Sample records for nano-sized ceramic fillers

  1. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    PubMed

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  2. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    PubMed

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  3. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    PubMed Central

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  4. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    PubMed Central

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  5. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    PubMed

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  6. Morphological characterization of ceramic fillers made from Indonesian natural sand as restorative dental materials

    NASA Astrophysics Data System (ADS)

    Karlina, E.; Susra, S.; Fatmala, Y.; Hartoyo, H. M.; Takarini, V.; Usri, K.; Febrida, R.; Djustiana, N.; Panatarani, C.; Joni, I. M.

    2018-02-01

    Dental composite as restorative dental materials can be reinforced using ceramic fillers. Homogeneous distribution of filler particles shall improve its mechanical properties. This paper presents the results of the preliminary study on the ZrO2-Al2O3-SiO2 ceramic fillers made from Indonesian natural sand that can increase the mechanical properties of dental composite. The synthesis was done using zirconium silicate sand (ZrSiO4) and aluminium oxide (Al2O3) precursors, which dissolved together with 70:30 weight ratios. Two types of sand were used: (1) manufactured sand (mesh #80) and (2) natural sand (mesh #400). The samples then heated in the furnace at 1100 °C for 8 hours. The morphological characterization was then evaluated using JEOL Scanning Electron Microscope (SEM) for the surface structure that analyze particles size and distribution. Ceramic fillers made from natural sand is homogenous, well distributed with average particle size of 5-10 µm. Comparably, ceramic filler made from the manufactured sand is heterogeneous, poorly distributed and appear as agglomerates with average particle size are 30-50 µm. The results suggest that ceramic fillers made from natural sand demonstrate better character to represent as a functional restorative dental material.

  7. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    NASA Technical Reports Server (NTRS)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  8. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  9. Effect of graphene oxide nano filler on dynamic behaviour of GFRP composites

    NASA Astrophysics Data System (ADS)

    Pujar, Nagabhushan V.; Nanjundaradhya, N. V.; Sharma, Ramesh S.

    2018-04-01

    Nano fillers like Alumina oxide, Titanium oxide, Carbon nano tube, Nano clay have been used to improve the mechanical and damping properties of fiber reinforced polymer composites. In the recent years Graphene oxide nano filler is receiving considerable attention for its outstanding properties. Literature available shows that Graphene oxide nano filler can be used to improve the mechanical properties. The use of Graphene oxide in vibration attenuation by enhancing the passive damping in fiber reinforced polymer composite has not been fully explored. The objective of this work is to investigate the dynamic behaviour of Glass fiber-reinforced composite embedded with Graphene oxide nano filler. Graphene oxide is dispersed in epoxy resin with various concentration (0.1%, 0.5% and 1%wt) using ultra-sonification process. Composite laminates were made using the traditional hand-lay-up followed by vacuum bag process. Experimental modal analysis using traditional `strike method' is used to evaluate modal parameters using FFT analyzer and Data Acquisition System. Experiments were carried out for two different fiber orientations viz 0 ➙ & 45 ➙ and two boundary conditions (Free-Free and Cantilever). The modal parameters such as natural frequency, mode shape, damping ratio were studied. This research work demonstrates the vibration damping behaviour with incorporation of Graphene oxide and provides a basic understanding of the damping characteristics in design and manufacture of high performance composites.

  10. Crystallization of high-strength nano-scale leucite glass-ceramics.

    PubMed

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p<0.05) higher mean BFS and characteristic strength values than the commercial materials. Attritor milled and planetary milled (2h) materials showed no significant (p>0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (p<0.05) to each other. The mean (SD) MPa strengths measured were: Attritor milled: 252.4 (38.7), Planetary milled: 225.4 (41.8) [4h milling] 255.0 (35.0) [2h milling], Ceramco-3: 75.7 (6.8) and IPS Empress: 165.5 (30.6). Planetary milling enabled synthesis of nano-scale leucite glass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    NASA Astrophysics Data System (ADS)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=<0.001) as well as for the pairwise comparison between the different filler group values and between the different soaking times as an individual treatment. Overall, longer soaking times resulted in lower mean DTS values. The DTS of the PCNC for filler #1 decreased to 82.4% of the original value after 1 day of soaking, 67.2% after 7 days and 27.2 % after 28 days. For filler #2 decreased to 54.8% of the original value after 1 day of soaking, 62.3% after 7 days and 61.2% after 28 days. For filler #3 decreased to 71.2% of the original value, 67.3% after 7 days and 51

  12. Thermal Conductivity of Polymer/Nano-filler Blends

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Delozier, Donovan M.; Working, Dennis C.; Connell, John W.; Smith, Joseph G.; Sun, Y. P.; Lin, Y.

    2006-01-01

    To improve the thermal conductivity of an ethylene vinyl acetate copolymer, Elvax 260 was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. In an attempt to improve compatibility between the Elvax and nanofillers, MWCNTs and EGs were modified through non covalent and covalent attachment of alkyl groups. Ribbons were extruded to form samples in which the nanofillers were aligned, and samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated using high-resolution scanning electron microscopy. Thermal conductivity measurements were performed using a Nanoflash technique. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction. The results of this study will be presented.

  13. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    PubMed

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (p<0.05) less volume and mean-height tooth loss compared to Ceramco-3. The NS group had significantly (p<0.05) less tooth mean-height loss and less combined (tooth and ceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks.

    PubMed

    Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi

    2017-05-01

    The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p < 0.05). The in silico multi-scale model established in this study demonstrates that the Young's moduli, Poisson's ratios, and compressive strengths of CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.

  15. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    PubMed

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrically insulating thermal nano-oils using 2D fillers.

    PubMed

    Taha-Tijerina, Jaime; Narayanan, Tharangattu N; Gao, Guanhui; Rohde, Matthew; Tsentalovich, Dmitri A; Pasquali, Matteo; Ajayan, Pulickel M

    2012-02-28

    Different nanoscale fillers have been used to create composite fluids for applications such as thermal management. The ever increasing thermal loads in applications now require advanced operational fluids, for example, high thermal conductivity dielectric oils in transformers. These oils require excellent filler dispersion, high thermal conduction, but also electrical insulation. Such thermal oils that conform to this thermal/electrical requirement, and yet remain in highly suspended stable state, have not yet been synthesized. We report here the synthesis and characterization of stable high thermal conductivity Newtonian nanofluids using exfoliated layers of hexagonal boron nitride in oil without compromising its electrically insulating property. Two-dimensional nanosheets of hexagonal boron nitride are liquid exfoliated in isopropyl alcohol and redispersed in mineral oil, used as standard transformer oil, forming stable nanosuspensions with high shelf life. A high electrical resistivity, even higher than that of the base oil, is maintained for the nano-oil containing small weight fraction of the filler (0.01 wt %), whereas the thermal conductivity was enhanced. The low dissipation factor and high pour point for this nano-oil suggests several applications in thermal management.

  17. Does filler database size influence identification accuracy?

    PubMed

    Bergold, Amanda N; Heaton, Paul

    2018-06-01

    Police departments increasingly use large photo databases to select lineup fillers using facial recognition software, but this technological shift's implications have been largely unexplored in eyewitness research. Database use, particularly if coupled with facial matching software, could enable lineup constructors to increase filler-suspect similarity and thus enhance eyewitness accuracy (Fitzgerald, Oriet, Price, & Charman, 2013). However, with a large pool of potential fillers, such technologies might theoretically produce lineup fillers too similar to the suspect (Fitzgerald, Oriet, & Price, 2015; Luus & Wells, 1991; Wells, Rydell, & Seelau, 1993). This research proposes a new factor-filler database size-as a lineup feature affecting eyewitness accuracy. In a facial recognition experiment, we select lineup fillers in a legally realistic manner using facial matching software applied to filler databases of 5,000, 25,000, and 125,000 photos, and find that larger databases are associated with a higher objective similarity rating between suspects and fillers and lower overall identification accuracy. In target present lineups, witnesses viewing lineups created from the larger databases were less likely to make correct identifications and more likely to select known innocent fillers. When the target was absent, database size was associated with a lower rate of correct rejections and a higher rate of filler identifications. Higher algorithmic similarity ratings were also associated with decreases in eyewitness identification accuracy. The results suggest that using facial matching software to select fillers from large photograph databases may reduce identification accuracy, and provides support for filler database size as a meaningful system variable. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Phase Composition, Crystallite Size and Physical Properties of B2O3-added Forsterite Nano-ceramics

    NASA Astrophysics Data System (ADS)

    Pratapa, S.; Chairunnisa, A.; Nurbaiti, U.; Handoko, W. D.

    2018-05-01

    This study was aimed to know the effect of B2O3 addition on the phase composition, crystallite size and dielectric properties of forsterite (Mg2SiO4) nano-ceramics. It utilized a purified silica sand from Tanah Laut, South Kalimantan as the source of (amorphous) silica and a magnesium oxide (MgO) powder. They were thoroughly mixed and milled prior to calcination. The addition of 1, 2, 3, and 4 wt% B2O3 to the calcined powder was done before uniaxial pressing and then sintering at 950 °C for 4 h. The phase composition and forsterite crystallite size, the microstructure and the dielectric constant of the sintered samples were characterized using X-ray diffractometer (XRD), Scanning Electron Microscope (SEM) and Vector Network Analyzer (VNA), respectively. Results showed that all samples contained forsterite, periclase (MgO) and proto enstatite (MgSiO3) with different weight fractions and forsterite crystallite size. In general, the weight fraction and crystallite size of forsterite increased with increasing B2O3 addition. The weight fraction and crystallite size of forsterite in the 4%-added sample reached 99% wt and 164 nm. Furthermore, the SEM images showed that the average grain size became slightly larger and the ceramics also became slightly denser as more B2O3 was added. The results are in accordance with density measurements using the Archimedes method which showed that the 4% ceramic exhibited 1.845 g/cm3 apparent density, while the 1% ceramic 1.681 g/cm3. We also found that the higher the density, the higher the average dielectric constant, i.e. it was 4.6 for the 1%-added sample and 6.4 for the 4%-added sample.

  19. Filler particle size and composite resin classification systems.

    PubMed

    Lang, B R; Jaarda, M; Wang, R F

    1992-11-01

    The currently used composite resin classification systems need review if they are to continue to serve as descriptives and quantitative parameters denoting the filler particle content of these materials. Examination of the particles in 12 composite resins using a technique of washing the filler particles from the matrix of the composite resin was presented as yet another method of grouping composites according to filler particle content. Light microscopic examination of the filler particles that remained provided a separation of the 12 materials into four easily distinguished groups based on filler particle sizes. The wear of the 12 composite resins determined in a previous study was examined in relation to the classification of the materials by the currently available systems. The wear values were also examined using the groupings of the materials according to their filler particle sizes as determined by separating the particles from the matrix by the washing technique. Grouping composites on the basis of the filler particle sizes found after washing was easily correlated with wear and supported the suggestion that composites with smaller filler particles wear less.

  20. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    NASA Astrophysics Data System (ADS)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  1. Morphologies, Processing and Properties of Ceramic Foams from Pre-Ceramic Foams from Pre-Ceramic Polymer Routes

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Simoes, Conan R.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    The current research is focused on processing ceramic foams that have potential as a thermal protection material. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies will be presented. The presentation will also focus on characterization of these foams in terms of mechanical and thermal properties. Foams processed using these approaches having bulk densities ranging from 0.15 to 0.9 g per cubic centimeter and a cell sizes from 5 to 500 micrometers. Compression strengths ranged from 2 to 7 MPa for these materials.

  2. Passive Cooling Enabled by Polymer Composite Coating: Dependence on Filler, Filler Size and Coating Thickness

    NASA Astrophysics Data System (ADS)

    Shao, Yue; Shi, Frank G.

    2017-07-01

    The effective passive radiation cooling that is enabled by silicone-based composites is investigated for its dependence on coating thickness and filler size in the range of nanometers to micrometers. It is established, contrary to prior reports, that the effective passive radiation cooling does not exhibit a filler size dependence, i.e., there is no optimal size at which a maximum cooling would be reached. However, the apparent cooling effect is filler type dependent and among the fillers investigated, Al2O3 exhibits the best apparent cooling effect. In addition, the apparent cooling effect is dependent on coating thickness: the thickness dependence is non-monotonic, and the maximum cooling occurs at an optimal thickness of 70 μm, regardless of filler type. Potential significant implications of the findings are also discussed.

  3. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  4. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  5. [Dental plaque microcosm biofilm behavior on a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt].

    PubMed

    Junling, Wu; Qiang, Zhang; Ruinan, Sun; Ting, Zhu; Jianhua, Ge; Chuanjian, Zhou

    2015-12-01

    To develop a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt, and to measure its effect on human dental plaque microcosm biofilm. A novel nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt was synthesized according to methods introduced in previous research. Samples of the novel nano-antibacterial inorganic fillers were modified by a coupling agent and then added into resin composite at 0%, 5%, 10%, 15% or 20% mass fractions; 0% composite was used as control. A flexural test was used to measure resin composite mechanical properties. Results showed that a dental plaque microcosm biofilm model with human saliva as inoculum was formed. Colony-forming unit (CFU) counts, lactic acid production, and live/dead assay of biofilm on the resin composite were calculated to test the effect of the resin composite on human dental plaque microcosm biofilm. The incorporation of nano-antibacterial inorganic fillers with as much as 15% concentration into the resin composite showed no adverse effect on the mechanical properties of the resin composite (P > 0.05). Resin composite containing 5% or more nano-antibacterial inorganic fillers significantly inhibited the metabolic activity of dental plaque microcosm biofilm, suggesting its strong antibacterial potency (P < 0.05). This novel resin composite exhibited a strong antibacterial property upon the addition of up to 5% nano-antibacterial inorganic fillers, thereby leading to effective caries inhibition in dental application.

  6. Effect of Particle Size and Impact Velocity on Collision Behaviors Between Nano-Scale TiN Particles: MD Simulation.

    PubMed

    Yao, Hai-Long; Hu, Xiao-Zhen; Yang, Guan-Jun

    2018-06-01

    Inter-particle bonding formation which determines qualities of nano-scale ceramic coatings is influenced by particle collision behaviors during high velocity collision processes. In this study, collision behaviors between nano-scale TiN particles with different diameters were illuminated by using Molecular Dynamics simulation through controlling impact velocities. Results show that nano-scale TiN particles exhibit three states depending on particle sizes and impact velocities, i.e., bonding, bonding with localized fracturing, and rebounding. These TiN particles states are summarized into a parameter selection map providing an overview of the conditions in terms of particle sizes and velocities. Microstructure results show that localized atoms displacement and partial fracture around the impact region are main reasons for bonding formation of nano-scale ceramic particles, which shows differences from conventional particles refining and amorphization. A relationship between the adhesion energy and the rebound energy is established to understand bonding formation mechanism for nano-scale TiN particle collision. Results show that the energy relationship is depended on the particle sizes and impact velocities, and nano-scale ceramic particles can be bonded together as the adhesion energy being higher than the rebound energy.

  7. Copper-silver-titanium filler metal for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1987-01-01

    A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  8. Lava ultimate resin nano ceramic for CAD/ CAM: customization case study.

    PubMed

    Koller, M; Arnetzl, G V; Holly, L; Arnetzl, G

    2012-01-01

    Lava Ultimate Resin Nano Ceramic (RNC) blocks are innovative new CAD/CAM materials that make it possible to achieve superior esthetic results in easy steps. The blocks are made of nano ceramic particles embedded in a highly cured resin matrix. Therefore, composite materials can be used to characterize and adjust resin nano ceramic restorations after milling. The milled RNC restorations can be individualized intra-orally or extra-orally, either before or after insertion. Unlike conventional ceramic restorations, customization and glaze firing is neither necessary nor possible with RNC restorations. This opens up the opportunity for intraoral individualization and adaptation of the restorations.

  9. Effect of mechanical properties of fillers on the grindability of composite resin adhesives.

    PubMed

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Yuasa, Toshihiro; Uechi, Jun; Mizoguchi, Itaru

    2010-10-01

    The purpose of this study was to investigate the effect of filler properties on the grindability of composite resin adhesives. Six composite resin products were selected: Transbond XT (3M Unitek, Monrovia, Calif), Transbond Plus (3M Unitek), Enlight (Ormco, Glendora, Calif), Kurasper F (Kuraray Medical, Tokyo, Japan), Beauty Ortho Bond (Shofu, Kyoto, Japan), and Beauty Ortho Bond Salivatect (Shofu). Compositions and weight fractions of fillers were determined by x-ray fluorescence analysis and ash test, respectively. The polished surface of each resin specimen was examined with a scanning electron microscope. Vickers hardness of plate specimens (15 × 10 × 3 mm) was measured, and nano-indentation was performed on large filler particles (>10 μm). Grindability for a low-speed tungsten-carbide bur was estimated. Data were compared with anlaysis of variance (ANOVA) and the Tukey multiple range test. Relationships among grindability, filler content, filler nano-indentation hardness (nano-hardness), filler elastic modulus, and Vickers hardness of the composite resins were investigated with the Pearson correlation coefficient test. Morphology and filler size of these adhesives showed great variations. The products could be divided into 2 groups, based on composition, which affected grindability. Vickers hardness of the adhesives did not correlate (r = 0.140) with filler nano-hardness, which showed a significant negative correlation (r = -0.664) with grindability. Filler nano-hardness greatly influences the grindability of composite resin adhesives. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. Provision of micro-nano bacterial cellulose as bio plastic filler by sonication method

    NASA Astrophysics Data System (ADS)

    Maryam; Rahmad, D.; Yunizurwan; Kasim, A.; Novelina; Emriadi

    2017-07-01

    Research and development of bioplastic has increased recently as a solution for substitution of conventional plastic which have many negative impacts to environment. However, physical properties and mechanical properties of its still lower than conventional plastic. An alternative solution for that problem is by using fillers that can increase the strength. Bacterial cellulose is considered as potential source for filler, but still need to be explored more. The privileges of bacterial cellulose are easy to get and does not have lignin, pectin, and hemicelluloses which are impurities in other celluloses. This research focused on gaining bacterial cellulose in micro-nano particle form and its impact on increasing the strength of bio plastic. Ultrasonication has been used as method to form micro-nano particle from bacterial cellulose. The result showed this method may form the particle size of bacterial cellulose approximately ± 3μm. Next step, after getting ± 3μm particle of bacterial cellulose, is making bio plastic with casting method by adding 1% of bacterial cellulose, from the total material in making bio plastic. Physical characteristic of the bio plastic which are tensile strength 11.85 MPa, modulus young 3.13 MPa, elongation 4.11% and density 0.42 g/cm3. The numbers of physical properties showwthat, by adding 1% of bacterial cellulose, the strength of bio plastic was significantly increase, even value of tensile strength has complied the international standard for bio plastic.

  11. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    NASA Astrophysics Data System (ADS)

    N, Mohamed Shahid U.; Deshpande, Abhijit P.; Lakshmana Rao, C.

    2015-09-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation.

  12. Conductivity and Thermal Studies on Plasticized Nano-Composite Solid Polymer Electrolyte, Peo: Ec: LiTf: Al2O3

    NASA Astrophysics Data System (ADS)

    Pitawala, H. M. J. C.; Dissanayake, M. A. K. L.; Seneviratne, V. A.

    2006-06-01

    Poly (ethylene oxide)-(PEO)-based composite polymer electrolytes are of great interest for solid-state-electrochemical devices. This paper presents the results of a preliminary study on electrical conductivity and thermal behavior (DSC) of composite polymer electrolytes (CPEs) containing PEO: LiCF3SO3 complexed with plasticizer (EC) and incorporating nano-sized particles of the ceramic filler Al2O3. Ionic conductivity enhancement in these electrolytes has been obtained by optimizing the combined effect of the plasticizer and the ceramic filler. Nano-composite, plasticized polymer electrolyte films (400-600μm) were prepared by common solvent casting method. It was revealed that the presence of the Al2O3 filler in PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity in the temperature range of interest, giving the maximum conductivity for (PEO)9LiTf+15 wt.% Al2O3 CPE [σRT (max)=2×10-5 S cm-1]. It was also observed that the addition of plasticizer (EC) to this electrolyte up to a concentration of 50 wt. % EC, showed a further conductivity enhancement [σRT (max) = 1.5×10-4 S cm-1]. It is suggested that the conductivity is enhanced mainly by two mechanisms. The plasticizer (EC) would directly contribute by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolytes. The ceramic filler (Al2O3) would contribute to conductivity enhancement by creating additional sites to migrating ionic species through transient bonding with O/OH groups in the filler surface. The decrease of Tg values of plasticized CPE systems seen in the DSC thermograms points towards the improved segmental flexibility of polymer chains, increasing the mobility of conducting ions.

  13. [Influence on mechanical properties and microstructure of nano-zirconia toughened alumina ceramics with nano-zirconia content].

    PubMed

    Wang, Guang-Kui; Kang, Hong; Bao, Guang-Jie; Lv, Jin-Jun; Gao, Fei

    2006-10-01

    To investigate the mechanical properties and microstructure of nano -zirconia toughened alumina ceramics with variety of nano-zirconia content in centrifugal infiltrate casting processing of dental all-ceramic. Composite powder with different ethanol-water ratio, obtained serosity from ball milling and centrifugal infiltrate cast processing of green, then sintered at 1 450 degrees C for 8 h. The physical and mechanical properties of the sintered sample after milling and polishing were tested. Microstructures of the surface and fracture of the sintered sample were investigated by SEM. The experimental results showed that there had statistical significience (P < 0.01) on static three-point flexure strength and Vickers Hardness in three kinds of different nano-zirconia content sintered sample. Fracture toughness of 20% group was different from other two groups, while 10% group had not difference from 30% group (P < 0.05). The mechanical properties of this ceramic with 20% nano-zirconia was the best of the three, the static three-point flexure strength was (433 +/- 19) MPa and fracture toughness was (7.50 +/- 0.56) MPa x min 1/2. The intra/inter structure, fracture of intragranular and intergranular on the surface and fracture of sintered sample in microstrucre was also found. Intra/inter structure has strengthen toughness in ceramics. It has better toughness with 20% nano-zirconia, is suitable dental all-ceramic restoratives.

  14. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  15. Preparation and mechanical properties of carbon nanotube-silicon nitride nano-ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Tian, C. Y.; Jiang, H.

    2018-01-01

    Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.

  16. High-Temperature Insulating Gap Filler

    NASA Technical Reports Server (NTRS)

    Toombs, Gordon R.; Oyoung, Kevin K.; Stevens, Everett G.

    1991-01-01

    New inorganic, ceramic filler for gaps between refractory ceramic tiles offers high resistance to heat and erosion. Consists of ceramic-fiber fabric precoated with silica and further coated with silica containing small amount of silicon carbide powder to increase thermal emittance. Developed as replacement for organic filler used on thermal-protection system of Space Shuttle. Promises to serve for many missions and to reduce cost and delay of refurbishing aerospace craft. Used as sealing material in furnaces or as heat shield for sensitive components in automobiles, aircraft, and home appliances.

  17. Joining engineering ceramics

    NASA Astrophysics Data System (ADS)

    Loehman, Ronald E.

    Methods for joining ceramics are outlined with attention given to their fundamental properties, and some examples of ceramic bonding in engineering ceramic systems are presented. Ceramic-ceramic bonds using no filler material include diffusion and electric-field bonding and ceramic welding, and bonds with filler materials can be provided by Mo-Mn brazing, microwave joining, and reactive nonmetallic liquid bonding. Ceramic-metal joints can be effected with filler material by means of the same ceramic-ceramic processes and without filler material by means of use of molten glass or diffusion bonding. Key properties of the bonding processes include: bonds with discontinuous material properties, energies that are positive relative to the bulk material, and unique chemical and mechanical properties. The processes and properties are outlined for ceramic-metal joints and for joining silicon nitride, and the factors that control wetting, adhesion, and reaction on the atomic scale are critical for establishing successful joints.

  18. Gas filtration and separation with nano-size ceramics

    NASA Astrophysics Data System (ADS)

    Lysenko, V. I.; Trufanov, D. Yu.; Bardakhanov, S. P.

    2011-06-01

    Filtration and separation properties were studied for filters made from open-porosity ceramics (sintered from authors-developed silicon dioxide nanopowder "tarkosil". Key parameters were measured for samples of ceramics produced at different sintering temperatures: porosity, gas permeability coefficient, relative time of standard volume fill-up, gas mixture separation coefficient. The possibility of using the described ceramics for helium enrichment was demonstrated with examples of helium-nitrogen and helium-methane mixtures.

  19. Unfolding grain size effects in barium titanate ferroelectric ceramics

    PubMed Central

    Tan, Yongqiang; Zhang, Jialiang; Wu, Yanqing; Wang, Chunlei; Koval, Vladimir; Shi, Baogui; Ye, Haitao; McKinnon, Ruth; Viola, Giuseppe; Yan, Haixue

    2015-01-01

    Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1 μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size. PMID:25951408

  20. Structure and performance of polymer-derived bulk ceramics determined by method of filler incorporation

    NASA Astrophysics Data System (ADS)

    Konegger, T.; Schneider, P.; Bauer, V.; Amsüss, A.; Liersch, A.

    2013-12-01

    The effect of four distinct methods of incorporating fillers into a preceramic polymer matrix was investigated with respect to the structural and mechanical properties of the resulting materials. Investigations were conducted with a polysiloxane/Al2O3/ZrO2 model system used as a precursor for mullite/ZrO2 composites. A quantitative evaluation of the uniformity of filler distribution was obtained by employing a novel image analysis. While solvent-free mixing led to a heterogeneous distribution of constituents resulting in limited mechanical property values, a strong improvement of material homogeneity and properties was obtained by using solvent-assisted methods. The results demonstrate the importance of the processing route on final characteristics of polymer-derived ceramics.

  1. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, T.K.; Novak, R.F.

    1991-05-07

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

  2. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.

    1991-01-01

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

  3. Effects of nano-sized boron nitride (BN) reinforcement in expandable graphite based in-tumescent fire retardant coating

    NASA Astrophysics Data System (ADS)

    Zulkurnain, E. S.; Ahmad, F.; Gillani, Q. F.

    2016-08-01

    The purpose of in-tumescent fire retardant coating (IFRC) is to protect substrate from fire attack by limiting heat transfer. A range of coating formulations have been prepared using Bisphenol A epoxy resin BE-188 and polyamide solidifier H-2310 as two-part binder, ammonium polyphosphate (APP) as acid source, melamine (MEL) as the blowing agent, expandable graphite (EG) as carbon source and nano-boron nitride (BN) as inorganic nano filler. The filler was used to improve the performances of the APP-EG-MEL coating. The effects of nano-BN on the char morphology and thermal degradation were investigated by fire test, thermo gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X- ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM). The results showed that by substituting or reinforcing of 4% weight percentage of nano-BN, residual weight of the char increases by 23.82% compared to APP-EG-MEL coating without filler. Higher carbon content was obtained in the char and a more compact char was produced. The results indicated that nano-BN could be used as a filler to improve thermal stability of the APP-EG-MEL coating.

  4. Slip casting nano-particle powders for making transparent ceramics

    DOEpatents

    Kuntz, Joshua D [Livermore, CA; Soules, Thomas F [Livermore, CA; Landingham, Richard Lee [Livermore, CA; Hollingsworth, Joel P [Oakland, CA

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  5. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  6. Barrier properties of PE, PP and EVA (nano)composites - The influence of filler type and concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merinska, D.; Kalendova, A.; Tesarikova, A.

