet size around 50 nm for 12 months. In a saline solution, the mean droplet size could be maintained within 100 nm even after 24 h. Slight formation of flocculation in the LNEs depending on the storage period was suggested by measurement of the 31P nuclear magnetic resonance line width of the LNEs.

  3. Grafting of allylimidazole and n-vinylcaprolactam as a thermosensitive polymer onto magnetic nano-particles for the extraction and determination of celecoxib in biological samples.

    PubMed

    Morovati, Atefeh; Ahmad Panahi, Homayon; Yazdani, Farzaneh

    2016-11-20

    In this research, a novel method is reported for the surface grafting of n-vinylcaprolactam as a thermosensitive agent and allylimidazole with affinity toward celecoxib onto magnetic nano-particles. The grafted nano-particles were characterized by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The surface morphology was studied using Scanning Electron Microscopy. The resulting grafted nano-particles were used for the determination of trace celecoxib in biological human fluids and pharmaceutical samples. The profile of celecoxib uptake by the modified magnetic nano-particles indicated good accessibility of the active sites in the grafted copolymer. It was found that the adsorption behavior could be fitted by the Langmuir adsorption isotherm model. Solid phase extraction for biological fluids such as urine and serum were investigated. In this study, urine extraction recovery of more than 95% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    PubMed Central

    Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.

    2012-01-01

    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561

  5. Morphology, Growth, and Size Limit of Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean X.

    2010-07-01

    Bacterial cells utilize a living peptidoglycan network (PG) to separate the cell interior from the surroundings. The shape of the cell is controlled by PG synthesis and cytoskeletal proteins that form bundles and filaments underneath the cell wall. The PG layer also resists turgor pressure and protects the cell from osmotic shock. We argue that mechanical influences alter the chemical equilibrium of the reversible PG assembly and determine the cell shape and cell size. Using a mechanochemical approach, we show that the cell shape can be regarded as a steady state of a growing network under the influence of turgor pressure and mechanical stress. Using simple elastic models, we predict the size of common spherical and rodlike bacteria. The influence of cytoskeletal bundles such as crescentin and MreB are discussed within the context of our model.

  6. Size dependence of spin-torque induced magnetic switching in CoFeB-based perpendicular magnetization tunnel junctions (invited)

    NASA Astrophysics Data System (ADS)

    Sun, J. Z.; Trouilloud, P. L.; Gajek, M. J.; Nowak, J.; Robertazzi, R. P.; Hu, G.; Abraham, D. W.; Gaidis, M. C.; Brown, S. L.; O'Sullivan, E. J.; Gallagher, W. J.; Worledge, D. C.

    2012-04-01

    CoFeB-based magnetic tunnel junctions with perpendicular magnetic anisotropy are used as a model system for studies of size dependence in spin-torque-induced magnetic switching. For integrated solid-state memory applications, it is important to understand the magnetic and electrical characteristics of these magnetic tunnel junctions as they scale with tunnel junction size. Size-dependent magnetic anisotropy energy, switching voltage, apparent damping, and anisotropy field are systematically compared for devices with different materials and fabrication treatments. Results reveal the presence of sub-volume thermal fluctuation and reversal, with a characteristic length-scale of the order of approximately 40 nm, depending on the strength of the perpendicular magnetic anisotropy and exchange stiffness. To have the best spin-torque switching efficiency and best stability against thermal activation, it is desirable to optimize the perpendicular anisotropy strength with the junction size for intended use. It also is important to ensure strong exchange-stiffness across the magnetic thin film. These combine to give an exchange length that is comparable or larger than the lateral device size for efficient spin-torque switching.

  7. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE PAGES

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    2018-05-09

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  8. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  9. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface.

  10. Validation of a particle tracking analysis method for the size determination of nano- and microparticles

    NASA Astrophysics Data System (ADS)

    Kestens, Vikram; Bozatzidis, Vassili; De Temmerman, Pieter-Jan; Ramaye, Yannic; Roebben, Gert

    2017-08-01

    Particle tracking analysis (PTA) is an emerging technique suitable for size analysis of particles with external dimensions in the nano- and sub-micrometre scale range. Only limited attempts have so far been made to investigate and quantify the performance of the PTA method for particle size analysis. This article presents the results of a validation study during which selected colloidal silica and polystyrene latex reference materials with particle sizes in the range of 20 nm to 200 nm were analysed with NS500 and LM10-HSBF NanoSight instruments and video analysis software NTA 2.3 and NTA 3.0. Key performance characteristics such as working range, linearity, limit of detection, limit of quantification, sensitivity, robustness, precision and trueness were examined according to recommendations proposed by EURACHEM. A model for measurement uncertainty estimation following the principles described in ISO/IEC Guide 98-3 was used for quantifying random and systematic variations. For nominal 50 nm and 100 nm polystyrene and a nominal 80 nm silica reference materials, the relative expanded measurement uncertainties for the three measurands of interest, being the mode, median and arithmetic mean of the number-weighted particle size distribution, varied from about 10% to 12%. For the nominal 50 nm polystyrene material, the relative expanded uncertainty of the arithmetic mean of the particle size distributions increased up to 18% which was due to the presence of agglomerates. Data analysis was performed with software NTA 2.3 and NTA 3.0. The latter showed to be superior in terms of sensitivity and resolution.

  11. Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

    NASA Astrophysics Data System (ADS)

    Ghosh, Santaneel; Ghoshmitra, Somesree; Cai, Tong; Diercks, David R.; Mills, Nathaniel C.; Hynds, Dianna L.

    2010-01-01

    Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate- co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly- N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth) even at high iron concentrations (6 mM), indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA) approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury.

  12. Micro-/Nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zhou, Gang; Zheng, Lisha; Liu, Haifeng; Niu, Xufeng; Fan, Yubo

    2012-03-01

    Regenerative medicine consisting of cells and materials provides a new way for the repair and regeneration of tissues and organs. Nano-biomaterials are highlighted due to their advantageous features compared with conventional micro-materials. The aim of this study is to investigate the effects of micro-/nano- sized hydroxyapatite (μ/n-HA) on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells (rBMSCs). μ/n-HA were prepared by a microwave synthesizer and precipitation method, respectively. Different sizes of μ/n-HA were characterized by IR, XRD, SEM, TEM and co-cultured with rBMSCs. It was shown that rBMSCs expressed higher levels of osteoblast-related markers by n-HA than μ-HA stimulation. The size of HA is an important factor for affecting the osteogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.

  13. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice.

    PubMed

    Zhang, Jinsong; Wang, Xufang; Xu, Tongwen

    2008-01-01

    Selenium (Se) is an essential trace element with a narrow margin between beneficial and toxic effects. As a promising chemopreventive agent, its use requires consumption over the long term, so the toxicity of Se is always a crucial concern. Based on clinical findings and recent studies in selenoprotein gene-modified mice, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect of Se. Furthermore, upregulation of phase 2 enzymes by Se has been implicated as a possible chemopreventive mechanism at supranutritional dietary levels. Se-methylselenocysteine (SeMSC), a naturally occurring organic Se product, is considered as one of the most effective chemopreventive selenocompounds. The present study revealed that, as compared with SeMSC, elemental Se at nano size (Nano-Se) possessed equal efficacy in increasing the activities of glutathione peroxidase, thioredoxin reductase, and glutathione S-transferase, but had much lower toxicity as indicated by median lethal dose, acute liver injury, survival rate, and short-term toxicity. Our results suggest that Nano-Se can serve as a potential chemopreventive agent with reduced risk of Se toxicity.

  14. Controlling morphology and crystallite size of Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} nano-crystals synthesized using a heating-up method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Wei-Hsiang; Hsiang, Hsing-I, E-mail: hsingi@mail.ncku.edu.tw; Chia, Chih-Ta

    2013-12-15

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn{sub 0.7}Ga{submore » 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.« less

  15. Multifunctional carbon nano-paper composite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Chu, Hetao; Wang, Kuiwen; Liu, Yanjv; Leng, Jinsong

    2013-08-01

    Carbon Nanotube (CNT), for its excellent mechanical, electrical properties and nano size, large special surface physical property, become the most promising material. But carbon nanotube can still fabricated in micro dimension, and can't be made into macro size, so to the carbon nanotube filled composite can't explore the properties of the CNT. Carbon nano-paper is made of pure CNT, with micro pore, and it turn micro sized CNT into macro shaped membrane. Based on the piezo-resistivity and electrical conductivity of the carbon nano-paper, we used the carbon nano-paper as functional layers fabricate functional composite, and studies its strain sensing, composite material deicing and shape memory polymer (SMP) material electric actuation performance. The results shown that the resin can pregnant the nano paper, and there was good bond for nano paper and composite. The functional composite can monitoring the strain with high sensitivity comparing to foil strain gauge. The functional composite can be heated via the carbon nano paper with low power supply and high heating rate. The composite has good deicing and heat actuation performance to composite material. For the good strain sensing, electric conductivity and self-heating character of the carbon nano-paper composite, it can be used for self sensing, anti lightning strike and deicing of composite materials in aircrafts and wind turbine blades.

  16. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder.

    PubMed

    Yuan, Chunmiao; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-30

    Minimum ignition temperature (MIT) of micro Ti powder increased gradually with increases in nano-sized TiO2 employed as an inertant. Solid TiO2 inertant significantly reduced ignition hazard of micro Ti powder in contact with hot surfaces. The MIT of nano Ti powder remained low (583 K), however, even with 90% TiO2. The MIT of micro Ti powder, when mixed with nano Ti powder at concentrations as low as 10%, decreased so dramatically that its application as a solid fuel may be possible. A simple MIT model was proposed for aggregate particle size estimation and better understanding of the inerting effect of nano TiO2 on MIT. Estimated particle size was 1.46-1.51 μm larger than that in the 20-L sphere due to poor dispersion in the BAM oven. Calculated MITs were lower than corresponding empirically determined values for micro Ti powder because nano-sized TiO2 coated the micro Ti powder, thereby decreasing its reaction kinetics. In the case of nano Ti powder, nano-sized TiO2 facilitated dispersion of nano Ti powder which resulted in a calculated MIT that was greater than the experimentally determined value. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Detecting magnetic ordering with atomic size electron probes

    DOE PAGES

    Idrobo, Juan Carlos; Rusz, Ján; Spiegelberg, Jakob; ...

    2016-05-27

    While magnetism originates at the atomic scale, the existing spectroscopic techniques sensitive to magnetic signals only produce spectra with spatial resolution on a larger scale. However, recently, it has been theoretically argued that atomic size electron probes with customized phase distributions can detect magnetic circular dichroism. Here, we report a direct experimental real-space detection of magnetic circular dichroism in aberration-corrected scanning transmission electron microscopy (STEM). Using an atomic size-aberrated electron probe with a customized phase distribution, we reveal the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The novel experimental setupmore » presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution.« less

  18. All-silicon-based nano-antennas for wavelength and polarization demultiplexing.

    PubMed

    Panmai, Mingcheng; Xiang, Jin; Sun, Zhibo; Peng, Yuanyuan; Liu, Hongfeng; Liu, Haiying; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2018-05-14

    We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.

  19. Patterned media towards Nano-bit magnetic recording: fabrication and challenges.

    PubMed

    Sbiaa, Rachid; Piramanayagam, Seidikkurippu N

    2007-01-01

    During the past decade, magnetic recording density of HDD has doubled almost every 18 months. To keep increasing the recording density, there is a need to make the small bits thermally stable. The most recent method using perpendicular recording media (PMR) will lose its fuel in a few years time and alternatives are sought. Patterned media, where the bits are magnetically separated from each other, offer the possibility to solve many issues encountered by PMR technology. However, implementation of patterned media would involve developing processing methods which offer high resolution (small bits), regular patterns, and high density. All these need to be achieved without sacrificing a high throughput and low cost. In this article, we review some of the ideas that have been proposed in this subject. However, the focus of the paper is on nano-imprint lithography (NIL) as it fulfills most of the needs of HDD as compared to conventional lithography using electron beam, EUV or X-Rays. The latest development of NIL and related technologies and their future prospects for patterned media are also discussed.

  20. A novel copper (II) complex containing a tetradentate Schiff base: Synthesis, spectroscopy, crystal structure, DFT study, biological activity and preparation of its nano-sized metal oxide

    NASA Astrophysics Data System (ADS)

    Tohidiyan, Zeinab; Sheikhshoaie, Iran; Khaleghi, Mouj; Mague, Joel T.

    2017-04-01

    A new nano-sized copper (II) complex, [Cu(L)] with a tetra dentate Schiff base ligand, 2-((E)-(2-(E-5- bromo-2-hydroxybezenylideneamino) methyl)-4-bromophenol [H2L] was prepared by the reaction between of Cu (CH3COO)2·2H2O and (H2L) ligand with the ratio of 1:1, at the present of triethylamine by sonochemical method. The structure of [Cu (L)] complex was determined by FT-IR, UV-Vis, FESEM and molar conductivity. The structure of [Cu (L)] complex was characterized by single crystal X-ray diffraction. The geometry of [Cu (L)] complex was optimized using density functional theory (DFT) method with the B3LYP/6-31(d) level of theory. The calculated bond lengths and bond angles are in good agreement with the X-ray data. This complex was used as a novel precursor for preparing of CuO nano particles by the thermal decomposition method. The antibacterial activities of [H2L] ligand, nano-sized [Cu (L)] complex and nano-sized CuO have been screened against various strains of bacteria. According to the results, nano-sized CuO can be considered as an appropriate antibiotic agent.

  1. Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors.

    PubMed

    Rodrigues, Ligia R

    2015-07-01

    Microbial surfactants, so-called biosurfactants, comprise a wide variety of structurally distinct amphipathic molecules produced by several microorganisms. Besides exhibiting surface activity at the interfaces, these molecules present powerful characteristics including high biodegradability, low toxicity and special biological activities (e.g. antimicrobial, antiviral, anticancer, among others), that make them an alternative to their chemical counterparts. Several medical-related applications have been suggested for these molecules, including some reports on their potential use in the formulation of nano-sized drug delivery vectors. However, despite their promises, due to the generalized lack of knowledge on microbial surfactants phase behavior and stability under diverse physicochemical conditions, these applications remain largely unexplored, thus representing an exciting field of research. These nano-sized vectors are a powerful approach towards the current medical challenges regarding the development of efficient and targeted treatments for several diseases. In this review, a special emphasis will be given to nanoparticles and microemulsions. Nanoparticles are very auspicious as their size, shape and stability can be manipulated by changing the environmental conditions. On the other hand, the easiness of formulation, as well as the broad possibilities of administration justifies the recent popularity of the microemulsions. Notwithstanding, both vector types still require further developments to overcome some critical limitations related with toxicity and costs, among others. Such developments may include the search for other system components, as the microbial surfactants, that can display improved features. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    NASA Astrophysics Data System (ADS)

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-04-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (~4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (~5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing.

  3. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate

    NASA Astrophysics Data System (ADS)

    Lv, Weixin; Zhou, Jing; Bei, Jingjing; Zhang, Rui; Wang, Lei; Xu, Qi; Wang, Wei

    2017-01-01

    Electrochemical reduction of carbon dioxide (CO2) to formate is energetically inefficient because high overpotential is required for reduction of CO2 to formate on most traditional catalysts. In this paper, a novel nano-sized Bi-based electrocatalyst deposited on a Cu foil has been synthesized, which can be used as a cathode for electrochemical reduction of CO2 to formate with a low overpotential (0.69 V) and a high selectivity (91.3%). The electrocatalyst can show excellent catalytic performance toward reduction of CO2 which can probably be attributed to the nano-sized structure and the surface oxide layer. The energy efficiency for reduction of CO2 to formate can reach to 50% when an IrxSnyRuzO2/Ti electrode is used as anode, it is one of the highest values found in the literatures and very practicable for sustainable fuel synthesis.

  4. Prevention of dental erosion of a sports drink by nano-sized hydroxyapatite in situ study.

    PubMed

    Min, Ji Hyun; Kwon, Ho Keun; Kim, Baek Il

    2015-01-01

    To evaluate the inhibitory effects of the sports drink containing nano-sized hydroxyapatite (nano-HA) on dental erosion in situ. The study had a single-blind, two-treatment crossover design. The two treatment groups were a control group (CG; Powerade only) and an experimental group (EG; 0.25% wt/vol nano-HA was added to Powerade). Ten subjects wore removable palatal appliances containing bovine enamel specimens. The appliances were immersed in each drink for 10 mins, 4 times a day for 10 days. The tooth surface microhardness (SMH) was tested, and the erosion depth and the morphology of the tooth surface were observed. The data were analysed by repeated measures anova and t-test. Between the baseline and the 10th day, SMH was decreased by 80% in the specimens of the CG (P < 0.001), whereas there was only a 6% decrease in the SMH of the specimens in the EG. An erosion depth of 12.70 ± 4.66 μm and an irregular tooth surface were observed on the 10th day in the specimens of the CG. No dental erosions, however, was observed in the specimens of the EG. The sports drink containing 0.25% nano-HA was effective in preventing dental erosion in situ. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano-calcium hydroxide.

    PubMed

    Samanta, Aniruddha; Podder, Soumik; Ghosh, Chandan Kumar; Bhattacharya, Manjima; Ghosh, Jiten; Mallik, Awadesh Kumar; Dey, Arjun; Mukhopadhyay, Anoop Kumar

    2017-08-01

    The present work provides the first ever report on extraordinarily high antibacterial efficacy of phase pure micro-layered calcium hydroxide nanoparticles (LCHNPs) even under dark condition. The LCHNPs synthesized especially in aqueous medium by a simple, inexpensive method show adequate mechanical properties along with the presence of a unique strain tolerant behaviour. The LCHNPs are characterized by FTIR, Raman spectroscopy, XRD, Rietveld analysis, FE-SEM, TEM, TG-DTA, surface area, particle size distribution, zeta potential analysis and nanoindentation techniques. The LCHNPs have 98.1% phase pure hexagonal Ca(OH) 2 as the major phase having micro-layered architecture made up of about ~100-200nm thick individual nano-layers. The nanomechanical properties e.g., nanohardness (H) and Young's modulus (E) of the LCHNPs are found to have a unique load independent behavior. The dielectric responses (e.g., dielectric constant and dielectric loss) and antibacterial properties are evaluated for such LCHNPs. Further, the LCHNPs show much better antibacterial potency against both gram-positive e.g., Staphylococcus aureus (S. aureus) and gram-negative e.g., Pseudomonas putida (P. putida) bacteria even in dark especially, with the lowest ever reported MIC value (e.g., 1 μg ml -1 ) against the P. putida bacterial strain and exhibit ROS mediated antibacterial proficiency. Finally, such LCHNPs has almost ~8-16% inhibition efficacy towards the development of biofilm of these microorganisms quantified by colorimetric detection process. So, such LCHNPs may find potential applications in the areas of healthcare industry and environmental engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Structural and magnetic properties on the Fe-B-P-Cu-W nano-crystalline alloy system

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Yaocen; Makino, Akihiro

    2018-04-01

    In the present article, the structural and soft magnetic properties of Fe-B-P-Cu alloy system with W addition have been studied as well as the annealing configurations required for magnetic softness. It is found that the substitution of B by W deteriorates the soft magnetic properties after annealing. The reason of such impact with W addition may lie in the insufficient bonding strength between W and B so that the addition of W is not effective enough to suppress grain growth against the high concentration and high crystallization tendency of Fe during annealing. The addition of 4 at.% W is also found to reduce the saturation magnetization of the nano-crystalline alloy by 14%. It is also found that the addition of P in the Fe-based alloys could help reduce the coercivity upon annealing with high heating rate. The existence of P could also help slightly increase the overall saturation magnetization by enhancing the electron transfer away from Fe in the residual amorphous structure.

  7. Sustainable nano-catalysis

    EPA Science Inventory

    A novel nano-catalyst system which bridges the homogenous and heterogeneous system is described that is cheaper, easily accessible (sustainable) and requires no need of catalyst filtration during the work-up. Because of its nano-size, i.e. high surface area, the contact between r...

  8. Research on magnetic separation for complex nickel deep removal and magnetic seed recycling.

    PubMed

    Qiu, Yiqin; Xiao, Xiao; Ye, Ziwei; Guan, Zhijie; Sun, Shuiyu; Ren, Jie; Yan, Pingfan

    2017-04-01

    This study investigated the deep removal of complex nickel from simulated wastewater using magnetic separation and magnetic seed recycling. Nano-magnetite (Fe 3 O 4 ) was used as the magnetic seed. The flocculant applied was N,N-bis-(dithiocarboxy) ethanediamine (EDTC), a highly efficient heavy metal chelating agent included in dithiocarbamate (DTC). Important investigated parameters included hydraulic retention time, magnetic seed dosage, and magnetic field strength. The study also explored the magnetic flocculation mechanism involved in the reaction. The result indicated that the residual Ni concentration was reduced to less than 0.1 mg/L from the initial concentration of 50 mg/L under optimal conditions. Magnetic seed recovery reached 76.42% after a 3-h stirring period; recycled magnetic seeds were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). The zeta potential results illustrated that magnetic seeds firmly combined with flocs when the pH ranged from 6.5 to 7.5 due to the electrostatic attraction. When the pH was less than 7, magnetic seeds and EDTC were also combined due to electrostatic attraction. Particle size did affect microfloc size; it decreased microfloc size and increased floc volume through magnetic seed loading. The effective binding sites between flocs and magnetic seeds increased when adding the magnetic seeds. This led the majority of magnetic flocs to be integrated with the magnetic seeds, which served as a nucleus to enhance the flocculation property and ultimately improve the nickel complex removal rate.

  9. Influence of Poly (Ethylene Glycol) and Oleylamine on the Formation of Nano to Micron Size Spherical SiO2 Particles

    EPA Science Inventory

    We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration...

  10. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  11. Controlled data storage for non-volatile memory cells embedded in nano magnetic logic

    NASA Astrophysics Data System (ADS)

    Riente, Fabrizio; Ziemys, Grazvydas; Mattersdorfer, Clemens; Boche, Silke; Turvani, Giovanna; Raberg, Wolfgang; Luber, Sebastian; Breitkreutz-v. Gamm, Stephan

    2017-05-01

    Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML) is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits.

  12. Seasonal variability in size-segregated airborne bacterial particles and their characterization at different source-sites.

    PubMed

    Agarwal, Smita

    2017-05-01

    Size-segregated aerosol samplings were carried out near the potential sources of airborne biological particles i.e. at a landfill site, an agricultural field and a road side restaurant-cluster site in winter, spring and summer seasons during 2013-2015 in New Delhi. The culturable airborne bacterial (CAB) concentrations showed significant seasonal variation from higher to moderate in spring and winter seasons and lowest during summer. Highest CAB concentrations were observed at the Okhla landfill site followed by restaurant-cluster area and agriculture site. The CAB particles showed bimodal size distribution, abundant in the size ranges of 1.1-2.1, 2.1-3.3 and 4.7-5.8 μm. However, substantial concentrations were also observed in the size bins of 0.43-0.65 and <0.43 μm, which are important for cloud condensation nuclei (CCN) activity of aerosols in addition to their adverse health effects. In spring, bacterial particles were also maximized in size ranges between 5.8 and >9.0 μm. Fine mode proportions of CAB were found to be higher in winter than other two seasons. Bacterial identification was done by 16s rDNA sequencing, and most abundant identified strains were Bacillus cereus (16%), Bacillus licheniformis (11%), Bacillus thuringiensis (9%), Micrococcus sp. (7%) and Acinetobacter sp. (9%).

  13. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone.

    PubMed

    Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija

    2017-05-01

    Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.

  14. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy

    NASA Astrophysics Data System (ADS)

    Xiong, Mingfeng; Gao, Yunxia; Liu, Jing

    2014-03-01

    In this study, Ni nanoparticles were loaded into the partially oxidized gallium and its alloys to fabricate desired magnetic nanofluid. It was disclosed that the Ni nanoparticles sharply increased the freezing temperature and latent heat of the obtained magnetic nano liquid metal fluid, while the melting process was less affected. For the gallium sample added with 10 vol% coated Ni particles, a hysteresis loop was observed and the magnetization intensity decreased with the increase of the temperature. The slope for the magnetization-temperature curve within 10-30 K was about 20 times of that from 40 K to 400 K. Further, the dynamic impact experiments of striking magnetic liquid metal droplets on the magnet revealed that the regurgitating of the leading edge of the liquid disk and the subsequent wave that often occurred in the gallium-indium droplets would disappear for the magnetic fluids case due to attraction force of the magnet.

  15. [Spectral studies on nano-sized titania photocatalysts prepared by different drying methods].

    PubMed

    Ye, Zhao; Zhang, Han-hui; Pan, Hai-bo; Pan, Hong-qing

    2002-12-01

    Nano-sized TiO2 photocatalysts were prepared by drying the ethanol gel of titanium tetrabutoxide through natural state, supercritical ethanol, supercritical carbon dioxide drying methods and characterized by XRD, FTIR spectroscopy, FT-Raman spectroscopy and fluorescent spectroscopy, respectively. We regard degradation of rhodamine B by photocatalyst as a model reaction, and compare photocatalytic activities of samples obtained. The experimental results show that different drying methods have strong effect on crystal structure, energy band structure, optical adsorption property, surface quality and photocatalytic activity, TiO2 photocatalyst prepared by supercritical carbon dioxide drying method has superior photocatalytic activity.

  16. A polymer solution technique for the synthesis of nano-sized Li 2TiO 3 ceramic breeder powders

    NASA Astrophysics Data System (ADS)

    Jung, Choong-Hwan; Lee, Sang Jin; Kriven, Waltraud M.; Park, Ji-Yeon; Ryu, Woo-Seog

    2008-02-01

    Nano-sized Li 2TiO 3 powder was fabricated by an organic-inorganic solution route. A steric entrapment route employing ethylene glycol was used for the preparation of the nano-sized Li 2TiO 3 particles. Titanium isopropoxide and lithium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. With the optimum amount of the polymer, the metal cations (Li and Ti) were dispersed in the solution and a homogeneous polymeric network was formed. The organic-inorganic precursor gels were turned to crystalline powders through an oxidation reaction during a calcination process. The dried precursor gel showed the carbon-free Li 2TiO 3 crystalline form which was observed above 400 °C. The primary particle size of the carbon-free Li 2TiO 3 was about 70 nm, and the structure of the crystallized powder was porous and agglomerated. The powder compact was densified to 92% of TD at a relatively low sintering temperature of 1100 °C for 2 h.

  17. Size and surface effects on the magnetism of magnetite and maghemite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikiforov, V. N., E-mail: pppnvn@yandex.ru; Ignatenko, A. N.; Irkhin, V. Yu.

    2017-02-15

    The size effects of magnetite and maghemite nanoparticles on their magnetic properties (magnetic moment, Curie temperature, blocking temperature, etc.) have been investigated. Magnetic separation and centrifugation of an aqueous solution of nanoparticles were used for their separation into fractions; their sizes were measured by atomic force microscopy, dynamic light scattering, and electron microscopy. A change in the size leads to a change in the Curie temperature and magnetic moment per formula unit. Both native nanoparticles and those covered with a bioresorbable layer have been considered. The magnetic properties have been calculated by the Monte Carlo method for the classical Heisenbergmore » model with various bulk and surface magnetic moments.« less

  18. Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells.