    2014-05-15

    Nanocomposite materials with layered clay used as nanofiller and polyethylene (PE), polypropylene (PP) and copolymer ethylene and vinyl acetate matrix (EVA, the content of VA component 19 wt. %) were prepared by compounding the individual components in Brabender kneader. The MMT Na+ and four types of commercial products such as Nanofil N 5 and N3000, Cloisite 93A and 30B were used as nanofillers. Next to the clays microprecipitated CaHCO{sub 3}, nanosilica and Halloysite tubes were used. The quantity of all the above-mentioned (nano)fillers was 1, 3 and 5 wt. % in relation to the content of montmorillonite. The aim wasmore » to evaluate the influence of (nano)filler type and concentration on nanocomposite barrier properties. The morphology of nanocomposite samples was examined by means of XRD analysis illustrated by transmission electronic microscopy TEM. Furthermore, permeability for O{sub 2} and CO{sub 2} were observed.« less

  7. Novel nano-particles as fillers for an experimental resin-based restorative material.

    PubMed

    Rüttermann, S; Wandrey, C; Raab, W H-M; Janda, R

    2008-11-01

    The purpose of this study is to compare the properties of two experimental materials, nano-material (Nano) and Microhybrid, and two trade products, Clearfil AP-X and Filtek Supreme XT. The flexural strength and modulus after 24h water storage and 5000 thermocycles, water sorption, solubility and X-ray opacity were determined according to ISO 4049. The volumetric behavior (DeltaV) after curing and after water storage was investigated with the Archimedes principle. ANOVA was calculated with p<0.05. Clearfil AP-X showed the highest flexural strength (154+/-14 MPa) and flexural modulus (11,600+/-550 MPa) prior to and after thermocycling (117+/-14 MPa and 13,000+/-300 MPa). The flexural strength of all materials decreased after thermocycling, but the flexural modulus decreased only for Filtek Supreme XT. After thermocycling, there were no significant differences in flexural strength and modulus between Filtek Supreme XT, Microhybrid and Nano. Clearfil AP-X had the lowest water sorption (22+/-1.1 microg mm(-3)) and Nano had the highest water sorption (82+/-2.6 microg mm(-3)) and solubility (27+/-2.9 microg mm(-3)) of all the materials. No significant differences occurred between the solubility of Clearfil AP-X, Filtek Supreme XT and Microhybrid. Microhybrid and Nano provided the highest X-ray opacity. Owing to the lower filler content, Nano showed higher shrinkage than the commercial materials. Nano had the highest expansion after water storage. After thermocycling, Nano performed as well as Filtek Supreme XT for flexural strength, even better for X-ray opacity but significantly worse for flexural modulus, water sorption and solubility. The performances of microhybrids were superior to those of the nano-materials.

  8. Quaternary Polymer Electrolytes Containing an Ionic Liquid and a Ceramic Filler.

    PubMed

    Sharova, Varvara; Kim, Guk-Tae; Giffin, Guinevere A; Lex-Balducci, Alexandra; Passerini, Stefano

    2016-07-01

    In this work, the individual and combined effects of an ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and ceramic filler silicon dioxide on the thermal and electrochemical properties of poly(ethylene oxide) electrolytes have been investigated. The electrolyte containing both components has the lowest glass transition (-60 °C) and melting temperatures (27 °C), the highest conductivity at any investigated temperature, and the highest limiting current density (at 40 °C). This solid polymer electrolyte also exhibits the best long-term cycling performance in Li/LiFePO4 cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics tuneable up-conversion phosphor

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Rodriguez, V. D.; Tikhomirov, V. K.; Del-Castillo, J.; Yanes, A. C.

    2008-08-01

    Transparent Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics have been prepared, 32(SiO{2}) 9(AlO{1.5}) 31.5(CdF{2}) 18.5(PbF{2}) 5.5(ZnF{2}): 3.5(Yb-Er-TmF{3}) mol%, where the co-dopants partition mostly to the fluoride PbF{2}-based nano-crystals. A comparative study of the up-conversion luminescence in nano-glass-ceramics and its precursor glass indicates that these materials can be used as blue/green/red tuneable up-conversion phosphor, in particular for white light generation. A ratio between blue, green and red emission bands of the Tm3+ and Er3+ can be widely varied with nano-ceramming of the precursor glass and with changing a pump power of luminescence. The change in the ratio between the blue, green and red emission bands is explained to be due to substantial lowering phonon energy and shortening of inter-dopant distances with nano-ceramming of the precursor glass and due to change in the ratio of 2- and 3-photon up-conversion processes with pump power.

  10. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Yusoff, P. S. M. Megat

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC’s were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate themore » thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.« less

  11. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    NASA Astrophysics Data System (ADS)

    Aziz, Hammad; Ahmad, Faiz; Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M.

    2015-07-01

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC's were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  12. Dispersed metal-toughened ceramics and ceramic brazing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorhead, A.J.; Tiegs, T.N.; Lauf, R.J.

    1983-01-01

    An alumina (Al/sub 2/O/sub 3/) based material that contains approximately 1 vol % finely dispersed platinum or chromium was developed for use in high temperature thermal-shock resistant electrical insulators. The work at ORNL is divided into two areas: (1) development of DMT ceramics; and (2) development of brazing filler metals suitable for making ceramic-to-ceramic and ceramic-to-metal brazements. The DMT ceramics and brazements are intended for service at elevated temperatures and at high stress levels in the dirty environments of advanced heat engines. The development and characterization of DMT ceramics includes processing (powder preparation, densification and heat treatment) and detailed measurementmore » of mechanical and physical properties (strength, fracture toughness, and thermal conductivity). The brazing work includes: (1) the formulation and melting of small quantities of experimental brazing filler metals; (2) evaluation of the wetting and bonding behavior of these filler metals on Al/sub 2/O/sub 3/, partially stabilized zirconia and ..cap alpha..-SiC in a sessile drop apparatus; and (3) determine the short-term strength and fracture toughness of brazements.« less

  13. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    PubMed

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.

  14. Ceramic sealants prepared by polymer pyrolysis

    NASA Astrophysics Data System (ADS)

    Hong, Sung Jin; Kim, Deug Joong; Yoo, Young Sung

    2011-02-01

    The formation and properties of ceramic seals for SOFC applications prepared by polymer pyrolysis are investigated. A mixture with polymethylsiloxane and fillers are pyrolyzed in a N2 atmosphere. The coefficient of thermal expansion of the ceramic composites was controlled by fillers with a high coefficient of thermal expansion such as AlCo. The morphology of the ceramic composites derived from the mixture with polymethylsiloxane and fillers is composed of fillers embedded in a Si-O-C glass matrix. The thermal expansion behavior and sealing characteristics are measured and discussed

  15. Morphologies, Processing and Properties of Ceramic Foams and Their Potential as TPS Materials

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Simoes, Conan R.; Johnson, Sylvia M.

    2002-01-01

    The current research is focused on processing ceramic foams with compositions that have potential as a thermal protection material. The use of pre-ceramic polymers with the addition of sacrificial blowing agents or sacrificial fillers offers a viable approach to form either open or closed cell insulation. Our work demonstrates that this is a feasible method to form refractory ceramic foams at relatively low processing temperatures. It is possible to foam complex shapes then pyrolize the system to form a ceramic while retaining the shape of the unfired foam. Initial work focused on identifying suitable pre-ceramic polymers with desired properties such as ceramic yield and chemical make up of the pyrolysis product after firing. We focused on making foams in the Si system (Sic, Si02, Si-0-C), which is in use in current acreage TPS systems. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies and the characterization of these foams in terms of mechanical and thermal properties are presented. We have conducted preliminary arc jet testing on selected foams with the materials being exposed to typical re-entry conditions for acreage TPS and these results will be discussed. Foams processed using these approaches have bulk densities ranging from 0.15 to 0.9 g/cm3 and cell sizes ranging from 5 to 500 pm. Compression strengths ranged from 2 to 7 MPa for these systems. Finally, preliminary oxidation studies have been conducted on selected systems and will be discussed.

  16. Ceramic hot-gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  17. Ceramic hot-gas filter

    DOEpatents

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  18. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    PubMed

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Manufacture of a ceramic paper for art applications

    NASA Astrophysics Data System (ADS)

    Dölle, K.; Honig, A.; Piatkowski, J.; Kuempel, C.

    2018-01-01

    Ceramic paper products are mostly used as high temperature ceramic insulation products. They offer an effective solution for most demanding heat management and insulation applications. The objective for this research project was to create a ceramic paper like product that combines the advantages of paper fibers, ceramic filler, and a clay product into one product, which can be produced on a continuous base with a paper machine. The produced ceramic paper product had a ceramic filler level between 59.68% and 78.8% with a basis weight between 322.9 g/m² and 693.7 g/m², and a final moisture content of 58.6% to 44.7% respectively. The wooden fiber served as a support medium for the ceramic filler material during production on the paper machine and during the conversion process into art pieces. During firing in a kiln, the fiber material combusted and the ceramic filler material mixture acts as common pottery clay, holding the desired shape of the art pieces produced.

  20. Influence of seed nano-crystals on electrical properties and phase transition behaviors of Ba0.85Sr0.15Ti0.90Zr0.10O3 ceramics prepared by seed-induced method

    NASA Astrophysics Data System (ADS)

    Sutjarittangtham, Krit; Intatha, Uraiwan; Eitssayeam, Sukum

    2015-05-01

    This work studied the effects of seed nano-crystal on the electrical properties and the phase transition behaviors of Ba0.85Sr0.15Ti0.90Zr0.10O3 (BSZT) ceramics. The BSZT ceramics were prepared by the seed-induced method. The seed nano-crystal were prepared by the molten salt technique, and NaCl-KCl (1:1 by mole) eutectic mixtures were used as the flux.[1] The ceramic powders were prepared by using a conventional method which added seed nano-crystals at various ratios. Results indicated that seed nano-crystals enhanced the electrical properties of ceramics. The sample with a 20 wt. % seed nano crystals has excellent value of dielectric constant ( µ r ) of 34698 at maximum temperature. The phase transition temperature was observed at 60°C. The morphology was found that the grain size increasing significantly with an increased of seed nano crystals. The relaxor ferroelectric phase transition behavior was shown by a diffuseness parameter ( ³). An increase in the BSZT-seed showed a decreased in ³ value from 1.61 to 1.44. Thus the ferroelectric of the BSZT ceramics can be confirmed by hysteresis loop.[Figure not available: see fulltext.

  1. Evaluation of micron-sized wood and bark particles as filler in thermoplastic composites

    Treesearch

    David P. Harper; Thomas L. Eberhardt

    2010-01-01

    Micron-sized particles, prepared from loblolly pine (Pinus taeda L.) wood and bark, were evaluated for use in wood-plastic composites (WPCs). Particles were also prepared from hard (periderm) and soft (obliterated phloem) components in the bark and compared to whole wood (without bark) filler commonly used by the WPC industry. All bark fillers had...

  2. A comparative study of nano-SiO2 and nano-TiO2 fillers on proton conductivity and dielectric response of a silicotungstic acid-H3PO4-poly(vinyl alcohol) polymer electrolyte.

    PubMed

    Gao, Han; Lian, Keryn

    2014-01-08

    The effects of nano-SiO2 and nano-TiO2 fillers on a thin film silicotungstic acid (SiWA)-H3PO4-poly(vinyl alcohol) (PVA) proton conducting polymer electrolyte were studied and compared with respect to their proton conductivity, environmental stability, and dielectric properties, across a temperature range from 243 to 323 K. Three major effects of these fillers have been identified: (a) barrier effect; (b) intrinsic dielectric constant effect; and (c) water retention effect. Dielectric analyses were used to differentiate these effects on polymer electrolyte-enabled capacitors. Capacitor performance was correlated to electrolyte properties through dielectric constant and dielectric loss spectra. Using a single-ion approach, proton density and proton mobility of each polymer electrolyte were derived as a function of temperature. The results allow us to deconvolute the different contributions to proton conductivity in SiWA-H3PO4-PVA-based electrolytes, especially in terms of the effects of fillers on the dynamic equilibrium of free protons and protonated water in the electrolytes.

  3. Modeling & processing of ceramic and polymer precursor ceramic matrix composite materials

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin

    of filler particle reaction, microstructure evolution, at the microscale as well as transient fluid flow, heat transfer, and species transport at the macroscale. The model comprises of (i) a microscale model and (ii) a macroscale transport model, and aims to provide optimal conditions for the fabrication process of the ceramics. The porous media macroscale model for SiC-based metal-ceramic materials processing will be developed to understand the thermal polymer pyrolysis, chemical reaction of active fillers and transport phenomena in the porous media. The macroscale model will include heat and mass transfer, curing, pyrolysis, chemical reaction and crystallization in a mixture of preceramic polymers and submicron/nano-sized metal particles of uranium, zirconium, niobium, or hafnium. The effects of heating rate, sample size, size and volume ratio of the metal particles on the reaction rate and product uniformity will be studied. The microscale model will be developed for modeling the synthesis of SiC matrix and metal particles. The macroscale model provides thermal boundary conditions to the microscale model. The microscale model applies to repetitive units in the porous structure and describes mass transport, composition changes and motion of metal particles. The unit-cell is the representation unit of the source material, and it consists of several metal particles, SiC matrix and other components produced from the synthesis process. The reactions between different components, the microstructure evolution of the product will be considered. The effects of heating rate and metal particle size on species uniformity and microstructure are investigated.

  4. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    PubMed

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of filler type and polishing on the discoloration of composite resin artificial teeth.

    PubMed

    Imamura, Soichiro; Takahashi, Hidekazu; Hayakawa, Iwao; Loyaga-Rendon, Paola G; Minakuchi, Shunsuke

    2008-11-01

    In this study, the effects of filler type and polishing on the discoloration of composite resin artificial teeth were examined. Four types of experimental resins were prepared: one was a matrix resin, while the others were composite resins containing three different types of fillers (nano-sized silica filler with or without silanization, and prepolymerized filler). Specimens were immersed in distilled water, coffee, red wine, or curry. Color change after immersion was measured using a colorimeter. Color difference values (delta E) and changes in translucency parameter (delta TP) were statistically analyzed using three-way ANOVA and Tukey's comparison. On the influence of the polishing factor, statistically significant differences were neither observed in delta E nor delta TP between polished and non-polished tooth surfaces. On the contrary, the influences of filler type and discoloration medium, and their interaction thereof, were significant. With unsilanized filler, the delta E value of composite resin artificial teeth was significantly increased.

  6. Nano-fabricated size exclusion chromatograph

    NASA Technical Reports Server (NTRS)

    Svehla, D.; Feldman, S.; Feldman, J.; Grunthaner, F.; Shakkottai, P.; Castillo, L. del; White, V.

    2002-01-01

    This paper describes the development of a nano-fabricated size exclusion chromatograph (nSEC) based on the principle that molecules traveling through amicrocolumn containing nano-fabricated features will have characteristic elution times that directly correlate to molecular weight. Compared to conventional size exclusion chromatography, the nSEC offers greater control over the size exclusion process; mass fabrication; integration of the separation column with associated valves, pumps, and detectors; and dramatic reductions in instrument mass and power requirements.

  7. SiN-SiC nanofilm: A nano-functional ceramic with bipolar magnetic semiconducting character

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiahui; Li, Xingxing; Yang, Jinlong, E-mail: jlyang@ustc.edu.cn

    2014-04-28

    Nowadays, functional ceramics have been largely explored for application in various fields. However, magnetic functional ceramics for spintronics remain little studied. Here, we propose a nano-functional ceramic of sphalerite SiN-SiC nanofilm with intrinsic ferromagnetic order. Based on first principles calculations, the SiN-SiC nanofilm is found to be a ferromagnetic semiconductor with an indirect band gap of 1.71 eV. By mean field theory, the Curie temperature is estimated to be 304 K, close to room temperature. Furthermore, the valence band and conduction band states of the nanofilm exhibit inverse spin-polarization around the Fermi level. Thus, the SiN-SiC nanofilm is a typical bipolar magneticmore » semiconductor in which completely spin-polarized currents with reversible spin polarization can be created and controlled by applying a gate voltage. Such a nano-functional ceramic provides a possible route for electrical manipulation of carrier's spin orientation.« less

  8. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.

    PubMed

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei

    2015-11-23

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  9. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    PubMed Central

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  10. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly.

    PubMed

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO(2) (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO(2). To determine the optimum addition levels for nano-ZrO(2), ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO(2) were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO(2) resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.

  11. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    PubMed Central

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551

  12. Process for making ceramic hot gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  13. Adjustable high emittance gap filler. [reentry shielding for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Leiser, D. B.; Stewart, D. A.; Smith, M.; Estrella, C. A.; Goldstein, H. E. (Inventor)

    1981-01-01

    A flexible, adjustable refractory filler is disclosed for filling gaps between ceramic tiles forming the heat shield of a space shuttle vehicle, to protect its aluminum skin during atmospheric reentry. The easily installed and replaced filler consists essentially of a strip of ceramic cloth coated, at least along both its longitudinal edges with a room temperature vulcanizable silicone rubber compound with a high emittance colored pigment. The filler may have one or more layers as the gap width requires. Preferred materials are basket weave aluminoborosilicate cloth, and a rubber compounded with silicon tetraboride as the emittance agent and finely divided borosilicate glass containing about 7.5% B2O3 as high temperature binder. The filler cloth strip or tape is cut to proper width and length, inserted into the gap, and fastened with previously applied drops of silicone rubber adhesive.

  14. Cement Thickness of Inlay Restorations Made of Lithium Disilicate, Polymer-Infiltrated Ceramic and Nano-Ceramic CAD/CAM Materials Evaluated Using 3D X-Ray Micro-Computed Tomography.

    PubMed

    Uzgur, Recep; Ercan, Ertuğrul; Uzgur, Zeynep; Çolak, Hakan; Yalçın, Muhammet; Özcan, Mutlu

    2016-08-12

    To evaluate the marginal and internal cement thicknesses of inlay restorations made of various CAD/CAM materials using 3D X-ray micro-computed tomography (micro-CT) technique. Caries-free extracted mandibular molars (N = 30) with similar size were randomly assigned to three groups (N = 10 per group). Mesio-occlusal-distal (MOD) cavities were prepared, and inlay restorations were obtained by milling out CAD/CAM materials namely, (a) IPS: monolithic lithium disilicate (control), (b) VE: polymer-infiltrated ceramic, and (c) CS: nano-ceramic using a CAM unit. Marginal and internal cement thicknesses were measured using 3D micro-CT. Data were analyzed using 1-way ANOVA and Tukey's tests (alpha = 0.05). The mean marginal and internal cement thickness were not significant in all inlay materials (p > 0.05). Mean marginal cement thickness (μm) was the lowest for the IPS group (67.54 ± 10.16) followed by VE (84.09 ± 3.94) and CS (95.18 ± 10.58) (p > 0.05). The internal cement thickness (μm) was the lowest in the CS group (54.85 ± 6.94) followed by IPS (60.58 ± 9.22) and VE (77.53 ± 12.13) (p > 0.05). Marginal and internal cement thicknesses of MOD inlays made of monolithic lithium disilicate, polymer-infiltrated ceramic, and nano-ceramic CAD/CAM materials were similar and all less than 100 μm, which could be considered clinically acceptable. MOD inlays made of different CAD/CAM materials presented similar cement thickness, less than 100 μm. © 2016 by the American College of Prosthodontists.

  15. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  16. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  17. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  18. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    PubMed

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  19. The effect of filler on the protein content and interferences in rubber latices

    NASA Astrophysics Data System (ADS)

    Ruhida, A. R.; Hassan, Aziz

    2017-12-01

    It is well known that the application of commercial fillers like calcium carbonate has widely been used in natural rubber latex (NRL) gloves as well as other dipped products such as balloons, condom and catheters. The main reason of adding the fillers into the rubber compound was as cheapening aid and to improve the end-product properties. Due to its functional benefit, many studies have been conducted on the application and beneficial usage of fillers in natural rubber (NR) compounds and natural rubber latex (NRL) dipped goods namely gloves. However most of the studies were basically emphasizing on the effect of fillers on the physical properties and surface morphology of rubber. Not many studies have been conducted to investigate the effect of filler on the protein content in NRL products. Earlier work by other workers has only been concentrating on the effect of nano-sized calcium carbonate fillers in NR latex gloves. Because of the concern on the issue of latex protein allergy; it is thus important to study the effect of filler on protein content and its interferences in the rubber lattices. This paper will seek to elaborate on the effect of filler content on the total protein and extractable protein (EP) content of NR latex films at various filler loadings before and after ageing. The effect of interferences by filler that was mixed into the NR latex on the total nitrogen and EP content were also measured and shown.

  20. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.

    PubMed

    Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T

    2006-02-01

    The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.

  1. Nano-ceramics and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Gash, Alex [Livermore, CA; Simpson, Randall [Livermore, CA; Landingham, Richard [Livermore, CA; Reibold, Robert A [Salida, CA

    2006-08-08

    Disclosed herein is a method to produce ceramic materials utilizing the sol-gel process. The methods enable the preparation of intimate homogeneous dispersions of materials while offering the ability to control the size of one component within another. The method also enables the preparation of materials that will densify at reduced temperature.

  2. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    PubMed

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  3. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    PubMed Central

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  4. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    PubMed

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  5. Effect of combination ultrasonic and ball milling techniques of commercial fillers dispersion on mechanical properties of natural rubber (NR) latex films

    NASA Astrophysics Data System (ADS)

    Hamran, Noramirah; Rashid, Azura A.

    2017-07-01

    Commercial fillers such as silica and carbon black generally impart the reinforcing effects in dry rubber compound, but have an adverse effect on Natural rubber (NR) latex compounds. The addition of commercial fillers in NR latex has reduced the mechanical properties of NR latex films due to the destabilization effect in the NR latex compounds which govern by the dispersion quality, particle size and also the pH of the dispersion itself. The ball milling process is the conventional meth od of preparation of dispersions and ultrasonic has successfully used in preparation of nano fillers such as carbon nanotube (CNT). In this study the combination between the conventional methods; ball milling together the ultrasonic method were used to prepare the silica and carbon black dispersions. The different duration of ball milling (24, 48 and 72 hours) was compared with the ultrasonic method (30, 60, 90 and 120 minutes). The combination of ball milling and ultrasonic from the optimum individual technique was used to investigate the reduction of particle size of the fillers. The particle size analyzer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) test were carried out to investigate the obtained particle size and the tensile and tear test were carried out to investigate the mechanical properties of the NR latex films. The reduction of filler particle size is expected to impart the properties of NR latex films.

  6. Probabilistic Sizing and Verification of Space Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Denaux, David; Ballhause, Dirk; Logut, Daniel; Lucarelli, Stefano; Coe, Graham; Laine, Benoit

    2012-07-01

    Sizing of ceramic parts is best optimised using a probabilistic approach which takes into account the preexisting flaw distribution in the ceramic part to compute a probability of failure of the part depending on the applied load, instead of a maximum allowable load as for a metallic part. This requires extensive knowledge of the material itself but also an accurate control of the manufacturing process. In the end, risk reduction approaches such as proof testing may be used to lower the final probability of failure of the part. Sizing and verification of ceramic space structures have been performed by Astrium for more than 15 years, both with Zerodur and SiC: Silex telescope structure, Seviri primary mirror, Herschel telescope, Formosat-2 instrument, and other ceramic structures flying today. Throughout this period of time, Astrium has investigated and developed experimental ceramic analysis tools based on the Weibull probabilistic approach. In the scope of the ESA/ESTEC study: “Mechanical Design and Verification Methodologies for Ceramic Structures”, which is to be concluded in the beginning of 2012, existing theories, technical state-of-the-art from international experts, and Astrium experience with probabilistic analysis tools have been synthesized into a comprehensive sizing and verification method for ceramics. Both classical deterministic and more optimised probabilistic methods are available, depending on the criticality of the item and on optimisation needs. The methodology, based on proven theory, has been successfully applied to demonstration cases and has shown its practical feasibility.

  7. Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ju; Park, Eun-Kwang; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Lee, Min-Ku

    2017-09-01

    Carbon steel with dispersed nano-sized TiC ceramic particles was fabricated by the ex-situ introduction of the particles into the melt, with the flow-assisted corrosion (FAC) resistance then investigated in the presence and absence of TiC nanoparticles using a once-through type of FAC loop test. From the potentiodynamic polarization curves, the current density at any given anodic potential was decreased and the open-circuit potential was increased by the addition of TiC nanoparticles. In addition, when the nano-sized TiC particles were added, the FAC rate was 1.38 times lower than that of carbon steel without TiC nanoparticles, indicating an improvement of the FAC resistance due to the homogeneous distribution of the TiC reinforcing nanoparticles.

  8. Effect of resin infiltration on the thermal and mechanical properties of nano-sized silica-based thermal insulation.

    PubMed

    Lee, Jae Chun; Kim, Yun-Il; Lee, Dong-Hun; Kim, Won-Jun; Park, Sung; Lee, Dong Bok

    2011-08-01

    Several kinds of nano-sized silica-based thermal insulation were prepared by dry processing of mixtures consisting of fumed silica, ceramic fiber, and a SiC opacifier. Infiltration of phenolic resin solution into the insulation, followed by hot-pressing, was attempted to improve the mechanical strength of the insulation. More than 22% resin content was necessary to increase the strength of the insulation by a factor of two or more. The structural integrity of the resin-infiltrated samples could be maintained, even after resin burn-out, presumably due to reinforcement from ceramic fibers. For all temperature ranges and similar sample bulk density values, the thermal conductivities of the samples after resin burn-out were consistently higher than those of the samples obtained from the dry process. Mercury intrusion curves indicated that the median size of the nanopores formed by primary silica aggregates in the samples after resin burn-out is consistently larger than that of the sample without resin infiltration.

  9. Reduction of Escherichia Coli using ceramic disk filter decorated by nano-TiO2: A low-cost solution for household water purification.

    PubMed

    He, Yuan; Huang, Guohe; An, Chunjiang; Huang, Jing; Zhang, Peng; Chen, Xiujuan; Xin, Xiaying

    2018-03-01

    Lack of access to safe water is a challenge in many developing countries, especially in rural areas. It is urgent to develop cost-effective water purification technologies to guarantee drinking water safety in these areas. The present study investigated the reduction of Escherichia coli (E. coli) using ceramic disk filters (CDFs) decorated by nano-TiO 2. The production of CDFs coated with nano-TiO 2 in terms of rice-husk ratio, rice-husk particle size, heating hold time and nano-TiO 2 mass fraction was optimized. The results show that the optimum conditions for CDFs with nano-TiO 2 coating included rice-husk ratio of 29.03%, rice-husk particle size of 0.28mm, heating hold time of 1.41h and nano-TiO 2 mass fraction of 2.21%. Additionally, the morphological and crystal phase characteristics of CDFs were revealed after the decoration by nano-TiO 2 . The effects of temperature, influent E. coli concentration, lamp power and their interactions were explored via factorial analysis. Influent E. coli concentration and lamp power had significant effects on E. coli removal efficiency. This study provided the solid theoretical support for understanding the production and bacteria inactivation relevant to CDFs impregnated with nano-TiO 2 . The results have important implications for finding a safe and cost-effective approach to solve drinking water problems in developing countries. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A polymer solution technique for the synthesis of nano-sized Li 2TiO 3 ceramic breeder powders

    NASA Astrophysics Data System (ADS)

    Jung, Choong-Hwan; Lee, Sang Jin; Kriven, Waltraud M.; Park, Ji-Yeon; Ryu, Woo-Seog

    2008-02-01

    Nano-sized Li 2TiO 3 powder was fabricated by an organic-inorganic solution route. A steric entrapment route employing ethylene glycol was used for the preparation of the nano-sized Li 2TiO 3 particles. Titanium isopropoxide and lithium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. With the optimum amount of the polymer, the metal cations (Li and Ti) were dispersed in the solution and a homogeneous polymeric network was formed. The organic-inorganic precursor gels were turned to crystalline powders through an oxidation reaction during a calcination process. The dried precursor gel showed the carbon-free Li 2TiO 3 crystalline form which was observed above 400 °C. The primary particle size of the carbon-free Li 2TiO 3 was about 70 nm, and the structure of the crystallized powder was porous and agglomerated. The powder compact was densified to 92% of TD at a relatively low sintering temperature of 1100 °C for 2 h.

  11. Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A

    2010-02-01

    Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size. Copyright 2009 SETAC.

  12. Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes

    NASA Astrophysics Data System (ADS)

    Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.

    2014-01-01

    Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.

  13. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  14. Synergistic effect between nano-ceramic lubricating additives and electroless deposited Ni-W-P coating

    NASA Astrophysics Data System (ADS)

    Chen, Min; Cheng, Wushan; Zhao, Zuxin; Huang, Xiaobo

    2013-01-01

    The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.

  15. Preparation of hybrid nano biocomposite κ-carrageenan/cellulose nanocrystal/nanoclay

    NASA Astrophysics Data System (ADS)

    Zakuwan, Siti Zarina; Ahmad, Ishak; Ramli, Nazaruddin

    2013-11-01

    Biodegradable composites film based on κ-carrageenan and nano particles as filler was prepared to study the mechanical strength of carrageenan composites. Solution casting technique was used to prepare_this biocomposite. Preparation of composite film and nano filler involve two stages, preparation of cellulose nanocrystals (CNC) from kenaf with alkali treatment, bleaching, and hydrolysis followed by the preparation of two types of nano composite. Tensile test was carried on the composite film based on κ-carrageenan with the variation percentage of CNC and nano clay to obtain the optimum CNC and nano clay loading. After that hybrid nano-biocomposite film based on κ-carrageenan with the variation percentage of CNC/nano clay (OMMT) according to optimum value of composite carrageenan/CNC and composite carrageenan/nano clay film was prepared. The effect of nano filler on the mechanical properties of carrageenan films was examined. κ-carrageenan biocomposite increased with the optimum at 4% CNC and nano clay composition. Additional improvement of tensile strength with hybridization of CNC and nanoclay indicated better mechanical properties.

  16. Synthesis and LPG sensing properties of nano-sized cadmium oxide.

    PubMed

    Waghulade, R B; Patil, P P; Pasricha, Renu

    2007-04-30

    This paper reports the synthesis and liquid petroleum gas (LPG) sensing properties of nano-sized cadmium oxide (CdO). The nano-sized CdO powder was successfully synthesized by using a chemical co-precipitation method using cadmium acetate and the ammonium hydroxide, as starting materials and water as a carrier. The resulting nano-sized powder was characterized by X-ray diffraction (XRD) measurements and the transmission electron microscopy (TEM). The LPG sensing properties of the synthesized nano-sized CdO were investigated at different operating temperatures and LPG concentrations. It was found that the calcination temperature and the operating temperature significantly affect the sensitivity of the nano-sized CdO powder to the LPG. The sensitivity is found to be maximum when the calcination temperature was 400 degrees C. The sensitivity to 75ppm of LPG is maximum at an operating temperature 450 degrees C and it was found to be approximately 341%. The response and recovery times were found to be nearly 3-5s and 8-10s, respectively. The synthesized nano-sized CdO powder is able to detect up to 25ppm for LPG with reasonable sensitivity at an operating temperature 450 degrees C and it can be reliably used to monitor the concentration of LPG over the range (25-75ppm). The experimental results of the LPG sensing studies reveal that the nano-sized CdO powder synthesized by a simple co-precipitation method is a suitable material for the fabrication of the LPG sensor.

  17. Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Q. G., E-mail: qgchi@hotmail.com, E-mail: empty-cy@l63.com; State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049; Gao, L.

    2015-11-15

    Using melt mixing, we produced a ceramic/polymer composite with a matrix of polyvinylidene fluoride (PVDF) and a filler of 5 vol.% Ni-deposited CaCu{sub 3}Ti{sub 4}O{sub 12} core-shell ceramic particles (CCTO@Ni), and studied its prominent dielectric characteristics for the first. Its phase composition and morphology were analyzed by X-ray diffraction and scanning electron microscopy, respectively. After treating the composite films with various durations of a magnetic field treatment, we compared their dielectric properties. We found that the CCTO@Ni ceramic had a typical urchin-like core-shell structure, and that different durations of the magnetic field treatment produced different distributions of ceramic particles inmore » the PVDF matrix. The dielectric permittivity of the untreated CCTO@Ni/PVDF composite was 20% higher than that of neat PVDF, and it had a low loss tangent. However, only the composite treated for 30 min in the magnetic field had an ultra-high dielectric permittivity of 1.41 × 10{sup 4} at 10 Hz, three orders of magnitude higher than the untreated composite, which declined dramatically with increasing frequency, accompanied by an insulating-conducting phase transition and an increase in loss tangent. Our results demonstrate that changes in the dielectric properties of PVDF composites with magnetic field treatment are closely related to the percolation effect and interfacial polarization.« less

  18. Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers

    NASA Astrophysics Data System (ADS)

    Chi, Q. G.; Gao, L.; Wang, X.; Chen, Y.; Dong, J. F.; Cui, Y.; Lei, Q. Q.

    2015-11-01

    Using melt mixing, we produced a ceramic/polymer composite with a matrix of polyvinylidene fluoride (PVDF) and a filler of 5 vol.% Ni-deposited CaCu3Ti4O12 core-shell ceramic particles (CCTO@Ni), and studied its prominent dielectric characteristics for the first. Its phase composition and morphology were analyzed by X-ray diffraction and scanning electron microscopy, respectively. After treating the composite films with various durations of a magnetic field treatment, we compared their dielectric properties. We found that the CCTO@Ni ceramic had a typical urchin-like core-shell structure, and that different durations of the magnetic field treatment produced different distributions of ceramic particles in the PVDF matrix. The dielectric permittivity of the untreated CCTO@Ni/PVDF composite was 20% higher than that of neat PVDF, and it had a low loss tangent. However, only the composite treated for 30 min in the magnetic field had an ultra-high dielectric permittivity of 1.41 × 104 at 10 Hz, three orders of magnitude higher than the untreated composite, which declined dramatically with increasing frequency, accompanied by an insulating-conducting phase transition and an increase in loss tangent. Our results demonstrate that changes in the dielectric properties of PVDF composites with magnetic field treatment are closely related to the percolation effect and interfacial polarization.

  19. Rare-earth doped transparent nano-glass-ceramics: a new generation of photonic integrated devices

    NASA Astrophysics Data System (ADS)

    Rodríguez-Armas, Vicente Daniel; Tikhomirov, Victor K.; Méndez-Ramos, Jorge; Yanes, Angel C.; Del-Castillo, Javier; Furniss, David; Seddon, Angela B.

    2007-05-01

    We report on optical properties and prospect applications on rare-earth doped oxyfluoride precursor glass and ensuing nano-glass-ceramics. We find out the spectral optical gain of the nano-glass-ceramics and show that its flatness and breadth are advantageous as compared to contemporary used erbium doped optical amplifiers. We present the possibility of flat gain cross-section erbium doped waveguide amplifiers as short 'chip', all-optical, devices capable of dense wavelength division multiplexing, including the potential for direct writing of these devices inside bulk glasses for three-dimensional photonic integration. We carried out a comparative study of the up-conversion luminescence in Er 3+-doped and Yb 3+-Er 3+-Tm 3+ co-doped samples, which indicates that these materials can be used as green/red tuneable up-conversion phosphors and white light simulation respectively. Observed changes in the spectra of the up-conversion luminescence provide a tool for tuning the colour opening the way for producing 3-dimensional optical recording.

  20. Study on the Particle Size Distribution Nano-Particles of Mining Minerals on Whiteness of Triaxial Body

    NASA Astrophysics Data System (ADS)

    Mathur, Ravi; Soni, Aditi

    White wares produced worldwide represent the foundation of much of the ceramic industry; Porcelain bodies fabricated from triaxial mixtures of clay, quartz and feldspar with different size and amounts of nano particles were investigated. Although the purity of raw materials has a strong effect on the colour of the fired bodies, the particle size of raw materials also effect the whiteness The raw material mining minerals china Clay, Feldspar, quarts were prepared of various sized nano particles contains 10.60 -20.22%, 56.84- 70.80 % and 34.87-50.76 % of 100nm respectively. The fired bodies of raw mining minerals and triaxial bodies were subjected to colour measurement. The differences in whiteness were compared and discussed. The studies so far carried out is upto 400 mesh size while the present study has included up to 100nm particle size. A statistical correlation between whiteness of feldspar and triaxial body was also carried out. The correlation between china clay and triaxial body are 0.53, 0.57 and 0.66 for china clay similarly correlation for feldspar is 0.49, 0.73 and 0.83 for triaxial body it are 0.97, 0.84 and 0.75 for A1, A2 and A3 samples. Correlation between china clay and feldspar with triaxial body are 0.79 and 0.92 respectively.

  1. Study of piezoelectric filler on the properties of PZT-PVDF composites

    NASA Astrophysics Data System (ADS)

    Matei, Alina; Å¢ucureanu, Vasilica; Vlǎzan, Paulina; Cernica, Ileana; Popescu, Marian; RomaniÅ£an, Cosmin

    2017-12-01

    The ability to obtain composites with desired functionalities is based on advanced knowledge of the processes synthesis and of the structure of piezoceramic materials, as well the incorporation of different fillers in selected polymer matrix. Polyvinylidene fluoride (PVDF) is a fluorinated polymer with excellent mechanical and electric properties, which it was chosen as matrix due to their applications in a wide range of industrial fields [1-4]. The present paper focuses on the development of composites based on PZT particles as filler obtained by conventional methods and PVDF as polymer matrix. The synthesis of PVDF-PZT composites was obtained by dispersing the ceramic powders in a solution of PVDF in N-methyl-pyrrolidone (NMP) under mechanical mixing and ultrasonication, until a homogenous mixture is obtained. The properties of the piezoceramic fillers before and after embedding into the polymeric matrix were investigated by Fourier transform infrared spectrometry, field emission scanning electron microscopy and X-ray diffraction. In the FTIR spectra, appear a large number of absorption bands which are exclusive of the phases from PVDF matrix confirming the total embedding of PZT filler into matrix. Also, the XRD pattern of the composites has confirmed the presence of crystalline phases of PVDF and the ceramic phase of PZT. The SEM results showed a good distribution of fillers in the matrix.

  2. Down-shifting in Ce3+-Tb3+ co-doped SiO2-LaF3 nano-glass-ceramics for photon conversion in solar cells

    NASA Astrophysics Data System (ADS)

    Velázquez, J. J.; Rodríguez, V. D.; Yanes, A. C.; del-Castillo, J.; Méndez-Ramos, J.

    2012-10-01

    95SiO2-5LaF3 sol-gel derived nano-glass-ceramics single doped with Ce3+ or Tb3+ and co-doped with Ce3+-Tb3+ were synthesized by thermal treatment of precursor glasses. Precipitation of LaF3 nanocrystals during ceramming process was confirmed by X-ray diffraction with mean size ranging from 12 to 15 nm. An exhaustive spectroscopic analysis has been carried out. As a result, it was found that the green emission of Tb3+ ions was greatly enhanced through down shifting process, due to efficient energy transfer from Ce3+ to Tb3+ ions in the glass-ceramics, which is favored by the reduction of the interionic distances when the dopant ions are partitioned into LaF3 nanocrystals. These results suggest the use of these materials to improve the efficiency of solar cells.

  3. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-03-17

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermalmore » stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO{sub 2} passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness.« less

  4. Thermophysical and structural studies on some glass-ceramics and role of nano size crystallites

    NASA Astrophysics Data System (ADS)

    Kothiyal, G. P.; Arvind, A.; Kumar, Rakesh; Dixit, Anupam; Sharma, Kuldeep; Goswami, Madhumita

    2009-07-01

    In this paper, we present some studies on structure and thermophysical properties of glass and glass-ceramics with possible bio-medical and sealing applications. The glass-ceramics prepared for bio-medical applications include phosphate as well as silico-phosphate compositions. In vitro bio-compatibility/activity of these materials is discussed. The glass-ceramics used for the sealing application are lithium aluminium silicate (LAS) and lithium zinc silicate (LZS). The phase formation and some aspects of thermophysical properties and sealing are discussed.

  5. Functionalizable hydrogel microparticles of tunable size and stiffness for soft-tissue filler applications

    PubMed Central

    Chan, Ka Man Carmen; Li, Randolph H.; Chapman, Joseph W.; Trac, Eric M.; Kobler, James B.; Zeitels, Steven M.; Langer, Robert; Karajanagi, Sandeep S.

    2014-01-01

    Particle size, stiffness and surface functionality are important in determining the injection site, safety and efficacy of injectable soft-tissue fillers. Methods to produce soft injectable biomaterials with controlled particle characteristics are therefore desirable. Here we report a method based on suspension photopolymerization and semi-interpenetrating network (semi-IPN) to synthesize soft, functionalizable, spherical hydrogel microparticles (MP) of independently tunable size and stiffness. MP were prepared using acrylated forms of polyethylene glycol (PEG), gelatin and hyaluronic acid. Semi-IPN MP of PEG-diacrylate and PEG were used to study the effect of process parameters on particle characteristics. The process parameters were systematically varied to produce MP with size ranging from 115 to 515 μm and stiffness ranging from 190 to 1600 Pa. In vitro studies showed that the MP thus prepared were cytocompatible. The ratio and identity of the polymers used to make the semi-IPN MP were varied to control their stiffness and to introduce amine groups for potential functionalization. Slow-release polymeric particles loaded with Rhodamine or dexamethasone were incorporated in the MP as a proof-of-principle of drug incorporation and release from the MP. This work has implications in preparing injectable biomaterials of natural or synthetic polymers for applications as soft-tissue fillers. PMID:24561708

  6. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  7. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    PubMed Central

    Brostow, Witold; Lobland, Haley E. Hagg; Hnatchuk, Nathalie; Perez, Jose M.

    2017-01-01

    Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs). We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention. PMID:28336900

  8. Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst

    NASA Astrophysics Data System (ADS)

    Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.

    2017-02-01

    This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.

  9. Process for making ceramic insulation

    DOEpatents

    Akash, Akash [Salt Lake City, UT; Balakrishnan, G Nair [Sandy, UT

    2009-12-08

    A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

  10. Reactive processing and mechanical properties of polymer derived silicon nitride matrix composites and their use in coating and joining ceramics and ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Stackpoole, Margaret Mary

    Use of preceramic polymers offers many advantages over conventional ceramic processing routes. Advantages include being able to plastically form the part, form a pyrolized ceramic material at lower temperatures and form high purity microstructures which are tailorable depending on property requirements. To date preceramic polymers are mostly utilized in the production of low dimensional products such as fibers since loss of volatiles during pyrolysis leads to porosity and large shrinkage (in excess of 30%). These problems have been partially solved by use of active fillers (e.g. Ti, Cr, B). The reactive filler converts to a ceramic material with a volume expansion and this increases the density and reduces shrinkage and porosity. The expansion of the reactive filler thus compensates for the polymer shrinkage if the appropriate volume fraction of filler is present in a reactive atmosphere (e.g. N2 or NH3). This approach has resulted in structural composites with limited success. The present research investigates the possibility of using filled preceramic polymers to form net shaped ceramic composite materials and to investigate the use of these unique composite materials to join and coat ceramics and ceramic composites. The initial research focused on phase and microstructural development of bulk composites from the filled polymer/ceramic systems. A processing technique was developed to insure consistency between different samples and the most promising filler/polymer choices for this application have been determined. The processing temperatures and atmospheres have also been optimized. The work covers processing and characterization of bulk composites, joints and coatings. With careful control of processing near net shape bulk composites were fabricated. Both ambient and high temperature strength and fracture toughness was obtained for these composite systems. The potential of using reactively filled preceramic polymers to process joints and coatings was also

  11. Characterization of Solid Polymers, Ceramic Gap Filler, and Closed-Cell Polymer Foam Using Low-Load Test Methods

    NASA Technical Reports Server (NTRS)

    Herring, Helen M.

    2008-01-01

    Various solid polymers, polymer-based composites, and closed-cell polymer foam are being characterized to determine their mechanical properties, using low-load test methods. The residual mechanical properties of these materials after environmental exposure or extreme usage conditions determines their value in aerospace structural applications. In this experimental study, four separate polymers were evaluated to measure their individual mechanical responses after thermal aging and moisture exposure by dynamic mechanical analysis. A ceramic gap filler, used in the gaps between the tiles on the Space Shuttle, was also tested, using dynamic mechanical analysis to determine material property limits during flight. Closed-cell polymer foam, used for the Space Shuttle External Tank insulation, was tested under low load levels to evaluate how the foam's mechanical properties are affected by various loading and unloading scenarios.

  12. Nano-Sized Natural Colorants from Rocks and Soils

    NASA Astrophysics Data System (ADS)

    Ahmad, W. Y. W.; Ruznan, W. S.; Hamid, H. A.; Kadir, M. I. A.; Yusoh, M. K. M.; Ahmad, M. R.

    2010-03-01

    Colored rocks (lateritic) and soils (shales) are available in abundant all around Malaysia and they are from natural sources. The colorants will be useful if they can be transferred to substrates using dyeing, printing or brushing with acceptable fastness. First of all the rocks need to be crushed into powder form before coloration can take place. The sizes of the colorants particles obtained with coffee grinder were of 7-8 microns. They can be reduced to 3-5 micron using fluidized bed jetmill and to nano sizes with the help of planetary mono mill grinders. The experiment was conducted in both dyeing and printing of textiles using all three sizes (7-8 microns, 3-5 microns and nano sizes) of colorants on silk fabric. The colorants were applied on silk fabrics by dyeing and tie and dye techniques. In addition, the colorants can also be applied by brushing technique as in batik canting or batik block as well as silk screen printing. The evaluations of colored materials were based on the levelness of dyeing, fastness properties (washing, light and rubbing fastness) and color strength. The wash fastness testing shows that all colorants sizes have more or less the same fastness to washing but nano sized colorants produced better uniform dyes distribution (levelness of dyeing) and higher color strength.

  13. Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers

    PubMed Central

    Fiocco, Laura; Elsayed, Hamada; Ferroni, Letizia; Gardin, Chiara; Zavan, Barbara; Bernardo, Enrico

    2015-01-01

    Wollastonite (CaSiO3) and diopside (CaMgSi2O6) silicate ceramics have been widely investigated as highly bioactive materials, suitable for bone tissue engineering applications. In the present paper, highly porous glass-ceramic foams, with both wollastonite and diopside as crystal phases, were developed from the thermal treatment of silicone polymers filled with CaO and MgO precursors, in the form of micro-sized particles. The foaming was due to water release, at low temperature, in the polymeric matrix before ceramic conversion, mainly operated by hydrated sodium phosphate, used as a secondary filler. This additive proved to be “multifunctional”, since it additionally favored the phase development, by the formation of a liquid phase upon firing, in turn promoting the ionic interdiffusion. The liquid phase was promoted also by the incorporation of powders of a glass crystallizing itself in wollastonite and diopside, with significant improvements in both structural integrity and crushing strength. The biological characterization of polymer-derived wollastonite-diopside foams, to assess the bioactivity of the samples, was performed by means of a cell culture test. The MTT assay and LDH activity tests gave positive results in terms of cell viability.

  14. High elastic modulus nanopowder reinforced resin composites for dental applications

    NASA Astrophysics Data System (ADS)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus <15 GPa. Chemical additives can also effectively raise the hardness to as much as 1.34 GPa. Besides>alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with

  15. Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions.

    PubMed

    Huang, Jing; Huang, Guohe; An, Chunjiang; He, Yuan; Yao, Yao; Zhang, Peng; Shen, Jian

    2018-07-01

    Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: In vivo study.

    PubMed

    Kose, Nusret; Çaylak, Remzi; Pekşen, Ceren; Kiremitçi, Abdurrahman; Burukoglu, Dilek; Koparal, Savaş; Doğan, Aydın

    2016-02-01

    Despite improvement in operative techniques and antibiotic therapy, septic complications still occur in open fractures. We developed silver ion containing ceramic nano powder for implant coating to provide not only biocompatibility but also antibacterial activity to the orthopaedic implants. We hypothesised silver ion doped calcium phosphate based ceramic nano-powder coated titanium nails may prevents bacterial colonisation and infection in open fractures as compared with uncoated nails. 33 rabbits divided into three groups. In the first group uncoated, in the second group hydroxyapatite coated, and in the third group silver doped hydroxyapatite coated titanium nails were inserted left femurs of animals from knee regions with retrograde fashion. Before implantation of nails 50 μl solution containing 10(6)CFU/ml methicillin resistance Staphylococcus aureus (MRSA) injected intramedullary canal. Rabbits were monitored for 10 weeks. Blood was taken from rabbits before surgery and on 2nd, 6th and 10th weeks. Blood was analysed for biochemical parameters, blood count, C-reactive protein and silver levels. At the end of the 10 weeks animals were sacrificed and rods were extracted in a sterile fashion. Swab cultures were taken from intramedullary canal. Bacteria on titanium rods were counted. Liver, heart, spleen, kidney and central nervous tissues samples were taken for determining silver levels. Histopathological evaluation of bone surrounding implants was also performed. No significant difference was detected between the groups from hematologic, biochemical, and toxicological aspect. Microbiological results showed that less bacterial growth was detected with the use of silver doped ceramic coated implants compared to the other two groups (p=0.003). Accumulation of silver was not detected. No cellular inflammation was observed around the silver coated prostheses. No toxic effect of silver on bone cells was seen. Silver ion doped calcium phosphate based ceramic nano

  18. Controlling the sol–gel process of nano-crystalline lithium-mica glass-ceramic by its chemical composition and synthesis parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tohidifar, M.R., E-mail: tohidifar@znu.ac.ir; Alizadeh, P.; Aghaei, A.R.

    2015-01-15

    This paper aims to explore the impact of the parameters such as pH of the system, refluxing temperature, water quantity and chemical composition on the sol–gel synthesis of lithium-mica glass-ceramic nano-powder. The synthesis process was accomplished using two chemical composition formula (Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} and LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2}). X-ray diffraction, Brunauer–Emmett–Teller surface area measurement and scanning electron microscopy techniques were applied to evaluate a variety of as-synthesized samples. Consequently, a transparent homogeneous sol was obtained under the conditions as pH ≤ 4, synthesis temperature ≤ 50 °C, and mol ratio of water to chemicals ≤more » 2. The prepared nano-powders under such conditions were in the range of 60–100 nm. The results also revealed that the mica glass-ceramics prepared based on the composition Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} possessed finer powders due to their slow hydrolysis process. Moreover, any reduction in the stoichiometric deviation of lithium mica (x) leads to acquiring finer powders. - Highlights: • A transparent homogeneous sol leads to prepare nanopowders in the range of 60–100 nm. • The particles synthesized at lower temperatures possess finer sizes. • The acquired product which is prepared with excessive water offers larger sizes. • Any reduction in stoichiometric deviation leads to acquiring finer powders. • Taking synthesis composition as Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} offers finer powders.« less

  19. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  20. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  1. Sol-gel applications for ceramic membrane preparation

    NASA Astrophysics Data System (ADS)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  2. Improving the degradation behavior and in vitro biological property of nano-hydroxyapatite surface- grafted with the assist of citric acid.

    PubMed

    Jiang, Liuyun; Jiang, Lixin; Xiong, Chengdong; Su, Shengpei

    2016-10-01

    To obtain ideal nano-hydroxyapatite(n-HA) filler for poly(lactide-co-glycolide) (PLGA), a new surface-grafting with the assist of citric acid for nano-hydroxyapatite (n-HA) was designed, and the effect of n-HA surface-grafted with or without citric acid on in vitro degradation behavior and cells viability was studied by the experiments of soaking in simulated body fluid (SBF) and incubating with human osteoblast-like cells (MG-63). The change of pH value, tensile strength reduction, the surface deposits, cells attachment and proliferation of samples during the soaking and incubation were investigated by means of pH meter, electromechanical universal tester, scanning electron microscope (SEM) coupled with energy-dispersive spectro-scopy (EDS), fluorescence microscope and MTT method. The results showed that the introduction of citric acid not only delayed the strength reduction during the degradation by inhibiting the detachment of n-HA from PLGA, but also endowed it better cell attachment and proliferation, suggesting that the n-HA surface-grafted with the assist of citric acid was an important bioactive ceramic fillers for PLGA used as bone materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Synthesis of HAP nano rods and processing of nano-size ceramic reinforced poly(L)lactic acid composites

    NASA Astrophysics Data System (ADS)

    Flanigan, Kyle Yusef

    2000-09-01

    Bone is unique among the various connective tissues in that it is a composite of organic and inorganic components. Calcium phosphates occur principally in the form of hydroxyapatite crystals {Ca10(PO4) 6(OH)2}. Secreted apatite crystals are integral to the structural rigidity of the bone. When a bone breaks, there is often a need to implant an orthotic device to support the broken bone during remodeling. Current technologies use either metal pins and screws that need to be removed (by surgery) once the healing is complete or polymeric materials that either get resorbed or are porous enough to allow bone ingrowth. Poly(L)Lactic acid and copolymers of polyglycolic acid (PGA) are thermoplastics which show promise as the matrix material in biosorbable/load bearing implants. In service this material is hydrolyzed generating water and L-lactate. Orthoses composed of neat PLLA resins require greater than three years for complete resorbtion, however; 95% of strength is lost in 2 to 3 weeks in-vitro. This has limited the deployment of load bearing PLLA to screws, pins or short bracing spans. There exists a need for the development of an implantable and biosorbable orthotic device which will retain its structural integrity long enough for remodeling and healing process to generate new bone material, about 10 weeks. The scope of this dissertation is the development of HAP nano-whisker reinforcement and a HAP/PLLA thermoplastic composite. As proof of the feasibility of generating nano-reinforcement PLLA-composites, the surface of a galleried clay, montmorillonite, was modified and clay/PLLA composites processed and then characterized. Hydroxyapatite nano-whiskers were synthesized and functionalized using organosilanes and Menhaden fish-oil (common organic dispersant). The functionalized nano-fibers were used to process HAP/PLLA composites. Characterization techniques included thermal analysis, magnetic spectroscopy, XRD and ICP analysis and electron microscopy. The

  4. Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation

    NASA Astrophysics Data System (ADS)

    Gao, Ru-qin; Sun, Qian; Fang, Zhi; Li, Guo-ting; Jia, Meng-zhe; Hou, Xin-mei

    2018-01-01

    Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650°C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ = 0.576 mg·m-3·min-1 and K = 0.048 m3/mg.

  5. Dielectric and electrical studies of Pr{sup 3+} doped nano CaSiO{sub 3} perovskite ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Sandhya, E-mail: pappu.sandhyakulkarni@gmail.com; Nagabhushana, B.M.; Parvatikar, Narsimha

    2014-02-01

    Highlights: • CaSiO{sub 3}:Pr{sup 3+} was prepared by facile low temperature solution combustion method. • The crystalline phase of the product is obtained by adopting sintering method. • Samples prepared at 500 °C and calcined at 900 °C for 3 h showed β-phase. • The Pr{sup 3+} doped CaSiO{sub 3} shows “unusual results”. • The electrical microstructure has been accepted to be of internal barrier layer capacitor. - Abstract: CaSiO{sub 3} nano-ceramic powder doped with Pr{sup 3+} has been prepared by solution combustion method. The powder Ca{sub 0.95}Pr{sub 0.05}SiO{sub 3} is investigated for its dielectric and electrical properties at roommore » temperature to study the effect of doping. The sample is characterized by X-ray diffraction and infrared spectroscopy. The size of either of volume elements of CaSiO{sub 3}:Pr{sup 3+} estimated from transmission electron microscopy is about 180–200 nm. The sample shows colossal dielectric response at room temperature. This colossal dielectric behaviour follows Debye-type relaxation and can be explained by Maxwell–Wagner (MW) polarization. However, analysis of impedance and electric modulus data using Cole–Cole plot shows that it deviates from ideal Debye behaviour resulting from the distribution of relaxation times. The distribution in the relaxation times may be attributed to existence of electrically heterogeneous grains, insulating grain boundary, and electrode contact regions. Doping, thus, results in substantial modifications in the dielectric and electrical properties of the nano-ceramic CaSiO{sub 3}.« less

  6. Ceramic materials of low-temperature synthesis for dielectric coating applied by 3D aerosol printing used in nano- and microelectronics, lighting engineering, and spacecraft control devices

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Tuev, V. I.; Nisan, A. V.; Potapov, G. N.

    2016-11-01

    A synthesis technique of low-temperature ceramic material based on aluminosilicates of dendrimer morphology capable to contain up to 80 wt % of nitrides and oxides of high-melting compounds as filler has been developed. The synthesis is based on a sol-gel method followed by mechanochemical treatment and ultrasonic dispersing. Dielectric ceramic layers with the layer thickness in the nanometer range and high thermal conductivity have been obtained for the first time by 3D aerosol printing of the synthesized material. The study of the obtained ceramic coating on the metal surface (Al) has proved its use prospects in microelectronics, light engineering, and devices for special purposes.

  7. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  8. Application of a Probalistic Sizing Methodology for Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Rancurel, Michael; Behar-Lafenetre, Stephanie; Cornillon, Laurence; Leroy, Francois-Henri; Coe, Graham; Laine, Benoit

    2012-07-01

    Ceramics are increasingly used in the space industry to take advantage of their stability and high specific stiffness properties. Their brittle behaviour often leads to size them by increasing the safety factors that are applied on the maximum stresses. It induces to oversize the structures. This is inconsistent with the major driver in space architecture, the mass criteria. This paper presents a methodology to size ceramic structures based on their failure probability. Thanks to failure tests on samples, the Weibull law which characterizes the strength distribution of the material is obtained. A-value (Q0.0195%) and B-value (Q0.195%) are then assessed to take into account the limited number of samples. A knocked-down Weibull law that interpolates the A- & B- values is also obtained. Thanks to these two laws, a most-likely and a knocked- down prediction of failure probability are computed for complex ceramic structures. The application of this methodology and its validation by test is reported in the paper.