    PubMed

    Gong, Weiyu; Huang, Zhiwei; Dong, Yanmei; Gan, Yehua; Li, Shenglin; Gao, Xuejun; Chen, Xiaofeng

    2014-01-01

    This study aimed to investigate the effects of a novel nano-sized 58S bioactive glass (nano-58S BG) on the odontogenic differentiation and mineralization of human dental pulp cells (hDPCs) in vitro. Extractions were prepared by incubating nano-58S BG, 45S5 BG, or 58S BG particulates in Dulbecco modified Eagle medium at 1% w/v for 24 hours and were filtrated through 0.22-μm filters. The supernatants were used as BG extractions. The hDPCs were cultured in nano-58S BG, 45S5 BG, and 58S BG extractions. The proliferation of hDPCs was evaluated using the methylthiazol tetrazolium assay. Odontogenic differentiation was evaluated based on the real-time polymerase chain reaction of differentiation- and mineralization-related genes, namely, alkaline phosphatase (ALP), collagen type I, dentin sialophosphoprotein (DSPP), and dentin matrix protein 1. The gene expressions were verified using ALP activity assessment, immunocytochemistry staining of osteocalcin and DSPP, and mineralization assay using alizarin red S stain. All BG extractions up-regulated the expression of odontogenic genes, and the most significant enhancement was in the nano-58S BG group. All BG extractions, especially nano-58S, increased ALP activity, osteocalcin and DSPP protein production, and mineralized nodules formation. Compared with regular BG, the novel nano-58S BG can induce the differentiation and mineralization of hDPCs more efficiently and might be a better potential candidate for dentin-pulp complex regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  20. Changes in size of nano phase iron inclusions with temperature: Experimental simulation of space weathering effects at high temperature

    NASA Astrophysics Data System (ADS)

    Rout, S. S.; Moroz, L. V.; Stockhoff, T.; Baither, D.; Bischoff, A.; Hiesinger, H.

    2011-10-01

    The mean size of nano phase iron inclusions (npFe0), produced during the space weathering of iron-rich regolith of airless solar system bodies, significantly affects visible and near-infrared (VNIR) spectra. To experimentally simulate the change in the size of npFe0 inclusions with increasing temperature, we produced sputter film deposits on a silicon dioxide substrate by sputtering a pressed pellet prepared from fine olivine powder using 600V Ar+ ions. This silicon dioxide substrate covered with the deposit was later heated to 450°C for 24 hours in an oven under argon atmosphere. Initial TEM analysis of the unheated silicon dioxide substrate showed the presence of a ~ 50 nm-thick layer of an amorphous deposit with nano clusters that has not yet been identified.

  1. Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis

    USDA-ARS?s Scientific Manuscript database

    The impact of nano-TiO2 on Rhizobium-legume symbiosis was studied using garden peas and the compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure to nano-TiO2 did not affect the germination of peas grown aseptically, nor did it impact the gross root structure. However, nano-...

  2. Magnetic domain wall conduits for single cell applications.

    PubMed

    Donolato, M; Torti, A; Kostesha, N; Deryabina, M; Sogne, E; Vavassori, P; Hansen, M F; Bertacco, R

    2011-09-07

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation.

  3. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    PubMed

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  4. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    PubMed

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Molecular nanomagnets and magnetic nanoparticles: the EMR contribution to a common approach.

    PubMed

    Fittipaldi, M; Sorace, L; Barra, A-L; Sangregorio, C; Sessoli, R; Gatteschi, D

    2009-08-21

    The current status and future developments of the use of electron magnetic resonance (EMR) for the investigation of magnetic nano-systems is here reviewed. The aim is to stimulate efforts to provide a unified view of the properties of magnetic nanoparticles (MNP) comprising a few hundred magnetic centres, and molecular nanomagnets which contain up to ca. one hundred magnetic centres (MNM). The size of the systems is becoming the same but the approaches to the interpretation of their properties are still different, being bottom up for the latter and top down for the former. We make the point here of the need for a common viewpoint, highlighting the status of the two fields and giving some hints for the future developments. EMR has been a powerful tool for the investigation of magnetic nano-objects and it can provide a tool of fundamental importance for the development of a unified view.

  6. Synthesis and magnetic properties of bacterial cellulose—ferrite (MFe2O4, M  =  Mn, Co, Ni, Cu) nanocomposites prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Sriplai, Nipaporn; Mongkolthanaruk, Wiyada; Pinitsoontorn, Supree

    2017-09-01

    The magnetic nanocomposites based on bacterial cellulose (BC) matrix and ferrite (MFe2O4, M  =  Mn, Co, Ni and Cu) nanoparticles (NPs) were fabricated. The never-dried and freeze-dried BC nanofibrils were used as templates and a co-precipitation method was applied for NPs synthesis. The nanocomposites were either freeze-dried or annealed before subjected to characterization. The x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that only MnFe2O4 and CoFe2O4 NPs could be successfully incorporated in the BC nanostructures. The results also indicated that the BC template should be freeze-dried prior to the co-precipitation process. The magnetic measurement by a vibrating sample magnetometer (VSM) showed that the strongest ferromagnetic signal was found for BC-CoFe2O4 nanocomposites. The morphological investigation by a scanning electron microscope (SEM) showed the largest volume fraction of NPs in the BC-CoFe2O4 sample which was complimentary to the magnetic property measurement. Annealing resulted in the collapse of the opened nanostructure of the BC composites. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  7. Synthesis and mechanical/magnetic properties of nano-grained iron-oxides prepared with an inert gas condensation and pulse electric current sintering process

    NASA Astrophysics Data System (ADS)

    Choa, Yong-Ho; Nakayama, Tatachika; Sekino, Tohru; Niihara, Koichi

    1999-04-01

    Nanocrystalline iron-oxide powder was fabricated with an inert gas condensation (IGC) method combined with evaporation, and in-situ oxidation techniques. The particle size of iron-oxide powder was controlled by varying the helium gas pressure between 0.1 and 10 Torr, with the smallest one =10 nm at 0.1 Torr. The nanostructure was characterized by TEM. Nanocrystalline iron-oxide powder was sintered with the pulse electric current sintering (PECS) method to obtain densified γ-Fe2O3 materials, and suitably densified nano-grained γ-Fe2O3 materials (≈ 40 nm) of great hardness were obtained. The correlation between the nanostructure and magnetic properties of nanocrystalline powder and densified γ-Fe2O3 materials was also investigated.

  8. Remarkable Second-Order Optical Nonlinearity of Nano-Sized Au Cluster: A TDDFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kechen; Li, Jun; Lin, Chensheng

    2004-04-21

    The dipole polarizability, static first hyperpolarizability, and UV-vis spectrum of the recently identified nano-sized tetrahedral cluster of Au have been investigated by using time-dependent density functional response theory. We have discovered that the Au cluster possesses remarkably large molecular second-order optical nonlinearity with the first hyperpolarizabilty (xyz) calculated to be 14.3 x 10 electrostatic unit (esu). The analysis of the low-energy absorption band suggests that the charge transfer from the edged gold atoms to the vertex ones plays the key role in nonlinear optical (NLO) response of Au.

  9. The Behaviors of Ferro-Magnetic Nano-Particles In and Around Blood Vessels under Applied Magnetic Fields

    PubMed Central

    Nacev, A.; Beni, C.; Bruno, O.; Shapiro, B.

    2010-01-01

    In magnetic drug delivery, therapeutic magnetizable particles are typically injected into the blood stream and magnets are then used to concentrate them to disease locations. The behavior of such particles in-vivo is complex and is governed by blood convection, diffusion (in blood and in tissue), extravasation, and the applied magnetic fields. Using physical first-principles and a sophisticated vessel-membrane-tissue (VMT) numerical solver, we comprehensively analyze in detail the behavior of magnetic particles in blood vessels and surrounding tissue. For any blood vessel (of any size, depth, and blood velocity) and tissue properties, particle size and applied magnetic fields, we consider a Krogh tissue cylinder geometry and solve for the resulting spatial distribution of particles. We find that there are three prototypical behaviors (blood velocity dominated, magnetic force dominated, and boundary-layer formation) and that the type of behavior observed is uniquely determined by three non-dimensional numbers (the magnetic-Richardson number, mass Péclet number, and Renkin reduced diffusion coefficient). Plots and equations are provided to easily read out which behavior is found under which circumstances (Figures 5, 6, 7, and 8). We compare our results to previously published in-vitro and in-vivo magnetic drug delivery experiments. Not only do we find excellent agreement between our predictions and prior experimental observations, but we are also able to qualitatively and quantitatively explain behavior that was previously not understood. PMID:21278859

  10. Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research

    DTIC Science & Technology

    2008-11-04

    and their composites . This grant was used to procure equipment to synthesize and characterize the nano- and meso-porous geopolymers , and study their...and meso-porosity and microstructure of geopolymers and their composites is part of an ongoing research project in the PIs research group, which has...the synthesis and processing of geopolymers and geopolymer composites . The attritor mill enables synthesis Technical Report of nano-sized high

  11. Evaluation of magnetic flux distribution from magnetic domains in [Co/Pd] nanowires by magnetic domain scope method using contact-scanning of tunneling magnetoresistive sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuda, Mitsunobu, E-mail: okuda.m-ky@nhk.or.jp; Miyamoto, Yasuyoshi; Miyashita, Eiichi

    2014-05-07

    Current-driven magnetic domain wall motions in magnetic nanowires have attracted great interests for physical studies and engineering applications. The magnetic force microscope (MFM) is widely used for indirect verification of domain locations in nanowires, where relative magnetic force between the local domains and the MFM probe is used for detection. However, there is an occasional problem that the magnetic moments of MFM probe influenced and/or rotated the magnetic states in the low-moment nanowires. To solve this issue, the “magnetic domain scope for wide area with nano-order resolution (nano-MDS)” method has been proposed recently that could detect the magnetic flux distributionmore » from the specimen directly by scanning of tunneling magnetoresistive field sensor. In this study, magnetic domain structure in nanowires was investigated by both MFM and nano-MDS, and the leakage magnetic flux density from the nanowires was measured quantitatively by nano-MDS. Specimen nanowires consisted from [Co (0.3)/Pd (1.2)]{sub 21}/Ru(3) films (units in nm) with perpendicular magnetic anisotropy were fabricated onto Si substrates by dual ion beam sputtering and e-beam lithography. The length and the width of the fabricated nanowires are 20 μm and 150 nm. We have succeeded to obtain not only the remanent domain images with the detection of up and down magnetizations as similar as those by MFM but also magnetic flux density distribution from nanowires directly by nano-MDS. The obtained value of maximum leakage magnetic flux by nano-MDS is in good agreement with that of coercivity by magneto-optical Kerr effect microscopy. By changing the protective diamond-like-carbon film thickness on tunneling magnetoresistive sensor, the three-dimensional spatial distribution of leakage magnetic flux could be evaluated.« less

  12. Forced- and Self-Rotation of Magnetic Nanorods Assembly at the Cell Membrane: A Biomagnetic Torsion Pendulum.

    PubMed

    Mazuel, François; Mathieu, Samuel; Di Corato, Riccardo; Bacri, Jean-Claude; Meylheuc, Thierry; Pellegrino, Teresa; Reffay, Myriam; Wilhelm, Claire

    2017-08-01

    In order to provide insight into how anisotropic nano-objects interact with living cell membranes, and possibly self-assemble, magnetic nanorods with an average size of around 100 nm × 1 µm are designed by assembling iron oxide nanocubes within a polymeric matrix under a magnetic field. The nano-bio interface at the cell membrane under the influence of a rotating magnetic field is then explored. A complex structuration of the nanorods intertwined with the membranes is observed. Unexpectedly, after a magnetic rotating stimulation, the resulting macrorods are able to rotate freely for multiple rotations, revealing the creation of a biomagnetic torsion pendulum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    DOE PAGES

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; ...

    2016-06-02

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less

  14. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less

  15. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    PubMed Central

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; Tiedje, James M.

    2016-01-01

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation. PMID:27313569

  16. Size and Crystallographic Orientation Effects on the Mechanical Behavior of 4H-SiC Micro-/nano-pillars

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolei; Guo, Qiang; Li, Zhiqiang; Fan, Genlian; Xiong, Ding-Bang; Su, Yishi; Zhang, Jie; Tan, Zhanqiu; Guo, Cuiping; Zhang, Di

    2018-02-01

    Single crystalline 4H-SiC micro-/nano-pillars of various sizes and different crystallographic orientations were fabricated and tested by uniaxial compression. The pillars with zero shear stress resolved on the basal slip system were found to fracture in a brittle manner without showing significant size dependence, while the pillars with non-zero resolved shear stress showed a "smaller is stronger" behavior and a jerky plastic flow. These observations were interpreted by homogeneous dislocation nucleation and dislocation glide on the basal plane.

  17. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    NASA Astrophysics Data System (ADS)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  18. Multiple Approaches to Characterizing Nano-Pore Structure of Barnett Shale

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Gao, Z.; Ewing, R. P.; Dultz, S.; Kaufmann, J.; Hamamoto, S.; Webber, B.; Ding, M.

    2013-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and mass transport. This presentation discusses various approaches to investigating nano-pore structure of Barnett shale, with its implications in gas production behavior. The innovative approaches include imbibition, tracer diffusion, edge-accessible porosity, porosimetry (mercury intrusion porosimetry, nitrogen and water vapor sorption isotherms, and nuclear magnetic resonance cyroporometry), and imaging (Wood's metal impregnation followed with laser ablation-inductively coupled plasma-mass spectrometry, focused ion beam/scanning electron microscopy, and small angle neutron scattering). Results show that the shale pores are predominantly in the nm size range, with measured median pore-throat diameters about 5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low mass diffusivity appears to be caused by low pore connectivity of Barnett shale. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition and diffusion tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the nano-pore structure characteristics of shales and other natural rocks.

  19. Oil/water nano-emulsion loaded with cobalt ferrite oxide nanocubes for photo-acoustic and magnetic resonance dual imaging in cancer: in vitro and preclinical studies.

    PubMed

    Vecchione, Raffaele; Quagliariello, Vincenzo; Giustetto, Pierangela; Calabria, Dominic; Sathya, Ayyappan; Marotta, Roberto; Profeta, Martina; Nitti, Simone; Silvestri, Niccolò; Pellegrino, Teresa; Iaffaioli, Rosario V; Netti, Paolo Antonio

    2017-01-01

    Dual imaging dramatically improves detection and early diagnosis of cancer. In this work we present an oil in water (O/W) nano-emulsion stabilized with lecithin and loaded with cobalt ferrite oxide (Co 0.5 Fe 2.5 O 4 ) nanocubes for photo-acoustic and magnetic resonance dual imaging. The nanocarrier is responsive in in vitro photo-acoustic and magnetic resonance imaging (MRI) tests. A clear and significant time-dependent accumulation in tumor tissue is shown in in vivo photo-acoustic studies on a murine melanoma xenograft model. The proposed O/W nano-emulsion exhibits also high values of r 2 /r 1 (ranging from 45 to 85, depending on the magnetic field) suggesting a possible use as T 2 weighted image contrast agents. In addition, viability and cellular uptake studies show no significant cytotoxicity on the fibroblast cell line. We also tested the O/W nano-emulsion loaded with curcumin against melanoma cancer cells demonstrating a significant cytotoxicity and thus showing possible therapeutic effects in addition to the in vivo imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Applications of Nano palm oil fuel ash and Nano fly ash in concrete

    NASA Astrophysics Data System (ADS)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    This paper discusses the applications of Nano waste materials including palm oil fuel ash and fly ash in the concrete production. The implementation of nanotechnology has been instrumental in the development of significant interest among the stakeholders to improve the mechanical and chemical properties of materials involved in the production of concrete. Although many researchers have shown the potential of nanomaterials to increase strength and durability of concrete and improve its physical and chemical properties, there is still a knowledge gap regarding the preparation of Nano waste materials from agricultural waste to use as cement replacement instead of non-renewable materials. Therefore, it should be focused on to study Nano- waste materials to benefit from these characteristics during preparation of concrete mixtures. Therefore, this paper highlights the potential of waste materials in the Nano size to partially replace cement in concrete and achieve the same or better result than the traditional concrete. This paper recommends to conduct further experimental works to improve the concrete material properties by investigating the properties of waste materials in Nano size.

  1. The Effects of Natural Clinoptilolite and Nano-Sized Clinoptilolite Supplementation on Glucose Levels and Oxidative Stress in Rats With Type 1 Diabetes.

    PubMed

    Hossein Nia, Behnoosh; Khorram, Sirous; Rezazadeh, Hassan; Safaiyan, Abdolrasol; Tarighat-Esfanjani, Ali

    2018-02-01

    Oxidative stress has a major role in development of diabetic complications. In this study we investigated whether clinoptilolite and nano-sized clinoptilolite could reduce hyperglycemia and oxidative stress in streptozotocin-induced diabetic rats and attempted to determine which intervention was more effective. Thirty-six rats were randomly allocated to 2 groups; 1 group was randomly chosen as a diabetic group and injected with streptozotocin (60 mg/kg body weight in 0.1 mol/L sodium citrate buffer, pH 4.5) to induce diabetes. Three days after diabetes induction, each group (diabetic group and nondiabetic group) was randomly divided into 3 subgroups of 6 animals each ([1] control, [2] 1% clinoptilolite/food, [3] 1% nano-sized clinoptilolite/food). Supplementation was continued for 28 days. Blood glucose was measured 3 times, at the beginning of the study and on the 14th and 28th days. Activity of antioxidant enzymes, including glutathione peroxidase and superoxide dismutase, and levels of total antioxidant capacity, as well as malondialdehyde, were evaluated. Blood glucose and malondialdehyde were significantly elevated, but there were no statistically significant changes in superoxide dismutase, glutathione peroxidase or total antioxidant capacity in diabetic rats. In diabetic rats treated with nano-sized clinoptilolite, blood glucose decreased to near normal levels (12.4 vs. 27.5 mmol/L). No significant changes were found in the other groups. None of the oxidative stress indices showed significant changes in either the treated or untreated rats. Nano-sized clinoptilolite exerted a hypoglycemic effect in streptozotocin-induced diabetic rats but had no significant influence on oxidative stress markers. Copyright © 2018. Published by Elsevier Inc.

  2. Flow-induced voltage generation by moving a nano-sized ionic liquids droplet over a graphene sheet: Molecular dynamics simulation.

    PubMed

    Shao, Qunfeng; Jia, Jingjing; Guan, Yongji; He, Xiaodong; Zhang, Xiaoping

    2016-03-28

    In this work, the phenomenon of the voltage generation is explored by using the molecular dynamics simulations, which is performed by driving a nano-sized droplet of room temperature ionic liquids moving along the monolayer graphene sheet for the first time. The studies show that the cations and anions of the droplet will move with velocity nonlinearly increasing to saturation arising by the force balance. The traditional equation for calculating the induced voltage is developed by taking the charge density into consideration, and larger induced voltages in μV-scale are obtained from the nano-size simulation systems based on the ionic liquids (ILs) for its enhanced ionic drifting velocities. It is also derived that the viscosity acts as a reduction for the induced voltage by comparing systems composed of two types of ILs with different viscosity and temperature.

  3. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  4. Sol-gel-Derived nano-sized double layer anti-reflection coatings (SiO2/TiO2) for low-cost solar cell fabrication.

    PubMed

    Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho

    2013-11-01

    We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.

  5. SiN-SiC nanofilm: A nano-functional ceramic with bipolar magnetic semiconducting character

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiahui; Li, Xingxing; Yang, Jinlong, E-mail: jlyang@ustc.edu.cn

    2014-04-28

    Nowadays, functional ceramics have been largely explored for application in various fields. However, magnetic functional ceramics for spintronics remain little studied. Here, we propose a nano-functional ceramic of sphalerite SiN-SiC nanofilm with intrinsic ferromagnetic order. Based on first principles calculations, the SiN-SiC nanofilm is found to be a ferromagnetic semiconductor with an indirect band gap of 1.71 eV. By mean field theory, the Curie temperature is estimated to be 304 K, close to room temperature. Furthermore, the valence band and conduction band states of the nanofilm exhibit inverse spin-polarization around the Fermi level. Thus, the SiN-SiC nanofilm is a typical bipolar magneticmore » semiconductor in which completely spin-polarized currents with reversible spin polarization can be created and controlled by applying a gate voltage. Such a nano-functional ceramic provides a possible route for electrical manipulation of carrier's spin orientation.« less

  6. 'Nano-immuno test' for the detection of live Mycobacterium avium subspecies paratuberculosis bacilli in the milk samples using magnetic nano-particles and chromogen.

    PubMed

    Singh, Manju; Singh, Shoor Vir; Gupta, Saurabh; Chaubey, Kundan Kumar; Stephan, Bjorn John; Sohal, Jagdip Singh; Dutta, Manali

    2018-04-26

    Early rapid detection of Mycobacterium avium subspecies paratuberculosis (MAP) bacilli in milk samples is the major challenge since traditional culture method is time consuming and laboratory dependent. We report a simple, sensitive and specific nano-technology based 'Nano-immuno test' capable of detecting viable MAP bacilli in the milk samples within 10 h. Viable MAP bacilli were captured by MAP specific antibody-conjugated magnetic nano-particles using resazurin dye as chromogen. Test was optimized using true culture positive (10-bovine and 12-goats) and true culture negative (16-bovine and 25-goats) raw milk samples. Domestic livestock species in India are endemically infected with MAP. After successful optimization, sensitivity and specificity of the 'nano-immuno test' in goats with respect to milk culture was 91.7% and 96.0%, respectively. Whereas, it was 90.0% (sensitivity) and 92.6% (specificity) with respect to IS900 PCR. In bovine milk samples, sensitivity and specificity of 'nano-immuno test' with respect to milk culture was 90.0% and 93.7%, respectively. However, with respect to IS900 PCR, the sensitivity and specificity was 88.9% and 94.1%, respectively. Test was validated with field raw milk samples (goats-258 and bovine-138) collected from domestic livestock species to detect live/viable MAP bacilli. Of 138 bovine raw milk samples screened by six diagnostic tests, 81 (58.7%) milk samples were positive for MAP infection in one or more than one diagnostic tests. Of 81 (58.7%) positive bovine raw milk samples, only 24 (17.4%) samples were detected positive for the presence of viable MAP bacilli. Of 258 goats raw milk samples screened by six diagnostic tests, 141 (54.6%) were positive for MAP infection in one or more than one test. Of 141 (54.6%) positive raw milk samples from goats, only 48 (34.0%) were detected positive for live MAP bacilli. Simplicity and efficiency of this novel 'nano-immuno test' makes it suitable for wide-scale screening of milk

  7. Coordination nano-space as stage of hydrogen ortho-para conversion.

    PubMed

    Kosone, Takashi; Hori, Akihiro; Nishibori, Eiji; Kubota, Yoshiki; Mishima, Akio; Ohba, Masaaki; Tanaka, Hiroshi; Kato, Kenichi; Kim, Jungeun; Real, José Antonio; Kitagawa, Susumu; Takata, Masaki

    2015-07-01

    The ability to design and control properties of nano-sized space in porous coordination polymers (PCPs) would provide us with an ideal stage for fascinating physical and chemical phenomena. We found an interconversion of nuclear-spin isomers for hydrogen molecule H2 adsorbed in a Hofmann-type PCP, {Fe(pz)[Pd(CN)4]} (pz=pyrazine), by the temperature dependence of Raman spectra. The ortho (o)-para (p) conversion process of H2 is forbidden for an isolated molecule. The charge density study using synchrotron radiation X-ray diffraction reveals the electric field generated in coordination nano-space. The present results corroborate similar findings observed on different systems and confirm that o-p conversion can occur on non-magnetic solids and that electric field can induce the catalytic hydrogen o-p conversion.

  8. Coordination nano-space as stage of hydrogen ortho–para conversion

    PubMed Central

    Kosone, Takashi; Hori, Akihiro; Nishibori, Eiji; Kubota, Yoshiki; Mishima, Akio; Ohba, Masaaki; Tanaka, Hiroshi; Kato, Kenichi; Kim, Jungeun; Real, José Antonio; Kitagawa, Susumu; Takata, Masaki

    2015-01-01

    The ability to design and control properties of nano-sized space in porous coordination polymers (PCPs) would provide us with an ideal stage for fascinating physical and chemical phenomena. We found an interconversion of nuclear-spin isomers for hydrogen molecule H2 adsorbed in a Hofmann-type PCP, {Fe(pz)[Pd(CN)4]} (pz=pyrazine), by the temperature dependence of Raman spectra. The ortho (o)–para (p) conversion process of H2 is forbidden for an isolated molecule. The charge density study using synchrotron radiation X-ray diffraction reveals the electric field generated in coordination nano-space. The present results corroborate similar findings observed on different systems and confirm that o–p conversion can occur on non-magnetic solids and that electric field can induce the catalytic hydrogen o–p conversion. PMID:26587262

  9. Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid.

    PubMed

    Qiu, Zhigang; Shen, Zhiqiang; Qian, Di; Jin, Min; Yang, Dong; Wang, Jingfeng; Zhang, Bin; Yang, Zhongwei; Chen, Zhaoli; Wang, Xinwei; Ding, Chengshi; Wang, Daning; Li, Jun-Wen

    2015-01-01

    The potential risks of nano-materials and the spread of antibiotic resistance genes (ARGs) have become two major global public concerns. Studies have confirmed that nano-alumina can promote the spread of ARGs mediated by plasmids. Nano-titanium dioxide (TiO(2)), an excellent photocatalytic nano-material, has been widely used and is often present in aqueous environments. At various nano-material concentrations, bacterial density, matting time, and matting temperature, nano-TiO(2) can significantly promote the conjugation of RP4 plasmid in Escherichia coli. We developed a mathematical model to quantitatively describe the conjugation process and used this model to evaluate the effects of nano-TiO(2) on the spread of ARGs. We obtained analytical solutions for total and resistant bacteria, which were enumerated by the abundance of genetic loci unique to the plasmid and the chromosome using qPCR. Our results showed that the mathematic model was able to fit the experimental data well and can be used to quantitatively evaluate the effects of nano-TiO(2). According to our model, the presence of nano-TiO(2) decreased the bacterial growth rate from 0.0360 to 0.0323 min(-1) and increased the conjugative transfer rate from 6.69 × 10(-12) to 3.93 × 10(-10 )mL cell(-1) min(-1). These results indicate that nano-TiO(2) inhibited bacterial growth and promoted conjugation simultaneously. The data for morphology and mRNA expression also demonstrated this phenomenon. Our results confirm that environmental nano-TiO(2) may cause the spread of ARGs and thus poses an environmental risk. In addition, we provide a potential method for monitoring changes in ARGs that result from conjugation and evaluating the effects of antimicrobial substances on ARG expression.

  10. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

    PubMed

    Céspedes, Eva; Byrne, James M; Farrow, Neil; Moise, Sandhya; Coker, Victoria S; Bencsik, Martin; Lloyd, Jonathan R; Telling, Neil D

    2014-11-07

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.

  11. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice.

    PubMed

    Wang, Huali; Zhang, Jinsong; Yu, Hanqing

    2007-05-15

    Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.