  9. Fabrication of transparent ceramics using nanoparticles

    DOEpatents

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  10. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    NASA Astrophysics Data System (ADS)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  11. Abradable dual-density ceramic turbine seal system

    NASA Technical Reports Server (NTRS)

    Clingman, D. L.; Schechter, B.; Cross, K. R.; Cavanagh, J. R.

    1981-01-01

    A plasma sprayed dual density ceramic abradable seal system for direct application to the HPT seal shroud of small gas turbine engines. The system concept is based on the thermal barrier coating and depends upon an additional layer of modified density ceramic material adjacent to the gas flow path to provide the desired abradability. This is achieved by codeposition of inert fillers with yttria stabilized zirconia (YSZ) to interrupt the continuity of the zirconia struture. The investigation of a variety of candidate fillers, with hardness values as low as 2 on Moh's scale, led to the conclusion that solid filler materials in combination with a YSZ matrix, regardless of their hardness values, have a propensity for compacting rather than shearing as originally expected. The observed compaction is accompanied by high energy dissipation in the rub interaction, usually resulting in the adhesive transfer of blade material to the stationary seal member. Two YSZ based coating systems which incorported hollow alumino silicate spheres as density reducing agents were surveyed over the entire range of compositions from 100 percent filler to 100 percent YSZ. Abradability and erosion characteristics were determined, hardness and permeability characterized, and engine experience acquired with several system configurations.

  12. Commercialization of Ultra-Hard Ceramics for Cutting Tools Final Report CRADA No. TC0279.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landingham, R.; Neumann, T.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Greenleaf Corporation (Greenleaf) to develop the technology for forming unique precursor nano-powders process that can be consolidated into ceramic products for industry. LLNL researchers have developed a solgel process for forming nano-ceramic powders. The nano powders are highly tailorable, allowing the explicit design of desired properties that lead to ultra hard materials with fine grain size. The present CRADA would allow the two parties to continue the development of the sol-gel process and the consolidation process in ordermore » to develop an industrially sound process for the manufacture of these ultra-hard materials.« less

  13. Improvement of Er 3+ emissions in oxyfluoride glass ceramic nano-composite by thermal treatment

    NASA Astrophysics Data System (ADS)

    Chen, Daqin; Wang, Yuansheng; Yu, Yunlong; Ma, En

    2006-05-01

    In order to improve the 1.53 μm emission of Er 3+-doped oxyfluoride glass ceramic containing CaF 2 nano-crystals, series of samples with same Er 3+ doping lever thermal treated under different conditions were prepared. The UV-VIR-NIR absorption spectra, near-infrared and up-conversion emission spectra, and 4I13/2 decay curves were measured. Based on Judd-Ofelt theory, the radiative transition probability, fluorescence branching ratio and radiative decay time of various metastable transitions of precursor glass and glass ceramics were evaluated. With the increasing of heating temperature, the Judd-Ofelt intensity parameter Ω2 monotonously decreased from 4.39×10 -20 to 2.72×10 -20 cm 2; the emission lifetime and quantum efficiency significantly increased from 5.9 to 8.0 ms and 70% to 98%, respectively. The wavelength dependence of gain cross-sections of oxyfluoride glass and glass ceramics were computed to be relatively flat in the range of 1530-1565 nm for population inversion from 0.7 to 1.0.

  14. Measurement of composite resin filler particles by using scanning electron microscopy and digital imaging.

    PubMed

    Jaarda, M J; Lang, B R; Wang, R F; Edwards, C A

    1993-04-01

    Composite resins are routinely classified on the basis of filler particle size for purposes of research, clinical applications, and communications. The size and characterizations of filler particles have also been considered a significant factor in the rate of wear of composites. Making valid correlations between the filler particles within a composite and wear requires accuracy of filler particle size and characterization. This study was initiated to examine two methods that would (1) qualify the filler particle content of a composite resin and (2) quantify the number, size, and the area occupied by the filler particles in composite resins. Three composite resins, BIS-FIL I, Visio-Fil, and Ful-Fil, were selected as the materials to be examined, on the basis of their published composite classification type as fine particle. The findings demonstrated that scientific methods are available to examine qualitatively and measure quantitatively the composite resin filler particles in terms of their numbers, sizes, and area occupied by use of a scanning electron microscope and digital imaging. Significant differences in the filler particle numbers, sizes, and the area occupied were found for the three composite resins in this study that were classified as fine particle.

  15. Nano-sized crystalline drug production by milling technology.

    PubMed

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  16. Grain Refinement and Mechanical Properties of Cu–Cr–Zr Alloys with Different Nano-Sized TiCp Addition

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-01-01

    The TiCp/Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiCp/Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu–Cr–Zr alloys to fabricate the nano-sized TiCp-reinforced Cu–Cr–Zr composites. Results show that nano-sized TiCp can effectively refine the grain size of Cu–Cr–Zr alloys. The morphologies of grain in Cu–Cr–Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiCp. The grain size decreased from 82 to 28 μm with the nano-sized TiCp content. Compared with Cu–Cr–Zr alloys, the ultimate compressive strength (σUCS) and yield strength (σ0.2) of 4 wt% TiCp-reinforced Cu–Cr–Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu–Cr–Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiCp-reinforced Cu–Cr–Zr composites decreased with the increasing TiCp content under abrasive particles. The eletrical conductivity of Cu–Cr–Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu–Cr–Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively. PMID:28786937

  17. Biodegradable ceramic-polymer composites for biomedical applications: A review.

    PubMed

    Dziadek, Michal; Stodolak-Zych, Ewa; Cholewa-Kowalska, Katarzyna

    2017-02-01

    The present work focuses on the state-of-the-art of biodegradable ceramic-polymer composites with particular emphasis on influence of various types of ceramic fillers on properties of the composites. First, the general needs to create composite materials for medical applications are briefly introduced. Second, various types of polymeric materials used as matrices of ceramic-containing composites and their properties are reviewed. Third, silica nanocomposites and their material as well as biological characteristics are presented. Fourth, different types of glass fillers including silicate, borate and phosphate glasses and their effect on a number of properties of the composites are described. Fifth, wollastonite as a composite modifier and its effect on composite characteristics are discussed. Sixth, composites containing calcium phosphate ceramics, namely hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate are presented. Finally, general possibilities for control of properties of composite materials are highlighted. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  19. Processing and synthesis of multi-metallic nano oxide ceramics via liquid-feed flame spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Azurdia, Jose Antonio

    The liquid-feed flame spray pyrolysis (LF-FSP) process aerosolizes metal-carboxylate precursors dissolved in alcohol with oxygen and combusts them at >1500°C. The products are quenched rapidly (˜10s msec) to < 400°C. By selecting the appropriate precursor mixtures, the compositions of the resulting oxide nanopowders can be tailored easily, which lends itself to combinatorial studies of systems facilitating material property optimization. The resulting nanopowders typically consist of single crystal particles with average particle sizes (APS) < 35 nm, specific surface areas (SSA) of 20-60 m2/g and spherical morphology. LF-FSP provides access to novel single phase nanopowders, known phases at compositions outside their published phase diagrams, intimate mixing at nanometer length scales in multi metallic oxide nanopowders, and control of stoichiometry to ppm levels. The materials produced may exhibit unusual properties including structural, catalytic, and photonic ones and lower sintering temperatures. Prior studies used LF-FSP to produce MgAl2O4 spinel for applications in transparent armor and IR radomes. In these studies, a stable spinel structure with a (MgO)0.1(Al2O3)0.9 composition well outside the known phase field was observed. The work reported here extends this observation to two other spinel systems: Al2O3-NiO, Al2O3-CoOx; followed by three series of transition metal binary oxides, NiO-CoO, NiO-MoO3, NiO-CuO. The impetus to study spinels derives both from the fact that a number of them are known transparent ceramics, but also others offer high SSAs coupled with unusual phases that suggest potentially novel catalytic materials. Because LF-FSP provides access to any composition, comprehensive studies of the entire tie-lines were conducted rather than just compositions of value for catalytic applications. Initial efforts established baseline properties for the nano aluminate spinels, then three binary transition metal oxide sets (Ni-Co, Ni-Mo and Ni

  20. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    NASA Astrophysics Data System (ADS)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.

    2015-04-01

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  1. Multi-Scale Effects in the Strength of Ceramics

    PubMed Central

    Cook, Robert F.

    2016-01-01

    Multiple length-scale effects are demonstrated in indentation-strength measurements of a range of ceramic materials under inert and reactive conditions. Meso-scale effects associated with flaw disruption by lateral cracking at large indentation loads are shown to increase strengths above the ideal indentation response. Micro-scale effects associated with toughening by microstructural restraints at small indentation loads are shown to decrease strengths below the ideal response. A combined meso-micro-scale analysis is developed that describes ceramic inert strength behaviors over the complete indentation flaw size range. Nano-scale effects associated with chemical equilibria and crack velocity thresholds are shown to lead to invariant minimum strengths at slow applied stressing rates under reactive conditions. A combined meso-micro-nano-scale analysis is developed that describes the full range of reactive and inert strength behaviors as a function of indentation load and applied stressing rate. Applications of the multi-scale analysis are demonstrated for materials design, materials selection, toughness determination, crack velocity determination, bond-rupture parameter determination, and prediction of reactive strengths. The measurements and analysis provide strong support for the existence of sharp crack tips in ceramics such that the nano-scale mechanisms of discrete bond rupture are separate from the larger scale crack driving force mechanics characterized by continuum-based stress-intensity factors. PMID:27563150

  2. Effect of filler properties in composite resins on light transmittance characteristics and color.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Takahashi, Hideo; Ban, Seiji

    2007-01-01

    The purpose of this investigation was to examine the effect of filler particle size and shape as well as filler content on light transmittance characteristics and color of experimental composite resins. A mixture of 30 mol% Bis-GMA and 70 mol% TEGDMA was prepared as a base monomer and to which a photoinitiator (camphorquinone) and a co-initiator (N,N-dimethylaminoethyl methacrylate) were added. Four different irregular- and spherical-shaped filler types with an average particle size of 1.9-11.1 microm were added to the mixture in three different filler contents of 20, 30, and 40 vol%. Light transmittance characteristics including light diffusion characteristics of the materials were evaluated. Color values and color differences among filler contents of the materials were also determined. Materials containing smaller and irregular-shaped fillers showed higher light transmittance and diffusion angle distribution with a sharper peak, as compared with those containing larger and spherical-shape fillers. It was also found that there was a significant correlation between the specific surface area of fillers and the color difference of the materials containing the fillers. Our results indicated that the shape of filler particles, as well as particle size and filler content, significantly affected the light transmittance characteristics--including light diffusion characteristics--and color of composite resins.

  3. Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Wen; Zhang, Xudong; Jin, Chao; Wang, Yaoyao; Mossin, Susanne; Yue, Yuanzheng

    2017-02-01

    Electrode materials can display superior electrochemical performances and behavior via the nanoscale design. Here, the low-temperature synthesis of nano-glass ceramics (NGCs) is based on inheriting the network structure of yeast polyphosphate metabolism. The NGCs-3 sample synthesized with a molar ratio of Fe/V = 7:6 is composed of nano-domains of semiconducting oxide glass (Li2O-Na2O-Fe2O3-V2O5-P2O5, LNFVP), nanocrystalline particles (Li9Fe3P8O29, Li0.6V1.67O3.67 and VOPO4), and nanopores connected by interfaces. We have clarified the mixing ion transport mechanism and the electrochemical reactions, and the influences of molar ratio of Fe/V on the structure and electrochemical properties of NGCs. This nanoscale design offers a new possibility improved the electrochemical performances of Li+/Na+ mixed-ion batteries (LNMIBs). The NGCs-3 electrode exhibits a higher discharge capacity (145 mAh g-1) and energy storage density (525 Whkg-1) at 5C, and the capacity retention reaches 70% after 1000 cycles. More importantly, we have established a direct relationship between the electrochemical kinetics and nanostructure of NGC electrode materials.

  4. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors.

    PubMed

    Jin, Le; Ong, Say Leong; Ng, How Yong

    2010-12-01

    Membrane fouling, the key disadvantage that inevitably occurs continuously in the membrane bioreactor (MBR), baffles the wide-scale application of MBR. Ceramic membrane, which possesses high chemical and thermal resistance, has seldom been used in MBR to treat municipal wastewater. Four ceramic membranes with the same materials but different pore sizes, ranging from 80 to 300 nm, were studied in parallel using four lab-scale submerged MBRs (i.e., one type of ceramic membrane in one MBR). Total COD and ammonia nitrogen removal efficiencies were observed to be consistently above 94.5 and 98%, respectively, in all submerged ceramic membrane bioreactors. The experimental results showed that fouling was mainly affected by membrane's microstructure, surface roughness and pore sizes. Ceramic membrane with the roughest surface and biggest pore size (300 nm) had the highest fouling potential with respect to the TMP profile. The 80 nm membrane with a smoother surface and relatively uniform smaller pore openings experienced least membrane fouling with respect to TMP increase. The effects of the molecular weight distribution, particle size distribution and other biomass characteristics such as extracellular polymeric substances, zeta potential and capillary suction time, were also investigated in this study. Results showed that no significant differences of these attributes were observed. These observations indicate that the membrane surface properties are the dominant factors leading to different fouling potential in this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  6. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer.

    PubMed

    Coutinho, E; Cardoso, M V; De Munck, J; Neves, A A; Van Landuyt, K L; Poitevin, A; Peumans, M; Lambrechts, P; Van Meerbeek, B

    2009-11-01

    Glass-ionomers (GIs) exhibit excellent clinical bonding effectiveness, but still have shortcomings such as polishability and general aesthetics. The aims of this study were (1) to determine the micro-tensile bond strength (microTBS) to enamel and dentin of a nano-filled resin-modified GI (nano-RMGI; Ketac N100, 3M-ESPE), and (2) to characterize its interfacial interaction with enamel and dentin using transmission electron microscopy (TEM). The nano-RMGI was used both with and without its primer, while a conventional RMGI restorative material (conv-RMGI; Fuji II LC, GC) and a packable conventional GI cement (conv-GI; Fuji IX GP, GC) were used as controls. After bonding to freshly extracted human third molars, microspecimens of the interfaces were machined into a cylindrical hourglass shape and tested to failure in tension. Non-demineralized TEM sections were prepared and examined from additional teeth. The microTBS to both enamel and dentin of nano-RMGI and conv-GI were not statistically different; the microTBS of non-primed nano-RMGI was significantly lower, while that of conv-RMGI was significantly higher than that of all other groups. TEM of nano-RMGI disclosed a tight interface at enamel and dentin without surface demineralization and hybrid-layer formation. A thin filler-free zone (<1 microm) was formed at dentin. A high filler loading and effective filler distribution were also evident, with localized areas exhibiting nano-filler clustering. The nano-RMGI bonded as effectively to enamel and dentin as conv-GI, but bonded less effectively than conv-RMGI. Its bonding mechanism should be attributed to micro-mechanical interlocking provided by the surface roughness, most likely combined with chemical interaction through its acrylic/itaconic acid copolymers.

  7. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    NASA Astrophysics Data System (ADS)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  8. Effect of Nano-Si3N4 Additives and Plasma Treatment on the Dry Sliding Wear Behavior of Plasma Sprayed Al2O3-8YSZ Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Gou, Junfeng; Zhang, Jian; Zhang, Qiwen; Wang, You; Wang, Chaohui

    2017-04-01

    In this paper, the effect of nano-Si3N4 additives and plasma treatment on the wear behavior of Al2O3-8YSZ ceramic coatings was studied. Nano-Al2O3, nano-8YSZ (8 wt.% Y2O3-stabilized ZrO2) and nano-Si3N4 powders were used as raw materials to fabricate four types of sprayable feedstocks. Plasma treatment was used to improve the properties of the feedstocks. The surface morphologies of the ceramic coatings were observed. The mechanical properties of the ceramic coatings were measured. The dry sliding wear behavior of the Al2O3-8YSZ coatings with and without Si3N4 additives was studied. Nano-Si3N4 additives and plasma treatment can improve the morphologies of the coatings by prohibiting the initiation of micro-cracks and reducing the unmelted particles. The hardness and bonding strength of AZSP (Al2O3-18 wt.% 8YSZ-10 wt.% Si3N4-plasma treatment) coating increased by 79.2 and 44% compared to those of AZ (Al2O3-20 wt.% 8YSZ) coating. The porosity of AZSP coating decreased by 85.4% compared to that of AZ coating. The wear test results showed that the addition of nano-Si3N4 and plasma treatment could improve the wear resistance of Al2O3-8YSZ coatings.

  9. The impact of fillers on lineup performance.

    PubMed

    Wetmore, Stacy A; McAdoo, Ryan M; Gronlund, Scott D; Neuschatz, Jeffrey S

    2017-01-01

    Filler siphoning theory posits that the presence of fillers (known innocents) in a lineup protects an innocent suspect from being chosen by siphoning choices away from that innocent suspect. This mechanism has been proposed as an explanation for why simultaneous lineups (viewing all lineup members at once) induces better performance than showups (one-person identification procedures). We implemented filler siphoning in a computational model (WITNESS, Clark, Applied Cognitive Psychology 17:629-654, 2003), and explored the impact of the number of fillers (lineup size) and filler quality on simultaneous and sequential lineups (viewing lineups members in sequence), and compared both to showups. In limited situations, we found that filler siphoning can produce a simultaneous lineup performance advantage, but one that is insufficient in magnitude to explain empirical data. However, the magnitude of the empirical simultaneous lineup advantage can be approximated once criterial variability is added to the model. But this modification works by negatively impacting showups rather than promoting more filler siphoning. In sequential lineups, fillers were found to harm performance. Filler siphoning fails to clarify the relationship between simultaneous lineups and sequential lineups or showups. By incorporating constructs like filler siphoning and criterial variability into a computational model, and trying to approximate empirical data, we can sort through explanations of eyewitness decision-making, a prerequisite for policy recommendations.

  10. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility wasmore » compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.« less

  11. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    PubMed

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  12. Method of making metal oxide ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method for the production of metal oxide ceramic membranes is composed of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  13. New nano-sized Al2O3-BN coating 3Y-TZP ceramic composites for CAD/CAM-produced all-ceramic dental restorations. Part I. Fabrication of powders.

    PubMed

    Yang, Se Fei; Yang, Li Qiang; Jin, Zhi Hao; Guo, Tian Wen; Wang, Lei; Liu, Hong Chen

    2009-06-01

    Partially sintered 3 mol % yttria-stabilized tetragonal zirconium dioxide (ZrO(2), zirconia) polycrystal (3Y-TZP) ceramics are used in dental posterior restorations with computer-aided design-computer-aided manufacturing (CAD/CAM) techniques. High strength is acquired after sintering, but shape distortion of preshaped compacts during their sintering is inevitable. The aim of this study is to fabricate new machinable ceramic composites with strong mechanical properties that are fit for all-ceramic dental restorations. Aluminum oxide (Al(2)O(3))-coated 3Y-TZP powders were first prepared by the heterogeneous precipitation method starting with 3Y-TZP, Al(NO(3))(3) . 9H(2)O, and ammonia, then amorphous boron nitride (BN) was produced and the as-received composite powders were coated via in situ reaction with boric acid and urea. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to analyze the status of Al(2)O(3)-BN on the surface of the 3Y-TZP particles. TEM micrographs show an abundance of Al(2)O(3) particles and amorphous BN appearing uniformly on the surface of the 3Y-TZP particles after the coating process. The size of the Al(2)O(3) particles is about 20 nm. The XRD pattern shows clearly the peak of amorphous BN among the peaks of ZrO(2).

  14. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  15. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  16. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells

    PubMed Central

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-01-01

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode. PMID:26538366

  17. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells.

    PubMed

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-11-05

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm(2) at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.

  18. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-11-01

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.

  19. Grain-Size-Dependent Thermoelectric Properties of SrTiO3 3D Superlattice Ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-zhi; Koumoto, Kunihito

    2013-07-01

    The thermoelectric (TE) performance of SrTiO3 (STO) 3D superlattice ceramics with 2D electron gas grain boundaries (GBs) was theoretically investigated. The grain size dependence of the power factor, lattice thermal conductivity, and ZT value were calculated by using Boltzmann transport equations. It was found that nanostructured STO ceramics with smaller grain size have larger ZT value. This is because the quantum confinement effect, energy filtering effect, and interfacial phonon scattering at GBs all become stronger with decreasing grain size, resulting in higher power factor and lower lattice thermal conductivity. These findings will aid the design of nanostructured oxide ceramics with high TE performance.

  20. The role of nano-particles in the field of thermal spray coating technology

    NASA Astrophysics Data System (ADS)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  1. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials.

    PubMed

    Fox-Rabinovich, G; Kovalev, A; Veldhuis, S; Yamamoto, K; Endrino, J L; Gershman, I S; Rashkovskiy, A; Aguirre, M H; Wainstein, D L

    2015-03-05

    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment.

  2. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials

    PubMed Central

    Fox-Rabinovich, G.; Kovalev, A.; Veldhuis, S.; Yamamoto, K.; Endrino, J. L.; Gershman, I. S.; Rashkovskiy, A.; Aguirre, M. H.; Wainstein, D. L.

    2015-01-01

    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment. PMID:25740153

  3. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  4. Synthesis and characterization of nano-sized CaCO3 in purified diet

    NASA Astrophysics Data System (ADS)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  5. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).

    PubMed

    Jin, Le; Ng, How Yong; Ong, Say Leong

    2009-01-01

    The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.

  6. Application for oxytetracycline wastewater pretreatment by Fenton iron mud based cathodic-anodic-electrolysis ceramic granular fillers.

    PubMed

    Zhang, Feilong; Yue, Qinyan; Gao, Yuan; Gao, Baoyu; Xu, Xing; Ren, Zhongfei; Jin, Yang

    2017-09-01

    In this study, Fenton iron mud applied as main raw material of cathodic-anodic-electrolysis ceramic granular fillers (ICMF) in a continuous reactor, which were used to pretreat oxytetracycline (OTC) wastewater. The ICMF was characterized by Scanning Electron Microscope and Energy Dispersive Spectrometer analysis. The effects of pH value, hydraulic retention time, OTC concentrations and aeration on removal efficiency of total organic carbon (TOC) and OTC were studied. The degradation byproducts of OTC were analyzed by UV-2450, High Performance Liquid Chromatography and Liquid Chromatography-mass Spectrometry. The SEM images showed that the surface ICMF was porous. This system had a higher stability, and good removal efficiency of TOC of 80.5% and OTC of 98.5% under the optimal conditions, which were influent pH of 3, HRT of 4 h, and anaerobic condition. After running for 60 d, the removal efficiency of TOC was stable and the ICMF did not become hardened. The reactor was back washed by acid solution (pH: 1) in 20 d approximately. This paper provides useful information for approaching in wastewater pretreatment and recycling the Fenton iron mud. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pressure-induced nano-crystallization of silicate garnets from glass

    PubMed Central

    Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.

    2016-01-01

    Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications. PMID:27924866

  8. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code.

    PubMed

    Tekin, H O; Singh, V P; Manici, T

    2017-03-01

    In the present work the effect of tungsten oxide (WO 3 ) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO 3 and micro-WO 3 into concrete sample. The mass attenuation coefficients of pure concrete and WO 3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO 3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO 3 significanlty improve shielding properties than micro-WO 3 . It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Nano-sized Ni-doped carbon aerogel for supercapacitor.

    PubMed

    Lee, Yoon Jae; Jung, Ji Chul; Park, Sunyoung; Seo, Jeong Gil; Baeck, Sung-Hyeon; Yoon, Jung Rag; Yi, Jongheop; Song, In Kyu

    2011-07-01

    Carbon aerogel was prepared by polycondensation of resorcinol with formaldehyde using sodium carbonate as a catalyst in ambient conditions. Nano-sized Ni-doped carbon aerogel was then prepared by a precipitation method in an ethanol solvent. In order to elucidate the effect of nickel content on electrochemical properties, Ni-doped carbon aerogels (21, 35, 60, and 82 wt%) were prepared and their performance for supercapacitor electrode was investigated. Electrochemical properties of Ni-doped carbon aerogel electrodes were measured by cyclic voltammetry at a scan rate of 10 mV/sec and charge/discharge test at constant current of 1 A/g in 6 M KOH electrolyte. Among the samples prepared, 35 wt% Ni-doped carbon aerogel (Ni/CA-35) showed the highest capacitance (110 F/g) and excellent charge/discharge behavior. The enhanced capacitance of Ni-doped carbon aerogel was attributed to the faradaic redox reactions of nano-sized nickel oxide. Moreover, Ni-doped carbon aerogel exhibited quite stable cyclability, indicating long-term electrochemical stability.

  10. Comparison of shear bond strengths of conventional orthodontic composite and nano-ceramic restorative composite: an in vitro study.

    PubMed

    Nagar, Namit; Vaz, Anna C

    2013-01-01

    To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X Mono(TM♦), a restorative resin with the traditional orthodontic composite Transbond XT(TM†) and to evaluate the site of bond failure using Adhesive Remnant Index. Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XT(TM†) (Group I) and Ceram-X Mono(TM♦) (Group II) according to manufacturer's protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired 't' test and Chi square test. The mean shear bond strength of Group I (Transbond XT(TM†)) was 12.89 MPa ± 2.19 and that of Group II (Ceram-X Mono(TM)) was 7.29 MPa ± 1.76. Unpaired 't' test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Ceram-X Mono(TM♦) had a lesser mean shear bond strength when compared to Transbond XT(TM†) which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X Mono(TM†) and Transbond XT(TM†) showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.

  11. Net shaped high performance oxide ceramic parts by selective laser melting

    NASA Astrophysics Data System (ADS)

    Yves-Christian, Hagedorn; Jan, Wilkes; Wilhelm, Meiners; Konrad, Wissenbach; Reinhart, Poprawe

    An additive manufacturing technique (AM) for ceramics, based on Al2O3-ZrO2 powder by means of Selective Laser Melting (SLM) is presented. Pure ceramic powder is completely melted by a laser beam yielding net-shaped specimens of almost 100% densities without any post-processing. Possible crack formation during the build-up process due to thermal stresses is prevented by a high-temperature preheating of above 1600 ∘C. Specimens with fine-grained nano-sized microstructures and flexural strengths of above 500 MPa are produced. The new technology allows for rapid freeform manufacture of complex net-shaped ceramics, thus, exploiting the outstanding mechanical and thermal properties for high-end medical and engineering disciplines.

  12. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins.

    PubMed

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson's chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P < 0.05. Results . The average grade of inflammation for the nano-hybrid on the 2nd day of implantation was 3.3. The micro-hybrid resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited

  13. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins

    PubMed Central

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson’s chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P < 0.05. Results. The average grade of inflammation for the nano-hybrid on the 2nd day of implantation was 3.3. The micro-hybrid resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited

  14. Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins

    NASA Astrophysics Data System (ADS)

    Mu, Mulan; Wan, Chaoying; McNally, Tony

    2017-12-01

    The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.

  15. Influence of nano-structured alumina coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements.

    PubMed

    Lee, Jung-Jin; Choi, Jung-Yun; Seo, Jae-Min

    2017-04-01

    The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength ( P <.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. Groups treated with the nanostructured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.

  16. Evaluation of Case Size 0603 BME Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2015-01-01

    High volumetric efficiency of commercial base metal electrode (BME) ceramic capacitors allows for a substantial reduction of weight and sizes of the parts compared to currently used military grade precious metal electrode (PME) capacitors. Insertion of BME capacitors in space applications requires a thorough analysis of their performance and reliability. In this work, six types of cases size 0603 BME capacitors from three vendors have been evaluated. Three types of multilayer ceramic capacitors (MLCCs) were designed for automotive industry and three types for general purposes. Leakage currents in the capacitors have been measured in a wide range of voltages and temperatures, and measurements of breakdown voltages (VBR) have been used to assess the proportion and severity of defects in the parts. The effect of soldering-related thermal shock stresses was evaluated by analysis of distributions of VBR for parts in 'as is' condition and after terminal solder dip testing at 350 C. Highly Accelerated Life Testing (HALT) at different temperatures was used to assess the activation energy of degradation of leakage currents and predict behavior of the parts at life test and normal operating conditions. To address issues related to rework and manual soldering, capacitors were soldered onto different substrates at different soldering conditions. The results show that contrary to a common assumption that large-size capacitors are mostly vulnerable to soldering stresses, cracking in small size capacitors does happen unless special measures are taken during assembly processes.