  12. Nano-Pore Size Analysis by SAXS Method of Cementitious Mortars Undergoing Delayed Ettringite Formation

    NASA Astrophysics Data System (ADS)

    Shekar, Yamini

    This research investigates the nano-scale pore structure of cementitious mortars undergoing delayed ettringite formation (DEF) using small angle x-ray scattering (SAXS). DEF has been known to cause expansion and cracking during later ages (around 4000 days) in concrete that has been heat cured at temperatures of 70°C or above. Though DEF normally occurs in heat cured concrete, mass cured concrete can also experience DEF. Large crystalline pressures result in smaller pore sizes. The objectives of this research are: (1) to investigate why some samples expand early than later expansion, (2) to evaluate the effects of curing conditions and pore size distributions at high temperatures, and (3) to assess the evolution of the pore size distributions over time. The most important outcome of the research is the pore sizes obtained from SAXS were used in the development of a 3-stage model. From the data obtained, the pore sizes increase in stage 1 due to initial ettringite formation and in turn filling up the smallest pores. Once the critical pore size threshold is reached (around 20nm) stage 2 is formed due to cracking which tends to decrease in the pore sizes. Finally, in stage 3, the cracking continues, therefore increasing in the pore size.

  13. Investigation of structural, optical, magnetic and electrical properties of tungsten doped Nisbnd Zn nano-ferrites

    NASA Astrophysics Data System (ADS)

    Pathania, Abhilash; Bhardwaj, Sanjay; Thakur, Shyam Singh; Mattei, Jean-Luc; Queffelec, Patrick; Panina, Larissa V.; Thakur, Preeti; Thakur, Atul

    2018-02-01

    Tungsten substituted nickel-zinc ferrite nanoparticles with chemical composition of Ni0.5Zn0.5WxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 & 1.0) were successfully synthesized by a chemical co-precipitation method. The prepared ferrites were pre sintered at 850 °C and then annealed at 1000 °C in a muffle furnace for 3 h each. This sintered powder was inspected by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM) to study the structural, optical, and magnetic properties. XRD measurement revealed the phase purity of all the nanoferrite samples with cubic spinel structure. The estimated crystallite size by X-ray line broadening is found in the range of 49-62 nm. FTIR spectra of all the samples have observed two prominent absorption bands in the range 400-700 cm-1 arising due to tetrahedral and octahedral stretching vibrations. Vibrating sample magnetometer experiments showed that the saturation magnetizations (MS) decreased with an increase in non-magnetic tungsten ion doping. The electrical resistivity of tungsten doped Nisbnd Zn nano ferrites were examined extensively as a function of temperature. With an increase in tungsten composition, resistivity was found to decrease from 2.2 × 105 Ω cm to 1.9 × 105 Ω cm which indicates the semiconducting behavior of the ferrite samples. The activation energy also decreased from 0.0264 to 0.0221 eV at x = 0.0 to x = 1.0. These low coercive field tungsten doped Nisbnd Zn ferrites are suitable for hyperthermia and sensor applications. These observations are explained in detail on the basis of various models and theories.

  14. A review of the magnetic properties, synthesis methods and applications of maghemite

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.

    2017-03-01

    It must be pointed out that maghemite (γ-Fe2O3) with a cubic spinel structure is a crucial material for various applications, including spin electronic devices, high-density magnetic recording, nano-medicines and biosensors. This paper has to do with a review study on the synthesis methods, magnetic properties and application of maghemite in the form of one-dimensional (1D) nanostructured materials, such as nanoparticles, nanotubes, nano-rods, and nanowires, as well as two-dimensional (2D) thin films. The results revealed that maghemite is widely used in the biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) and magnetic recording devices. The unmodified and Co/Mn modified maghemite thin films prepared by the dc-reactive magnetron sputtering show the excellent values of coercivity 2100 Oe and 3900 Oe, respectively, for the magnetic storage application. The super-paramagnetic particles with 7 nm size and the saturation magnetization of 80 emu/g prepared by the established thermolysis method are good candidates for bio-medical applications.

  15. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures.

    PubMed

    Abazari, Amir Musa; Safavi, Seyed Mohsen; Rezazadeh, Ghader; Villanueva, Luis Guillermo

    2015-11-11

    Experiments on micro- and nano-mechanical systems (M/NEMS) have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke's law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS. In this paper, we summarize and analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT), Surface Stress Theory (SST), Residual Stress Theory (RST), Couple Stress Theory (CST) and Surface Elasticity Theory (SET). By comparing these theories with experimental data we propose a simplified model combination of CST and SET that properly fits all considered cases, therefore delivering a simple (two parameters) model that can be used to predict the mechanical properties at the nanoscale.

  16. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures

    PubMed Central

    Abazari, Amir Musa; Safavi, Seyed Mohsen; Rezazadeh, Ghader; Villanueva, Luis Guillermo

    2015-01-01

    Experiments on micro- and nano-mechanical systems (M/NEMS) have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke’s law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS. In this paper, we summarize and analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT), Surface Stress Theory (SST), Residual Stress Theory (RST), Couple Stress Theory (CST) and Surface Elasticity Theory (SET). By comparing these theories with experimental data we propose a simplified model combination of CST and SET that properly fits all considered cases, therefore delivering a simple (two parameters) model that can be used to predict the mechanical properties at the nanoscale. PMID:26569256

  17. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    NASA Astrophysics Data System (ADS)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  18. Effect of magnetic anisotropy and particle size distribution on temperature dependent magnetic hyperthermia in Fe3O4 ferrofluids

    NASA Astrophysics Data System (ADS)

    Palihawadana Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman; Naik, Ratna

    Magnetic hyperthermia (MHT) has a great potential as a non-invasive cancer therapy technique. Specific absorption rate (SAR) which measures the efficiency of heat generation, mainly depends on magnetic properties of nanoparticles such as saturation magnetization (Ms) and magnetic anisotropy (K) which depend on the size and shape. Therefore, MHT applications of magnetic nanoparticles often require a controllable synthesis to achieve desirable magnetic properties. We have synthesized Fe3O4 nanoparticles using two different methods, co-precipitation (CP) and hydrothermal (HT) techniques to produce similar XRD crystallite size of 12 nm, and subsequently coated with dextran to prepare ferrofluids for MHT. However, TEM measurements show average particle sizes of 13.8 +/-3.6 nm and 14.6 +/-3.6 nm for HT and CP samples, implying the existence of an amorphous surface layer for both. The MHT data show the two samples have very different SAR values of 110 W/g (CP) and 40W/g (HT) at room temperature, although they have similar Ms of 70 +/-4 emu/g regardless of their different TEM sizes. We fitted the temperature dependent SAR using linear response theory to explain the observed results. CP sample shows a larger magnetic core with a narrow size distribution and a higher K value compared to that of HT sample.

  19. From micro- to nano-scale molding of metals : size effect during molding of single crystal Al with rectangular strip punches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Meng, W. J.; Mei, F.

    2011-02-01

    A single crystal Al specimen was molded at room temperature with long, rectangular, strip diamond punches. Quantitative molding response curves were obtained at a series of punch widths, ranging from 5 {micro}m to 550 nm. A significant size effect was observed, manifesting itself in terms of significantly increasing characteristic molding pressure as the punch width decreases to 1.5 {micro}m and below. A detailed comparison of the present strip punch molding results was made with Berkovich pyramidal indentation on the same single crystal Al specimen. The comparison reveals distinctly different dependence of the characteristic pressure on corresponding characteristic length. The presentmore » results show the feasibility of micro-/nano-scale compression molding as a micro-/nano-fabrication technique, and offer an experimental test case for size-dependent plasticity theories.« less

  20. Domain Wall Depinning Assisted by Current-Induced Oersted Field in Nano-oxide Layer Inserted Magnetic Stripes

    NASA Astrophysics Data System (ADS)

    Nam, Chunghee; Cho, Beong-Ki

    2011-11-01

    The effect of the local Oersted field on a pinned domain wall (DW) was investigated in a magnetic spin-valve nanowire. The Oersted field is produced by a low current, which is confined under a nano-oxide layer (NOL) inserted into the NiFe layer in sub/NiFe/Cu/NiFe/NOL/NiFe. It was found that the depinning field of the pinned DW decreases linearly as the magnitude of current (or equivalently Oersted field) increases. The Oersted field was believed to change the internal magnetic structure of DW, such that the DW pinning energy was lowered, resulting in the reduction of the depinning field.

  1. Magnetic Particles Coupled to Disposable Screen Printed Transducers for Electrochemical Biosensing

    PubMed Central

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M.

    2016-01-01

    Ultrasensitive biosensing is currently a growing demand that has led to the development of numerous strategies for signal amplification. In this context, the unique properties of magnetic particles; both of nano- and micro-size dimensions; have proved to be promising materials to be coupled with disposable electrodes for the design of cost-effective electrochemical affinity biosensing platforms. This review addresses, through discussion of selected examples, the way that nano- and micro-magnetic particles (MNPs and MMPs; respectively) have contributed significantly to the development of electrochemical affinity biosensors, including immuno-, DNA, aptamer and other affinity modes. Different aspects such as type of magnetic particles, assay formats, detection techniques, sensitivity, applicability and other relevant characteristics are discussed. Research opportunities and future development trends in this field are also considered. PMID:27681733

  2. Bacterial Magnetosome: A Novel Biogenetic Magnetic Targeted Drug Carrier with Potential Multifunctions

    PubMed Central

    Sun, Jianbo; Li, Ying; Liang, Xing-Jie; Wang, Paul C.

    2012-01-01

    Bacterial magnetosomes (BMs) synthesized by magnetotactic bacteria have recently drawn great interest due to their unique features. BMs are used experimentally as carriers for antibodies, enzymes, ligands, nucleic acids, and chemotherapeutic drugs. In addition to the common attractive properties of magnetic carriers, BMs also show superiority as targeting nanoscale drug carriers, which is hardly matched by artificial magnetic particles. We are presenting the potential applications of BMs as drug carriers by introducing the drug-loading methods and strategies and the recent research progress of BMs which has contributed to the application of BMs as drug carriers. PMID:22448162

  3. Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes.

    PubMed

    Lang, Claus; Schüler, Dirk; Faivre, Damien

    2007-02-12

    Magnetotactic bacteria (MTB) have the ability to navigate along the Earth's magnetic field. This so-called magnetotaxis is a result of the presence of magnetosomes, organelles which comprise nanometer-sized intracellular crystals of magnetite (Fe(3)O(4)) enveloped by a membrane. Because of their unique characteristics, magnetosomes have a high potential for nano- and biotechnological applications, which require a specifically designed particle surface. The functionalization of magnetosomes is possible either by chemical modification of purified particles or by genetic engineering of magnetosome membrane proteins. The second approach is potentially superior to chemical approaches as a large variety of biological functions such as protein tags, fluorophores, and enzymes may be directly incorporated in a site-specific manner during magnetosome biomineralization. An alternative to the bacterial production of magnetosomes are biomimetic approaches, which aim to mimic the bacterial biomineralization pathway in vitro. In MTB a number of magnetosome proteins with putative functions in the biomineralization of the nanoparticles have been identified by genetic and biochemical approaches. The initial results obtained by several groups indicate that some of these proteins have an impact on nanomagnetite properties in vitro. In this article the key features of magnetosomes are discussed, an overview of their potential applications are given, and different strategies are proposed for the functionalization of magnetosome particles and for the biomimetism of their biomineralization pathway.

  4. Tailoring magnetic domains in Gd-Fe thin films

    NASA Astrophysics Data System (ADS)

    Talapatra, A.; Chelvane, J. Arout; Mohanty, J.

    2018-05-01

    This paper presents the global modification of magnetic domains and magnetic properties in amorphous Gd19Fe81 thin films with rapid thermal processing at two distinct temperatures (250oC and 450oC), and with different time intervals viz., 2, 5, 10 and 20 minutes. 100 nm thick as-prepared films display nano-scale meandering stripe domains with high magnetic phase contrast which is the signature of perpendicular magnetic anisotropy. The films processed at 250oC for various time intervals show successive reduction in magnetic phase contrast and domain size. The domain pattern completely disappeared, and topography dominated mixed magnetic phase has been obtained for the films processed at 450oC for time intervals greater than 2 minutes. The magnetization measurements indicate the reduction in perpendicular magnetic anisotropy with increase in saturation magnetization for all the rapid thermal processed films. The experimental outputs have been used to simulate the domain pattern. Reduction in uniaxial anisotropy along with the increase in saturation magnetization successfully explain the experimental trend of decrease in domain size and magnetic contrast.

  5. Properties of forced convection experimental with silicon carbide based nano-fluids

    NASA Astrophysics Data System (ADS)

    Soanker, Abhinay

    With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano

  6. Shape, size, and distribution of magnetic particles in Bjurbole chondrules

    NASA Technical Reports Server (NTRS)

    Nava, David F.

    1994-01-01

    Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.

  7. Meditations on the ubiquity and mutability of nano-sized materials in the environment.

    PubMed

    Wiesner, Mark R; Lowry, Gregory V; Casman, Elizabeth; Bertsch, Paul M; Matson, Cole W; Di Giulio, Richard T; Liu, Jie; Hochella, Michael F

    2011-11-22

    A wide variety of nanomaterials can be found naturally occurring in the environment, although finding and characterizing these materials remains a challenge due to their size. Recent studies in the field have shown that natural nanomaterials are common in many geochemical systems. In this issue of ACS Nano, Hutchison and co-workers make us realize that manmade nanomaterials can often be practically identical to those that spontaneously form in the environment. This Perspective discusses the prevalence of nanomaterials in nature, including anthropogenic and naturally occurring nanomaterials, and the dynamic behavior of these materials in the environment. © 2011 American Chemical Society

  8. Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ju; Park, Eun-Kwang; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Lee, Min-Ku

    2017-09-01

    Carbon steel with dispersed nano-sized TiC ceramic particles was fabricated by the ex-situ introduction of the particles into the melt, with the flow-assisted corrosion (FAC) resistance then investigated in the presence and absence of TiC nanoparticles using a once-through type of FAC loop test. From the potentiodynamic polarization curves, the current density at any given anodic potential was decreased and the open-circuit potential was increased by the addition of TiC nanoparticles. In addition, when the nano-sized TiC particles were added, the FAC rate was 1.38 times lower than that of carbon steel without TiC nanoparticles, indicating an improvement of the FAC resistance due to the homogeneous distribution of the TiC reinforcing nanoparticles.

  9. Magnetic stage with environmental control for optical microscopy and high-speed nano- and microrheology

    NASA Astrophysics Data System (ADS)

    Aprelev, Pavel; McKinney, Bonni; Walls, Chadwick; Kornev, Konstanin G.

    2017-07-01

    A novel design of a low-field magnetic stage for optical microscopy of droplets and films within a controlled environment is described. The stage consists of five magnetic coils with a 3D magnetic sensor in a feedback control loop, which allows one to manipulate magnetic nano- and microprobes with microtesla fields. A locally uniform time-dependent field within the focal plane of the microscope objective enables one to rotate the probes in a precisely set manner and observe their motion. The probe tracking protocol was developed to follow the probe rotation in real time and relate it with the viscosity of the host liquid. Using this magnetic stage, a method for measuring mPa s-level viscosity of nanoliter droplets and micron thick films in a 10-20 s timeframe is presented and validated. The viscosity of a rapidly changing liquid can be tracked by using only a few visible probes rotating simultaneously. Vapor pressure and temperature around the sample can be controlled to directly measure viscosity as a function of equilibrium vapor pressure; this addresses a significant challenge in characterization of volatile nanodroplets and thin films. Thin films of surfactant solutions undergoing phase transitions upon solvent evaporation were studied and their rheological properties were related to morphological changes in the material.

  10. Gap-mode-assisted light-induced switching of sub-wavelength magnetic domains

    NASA Astrophysics Data System (ADS)

    Scheunert, G.; McCarron, R.; Kullock, R.; Cohen, S. R.; Rechav, K.; Kaplan-Ashiri, I.; Bitton, O.; Hecht, B.; Oron, D.

    2018-04-01

    Creating sub-micron hotspots for applications such as heat-assisted magnetic recording (HAMR) is a challenging task. The most common approach relies on a surface-plasmon resonator (SPR), whose design dictates the size of the hotspot to always be larger than its critical dimension. Here, we present an approach which circumvents known geometrical restrictions by resorting to electric field confinement via excitation of a gap-mode (GM) between a comparatively large Gold (Au) nano-sphere (radius of 100 nm) and the magnetic medium in a grazing-incidence configuration. Operating a λ=785 nm laser, sub-200 nm hot spots have been generated and successfully used for GM-assisted magnetic switching on commercial CoCrPt perpendicular magnetic recording media at laser powers and pulse durations comparable to SPR-based HAMR. Lumerical electric field modelling confirmed that operating in the near-infrared regime presents a suitable working point where most of the light's energy is deposited in the magnetic layer, rather than in the nano-particle. Further, modelling is used for predicting the limits of our method which, in theory, can yield sub-30 nm hotspots for Au nano-sphere radii of 25-50 nm for efficient heating of FePt recording media with a gap of 5 nm.

  11. Nano-sized particles, processes of making, compositions and uses thereof

    DOEpatents

    O'Brien, Stephen [New York, NY; Yin, Ming [Los Alamos, NM

    2012-05-22

    The present invention describes methods for preparing high quality nanoparticles, i.e., metal oxide based nanoparticles of uniform size and monodispersity. The nanoparticles advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents. The methods of the invention provide a simple and reproducible procedure for forming transition metal oxide nanocrystals, with yields over 80%. The highly crystalline and monodisperse nanocrystals are obtained directly without further size selection; particle size can be easily and fractionally increased by the methods. The resulting nanoparticles can exhibit magnetic and/or optical properties. These properties result from the methods used to prepare them. Also advantageously, the nanoparticles of this invention are well suited for use in a variety of industrial applications, including cosmetic and pharmaceutical formulations and compositions.

  12. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China.

    PubMed

    Liao, Hao; Zhang, Yuchen; Zuo, Qinyan; Du, Binbin; Chen, Wenli; Wei, Dan; Huang, Qiaoyun

    2018-04-20

    Soils, with non-uniform distribution of nutrients across different aggregate-size fractions, provide spatially heterogeneous microhabitats for microorganisms. However, very limited information is available on microbial distributions and their response to fertilizations across aggregate-size fractions in agricultural soils. Here, we examined the structures of bacterial and fungal communities across different aggregate-size fractions (2000-250 μm, 250-53 μm and <53 μm) in response to 35-years organic and/or chemical fertilization regimes in the soil of northeastern China by phospholipid fatty acid (PLFA) and high throughput sequencing (HTS) technology. Our results show that larger fractions (>53 μm), especially 250-53 μm aggregates, which contain more soil C and N, are associated with greater microbial biomass and higher fungi/bacteria ratio. We firstly reported the fungal community composition in different aggregate-size fractions by HTS technology and found more Ascomycota but less Zygomycota in larger fractions with higher C content across all fertilization regimes. Fertilization and aggregate-size fractions significantly affect the compositions of bacterial and fungal communities although their effects are different. The bacterial community is mainly driven by fertilization, especially chemical fertilizers, and is closely related to the shifts of soil P (phosphorus). The fungal community is preferentially impacted by different aggregate-size fractions and is more associated with the changes of soil C and N. The distinct responses of microbial communities suggest different mechanisms controlling the assembly of soil bacterial and fungal communities at aggregate scale. The investigations of both bacterial and fungal communities could provide a better understanding on nutrient cycling across aggregate-size fractions. Copyright © 2018. Published by Elsevier B.V.

  13. Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2018-05-01

    The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.

  14. Replication of surface nano-structure of the wing of dragonfly ( Pantala Flavescens) using nano-molding and UV nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Cho, Joong-Yeon; Kim, Gyutae; Kim, Sungwook; Lee, Heon

    2013-07-01

    The hydrophobicity of a dragonfly's wing originates from the naturally occurring nano-structure on its surface. The nano-structure on a dragonfly's wing consists of an array of nano-sized pillars, 100 nm in diameter. We re-create this hydrophobicity on various substrates, such as Si, glass, curved acrylic polymer, and flexible PET film, by replicating the nano-structure using UV curable nano-imprint lithography (NIL) and PDMS molding. The success of the nano-structure duplication was confirmed using scanning electron microscopy (SEM). The hydrophobicity was measured by water-based contact angle measurements. The water contact angle of the replica made of UV cured polymer was 135° ± 2°, which was slightly lower than that of the original dragonfly's wing (145° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (80°). The hydrophobicity was further improved by applying a coating of Teflon-like material.

  15. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    PubMed

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effects of parallel magnetic field on electrocodeposition behavior of Fe/nano-Si particles composite electroplating

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhong, Yunbo; Wang, Huai; Long, Qiong; Li, Fu; Sun, Zongqian; Dong, Licheng; Fan, Lijun

    2013-10-01

    The influence of an external parallel strong parallel magnetic field (respect to current) on the electrocodeposition of nano-silicon particles into an iron matrix has been studied in this paper. Test results show that magnetic field has a great influence on the distribution of silicon, as well as the surface morphology and the thickness of the composite coatings. When no magnetic field was applied, a high current density was needed to get high concentration of silicon particles, while that could be easily obtained at a low current density with a 2 T parallel magnetic field. However, Owing to the unevenness of the current density J-distribution on the surface of the electrode in 8 T, the thicker and rougher composite deposits appear in the edge region (L or R region), and the thinner and smoother ones appear in the middle region (M). Meanwhile, the distribution curve of silicon content looks like a “pan” along the center line of coatings. A possible mechanism combining to the numerical simulation results was suggested out to illustrate the obtained experiment results.

  17. Biocellulose-based flexible magnetic paper

    NASA Astrophysics Data System (ADS)

    Barud, H. S.; Tercjak, A.; Gutierrez, J.; Viali, W. R.; Nunes, E. S.; Ribeiro, S. J. L.; Jafellici, M.; Nalin, M.; Marques, R. F. C.

    2015-05-01

    Biocellulose or bacterial cellulose (BC) is a biocompatible (nano) material produced with a three-dimensional network structure composed of microfibrils having nanometric diameters obtained by the Gluconacetobacter xylinus bacteria. BC membranes present relatively high porosity, allowing the incorporation or synthesis in situ of inorganic nanoparticles for multifunctional applications and have been used as flexible membranes for incorporation of magnetic nanocomposite. In this work, highly stable superparamagnetic iron oxide nanoparticles (SPION), functionalized with polyethylene glycol (PEG), with an average diameter of 5 nm and a saturation magnetization of 41 emu/g at 300 K were prepared. PEG-Fe2O3 hybrid was dispersed by mixing a pristine BC membrane in a stable aqueous dispersion of PEG-SPION. The PEG chains at PEG-SPION's surface provide a good permeability and strong affinity between the BC chains and SPION through hydrogen-bonding interactions. PEG-SPION also allow the incorporation of higher content of nanoparticles without compromising the mechanical properties of the nanocomposite. Structural and magnetic properties of the composite have been characterized by XRD, SEM, energy-dispersive X-ray spectroscopy (EDX), magnetization, Raman spectroscopy, and magnetic force microscopy.

  18. Thermal annealing behavior of nano-size metal-oxide particles synthesized by ion implantation in Fe-Cr alloy

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Descoins, M.; Mangelinck, D.; Dalle, F.; Arnal, B.; Delauche, L.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for the next generation nuclear reactors, as well as fusion facilities. The detailed understanding of the mechanisms involved in the precipitation of nano-oxides during ODS steel production would strongly contribute to the improvement of the mechanical properties and the optimization of manufacturing of ODS steels, with a potentially strong economic impact for their industrialization. A useful tool for the experimental study of nano-oxide precipitation is ion implantation, a technique that is widely used to synthesize precipitate nanostructures in well-controlled conditions. Earlier, we have demonstrated the feasibility of synthesizing aluminum-oxide particles in the high purity Fe-10Cr alloy by consecutive implantation with Al and O ions at room temperature. This paper describes the effects of high-temperature annealing after the ion implantation stage on the development of the aluminum based oxide nanoparticle system. Using transmission electron microscopy and atom probe tomography experiments, we demonstrate that post-implantation heat treatment induces the growth of the nano-sized oxides in the implanted region and nucleation of new oxide precipitates behind the implantation zone as a result of the diffusion driven broadening of implant profiles. A tentative scenario for the development of metal-oxide nano-particles at both ion implantation and heat treatment stages is suggested based on the experimental observations.

  19. Magnetic properties of Sn-substituted Ni-Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2

    NASA Astrophysics Data System (ADS)

    Ali, MA; Uddin, MM; Khan, MNI; Chowdhury, FUZ; Hoque, SM; Liba, SI

    2017-06-01

    A series of Ni0.6-x/2Zn0.4-x/2Sn x Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3) (NZSFO) ferrite composities have been synthesized from nano powders using a standard solid state reaction technique. The spinel cubic structure of the investigated samples has been confirmed by x-ray diffraction (XRD). The magnetic properties such as saturation magnetization ({M}{{s}}), remanent magnetization ({M}{{r}}), coercive field ({H}{{c}}), and Bohr magneton (μ) are calculated from the hysteresis loops. The value of {M}{{s}} is found to decrease with increasing Sn content in the samples. This change is successfully explained by the variation of A-B interaction strength due to Sn substitution in different sites. The compositional stability and quality of the prepared ferrite composites have also been endorsed by the fairly constant initial permeability ({μ }^{\\prime }) over a wide range of frequency. The decreasing trend of {μ }^{\\prime } with increasing Sn content has been observed. Curie temperature {T}{{C}} has been found to increase with the increase in Sn content. A wide spread frequency utility zone indicates that the NZSFO can be considered as a good candidate for use in broadband pulse transformers and wide band read-write heads for video recording. The composition of x = 0.05 shows unusual results and the possible reason is also mentioned with the established formalism.

  20. Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion

    NASA Astrophysics Data System (ADS)

    Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li

    2018-03-01

    A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.

  1. Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations

    NASA Astrophysics Data System (ADS)

    Granata, Carmine; Vettoliere, Antonio

    2016-02-01

    The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In

  2. Tumor Size of Invasive Breast Cancer on Magnetic Resonance Imaging and Conventional Imaging (Mammogram/Ultrasound): Comparison with Pathological Size and Clinical Implications.

    PubMed

    Haraldsdóttir, K H; Jónsson, Þ; Halldórsdóttir, A B; Tranberg, K-G; Ásgeirsson, K S

    2017-03-01

    In Landspitali University Hospital, magnetic resonance imaging is used non-selectively in addition to mammogram and ultrasound in the preoperative assessment of breast cancer patients. The aim of this study was to assess invasive tumor size on imaging, compare with pathological size and evaluate the impact of magnetic resonance imaging on the type of surgery performed. All women with invasive breast cancer, diagnosed in Iceland, between 2007 and 2009 were reviewed retrospectively. In all, 438 of 641 (68%) patients diagnosed had preoperative magnetic resonance imaging. Twelve patients treated with neoadjuvant chemotherapy were excluded and 65 patients with multifocal or contralateral disease were assessed separately. Correlations between microscopic and radiologic tumor sizes were relatively weak. All imaging methods were inaccurate especially for large tumors, resulting in an overall underestimation of tumor size for these tumors. Magnetic resonance imaging under- and overestimated pathological tumor size by more than 10 mm in 16/348 (4.6%) and 26/348 patients (7.5%), respectively. In 19 patients (73%), overestimation of size was seen exclusively on magnetic resonance imaging. For tumors under- or overestimated by magnetic resonance imaging, the mastectomy rates were 56% and 65%, respectively, compared to an overall mastectomy rate of 43%. Of 51 patients diagnosed with multifocal disease on pathology, 19 (37%) were diagnosed by mammogram or ultrasound and 40 (78%) by magnetic resonance imaging resulting in a total detection rate of 84% (43 patients). Fourteen (3%) patients were diagnosed preoperatively with contralateral disease. Of those tumors, all were detected on magnetic resonance imaging but seven (50%) were also detected on mammogram or ultrasound or both. Our results suggest that routine use of magnetic resonance imaging may result in both under- and overestimation of tumor size and increase mastectomy rates in a small proportion of patients. Magnetic

  3. Effect of finite size in magnetic properties of BaFe12O19

    NASA Astrophysics Data System (ADS)

    Kumar, A. Sendil; Bhatnagar, Anil K.