  17. Selective Laser Sintering of Nano Al2O3 Infused Polyamide

    PubMed Central

    Warnakula, Anthony; Singamneni, Sarat

    2017-01-01

    Nano Al2O3 polyamide composites are evaluated for processing by selective laser sintering. A thermal characterization of the polymer composite powders allowed us to establish the possible initial settings. Initial experiments are conducted to identify the most suitable combinations of process parameters. Based on the results of the initial trials, more promising ranges of different process parameters could be identified. The post sintering characterization showed evidence of sufficient inter-particle sintering and intra-layer coalescence. While the inter-particle coalescence gradually improved, the porosity levels slightly decreased with increasing laser power. The nano-filler particles tend to agglomerate around the beads along the solid tracks, possibly due to Van der Walls forces. The tensile stress results showed an almost linear increase with increasing nano-filler content. PMID:28773220

  18. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  19. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    PubMed Central

    Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136

  20. The Hyaluronic Acid Fillers: Current Understanding of the Tissue Device Interface.

    PubMed

    Greene, Jacqueline J; Sidle, Douglas M

    2015-11-01

    The article is a detailed update regarding cosmetic injectable fillers, specifically focusing on hyaluronic acid fillers. Hyaluronic acid-injectable fillers are used extensively for soft tissue volumizing and contouring. Many different hyaluronic acid-injectable fillers are available on the market and differ in terms of hyaluronic acid concentration, particle size, cross-linking density, requisite needle size, duration, stiffness, hydration, presence of lidocaine, type of cross-linking technology, and cost. Hyaluronic acid is a natural component of many soft tissues, is identical across species minimizing immunogenicity has been linked to wound healing and skin regeneration, and is currently actively being studied for tissue engineering purposes. The biomechanical and biochemical effects of HA on the local microenvironment of the injected site are key to its success as a soft tissue filler. Knowledge of the tissue-device interface will help guide the facial practitioner and lead to optimal outcomes for patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effect of grain size on optical transmittance of birefringent polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Wen, Tzu-Chien

    Polycrystalline ceramics are increasingly used for fabricating windows and domes for the mid infra-red regime (3-5 mum) due to their superior durability as compared to glass and the lower cost of their fabrication and finishing relative to single crystals without significant compromise in optical properties. Due to the noncubic structure, MgF2 and Al2O3 are birefringent ceramics. Birefringence causes scatter of light at the grain boundaries and diminishes in-line transmittance and optical performance. This dissertation presents experimental results and analyses of the grain-size and wavelength dependence of the in-line transmittance of polycrystalline MgF2 and Al2O3. Chapter 2 presents experimental results and analyses of light transmission in polycrystalline MgF2 as a function of the mean grain size at different wavelengths. The scattering coefficient of polycrystalline MgF 2 increased linearly with the mean grain size and inversely with the square of the wavelength of light. These trends are consistent with theoretical models based on both a limiting form of the Raleigh-Gans-Debye theory of particle scattering and light retardation theories that take refractive-index variations along the light path. Chapter 3 investigates the applicability of particle light scattering theories to light attenuation in birefringent polycrystalline ceramics by measuring light transmittance in a model two-phase system. The system consisted of microspheres of silica dispersed in a solution of glycerol in water. It was found that RGD theory showed the systematic deviation for higher particle volume fraction (φ > 0.2) and larger particle size (d p > 1 mum). This result suggested that light scattering models based on single particle scattering are unlikely to provide viable physical explanation for the effect of grain size on light transmittance in birefringent polycrystalline ceramics due to the high volume fraction in dense polycrystalline ceramics. Chapter 4 analyses light

  2. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samad, Ubair Abdus; Center of excellence for research in engineering materials; Khan, Rawaiz

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust freemore » environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.« less

  3. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    NASA Astrophysics Data System (ADS)

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-01

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  4. Determining efficacy of monitoring devices on ceramic bond to resin composite

    PubMed Central

    Osorio, Estrella; Aguilera, Fátima S.; Osorio, Raquel; García-Godoy, Franklin; Cabrerizo-Vilchez, Miguel A.; Toledano, Manuel

    2012-01-01

    Objectives: This paper aims to assess the effectiveness of 3D nanoroughness and 2D microroughness evaluations, by their correlation with contact angle measurements and shear bond strength test, in order to evaluate the effect of two different acids conditioning on the bonding efficacy of a leucite-based glass-ceramic to a composite resin. Study Design: Ceramic (IPS Empress) blocks were treated as follows: 1) no treatment, 2) 37% phosphoric acid (H3PO4), 15 s, 3) 9% hydrofluoric acid (HF), 5 min. Micro- and nano-roughness were assessed with a profilometer and by means of an atomic force microscopy (AFM). Water contact angle (CA) measurements were determined to assess wettability of the ceramic surfaces with the asixymetric drop shape analysis contact diameter technique. Shear bond strength (SBS) was tested to a resin composite (Z100) with three different adhesive systems (Scotchbond Multipurpose Plus, Clearfil New Bond, ProBOND). Scanning electron microscopy (SEM) images were performed. Results: Nanoroughness values assessed in 50x50 μm areas were higher for the HF group, these differences were not detected by profilometric analysis. HF treatment created the nano- roughest surfaces and the smallest CA (p<0.05), producing the highest SBS to the composite resin with all tested adhesive systems (p<0.05). No differences existed between the SBS produced by the adhesive systems evaluated with any of the surface treatments tested. Conclusions: Nano-roughness obtained in a 50x50 µm scan size areas was the most reliable data to evaluate the topographical changes produced by the different acid treatments on ceramic surfaces. Key words:Dental ceramic, acid etching, bonding efficacy, resin composite, adhesive systems, contact angle, roughness. PMID:22549693

  5. Structure and up-conversion luminescence in sol-gel derived Er 3+-Yb 3+ co-doped SiO 2:PbF 2 nano-glass-ceramics

    NASA Astrophysics Data System (ADS)

    del-Castillo, J.; Yanes, A. C.; Méndez-Ramos, J.; Tikhomirov, V. K.; Rodríguez, V. D.

    2009-11-01

    Transparent oxyfluoride nano-glass-ceramics 90(SiO 2)10(PbF 2) co-doped with 0.3 Yb 3+ and 0.1 Er 3+ (mol%) have been prepared by thermal treatment of precursor sol-gel glasses. X-ray diffraction and high resolution transmission electron microscopy analysis pointed out a precipitation of cubic β-PbF 2 nanocrystals of certain diameter in nano-glass-ceramics varying from 10 to 20 nm depending on heat treatment conditions. The incorporation of Yb 3+ and Er 3+ dopants in these nanocrystals has been confirmed by signatures of luminescence spectroscopy. Up-conversion luminescence pumped at 980 nm has been detected. Colour tuneability of up-conversion luminescence varying pump power has been analyzed in terms of standard chromaticity diagram. This tuneability opens applications for up-conversion phosphors and three-dimensional optical recording.

  6. Detection of bisphenol A using palm-size NanoAptamer analyzer.

    PubMed

    Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2017-08-15

    We have demonstrated a palm-size NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (<1ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. Modified NanoGene assay was used as the sensing mechanism where signaling DNA and QD 655 was tethered to QD 565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD 655 from the complex and hence corresponding decrease in QD 655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Transparent Oxyfluoride Nano-Glass-Ceramics Doped with Pr3+ and Pr3+-Yb3+ for NIR Emission

    NASA Astrophysics Data System (ADS)

    Gorni, Giulio; Cosci, Alessandro; Pelli, Stefano; Pascual, Laura; Durán, Alicia; Pascual, M. J.

    2016-12-01

    Pr3+-Yb3+ co-doped oxyfluoride glasses and glass-ceramics (GC) containing LaF3 nanocrystals have been prepared to obtain NIR emission of Yb3+ ions upon Pr3+ excitation in the blue region of the visible spectrum. Two different compositions have been tested 0.1-0.5 Pr-Yb and 0.5-1 Pr-Yb, in addition to Pr3+ singly doped samples. The crystallization mechanism of the nano-glass-ceramics was studied by DTA revealing that it occurs from a constant number of nuclei, the crystal growth being limited by diffusion. HR-TEM demonstrated that phase separation acts as precursor for LaF3 crystallization and a detailed analysis of the chemical composition (EDXS) revealed the enrichment in RE3+ ions inside the initial phase separated droplets, from which the LaF3 crystals are formed. The RE3+ ions incorporation inside LaF3 crystals was also proved by photoluminescence measurements showing Stark splitting of the RE3+ ions energy levels in the glass-ceramic samples. Lifetimes measurements showed the existence of a better energy transfer process between Pr3+ and Yb3+ ions in the glass-ceramics compared to the as made glass, and the highest value of energy transfer efficiency is 59% and the highest theoretical quantum efficiency is 159%, obtained for glass-ceramics GC0.1-0.5 Pr-Yb treated at 620 ºC-40 h.

  8. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    PubMed Central

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  9. The addition of nanochitosan suspension as filler in carrageenan-tapioca biocomposite film

    NASA Astrophysics Data System (ADS)

    Rochima, Emma; Fiyanih, Elisah; Afrianto, Eddy; Subhan, Ujang; Praseptiangga, Danar; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    This research aimed to investigate the effect of nanochitosan (CSNPs) suspension by beads milling method as filler in carrageenan-tapioca biocomposite film. In addition, the antibacterial activity of CSNPs as filler with two food pathogenic bacteria, Staphylococcus aureus and Escherichia coli and then influence of nano fillers for appearance of films were observed. The incorporation of CSNPs suspension with 0.5, 1, 1.5 and 2 (%v/v) in carrageenan-tapioca film exhibited antibacterial activity againts both bacteria. CSNPs had slightly higher antimicrobial activity against E. coli aureus compared to S. aureus at all concentrations due to different mechanisms. Therefore, the best antimicrobial activity was obtained from 1 wt%. Furthermore the best antimicrobial activity was characterized by means of the thickness and transparency. The result showed that the thickness of film was 0.059 mm and the transparency was 87.88. It was concluded that the incorporation of CSNPs suspension 1 wt% in carrageenan-tapioca composite film is suitable for developing active packaging.

  10. Two-Step Sintering Behavior of Sol-Gel Derived Dense and Submicron-Grained YIG Ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Ruoyuan; Zhou, Jijun; Zheng, Liang; Zheng, Hui; Zheng, Peng; Ying, Zhihua; Deng, Jiangxia

    2018-04-01

    In this work, dense and submicron-grain yttrium iron garnet (YIG, Y3Fe5O12) ceramics were fabricated by a two-step sintering (TSS) method using nano-size YIG powder prepared by a citrate sol-gel method. The densification, microstructure, magnetic properties and ferromagnetic resonance (FMR) linewidth of the ceramics were investigated. The sample prepared at 1300°C in T 1, 1225°C in T 2 and 18 h holding time has a density higher than 98% of the theoretical value and exhibits a homogeneous microstructure with fine grain size (0.975 μm). In addition, the saturation magnetization ( M S) of this sample reaches 27.18 emu/g. High density and small grain size can also achieve small FMR linewidth. Consequently, these results show that the sol-gel process combined with the TSS process can effectively suppress grain-boundary migration while maintaining active grain-boundary diffusion to obtain dense and fine-grained YIG ceramics with appropriate magnetic properties.

  11. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  12. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less

  13. Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement.

    PubMed

    Morales, Noé J; Candal, Roberto; Famá, Lucía; Goyanes, Silvia; Rubiolo, Gerardo H

    2015-08-20

    Plasticized cassava starch matrix composites reinforced by a multi-wall carbon nanotube (MWCNT)-hercynite (FeAl2O4) nanomaterial were developed. The hybrid nanomaterial consists of FeAl2O4 nanoparticles anchored strongly to the surface of the MWCNT. This nano-hybrid filler shows an irregular geometry, which provides a strong mechanical interlocking with the matrix, and excellent stability in water, ensuring a good dispersion in the starch matrix. The composite containing 0.04wt.% of the nano-hybrid filler displays increments of 370% in the Young's modulus, 138% in tensile strength and 350% in tensile toughness and a 70% decrease in water vapor permeability relative to the matrix material. All of these significant improvements are explained in terms of the nano-hybrid filler homogenous dispersion and its high affinity with both plasticizers, glycerol and water, which induces crystallization without deterioration of the tensile toughness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Study on the repeatability of manufacturing nano-silica (SiO2) reinforced composite laminates

    NASA Astrophysics Data System (ADS)

    Prince Jeya Lal, L.; Ramesh, S.; Natarajan, Elango

    2018-04-01

    Repeatability to manufacture nano-silica reinforced composite laminates with consistent mechanical properties is studied. In this study, composite laminates are manufactured by hand layup and there after mechanical properties of the laminates are evaluated under tensile and flexural loading conditions. Composite laminates are fabricated and tested under equivalent conditions. Plain weave E-Glass fabric and epoxy LY556 are used as reinforcement and matrix. Nano-silica of size 17nm is used as filler. To enhance the reliability of composite characterization, utmost care is taken to avoid defects like voids, surface defects and under-saturations. Homogeneous distribution of nano silica in matrix is analyzed using TEM study. Inconsistencies in mechanical properties are quantified by coefficient of variation. In this study, the coefficient of variation is estimated in terms of break load for tensile test is 4.45 and for flexural test is 2.27 and is well within the limits.

  15. [Study of relationship between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite powder].

    PubMed

    Chai, Feng; Xu, Ling; Liao, Yun-mao; Chao, Yong-lie

    2003-07-01

    The fabrication of all-ceramic dental restorations is challenged by ceramics' relatively low flexural strength and intrinsic poor resistance to fracture. This paper aimed at investigating the relationships between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite (Al(2)O(3)-nZrO(2)). Al(2)O(3)-nZrO(2) ceramics powder (W) was processed by combination methods of chemical co-precipitation and ball milling with addition of different powder-sized ZrO(2). Field-emission scanning electron microscopy was used to determine the particle size distribution and characterize the particle morphology of powders. The matrix compacts were made by slip-casting technique and sintered to 1,450 degrees C and flexural strength and the fracture toughness of them were measured. 1. The particle distribution of Al(2)O(3)-nZrO(2) ceramics powder ranges from 0.02 - 3.5 micro m and among them the superfine particles almost accounted for 20%. 2. The ceramic matrix samples with addition of nZrO(2) (W) showed much higher flexural strength (115.434 +/- 5.319) MPa and fracture toughness (2.04 +/- 0.10) MPa m(1/2) than those of pure Al(2)O(3) ceramics (62.763 +/- 7.220 MPa; 1.16 +/- 0.02 MPa m(1/2)). The particle size of additive ZrO(2) may impose influences on mechanical properties of Al(2)O(3)-nZrO(2) ceramics matrix. Good homogeneity and reasonable powder-size gradation of ceramic powder can improve the mechanical properties of material.

  16. Method of producing nano-scaled inorganic platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  17. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance againstmore » corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.« less

  18. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity.

    PubMed

    Peng, Dungeng; Zhang, Jinsong; Liu, Qingliang; Taylor, Ethan Will

    2007-10-01

    It has been shown that 36 nm Nano-Se has lower toxicity than selenite or selenomethionine, but these forms of selenium (Se) all possess similar ability to increase selenoenzyme levels. The size of nanoparticles plays an important role in their biological activity: as expected, 5-200 nm Nano-Se can directly scavenge free radicals in vitro in a size-dependent fashion. However, in Se-deficient cells and Se-deficient mice, the size effect of Nano-Se on increasing selenoenzymes and liver Se disappears unexpectedly. We hypothesize that under conditions of Se deficiency, the avidity of Se uptake mechanisms may be increased to maintain the biosynthesis of selenoenzymes, which are fundamental for redox homeostasis. This increased avidity may override the potential advantage of small size Nano-Se seen under Se-replete conditions, thereby eliminating the size effect. Once selenoenzymes have been saturated, Se uptake mechanisms may downregulate; accordingly, the size effect of Nano-Se can then reappear. To test this hypothesis, Se-deficient mice were administered either 36 or 90 nm Nano-Se at supranutritional doses, in both a short-term model and a single-dose model. Under these conditions, Nano-Se showed a size effect on Se accumulation and glutathione S-transferase (GST) activity. A size effect of Nano-Se was found in 15 out of 18 total comparisons between sizes at the same dose and time in the two models. Furthermore, the magnitude of the size effect was more prominent on Se accumulation than on GST activity. GST is strictly regulated by transcriptional and translational mechanisms, so its increase in activity normally does not exceed 3-fold. In contrast, the homeostasis of Se accumulation is not as tightly controlled. In the present experiments, GST activity had reached or was approaching saturation, but liver Se was far below saturation. Therefore, our results strongly suggest that the saturation profile of the tested biomarker has an impact on the size effect of Nano

  19. Synthesis of nano-sized crystalline oxide ion conducting fluorite-type Y 2O 3-doped CeO 2 using perovskite-like BaCe 0.9Y 0.1O 2.95 (BCY) and study of CO 2 capture properties of BCY

    NASA Astrophysics Data System (ADS)

    Sneha, B. R.; Thangadurai, V.

    2007-10-01

    Formation of nano-sized Y 2O 3-doped CeO 2 (YCO) was observed in the chemical reaction between proton conducting Y 2O 3-doped BaCeO 3 (BCY) and CO 2 in the temperature range 700-1000 °C, which is generally prepared by wet-chemical methods that include sol-gel, hydrothermal, polymerization, combustion, and precipitation reactions. BCY can capture CO 2 of 0.13 g per ceramic gram at 700 °C, which is comparable to that of the well-known Li 2ZrO 3 (0.15 g per ceramic gram at 600 °C). Powder X-ray diffraction (PXRD), energy dispersive X-ray analysis (EDX), laser particle size analysis (LPSA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ac impedance spectroscopy were employed to characterize the reaction product obtained from reaction between BCY and CO 2 and subsequent acid washing. PXRD study reveals presence of fluorite-like CeO 2 ( a=5.410 (1) Å) structure and BaCO 3 in reaction products. TEM investigation of the acid washed product showed the formation of nano-sized material with particle sizes of about 50 nm. The electrical conductivity of acid washed product (YCO) in air was found to be about an order higher than the undoped CeO 2 reported in the literature.

  20. The stability mechanisms of an injectable calcium phosphate ceramic suspension

    PubMed Central

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique A. V.; Weiss, Pierre

    2010-01-01

    Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of “ready to use” injectable biomaterial. But, during storage, the particles settle down. The engineering sciences have long been interested in models describing the settling (or sedimentation) of particles in viscous fluids. Our work is dedicated to the comprehension of the effect of the formulation on the stability of calcium phosphate suspension before and after steam sterilization. The rheological characterization revealed the macromolecular behavior of the suspending medium. The investigations of settling kinetics showed the influence of the BCP particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. To decrease the sedimentation process, the granule size has to be smaller and the polymer concentration has to increase. A much lower sedimentation velocity, as compared to Stokes law, is observed and interpreted in terms of interactions between the polymer network in solution and the particles. This experimentation highlights the granules spacer property of hydrophilic macromolecules that is a key issue for interconnection control, one of the better ways to improve osteoconduction and bioactivity. PMID:20229185

  1. The stability mechanisms of an injectable calcium phosphate ceramic suspension.

    PubMed

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique A V; Weiss, Pierre

    2010-06-01

    Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of "ready to use" injectable biomaterial. But, during storage, the particles settle down. The engineering sciences have long been interested in models describing the settling (or sedimentation) of particles in viscous fluids. Our work is dedicated to the comprehension of the effect of the formulation on the stability of calcium phosphate suspension before and after steam sterilization. The rheological characterization revealed the macromolecular behavior of the suspending medium. The investigations of settling kinetics showed the influence of the BCP particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. To decrease the sedimentation process, the granule size has to be smaller and the polymer concentration has to increase. A much lower sedimentation velocity, as compared to Stokes law, is observed and interpreted in terms of interactions between the polymer network in solution and the particles. This experimentation highlights the granules spacer property of hydrophilic macromolecules that is a key issue for interconnection control, one of the better ways to improve osteoconduction and bioactivity.

  2. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    PubMed

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  3. Temperature dependence of the ratio of intensities of up-conversion fluorescence bands of YVO4 and YGdVO4 crystals and lead fluoride nano glass ceramics activated with erbium ions

    NASA Astrophysics Data System (ADS)

    Varaksa, Yu. A.; Sinitsyn, G. V.; Khodasevich, M. A.; Aseev, V. A.; Kolobkova, E. V.; Yasyukevich, A. S.

    2015-01-01

    Up-conversion fluorescence spectra of YVO4 and YGdVO4 crystals and lead fluoride nano glass ceramics coactivated with erbium and ytterbium ions have been studied in the wavelength range of 520-560 nm under 967-nm pumping. The ratio of intensities of fluorescence bands in the ranges of 520-530 and 540-550 nm has been measured in the temperature range of from room temperature to 150°C. It is shown that the considered materials can be used for preparing a sensing element of optical fluorescent temperature sensors; the sensitivity of measuring the temperature of nano glass-ceramics can be close to that of crystal samples.

  4. Ceramic nanostructures and methods of fabrication

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  5. Controlling the rheological behavior of ceramic slurries and consolidated bodies: Interpenetrating networks and ion size effects

    NASA Astrophysics Data System (ADS)

    Fisher, Matthew Lyle

    Colloidal processing has been demonstrated as an effective technique for increasing the reliability of ceramic components by reducing the flaw populations in sintered bodies. The formation of long-range repulsive potentials produces a dispersed slurry which can be filtered to remove heterogeneities and truncate the flaw size distribution. When the pair potentials are changed from repulsive to weakly attractive, a short-range repulsive potential can be developed in the slurry state which prevents mass segregation, allows particles to consolidate to high volume fractions, and produces plastic consolidated bodies. Plastic behavior in saturated ceramic compacts would allow plastic shape forming technologies to be implemented on advanced ceramic powders. Two networks of different interparticle potential have been mixed to control the rheological properties of slurries and develop clay-like plasticity in consolidated bodies. The elastic modulus and yield stress of slurries were found to increase with volume fraction in a power law fashion. Consolidated bodies containing mixtures of alkylated and non-alkylated powder pack to high volume fraction and exhibit similar flow properties to clay. The mixing of aqueous networks of different pair potential can also be effective in tailoring the flow properties. The flow stress of saturated compacts has been adjusted by the addition of a second network of uncoated particles which is stabilized electrostatically. The influence of the addition of silica of various sizes on the viscosity and zeta potentials of alumina suspensions has been investigated. The adsorption of nano-silica to the surface of alumina shifts the iep. The amount of silica at which the maximum shift in zeta potential occurs is consistent with the silica required to produce the minimum viscosity. This level of silica on the surface is consistent with calculations of the amount necessary for dense random parking of silica spheres around alumina. The influence of

  6. Electrical and magnetic properties of nano-sized magnesium ferrite

    NASA Astrophysics Data System (ADS)

    T, Smitha; X, Sheena; J, Binu P.; Mohammed, E. M.

    2015-02-01

    Nano-sized magnesium ferrite was synthesized using sol-gel techniques. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. Vibration Sample Magnetometer was used to record the magnetic measurements. XRD analysis reveals the prepared sample is single phasic without any impurity. Particle size calculation shows the average crystallite size of the sample is 19nm. FTIR analysis confirmed spinel structure of the prepared samples. Magnetic measurement study shows that the sample is ferromagnetic with high degree of isotropy. Hysterisis loop was traced at temperatures 100K and 300K. DC electrical resistivity measurements show semiconducting nature of the sample.

  7. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  8. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites

    PubMed Central

    Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan

    2015-01-01

    Nano-sized TiCx/2009Al composites (with 5, 7, and 9 vol% TiCx) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiCx particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiCx particles in 2009Al as well as the tensile properties of nano-sized TiCx/2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiCx particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiCx/2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiCx/2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiCx particles and tensile properties of composites. PMID:28793749

  9. Nano-Sized Grain Refinement Using Friction Stir Processing

    DTIC Science & Technology

    2013-03-01

    friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During

  10. Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers

    NASA Astrophysics Data System (ADS)

    Zhang, Liqing; Ding, Siqi; Dong, Sufen; Li, Zhen; Ouyang, Jian; Yu, Xun; Han, Baoguo

    2017-12-01

    The use of conductive cement-based materials as sensors has attracted intense interest over past decades. In this paper, carbon nanotube (CNT)/nano carbon black (NCB) composite fillers made by electrostatic self-assembly are used to fabricate conductive cement-based materials. Electrical and piezoresistive properties of the fabricated cement-based materials are investigated. Effect of filler content, load amplitudes and rate on piezoresistive property within elastic regime and piezoresistive behaviors during compressive loading to destruction are explored. Finally, a model describing piezoresistive property of cement-based materials with CNT/NCB composite fillers is established based on the effective conductive path and tunneling effect theory. The research results demonstrate that filler content and load amplitudes have obvious effect on piezoresistive property of the composites materials, while load rate has little influence on piezoresistive property. During compressive loading to destruction, the composites also show sensitive piezoresistive property. Therefore, the cement-based composites can be used to monitor the health state of structures during their whole life. The built model can well describe the piezoresistive property of the composites during compressive loading to destruction. The good match between the model and experiment data indicates that tunneling effect actually contributes to piezoresistive phenomenon.

  11. Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites.

    PubMed

    D'Alpino, Paulo Henrique Perlatti; Svizero, Nádia da Rocha; Bim Júnior, Odair; Valduga, Claudete Justina; Graeff, Carlos Frederico de Oliveira; Sauro, Salvatore

    2016-06-01

    The aim of this study is to evaluate the distribution of the filler size along with the zeta potential, and the integrity of silane-bonded filler surface in different types of restorative dental composites as a function of the material age condition. Filtek P60 (hybrid composite), Filtek Z250 (small-particle filled composite), Filtek Z350XT (nanofilled composite), and Filtek Silorane (silorane composite) (3M ESPE) were tested at different stage condition (i.e., fresh/new, aged, and expired). Composites were submitted to an accelerated aging protocol (Arrhenius model). Specimens were obtained by first diluting each composite specimen in ethanol and then dispersed in potassium chloride solution (0.001 mol%). Composite fillers were characterized for their zeta potential, mean particle size, size distribution, via poly-dispersion dynamic light scattering. The integrity of the silane-bonded surface of the fillers was characterized by FTIR. The material age influenced significantly the outcomes; Zeta potential, filler characteristics, and silane integrity varied both after aging and expiration. Silorane presented the broadest filler distribution and lowest zeta potential. Nanofilled and silorane composites exhibited decreased peak intensities in the FTIR analysis, indicating a deficiency of the silane integrity after aging or expiry time. Regardless to the material condition, the hybrid and the small-particle-filled composites were more stable overtime as no significant alteration in filler size distribution, diameter, and zeta potential occurred. A deficiency in the silane integrity in the nanofilled and silorane composites seems to be affected by the material stage condition. The materials conditions tested in this study influenced the filler size distribution, the zeta potential, and integrity of the silane adsorbed on fillers in the nanofilled and silorane composites. Thus, this may result in a decrease of the clinical performance of aforementioned composites, in

  12. Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers

    NASA Astrophysics Data System (ADS)

    Kaptay, G.; Janczak-Rusch, J.; Jeurgens, L. P. H.

    2016-08-01

    Successful brazing using Cu-based nanostructured brazing fillers at temperatures much below the bulk melting temperature of Cu was recently demonstrated (Lehmert et al. in, Mater Trans 56:1015-1018, 2015). The Cu-based nano-fillers are composed of alternating nanolayers of Cu and a permeable, non-wetted AlN barrier. In this study, a thermodynamic model is derived to estimate the melting point depression (MPD) in such Cu/AlN nano-multilayers (NMLs) as function of the Cu nanolayer thickness. Depending on the melting route, the model predicts a MPD range of 238-609 K for Cu10nm/AlN10nm NMLs, which suggests a heterogeneous pre-melting temperature range of 750-1147 K (476-874 °C), which is consistent with experimental observations. As suggested by basic kinetic considerations, the observed Cu outflow to the NML surface at the temperatures of 723-1023 K (450-750 °C) can also be partially rationalized by fast solid-state diffusion of Cu along internal interfaces, especially for the higher temperatures.

  13. New Manufacturing Method for Paper Filler and Fiber Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doelle, Klaus

    2011-06-26

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections and it is important to understand the effect that different types of calcium carbonates have on the paper properties made of 100% eucalyptus pulp.more » The current study is focused on selecting the most suitable market available calcium carbonate for the production of uncoated Eucalyptus digital printing paper, targeting a potential filler increase of 5% above the currently used filler content. We made hand sheets using 13 different varieties of widely used calcium carbonates [Nine samples of PCC (two rhombic and seven scalenohedral, covering a wide particle size range from 1.2 {micro}m to 2.9 {micro}m), and four samples of GCC (three anionic and one cationic, with a particle size range from 0.7 {micro}m to 1.5 {micro}m)] available in the market followed by a 12” pilot plant paper machine run. The detailed analysis on the main structural, optical and strength properties of the hand sheets found that the most suitable calcium carbonate for uncoated Eucalyptus digital printing paper production is scalenohedral PCC, with a particle size of 1.9 {micro}m for its positive effects on thickness, stiffness, brightness and opacity of paper.« less

  14. Dielectric properties of inorganic fillers filled epoxy thin film

    NASA Astrophysics Data System (ADS)

    Norshamira, A.; Mariatti, M.