    2018-05-01

    BaFe12O19 Nanoparticles are prepared through auto ignition method and structure, microstructure and magnetic properties are characterized. Samples having spherical shapes and elongated nanorods are chosen to investigate the role of finite size effect in magnetic properties. Magnetization studies show superparamagnetic, antiferromagnetic and ferrimagnetic behaviors depending on the size and shape. Very small coercive field of around 200 Oe is observed for spherical nanoparticles and a large coercive field of around 7000 Oe for nanorods is found. The shape and size plays an important role in magnetic properties of BaFe12O19 nanoparticles. Shape anisotropy has significant value compared to other anisotropies. Therefore shape of nanoparticles influences the magnetic order.

  4. NanoSQUIDs: Basics & recent advances

    NASA Astrophysics Data System (ADS)

    José Martínez-Pérez, Maria; Koelle, Dieter

    2017-08-01

    Superconducting Quantum Interference Devices (SQUIDs) are one of the most popular devices in superconducting electronics. They combine the Josephson effect with the quantization of magnetic flux in superconductors. This gives rise to one of the most beautiful manifestations of macroscopic quantum coherence in the solid state. In addition, SQUIDs are extremely sensitive sensors allowing us to transduce magnetic flux into measurable electric signals. As a consequence, any physical observable that can be converted into magnetic flux, e.g., current, magnetization, magnetic field or position, becomes easily accessible to SQUID sensors. In the late 1980s it became clear that downsizing the dimensions of SQUIDs to the nanometric scale would encompass an enormous increase of their sensitivity to localized tiny magnetic signals. Indeed, nanoSQUIDs opened the way to the investigation of, e.g., individual magnetic nanoparticles or surface magnetic states with unprecedented sensitivities. The purpose of this chapter is to present a detailed survey of microscopic and nanoscopic SQUID sensors. We will start by discussing the principle of operation of SQUIDs, placing the emphasis on their application as ultrasensitive detectors for small localized magnetic signals. We will continue by reviewing a number of existing devices based on different kinds of Josephson junctions and materials, focusing on their advantages and drawbacks. The last sections are left for applications of nanoSQUIDs in the fields of scanning SQUID microscopy and magnetic particle characterization, placing special stress on the investigation of individual magnetic nanoparticles.

  5. Perylene and Perylene-Derivative Nano-Cocrystals: Preparation and Physicochemical Property

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Konta, Sayaka; Oliveira, Daniel; Sugai, Kenji; Onodera, Tsunenobu; Masuhara, Akito; Kasai, Hitoshi; Oikawa, Hidetoshi; Nakanishi, Hachiro

    2012-12-01

    Organic nano-cocrystals of functional dyes of perylene and a perylene derivative were successfully prepared by the reprecipitation method. The particle sizes, optical properties, and powder X-ray diffraction patterns of nano-cocrystals were evaluated. Typically, the size with size distribution of nano-cocrystals was 55±15 nm when the molar ratio of perylene to the perylene derivative was 50:50. The particular intermolecular electronic interaction between perylene and the perylene derivative in the nano-cocrystal state was observed by absorption and fluorescence spectra measurements. The powder X-ray diffraction pattern analysis confirmed that the structure of nano-cocrystals was different from those prepared from perylene and the perylene derivative. The nano-cocrystal having unique physicochemical properties will be potentially classified as a new type of functional nanomaterial.

  6. Mixing of nanosize particles by magnetically assisted impaction techniques

    NASA Astrophysics Data System (ADS)

    Scicolone, James V.

    Nanoparticles and nanocomposites offer unique properties that arise from their small size, large surface area, and the interactions of phases at their interfaces, and are attractive for their potential to improve performance of drugs, biomaterials, catalysts and other high-value-added materials. However, a major problem in utilizing nanoparticles is that they often lose their high surface area due to grain growth. Creating nanostructured composites where two or more nanosized constituents are intimately mixed can prevent this loss in surface area, but in order to obtain homogeneous mixing, de-agglomeration of the individual nanoparticle constituents is necessary. Due to high surface area, nano-particles form very large, fractal agglomerates. The structure of these agglomerates can have a large agglomerate composed of sub-agglomerates (SA), which itself consists of primary agglomerates (PA), that contain chain or net like nano-particle structures; typically sub-micron size. Thus the final agglomerate has a hierarchical, fractal structure, and depending upon the forces applied, it could break down to a certain size scale. The agglomerates can be fairly porous and fragile or they could be quite dense, based on primary particle size and its surface energy. Thus depending upon the agglomerate strength at different length scales, one could achieve deagglomeration and subsequent mixing at varying length scale. A better understanding of this can have a major impact on the field of nano-structured materials; thus the long term objective of this project is to gain fundamental understanding of deagglomeration and mixing of nano-agglomerates. Dry mixing is in general not effective in achieving desired mixing at nanoscale, whereas wet mixing suffers from different disadvantages like nanomaterial of interest should be insoluble, has to wet the liquid, and involves additional steps of filtration and drying. This research examines the use of environmentally friendly a novel

  7. Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozorov, Tanya; Almeida, Trevor P.; Kovacs, Andras

    Here, the mapping of electrostatic potentials and magnetic fields in liquids using electron holography has been considered to be unrealistic. Here, we show that hydrated cells of Magnetospirillum magneticum strain AMB-1 and assemblies of magnetic nanoparticles can be studied using off-axis electron holography in a fluid cell specimen holder within the transmission electron microscope. Considering that the holographic object and reference wave both pass through liquid, the recorded electron holograms show sufficient interference fringe contrast to permit reconstruction of the phase shift of the electron wave and mapping of the magnetic induction from bacterial magnetite nanocrystals. We assess the challengesmore » of performing in situ magnetization reversal experiments using a fluid cell specimen holder, discuss approaches for improving spatial resolution and specimen stability, and outline future perspectives for studying scientific phenomena, ranging from interparticle interactions in liquids and electrical double layers at solid–liquid interfaces to biomineralization and the mapping of electrostatic potentials associated with protein aggregation and folding.« less

  8. Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid

    DOE PAGES

    Prozorov, Tanya; Almeida, Trevor P.; Kovacs, Andras; ...

    2017-10-02

    Here, the mapping of electrostatic potentials and magnetic fields in liquids using electron holography has been considered to be unrealistic. Here, we show that hydrated cells of Magnetospirillum magneticum strain AMB-1 and assemblies of magnetic nanoparticles can be studied using off-axis electron holography in a fluid cell specimen holder within the transmission electron microscope. Considering that the holographic object and reference wave both pass through liquid, the recorded electron holograms show sufficient interference fringe contrast to permit reconstruction of the phase shift of the electron wave and mapping of the magnetic induction from bacterial magnetite nanocrystals. We assess the challengesmore » of performing in situ magnetization reversal experiments using a fluid cell specimen holder, discuss approaches for improving spatial resolution and specimen stability, and outline future perspectives for studying scientific phenomena, ranging from interparticle interactions in liquids and electrical double layers at solid–liquid interfaces to biomineralization and the mapping of electrostatic potentials associated with protein aggregation and folding.« less

  9. Nano interface potential influences in CdTe quantum dots and biolabeling

    NASA Astrophysics Data System (ADS)

    Kanagasubbulakshmi, S.; Kadirvelu, K.

    2018-05-01

    Nano interface influences in physiochemical properties of quantum dots (QDs) are the challenging approach to tailor its surface functionalities. In this study, a set of polar and non-polar solvents were selected to analyze the influences in solvent-based dynamic radius and surface potential of QDs. From the nano interface chemistry of polar and non-polar solvents, an appropriate mechanism of precipitation and hydrophobic ligand exchange strategy were elucidated by correlating Henry's equation. Further, the in vitro cytotoxic potential and antimicrobial activity of QDs were assessed to perform biolabeling. From the observations, an appropriate dosage of QDs was fixed to label the animal ((RAW 264.7 cell lines) and bacterial cells (Escherichia coli) for effective cell attachment. Biolabeling was achieved by tailoring nano interface chemistry of QDs without additional support of biomolecules. Bacterial cell wall-based interaction of QDs was evaluated using SEM and EDAX analysis. Thus, provided clear insights into the nano interface chemistry in the development of highly photostable QDs will be helpful in biomedical applications.

  10. Influence of the insertion of a nano-oxide layer on the interfacial magnetism of FeMn /NiFe/Cu/NiFe spin valves

    NASA Astrophysics Data System (ADS)

    Tafur, Miguel; Alayo, W.; Munayco, P.; Baggio-Saitovitch, E.; Nascimento, V. P.; Alvarenga, A. D.; Brewer, W. D.

    2007-05-01

    We have studied the influence of an inserted nano-oxide layer (NOL) on the interfacial magnetism in spin-valve systems showing the giant magnetoresistance effect. Specifically, we performed a magnetic depth profile of these structures with and without a NOL, using the x-ray magnetic circular dichroism technique. We found that insertion of a NOL into the spin-valve structure is correlated with a stronger reduction of the magnetic moments at the ferromagnetic (FM)/NOL/FM interface in comparison with a spin valve without NOL.

  11. Effect of toothpaste with nano-sized trimetaphosphate on dental caries: In situ study.

    PubMed

    Danelon, Marcelle; Pessan, Juliano Pelim; Neto, Francisco Nunes Souza; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo

    2015-07-01

    This in situ study was to evaluate the remineralizing effect of a fluoride toothpaste supplemented with nano-sized sodium trimetaphosphate (TMP). This blind and cross-over study was performed in 4 phases of 3 days each. Twelve subjects used palatal appliances containing four bovine enamel blocks with artificial caries lesions. Volunteers were randomly assigned into the following treatment groups: Placebo (without F and TMP); 1100 ppm F (1100), 1100 supplemented with 3% micrometric TMP (1100 TMP) and with nano-sized TMP (1100 TMPnano). Volunteers were instructed to brush their natural teeth with the palatal appliances in the mouth during 1min (3 times/day), so that blocks were treated with natural slurries of toothpastes. After each phase, the percentage of surface hardness recovery (%SHR), integrated mineral recovery (IMR) and integrated differential mineral area profile (ΔIMR) in enamel lesions were calculated. F in enamel was also determined. Data were analyzed by ANOVA and Student-Newman-Keuls test. Enamel surface became 20% harder when treated with 1100 TMPnano in comparison with 1100 (p<0.001). 1100 TMPnano showed remineralizing capacity (IMR; ΔIMR) 66% higher when compared with 1100 TMP (p<0.001). Enamel F uptake in the 1100 TMPnano group was 2-fold higher when compared to its counterpart without TMP (p<0.001). The addition of 3% TMPnano to a conventional toothpaste was able to promote an additional remineralizing effect of artificial caries lesions. Toothpaste containing 1100 ppm F associated with TMPnano showed a potential of higher remineralization to 1100 ppm F and 1100 ppm F micrometric TMP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. On the size-dependent magnetism and all-optical magnetization switching of transition-metal silicide nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.

    Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.

  13. Magnetic properties of artificially designed magnetic stray field landscapes in laterally confined exchange-bias layers.

    PubMed

    Mitin, D; Kovacs, A; Schrefl, T; Ehresmann, A; Holzinger, D; Albrecht, M

    2018-08-31

    Magnetic stray fields generated by domain walls (DWs) have attracted significant attention as they might be employed for precise positioning and active control of micro- and nano-sized magnetic objects in fluids or in the field of magnonics. The presented work intends to investigate the near-field response of magnetic stray field landscapes above generic types of charged DWs as occurring in thin films with in-plane anisotropy and preferential formation of Néel type DWs when disturbed by external magnetic fields. For this purpose, artificial magnetic stripe domain patterns with three defined domain configurations, i.e. head-to-head (tail-to-tail), head-to-side, and side-by-side, were fabricated via ion bombardment induced magnetic patterning of an exchange-biased IrMn/CoFe bilayer. The magnetic stray field landscapes as well as the local magnetization reversal of the various domain configurations were analyzed in an external magnetic field by scanning magnetoresistive microscopy and compared to micromagnetic simulations.

  14. Austenite Grain Size Control in Upstream Processing of Niobium Microalloyed Steels by Nano-Scale Precipitate Engineering of TiN-NbC Composite

    NASA Astrophysics Data System (ADS)

    Subramanian, S. V.; Ma, Xiaoping; Rehman, Kashif

    There is a growing demand for thicker gage pipes particularly for off-shore projects. Austenite grain size control in upstream processing before pancaking is essential to obtain excellent DBTT and DWTT properties in thicker gage product. This paper examines the basic science aspects of austenite grain size control by nano-scale precipitate engineering.

  15. Size effects on the magnetic properties of LaCoO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wei, Q.; Zhang, T.; Wang, X. P.; Fang, Q. F.

    2012-02-01

    Magnetic properties of LaCoO3 nanoparticles prepared by a sol-gel method with average particle size (D) ranging from 20 to 500 nm are investigated. All samples exhibit obvious ferromagnetic transition. With decreasing particle size from 500 to 120 nm, the transition temperature Tc decreases slightly from 85 K, however Tc decreases dramatically when D ≤ 85 nm. Low-field magnetic moment at 10 K decreases with reduction of particle size, while the high-field magnetization exhibits a converse behavior, which is different with previous reports. The coercivity Hc decreases as the particle size is reduced. It is different with other nanosystems that no exchange bias effect is observed in nanosized LaCoO3 particles. These interesting results arise from the surface effect induced by sized effect and the structure change in LaCoO3 nanoparticles.

  16. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizesmore » of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.« less

  17. Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2013-01-01

    Currently, nanometal oxides are used extensively in different industries such as medicine, cosmetics and food. The increased consumption of nanoparticles (NPs) leads the necessity to understand the fate of the nanoparticles in the environment. The present study focused on the ecotoxicological behaviour of bulk and nano ZrO2 (Zirconia) and TiO2 (Titania) particles on PGPR (plant growth promoting rhizobacteria), soil and its nutrient contents. The microbial susceptibility study showed that nano TiO2 had 13 +/- 0.9 mm (B. megaterium), 15 +/- 0.2 mm (P. fluorescens), 16 +/- 0.2 mm (A. vinelandii) and 12 +/- 0.3 mm (B. brevis) zones of inhibition. However, nano and bulk ZrO2 particles were non-toxic to PGPR. In addition, it was found that toxicity varied depends on the medium of reaction. The soil study showed that nano TiO2 was found to be highly toxic, whereas bulk TiO2 was less toxic towards soil bacterial populations at 1000 mg L(-1). In contrast, nano and bulk ZrO2 were found to be inert at 1000 mg L(-1). The observed zeta potential and hydrophobicity of TiO2 particles causes more toxic than ZrO2 in parallel with particle size. However, nano TiO2 decreases the microbial population as well as nutrient level of the soil but not zirconia. Our finding shows that the mechanism of toxicity depends on size, hydrophobic potential and zeta potential of the metal oxide particles. Thus, it is necessary to take safety measures during the disposal and use of such toxic nanoparticles in the soil to prevent their hazardous effects.

  18. A Study on Formation and Thermal Stability of Nano-sized Oxide Clusters in Mechanically Alloyed Nickel Aluminum for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Deog

    The intermetallic compound, B2 NiAl, is a promising material for high temperature structural applications such as in aviation jet engines or gas turbines, provided that its high temperature mechanical properties can be improved. Although extensive efforts over the last several decades have been devoted toward enhancing ductility through alloying design and reducing impurities, as well as improving high temperature creep strength through precipitation and dispersion strengthening, these efforts have relied on traditional approaches, a combination of large grain size to limit diffusional creep and precipitation/dispersion (50 ˜ 100 nm size) strengthening to limit dislocation creep, for high temperature strengthening. While traditional approaches have shown a good improvement from a relatively high temperature strengthening point of view, the size and number density of dispersoids were not able to provide sufficient strength in the high temperature creep regime. Furthermore, details of the interaction mechanism between dislocations and dispersoids are not yet well understood. This study focuses on designing and developing advanced oxide dispersion strengthened (ODS) NiAl intermetallics with improved high temperature creep strength by incorporating a high number density (˜1024 m-3) of very thermally stable Y-Ti-O nano-clusters, akin to those recently observed to improve creep strength and radiation resistance in nano-structured ferritic alloys. Advanced ODS NiAl alloys have been produced by mechanical alloying of pre-alloyed Ni-50at%Al with Y2O3 and Ti elemental powders. The milled powders were subsequently consolidated by spark plasma sintering, with the objective of producing very high number densities of nano-sized Y-Ti-O precipitates, along with fine grain size. Advanced experimental characterization techniques, combined with microhardness strength measurement, were used to investigate the material microstructure and strength following processing and to evaluate

  19. Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molaei, M.J., E-mail: mj.molaee@merc.ac.ir; Delft Chem Tech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft; Ataie, A.

    2015-03-15

    In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} nanocomposites form after a 20 h milling due to the partial reduction of BaFe{sub 12}O{sub 19}. High resolution transmission electron microscope images of amore » 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites

  20. Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia

    NASA Astrophysics Data System (ADS)

    Khandhar, Amit P.; Ferguson, R. Matthew; Simon, Julian A.; Krishnan, Kannan M.

    2012-04-01

    Magnetic fluid hyperthermia (MFH) employs heat dissipation from magnetic nanoparticles to elicit a therapeutic outcome in tumor sites, which results in either cell death (>42 °C) or damage (<42 °C) depending on the localized rise in temperature. We investigated the therapeutic effect of MFH in immortalized T lymphocyte (Jurkat) cells using monodisperse magnetite (Fe3O4) nanoparticles (MNPs) synthesized in organic solvents and subsequently transferred to aqueous phase using a biocompatible amphiphilic polymer. Monodisperse MNPs, ˜16 nm diameter, show maximum heating efficiency, or specific loss power (watts/g Fe3O4) in a 373 kHz alternating magnetic field. Our in vitro results, for 15 min of heating, show that only 40% of cells survive for a relatively low dose (490 μg Fe/ml) of these size-optimized MNPs, compared to 80% and 90% survival fraction for 12 and 13 nm MNPs at 600 μg Fe/ml. The significant decrease in cell viability due to MNP-induced hyperthermia from only size-optimized nanoparticles demonstrates the central idea of tailoring size for a specific frequency in order to intrinsically improve the therapeutic potency of MFH by optimizing both dose and time of application.

  1. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Zhong, Zhihui; Wang, Li; Li, Hongxia; Xiao, Kai

    2014-10-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating.

  2. Effects of interplanetary coronal mass ejections on the transport of nano-dust generated in the inner solar system

    NASA Astrophysics Data System (ADS)

    O'Brien, Leela; Juhász, Antal; Sternovsky, Zoltan; Horányi, Mihály

    2018-07-01

    This article reports on an investigation of the effect of interplanetary coronal mass ejections (ICMEs) on the transport and delivery of nano-dust to 1 AU. Charged nanometer-sized dust particles are expected to be generated close to the Sun and interact strongly with the solar wind as well as solar transient events. Nano-dust generated outside of ∼0.2 AU are picked up and transported away from the Sun due to the electromagnetic forces exerted by the solar wind. A numerical model has been developed to calculate the trajectories of nano-dust through their interaction with the solar wind and explore the potential for their detection near Earth's orbit (Juhasz and Horanyi, 2013). Here, we extend the model to include the interaction with interplanetary coronal mass ejections. We report that ICMEs can greatly alter nano-dust trajectories, their transport to 1 AU, and their distribution near Earth's orbit. The smallest nano-dust (<10 nm) can be delivered to 1 AU in high concentration. Thus, the nature of the interaction between nano-dust and ICMEs could potentially be revealed by simultaneous measurements of nano-dust fluxes and solar wind particles/magnetic fields.

  3. Refinement of atomic and magnetic structures using neutron diffraction for synthesized bulk and nano-nickel zinc gallate ferrite

    NASA Astrophysics Data System (ADS)

    Ata-Allah, S. S.; Balagurov, A. M.; Hashhash, A.; Bobrikov, I. A.; Hamdy, Sh.

    2016-01-01

    The parent NiFe2O4 and Zn/Ga substituted spinel ferrite powders have been prepared by solid state reaction technique. As a typical example, the Ni0.7Zn0.3Fe1.5Ga0.5O4 sample has been prepared by sol-gel auto combustion method with the nano-scale crystallites size. X-ray and Mössbauer studies were carried out for the prepared samples. Structure and microstructure properties were investigated using the time-of-flight HRFD instrument at the IBR-2 pulsed reactor, at a temperatures range 15-473 K. The Rietveld refinement of the neutron diffraction data revealed that all samples possess cubic symmetry corresponding to the space group Fd3m. Cations distribution show that Ni2+ is a complete inverse spinel ion, while Ga3+ equally distributed between the two A and B-sublattices. The level of microstrains in bulk samples was estimated as very small while the size of coherently scattered domains is quite large. For nano-structured sample the domain size is around 120 Å.

  4. Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; von Gunten, Urs; Behra, Renata; Morgenroth, Eberhard; Kaegi, Ralf

    2015-09-15

    Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment plants (WWTP), ozonation can enhance the effluent quality by eliminating organic micropollutants. The effect of ozonation on the fate of nano-Ag2S, however, is currently unknown. In this study, we investigate the interaction of ozone with nano-Ag2S and evaluate the effect of ozonation on the short-term toxicity of WWTP effluent spiked with nano-Ag2S. The oxidation of nano-Ag2S by ozone resulted in a stoichiometric factor (number of moles of ozone required to oxidize one mole of sulfide to sulfate) of 2.91, which is comparable to the results obtained for the reaction of bisulfide (HS(-)) with ozone. The second-order rate constant for the reaction of nano-Ag2S with ozone (k = 3.1 × 10(4) M(-1) s(-1)) is comparable to the rate constant of fast-reacting micropollutants. Analysis of the ozonation products of nano-Ag2S by transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) revealed that ozonation dominantly led to the formation of silver chloride in WWTP effluent. After ozonation of the Ag2S-spiked effluent, the short-term toxicity for the green algae Chlamydomonas reinhardtii increased and reached EC50 values comparable to Ag(+). This study thus reveals that ozone treatment of WWTP effluent results in the oxidation of Ag2S and, hence, an increase of the Ag toxicity in the effluent, which may become relevant at elevated Ag concentrations.

  5. Micromagnetic Simulation of Thermal Effects in Magnetic Nanostructures

    DTIC Science & Technology

    2003-01-01

    NiFe magnetic nano- elements are calculated. INTRODUCTION With decreasing size of magnetic nanostructures thermal effects become increasingly important...thermal field. The thermal field is assumed to be a Gaussian random process with the following statistical properties : (H,,,(t))=0 and (H,I.(t),H,.1(t...following property DI " =VE(M’’) - [VE(M"’)• t] t =0, for k =1.m (12) 186 The optimal path can be found using an iterative scheme. In each iteration step the

  6. Magnetization reversal in circular vortex dots of small radius.

    PubMed

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  7. Tuning the stability and the skyrmion Hall effect in magnetic skyrmions by adjusting their exchange strengths with magnetic disks

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wu, H. Z.; Miao, B. F.; Wu, D.; Ding, H. F.

    2018-06-01

    Magnetic skyrmion is a promising candidate for the future information technology due to its small size, topological protection and the ultralow current density needed to displace it. The applications, however, are currently limited by its narrow phase diagram and the skyrmion Hall effect which prevents the skyrmion motion at high speed. In this work, we study the Dzyaloshinskii-Moriya interaction induced magnetic skyrmion that exchange coupled with magnetic nano-disks utilizing the micromagnetic simulation. We find that the stability and the skyrmion Hall effect of the created skyrmion can be tuned effectively with the coupling strength, thus opens the space to optimize the performance of the skyrmion based devices.

  8. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    DOE PAGES

    Malik, V.; Goodwill, J.; Mallapragada, S.; ...

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to themore » theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.« less

  9. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?

    PubMed

    Datta, N R; Krishnan, S; Speiser, D E; Neufeld, E; Kuster, N; Bodis, S; Hofmann, H

    2016-11-01

    Effective multimodal cancer management requires the optimal integration of diagnostic and therapeutic modalities. Radiation therapy, chemotherapy and immunotherapy, alone or in combination, are integral parts of various cancer treatment protocols. Hyperthermia at 39-45°C is a potent radiosensitiser and has been shown to improve therapeutic outcomes in various tumours through its synergy with chemotherapy. Gene silencing approaches, using small interfering RNAs and microRNAs, are also being explored in clinical trials in oncology. The rapid developments in multifunctional nanoparticles provide ample opportunities to integrate both diagnostic and therapeutic modalities into a single effective cancer "theranostic" vector. Nanoparticles could extravasate passively into the tumour tissues in preference to the adjacent normal tissues by capitalizing on the enhanced permeability and retention effect. Tumour targeting might be further augmented by conjugating tumour-specific peptides and antibodies onto the surface of these nanoparticles or by activation through electromagnetic radiations, laser or ultrasound. Magnetic nanoparticles can induce hyperthermia in the presence of an alternating magnetic field, thereby multifunctionally with tumour-specific payloads empowering tumour specific radiotheranostics (for both imaging and radiotherapy), chemotherapy drug delivery, immunotherapy and gene silencing therapy. Such a (nano)bullet could realise the "magic bullet" conceived by Paul Ehrlich more than a century ago. This article discusses the various aspects of this "magic (nano)bullet" and the challenges that need to be addressed to usher in this new paradigm in modern cancer diagnostics and therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Spleen size is an indirect indicator of rainbow trout bacterial cold water disease resistance

    USDA-ARS?s Scientific Manuscript database

    The contribution of the spleen to anti-bacterial immunity in lower vertebrates is poorly understood. The spleen first appears as a recognizable organ in shark and bony fish lineages while factors influencing its size and functions in lower vertebrates have received little attention. We have previou...

  11. Bacterial finite-size effects for population expansion under flow

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc

    2016-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients have a dual role as they transport nutrient while, at the same time, dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction-diffusion equation. The effect of fluid flow is not yet well understood and the interplay between transport of individuals and growth opens a wide scenario of possible behaviors. In this work, we study experimentally the dynamics of non-motile E. coli bacteria colonies spreading inside rectangular channels, in PDMS microfluidic devices. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates. A simple model incorporating growth, dispersion and drift of finite size beads is able to explain the experimental findings. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) may have to be supplemented with bacterial finite-size effects in order to be able to accurately reproduce experimental results for population spatial growth.

  12. Nano-sized Al2O3 reduces acute toxic effects of thiacloprid on the non-biting midge Chironomus riparius

    PubMed Central

    Wicht, Anna-J.; Guluzada, Leyla; Luo, Leilei; Jäger, Leonie; Crone, Barbara; Karst, Uwe; Triebskorn, Rita; Liang, Yucang; Anwander, Reiner; Haderlein, Stefan B.; Huhn, Carolin; Köhler, Heinz-R.