    2015-07-01

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe2O3) and Titanium Dioxide (TiO2) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types of fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.

  15. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties.

    PubMed

    Randolph, Luc D; Palin, William M; Leloup, Gaëtane; Leprince, Julian G

    2016-12-01

    The mechanical properties of dental resin-based composites (RBCs) are highly dependent on filler characteristics (size, content, geometry, composition). Most current commercial materials are marketed as "nanohybrids" (i.e. filler size <1μm). In the present study, filler characteristics of a selection of RBCs were described, aiming at identifying correlations with physico-mechanical properties and testing the relevance of the current classification. Micron/sub-micron particles (> or <500nm) were isolated from 17 commercial RBCs and analyzed by laser diffractrometry and/or electron microscopy. Filler and silane content were evaluated by thermogravimetric analysis and a sedimentation technique. The flexural modulus (E flex ) and strength (σ flex ) and micro-hardness were determined by three-point bending or with a Vickers indenter, respectively. Sorption was also determined. All experiments were carried out after one week of incubation in water or 75/25 ethanol/water. Average size for micron-sized fillers was almost always higher than 1μm. Ranges for mechanical properties were: 3.7filler contents (>75wt%) were associated with the highest mechanical properties (E flex and σ flex >12GPa and 130MPa, respectively) and lowest solvent sorption (∼0.3%). Mechanical properties and filler characteristics significantly vary among modern RBCs and the current classification does not accurately illustrate either. Further, the chemical stability of RBCs differed, highlighting differences in resin and silane composition. Since E flex and sorption were well correlated to the filler content, a simple and unambiguous classification based on such characteristic is suggested, with three levels (ultra-low fill, low-fill and compact resin composites). Copyright © 2016 The Academy of Dental Materials. All

  16. Investigation of nano-CeO2 contents on the properties of polymer ceramic separator for high voltage lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Luo, Xueyi; Liao, Youhao; Zhu, Yunmin; Li, Minsui; Chen, Fangbing; Huang, Qiming; Li, Weishan

    2017-04-01

    Currently, the suitable proportion of inorganic particles in the ceramic separator has not been reported yet, due to the contradictory about the content of nano-particles in research papers (10 wt.%) and commercial application (large amount) [1,2]. In this paper, the nano-CeO2 contents on the properties of polyethylene (PE)-supported separator coating with poly (methyl methacrylate-butyl acrylate-acrylonitrile-styrene) (P(MMA-BA-AN-St)) copolymer is investigated systematically used in high voltage batteries for the first time. Since the copolymer contributes to high electrolyte uptake, and nano-CeO2 dedicates dimensional stability, the separator with 10 wt.% nano-CeO2 shows the highest ionic conductivity (2.5 × 10-3 S cm-1) at room temperature and the maximal electrolyte uptake (81.0 g m-2), while the separator with 100 wt.% nano-CeO2 exhibits better mechanical strength (52 MPa) and smaller shrinkage percentage (36%). Successively, cyclic performance of Li/LiNi0.5Mn1.5O4 cells indicates that the capacity retention of the cell using separator with 100 wt.% nano-CeO2 (72%) is second only to that with 10 wt.% nano-CeO2 (74%) after 200 cycles at 0.2 C between 3 V and 5 V, far larger than that without doping nano-CeO2 (51%) and PE (40%). By the consideration both of comprehensive performances and economic cost, 100 wt.% content is regarded as the most suitable appending proportion.

  17. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites.

    PubMed

    Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan

    2015-12-17

    Nano-sized TiC x /2009Al composites (with 5, 7, and 9 vol% TiC x ) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiC x particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiC x particles in 2009Al as well as the tensile properties of nano-sized TiC x /2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiC x particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiC x /2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiC x /2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiC x particles and tensile properties of composites.

  18. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

    PubMed

    Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin

    2015-11-01

    The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.

  19. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive.

    PubMed

    Peters, Ruud; Kramer, Evelien; Oomen, Agnes G; Rivera, Zahira E Herrera; Oegema, Gerlof; Tromp, Peter C; Fokkink, Remco; Rietveld, Anton; Marvin, Hans J P; Weigel, Stefan; Peijnenburg, Ad A C M; Bouwmeester, Hans

    2012-03-27

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products subjected to in vitro digestion included (i) hot water, (ii) coffee with powdered creamer, (iii) instant soup, and (iv) pancake which either contained silica as the food additive E551, or to which a form of synthetic amorphous silica or 32 nm SiO(2) particles were added. The results showed that, in the mouth stage of the digestion, nano-sized silica particles with a size range of 5-50 and 50-500 nm were present in food products containing E551 or added synthetic amorphous silica. However, during the successive gastric digestion stage, this nano-sized silica was no longer present for the food matrices coffee and instant soup, while low amounts were found for pancakes. Additional experiments showed that the absence of nano-sized silica in the gastric stage can be contributed to an effect of low pH combined with high electrolyte concentrations in the gastric digestion stage. Large silica agglomerates are formed under these conditions as determined by DLS and SEM experiments and explained theoretically by the extended DLVO theory. Importantly, in the subsequent intestinal digestion stage, the nano-sized silica particles reappeared again, even in amounts higher than in the saliva (mouth) digestion stage. These findings suggest that, upon consumption of foods containing E551, the gut epithelium is most likely exposed to nano-sized silica. © 2012 American Chemical Society

  20. Properties of forced convection experimental with silicon carbide based nano-fluids

    NASA Astrophysics Data System (ADS)

    Soanker, Abhinay

    With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano

  1. Organic filler from golden apple snails shells to improve the silicone rubber insulator properties

    NASA Astrophysics Data System (ADS)

    Tepsila, Sujirat; Suksri, Amnart

    2018-02-01

    This paper investigates the effect of an addition of filler compound using golden apple snail shell as an organic filler to the silicone rubber insulator. The filler obtained from golden apple snail shell is found mostly contained calcium carbonate. The organic calcium carbonate (CaCO3) with particle size of 45, 75, 100 and 300 micron were prepared. Sample of silicone rubber that were filled with fillers were tested under ASTM D638-02a type standard for mechanical test. Also, electrical test such as I-V characteristics (ASTM D257-07) and dry arc test according to ASTM D495-14 have been performed. The results revealed that using larger particle size of organic filler obtained from the golden apple snail shell resulted to higher value of dielectric constant as well as higher dielectric strength. Also, the filler helps slow down the tracking activity at an insulator surface due to its crystals of calcium carbonate. However, when using excessive amount of filler, the sample will have a drawbacks in mechanical properties. By using agriculture waste as a filler compound, one can reduced the usage of commercial CaCO3 as an inorganic materials and to lower the investment cost to a final silicone rubber product.

  2. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice.

    PubMed

    Zhang, Jinsong; Wang, Huali; Bao, Yongping; Zhang, Lide

    2004-05-28

    We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice.

  3. Calculating permittivity of semi-conductor fillers in composites based on simplified effective medium approximation models

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Wu, Qin; Hu, Jianbing; Xu, Zhichao; Peng, Cheng; Xia, Zexu

    2018-03-01

    Interface induced polarization has a significant impact on permittivity of 0–3 type polymer composites with Si based semi-conducting fillers. Polarity of Si based filler, polarity of polymer matrix and grain size of filler are closely connected with induced polarization and permittivity of composites. However, unlike 2–2 type composites, the real permittivity of Si based fillers in 0–3 type composites could be not directly measured. Therefore, achieving the theoretical permittivity of fillers in 0–3 composites through effective medium approximation (EMA) models should be very necessary. In this work, the real permittivity results of Si based semi-conducting fillers in ten different 0–3 polymer composite systems were calculated by linear fitting of simplified EMA models, based on particularity of reported parameters in those composites. The results further confirmed the proposed interface induced polarization. The results further verified significant influences of filler polarity, polymer polarity and filler size on induced polarization and permittivity of composites as well. High self-consistency was gained between present modelling and prior measuring. This work might offer a facile and effective route to achieve the difficultly measured dielectric performances of discrete filler phase in some special polymer based composite systems.

  4. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  5. Dielectric properties of inorganic fillers filled epoxy thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norshamira, A., E-mail: myra.arshad@gmail.com; Mariatti, M., E-mail: mariatti@usm.my

    2015-07-22

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe{sub 2}O{sub 3}) and Titanium Dioxide (TiO{sub 2}) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types ofmore » fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.« less

  6. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    PubMed

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  7. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement.

    PubMed

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC(®) Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink(®) II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus(®) (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Combination of CEREC(®) Blocs PC and Variolink(®) II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Variolink(®) II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used.

  8. A regression analysis of filler particle content to predict composite wear.

    PubMed

    Jaarda, M J; Wang, R F; Lang, B R

    1997-01-01

    It has been hypothesized that composite wear is correlated to filler particle content. There is a paucity of research to substantiate this theory despite numerous projects evaluating the correlation. The purpose of this study was to determine whether a linear relationship existed between composite wear and filler particle content of 12 composites. In vivo wear data had been previously collected for the 12 composites and served as basis for this study. Scanning electron microscopy and backscatter electron imaging were combined with digital imaging analysis to develop "profile maps" of the filler particle composition of the composites. These profile maps included eight parameters: (1) total number of filler particles/28742.6 microns2, (2) percent of area occupied by all of the filler particles, (3) mean filler particle size, (4) percent of area occupied by the matrix, (5) percent of area occupied by filler particles, r (radius) 1.0 < or = micron, (6) percent of area occupied by filler particles, r = 1.0 < or = 4.5 microns, (7) percent of area occupied by filler particles, r = 4.5 < or = 10 microns, and (8) percent of area occupied by filler particles, r > 10 microns. Forward stepwise regression analyses were used with composite wear as the dependent variable and the eight parameters as independent variables. The results revealed a linear relationship between composite wear and the filler particle content. A mathematical formula was developed to predict composite wear.

  9. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    NASA Astrophysics Data System (ADS)

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  10. Arcjet Tests of Different Gap-Filler Options for the Orion PICA Heatshield

    NASA Technical Reports Server (NTRS)

    Skokova, Kristina; Ellerby, Donald; Blosser, Max; Venkatapathy, Ethiraj; Bouslog, Stan; Reuther, James

    2009-01-01

    PICA (Phenolic Infiltrated Carbon Ablator) is one of the candidate thermal protection materials for the Orion vehicle. Because PICA is fabricated in blocks, gaps exist between the blocks, similar to the individual ceramic tiles of the Shuttle thermal protection system. The results of this work focus on arcjet test results of different gap-filler options for PICA, performed as part of the Orion TPS Advanced Development Project. The arcjet tests were performed at NASA Ames Research Center on stagnation models 4 inches in diameter at conditions representative of Orion flight conditions for both Lunar and Low Earth Orbit return. Performance of gap-filler options was evaluated based on the extent of backface temperature change, as compared to PICA without gaps, and on the extent of flow penetration into the gap, evident from the gap opening and widening.

  11. Interaction of multiferroic properties and interfaces in hexagonal LuMnO3 ceramics

    NASA Astrophysics Data System (ADS)

    Baghizadeh, A.; Vieira, J. M.; Stroppa, D. G.; Mirzadeh Vaghefi, P.; Graça, M. P.; Amaral, J. S.; Willinger, M.-G.; Amaral, V. S.

    2017-02-01

    A study on the underlying interaction mechanisms between lattice constants, magnetic and dielectric properties with inhomogeneities or internal interfaces in hexagonal, off-stoichiometric LuMnO3 oxide is presented. By increasing Mn content the a-axis constant and volume of the unit cell, the antiferromagnetic (AFM) Néel temperature, T N, and frustration factor of the frustrated Mn3+ trimmers in basal plane show decreasing trends. It was found that increasing the annealing time improves the properties of the lattices and progressively eliminates secondary phases for compositions within the solid solution stability limits. A magnetic contribution below T N is observed for all samples. Two regimes of magnetization below and above 45 K were observed in the AFM state. The magnetic contribution below T N is assigned to either the secondary phase or internal interfaces like ferroelectric (FE) domain walls. Magneto-dielectric coupling at T N is preserved in off-stoichiometric ceramics. The presence of a low temperature anomaly of the dielectric constant is correlated to the composition of the solid solution in off-stoichiometric ceramics. Large FE domains are observed in piezoresponse force microscopy (PFM) images of doped and un-doped ceramics, whereas atomic structure analysis indicates the parallel formation of nano-sized FE domains. A combination of measured properties and microscopy images of micron- and nano-sized domains ascertain the role of lattice distortion and stability of solid solution on multiferroic properties.

  12. Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes.

    PubMed

    Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji

    2014-01-01

    In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.

  13. Crosslinked hyaluronic acid dermal fillers: a comparison of rheological properties.

    PubMed

    Falcone, Samuel J; Berg, Richard A

    2008-10-01

    Temporary dermal fillers composed of crosslinked hyaluronic acid (XLHA) are space filling gels that are readily available in the United States and Europe. Several families of dermal fillers based on XLHA are now available and here we compare the physical and rheological properties of these fillers to the clinical effectiveness. The XLHA fillers are prepared with different crosslinkers, using HA isolated from different sources, have different particle sizes, and differ substantially in rheological properties. For these fillers, the magnitude of the complex viscosity, |eta*|, varies by a factor of 20, the magnitude of the complex rigidity modulus, |G*|, and the magnitude of the complex compliance, |J*| vary by a factor of 10, the percent elasticity varies from 58% to 89.9%, and the tan delta varies from 0.11 to 0.70. The available clinical data cannot be correlated with either the oscillatory dynamic or steady flow rotational rheological properties of the various fillers. However, the clinical data appear to correlate strongly with the total concentration of XLHA in the products and to a lesser extent with percent elasticity. Hence, our data suggest the following correlation: dermal filler persistence = [polymer] x [% elasticity] and the clinical persistence of a dermal filler composed of XLHA is dominated by the mass and elasticity of the material implanted. This work predicts that the development of future XLHA dermal filler formulations should focus on increasing the polymer concentration and elasticity to improve the clinical persistence.

  14. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    PubMed

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu

    2015-04-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results.

  16. Electromagnetic interference shielding performance of nano-layered Ti3SiC2 ceramics at high-temperatures

    NASA Astrophysics Data System (ADS)

    Li, Sigong; Tan, Yongqiang; Xue, Jiaxiang; Liu, Tong; Zhou, Xiaosong; Zhang, Haibin

    2018-01-01

    The X-band electromagnetic interference (EMI) shielding properties of nano-layered Ti3SiC2 ceramics were evaluated from room temperature up to 800°C in order to explore the feasibility of Ti3SiC2 as efficient high temperature EMI shielding material. It was found that Ti3SiC2 exhibits satisfactory EMI shielding effectiveness (SE) close to 30 dB at room temperature and the EMI SE shows good temperature stability. The remarkable EMI shielding properties of Ti3SiC2 can be mainly attributed to high electrical conductivity, high dielectric loss and more importantly the multiple reflections due to the layered structure.

  17. Electrochemical method of producing nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  18. On the Size Dependence of Molar and Specific Properties of Independent Nano-phases and Those in Contact with Other Phases

    NASA Astrophysics Data System (ADS)

    Kaptay, George

    2018-05-01

    Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.

  19. Modification of the epoxy binder for glass and basalt rebar. Mechanical test results

    NASA Astrophysics Data System (ADS)

    Brusentseva, T. A.

    2017-10-01

    The paper presents the results of experimental studies on the modification of the epoxy binder LE-828 for the manufacture of glass and basalt rebar. The nano-size silica powder is used as a filler. The filler mass content ranged from 0% to 2%. It is shown that the nano-disperse filler introduced in the binder leads to the increasing breaking stress and tensile strength by 33% and 34%, respectively; the failure strain increased by 39% at the filler mass content of 0.6%.

  20. Effect of drying environment on grain size of titanium dioxide nano-powder synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Zandi, Pegah; Hosseini, Elham; Rashchi, Fereshteh

    2018-01-01

    Titanium dioxide Nano powder has been synthesized from titanium isopropoxide (TTIP) in chloride media by sol-gel method. In this research, the effect of the drying environment, from air to oven drying at 100 °C, calcination time and temperature on nano TiO2 grain size was investigated. The synthesized powder was analyzed by x-ray diffraction and scanning electron microscope. Based on the results, the powder has been crystallized in anatase and rutile phases, due to different calcination temperatures. At temperatures above 600 °C, the Titanium dioxide nano powder has been crystallized as rutile. The crystalline structure of titanium dioxide nano powder changed because of the different calcination temperatures and time applied. The average particle size of the powder dried in air was larger than the powder dried in oven. The minimum particle size of the powder dried in air was 50 nm and in the oven was 9 nm, observed and calculated Williamson-Hall equation. All in all, with overall increasing of calcination time and temperature the grain size increased. Moreover, in the case of temperature, after a certain temperature, the grain size became constant and didn't change significantly.

  1. The effect of nano-structured alumina coating on resin-bond strength to zirconia ceramics.

    PubMed

    Jevnikar, Peter; Krnel, Kristoffer; Kocjan, Andraz; Funduk, Nenad; Kosmac, Tomaz

    2010-07-01

    The aim of this study was to functionalize the surface of yttria partially stabilized tetragonal zirconia ceramics (Y-TZP) with a nano-structured alumina coating to improve resin bonding. A total of 120 densely sintered disc-shaped specimens (15.5+/-0.03 mm in diameter and 2.6+/-0.03 mm thick) were produced from biomedical-grade TZ-3YB-E zirconia powder (Tosoh, Tokyo, Japan), randomly divided into three groups of 40 and subjected to the following surface treatments: AS - as-sintered; APA - airborne-particle abraded; POL - polished. Half of the discs in each group received an alumina coating that was fabricated by exploiting the hydrolysis of aluminium nitride (AlN) powder (groups AS-C, APA-C, POL-C). The coating was characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The shear-bond strength of the self-etching composite resin (RelyX Unicem, 3M ESPE, USA) was then studied for the coated and uncoated surfaces of the as-sintered, polished and airborne-particle abraded specimens before and after thermocycling (TC). The SEM/TEM analyses revealed that the application of an alumina coating to Y-TZP ceramics created a highly retentive surface for resin penetration. The coating showed good surface coverage and a uniform thickness of 240 nm. The resin-bond strength to the groups AS-C, APA-C, POL-C was significantly higher than to the groups AS, APA and POL, both before and after TC (p< or =0.05). During TC all the specimens in the POL and AS groups debonded spontaneously. In contrast, the TC did not affect the bond strength of the AS-C, POL-C and APA-C groups. A non-invasive method has been developed that significantly improves resin-bond strength to Y-TZP ceramics. After surface functionalization the bond survives thermocycling without reduction in strength. The method is relatively simple and has the potential to become an effective conditioning method for zirconia ceramics. Copyright 2010

  2. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics.

    PubMed

    Hu, Jianzhong; Zhou, Yongchun; Huang, Lihua; Liu, Jun; Lu, Hongbin

    2014-04-01

    Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50-200 nm and diameters from ~15-30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more suitable for applications in bone tissue

  3. Fabrication and properties of Eu:Lu2O3 transparent ceramics for X-ray radiation detectors

    NASA Astrophysics Data System (ADS)

    Xie, Weifeng; Wang, Jing; Cao, Maoqing; Hu, Zewang; Feng, Yagang; Chen, Xiaopu; Jiang, Nan; Dai, Jiawei; Shi, Yun; Babin, Vladimir; Mihóková, Eva; Nikl, Martin; Li, Jiang

    2018-06-01

    Europium-doped lutetium oxide (Eu:Lu2O3) nano-powders were synthesized by a co-precipitation method from europium and lutetium nitrates using ammonium hydrogen carbonate (AHC) as the precipitant. Fine and low-agglomerated powders with average particle size of 68 nm were obtained by calcining the precursor at 1100 °C for 4 h. Using this powder as starting material, Eu:Lu2O3 transparent ceramics with the average grain size of ∼46 μm were fabricated by vacuum sintering at 1650 °C for 30 h, whose in-line transmittance reaches 66.3% at 611 nm. The influences of air annealing on optical transmittance, decay time, spectroscopic properties, light output and thermally stimulated luminescence of Eu:Lu2O3 ceramics were investigated in detail. Based on radioluminescence spectra, the light output of the annealed Eu:Lu2O3 ceramics is 10 times higher than that of the commercially available BGO single crystal, and it indicates that transparent Eu:Lu2O3 scintillation ceramics is a promising candidate for X-ray radiation detectors.

  4. Solid-state synthesis of nano-sized Ba(Ti1- x Sn x )O3 powders and dielectric properties of corresponding ceramics

    NASA Astrophysics Data System (ADS)

    Ansaree, Md. Jawed; Kumar, Upendra; Upadhyay, Shail

    2017-06-01

    Powders of a few compositions of solid solution BaTi1- x Sn x O3 ( x = 0.0, 0.1, 0.2, 0.3 and 0.40) have been synthesized at 800 °C for 8 h using Ba(NO3)2, TiO2 and SnCl4·5H2O as starting materials. The thermogravimetric (TG) and differential scanning calorimetric (DSC) analysis of mixture in the stoichiometric proportion for sample BaTi0.80Sn0.20O3 have been carried out to understand the formation of solid solutions. Single-phase pure compounds (except x = 0.40) of the samples have been obtained at a lower calcination temperature (800 °C) than that of those reported in the literature for traditional solid-state synthesis making use of oxides and or carbonates as starting material (≥1200 °C). Tetragonal symmetry for compositions x = 0.0 and 0.10, cubic for x = 0.2 and 0.30 were found by X-ray diffraction (XRD) analysis. The transmission electron microscopic (TEM) analysis confirmed that calcined powders have a particle size between 30 and 50 nm. Ceramics of these powders were prepared by sintering at 1350 °C for 4 h. Properties of ceramics obtained in this work have been compared with properties reported in the literature.

  5. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems.

    PubMed

    Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao

    2017-07-01

    The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.

  6. Influence of different fillers on the properties of an experimental vinyl polysiloxane.

    PubMed

    Meincke, Débora Könzgen; Ogliari, Aline de Oliveira; Ogliari, Fabrício Aulo

    2016-01-01

    The aim of the study was to evaluate the effect of the incorporation of different fillers on an experimental vinyl polysiloxane (VPS) at two different concentrations, 20% and 40%. Different fillers were added to an experimental VPS. The study was developed in two stages: (i) incorporation of fillers in different concentrations: (a) 20 wt% fillers, and (b) 40 wt%. The fillers were added to experimental VPS and mixed with a speed mixer; (ii) characterization of experimental VPS; after the base paste and catalyst paste were mixed, the experimental VPS was used to make specimens specifically for each test, which were stored at 23°C for 24 hours. The tests were designed according to the specific standardization for the analysis of tensile strength, detail reproduction, Shore A hardness, and elastic recovery. For analysis of filler size pattern, scanning electron microscopy at 1500× magnification was used. The aerosil OX-50 40% (AE), and pure aluminum hydroxide 40% (PAH) groups presented the highest tensile strength and Shore A hardness values. However, those were the only groups that did not present continuous detail reproduction of an intersection of 20 μm line. The elastic recovery was not statistically significant. The undesirable characteristics of VPS (lowest Shore A hardness and tensile strength) were observed when it was added to the composition of acrylic polymer (AP) and fiberglass (FG) in both concentrations, 20% and 40%. In groups AE and PAH, agglomerates of nanofillers were shown in SEM micrography, while the other groups presented different shapes and fillers sizes.

  7. Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains

    NASA Astrophysics Data System (ADS)

    Yang, Daeyeol; Kang, Soo-Bin; Lim, Ji-Ho; Yoon, Songhyeon; Ryu, Jungho; Choi, Jong-Jin; Velayutham, Thamil Selvi; Kim, Hyungsun; Jeong, Dae-Yong

    2017-09-01

    We studied the temperature stable high-energy storage capacitors. Sr0.5Ba0.5Nb2O6 (SBN) is the lead-free ferroelectric solid solution between BaNb2O6 and SrNb2O6. By doping Dy into SBN, the Curie temperature was lowered and dielectric constant was increased. To improve the breakdown behavior of Dy-doped SBN, the aerosoldeposition(AD) was applied to fabricate the dense films with nano-sized grains. These nano-grain give a large number of grain boundaries, suppressing the electron conduction in ceramics. The dielectric constant and breakdown electric field of the AD films annealed at 650 °C were measured as 2307 and 9.9 MV/m, while bulk were 1080 and 4 MV/m. Energy density and efficiency of the AD films annealed at 650 °C were also enhanced as 0.65 J/cc and 90.2% and bulk were 0.08 J/cc and 72.1%, respectively. In addition, the dielectric constant of AD film annealed at 550 °C and 650 °C were quite stable up to 150 °C.

  8. Filler features and their effects on wear and degree of conversion of particulate dental resin composites.

    PubMed

    Turssi, C P; Ferracane, J L; Vogel, K

    2005-08-01

    Based on the incomplete understanding on how filler features influence the wear resistance and monomer conversion of resin composites, this study sought to evaluate whether materials containing different shapes and combinations of size of filler particles would perform similarly in terms of three-body abrasion and degree of conversion. Twelve experimental monomodal, bimodal or trimodal composites containing either spherical or irregular shaped fillers ranging from 100 to 1500 nm were examined. Wear testings were conducted in the OHSU wear machine (n = 6) and quantified after 10(5) cycles using a profilometer. Degree of conversion (DC) was measured by FTIR spectrometry at the surface of the composites (n = 6). Data sets were analyzed using one-way Anova and Tukey's test at a significance level of 0.05. Filler size and geometry was found to have a significant effect on wear resistance and DC of composites. At specific sizes and combinations, the presence of small filler particles, either spherical or irregular, may aid in enhancing the wear resistance of composites, without compromising the percentage of reacted carbon double bonds.

  9. Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.

    Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less

  10. Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations

    DOE PAGES

    Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.; ...

    2016-08-29

    Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less

  11. Membrane fouling by extracellular polymeric substances after ozone pre-treatment: Variation of nano-particles size.

    PubMed

    Yu, Wenzheng; Zhang, Dizhong; Graham, Nigel J D

    2017-09-01

    The application of ozone pre-treatment for ultrafiltration (UF) in drinking water treatment has been studied for more than 10 years, but its performance in mitigating or exacerbating membrane fouling has been inconclusive, and sometimes contradictory. To help explain this, our study considers the significance of the influent organic matter and its interaction with ozone on membrane fouling, using solutions of two representative types of extracellular polymeric substances (EPS), alginate and bovine serum albumin (BSA), and samples of surface water. The results show that at typical ozone doses there is no measurable mineralization of alginate and BSA, but substantial changes in their structure and an increase in the size of nano-particle aggregates (micro-flocculation). The impact of ozonation on membrane fouling, as indicated by the membrane flux, was markedly different for the two types of EPS and found to be related to the size of the nano-particle aggregates formed in comparison with the UF pore size. Thus, for BSA, ozonation created aggregate sizes similar to the UF pore size (100 k Dalton) which led to an increase in fouling. In contrast, ozonation of alginate created the nano-particle aggregates greater than the UF pore size, giving reduced membrane fouling/greater flux. For solutions containing a mixture of the two species of EPS the overall impact of ozonation on UF performance depends on the relative proportion of each, and the ozone dose, and the variable behaviour has been demonstrated by the surface water. These results provide new information about the role of nano-particle aggregate size in explaining the reported ambiguity over the benefits of applying ozone as pre-treatment for ultrafiltration. Copyright © 2017. Published by Elsevier Ltd.