    2017-01-01

    This study focuses on interactions between nanoparticles and a pesticide. The aim was to investigate how nano-sized aluminum oxide (410 nm) can alter the toxic effects of thiacloprid, even if no sorption between particles and the insecticide takes place. Thus, our study investigated a rather unexplored interaction. We conducted our research with larvae of Chironomus riparius and used thiacloprid as test substance as its toxicity to C. riparius is well described. The used nano-Al2O3 particles where chosen due to their suitable properties. For testing the acute effects of the interaction, we exposed larvae to thiacloprid (0.5, 1.0, 2.0, and 5.0 μg/L) and nano-Al2O3 (300 and 1000 mg/L), either solely or in binary mixtures. While thiacloprid resulted in elevated mortality, nano-Al2O3 solely did not exert any effects. Moreover, we observed an aggregation of nano-Al2O3 within the lumen of the intestinal tract of the larvae. Further results showed a significantly reduced mortality of fourth instar larvae when they were exposed to mixtures of nanoparticles and the pesticide, compared to thiacloprid alone. With increasing nano-Al2O3 concentration, this effect became gradually stronger. Additionally, chemical analyses of internal thiacloprid concentrations implicate reduced uptake of thiacloprid in animals exposed to mixtures. However, as larvae exposed to thiacloprid concentrations > 0.5 μg/L showed severe convulsions, independent of the presence or concentration of nano-Al2O3, we assume that nano-Al2O3 leads to a delay of mortality and does not entirely prevent it. As sorption measurements on pristine or defecated nano-Al2O3 did not reveal any sorptive interaction with thiacloprid, we can exclude sorption-based reduction of thiacloprid bioavailability as a mechanism behind our results. Even though we used test substances which might not co-occur in the environment in the tested concentrations, our study gives evidence for an interaction besides adsorption, which is

  13. Surface effects and discontinuity behavior in nano-systems composed of Prussian blue analogues

    NASA Astrophysics Data System (ADS)

    Drissi, L. B.; Zriouel, S.; Bahmad, L.

    2018-04-01

    Magnetic properties and hysteresis loops of a nano-ferrimagnetic surface-bulk Prussian blue analogues (PBA) have been studied by means of Monte Carlo simulations. We have reported the effects of the magnetic and the crystal fields, as well as the intermediate and the bulk couplings, the temperature and the size on the phase diagram, the magnetization, the susceptibility, the hysteresis loops, the critical and the discontinuity temperatures of the model. The thermal dependence of the coercivity and the remanent magnetization are also discussed. This study shows a number of characteristic behaviors, such as the discontinuities in the magnetizations, the existence of Q- and N-types behaviors in the Néel classification nomenclature and the occurrence of single and triple hysteresis loops with high number of step-like plateaus. The obtained results make ferrimagnetic surface-bulk PBA useful for technological applications such as thermo-optical recording.

  14. Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Huang, Yu'an; Yang, Yang; Shen, Jianyi; Tang, Tao; Huang, Runsheng

    2010-10-01

    Composite materials containing electrically conductive expanded graphite (EG) and magnetic iron nano-particles for electromagnetic shielding were prepared by impregnating EG with an ethanol solution containing iron nitrate and acetic acid, followed by drying and reduction in H 2. Magnetic nano-iron particles were found to be highly dispersed on the surface of EG in the Fe/EG composites, and played the role of enhancing the electromagnetic shielding effectiveness (SE) at low frequencies (0.3-10 MHz), which seemed to depend proportionally on magnetic hysteresis loss of loaded iron nano-particles.

  15. Modeling of a piezoelectric/piezomagnetic nano energy harvester based on two dimensional theory

    NASA Astrophysics Data System (ADS)

    Yan, Zhi

    2018-01-01

    This work presents a two dimensional theory for a piezoelectric/piezomagnetic bilayer nanoplate in coupled extensional and flexural vibrations with both flexoelectric and surface effects. The magneto-electro-elastic (MEE) coupling equations are derived from three-dimensional equations and Kirchhoff plate theory. Based on the developed theory, a piezoelectric/piezomagnetic nano energy harvester is proposed, which can generate electricity under time-harmonic applied magnetic field. The approximate solutions for the mechanical responses and voltage of the energy harvester are obtained using the weighted residual method. Results show that the properties of the proposed energy harvester are size-dependent due to the flexoelectric and surface effects, and such effects are more pronounced when the bilayer thickness is reduced to dozens of nanometers. It is also found that the magnetoelectric coupling coefficient and power density of the energy harvester are sensitive to the load resistance, the thickness fraction of the piezoelectric or the piezomagnetic layer and damping ratios. Moreover, results indicate that the flexoelectric effect could be made use to build a dielectric/piezomagnetic nano energy harvester. This work provides modeling techniques and numerical methods for investigating the size-dependent properties of MEE nanoplate-based energy harvester and could be helpful for designing nano energy harvesters using the principle of flexoelectricity.

  16. Magnetic grain-size variations through an ash flow sheet: influence on magnetic properties and implications for cooling history

    USGS Publications Warehouse

    Rosenbaum, J.G.

    1993-01-01

    Rock magnetic studies of tuffs are essential to the interpretation of paleomagnetic data derived from such rocks, provide a basis for interpretation of aeromagnetic data over volcanic terranes, and yield insights into the depositional and cooling histories of ash flow sheets. A rhyolitic ash flow sheet, the Miocene-aged Tiva Canyon Member of the Paintbrush Tuff, contains both titanomagnetite phenocrysts, present in the magma prior to eruption, and cubic Fe-oxide microcrystals that grew after emplacement. Systematic variations in the quantity and magnetic grain size of the microcrystals produce large variations in magnetic properties through a section of the ash flow sheet penetrated in a borehole on the Nevada Test Site. Microcrystals are important contributors to remanent magnetization and magnetic susceptibility in two 15-m-thick zones at the top and bottom. Within these zones the size of microcrystals decreases both toward the quenched margins and toward the interior of the sheet. The decrease in microcrystal size toward the interior of the sheet is interpreted to indicate the presence of a cooling break; possibly represented by a concentration of pumice. -from Author

  17. Probing the Magnetic Causes of CMEs: Free Magnetic Energy More Important Than Either Size Or Twist

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2006-01-01

    To probe the magnetic causes of CMEs, we have examined three types of magnetic measures: size, twist and total nonpotentiality (or total free magnetic energy) of an active region. Total nonpotentiality is roughly the product of size times twist. For predominately bipolar active regions, we have found that total nonpotentiality measures have the strongest correlation with future CME productivity (approx. 75% prediction success rate), while size and twist measures each have a weaker correlation with future CME productivity (approx. 65% prediction success rate) (Falconer, Moore, & Gary, ApJ, 644, 2006). For multipolar active regions, we find that the CME-prediction success rates for total nonpotentiality and size are about the same as for bipolar active regions. We also find that the size measure correlation with CME productivity is nearly all due to the contribution of size to total nonpotentiality. We have a total nonpotentiality measure that can be obtained from a line-of-sight magnetogram of the active region and that is as strongly correlated with CME productivity as are any of our total-nonpotentiality measures from deprojected vector magnetograms. We plan to further expand our sample by using MDI magnetograms of each active region in our sample to determine its total nonpotentiality and size on each day that the active region was within 30 deg. of disk center. The resulting increase in sample size will improve our statistics and allow us to investigate whether the nonpotentiality threshold for CME production is nearly the same or significantly different for multipolar regions than for bipolar regions. In addition, we will investigate the time rates of change of size and total nonpotentiality as additional causes of CME productivity.

  18. In-situ precipitation of ultra-stable nano-magnetite slurry

    NASA Astrophysics Data System (ADS)

    Ramimoghadam, Donya; Bagheri, Samira; Hamid, Sharifah Bee Abd

    2015-04-01

    In this contribution, we prepared water-based magnetic fluids of iron oxide nanoparticles using an in-situ precipitation method. The effect of dodecanoic acid addition as a surfactant on the physico-chemical and magnetic properties of iron oxide nanoparticles was investigated as well. The quantity of the surfactant was varied between 3 and 5 g. Raman spectroscopy and X-ray diffraction (XRD) were utilized to confirm the presence of spinel phase magnetites (Fe3O4). Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to characterize the resulting magnetic nanoparticles' size and morphology. The results showed polydispersed hexagonal nanoparticles (average diameter of ca. 70 nm) as a result of the protocol. Moreover, the pH-dependent stability of the samples confirms that magnetite nanofluids were highly stable in the wide range of pH, from 4-12. The optimal amount of dodecanoic acid to produce ultra-stable nano-magnetite slurry with the highest saturation magnetization of 8.6 emu g-1 was determined to be 4.5 g.

  19. Effect of Temperature, Precursor Type and Dripping Time on the Crystallite Size of Nano ZnO Obtained by One-Pot Synthesis: 2 k Full Factorial Design Analysis.

    PubMed

    Machado, Morgana de Medeiros; Savi, Bruna Martinello; Perucchi, Mariana Borges; Benedetti, Alessandro; Oliveira, Luis Felipe Silva; Bernardin, Adriano Michael

    2018-06-01

    The aim of this work was to determine the effect of temperature, precursor and dripping time on the crystallite size of ZnO nanoparticles synthesized by controlled precipitation according a 2k full factorial design. ZnCl2, Zn(NO3)2 and NaOH were used as precursors. After synthesis, the nano crystalline powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. The nano ZnO particles presented a crystallite size between 210 and 260 Å (HR-TEM and XRD). The results show that the crystallite size depends on the type of precursor and temperature of synthesis, but not on the dripping time.

  20. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation

    PubMed Central

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo

    2017-01-01

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures. PMID:29206155

  1. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation.

    PubMed

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo; Madurga, Vicente

    2017-12-05

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  2. Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review.

    PubMed

    Martin, Melanie

    2013-01-01

    This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE) measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE) measurements could provide shorter diffusion times so smaller restriction sizes could be probed.

  3. Adsorption-desorption mechanism of phosphate by immobilized nano-sized magnetite layer: interface and bulk interactions.

    PubMed

    Zach-Maor, Adva; Semiat, Raphael; Shemer, Hilla

    2011-11-15

    Phosphate adsorption mechanism by a homogenous porous layer of nano-sized magnetite particles immobilized onto granular activated carbon (nFe-GAC) was studied for both interface and bulk structures. X-ray Photoelectron Spectroscopy (XPS) analysis revealed phosphate bonding to the nFe-GAC predominantly through bidentate surface complexes. It was established that phosphate was adsorbed to the magnetite surface mainly via ligand exchange mechanism. Initially, phosphate was adsorbed by the active sites on the magnetite surface, after which it diffused into the interior of the nano-magnetite layer, as indicated by intraparticle diffusion model. This diffusion process continues regardless of interface interactions, revealing some of the outer magnetite binding sites for further phosphate uptake. Desorption, using NaOH solution, was found to be predominantly a surface reaction, at which hydroxyl ions replace the adsorbed phosphate ions only at the surface outer biding sites. Five successive fix-bed adsorption/regeneration cycles were successfully applied, without significant reduction in the nFe-GAC adsorption capacity and at high regeneration efficiency. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.

    PubMed

    Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C

    2014-01-01

    Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies. © 2014 American Institute of Chemical Engineers.

  5. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.

    PubMed

    Han, Young-Soo; Mao, Xiadong; Jang, Jinsung

    2013-11-01

    The nano-sized microstructures in Fe-Cr oxide dispersion strengthened steel for Gen IV in-core applications were studied using small angle neutron scattering. The oxide dispersion strengthened steel was manufactured through hot isostatic pressing with various chemical compositions and fabrication conditions. Small angle neutron scattering experiments were performed using a 40 m small angle neutron scattering instrument at HANARO. Nano sized microstructures, namely, yttrium oxides and Cr-oxides were quantitatively analyzed by small angle neutron scattering. The yttrium oxides and Cr-oxides were also observed by transmission electron microscopy. The microstructural analysis results from small angle neutron scattering were compared with those obtained by transmission electron microscopy. The effects of the chemical compositions and fabrication conditions on the microstructure were investigated in relation to the quantitative microstructural analysis results obtained by small angle neutron scattering. The volume fraction of Y-oxide increases after fabrication, and this result is considered to be due to the formation of non-stochiometric Y-Ti-oxides.

  6. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    PubMed

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Magnetite nano-islands on Graphene

    NASA Astrophysics Data System (ADS)

    Anderson, Nathaniel; Zhang, Qiang; Rosenberg, Richard; Vaknin, David

    X-ray magnetic circular dichroism (XMCD) of ex-situ iron nano-islands grown on graphene reveals that iron oxidation spontaneously leads to the formation of magnetite nano-particles - i.e, the formation of the inverse spinel Fe3O4. Fe islands have been grown with two different heights (20 and 75 MLs) on epitaxial graphene and we have determined their magnetic behavior both as function of temperature and applied external field. Our XAS and XMCD at an applied magnetic field of B = 5 T show that the thin film (20 MLs) is totally converted to magnetite whereas the thicker film (75 MLs) exhibits magnetite properties but also those of pure metal iron. For both samples, temperature dependence of the XMCD shows clear transitions at ~120 K consistent with the Verwey transition of bulk magnetite. XMCD at low temperatures shows a weak hysteresis and provide the average spin and angular-momentum moments, the dipolar term, and the total moment . In addition, manipulation and comparison of the XMCD data from both samples allows us to extract information about the pure iron nano-islands from the thicker sample. Ames Laboratory is supported by the U.S. DOE, BES, MSE Contract No. DE-AC02-07CH11358. APS is supported by U.S. DOE Contract No. DE-AC02-06CH11357.

  8. A practical approach to calculate the time evolutions of magnetic field effects on photochemical reactions in nano-structured materials.

    PubMed

    Yago, Tomoaki; Wakasa, Masanobu

    2015-04-21

    A practical method to calculate time evolutions of magnetic field effects (MFEs) on photochemical reactions involving radical pairs is developed on the basis of the theory of the chemically induced dynamic spin polarization proposed by Pedersen and Freed. In theory, the stochastic Liouville equation (SLE), including the spin Hamiltonian, diffusion motions of the radical pair, chemical reactions, and spin relaxations, is solved by using the Laplace and the inverse Laplace transformation technique. In our practical approach, time evolutions of the MFEs are successfully calculated by applying the Miller-Guy method instead of the final value theorem to the inverse Laplace transformation process. Especially, the SLE calculations are completed in a short time when the radical pair dynamics can be described by the chemical kinetics consisting of diffusions, reactions and spin relaxations. The SLE analysis with a short calculation time enables one to examine the various parameter sets for fitting the experimental date. Our study demonstrates that simultaneous fitting of the time evolution of the MFE and of the magnetic field dependence of the MFE provides valuable information on the diffusion motions of the radical pairs in nano-structured materials such as micelles where the lifetimes of radical pairs are longer than hundreds of nano-seconds and the magnetic field dependence of the spin relaxations play a major role for the generation of the MFE.

  9. A magnetic nanobead-based bioassay provides sensitive detection of single- and biplex bacterial DNA using a portable AC susceptometer

    PubMed Central

    Strömberg, Mattias; Zardán Gómez de la Torre, Teresa; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria

    2014-01-01

    Bioassays relying on magnetic read-out using probe-tagged magnetic nanobeads are potential platforms for low-cost biodiagnostic devices for pathogen detection. For optimal assay performance it is crucial to apply an easy, efficient and robust bead-probe conjugation protocol. In this paper, sensitive (1.5 pM) singleplex detection of bacterial DNA sequences is demonstrated in a portable AC susceptometer by a magnetic nanobead-based bioassay principle; the volume-amplified magnetic nanobead detection assay (VAM-NDA). Two bead sizes, 100 and 250 nm, are investigated along with a highly efficient, rapid, robust, and stable conjugation chemistry relying on the avidin–biotin interaction for bead-probe attachment. Avidin-biotin conjugation gives easy control of the number of detection probes per bead; thus allowing for systematic investigation of the impact of varying the detection probe surface coverage upon bead immobilization in rolling circle amplified DNA-coils. The existence of an optimal surface coverage is discussed. Biplex VAM-NDA detection is for the first time demonstrated in the susceptometer: Semi-quantitative results are obtained and it is concluded that the concentration of DNA-coils in the incubation volume is of crucial importance for target quantification. The present findings bring the development of commercial biodiagnostic devices relying on the VAM–NDA further towards implementation in point-of-care and outpatient settings. PMID:24174315

  10. Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides

    NASA Astrophysics Data System (ADS)

    Phaniraj, M. P.; Shin, Young-Min; Jung, Woo-Sang; Kim, Man-Ho; Choi, In-Suk

    2017-07-01

    Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.

  11. Size effects on melting and wetting in the Ga-Pb nano-alloy

    NASA Astrophysics Data System (ADS)

    Allione, M.; Kofman, R.; Celestini, F.; Lereah, Y.

    2009-04-01

    Ga-Pb alloys with 15 at% Pb mean concentration have been prepared at the nanoscale by means of evaporation-condensation technique in ultra high vacuum conditions. Transmission electron microscope images indicate that at room temperature, the system is a two-components breath figure composed of liquid Ga nanodrops containing Pb nanocrystals. Some thermodynamic properties of this nano-alloy are investigated for different temperatures and particle sizes. The results obtained put in evidence a large modification of the Ga-Pb bulk phase diagram: a decrease of the melting temperatures of the two components as well as the ones of the miscibility gap. Changes in the microscopic structure of the system as a function of temperature have been investigated and a full wetting transition from a dry to a completely wet state has been put in evidence.

  12. Magnetic solid phase extraction of gemfibrozil from human serum and pharmaceutical wastewater samples utilizing a β-cyclodextrin grafted graphene oxide-magnetite nano-hybrid.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Talleb, Zeynab

    2015-03-01

    A magnetic solid phase extraction method based on β-cyclodextrin (β-CD) grafted graphene oxide (GO)/magnetite (Fe3O4) nano-hybrid as an innovative adsorbent was developed for the separation and pre-concentration of gemfibrozil prior to its determination by spectrofluorometry. The as-prepared β-CD/GO/Fe3O4 nano-hybrid possesses the magnetism property of Fe3O4 nano-particles that makes it easily manipulated by an external magnetic field. On the other hand, the surface modification of GO by β-CD leads to selective separation of the target analyte from sample matrices. The structure and morphology of the synthesized adsorbent were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The experimental factors affecting the extraction/pre-concentration and determination of the analyte were investigated and optimized. Under the optimized experimental conditions, the calibration graph was linear in the range between 10 and 5000 pg mL(-1) with a correlation coefficient of 0.9989. The limit of detection and enrichment factor for gemfibrozil were 3 pg mL(-1) and 100, respectively. The maximum sorption capacity of the adsorbent for gemfibrozil was 49.8 mg g(-1). The method was successfully applied to monitoring gemfibrozil in human serum and pharmaceutical wastewaters samples with recoveries in the range of 96.0-104.0% for the spiked samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Synthesis and applications of eco-magnetic nano-hydroxyapatite chitosan composite for enhanced fluoride sorption.

    PubMed

    Pandi, Kalimuthu; Viswanathan, Natrayasamy

    2015-12-10

    Adsorption is a significant reaction occurs between adsorbent/water interface for controlling the pollutants in the aqueous environment. In this regard, an eco-magnetic biosorbent was prepared by uniform deposition of magnetic Fe3O4 particles on the surface of nano-hydroxyapatite (n-HAp)/chitosan (CS) nanocomposite namely Fe3O4@n-HApCS composite as versatile sorbent for fluoride sorption. The resulting Fe3O4@n-HApCS nanocomposite was characterized by FTIR and SEM with EDAX techniques. The defluoridation capacity (DC) was found to depend on the contact time, pH, co-existing anions, initial fluoride concentration and temperature. The sorption isotherm was investigated by Freundlich, Langmuir and Temkin isotherm models using the batch method. The thermodynamic parameters revealed the feasibility, spontaneity and endothermic nature of fluoride sorption. The results of this research work designated that Fe3O4@n-HApCS composite having the excellent defluoridation capacity than the individual components and interesting to note that the easy magnetic separation of Fe3O4@n-HApCS composite from aqueous medium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo

    2017-01-01

    The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiCx/Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiCx/Cu composite had higher ultimate compression strength (σUCS), yield strength (σ0.2), and electric conductivity, compared with those of spherical-TiCx/Cu composite. The σUCS, σ0.2, and electrical conductivity of cubic-TiCx/Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiCx/Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiCx/Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiCx/Cu composite with 46 nm in size. The σUCS, σ0.2, and electrical conductivity of spherical-TiCx/Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiCx/Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiCx particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiCx particles with small size led to the compression strength reduction of the composites. PMID:28772859

  15. Order of magnitude improvement of nano-contact spin torque nano-oscillator performance.

    PubMed

    Banuazizi, Seyed Amir Hossein; Sani, Sohrab R; Eklund, Anders; Naiini, Maziar M; Mohseni, Seyed Majid; Chung, Sunjae; Dürrenfeld, Philipp; Malm, B Gunnar; Åkerman, Johan

    2017-02-02

    Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (t Cu ) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing t Cu from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.

  16. Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China.

    PubMed

    Lu, Rui; Li, Yanpeng; Li, Wanxin; Xie, Zhengsheng; Fan, Chunlan; Liu, Pengxia; Deng, Shunxi

    2018-05-09

    Serious air pollution events have frequently occurred in China associated with the acceleration of urbanization and industrialization in recent years. Exposure to atmospheric particulate matter (PM) of high concentration can lead to adverse effects on human health. Airborne bacteria are important constituents of microbial aerosols and contain lots of pathogens. However, variations in bacterial community structure in atmospheric PM of different sizes (PM 2.5 , PM 10 and TSP) have not yet been explored. In this study, PM samples of different sizes were collected during the hazy days from Jul.2016 to Apr.2017 to determine bacterial diversity and community structure. Samples from soils and leaf surfaces were also collected to determine potential sources of bacterial aerosols. High-throughput sequencing technology was used generate bacterial community profiles, where we determined their diversity and abundances in the samples. Results showed that the dominant bacterial community structures in PM 2.5 , PM 10 and TSP were strongly similar. Compared with non-haze days, the relative abundances of most bacterial pathogens on the haze days did not increase. Meanwhile, temperature, O 3 and NO 2 had more significant effects on bacterial community than the other environmental factors. Source tracking analysis indicated that the airborne bacteria might be not from local environment. It may come from the entire city or other regions by long distance airflow transport. Results of this study improved our understanding of the influence of bioaerosols on human health and the potential sources of airborne microbes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Isolation and characterization of anti-SEB peptides using magnetic sorting and bacterial peptide display library technology

    NASA Astrophysics Data System (ADS)

    Pennington, Joseph M.; Kogot, Joshua M.; Sarkes, Deborah A.; Pellegrino, Paul M.; Stratis-Cullum, Dimitra N.

    2012-06-01

    Peptide display libraries offer an alternative method to existing antibody development methods enabling rapid isolation of highly stable reagents for detection of new and emerging biological threats. Bacterial display libraries are used to isolate new peptide reagents within 1 week, which is simpler and timelier than using competing display library technology based on phage or yeast. Using magnetic sorting methods, we have isolated peptide reagents with high affinity and specificity to staphylococcal enterotoxin B (SEB), a suspected food pathogen. Flow cytometry methods were used for on-cell characterization and the binding affinity (Kd) of this new peptide reagent was determined to be 56 nm with minimal cross-reactivity to other proteins. These results demonstrated that magnetic sorting for new reagents using bacterial display libraries is a rapid and effective method and has the potential for current and new and emerging food pathogen targets.

  18. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    NASA Astrophysics Data System (ADS)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.

    2015-04-01

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  19. Micro/nano-particles and Cells: Manipulation, Transport, and Self-assembly

    DTIC Science & Technology

    2014-10-23

    SECURITY CLASSIFICATION OF: Technologies that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered...that control nano- and micron- sized inert as well as biological materials are crucial to realizing engineered systems that can assemble, transport, and...nano-scale particles offer several advantages as building blocks of artificial materials . The relative ease of modifying their charge states

  20. Magnetic properties of Mn0.1Mg0.2TM0.7Fe2O4 (TM = Zn, Co, or Ni) prepared by hydrothermal processes: The effects of crystal size and chemical composition

    NASA Astrophysics Data System (ADS)

    Nhlapo, T. A.; Msomi, J. Z.; Moyo, T.

    2018-02-01

    Nano-crystalline Zn-, Co-, and Ni-substituted Mn-Mg ferrites were prepared by hydrothermal process and annealed at 1100 °C. Annealing conditions are critical on the crystalline phase. TEM and XRD data reveal particle sizes between 8 nm and 15 nm for the as-prepared fine powders, which increase to about 73 nm after sintering at 1100 °C. Mӧssbauer spectra show well resolved magnetic splitting in bulk samples. The as-prepared fine powders show weak hyperfine splitting and broad central doublets associated with fine particles. Magnetization data reveal a high coercive field at about 300 K of about 945 Oe in the Co-based nanosized oxide, which reduces to about 360 Oe after thermal annealing at 1100 °C. The magnetization curves of Zn- and Ni-based samples show much lower coercive fields indicative of superparamagnetic nanoparticles. The crystallite size and chemical composition have significant effects on the properties of Mn0.1Mg0.2(Zn,Co,Ni)0.7Fe2O4 investigated.

  1. Magnetic Flattening of Stem-Cell Spheroids Indicates a Size-Dependent Elastocapillary Transition

    NASA Astrophysics Data System (ADS)

    Mazuel, Francois; Reffay, Myriam; Du, Vicard; Bacri, Jean-Claude; Rieu, Jean-Paul; Wilhelm, Claire

    2015-03-01

    Cellular aggregates (spheroids) are widely used in biophysics and tissue engineering as model systems for biological tissues. In this Letter we propose novel methods for molding stem-cell spheroids, deforming them, and measuring their interfacial and elastic properties with a single method based on cell tagging with magnetic nanoparticles and application of a magnetic field gradient. Magnetic molding yields spheroids of unprecedented sizes (up to a few mm in diameter) and preserves tissue integrity. On subjecting these spheroids to magnetic flattening (over 150 g ), we observed a size-dependent elastocapillary transition with two modes of deformation: liquid-drop-like behavior for small spheroids, and elastic-sphere-like behavior for larger spheroids, followed by relaxation to a liquidlike drop.

  2. Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites

    NASA Astrophysics Data System (ADS)

    Vijaya Babu, K.; Satyanarayana, G.; Sailaja, B.; Santosh Kumar, G. V.; Jalaiah, K.; Ravi, M.

    2018-06-01

    Nano-crystalline nickel ferrites are interesting materials due to their large physical and magnetic properties. In the present work, two kinds of spinel ferrites Ni0.8M0.2Fe2O4 (M = Cu, Co) are synthesized by using sol-gel auto-combustion method and the results are compared with NiFe2O4. The structural properties of synthesized ferrites are determined by using X-ray powder diffraction; scanning electron microscope and Fourier transform infrared spectroscopy. The cation distribution obtained from X-ray diffraction show that cobalt/copper occupies only tetrahedral site in spinel lattice. The lattice constant increases with the substitution of cobalt/copper. The structural parameters like bond lengths, tetrahedral and octahedral edges have been varied with the substitution. The microstructural study is carried out by using SEM technique and the average grain size is increased with nickel ferrite. The initial permeability (μi) is improving with the substitution. The observed g-value from ESR is approximately equal to standard value.

  3. Ultrasoft magnetic films investigated with Lorentz tranmission electron microscopy and electron holography.

    PubMed

    De Hosson, Jeff Th M; Chechenin, Nicolai G; Alsem, Daan-Hein; Vystavel, Tomas; Kooi, Bart J; Chezan, Antoni R; Boerma, Dik O

    2002-08-01

    As a tribute to the scientific work of Professor Gareth Thomas in the field of structure-property relationships this paper delineates a new possibility of Lorentz transmission electron microscopy (LTEM) to study the magnetic properties of soft magnetic films. We show that in contrast to the traditional point of view, not only does the direction of the magnetization vector in nano-crystalline films make a correlated small-angle wiggling, but also the magnitude of the magnetization modulus fluctuates. This fluctuation produces a rapid modulation in the LTEM image. A novel analysis of the ripple structure in nano-crystalline Fe-Zr-N film corresponds to an amplitude of the transversal component of the magnetization deltaMy of 23 mT and a longitudinal fluctuation of the magnetization of the order of deltaMx = 30 mT. The nano-crystalline (Fe99Zr1)1-xNx films have been prepared by DC magnetron reactive sputtering with a thickness between 50 and 1000 nm. The grain size decreased monotonically with N content from typically 100 nm in the case of N-free films to less than 10 nm for films containing 8 at%. The specimens were examined with a JEOL 2010F 200 kV transmission electron microscope equipped with a post column energy filter (GIF 2000 Gatan Imaging Filter). For holography, the microscope is mounted with a biprism (JEOL biprism with a 0.6 microm diameter platinum wire).

  4. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update

    NASA Astrophysics Data System (ADS)

    Singh, Gulshan; Manohar, Murli; Adegoke, Anthony Ayodeji; Stenström, Thor Axel; Shanker, Rishi

    2017-01-01

    The lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1-100 nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for the specific detection of targeted pathogens.

  5. Physical, electrical and magnetic properties of nano-sized Co-Cr substituted magnesium ferrites

    NASA Astrophysics Data System (ADS)

    Javed Iqbal, Muhammad; Ahmad, Zahoor; Meydan, Turgut; Melikhov, Yevgen

    2012-02-01

    Co-Cr substituted magnesium ferrite nanomaterials (Mg1-xCoxCrxFe2-xO4 with x = 0.0-0.5) have been prepared by the polyethylene glycol assisted micro emulsion method. X-ray diffraction analysis confirms the single-phase cubic close-packed lattice formation of synthesized materials. Hysteresis loops are measured up to field of 4 MA/m and high field region of these loops are modeled using the Law of Approach to saturation to calculate the magnetocrystalline anisotropy constant. The saturation magnetization of the samples increases initially from 148 kA/m for x = 0.0 to 299 kA/m (x = 0.3) and then decreases to 187 kA/m (x = 0.5). Curie temperature for this series is found to be in the range of 618-766 K. Room temperature resistivity increases gradually from 7.5 × 108 Ω cm (x = 0.0) to 3.47 × 109 Ω cm (x = 0.5). Additionally, dielectric measurements are carried out at room temperature in a frequency range of 100 Hz to 3 MHz. With improvement in the values of the above-mentioned properties, the synthesized materials could be suitable for potential application in some magnetic and microwave devices.

  6. Exposure assessment of nano-sized and respirable particles at different workplaces

    NASA Astrophysics Data System (ADS)

    Tsai, Chuen-Jinn; Huang, Cheng-Yu; Chen, Sheng-Chieh; Ho, Chi-En; Huang, Cheng-Hsiung; Chen, Chun-Wan; Chang, Cheng-Ping; Tsai, Su-Jung; Ellenbecker, Michael J.

    2011-09-01

    In this study, nanoparticle (NP, diameter < 100 nm) and respirable particles measurements were conducted at three different nanopowder workplaces, including the mixing area of a nano-SiO2-epoxy molding compound plant (primary diameter: 15 nm), bagging areas of a nano-carbon black (nano-CB) (primary diameter: 32 nm) and a nano-CaCO3 (primary diameter: 94 nm) manufacturing plant. Chemical analysis of respirable particle mass (RPM) and NPs was performed to quantify the content of manufactured nanoparticles in the collected samples. Nanopowder products obtained from the plants were used in the laboratory dustiness testing using a rotating drum tester to obtain particle mass and number distributions. The obtained laboratory data were then used to elucidate the field data. Both field and laboratory data showed that NP number and mass concentrations of manufactured materials were close to the background level. Number concentration was elevated only for particles with the electrical mobility diameter >100 nm during bagging or feeding processes, unless there were combustion-related incidental sources existed. Large fraction of nanomaterials was found in the RPM due to agglomeration of nanomaterials or attachment of nanomaterials to the larger particles. From this study, it is concluded that RPM concentration measurements are necessary for the exposure assessment of nanoparticles in workplaces.

  7. Transport of lipid nano-droplets through MDCK epithelial cell monolayer.

    PubMed

    Khatri, Pulkit; Shao, Jun

    2017-05-01

    This study aims to investigate the transport of lipid nano-droplets through MDCK epithelial cell monolayer. Nanoemulsions of self-nano-emulsifying drug delivery systems (SNEDDS) labeled with radioactive C18 triglyceride were developed. The effect of droplet size and lipid composition on the transport was investigated. The results showed that the lipid nano-droplet transport through MDCK cell monolayer was as high as 2.5%. The transport of lipid nano-droplets was higher for nanoemulsions of medium chain glycerides than the long chain glycerides. The transport was reduced by more than half when the average lipid nano-droplet size increased from 38nm to 261nm. The droplet size measurement verified the existence of lipid nano-droplets in the receiver chamber only when the nanoemulsions were added to the donor chamber but not when the surfactant or saline solution was added. Cryo-TEM images confirmed the presence of lipid nano-droplets in both donor and receiver chamber at the end of transport study. In conclusion, lipid nano-droplets can be transported through the cell monolayer. This finding may help to further explore the oral and other non-invasive delivery of macromolecules loaded inside SNEDDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Prediction Surface Morphology of Nanostructure Fabricated by Nano-Oxidation Technology.

    PubMed

    Huang, Jen-Ching; Chang, Ho; Kuo, Chin-Guo; Li, Jeen-Fong; You, Yong-Chin

    2015-12-04

    Atomic force microscopy (AFM) was used for visualization of a nano-oxidation technique performed on diamond-like carbon (DLC) thin film. Experiments of the nano-oxidation technique of the DLC thin film include those on nano-oxidation points and nano-oxidation lines. The feature sizes of the DLC thin film, including surface morphology, depth, and width, were explored after application of a nano-oxidation technique to the DLC thin film under different process parameters. A databank for process parameters and feature sizes of thin films was then established, and multiple regression analysis (MRA) and a back-propagation neural network (BPN) were used to carry out the algorithm. The algorithmic results are compared with the feature sizes acquired from experiments, thus obtaining a prediction model of the nano-oxidation technique of the DLC thin film. The comparative results show that the prediction accuracy of BPN is superior to that of MRA. When the BPN algorithm is used to predict nano-point machining, the mean absolute percentage errors (MAPE) of depth, left side, and right side are 8.02%, 9.68%, and 7.34%, respectively. When nano-line machining is being predicted, the MAPEs of depth, left side, and right side are 4.96%, 8.09%, and 6.77%, respectively. The obtained data can also be used to predict cross-sectional morphology in the DLC thin film treated with a nano-oxidation process.

  9. Magnetite nano-islands on silicon-carbide with graphene

    DOE PAGES

    Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron; ...

    2017-01-05

    X-ray magnetic circular dichroism (XMCD) measurements of iron nano-islands grown on graphene and covered with a Au film for passivation reveal that the oxidation through defects in the Au film spontaneously leads to the formation of magnetite nano-particles (i.e, Fe 3O 4). The Fe nano-islands (20 and 75 monolayers; MLs) are grown on epitaxial graphene formed by thermally annealing 6HSiC( 0001) and subsequently covered, in the growth chamber, with nominal 20 layers of Au. Our X-ray absorption spectroscopy and XMCD measurements at applied magnetic fields show that the thin film (20 ML) is totally converted to magnetite whereas the thickermore » lm (75 ML) exhibits properties of magnetite but also those of pure metallic iron. Temperature dependence of the XMCD signal (of both samples) shows a clear transition at T V ≈ 120 K consistent with the Verwey transition of bulk magnetite. These results have implications on the synthesis of magnetite nano-crystals and also on their regular arrangements on functional substrates such as graphene.« less

  10. Magnetite nano-islands on silicon-carbide with graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron

    X-ray magnetic circular dichroism (XMCD) measurements of iron nano-islands grown on graphene and covered with a Au film for passivation reveal that the oxidation through defects in the Au film spontaneously leads to the formation of magnetite nano-particles (i.e, Fe 3O 4). The Fe nano-islands (20 and 75 monolayers; MLs) are grown on epitaxial graphene formed by thermally annealing 6HSiC( 0001) and subsequently covered, in the growth chamber, with nominal 20 layers of Au. Our X-ray absorption spectroscopy and XMCD measurements at applied magnetic fields show that the thin film (20 ML) is totally converted to magnetite whereas the thickermore » lm (75 ML) exhibits properties of magnetite but also those of pure metallic iron. Temperature dependence of the XMCD signal (of both samples) shows a clear transition at T V ≈ 120 K consistent with the Verwey transition of bulk magnetite. These results have implications on the synthesis of magnetite nano-crystals and also on their regular arrangements on functional substrates such as graphene.« less

  11. Effects of pore size, implantation time and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants

    PubMed Central

    Farrell, Brad J.; Prilutsky, Boris I.; Ritter, Jana M.; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2013-01-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40–100 microns and Large, 100–160 microns), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to 7 groups. Implant extrusion rate was measured weekly and skin ingrowth into implants was determined histologically after harvesting implants. It was found that all 3 types of implants demonstrated skin tissue ingrowth of over 30% (at week 3) and 50% (at weeks 4–6) of total implant porous area under the skin; longer implantation resulted in greater skin ingrowth (p<0.05). Only one case of infection was observed (infection rate 2.9%). Small and Nano groups showed the same implant extrusion rate which was lower than the Large group rate (0.06±0.01 vs. 0.16 ± 0.02 cm/week; p<0.05). Ingrowth area was comparable in the Small, Large and Nano implants. However, qualitatively, the Nano implants showed greatest cellular inhabitation within first three weeks. We concluded that percutaneous porous titanium implants allow for skin integration with the potential for a safe seal. PMID:23703928

  12. Nano structural anodes for radiation detectors

    DOEpatents

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  13. Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Giriraj, E-mail: grsharma@gmail.com; Dad, R. C.; Ghosh, S.

    2015-07-31

    A high power laser propagating through semiconductor plasma undergoes Stimulated Brillouin scattering (SBS) from the electrostrictively generated acoustic perturbations. We have considered that nano-sized grains (NSGs) ions are embedded in semiconductor plasma by means of ion implantation. The NSGs are bombarded by the surrounding plasma particles and collect electrons. By considering a negative charge on the NSGs, we present an analytically study on the effects of NSGs on threshold field for the onset of SBS and Brillouin gain of generated Brillouin scattered mode. It is found that as the charge on the NSGs builds up, the Brillouin gain is significantlymore » raised and the threshold pump field for the onset of SBS process is lowered.« less

  14. Twenty-Eight-Day Repeated Inhalation Toxicity Study of Nano-Sized Neodymium Oxide in Male Sprague-Dawley Rats

    PubMed Central

    Kim, Yong-Soon; Lim, Cheol-Hong; Shin, Seo-Ho; Kim, Jong-Choon

    2017-01-01

    Neodymium is a future-oriented material due to its unique properties, and its use is increasing in various industrial fields worldwide. However, the toxicity caused by repeated exposure to this metal has not been studied in detail thus far. The present study was carried out to investigate the potential inhalation toxicity of nano-sized neodymium oxide (Nd2O3) following a 28-day repeated inhalation exposure in male Sprague-Dawley rats. Male rats were exposed to nano-sized Nd2O3-containing aerosols via a nose-only inhalation system at doses of 0 mg/m3, 0.5 mg/m3, 2.5 mg/m3, and 10 mg/m3 for 6 hr/day, 5 days/week over a 28-day period, followed by a 28-day recovery period. During the experimental period, clinical signs, body weight, hematologic parameters, serum biochemical parameters, necropsy findings, organ weight, and histopathological findings were examined; neodymium distribution in the major organs and blood, bronchoalveolar lavage fluid (BALF), and oxidative stress in lung tissues were analyzed. Most of the neodymium was found to be deposited in lung tissues, showing a dose-dependent relationship. Infiltration of inflammatory cells and pulmonary alveolar proteinosis (PAP) were the main observations of lung histopathology. Infiltration of inflammatory cells was observed in the 2.5 mg/m3 and higher dose treatment groups. PAP was observed in all treatment groups accompanied by an increase in lung weight, but was observed to a lesser extent in the 0.5 mg/m3 treatment group. In BALF analysis, total cell counts, including macrophages and neutrophils, lactate dehydrogenase, albumin, interleukin-6, and tumor necrosis factor-alpha, increased significantly in all treatment groups. After a 4-week recovery period, these changes were generally reversed in the 0.5 mg/m3 group, but were exacerbated in the 10 mg/m3 group. The lowest-observed-adverse-effect concentration of nano-sized Nd2O3 was determined to be 0.5 mg/m3, and the target organ was determined to be the lung

  15. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study.

    PubMed

    Shaker, Mohamed A; Shaaban, Mona I

    2017-06-15

    Despite the fact that carbapenems (powerful β-lactams antibiotics) were able to fight serious infectious diseases, nowadays the spread of carbapenems-resistant bacteria is considered the main challenge in antibacterial therapy. In this study, we focused on evaluating the surface conjugation of carbapenems (imipenem and meropenem) with gold nanoparticles as a delivering strategy to specifically and safely maximize their therapeutic efficacy while destroying the developing resistance of the pathogens. Different particle size formulae (35, 70 and 200nm) were prepared by citrate reduction method. The prepared nanoparticles were functionalized with imipenem (Ipm) or meropenem (Mem) and physico-chemically characterized for loading efficiency, particle size, morphology, and in-vitro release. The antibacterial efficacy was also evaluated against carbapenems resistant Gram-negative bacteria isolated from infected human, through measuring the minimum inhibitory concentration and antibiotic kill test. All the obtained gold nanoparticles showed a distinct nano-size with loading efficiency up to 72% and 74% for Ipm and Mem, respectively. The conjugation and physico-chemical stability of the formulated carbapenems were confirmed by FTIR and X-RPD. Diffusion driven release behavior was observed for both Ipm and Mem from all of the loaded gold nanoparticles. For both Ipm and Mem, formula with 35nm diameter showed the most significant enhancement in antibacterial activity against all the selected isolates including Klebsiella pneumoniae, Proteus mirabilis and Acinteobacter baumanii. Ipm loaded Gold nanoparticles demonstrated decrease in the MIC of Ipm down to four folds, whereas, Mem loaded gold nanoparticles showed decrease in the MIC of Mem down to three folds on the tested bacterial isolates. Based on these results, the formulation of carbapenems-loaded gold nanoparticles demonstrated to be a promising nano-size delivery vehicle for improving the therapeutic activity and

  16. Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex.

    PubMed

    Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E

    2011-11-01

    Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex, Ca[((NO(2))(2)-8HQ)(2)], were explored, studied and evaluated in this work. Thin films of Ca[((NO(2))(2)-8HQ)(2)] were assembled by using a direct, simple and efficient layer-by-layer (LBL) chemical deposition technique. The optical properties of thin films were investigated by using spectrophotometric measurements of transmittance and reflectance at normal incidence in the wavelength range 200-2500 nm. The refractive index, n, and the absorption index, k, of Ca[((NO(2))(2)-8HQ)(2)] films were determined from the measured transmittance and reflectance. The real and imaginary dielectric constants were also determined. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with band gaps of 1.1 eV and 2.4 eV for the optical and transport energy gaps, respectively. The current-voltage characteristics of Ca[((NO(2))(2)-8HQ)(2)] showed a trap-charge limited conduction in determining the current at the intermediate and high bias regimes. Graphical representation of the current-voltage characteristics yields three distinct linear parts indicating the existence of three conduction mechanisms. Structural characterization and identification were confirmed by using Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) was also used to image the surface morphology of the deposited nano-sized metal complex and such study revealed a high homogeneity in surface spherical particle distribution with average particles size in the range 20-40 nm. Thermal gravimetric analysis (TGA) was also studied for [(NO(2))(2)-8HQ] and Ca[((NO(2))(2)-8HQ)(2)] to evaluate and confirm the thermal stability characteristics incorporated into the synthesized nano-sized Ca[((NO(2))(2)-8HQ)(2)] complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Strengthening Effect of Extruded Mg-8Sn-2Zn-2Al Alloy: Influence of Micro and Nano-Size Mg₂Sn Precipitates.

    PubMed

    Cheng, Weili; Bai, Yang; Wang, Lifei; Wang, Hongxia; Bian, Liping; Yu, Hui

    2017-07-18

    In this study, Mg-8Sn-2Zn-2Al (TZA822) alloys with varying Mg₂Sn contents prior to extrusion were obtained by different pre-treatments (without and with T4), and the strengthening response related to micro and nano-size Mg₂Sn precipitates in the extruded TZA822 alloys was reported. The results showed that the morphology of nano-size Mg₂Sn precipitates exhibits a significant change in basal plane from rod-like to spherical, owing to the decrement in the fraction of micro-size particles before extrusion. Meanwhile, the spherical Mg₂Sn precipitates provided a much stronger strengthening effect than did the rod-like ones, which was ascribed to uniform dispersion and refinement of spherical precipitates to effectively hinder basal dislocation slip. As a consequence, the extruded TZA822 alloy with T4 showed a higher tensile yield strength (TYS) of 245 MPa, ultimate tensile strength (UTS) of 320 MPa and elongation (EL) of 26.5%, as well as a lower degree of yield asymmetry than their counterpart without T4. Detailed reasons for the strengthening effect were given and analyzed.

  18. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    NASA Astrophysics Data System (ADS)

    Odio, Oscar F.; Lartundo-Rojas, Luis; Palacios, Elia Guadalupe; Martínez, Ricardo; Reguera, Edilso

    2016-11-01

    We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free sbnd SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe3O4@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe3O4@PAA-HEDred nanoparticles were tested as sorbent for Pb2+ and Cd2+ cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe3O4 nanoparticles and a nanosystem with disulfide groups (Fe3O4@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high resolution spectra for the nanostructured materials indicates that metal-sulfur interactions are dominant if free sbnd SH groups are present, but if not, the main adsorption route entails metal-carboxyl interactions. Even in presence of unbound thiol moieties, carboxyl groups participate due to favoured steric availability.

  19. Rounding corners of nano-square patches for multispectral plasmonic metamaterial absorbers.

    PubMed

    Ayas, Sencer; Bakan, Gokhan; Dana, Aykutlu

    2015-05-04

    Multispectral metamaterial absorbers based on metal-insulator-metal nano-square patch resonators are studied here. For a geometry consisting of perfectly nano-square patches and vertical sidewalls, double resonances in the visible regime are observed due to simultaneous excitation of electric and magnetic plasmon modes. Although slightly modifying the sizes of the square patches makes the resonance wavelengths simply shift, rounding corners of the square patches results in emergence of a third resonance due to excitation of the circular cavity modes. Sidewall angle of the patches are also observed to affect the absorption spectra significantly. Peak absorption values for the triple resonance structures are strongly affected as the sidewall angle varies from 90 to 50 degrees. Rounded corners and slanted sidewalls are typical imperfections for lithographically fabricated metamaterial structures. The presented results suggest that imperfections caused during fabrication of the top nano-structures must be taken into account when designing metamaterial absorbers. Furthermore, it is shown that these fabrication imperfections can be exploited for improving resonance properties and bandwidths of metamaterials for various potential applications such as solar energy harvesting, thermal emitters, surface enhanced spectroscopies and photodetection.

  20. Rapid pathogen detection with bacterial-assembled magnetic mesoporous silica.

    PubMed

    Lee, Soo Youn; Lee, Jiho; Lee, Hye Sun; Chang, Jeong Ho

    2014-03-15

    We report rapid and accurate pathogen detection by coupling with high efficiency magnetic separation of pathogen by Ni(2+)-heterogeneous magnetic mesoporous silica (Ni-HMMS) and real time-polymerase chain reaction (RT-PCR) technique. Ni-HMMS was developed with a significant incorporation of Fe particles within the silica mesopores by programmed thermal hydrogen reaction and functionalized with Ni(2+) ion on the surface by the wet impregnation process. High abundant Ni(2+) ions on the Ni-HMMS surface were able to assemble with cell wall component protein NikA (nickel-binding membrane protein), which contains several pathogenic bacteria including Escherichia coli O157:H7. NikA protein expression experiment showed the outstanding separation rate of the nikA gene-overexpressed E. coli (pSY-Nik) when comparing with wild-type E. coli (44.5 ± 13%) or not over-expressed E. coli (pSY-Nik) (53.2 ± 2.7%). Moreover, Ni-HMMS showed lower obstacle effect by large reaction volume (10 mL) than spherical core/shell-type silica magnetic nanoparticles functionalized with Ni(2+) (ca. 40 nm-diameters). Finally, the Ni-HMMS was successfully assessed to separate pathogenic E. coli O157:H7 and applied to direct and rapid RT-PCR to quantitative detection at ultralow concentration (1 Log10 cfu mL(-1)) in the real samples (milk and Staphylococcus aureus culture broth) without bacterial amplification and DNA extraction step. © 2013 Elsevier B.V. All rights reserved.

  1. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    PubMed

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  2. Enhancement of Device Performances in GaN-Based Light-Emitting Diodes Using Nano-Sized Surface Pit.

    PubMed

    Yeon, Seunghwan; Son, Taejoon; Shin, Dong Su; Jung, Kyung-Young; Park, Jinsub

    2015-07-01

    We report the improvement in optical and electrical properties of GaN-based green light-emitting diodes (LEDs) with nano-sized etch pits formed by the surface chemical etching. In order to control the density and sizes of etch pits formed on top surface of green LEDs, H3PO4 solution is used as a etchant with different etching time. When the etching time was increased from 0 min to 20 min, both the etch pit size and density were gradually increased. The improvement of extraction efficiency of LEDs using surface etching method can be attributed to the enlarged escape angle of generated photon by roughened p-GaN surface. The finite-difference time-domain (FDTD) simulation results well agreed with experimentally observed results. Moreover, the LED with etched p-GaN surface for 5 min shows the lowest leakage current value and the further increase of etching time resulting in increase of densities of the large-sized etch pit makes the degradation of electrical properties of LEDs.

  3. Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida.

    PubMed

    Coleman, Jessica G; Johnson, David R; Stanley, Jacob K; Bednar, Anthony J; Weiss, Charles A; Boyd, Robert E; Steevens, Jeffery A

    2010-07-01

    Nano-sized aluminum is currently being used by the military and commercial industries in many applications including coatings, thermites, and propellants. Due to the potential for wide dispersal in soil systems, we chose to investigate the fate and effects of nano-sized aluminum oxide (Al2O3), the oxidized form of nano aluminum, in a terrestrial organism. The toxicity and bioaccumulation potential of micron-sized (50-200 microm, nominal) and nano-sized (11 nm, nominal) Al2O3 was comparatively assessed through acute and subchronic bioassays using the terrestrial earthworm, Eisenia fetida. Subchronic (28-d) studies were performed exposing E. fetida to nano- and micron-sized Al2O3-spiked soils to assess the effects of long-term exposure. No mortality occurred in subchronic exposures, although reproduction decreased at >or=3,000 mg/kg nano-sized Al2O3 treatments, with higher aluminum body burdens observed at 100 and 300 mg/kg; no reproductive effects were observed in the micron-sized Al2O3 treatments. In addition to toxicity and bioaccumulation bioassays, an acute (48-h) behavioral bioassay was conducted utilizing a soil avoidance wheel in which E. fetida were given a choice of habitat between control, nano-, or micron-sized Al2O3 amended soils. In the soil avoidance bioassays, E. fetida exhibited avoidance behavior toward the highest concentrations of micron- and nano-sized Al2O3 (>5,000 mg/kg) relative to control soils. Results of the present study indicate that nano-sized Al2O3 may impact reproduction and behavior of E. fetida, although at high levels unlikely to be found in the environment. Copyright (c) 2010 SETAC.

  4. Design and formulation of nano-sized spray dried efavirenz-part I: influence of formulation parameters

    NASA Astrophysics Data System (ADS)

    Katata, Lebogang; Tshweu, Lesego; Naidoo, Saloshnee; Kalombo, Lonji; Swai, Hulda

    2012-11-01

    Efavirenz (EFV) is one of the first-line antiretroviral drugs recommended by the World Health Organisation for treating HIV. It is a hydrophobic drug that suffers from low aqueous solubility (4 μg/mL), which leads to a limited oral absorption and low bioavailability. In order to improve its oral bioavailability, nano-sized polymeric delivery systems are suggested. Spray dried polycaprolactone-efavirenz (PCL-EFV) nanoparticles were prepared by the double emulsion method. The Taguchi method, a statistical design with an L8 orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen as significant parameters affecting the particle size and polydispersity index (PDI). Small nanoparticles with an average particle size of less than 254 ± 0.95 nm in the case of ethyl acetate as organic solvent were obtained as compared to more than 360 ± 19.96 nm for dichloromethane. In this study, the type of solvent and sugar were the most influencing parameters of the particle size and PDI. Taguchi method proved to be a quick, valuable tool in optimising the particle size and PDI of PCL-EFV nanoparticles. The optimised experimental values for the nanoparticle size and PDI were 217 ± 2.48 nm and 0.093 ± 0.02.

  5. Effect of temperature on the magnetic properties of nano-sized M-type barium hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Tchouank Tekou Carol, T.; Sharma, Jyoti; Mohammed, J.; Kumar, Sachin; Srivastava, A. K.

    2017-07-01

    The application of M-type hexagonal ferrites in electronic devices is increasing with technological advancement. This is due to the possibility of improving the physical and magnetic properties to suit the desired application. Enhanced magnetic properties make hexagonal ferrites suitable for hyper frequency and radar absorbing application. In this paper, we investigated the effect of heat-treatment temperature on the structural and magnetic properties of M-type barium hexagonal ferrites with chemical composition Ba1-xAlxFe12-yMnyO19 (x=0.6 and y=0.3) synthesized by sol-gel auto-combustion method and sintered at 750°C, 850°C, 950°C and 1050°C. Characterisations of the prepared samples were done using Fourier transform-infrared (FT-IR), and vibrating sample magnetometer (VSM). The formation of M-type hexaferrite has been confirmed from XRD. The presence of two prominent peaks between 400 cm-1 and 600 cm-1 in the spectra of Fourier transform-infrared spectroscopy (FT-IR) also shows the formation of ferrite phase. Saturation magnetisation (MS), remnant magnetisation (Mr), coercivity (Hc) and squareness ratio (SR) were calculated from the M-H loop obtained from vibrating sample magnetometer (VSM).