  12. Electrochemical Nanoparticle Sizing Via Nano-Impacts: How Large a Nanoparticle Can be Measured?

    PubMed Central

    Bartlett, Thomas R; Sokolov, Stanislav V; Compton, Richard G

    2015-01-01

    The field of nanoparticle (NP) sizing encompasses a wide array of techniques, with electron microscopy and dynamic light scattering (DLS) having become the established methods for NP quantification; however, these techniques are not always applicable. A new and rapidly developing method that addresses the limitations of these techniques is the electrochemical detection of NPs in solution. The ‘nano-impacts’ technique is an excellent and qualitative in situ method for nanoparticle characterization. Two complementary studies on silver and silver bromide nanoparticles (NPs) were used to assess the large radius limit of the nano-impact method for NP sizing. Noting that by definition a NP cannot be larger than 100 nm in diameter, we have shown that the method quantitatively sizes at the largest limit, the lower limit having been previously reported as ∼6 nm.1 PMID:26491639

  13. Aluminium surface treatment with ceramic phases using diode laser

    NASA Astrophysics Data System (ADS)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  14. Oxidation resistant filler metals for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  15. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanningmore » Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.« less

  16. Effect of size on bulk and surface cohesion energy of metallic nano-particles

    NASA Astrophysics Data System (ADS)

    Yaghmaee, M. S.; Shokri, B.

    2007-04-01

    The knowledge of nano-material properties not only helps us to understand the extreme behaviour of small-scale materials better (expected to be different from what we observe from their bulk value) but also helps us to analyse and design new advanced functionalized materials through different nano technologies. Among these fundamental properties, the cohesion (binding) energy mainly describes most behaviours of materials in different environments. In this work, we discuss this fundamental property through a nano-thermodynamical approach using two algorithms, where in the first approach the size dependence of the inner (bulk) cohesion energy is studied, and in the second approach the surface cohesion energy is considered too. The results, which are presented through a computational demonstration (for four different metals: Al, Ga, W and Ag), can be compared with some experimental values for W metallic nano-particles.

  17. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendra Bordia

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-firedmore » environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  18. Nano-sized, quaternary titanium(IV) metal-organic frameworks with multidentate ligands.

    PubMed

    Baranwal, Balram Prasad; Singh, Alok Kumar

    2010-12-01

    Some mononuclear nano-sized, quaternary titanium(IV) complexes having the general formula [Ti(acac)(OOCR)2(SB)] (where Hacac=acetylacetone, R=C15H31 or C17H35, HSB=Schiff bases) have been synthesized using different multidentate ligands. These were characterized by elemental analyses, molecular weight determinations and spectral (FTIR, 1H NMR and powder XRD) studies. Conductance measurement indicated their non-conducting nature which may behave like insulators. Structural parameters like the values of limiting indices h, k, l, cell constants a, b, c, angles α, β, γ and particle size are calculated from powder XRD data for complex 1 which indicated nano-sized triclinic system in them. Bidentate chelating nature of acetylacetone, carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. On the basis of physico-chemical studies, coordination number 8 was assigned for titanium(IV) in the complexes. Transmission electron microscopy (TEM) and the selected area electron diffraction (SAED) studies indicated spherical particles with poor crystallinity. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. A hybrid phenomenological model for ferroelectroelastic ceramics. Part II: Morphotropic PZT ceramics

    NASA Astrophysics Data System (ADS)

    Stark, S.; Neumeister, P.; Balke, H.

    2016-10-01

    In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.

  20. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  1. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review

    PubMed Central

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.

    2012-01-01

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849

  2. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    PubMed

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Zhao, L.; Kopp, N.; Samadian Anavar, S.

    2014-03-01

    Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.

  4. The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance

    NASA Astrophysics Data System (ADS)

    Clausen, Carol A.; Kartal, S. Nami; Arango, Rachel A.; Green, Frederick

    2011-06-01

    Historically most residential wood preservatives were aqueous soluble metal formulations, but recently metals ground to submicron size and dispersed in water to give particulate formulations have gained importance. In this study, the specific role nano-zinc oxide (ZnO) particle size and leach resistance plays in termite mortality resulting from exposure to particulate ZnO-treated wood was investigated. Southern yellow pine (SYP) sapwood impregnated with three concentrations of two particle sizes (30 and 70 nm) of ZnO were compared to wood treated with soluble zinc sulphate (ZnSO4) preservative for leach resistance and termite resistance. Less than four percent leached from the particulate nano-ZnO-treated specimens, while 13 to 25% of the zinc sulphate leached from the soluble treated wood. Nano-ZnO was essentially non-leachable from wood treated with 5% formulation for the 30-nm particle size. In a no-choice laboratory test, eastern subterranean termites ( Reticulitermes flavipes) consumed less than 10% of the leached nano-ZnO-treated wood with 93 to 100% mortality in all treatment concentrations. In contrast, termites consumed 10 to 12% of the leached ZnSO4-treated wood, but with lower mortality: 29% in the 1% treatment group and less than 10% (5 and 8%, respectively) in the group of wood blocks treated with 2.5 and 5.0% ZnSO4. We conclude that termites were repelled from consuming wood treated with nano-ZnO, but when consumed it was more toxic to eastern subterranean termites than wood treated with the soluble metal oxide formulation. There were no differences in leaching or termite mortality between the two particle sizes of nano-ZnO.

  5. Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification.

    PubMed

    Liu, Wei; Yang, Xiang-Liang; Ho, W S Winston

    2011-01-01

    Much attention has in recent years been paid to fine applications of drug delivery systems, such as multiple emulsions, micro/nano solid lipid and polymer particles (spheres or capsules). Precise control of particle size and size distribution is especially important in such fine applications. Membrane emulsification can be used to prepare uniform-sized multiple emulsions and micro/nano particulates for drug delivery. It is a promising technique because of the better control of size and size distribution, the mildness of the process, the low energy consumption, easy operation and simple equipment, and amendable for large scale production. This review describes the state of the art of membrane emulsification in the preparation of monodisperse multiple emulsions and micro/nano particulates for drug delivery in recent years. The principles, influence of process parameters, advantages and disadvantages, and applications in preparing different types of drug delivery systems are reviewed. It can be concluded that the membrane emulsification technique in preparing emulsion/particulate products for drug delivery will further expand in the near future in conjunction with more basic investigations on this technique. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  6. Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles

    NASA Astrophysics Data System (ADS)

    Hsiao, I.-Lun; Huang, Yuh-Jeen

    2013-09-01

    Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum—in this case, fetal bovine serum—in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-sized (<1 μm) ZnO on human lung epithelial cells (A549). The nano- and micro-sized ZnO both exhibited their highest toxicity when exposed to serum-free media, in contrast to exposure in media containing 5 or 10 % serum. This mainly comes not only from the fact that ZnO particles in the serum-free media have a higher dosage-per-cell ratio, which results from large aggregates of particles, rapid sedimentation, absence of protein protection, and lower cell growth rate, but also that extracellular Zn2+ release contributes to cytotoxicity. Although more extracellular Zn2+ release was observed in serum-containing media, it did not contribute to nano-ZnO cytotoxicity. Furthermore, non-dissolved particles underwent size-dependent particle agglomeration, resulting in size-dependent toxicity in both serum-containing and serum-free media. A low correlation between cytotoxicity and inflammation endpoints in the serum-free medium suggested that some signaling pathways were changed or induced. Since cell growth, transcription behavior for protein production, and physicochemical properties of ZnO particles all were altered in serum-free media, we recommend the use of a serum-containing medium when evaluating the cytotoxicity of NPs.

  7. Support for the initial attachment, growth and differentiation of MG-63 cells: a comparison between nano-size hydroxyapatite and micro-size hydroxyapatite in composites

    PubMed Central

    Filová, Elena; Suchý, Tomáš; Sucharda, Zbyněk; Šupová, Monika; Žaloudková, Margit; Balík, Karel; Lisá, Věra; Šlouf, Miroslav; Bačáková, Lucie

    2014-01-01

    Hydroxyapatite (HA) is considered to be a bioactive material that favorably influences the adhesion, growth, and osteogenic differentiation of osteoblasts. To optimize the cell response on the hydroxyapatite composite, it is desirable to assess the optimum concentration and also the optimum particle size. The aim of our study was to prepare composite materials made of polydimethylsiloxane, polyamide, and nano-sized (N) or micro-sized (M) HA, with an HA content of 0%, 2%, 5%, 10%, 15%, 20%, 25% (v/v) (referred to as N0–N25 or M0–M25), and to evaluate them in vitro in cultures with human osteoblast-like MG-63 cells. For clinical applications, fast osseointegration of the implant into the bone is essential. We observed the greatest initial cell adhesion on composites M10 and N5. Nano-sized HA supported cell growth, especially during the first 3 days of culture. On composites with micro-size HA (2%–15%), MG-63 cells reached the highest densities on day 7. Samples M20 and M25, however, were toxic for MG-63 cells, although these composites supported the production of osteocalcin in these cells. On N2, a higher concentration of osteopontin was found in MG-63 cells. For biomedical applications, the concentration range of 5%–15% (v/v) nano-size or micro-size HA seems to be optimum. PMID:25125978

  8. Origin of Capacity Fading in Nano-Sized Co3O4 Electrodes: Electrochemical Impedance Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Gu; Ko, Young-Dae; Park, Jae-Gwan; Kim, Dong-Wan

    2008-10-01

    Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4 with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4 anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  9. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics

    PubMed Central

    2014-01-01

    Background Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. Methods We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. Results nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50–200 nm and diameters from ~15–30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Conclusions Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more

  10. Photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide.

    PubMed

    Liu, Zongkuan; He, Yanling; Li, Feng; Liu, Yonghong

    2006-09-01

    The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC-UV) at regular time intervals under simulated sunlight. The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described

  11. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers.

    PubMed

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-14

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10,000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm(-2). The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  12. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  13. Targeted Therapy for Acute Autoimmune Myocarditis with Nano-Sized Liposomal FK506 in Rats.

    PubMed

    Okuda, Keiji; Fu, Hai Ying; Matsuzaki, Takashi; Araki, Ryo; Tsuchida, Shota; Thanikachalam, Punniyakoti V; Fukuta, Tatsuya; Asai, Tomohiro; Yamato, Masaki; Sanada, Shoji; Asanuma, Hiroshi; Asano, Yoshihiro; Asakura, Masanori; Hanawa, Haruo; Hao, Hiroyuki; Oku, Naoto; Takashima, Seiji; Kitakaze, Masafumi; Sakata, Yasushi; Minamino, Tetsuo

    2016-01-01

    Immunosuppressive agents are used for the treatment of immune-mediated myocarditis; however, the need to develop a more effective therapeutic approach remains. Nano-sized liposomes may accumulate in and selectively deliver drugs to an inflammatory lesion with enhanced vascular permeability. The aims of this study were to investigate the distribution of liposomal FK506, an immunosuppressive drug encapsulated within liposomes, and the drug's effects on cardiac function in a rat experimental autoimmune myocarditis (EAM) model. We prepared polyethylene glycol-modified liposomal FK506 (mean diameter: 109.5 ± 4.4 nm). We induced EAM by immunization with porcine myosin and assessed the tissue distribution of the nano-sized beads and liposomal FK506 in this model. After liposomal or free FK506 was administered on days 14 and 17 after immunization, the cytokine expression in the rat hearts along with the histological findings and hemodynamic parameters were determined on day 21. Ex vivo fluorescent imaging revealed that intravenously administered fluorescent-labeled nano-sized beads had accumulated in myocarditic but not normal hearts on day 14 after immunization and thereafter. Compared to the administration of free FK506, FK506 levels were increased in both the plasma and hearts of EAM rats when liposomal FK506 was administered. The administration of liposomal FK506 markedly suppressed the expression of cytokines, such as interferon-γ and tumor necrosis factor-α, and reduced inflammation and fibrosis in the myocardium on day 21 compared to free FK506. The administration of liposomal FK506 also markedly ameliorated cardiac dysfunction on day 21 compared to free FK506. Nano-sized liposomes may be a promising drug delivery system for targeting myocarditic hearts with cardioprotective agents.

  14. Mass production of polymer nano-wires filled with metal nano-particles.

    PubMed

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  15. Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray

    NASA Astrophysics Data System (ADS)

    Sova, A.; Papyrin, A.; Smurov, I.

    2009-12-01

    Influence of the ceramic particle size on the process of formation of cermet coatings by cold spray is experimentally studied. A specially developed nozzle with separate injection of ceramic and metal powders into the gas stream is used in the experiments. The results obtained demonstrate that fine ceramic powders (Al2O3, SiC) produce a strong activation effect on the process of spraying soft metal (Al, Cu) and increase deposition efficiency of the metal component of the mixture compared to the pure metal spraying. At the same time, coarse ceramic powder produces a strong erosion effect that considerably reduces coating mass growth and deposition efficiency of the metal component. It is experimentally shown that the addition of fine hard powder to soft metals as Al and Cu allows to significantly reduce the “critical” temperature (the minimum gas stagnation temperature at which a nonzero particle deposition is observed) for spraying these metals.

  16. The use of nano-sized eggshell powder for calcium fortification of cow?s and buffalo?s milk yogurts.

    PubMed

    El-Shibiny, Safinaze; El-Gawad, Mona Abd El-Kader Mohamed Abd; Assem, Fayza Mohamed; El-Sayed, Samah Mosbah

    2018-01-01

    Calcium is an essential element for the growth, activity, and maintenance of the human body. Eggshells are a waste product which has received growing interest as a cheap and effective source of dietary calcium. Yogurt is a food which can be fortified with functional additives, including calcium. The aim of this study was to produce yogurt with a high calcium content by fortification with nano-sized eggshell powder (nano-ESP). Nano-sized ESP was prepared from pre-boiled and dried eggshell, using a ball mill. Yogurt was prepared from cow’s milk supplemented with 3% skimmed milk powder, and from buffalo’s milk fortified with 0.1, 0.2 and 0.3% and 0.1, 0.3 and 0.5% nano-ESP respectively. Electron microscopic transmission showed that the powder consisted of nano-sized crystalline struc- tures (~10 nm). Laser scattering showed that particles followed a normal distribution pattern with z-average of 590.5 nm, and had negative zeta-potential of –9.33 ±4.2 mV. Results regarding changes in yogurt composi- tion, acid development, calcium distribution, biochemical changes, textural parameters and sensory attributes have been presented and discussed. The addition of up to 0.3% nano-ESP made cow and buffalo high-calcium yogurts with an acceptable composition and quality. High-calcium yogurt may offer better health benefits, such as combating osteoporosis.

  17. Silicone Resin Applications for Ceramic Precursors and Composites

    PubMed Central

    Narisawa, Masaki

    2010-01-01

    This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  18. Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets

    PubMed Central

    Oskouyi, Amirhossein Biabangard; Sundararaj, Uttandaraman; Mertiny, Pierre

    2014-01-01

    In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined. The piezoresistivity behavior of conductive composites was studied employing a reoriented resistor network emulating a conductive composite subjected to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, conductive particle aspect ratio and size effects on conductivity behavior were examined. PMID:28788580

  19. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network

    PubMed Central

    Pascual, Agustín; Camps, Isabel; Grau-Benitez, María

    2015-01-01

    Background The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. Material and Methods In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. Results IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. Conclusions The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Key words:Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness. PMID:26535096

  20. Use of high temperature insulation for ceramic matrix composites in gas turbines

    DOEpatents

    Morrison, Jay Alan; Merrill, Gary Brian; Ludeman, Evan McNeil; Lane, Jay Edgar

    2001-01-01

    A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

  1. Fabrication and Evaluation of Bis-GMA/TEGDMA Dental Resins/Composites Containing Nano Fibrillar Silicate

    PubMed Central

    Tian, Ming; Gao, Yi; Liu, Yi; Liao, Yiliang; Hedin, Nyle E.; Fong, Hao

    2008-01-01

    Objective To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and composites (with conventional glass filler) with various mass fractions of nano fibrillar silicate (FS). Methods Three dispersion methods were studied to separate the silanized FS as nano-scaled single crystals and uniformly distribute them into dental matrices. The photo-curing behaviors of the Bis-GMA/TEGDMA/FS resins were monitored in situ by RT-NIR to study the photopolymerization rate and the vinyl double bond conversion. Mechanical properties (flexural strength, elastic modulus and work of fracture) of the nano FS reinforced resins/composites were tested, and Analysis of Variance (ANOVA) was used for the statistical analysis of the acquired data. The morphology of nano FS and the representative fracture surfaces of its reinforced resins/composites were examined by SEM/TEM. Results Impregnation of small mass fractions (1 % and 2.5 %) of nano FS into Bis-GMA/TEGDMA (50/50 mass ratio) dental resins/composites improved the mechanical properties substantially. Larger mass fraction of impregnation (7.5 %), however, did not further improve the mechanical properties (one way ANOVA, P > 0.05) and may even reduce the mechanical properties. The high degree of separation and uniform distribution of nano FS into dental resins/composites was a challenge. Impregnation of nano FS into dental resins/composites could result in two opposite effects: a reinforcing effect due to the highly separated and uniformly distributed nano FS single crystals, or a weakening effect due to the formation of FS agglomerates/particles. Significance Uniform distribution of highly separated nano FS single crystals into dental resins/composites could significantly improve the mechanical properties of the resins/composites. PMID:17572485

  2. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate.

    PubMed

    Tian, Ming; Gao, Yi; Liu, Yi; Liao, Yiliang; Hedin, Nyle E; Fong, Hao

    2008-02-01

    To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and composites (with conventional glass filler) with various mass fractions of nano fibrillar silicate (FS). Three dispersion methods were studied to separate the silanized FS as nano-scaled single crystals and uniformly distribute them into dental matrices. The photo-curing behaviors of the Bis-GMA/TEGDMA/FS resins were monitored in situ by RT-NIR to study the photopolymerization rate and the vinyl double bond conversion. Mechanical properties (flexural strength, elastic modulus and work-of-fracture) of the nano FS reinforced resins/composites were tested, and analysis of variance (ANOVA) was used for the statistical analysis of the acquired data. The morphology of nano FS and the representative fracture surfaces of its reinforced resins/composites were examined by SEM/TEM. Impregnation of small mass fractions (1% and 2.5%) of nano FS into Bis-GMA/TEGDMA (50/50 mass ratio) dental resins/composites improved the mechanical properties substantially. Larger mass fraction of impregnation (7.5%), however, did not further improve the mechanical properties (one way ANOVA, P>0.05) and may even reduce the mechanical properties. The high degree of separation and uniform distribution of nano FS into dental resins/composites was a challenge. Impregnation of nano FS into dental resins/composites could result in two opposite effects: a reinforcing effect due to the highly separated and uniformly distributed nano FS single crystals, or a weakening effect due to the formation of FS agglomerates/particles. Uniform distribution of highly separated nano FS single crystals into dental resins/composites could significantly improve the mechanical properties of the resins/composites.

  3. Forging of metallic nano-objects for the fabrication of submicron-size components

    NASA Astrophysics Data System (ADS)

    Rösler, J.; Mukherji, D.; Schock, K.; Kleindiek, S.

    2007-03-01

    In recent years, nanoscale fabrication has developed considerably, but the fabrication of free-standing nanosize components is still a great challenge. The fabrication of metallic nanocomponents utilizing three basic steps is demonstrated here. First, metallic alloys are used as factories to produce a metallic raw stock of nano-objects/nanoparticles in large numbers. These objects are then isolated from the powder containing thousands of such objects inside a scanning electron microscope using manipulators, and placed on a micro-anvil or a die. Finally, the shape of the individual nano-object is changed by nanoforging using a microhammer. In this way free-standing, high-strength, metallic nano-objects may be shaped into components with dimensions in the 100 nm range. By assembling such nanocomponents, high-performance microsystems can be fabricated, which are truly in the micrometre scale (the size ratio of a system to its component is typically 10:1).

  4. Characteristics of nano-sized yttria powder synthesized by a polyvinyl alcohol solution route at low temperature.

    PubMed

    Lee, Sang-Jin; Jung, Choong-Hwan

    2012-01-01

    Nano-sized yttria (Y2O3) powders were successfully synthesized at a low temperature of 400 degrees C by a simple polymer solution route. PVA polymer, as an organic carrier, contributed to an atom-scale homogeneous precursor gel and it resulted in fully crystallized, nano-sized yttria powder with high specific surface area through the low temperature calcination. In this process, the content of PVA, calcination temperature and heating time affected the microstructure and crystallization behavior of the powders. The development of crystalline phase and the final particle size were strongly dependant on the oxidation reaction from the polymer burn-out step and the PVA content. In this paper, the PVA solution technique for the fabrication of nano-sized yttria powders is introduced. The effects of PVA content and holding time on the powder morphology and powder specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, SEM, TEM and nitrogen gas adsorption. The yttria powder synthesized from the PVA content of 3:1 ratio and calcined at 400 degrees C had a crystallite size of about 20 nm or less with a high surface areas of 93.95-120.76 m2 g(-1).

  5. Effects of exposure to nano and bulk sized TiO2 and CuO in Lemna minor.

    PubMed

    Dolenc Koce, Jasna

    2017-10-01

    Nanoparticles of TiO 2 and CuO are among most commonly used nanoparticles, and elevated concentrations of them are expected to be found in all environments, including aquatic. A standard growth inhibition test ISO/CD 20079 was used to determine the toxicity of nano sized and larger micro sized (bulk) particles in the concentrations of 0.1, 1, 10, 100 and 1000 μM CuO and TiO 2 on common duckweed (Lemna minor L.). Both nano and bulk CuO particles caused changes in the structure and function of treated plants. The number of fronds and colonies decreased by as much as 78%, the length of roots and fronds decreased by 99% and 14%, respectively. Furthermore, photochemical efficiency was reduced by up to 35%, and the activities of antioxidative enzymes guaiacol peroxidase, ascorbate peroxidase and glutathione reductase increased by more than 240%. The altered physiological state of the CuO exposed plants was also reflected in the elevated occurrence of necrosis and bleaching in the duckweed colonies. Nano sized particles of CuO proved more phytotoxic than bulk particles, and the effects of both studied CuO sizes were concentration dependent. On the other hand, both bulk and nano sized particles of TiO 2 caused no severe phytotoxic effects, there was no concentration dependence and they could be considered as non-harmful to common duckweed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Mechanical and Morphological Study of Synthesized PMMA/CaCO3 Nano composites

    NASA Astrophysics Data System (ADS)

    Alam Md., Azad; Arif, Sajjad; Ansari, Akhter H.

    2017-08-01

    In this study, Nano-composites have been synthesized in which PMMA is the matrix material and calcium carbonate nanoparticles as the filler by In-situ polymerization reaction. Nano-CaCO3 added during polymerization and the quantity of nano-CaCO3 varied as 0.2, 0.4 and 0.6 wt. % of monomer quantity. The Nano-composites were prepared at three distinct stirring speeds 600, 800, 1000 rpm in order to observe the property with respect to stirring speeds. XRD gram depicts that the presence of nano-CaCO3 has given crystalline nature to Nano-composites. The effects of different concentrations of nano-CaCO3 loading on PMMA morphology were studied by using scanning electron microscope (SEM). The mechanical property is increasing with the stirring speed and concentration. Relative to neat PMMA a 62% increase in impact strength were observed in PMMA based Nano-composites using 0.6 wt.% nano-CaCO3.

  7. Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor.

    PubMed

    Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining

    2017-01-28

    Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system.

  8. Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor

    PubMed Central

    Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining

    2017-01-01

    Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system. PMID:28134854

  9. Superior model for fault tolerance computation in designing nano-sized circuit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com; Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalizationmore » of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.« less

  10. The nature of nano-sized precipitates in ferritic/martensitic steel P92 produced by thermomechanical treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn

    Thermomechanical treatment (TMT) can effectively improve the mechanical properties of high-Cr ferritic/martensitic (F/M) steels, which has been mainly attributed to a dense dispersion of nano-sized precipitates. Precipitate phases in high-Cr F/M steels produced by TMT require further investigations. Precipitates in commercial F/M steel P92 produced by a TMT process, warm-rolled at 650 °C plus tempered at 650 °C for 1 h, were investigated by transmission electron microscopy. Nano-sized precipitates with a high number density in the steel after the TMT were found to be Cr-rich M{sub 2}(C,N) carbonitride, rather than MX or M{sub 23}C{sub 6} phase. The M{sub 2}(C,N) carbonitridemore » has a hexagonal lattice with the lattice parameters about a/c = 0.299/0.463 nm. These M{sub 2}(C,N) carbonitrides with a typical composition of (Cr{sub 0.85}V{sub 0.06}Fe{sub 0.06}Mo{sub 0.03}){sub 2}(C,N) have an average diameter smaller than 30 nm, and mainly distribute on dislocations and at the boundaries of equiaxed ferrite grains in the TMT steel. The TMT process inhibits the precipitation of M{sub 23}C{sub 6} and M{sub 5}C{sub 2} phases. Enhanced creep properties of the P92 steel after the TMT, as reported previously, were considered to be mainly attributed to plenty of nano-sized Cr-rich M{sub 2}(C,N) carbonitrides produced by the TMT rather than to MX and M{sub 23}C{sub 6} precipitates. - Graphical abstract: TEM micrographs of precipitates on extraction carbon replicas prepared from ferritic/martensitic (F/M) steel P92. (a) After conventional heat treatment, normalized at 1050 °C for 30 min plus tempered at 765 °C for 1 h. (b) After a thermomechanical treatment (TMT), warm-rolled at 650 °C plus tempered at 650 °C for 1 h. Nano-sized precipitates with a high number density in the steel produced by the TMT were found to be Cr-rich M{sub 2}(C,N) carbonitride, rather than MX or M{sub 23}C{sub 6} phase. The TMT process inhibits the precipitation of M{sub 23}C{sub 6} and M

  11. Study of nano mechanical properties polydimethylsiloxane (PDMS)/MWCNT composites

    NASA Astrophysics Data System (ADS)

    Murudkar, Vrishali; Gaonkar, Amita; Deshpande, V. D.; Mhaske, S. T.

    2018-05-01

    Polydimethylsiloxane (PDMS), a clear elastomer, is a common material used in many applications; but has poor mechanical properties. Carbon nano tubes (CNT) exhibit excellent mechanical properties & hence are used as filler in PDMS. It was found that the elastic modulus and strength of the PDMS/MWCNT nano composites were enhanced by adding MWCNT [1]. Through the nano indentation experiment, the hardness (H), the elastic modulus (E), and other mechanical properties can be determined from very small volumes of materials [2]; hence nano indentation is widely used to study mechanical properties. PDMS/MWCNT composites have enhanced mechanical properties over neat PDMS. FTIR analysis shows bonding between MWCNT and PDMS; which affects the mechanical properties. From AFM study it shows decreasing roughness for increasing MWCNT concentration. Surface morphology (SEM) study shows well dispersion of MWCNT into PDMS matrix.

  12. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites.

    PubMed

    Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian

    2015-01-01

    The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.

  13. Tuning into single-band red upconversion luminescence in Yb(3+)/Ho(3+) activated nano-glass-ceramics through Ce(3+) doping.

    PubMed

    Chen, Daqin; Zhou, Yang; Wan, Zhongyi; Ji, Zhenguo; Huang, Ping

    2015-03-28

    Yb(3+)/Ho(3+) activated glass ceramics containing β-YF3 nanocrystals were successfully fabricated. The green ((5)S2/(5)F4→(5)I8) upconversion emission is dominant in the glass ceramics and is about 160 times stronger than that of the precursor glass, resulting from the partition of lanthanide activators into a low-phonon-energy crystalline lattice and the subsequent low probability of multi-phonon nonradiative relaxation from the (5)S2/(5)F4 and (5)I6 states to the lower ones. Upon the introduction of Ce(3+) ions into nano-glass-ceramics, two efficient cross-relaxation processes between Ho(3+) and Ce(3+), i.e., Ho(3+):(5)S2/(5)F4 + Ce(3+):(2)F5/2→Ho(3+):(5)F5 + Ce(3+):(2)F7/2 and Ho(3+):(5)I6 + Ce(3+):(2)F5/2→Ho(3+):(5)I7 + Ce(3+):(2)F7/2, are demonstrated to greatly suppress the population of the green-emitting (5)S2/(5)F4 state and to enhance the population of the red-emitting (5)F5 one, leading to the intense single-band red UC radiation of Ho(3+).

  14. Structural and Morphological Evaluation of Nano-Sized MoSi2 Powder Produced by Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Sameezadeh, Mahmood; Farhangi, Hassan; Emamy, Masoud

    Nano-sized intermetallic powders have received great attention owing to their property advantages over conventional micro-sized counterparts. In the present study nano-sized MoSi2 powder has been produced successfully from commercially available MoSi2 (3 μm) by a mechanical milling process carried out for a period of 100 hours. The effects of milling time on size and morphology of the powders were studied by SEM and TEM and image analyzing system. The results indicate that the as-received micrometric powder with a wide size distribution of irregular shaped morphology changes to a narrow size distribution of nearly equiaxed particles with the progress of attrition milling up to 100 h, reaching an average particle size of 71 nm. Structural evolution of milled samples was characterized by XRD to determine the crystallite size and lattice microstrain using Williamson-Hall method. According to the results, the crystallite size of the powders decreases continuously down to 23 nm with increasing milling time up to 100 h and this size refinement is more rapid at the early stages of the milling process. On the other hand, the lattice strain increases considerably with milling up to 65 h and further milling causes no significant changes of lattice strain.