  6. Enhanced defluoridation and facile separation of magnetic nano-hydroxyapatite/alginate composite.

    PubMed

    Pandi, Kalimuthu; Viswanathan, Natrayasamy

    2015-09-01

    In this research study, a new magnetic biosorbent was developed by the fabrication of magnetic Fe3O4 particles on nano-hydroxyapatite(n-HAp)/alginate (Alg) composite (Fe3O4@n-HApAlg composite) for defluoridation in batch mode. The synthesized Fe3O4@n-HApAlg biocomposite possess an enhanced defluoridation capacity (DC) of 4050 mgF(-)/kg when compare to n-HApAlg composite, Fe3O4@n-HAp composite, n-HAp and Fe3O4 which possesses the DCs of 3870, 2469, 1296 and 1050 mgF(-)/kg respectively. The structural changes of the sorbent, before and after fluoride sorption were studied using FTIR, XRD and SEM with EDAX techniques. There are various physico-chemical parameters such as contact time, pH, co-existing anions, initial fluoride concentration and temperature were optimized for maximum fluoride removal. The equilibrium data was well modeled by Freundlich, Langmuir, Dubinin-Radushkevich (D-R) and Temkin isotherms. The present system follows Dubinin-Radushkevich isotherm model. The thermodynamic parameters reveals that the feasibility, spontaneity and endothermic nature of fluoride sorption. The performance and efficiency of the adsorbent material was examined with water samples collected from fluoride endemic areas namely Reddiyarchatram and Ammapatti in Dindigul District of Tamil Nadu using standard protocols. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method

    NASA Astrophysics Data System (ADS)

    Xie, Zhuoming; Liu, Rui; Fang, Qianfeng; Zhang, Tao; Jiang, Yan; Wang, Xianping; Liu, Changsong

    2015-12-01

    W-(0.2, 0.5, 1.0)wt% ZrC alloys with a relative density above 97.5% were fabricated through the spark plasma sintering (SPS) method. The grain size of W-1.0wt% ZrC is about 2.7 μm, smaller than that of pure W and W-(0.2, 0.5)wt% ZrC. The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature, higher tensile strength at high temperature, and a lower ductile to brittle transition temperature (DBTT) than pure W. The tensile strength and total elongation of W-0.5wt% ZrC alloy at 700 °C is 535 MPa and 24.8%, which are respectively 59% and 114% higher than those of pure W (337 MPa, 11.6%). The DBTT of W-(0.2, 0.5, 1.0)wt% ZrC materials is in the range of 500°C-600°C, which is about 100 °C lower than that of pure W. Based on microstructure analysis, the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening. supported by the Innovation Program of Chinese Academy of Sciences (No. KJCX2-YW-N35), the National Magnetic Confinement Fusion Science Program of China (No. 2011GB108004), National Natural Science Foundation of China (Nos. 51301164, 11075177, 11274305), and Anhui Provincial Natural Science Foundation of China (No. 1408085QE77)

  8. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    NASA Astrophysics Data System (ADS)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  9. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    NASA Technical Reports Server (NTRS)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  10. Size effects in the magnetic properties of ε-Fe{sub 2}O{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubrovskiy, A. A., E-mail: andre-do@yandex.ru; International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53-421; Balaev, D. A.

    2015-12-07

    We report the results of comparative analysis of magnetic properties of the systems based on ε-Fe{sub 2}O{sub 3}, nanoparticles with different average sizes (from ∼3 to 9 nm) and dispersions. The experimental data for nanoparticles higher than 6–8 nm in size are consistent with the available data, specifically, the transition to the magnetically ordered state occurs at a temperature of ∼500 K and the anomalies of magnetic properties observed in the range of 80–150 K correspond to the magnetic transition. At the same time, Mőssbauer and ferromagnetic resonance spectroscopy data as well as the results of static magnetic measurements show that at room temperaturemore » all the investigated samples contain ε-Fe{sub 2}O{sub 3} particles that exhibit the superparamagnetic behavior. It was established that the magnetic properties of nanoparticles significantly change with a decrease in their size to ∼6 nm. According to high-resolution electron microscopy and Mőssbauer spectroscopy data, the particle structure can be attributed to the ε–modification of trivalent iron oxide; meanwhile, the temperature of the magnetic order onset in these particles is increased, the well-known magnetic transition in the range of 80–150 K does not occur, the crystallographic magnetic anisotropy constant is significantly reduced, and the surface magnetic anisotropy plays a decisive role. This is apparently due to redistribution of cations over crystallographic positions with decreasing particle size, which was established using Mössbauer spectra. As the particle size is decreased and the fraction of surface atoms is increased, the contribution of an additional magnetic subsystem formed in a shell of particles smaller than ∼4 nm becomes significant, which manifests itself in the static magnetic measurements as paramagnetic contribution.« less

  11. Influences of magnetic field on the fractal morphology in copper electrodeposition

    NASA Astrophysics Data System (ADS)

    Sudibyo; How, M. B.; Aziz, N.

    2018-01-01

    Copper magneto-electrodeposition (MED) is used decrease roughening in the copper electrodeposition process. This technology plays a vital role in electrodeposition process to synthesize metal alloy, thin film, multilayer, nanowires, multilayer nanowires, dot array and nano contacts. The effects of magnetic fields on copper electrodeposition are investigated in terms of variations in the magnetic field strength and the electrolyte concentration. Based on the experimental results, the mere presence of magnetic field would result in a compact deposit. As the magnetic field strength is increased, the deposit grows denser. The increment in concentration also leads to the increase the deposited size. The SEM image analysis showed that the magnetic field has a significant effect on the surface morphology of electrodeposits.

  12. [Raman spectrum of nano-graphite synthesized by explosive detonation].

    PubMed

    Wen, Chao; Li, Xun; Sun, De-Yu; Guan, Jin-Qing; Liu, Xiao-Xin; Lin, Ying-Rui; Tang, Shi-Ying; Zhou, Gang; Lin, Jun-De; Jin, Zhi-Hao

    2005-01-01

    The nano-graphite powder synthesized by the detonation of explosives with negative oxygen balance is a new powder material with potential applications. In this work, the preparation of nano-graphite powder in steel chamber by pure TNT (trinitrotoluene) explosives has been introduced. In the synthesis process, the protective gases in the steel chamber are N2, CO2 and Ar, and the pressure is 0.25-2 atm. Raman spectrum of the nano-graphite was measured. The characteristic Raman band assigned to sp2 of graphite has been observed at about 1 585 cm(-1) with half-peak width of 22 cm(-1). The peak shifted to a higher frequency by 5 cm(-1) compared with that of bulk graphite. The authors explain this blue shift phenomenon by size effect. The average size of nanographite from Raman measurement is 2.97-3.97 nm. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to measure the structure and particle size of the nano-graphite. The crystallite size of nano-graphite estimated from XRD andTEM are 2.58 nm (acid untreated) and 1.86 nm (acid treated) respectively, which is in accord with the results of the measurement approximately.

  13. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Ahmad; Jafari, Elahe

    2017-01-01

    In this work, effects of sintering atmosphere and temperature on structural and magnetic properties of Ni0.3Cu0.2Zn0.5Fe2O4 nanoparticles prepared by citrate precursor method have been studied. The structural characterization of the samples by X-ray powder diffraction and FT-IR spectroscopy is evidence for formation of a cubic structure with no presence of impurity phase. Calculated values of crystallite size and unit cell parameter show an increase with sintering temperature under different atmospheres. Variation of saturation magnetization with sintering temperature and atmosphere can be attributed to change of three factors: magnetic core size, inversion parameter and the change of Fe3+-ion concentration due to the presence of Fe4+ and Fe2+ ions. The saturation magnetization gradually grows with sintering temperature due to increase of magnetic core size and a maximum 63 emu/g was achieved at 600 °C under carbon monoxide-ambient atmosphere.

  14. Ultrafine nano-network structured bacterial cellulose as reductant and bridging ligands to fabricate ultrathin K-birnessite type MnO2 nanosheets for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojuan; He, Mingqian; He, Ping; Li, Caixia; Liu, Huanhuan; Zhang, Xingquan; Ma, Yongjun

    2018-03-01

    In this work, nanostructured ultrathin K-birnessite type MnO2 nanosheets are successfully prepared by a rapid and environmently friendly hydrothermal method, which involves only a facile redox reaction between KMnO4 and nano-network structured bacterial cellulose with abundant hydroxyl groups. The results show that the unique three-dimensional interwoven structured bacterial cellulose acts as not only reductant but also bridging ligands for assembling nanoscaled building units to control the desired morphology of prepared MnO2. Furthermore, electrochemical performances of prepared MnO2 are investigated as electrode materials for supercapacitors by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M Na2SO4 electrolyte. The resulting ultrathin K-birnessite type MnO2 nanosheets based electrode exhibits higher capacitance (328.2 F g-1 at 0.2 A g-1), excellent rate capability (328.2 F g-1 and 200.4 F g-1 at 0.2 A g-1 and 2.0 A g-1, respectively) and satisfactory cyclic stability (91.6% of initial capacitance even after 2000 cycles at 3.0 A g-1). This work suggests that bacterial cellulose as reductant is a promising candidate in the development of nanostructures of metal oxides.

  15. Frequency Dependent Susceptibility Analysis of Magnetic Carriers: Application to Fe-Oxides on Mars surface

    NASA Astrophysics Data System (ADS)

    Adachi, T.; Kletetschka, G.; Mikula, V.

    2007-12-01

    On Mars, Fe-oxides mineral phases (inferred/detected) are mainly magnetite, pyrrhotite, and hematite. Kletetschka et al., 2005 suggested that the grain size dependent potential may contribute to the Mars surface magnetic anomaly. Grain size of Fe-oxides may play a role for the magnetic signature and anomaly on Mars. According to Kletetschka et al., 2005, the larger the grain size, the larger the magnetization (in this case hematite's TRM). Weather they are magnetite, pyrrhotite or hematite, nano-phase or superparamagnetic grains may contribute to the absence of remanent magnetization on the surface of Mars. In this contribution we tackle how to resolve grain size variations by frequency dependent susceptibility measured on terrestrial hematite samples such as hemo-ilmenite from Allard Lake, Canada, Mars analogue concretions from Utah and Czech Republic, and hematite aggregates from Hawaii. The magnetic characteristics of hematite-goethite mineralogies of Utah and Czech concretions suggested (Adachi et al., 2007) that they contain super paramagnetic (SP) to single domain (SD) magnetic states. Coercivity spectra analysis from acquisition of isothermal remanent magnetization (IRM) data showed the distinct behaviors of hematite, goethite, and mixed composition of both. The estimated magnetic states are analyzed with the frequency-dependent susceptibility instrument (500-250,000 Hertz). The frequency- and size-dependent susceptibility for hematite, goethite, and magnetite are calibrated using the known size powdered (commercial) samples.

  16. Bio-dispersive liquid liquid microextraction based on nano rhaminolipid aggregates combined with magnetic solid phase extraction using Fe3O4@PPy magnetic nanoparticles for the determination of methamphetamine in human urine.

    PubMed

    Haeri, Seyed Ammar; Abbasi, Shahryar; Sajjadifar, Sami

    2017-09-15

    In the present investigation, extraction and preconcentration of methamphetamine in human urine samples was carried out using a novel bio-dispersive liquid liquid microextraction (Bio-DLLME) technique coupled with magnetic solid phase extraction (MSPE). Bio-DLLME is a kind of microextraction technique based nano-materials which have potential capabilities in many application fields. Bio-DLLME is based on the use of a binary part system consisting of methanol and nano rhaminolipid biosurfactant. Use of this binary mixture is ecologically accepted due to their specificity, biocompatibility and biodegradable nature. The potential of nano rhaminolipid biosurfactant as a biological agent in the extraction of organic compounds has been investigated in recent years. They are able to partition at the oil/water interfaces and reduce the interfacial tension in order to increase solubility of hydrocarbons. The properties of the prepared Fe 3 O 4 @PPy magnetic nanoparticles were characterized using Fourier transform infrared spectroscopy and X-ray diffraction methods The influences of the experimental parameters on the quantitative recovery of analyte were investigated. Under optimized conditions, the enrichment factor was 310, the calibration graph was linear in the methamphetamine concentration range from 1 to 60μgL -1 , with a correlation coefficient of 0.9998. The relative standard deviations for six replicate measurements was 5.2%. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation.

    PubMed

    Seifan, Mostafa; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin

    2018-04-01

    Recently, magnetic iron oxide nanoparticles (IONs) have been used to control and modify the characteristics of concrete and mortar. Concrete is one of the most used materials in the world; however, it is susceptible to cracking. Over recent years, a sustainable biotechnological approach has emerged as an alternative approach to conventional techniques to heal the concrete cracks by the incorporation of bacterial cells and nutrients into the concrete matrix. Once cracking occurs, CaCO 3 is induced and the crack is healed. Considering the positive effects of IONs on the concrete properties, the effect of these nanoparticles on bacterial growth and CaCO 3 biosynthesis needs to be evaluated for their possible application in bio self-healing concrete. In the present work, IONs were successfully synthesized and characterized using various techniques. The presence of IONs showed a significant effect on both bacterial growth and CaCO 3 precipitation. The highest bacterial growth was observed in the presence of 150 μg/mL IONs. The highest concentration of induced CaCO 3 (34.54 g/L) was achieved when the bacterial cells were immobilized with 300 μg/mL of IONs. This study provides new data and supports the possibility of using IONs as a new tool in designing the next generation of bio self-healing concrete.

  18. Size-dependent magnetic properties of FeGaB/Al2O3 multilayer micro-islands

    NASA Astrophysics Data System (ADS)

    Wang, X.; Gao, Y.; Chen, H.; Chen, Y.; Liang, X.; Lin, W.; Sun, N. X.

    2018-06-01

    Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200 μm ∼ 500 μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.

  19. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  20. Ultralow-current-density and bias-field-free spin-transfer nano-oscillator

    PubMed Central

    Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Amiri, Pedram Khalili; Katine, Jordan A.; Krivorotov, Ilya N.; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L.; Jiang, Hongwen

    2013-01-01

    The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators. PMID:23478390

  1. Ultralow-current-density and bias-field-free spin-transfer nano-oscillator.

    PubMed

    Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Khalili Amiri, Pedram; Katine, Jordan A; Krivorotov, Ilya N; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L; Jiang, Hongwen

    2013-01-01

    The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.

  2. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences.

    PubMed

    Jun, Young-Wook; Seo, Jung-Wook; Cheon, Jinwoo

    2008-02-01

    Magnetic nanoparticles, which exhibit a variety of unique magnetic phenomena that are drastically different from those of their bulk counterparts, are garnering significant interest since these properties can be advantageous for utilization in a variety of applications ranging from storage media for magnetic memory devices to probes and vectors in the biomedical sciences. In this Account, we discuss the nanoscaling laws of magnetic nanoparticles including metals, metal ferrites, and metal alloys, while focusing on their size, shape, and composition effects. Their fundamental magnetic properties such as blocking temperature (Tb), spin life time (tau), coercivity (Hc), and susceptibility (chi) are strongly influenced by the nanoscaling laws, and as a result, these scaling relationships can be leveraged to control magnetism from the ferromagnetic to the superparamagnetic regimes. At the same time, they can be used in order to tune magnetic values including Hc, chi, and remanence (Mr). For example, life time of magnetic spin is directly related to the magnetic anisotropy energy (KuV) and also the size and volume of nanoparticles. The blocking temperature (Tb) changes from room temperature to 10 K as the size of cobalt nanoparticles is reduced from 13 to 2 nm. Similarly, H c is highly susceptible to the anisotropy of nanoparticles, while saturation magnetization is directly related to the canting effects of the disordered surface magnetic spins and follows a linear relationship upon plotting of ms (1/3) vs r(-1). Therefore, the nanoscaling laws of magnetic nanoparticles are important not only for understanding the behavior of existing materials but also for developing novel nanomaterials with superior properties. Since magnetic nanoparticles can be easily conjugated with biologically important constituents such as DNA, peptides, and antibodies, it is possible to construct versatile nano-bio hybrid particles, which simultaneously possess magnetic and biological functions

  3. Nano- and Microparticles in Welding Aerosol: Granulometric Analysis

    NASA Astrophysics Data System (ADS)

    Kirichenko, K. Yu.; Drozd, V. A.; Chaika, V. V.; Gridasov, A. V.; Kholodov, A. S.; Golokhvast, K. S.

    The paper presents the first results of the study of the size of particles appearing in the welding process by means of laser granulometry. It is shown that welding aerosol is the source of nano-and micro-sized particles extremely dangerous for human and animal health. Particle size distribution in the microrange was from 1 to 10 μm and up to 100%. It is shown that in 9 cases out of 28 with the use of various welding modes, welding rods and components the emission of aerosol with nano-sized particles (from 45.5% to 99.4%) is observed.

  4. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.

    PubMed

    Babinec, Peter; Krafcík, Andrej; Babincová, Melánia; Rosenecker, Joseph

    2010-08-01

    Magnetic nanoparticles for therapy and diagnosis are at the leading edge of the rapidly developing field of bionanotechnology. In this study, we have theoretically studied motion of magnetic nano- as well as micro-particles in the field of cylindrical Halbach array of permanent magnets. Magnetic flux density was modeled as magnetostatic problem by finite element method and particle motion was described using system of ordinary differential equations--Newton law. Computations were done for nanoparticles Nanomag-D with radius 65 nm, which are often used in magnetic drug targeting, as well as microparticles DynaBeads-M280 with radius 1.4 microm, which can be used for magnetic separation. Analyzing snapshots of trajectories of hundred magnetite particles of each size in the water as well as in the air, we have found that optimally designed magnetic circuits of permanent magnets in quadrupolar Halbach array have substantially shorter capture time than simple blocks of permanent magnets commonly used in experiments, therefore, such a Halbach array may be useful as a potential source of magnetic field for magnetic separation and targeting of magnetic nanoparticles as well as microparticles for delivery of drugs, genes, and cells in various biomedical applications.

  5. Bactericidal assessment of nano-silver on emerging and re-emerging human pathogens.

    PubMed

    Anuj, Samir A; Gajera, Harsukh P; Hirpara, Darshna G; Golakiya, Baljibhai A

    2018-04-24

    With the threat of the growing number of bacteria resistant to antibiotics, the re-emergence of previously deadly infections and the emergence of new infections, there is an urgent need for novel therapeutic agent. Silver in the nano form, which is being used increasingly as antibacterial agents, may extend its antibacterial application to emerging and re-emerging multidrug-resistant pathogens, the main cause of nosocomial diseases worldwide. In the present study, a completely bottom up method to prepare green nano-silver was used. To explore the action of nano-silver on emerging Bacillus megaterium MTCC 7192 and re-emerging Pseudomonas aeruginosa MTCC 741 pathogenic bacteria, the study includes an analysis of the bacterial membrane damage through Scanning Electron Microscope (SEM) as well as alternation of zeta potential and intracellular leakages. In this work, we observed genuine bactericidal property of nano-silver as compare to broad spectrum antibiotics against emerging and re-emerging mode. After being exposed to nano-silver, the membrane becomes scattered from their original ordered arrangement based on SEM observation. Moreover, our results also suggested that alternation of zeta potential enhanced membrane permeability, and beyond a critical point, it leads to cell death. The leakages of intracellular constituents were confirmed by Gas Chromatography-Mass Spectrometry (GC-MS). In conclusion, the combine results suggested that at a specific dose, nano-silver may destroy the structure of bacterial membrane and depress its activity, which causes bacteria to die eventually. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. Bacterial contamination of boar semen affects the litter size.

    PubMed

    Maroto Martín, Luis O; Muñoz, Eduardo Cruz; De Cupere, Françoise; Van Driessche, Edilbert; Echemendia-Blanco, Dannele; Rodríguez, José M Machado; Beeckmans, Sonia

    2010-07-01

    One hundred and fifteen semen samples were collected from 115 different boars from two farms in Cuba. The boars belonged to five different breeds. Evaluation of the semen sample characteristics (volume, pH, colour, smell, motility of sperm cells) revealed that they meet international standards. The samples were also tested for the presence of agglutinated sperm cells and for bacterial contamination. Seventy five percent of the ejaculates were contaminated with at least one type of bacteria and E. coli was by far the major contaminant, being present in 79% of the contaminated semen samples (n=68). Other contaminating bacteria belonged to the genera Proteus (n=31), Serratia (n=31), Enterobacter (n=24), Klebsiella (n=12), Staphylococcus (n=10), Streptococcus (n=8) and Pseudomonas (n=7). Only in one sample anaerobic bacteria were detected. Pearson's analysis of the data revealed that there is a positive correlation between the presence of E. coli and sperm agglutination, and a negative correlation between sperm agglutination and litter size. One-way ANOVA and post hoc Tukey analysis of 378 litters showed that the litter size is significantly reduced when semen is used that is contaminated with spermagglutinating E. coli above a threshold value of 3.5x10(3)CFU/ml. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Model-based magnetization retrieval from holographic phase images.

    PubMed

    Röder, Falk; Vogel, Karin; Wolf, Daniel; Hellwig, Olav; Wee, Sung Hun; Wicht, Sebastian; Rellinghaus, Bernd

    2017-05-01

    The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO 3 substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A NANO enhancement to Moore's law

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Shen, Yin-Lin; Reinhardt, Kitt; Szu, Harold

    2012-06-01

    In the past 46 years, Intel Moore observed an exponential doubling in the number of transistors in every 18 months through the size reduction of individual transistor components since 1965. In this paper, we are exploring the nanotechnology impact upon the Law. Since we cannot break down the atomic size barrier, the fact implies a fundamental size limit at the atomic or Nanotechnology scale. This means, no more simple 18 month doubling as in Moore's Law, but other forms of transistor doubling may happen at a different slope in new directions. We are particularly interested in the Nano enhancement area. (i) 3-D: If the progress in shrinking the in-plane dimensions (2D) is to slow down, vertical integration (3D) can help increasing the areal device transistor density and keep us on the modified Moore's Law curve including the 3rd dimension. As the devices continue to shrink further into the 20 to 30 nm range, the consideration of thermal properties and transport in such nanoscale devices becomes increasingly important. (ii) Carbon Computing: Instead of traditional Transistors, the other types of transistors material are rapidly developed in Laboratories Worldwide, e.g. IBM Spintronics bandgap material and Samsung Nano-storage material, HD display Nanotechnology, which are modifying the classical Moore's Law. We shall consider the overall limitation of phonon engineering, fundamental information unit 'Qubyte' in quantum computing, Nano/Micro Electrical Mechanical System (NEMS), Carbon NanoTubes (CNTs), single layer Graphemes, single strip Nano-Ribbons, etc., and their variable degree of fabrication maturities for the computing and information processing applications.

  9. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    PubMed

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p < 0.05), and decreased in the order of sand > clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p < 0.05), while the total organic carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  10. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    PubMed Central

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  11. Strengthening Effect of Extruded Mg-8Sn-2Zn-2Al Alloy: Influence of Micro and Nano-Size Mg2Sn Precipitates

    PubMed Central

    Cheng, Weili; Bai, Yang; Wang, Lifei; Wang, Hongxia; Bian, Liping; Yu, Hui

    2017-01-01

    In this study, Mg-8Sn-2Zn-2Al (TZA822) alloys with varying Mg2Sn contents prior to extrusion were obtained by different pre-treatments (without and with T4), and the strengthening response related to micro and nano-size Mg2Sn precipitates in the extruded TZA822 alloys was reported. The results showed that the morphology of nano-size Mg2Sn precipitates exhibits a significant change in basal plane from rod-like to spherical, owing to the decrement in the fraction of micro-size particles before extrusion. Meanwhile, the spherical Mg2Sn precipitates provided a much stronger strengthening effect than did the rod-like ones, which was ascribed to uniform dispersion and refinement of spherical precipitates to effectively hinder basal dislocation slip. As a consequence, the extruded TZA822 alloy with T4 showed a higher tensile yield strength (TYS) of 245 MPa, ultimate tensile strength (UTS) of 320 MPa and elongation (EL) of 26.5%, as well as a lower degree of yield asymmetry than their counterpart without T4. Detailed reasons for the strengthening effect were given and analyzed. PMID:28773180

  12. Small-size controlled vacuum spark-gap in an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asyunin, V. I., E-mail: asvi@mail.ru; Davydov, S. G.; Dolgov, A. N., E-mail: alnikdolgov@mail.ru

    2015-02-15

    It is demonstrated that the operation of a small-size controlled spark-gap can be controlled by applying a uniform external magnetic field. It is shown that the magnetic field of such a simple configuration efficiently suppresses the effect of localization of the discharge current after multiple actuations of the spark-gap.

  13. Nano scale devices: Fabrication, actuation, and related fluidic dynamics

    NASA Astrophysics Data System (ADS)

    Jing, Hao

    Using external actuating magnetic fields to manipulate magnetic parts is an efficient method to manipulate mesoscopic actable devices. Extensive researches have explored the potentials of self-assembly techniques based on capillary force, static charge force, drying, surface tension, and even dynamic fields as a low cost method for ordered 2D or 3D super-lattice structures for new materials and devices. But the ability of tunable patterning nano-particles for designed actable devices is still a requirement yet to be met. Utilizing anodized aluminum oxide (AAO) membranes as templates, soft-magnetic nanowires around 200 nm in diameter, 10 microns long have been fabricated. In this thesis, I describe a method to assemble these magnetic nanowires into a two dimension Wigner structure, of which the wire-wire distance is conveniently adjustable during the fabrication procedure. Using geometric tailored magnetic fields, we can plant these self-assembled magnetic nanowires with desired patterns into a thin soft polymer support layer. The final devices may be readily actuated by an external actuating magnetic field (a self-designed magnetic system, 3-dimensional force microscope (3DFM)) with precise patterns and frequencies in a micro-fluidic system. This method offers a general method to fabricate mesoscopic devices from a wide range of materials with magnetic dipoles to desired structures. And the actable devices themselves can find direct usage in low Re number flow mixing and bio-physical fluidic dynamic researches. The beating of cilia and flagella, slender cylinders 250 nanometers in diameter with lengths from 7 to 50 microns, is responsible for many important biological functions such as organism feeding, propulsion, for bacterial clearance in the lungs and for the right-left asymmetry in vertebrates. The hydrodynamics produced by these beating structures, including mixing, shear and extensional flows, is not understood. We developed an experimental model system for

  14. Evaluation of the magnetocaloric response of nano-sized La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method

    NASA Astrophysics Data System (ADS)

    Gómez, Adrián; Chavarriaga, Edgar; Supelano, Iván; Parra, Carlos Arturo; Morán, Oswaldo

    2018-05-01

    A systematic study of the dependence of the magnetization on the magnetic field around the ferromagnetic-paramagnetic phase transition temperature is carried out on La0.7Ca0.3Mn1-xNixO3 (x=0, 0.02, 0.07, and 1) samples synthesized by auto-combustion method. The successful substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice is corroborated by X-ray diffraction technique. Banerjees criteria, Arrott plots, and the scaling hypothesis are used to analyze the experimental data. It is verified that the Ni-doping increases the operating temperature range for magnetocaloric effect through tuning of the magnetic transition temperature. Probably, the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and magnetic moment in the samples. The Arrott plots suggest that the phase transition from ferromagnetic to paramagnetic in the nano-sized manganite is of second order. The analysis of the magnetization results show that the maximum magnetic entropy changes observed for x=0, 0.02, 0.07, and 0.1 compositions are 0.85, 0.77, 0.63, and 0.59 J/kg K, under a magnetic field of 1.5 T. These values indicate that the magnetic entropy change achieved for La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method is higher than those reported for other manganites with comparable Ni-doping levels but synthesized by standard solid state reaction. It is also observed that the addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (˜60 J/kg) is found for a Ni-doping level of 2 % around 230 K in a field of 1.5 T.

  15. Nano/micro-scale magnetophoretic devices for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lim, Byeonghwa; Vavassori, Paolo; Sooryakumar, R.; Kim, CheolGi

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology.

  16. Size-controlled magnetic nanoparticles with lecithin for biomedical applications

    NASA Astrophysics Data System (ADS)

    Park, S. I.; Kim, J. H.; Kim, C. G.; Kim, C. O.

    2007-05-01

    Lecithin-adsorbed magnetic nanoparticles were prepared by three-step process that the thermal decomposition was combined with ultrasonication. Experimental parameters were three items—molar ratio between Fe(CO) 5 and oleic acid, keeping time at decomposition temperature and lecithin concentration. As the molar ratio between Fe(CO) 5 and oleic acid, and keeping time at decomposition temperature increased, the particle size increased. However, the change of lecithin concentration did not show the remarkable particle size variation.

  17. Magnetic microscopic imaging with an optically pumped magnetometer and flux guides

    DOE PAGES

    Kim, Young Jin; Savukov, Igor Mykhaylovich; Huang, Jen -Huang; ...

    2017-01-23

    Here, by combining an optically pumped magnetometer (OPM) with flux guides (FGs) and by installing a sample platform on automated translation stages, we have implemented an ultra-sensitive FG-OPM scanning magnetic imaging system that is capable of detecting magnetic fields of ~20 pT with spatial resolution better than 300 μm (expected to reach ~10 pT sensitivity and ~100 μm spatial resolution with optimized FGs). As a demonstration of one possible application of the FG-OPM device, we conducted magnetic imaging of micron-size magnetic particles. Magnetic imaging of such particles, including nano-particles and clusters, is very important for many fields, especially for medicalmore » cancer diagnostics and biophysics applications. For rapid, precise magnetic imaging, we constructed an automatic scanning system, which holds and moves a target sample containing magnetic particles at a given stand-off distance from the FG tips. We show that the device was able to produce clear microscopic magnetic images of 10 μm-size magnetic particles. In addition, we also numerically investigated how the magnetic flux from a target sample at a given stand-off distance is transmitted to the OPM vapor cell.« less

  18. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter partsmore » have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.« less

  19. Size-controlled fabrication of zein nano/microparticles by modified anti-solvent precipitation with/without sodium caseinate

    PubMed Central

    Li, Feng; Chen, Yan; Liu, Shubo; Qi, Jian; Wang, Weiying; Wang, Chenhua; Zhong, Ruiyue; Chen, Zhijun; Li, Xiaoming; Guan, Yuanzhou; Kong, Wei; Zhang, Yong

    2017-01-01

    Zein-based nano/microparticles have been demonstrated to be promising carrier systems for both the food industry and biomedical applications. However, the fabrication of size-controlled zein particles has been a challenging issue. In this study, a modified anti-solvent precipitation method was developed, and the effects of various factors, such as mixing method, solvent/anti-solvent ratio, temperature, zein concentrations and the presence of sodium caseinate (SC) on properties of zein particles were investigated. Evidence is presented that, among the previously mentioned factors, the mixing method, especially mixing rate, could be used as an effective parameter to control the size of zein particles without changing other parameters. Moreover, through fine-tuning the mixing rate together with zein concentration, particles with sizes ranging from nanometers to micrometers and low polydispersity index values could be easily obtained. Based on the size-controlled fabrication method, SC-coated zein nanoparticles could also be obtained in a size-controlled manner by incubation of the coating material with the already-formed zein particles. The resultant nanoparticles showed better performance in both drug loading and controlled release, compared with zein/SC hybrid nanoparticles fabricated by adding aqueous ethanol solution to SC solution. The possible mechanisms of the nanoprecipitation process and self-assembly formation of these nanoparticles are discussed. PMID:29184408

  20. Size-controlled fabrication of zein nano/microparticles by modified anti-solvent precipitation with/without sodium caseinate.

    PubMed

    Li, Feng; Chen, Yan; Liu, Shubo; Qi, Jian; Wang, Weiying; Wang, Chenhua; Zhong, Ruiyue; Chen, Zhijun; Li, Xiaoming; Guan, Yuanzhou; Kong, Wei; Zhang, Yong

    2017-01-01

    Zein-based nano/microparticles have been demonstrated to be promising carrier systems for both the food industry and biomedical applications. However, the fabrication of size-controlled zein particles has been a challenging issue. In this study, a modified anti-solvent precipitation method was developed, and the effects of various factors, such as mixing method, solvent/anti-solvent ratio, temperature, zein concentrations and the presence of sodium caseinate (SC) on properties of zein particles were investigated. Evidence is presented that, among the previously mentioned factors, the mixing method, especially mixing rate, could be used as an effective parameter to control the size of zein particles without changing other parameters. Moreover, through fine-tuning the mixing rate together with zein concentration, particles with sizes ranging from nanometers to micrometers and low polydispersity index values could be easily obtained. Based on the size-controlled fabrication method, SC-coated zein nanoparticles could also be obtained in a size-controlled manner by incubation of the coating material with the already-formed zein particles. The resultant nanoparticles showed better performance in both drug loading and controlled release, compared with zein/SC hybrid nanoparticles fabricated by adding aqueous ethanol solution to SC solution. The possible mechanisms of the nanoprecipitation process and self-assembly formation of these nanoparticles are discussed.

  1. Research on surface modification of nano-zirconia

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhang, Cun-Lin; Yang, Xiao-Yi

    2005-02-01

    The mechanisms about the aggregation and dispersibility of nano-zirconia were analyzed in detail. And nano-zirconia powders which were surface-modified with silane coupling reagent WD70 were prepared in order to disperse homogeneously in ethanol in this investigation. The grain size and grain phase of nano-zirconia were obtained by XRD. Research and characterization on the structure and surface characteristic of surface-modified nano-zirconia were achieved by XPS, TG-DSC, TEM and FT-IR. The results given by FT-IR and XPS showed WD70 was jointed on the surface of nano-zirconia through both physical adsorption and chemical binding after the de-methanol reaction between the methoxyl groups of WD70 and the hydroxy groups on the surface of nano-zirconia. And the corresponding model of surface-modified nano-zirconia was given. The images provided by TEM presented intuitionistic effect of surface modification on the dispersibility of nano-zirconia in ethanol. And TG-DSC analysis ascertained the amount of WD70 that was jointed on the surface of nano-zirconia and the amount was about 6.21 percent.

  2. Effects of Nano-zinc on Biochemical Parameters in Cadmium-Exposed Rats.

    PubMed

    Hejazy, Marzie; Koohi, Mohammad Kazem

    2017-12-01

    Cadmium (Cd) is a toxic environmental and occupational pollutant with reported toxic effects on the kidneys, liver, lungs, bones, and the immunity system. Based on its physicochemical similarity to cadmium, zinc (Zn) shows protective effects against cadmium toxicity and cadmium accumulation in the body. Nano-zinc and nano-zinc oxide (ZnO), recently used in foods and pharmaceutical products, can release a great amount of Zn 2+ in their environment. This research was carried out to investigate the more potent properties of the metal zinc among sub-acute cadmium intoxicated rats. Seventy-five male Wistar rats were caged in 15 groups. Cadmium chloride (CdCl 2 ) was used in drinking water to induce cadmium toxicity. Different sizes (15, 20, and 30 nm) and doses of nano-zinc particles (3, 10, 100 mg/kg body weight [bw]) were administered solely and simultaneously with CdCl 2 (2-5 mg/kg bw) for 28 days. The experimental animals were decapitated, and the biochemical biomarkers (enzymatic and non-enzymatic) were determined in their serum after oral exposure to nano-zinc and cadmium. Statistical analysis was carried out with a one-way ANOVA and t test. P < 0.05 was considered as statistically significant. The haematocrit (HCT) significantly increased and blood coagulation time significantly reduced in the nano-zinc-treated rats. AST, ALT, triglyceride, total cholesterol, LDL, and free fatty acids increased significantly in the cadmium- and nano-zinc-treated rats compared with the controls. However, albumin, total protein, and HDLc significantly decreased in the cadmium- and nano-zinc-treated rats compared with the controls (P < 0.05). It seems that in the oral administration of nano-zinc, the smaller sizes with low doses and the larger sizes with high doses are more toxic than metallic zinc. In a few cases, an inverse dose-dependent relationship was seen as well. This research showed that in spite of larger sizes of zinc, smaller sizes of nano-zinc particles are not

  3. Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Longo, Mathew; Matheny, Matthew; Knudsen, Jasmine

    2016-03-01

    We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model.

  4. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    NASA Astrophysics Data System (ADS)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally

  5. Effect of magnetic and electric coupling fields on micro- and nano- structure of carbon films in the CVD diamond process and their electron field emission property

    NASA Astrophysics Data System (ADS)

    Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Jiang, Yunlu; Wei, Qiuping; Yu, Zhiming; Long, Hangyu; Zhu, Hekang; Xie, Youneng; Ma, Li; Lin, Cheng-Te; Su, Weitao

    2018-03-01

    In this paper, both electric field and magnetic field were used to assist the hot filament chemical vapor deposition (HFCVD) and we systematically investigated the effects of which on the (1) phase composition, (2) grain size, (3) thickness and (4) preferred orientation of diamond films through SEM, Raman and XRD. The application of magnetic field in electric field, so called ‘the magnetic and electric coupling fields’, enhanced the graphitization and refinement of diamond crystals, slowed down the decrease of film thickness along with the increase of bias current, and suppressed diamond (100) orientation. During the deposition process, the electric field provided additional energy to HFCVD system and generated large number of energetic particles which might annihilate at the substrate and lose kinetic energy, while the Lorentz force, provided by magnetic field, could constrict charged particles (including electrons) to do spiral movement, which prolonged their moving path and life, thus the system energy increased. With the graphitization of diamond films intensified, the preferred orientation of diamond films completely evolved from (110) to (100), until the orientation and diamond phase disappeared, which can be attributed to (I) the distribution and concentration ratio of carbon precursors (C2H2 and CH3) and (II) graphitization sequence of diamond crystal facets. Since the electron field emission property of carbon film is sensitive to the phase composition, thickness and preferred orientation, nano- carbon cones, prepared by the negative bias current of 20 mA and magnetic field strength of 80 Gauss, exhibited the lowest turn-on field of 6.1 V -1 μm-1.

  6. Increasing the Size of the Microbial Biomass Altered Bacterial Community Structure which Enhances Plant Phosphorus Uptake

    PubMed Central

    Shen, Pu; Murphy, Daniel Vaughan; George, Suman J.; Lapis-Gaza, Hazel; Xu, Minggang

    2016-01-01

    Agricultural production can be limited by low phosphorus (P) availability, with soil P being constrained by sorption and precipitation reactions making it less available for plant uptake. There are strong links between carbon (C) and nitrogen (N) availability and P cycling within soil P pools, with microorganisms being an integral component of soil P cycling mediating the availability of P to plants. Here we tested a conceptual model that proposes (i) the addition of readily-available organic substrates would increase the size of the microbial biomass thus exhausting the pool of easily-available P and (ii) this would cause the microbial biomass to access P from more recalcitrant pools. In this model it is hypothesised that the size of the microbial population is regulating access to less available P rather than the diversity of organisms contained within this biomass. To test this hypothesis we added mixtures of simple organic compounds that reflect typical root exudates at different C:N ratios to a soil microcosm experiment and assessed changes in soil P pools, microbial biomass and bacterial diversity measures. We report that low C:N ratio (C:N = 12.5:1) artificial root exudates increased the size of the microbial biomass while high C:N ratio (C:N = 50:1) artificial root exudates did not result in a similar increase in microbial biomass. Interestingly, addition of the root exudates did not alter bacterial diversity (measured via univariate diversity indices) but did alter bacterial community structure. Where C, N and P supply was sufficient to support plant growth the increase observed in microbial biomass occurred with a concurrent increase in plant yield. PMID:27893833

  7. Barrier breakdown mechanism in nano-scale perpendicular magnetic tunnel junctions with ultrathin MgO barrier

    NASA Astrophysics Data System (ADS)

    Lv, Hua; Leitao, Diana C.; Hou, Zhiwei; Freitas, Paulo P.; Cardoso, Susana; Kämpfe, Thomas; Müller, Johannes; Langer, Juergen; Wrona, Jerzy

    2018-05-01

    Recently, the perpendicular magnetic tunnel junctions (p-MTJs) arouse great interest because of its unique features in the application of spin-transfer-torque magnetoresistive random access memory (STT-MRAM), such as low switching current density, good thermal stability and high access speed. In this paper, we investigated current induced switching (CIS) in ultrathin MgO barrier p-MTJs with dimension down to 50 nm. We obtained a CIS perpendicular tunnel magnetoresistance (p-TMR) of 123.9% and 7.0 Ω.μm2 resistance area product (RA) with a critical switching density of 1.4×1010 A/m2 in a 300 nm diameter junction. We observe that the extrinsic breakdown mechanism dominates, since the resistance of our p-MTJs decreases gradually with the increasing current. From the statistical analysis of differently sized p-MTJs, we observe that the breakdown voltage (Vb) of 1.4 V is 2 times the switching voltage (Vs) of 0.7 V and the breakdown process exhibits two different breakdown states, unsteady and steady state. Using Simmons' model, we find that the steady state is related with the barrier height of the MgO layer. Furthermore, our study suggests a more efficient method to evaluate the MTJ stability under high bias rather than measuring Vb. In conclusion, we developed well performant p-MTJs for the use in STT-MRAM and demonstrate the mechanism and control of breakdown in nano-scale ultrathin MgO barrier p-MTJs.

  8. Mechanical behavior of shock-wave consolidated nano and micron-sized aluminum/silicon carbide and aluminum/aluminum oxide two-phase systems characterized by light and electron metallography

    NASA Astrophysics Data System (ADS)

    Alba-Baena, Noe Gaudencio

    This dissertation reports the results of the exploratory study of two-phase systems consisting of 150 microm diameter aluminum powder mechanically mixed with 30 nm and 30 microm diameter SiC and Al2O3 powders (in volume fractions of 2, 4, and 21 percent). Powders were mechanically mixed and green compacted to ˜80% theorical density in a series of cylindrical fixtures (steel tubes). The compacted arrangements were explosively consolidated using ammonium nitrate-fuel oil (ANFO) to form stacks of two-phase systems. As result, successfully consolidated cylindrical monoliths of 50 mm (height) x 32 mm (in diameter) were obtained. By taking advantage of the use of SWC (shock wave consolidation) and WEDM (wire-electric discharge machining), the heterogeneous systems were machined in a highly efficiency rate. The sample cuts used for characterization and mechanical properties testing, require the use of less that 10cc of each monolith, in consequence there was preserved an average of 60% of the obtained system monoliths. Consolidated test cylinders of the pure Al and two-phase composites were characterized by optical metallography and TEM. The light micrographs for the five explosively consolidated regimes: aluminum powder, nano and micron-sized Al/Al2O3 systems, and the nano and micron-sized Al/SiC systems exhibit similar ductility in the aluminum grains. Low volume fraction systems exhibit small agglomerations at the grain boundaries for the Al/Al2O3 system and the Al/SiC system reveal a well distributed phase at the grain boundaries. Large and partially bonded agglomerations were observable in the nano-sized high volume fraction (21%) systems, while the micron-sized Al/ceramic systems exhibit homogeneous distribution along the aluminum phase grains. TEM images showed the shock-induced dislocation cell structure, which has partially recrystallized to form a nano grain structure in the consolidated aluminum powder. Furthermore, the SiC nano-agglomerates appeared to have

  9. Size effects of nano-spaced basal stacking faults on the strength and deformation mechanisms of nanocrystalline pure hcp metals

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jiang, Ping; Yuan, Fuping; Wu, Xiaolei

    2018-05-01

    The size effects of nano-spaced basal stacking faults (SFs) on the tensile strength and deformation mechanisms of nanocrystalline pure cobalt and magnesium have been investigated by a series of large-scale 2D columnar and 3D molecular dynamics simulations. Unlike the strengthening effect of basal SFs on Mg alloys, the nano-spaced basal SFs are observed to have no strengthening effect on the nanocrystalline pure cobalt and magnesium from MD simulations. These observations could be attributed to the following two reasons: (i) Lots of new basal SFs are formed before (for cobalt) or simultaneously with (for magnesium) the other deformation mechanisms (i.e. the formation of twins and the < c + a > edge dislocations) during the tensile deformation; (ii) In hcp alloys, the segregation of alloy elements and impurities at typical interfaces, such as SFs, can stablilise them for enhancing the interactions with dislocation and thus elevating the strength. Without such segregation in pure hcp metals, the < c + a > edge dislocations can cut through the basal SFs although the interactions between the < c + a > dislocations and the pre-existing SFs/newly formed SFs are observed. The nano-spaced basal SFs are also found to have no restriction effect on the formation of deformation twins.

  10. Electronic measurements in an alternating magnetic field (AMF) for studying magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Boekelheide, Z.; Hussein, Z. A.; Hartzell, S.

    Magnetic nanoparticle hyperthermia is a promising cancer treatment in which magnetic nanoparticles are injected into a tumor and then exposed to an alternating magnetic field (AMF). This process releases heat and damages tumor cells, but the exact mechanisms behind the effectiveness of this therapy are still unclear. Accurate sensors are required to monitor the temperature and, potentially, other parameters such as magnetic field or mechanical stress during clinical therapy or lab research. Often, optical rather than electronic temperature sensors are used to avoid eddy current self-heating in conducting parts in the AMF. However, eddy current heating is strongly dependent on the size and geometry of the conducting part, thus micro- and nano-scale electronics are a promising possibility for further exploration into magnetic nanoparticle hyperthermia. This presentation quantitatively discusses the eddy current self-heating of thin wires (thermocouples) and will also present a proof of concept thin film resistive thermometer and magnetic field sensor along with measurements of their eddy current self-heating. The results show that electronic measurements are feasible in an AMF with both thin wires and patterned thin film sensors under certain conditions.

  11. Size-driven magnetic transitions in La1/3Ca2/3MnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Markovich, V.; Fita, I.; Wisniewski, A.; Mogilyansky, D.; Puzniak, R.; Titelman, L.; Gorodetsky, G.

    2010-09-01

    Magnetic properties of electron-doped La1/3Ca2/3MnO3 manganite nanoparticles with average particle size ranging from 12 to 42 nm, prepared by the glycine-nitrate method, have been investigated in temperature range 5-300 K and in magnetic fields up to 90 kOe. Reduction in the particle size suppresses antiferromagnetism and decreases the Néel temperature. In contrast to bulk crystals, the charge ordering does not occur in all studied nanoparticles, while a weak ferromagnetism appears above 200 K. Low temperature magnetic hysteresis loops indicate upon exchange bias effect displayed by horizontal and vertical shifts in field cooled processes. The spontaneous and remanent magnetization at low temperature shows a relatively complex variation with particle size. The size-induced structural/magnetic disorder drives the La1/3Ca2/3MnO3 nanoparticles to a pronounced glassy behavior for the smallest 12 nm particles, as evidenced by large difference between zero field cooled and field cooled magnetization, frequency dependent ac-susceptibility, as well as characteristic slowing down in the spin dynamics. Time evolution of magnetization recorded in magnetic fields after field cooling to low temperatures exhibits pronounced relaxation and a very noisy behavior that may be caused by formation of some collective states. Magnetic properties of the nanoparticle samples are compared with those of La0.2Ca0.8MnO3 nanoparticles. These results shed some light on the coupling between charges and spin degrees of freedom in antiferromagnetic manganite nanoparticles.

  12. Molecular modeling in structural nano-toxicology: interactions of nano-particles with nano-machinery of cells.

    PubMed

    Yanamala, Naveena; Kagan, Valerian E; Shvedova, Anna A

    2013-12-01

    Over the past two decades, nanotechnology has emerged as a key player in various disciplines of science and technology. Some of the most exciting applications are in the field of biomedicine - for theranostics (for combined diagnostic and therapeutic purposes) as well as for exploration of biological systems. A detailed understanding of the molecular interactions between nanoparticles and biological nano-machinery - macromolecules, membranes, and intracellular organelles - is crucial for obtaining adequate information on mechanisms of action of nanomaterials as well as a perspective on the long term effects of these materials and their possible toxicological outcomes. This review focuses on the use of structure-based computational molecular modeling as a tool to understand and to predict the interactions between nanomaterials and nano-biosystems. We review major approaches and provide examples of computational analysis of the structural principles behind such interactions. A rationale on how nanoparticles of different sizes, shape, structure and chemical properties can affect the organization and functions of nano-machinery of cells is also presented. Published by Elsevier B.V.

  13. The effect of nano-alumina on structural and magnetic properties of MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Ansari, Intikhab A.; Shahabuddin, M.; Ziq, Khalil A.; Salem, A. F.; Awana, V. P. S.; Husain, M.; Kishan, H.

    2007-08-01

    Nano-Al2O3 doped Mg1-xAlxB2 with 0<=x<=6% were synthesized by solid state reaction at 750 °C in Fe tube encapsulation under a vacuum of 10-5 Torr. Resistance measurement shows that the Tc decreases with x and zero resistivity for x = 0 and 6% are obtained at 38 and 35 K, respectively. XRD measurement shows that the lattice parameter and cell volume also decrease monotonically with increasing doping levels. From this we infer that the Al has been substituted in the lattice of MgB2 at Mg sites. Resistivity measurement shows a systematic decrease in Tc with doping which also confirms the substitution of Al. Magnetization studies in the temperature range from 4 to 35 K and in the magnetic field up to 9 T shows a significant increase in the irreversibility field (Hirr), critical current density (Jc) and remanent magnetization (MR) with increasing concentration of the Al2O3 nanoparticle. At low fields we have observed large vortex instabilities (known as a vortex avalanche) associated with all doped samples. The vortex-avalanche effect is reduced with increasing temperature and vanishes near 20 K. The results are discussed in terms of local-vortex instabilities caused by doping of Al2O3 nanoparticles.

  14. Modelling mass and heat transfer in nano-based cancer hyperthermia.

    PubMed

    Nabil, M; Decuzzi, P; Zunino, P

    2015-10-01

    We derive a sophisticated mathematical model for coupled heat and mass transport in the tumour microenvironment and we apply it to study nanoparticle delivery and hyperthermic treatment of cancer. The model has the unique ability of combining the following features: (i) realistic vasculature; (ii) coupled capillary and interstitial flow; (iii) coupled capillary and interstitial mass transfer applied to nanoparticles; and (iv) coupled capillary and interstitial heat transfer, which are the fundamental mechanisms governing nano-based hyperthermic treatment. This is an improvement with respect to previous modelling approaches, where the effect of blood perfusion on heat transfer is modelled in a spatially averaged form. We analyse the time evolution and the spatial distribution of particles and temperature in a tumour mass treated with superparamagnetic nanoparticles excited by an alternating magnetic field. By means of numerical experiments, we synthesize scaling laws that illustrate how nano-based hyperthermia depends on tumour size and vascularity. In particular, we identify two distinct mechanisms that regulate the distribution of particle and temperature, which are characterized by perfusion and diffusion, respectively.

  15. The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields

    NASA Astrophysics Data System (ADS)

    Nacev, A.; Beni, C.; Bruno, O.; Shapiro, B.

    2011-03-01

    In magnetic drug delivery, therapeutic magnetizable particles are typically injected into the blood stream and magnets are then used to concentrate them to disease locations. The behavior of such particles in-vivo is complex and is governed by blood convection, diffusion (in blood and in tissue), extravasation, and the applied magnetic fields. Using physical first-principles and a sophisticated vessel-membrane-tissue (VMT) numerical solver, we comprehensively analyze in detail the behavior of magnetic particles in blood vessels and surrounding tissue. For any blood vessel (of any size, depth, and blood velocity) and tissue properties, particle size and applied magnetic fields, we consider a Krogh tissue cylinder geometry and solve for the resulting spatial distribution of particles. We find that there are three prototypical behaviors (blood velocity dominated, magnetic force dominated, and boundary-layer formation) and that the type of behavior observed is uniquely determined by three non-dimensional numbers (the magnetic-Richardson number, mass Péclet number, and Renkin reduced diffusion coefficient). Plots and equations are provided to easily read out which behavior is found under which circumstances (Figs. 5-8). We compare our results to previously published in-vitro and in-vivo magnetic drug delivery experiments. Not only do we find excellent agreement between our predictions and prior experimental observations, but we are also able to qualitatively and quantitatively explain behavior that was previously not understood.

  16. Fano coil-type resonances: a plasmonic tool for the magnetic field manipulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea

    2017-02-01

    Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator (MTR), combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.

  17. Recyclable magnetic nanocluster crosslinked with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) copolymer for adsorption with antibody.

    PubMed

    Prai-In, Yingrak; Boonthip, Chatchai; Rutnakornpituk, Boonjira; Wichai, Uthai; Montembault, Véronique; Pascual, Sagrario; Fontaine, Laurent; Rutnakornpituk, Metha

    2016-10-01

    Surface modification of magnetic nanoparticle (MNP) with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) diblock copolymers and its application as recyclable magnetic nano-support for adsorption with antibody were reported herein. PEO-b-PVDM copolymers were first synthesized via a reversible addition-fragmentation chain-transfer (RAFT) polymerization using poly(ethylene oxide) chain-transfer agent as a macromolecular chain transfer agent to mediate the RAFT polymerization of VDM. They were then grafted on amino-functionalized MNP by coupling with some azlactone rings of the PVDM block to form magnetic nanoclusters with tunable cluster size. The nanocluster size could be tuned by adjusting the chain length of the PVDM block. The nanoclusters were successfully used as efficient and recyclable nano-supports for adsorption with anti-rabbit IgG antibody. They retained higher than 95% adsorption of the antibody during eight adsorption-separation-desorption cycles, indicating the potential feasibility in using this novel hybrid nanocluster as recyclable support in cell separation applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A study on geometry effect of transmission coil for micro size magnetic induction coil

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  19. Preparation and Characterization of Nano-CL-20 Explosive

    NASA Astrophysics Data System (ADS)

    Bayat, Yadollah; Zeynali, Vida

    2011-10-01

    Nano-CL-20 was prepared via precipitative crystallization by spraying a solution of CL-20 in a solvent (ethyl acetate) into a nonsolvent (isooctane). Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) were used to characterize the appearance and the size of the particles. The results revealed that nano-CL-20 particles have the shape of spheres or ellipsoids with an average size of 95 nm. Due to their small diameter and high surface energy, the particles tended to agglomerate. Impact sensitivity of nanosize CL-20 was decreased in comparison to micrometer-size CL-20.

  20. Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells.

    PubMed

    Kaushik, Ajeet; Nikkhah-Moshaie, Roozbeh; Sinha, Raju; Bhardwaj, Vinay; Atluri, Venkata; Jayant, Rahul Dev; Yndart, Adriana; Kateb, Babak; Pala, Nezih; Nair, Madhavan

    2017-04-04

    In this research, we demonstrate cell uptake of magneto-electric nanoparticles (MENPs) through nanoelectroporation (NEP) using alternating current (ac)-magnetic field stimulation. Uptake of MENPs was confirmed using focused-ion-beam assisted transmission electron microscopy (FIB-TEM) and validated by a numerical simulation model. The NEP was performed in microglial (MG) brain cells, which are highly sensitive for neuro-viral infection and were selected as target for nano-neuro-therapeutics. When the ac-magnetic field optimized (60 Oe at 1 kHz), MENPs were taken up by MG cells without affecting cell health (viability > 92%). FIB-TEM analysis of porated MG cells confirmed the non-agglomerated distribution of MENPs inside the cell and no loss of their elemental and crystalline characteristics. The presented NEP method can be adopted as a part of future nanotherapeutics and nanoneurosurgery strategies where a high uptake of a nanomedicine is required for effective and timely treatment of brain diseases.