  15. Mechanical behavior of shock-wave consolidated nano and micron-sized aluminum/silicon carbide and aluminum/aluminum oxide two-phase systems characterized by light and electron metallography

    NASA Astrophysics Data System (ADS)

    Alba-Baena, Noe Gaudencio

    This dissertation reports the results of the exploratory study of two-phase systems consisting of 150 microm diameter aluminum powder mechanically mixed with 30 nm and 30 microm diameter SiC and Al2O3 powders (in volume fractions of 2, 4, and 21 percent). Powders were mechanically mixed and green compacted to ˜80% theorical density in a series of cylindrical fixtures (steel tubes). The compacted arrangements were explosively consolidated using ammonium nitrate-fuel oil (ANFO) to form stacks of two-phase systems. As result, successfully consolidated cylindrical monoliths of 50 mm (height) x 32 mm (in diameter) were obtained. By taking advantage of the use of SWC (shock wave consolidation) and WEDM (wire-electric discharge machining), the heterogeneous systems were machined in a highly efficiency rate. The sample cuts used for characterization and mechanical properties testing, require the use of less that 10cc of each monolith, in consequence there was preserved an average of 60% of the obtained system monoliths. Consolidated test cylinders of the pure Al and two-phase composites were characterized by optical metallography and TEM. The light micrographs for the five explosively consolidated regimes: aluminum powder, nano and micron-sized Al/Al2O3 systems, and the nano and micron-sized Al/SiC systems exhibit similar ductility in the aluminum grains. Low volume fraction systems exhibit small agglomerations at the grain boundaries for the Al/Al2O3 system and the Al/SiC system reveal a well distributed phase at the grain boundaries. Large and partially bonded agglomerations were observable in the nano-sized high volume fraction (21%) systems, while the micron-sized Al/ceramic systems exhibit homogeneous distribution along the aluminum phase grains. TEM images showed the shock-induced dislocation cell structure, which has partially recrystallized to form a nano grain structure in the consolidated aluminum powder. Furthermore, the SiC nano-agglomerates appeared to have

  16. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    EPA Science Inventory

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  17. Nano powders, components and coatings by plasma technique

    DOEpatents

    McKechnie, Timothy N [Brownsboro, AL; Antony, Leo V. M. [Huntsville, AL; O'Dell, Scott [Arab, AL; Power, Chris [Guntersville, AL; Tabor, Terry [Huntsville, AL

    2009-11-10

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  18. Nano powders, components and coatings by plasma technique

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N. (Inventor); Antony, Leo V. M. (Inventor); O'Dell, Scott (Inventor); Power, Chris (Inventor); Tabor, Terry (Inventor)

    2009-01-01

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  19. Effect of filler loading and silane modification on the biodegradability of SBR composites reinforced with peanut shell powder

    NASA Astrophysics Data System (ADS)

    Shaniba, V.; Balan, Aparna K.; Sreejith, M. P.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    The development of biocomposites and their applications are important in material science due to environmental and sustainability issues. The extent of degradation depends on the nature of reinforcing filler, particle size and their modification. In this article, we tried to focus on the biodegradation of composites of Styrene Butadiene Rubber (SBR) reinforced with Peanut Shell Powder (PSP) by soil burial test. The composites of SBR with untreated PSP (UPSP) and silane modified PSP (SPSP) of 10 parts per hundred rubber (phr) and 20 phr filler loading in two particle size were buried in the garden soil for six months. The microbial degradation were assessed through the measurement of weight loss, tensile strength and hardness at definite period. The study shows that degradation increases with increase in filler loading and particle size. The chemical treatment of filler has been found to resist the degradation. The analysis of morphological properties by the SEM also confirmed biodegradation process by the microorganism in the soil.

  20. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    PubMed Central

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  1. Advances in synthesis of calcium phosphate crystals with controlled size and shape.

    PubMed

    Lin, Kaili; Wu, Chengtie; Chang, Jiang

    2014-10-01

    Calcium phosphate (CaP) materials have a wide range of applications, including biomaterials, adsorbents, chemical engineering materials, catalysts and catalyst supports and mechanical reinforcements. The size and shape of CaP crystals and aggregates play critical roles in their applications. The main inorganic building blocks of human bones and teeth are nanocrystalline CaPs; recently, much progress has been made in the application of CaP nanocrystals and their composites for clinical repair of damaged bone and tooth. For example, CaPs with special micro- and nanostructures can better imitate the biomimetic features of human bone and tooth, and this offers significantly enhanced biological performances. Therefore, the design of CaP nano-/microcrystals, and the shape and hierarchical structures of CaPs, have great potential to revolutionize the field of hard tissue engineering, starting from bone/tooth repair and augmentation to controlled drug delivery devices. Previously, a number of reviews have reported the synthesis and properties of CaP materials, especially for hydroxyapatite (HAp). However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles. There are few reviews about the control of particle size and size distribution of CaPs, and in particular the control of nano-/microstructures on bulk CaP ceramic surfaces, which is a big challenge technically and may have great potential in tissue engineering applications. This review summarizes the current state of the art for the synthesis of CaP crystals with controlled sizes from the nano- to the macroscale, and the diverse shapes including the zero-dimensional shapes of particles and spheres, the one-dimensional shapes of rods, fibers, wires and whiskers, the two-dimensional shapes of sheets, disks, plates, belts, ribbons and flakes and the three-dimensional (3-D) shapes of porous, hollow, and biomimetic structures similar to biological bone and tooth

  2. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae.

    PubMed

    Bergami, Elisa; Bocci, Elena; Vannuccini, Maria Luisa; Monopoli, Marco; Salvati, Anna; Dawson, Kenneth A; Corsi, Ilaria

    2016-01-01

    Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on the impact of nano-sized plastics on marine organisms. Therefore, the present study aims to evaluate the effects of 40nm anionic carboxylated (PS-COOH) and 50nm cationic amino (PS-NH2) polystyrene nanoparticles (PS NPs) on brine shrimp Artemia franciscana larvae. No signs of mortality were observed at 48h of exposure for both PS NPs at naplius stage but several sub-lethal effects were evident. PS-COOH (5-100μg/ml) resulted massively sequestered inside the gut lumen of larvae (48h) probably limiting food intake. Some of them were lately excreted as fecal pellets but not a full release was observed. Likewise, PS-NH2 (5-100µg/ml) accumulated in larvae (48h) but also adsorbed at the surface of sensorial antennules and appendages probably hampering larvae motility. In addition, larvae exposed to PS-NH2 undergo multiple molting events during 48h of exposure compared to controls. The activation of a defense mechanism based on a physiological process able to release toxic cationic NPs (PS-NH2) from the body can be hypothesized. The general observed accumulation of PS NPs within the gut during the 48h of exposure indicates a continuous bioavailability of nano-sized PS for planktonic species as well as a potential transfer along the trophic web. Therefore, nano-sized PS might be able to impair food uptake (feeding), behavior (motility) and physiology (multiple molting) of brine shrimp larvae with consequences not only at organism and population level but on the overall ecosystem based on the key role of zooplankton on marine food webs. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2016-09-01

    Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE) as the matrix and low-density polyethylene (LDPE) coated BaO-Nd2O3-TiO2 (BNT) ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol%) could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz) to 11.87 (7 GHz), while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS) were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  4. Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity.

    PubMed

    Maghsoudi, Amirhossein; Fakharzadeh, Saideh; Hafizi, Maryam; Abbasi, Maryam; Kohram, Fatemeh; Sardab, Shima; Tahzibi, Abbas; Kalanaky, Somayeh; Nazaran, Mohammad Hassan

    2015-03-01

    Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results.

  5. Soy-based fillers for thermoset composites

    NASA Astrophysics Data System (ADS)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  6. Electrical conduction of a XLPE nanocomposite

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  7. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    NASA Astrophysics Data System (ADS)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  8. Synthesis and structural characterization of nano-hydroxyapatite biomaterials prepared by microwave processing

    NASA Astrophysics Data System (ADS)

    Ramli, Rosmamuhamadani; Arawi, Ainaa Zafirah Omar; Talari, Mahesh Kumar; Mahat, Mohd Muzamir; Jais, Umi Sarah

    2012-07-01

    Synthetic hydroxyapatite, (HA, Ca10(PO4)6(OH)2), is an attractive and widely utilized bio-ceramic material for orthopedic and dental implants because of its close resemblance of native tooth and bone crystal structure. Synthetic HA exhibits excellent osteoconductive properties. Osteoconductivity means the ability to provide the appropriate scaffold or template for bone formation. Calcium phosphate biomaterials [(HA), tri-calcium phosphate (TCP) and biphasic calcium phosphate (HA/TCP)] with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive and can be effective carriers of bone cell seeds. This HA can be used in bio-implants as well as drug delivery application due to the unique properties of HA. Biomaterials synthesized from the natural species like mussel shells have additional benefits such as high purity, less expensive and high bio compatibility. In this project, HA-nanoparticles of different crystallite size were prepared by microwave synthesis of precursors. High purity CaO was extracted from the natural mussel shells for the synthesis of nano HA. Dried nano HA powders were analyzed using X-Ray Diffraction (XRD) technique for the determination of crystal structure and impurity content. Scanning Electron Microscopic (SEM) investigation was employed for the morphological investigation of nano HA powders. From the results obtained, it was concluded that by altering the irradiation time, nano HA powders of different crystallite sizes and morphologies could be produced. Crystallite sizes calculated from the XRD patterns are found to be in the range of 10-55 nm depending on the irradiation time.

  9. Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Patten, A. B.; Hamilton, H. H., II

    1983-01-01

    An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented.

  10. Fe–Ni solid solutions in nano-size dimensions: Effect of hydrogen annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Asheesh, E-mail: asheeshk@barc.gov.in; Meena, S.S.; Banerjee, S.

    Highlights: • Fe–Ni solid solution with nano-size dimensions were prepared and characterized. • Both as prepared and hydrogenated solid solutions have FCC structure of Ni. • Paramagnetic and ferromagnetic domains coexist in these samples. - Abstract: Nanoparticles of Ni{sub 0.50}Fe{sub 0.50} and Ni{sub 0.75}Fe{sub 0.25} alloys were prepared by chemical reduction in ethylene glycol medium. XRD and {sup 57}Fe Mössbauer studies have confirmed the formation of Fe–Ni solid solution in nano-size dimensions with FCC structure. These samples consist of both ferromagnetic and paramagnetic domains which have been attributed to the coexistence of large and small particles as confirmed by atomicmore » force microscopic (AFM) and {sup 57}Fe Mössbauer spectroscopic studies. Improved extent of Fe–Fe exchange interaction existing in Ni{sub 0.50}Fe{sub 0.50} alloy compared to Ni{sub 0.75}Fe{sub 0.25} alloy explains the observed increase in the relative extent of ferromagnetic domains compared to paramagnetic domains in the former sample. Increase in the relative extent of ferromagnetic domains for hydrogenated alloys is due to increase in particle size brought about by the high temperature activation prior to hydrogenation.« less

  11. Sonochemical syntheses of a new nano-sized porous lead(II) coordination polymer as precursor for preparation of lead(II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjbar, Zohreh Rashidi; Morsali, Ali

    2009-11-01

    Nano-scale of a new Pb(II) coordination polymer, {[Pb(bpacb)(OAc)]·DMF} n ( 1); bpacbH = 3,5-bis[(4-pyridylamino)carbonyl]benzoic acid], were synthesized by a sonochemical method. The nano-material was characterized by scanning electron microscopy, X-ray powder diffraction (XRD), 1H, 13C NMR, IR spectroscopy and elemental analyses. Crystal structure of compound 1 was determined by X-ray crystallography. Calcination of the nano-sized compound 1 at 700 °C under air atmospheres yields PbO nanoparticles. Thermal stability of nano-sized and single crystalline samples of compound 1 were studied and compared with each other.

  12. The Effect of TiO2 Doped Photocatalytic Nano-Additives on the Hydration and Microstructure of Portland and High Alumina Cements

    PubMed Central

    Pérez-Nicolás, María; Alvarez, José Ignacio

    2017-01-01

    Mortars with two different binders (Portland cement (PC) and high alumina cement (HAC)) were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO2, and TiO2 doped with either iron (Fe-TiO2) or vanadium (V-TiO2)). Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was increased, slightly by bare TiO2 and Fe-TiO2, and strongly by V-TiO2, in agreement with the reduction of the particle size and the tendency to agglomerate. Isothermal calorimetry showed that hydration of the cementitious matrices was accelerated due to additional nucleation sites offered by the nano-additives. TiO2 and doped TiO2 did not show pozzolanic reactivity in the binding systems. Changes in the pore size distribution, mainly the filler effect of the nano-additives, accounted for the increase in compressive strengths measured for HAC mortars. A complex microstructure was seen in calcium aluminate cement mortars, strongly dependent on the curing conditions. Fe-TiO2 was found to be homogeneously distributed whereas the tendency of V-TiO2 to agglomerate was evidenced by elemental distribution maps. Water absorption capacity was not affected by the nano-additive incorporation in HAC mortars, which is a favourable feature for the application of these mortars. PMID:29036917

  13. Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.

    PubMed

    Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2012-04-01

    High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (< 100 nm) that had a hardness similar to diamond in a nickel-based material. The co-electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.

  14. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting

    NASA Astrophysics Data System (ADS)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).

  15. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    PubMed

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Drug delivery systems using nano-sized drug carriers].

    PubMed

    Nakayama, Masamichi; Okano, Teruo

    2005-07-01

    Nanotechnology has attracted great attention all over the world in recent several years and has led to the establishment of the novel technical field of "nanomedicine" through collaboration with advanced medical technology. Particularly, site-specific drug targeting using particle drug carrier systems has made substantial progress and been actively developed. This review explains the essential factors (size and chemical character) of drug carriers to allow long circulation in the bloodstream avoiding the reticuloendothelial system, and shows the present status and future perspective of several types of nano-carrier systems (water-soluble polymer, liposome and polymeric micelle). We also introduce the novel concept of multi-targeting system (combination of two or more targeting methodologies) for ideal drug therapies.

  17. Evaluating weathering of food packaging polyethylene-nano-clay composites: Release of nanoparticles and their impacts

    EPA Science Inventory

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to...

  18. Grain size effect on the giant dielectric constant of CaCu3Ti4O12 nanoceramics prepared by mechanosynthesis and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.; Yamada, Koji

    2014-04-01

    In the present work, CaCu3Ti4O12 (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80 nm to ˜200 nm for the ceramics sintered at 800 °C and 975 °C, respectively. Further increase of SPS temperature to 1050 °C leads to micro-sized ceramics of 2-3 μm. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed in CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3 × 103, 2.4 × 104, and 3.2 × 104 for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14 × 104. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.

  19. Filler/ Polycarbosilane Systems as CMC Matrix Precursors

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1998-01-01

    Pyrolytic conversion of polymeric precursors to ceramics is accompanied by loss of volatiles and large volume changes. Infiltration of a low viscosity polymer into a fiber preform will fill small spaces within fiber tows by capillary forces, but create large matrix cracks within large, intertow areas. One approach to minimizing shrinkage and reducing the number of required infiltration cycles is to use particulate fillers. In this study, Starfire allylhydridopolycarbosilane (AHPCS) was blended with a silicon carbide powder, with and without dispersant, using shear mixing. The polymer and polymer/particle interactions were characterized using nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and rheometry. Polymer/particulate slurries and suspensions were used to infiltrate a figidized preform of an eight ply five harness satin CG Nicalon fiber having a dual layer BN/SiC interface coating, and the resulting composites characterized by optical and scanning electron microscopy.

  20. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; Vanleeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui

    2015-07-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.

  1. Er3+-doped transparent glass ceramics containing micron-sized SrF2 crystals for 2.7 μm emissions

    PubMed Central

    Jiang, Yiguang; Fan, Jintai; Jiang, Benxue; Mao, Xiaojian; Tang, Junzhou; Xu, Yinsheng; Dai, Shixun; Zhang, Long

    2016-01-01

    Er3+-doped transparent glass ceramics containing micron-sized SrF2 crystals were obtained by direct liquid-phase sintering of a mixture of SrF2 powders and precursor glass powders at 820 °C for 15 min. The appearance and microstructural evolution of the SrF2 crystals in the resulting glass ceramics were investigated using X-ray diffraction, field-emission scanning electron microscopy and transmission microscopy. The SrF2 crystals are ~15 μm in size and are uniformly distributed throughout the fluorophosphate glass matrix. The glass ceramics achieve an average transmittance of 75% in the visible region and more than 85% in the near-IR region. The high transmittance of the glass ceramics results from matching the refractive index of the SrF2 with that of the precursor glass. Energy dispersive spectroscopy, photoluminescence spectra, and photoluminescence lifetimes verified the incorporation of Er3+ into the micron-sized SrF2 crystals. Intense 2.7 μm emissions due to the 4I11/2 → 4I13/2 transition were observed upon excitation at 980 nm using a laser diode. The maximum value of the emission cross section of Er3+ around 2.7 μm is more than 1.2 × 10−20 cm2, which indicates the potential of using transparent glass ceramics containing micron-sized SrF2 crystals for efficient 2.7 μm lasers and amplifiers. PMID:27430595

  2. Er(3+)-doped transparent glass ceramics containing micron-sized SrF2 crystals for 2.7 μm emissions.

    PubMed

    Jiang, Yiguang; Fan, Jintai; Jiang, Benxue; Mao, Xiaojian; Tang, Junzhou; Xu, Yinsheng; Dai, Shixun; Zhang, Long

    2016-07-19

    Er(3+)-doped transparent glass ceramics containing micron-sized SrF2 crystals were obtained by direct liquid-phase sintering of a mixture of SrF2 powders and precursor glass powders at 820 °C for 15 min. The appearance and microstructural evolution of the SrF2 crystals in the resulting glass ceramics were investigated using X-ray diffraction, field-emission scanning electron microscopy and transmission microscopy. The SrF2 crystals are ~15 μm in size and are uniformly distributed throughout the fluorophosphate glass matrix. The glass ceramics achieve an average transmittance of 75% in the visible region and more than 85% in the near-IR region. The high transmittance of the glass ceramics results from matching the refractive index of the SrF2 with that of the precursor glass. Energy dispersive spectroscopy, photoluminescence spectra, and photoluminescence lifetimes verified the incorporation of Er(3+) into the micron-sized SrF2 crystals. Intense 2.7 μm emissions due to the (4)I11/2 → (4)I13/2 transition were observed upon excitation at 980 nm using a laser diode. The maximum value of the emission cross section of Er(3+) around 2.7 μm is more than 1.2 × 10(-20) cm(2), which indicates the potential of using transparent glass ceramics containing micron-sized SrF2 crystals for efficient 2.7 μm lasers and amplifiers.

  3. Laser fluorescence of dentin caries covered with a novel nano-filled sealant.

    PubMed

    Braun, Andreas; Beisel, Christian; Brede, Olivier; Krause, Felix

    2013-01-01

    The aim of the present study was to assess the possibility to measure caries-induced laser fluorescence underneath a novel nano-filled fissure sealant. Sixty freshly extracted human teeth with occlusal dentine carious lesions were horizontally divided, exposing the respective lesion. Teeth were randomly assigned to three groups: (I) white fissure sealant with filler particles (Fissurit F, Voco), (II) clear fissure sealant without filler particles (Fissurit, Voco) and (III) novel experimental fissure sealant with nano-filler particles (Voco). Starting with a sealant thickness of 3 mm, laser fluorescence measurements (DIAGNOdent, KaVo) were performed after finishing the sealant surfaces with polishing papers, reducing the material at intervals of 0.5 mm until the sealant was removed completely. Evaluating a thickness of 0.5 mm, both the clear (83 % of the baseline fluorescence after fine grit polishing) and the white sealant (25 %) did not allow to measure baseline fluorescence (p < 0.05) with no fluorescence reduction in the experimental sealant group (p > 0.05). With increasing sealer thickness, fluorescence was influenced even by the experimental material (89 % of the baseline value at 1 mm). However, by using the experimental material, statistically significant higher fluorescence values than those for the other materials under study (p < 0.05) were obtained. Thicker sealant layers and coarse grit polishing caused a decrease of laser fluorescence in all groups (p < 0.05). Employing the experimental nano-filled sealant, laser fluorescence measurements for caries detection can be performed through thicker sealant layers compared to conventional sealant materials. Thus, it might be possible to use this material to assess a caries progression underneath the sealant and administer an appropriate therapy in due time.

  4. Thermal effects in nano-sized adsorbate islands growth processes at vapor deposition

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Dvornichenko, Alina V.

    2016-02-01

    We study a model of pattern formation in adsorptive systems with a local change in the surface temperature due to adsorption/desorption processes. It is found that thermal effects shrink the domain of main system parameters, when pattern formation is possible. It is shown that an increase in a surface reheat efficiency delays ordering processes. We have found that a distribution of adsorbate islands over sizes depends on relaxation and reheat processes. We have shown that the mean linear size of stationary adsorbate islands is of nano-meter range.

  5. Compressible liquid flow in nano- or micro-sized circular tubes considering wall-liquid Lifshitz-van der Waals interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing

    2018-06-01

    Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.

  6. Lifetime Prediction of Nano-Silica based Glass Fibre/Epoxy composite by Time Temperature Superposition Principle

    NASA Astrophysics Data System (ADS)

    Anand, Abhijeet; Banerjee, Poulami; Prusty, Rajesh Kumar; Ray, Bankin Chandra

    2018-03-01

    The incorporation of nano fillers in Fibre reinforced polymer (FRP) composites has been a source of experimentation for researchers. Addition of nano fillers has been found to improve mechanical, thermal as well as electrical properties of Glass fibre reinforced polymer (GFRP) composites. The in-plane mechanical properties of GFRP composite are mainly controlled by fibers and therefore exhibit good values. However, composite exhibits poor through-thickness properties, in which the matrix and interface are the dominant factors. Therefore, it is conducive to modify the matrix through dispersion of nano fillers. Creep is defined as the plastic deformation experienced by a material for a temperature at constant stress over a prolonged period of time. Determination of Master Curve using time-temperature superposition principle is conducive for predicting the lifetime of materials involved in naval and structural applications. This is because such materials remain in service for a prolonged time period before failure which is difficult to be kept marked. However, the failure analysis can be extrapolated from its behaviour in a shorter time at an elevated temperature as is done in master creep analysis. The present research work dealt with time-temperature analysis of 0.1% SiO2-based GFRP composites fabricated through hand-layup method. Composition of 0.1% for SiO2nano fillers with respect to the weight of the fibers was observed to provide optimized flexural properties. Time and temperature dependence of flexural properties of GFRP composites with and without nano SiO2 was determined by conducting 3-point bend flexural creep tests over a range of temperature. Stepwise isothermal creep tests from room temperature (30°C) to the glass transition temperature Tg (120°C) were performed with an alternative creep/relaxation period of 1 hour at each temperature. A constant stress of 40MPa was applied during the creep tests. The time-temperature superposition principle was

  7. Nano-sized ZnO powders prepared by co-precipitation method with various pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro,

    2016-04-19

    In this work, nano-sized ZnO powders have been synthesized by the co-precipitation method with Zn(CH3COOH)2.2H2O, HCl, and NH3.H2O as raw materials in various pH ranging from 8 to 10. The purity, microstructure, chemical group analysis, morphology of the prepared ZnO powders were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), energy dispersive X-ray spectrometry (EDX), and scanning electron microscope (SEM), respectively. Rietveld refinement of XRD data showed that ZnO crystallizes in the wurtzite structure with high purity. The obtained powders were nano-sized particles with the average crystallite size about 17.9 ± 2.1 nm synthesized with pH of 9.5, atmore » 85°C, and stirring time of 6 h. The SEM results have visualied the morphology of ZnO nanoparticles with spherical-like shape. The effect of processing conditions on morphology of ZnO was also discussed.« less

  8. The dependence of Schottky junction (I-V) characteristics on the metal probe size in nano metal-semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Rezeq, Moh'd.; Ali, Ahmed; Patole, Shashikant P.; Eledlebi, Khouloud; Dey, Ripon Kumar; Cui, Bo

    2018-05-01

    We have studied the dependence of Schottky junction (I-V) characteristics on the metal contact size in metal-semiconductor (M-S) junctions using different metal nanoprobe sizes. The results show strong dependence of (I-V) characteristics on the nanoprobe size when it is in contact with a semiconductor substrate. The results show the evolution from sub-10 nm reversed Schottky diode behavior to the normal diode behavior at 100 nm. These results also indicate the direct correlation between the electric field at the M-S interface and the Schottky rectification behavior. The effect of the metal contact size on nano-Schottky diode structure is clearly demonstrated, which would help in designing a new type of nano-devices at sub-10 nm scale.

  9. Thermal and mechanical properties of compression-moulded poly(lactic acid)/gluten/clays bio(nano)composites

    USDA-ARS?s Scientific Manuscript database

    Bio(nano)composites comprising agricultural-based polymers blended with biodegradable plant-based fillers and clays were produced to develop novel hydrophobic, yet biodegradable materials that have properties comparable to those of petroleum-based plastics. Poly (lactic acid) (PLA), wheat vital glut...

  10. The Effects of Biopolymers Composite Based Waste Cooking Oil and Titanium Dioxide Fillers as Superhydrophobic Coatings.

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Rus, A. Z. M.

    2017-08-01

    This project presents the effect of biopolymer composite surface coating on TiO2 fillers by analysing the static water contact angle, SEM micrographs, porosity, density and refractive index of biopolymer doped with different loading of TiO2. The different ratio loading of 0.5, 1.0, 1.5, 2.0 and 2.5 (wt/wt%) TiO2 can be used to improve the material properties in practical use for outdoor application especially to enhance the stability of surface coating. It is found that the smooth surfaces with a low ratio loading of TiO2 fillers on biopolymer composite surface coating increases the static water contact angle up to 162.29°. It is interpreted with respect to nano- features existing on the surface of the water repellent creates a thin superhydrphobic layer. The relationship between porosity and density is indirectly proportional where the higher the loading of TiO2 filler produce the lower porosity up to 0.86% of the surface coating. The movement from shorter to longer of wavelength was observed before and after exposure indicates that there are optimization of absorption of UV-B radiation as the amount of delocalisation.

  11. Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes

    NASA Astrophysics Data System (ADS)

    Larkin, K.; Ghommem, M.; Abdelkefi, A.

    2018-05-01

    Capacitive-based sensing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) gyroscopes have significant advantages over conventional gyroscopes, such as low power consumption, batch fabrication, and possible integration with electronic circuits. However, inadequacies in the modeling of these inertial sensors have presented issues of reliability and functionality of micro-/nano-scale gyroscopes. In this work, a micromechanical model is developed to represent the unique microstructure of nanocrystalline materials and simulate the response of micro-/nano-gyroscope comprising an electrostatically-actuated cantilever beam with a tip mass at the free end. Couple stress and surface elasticity theories are integrated into the classical Euler-Bernoulli beam model in order to derive a size-dependent model. This model is then used to investigate the influence of size-dependent effects on the static pull-in instability, the natural frequencies and the performance output of gyroscopes as the scale decreases from micro-to nano-scale. The simulation results show significant changes in the static pull-in voltage and the natural frequency as the scale of the system is decreased. However, the differential frequency between the two vibration modes of the gyroscope is observed to drastically decrease as the size of the gyroscope is reduced. As such, the frequency-based operation mode may not be an efficient strategy for nano-gyroscopes. The results show that a strong coupling between the surface elasticity and material structure takes place when smaller grain sizes and higher void percentages are considered.

  12. Oxidative stress, cytoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions.

    PubMed

    Cornejo-Garrido, Hilda; Kibanova, Daria; Nieto-Camacho, Antonio; Guzmán, José; Ramírez-Apan, Teresa; Fernández-Lomelín, Pilar; Garduño, Maria Laura; Cervini-Silva, Javiera

    2011-09-01

    This paper reports on the effect of aqueous and nano-particulated Pb on oxidative stress (lipid peroxidation), cytoxicity, and cell mortality. As determined by the Thiobarbituric Acid Reactive Substances (TBARS) method, only 6h after incubation aqueous suspensions bearing nano-sized PbO(2), soluble Pb(II), and brain-homogenate only suspensions, were determined to contain as much as ca. 7, 5, and 1 nmol TBARS mg protein(-1), respectively. Exposure of human cells (central nervous system, prostate, leukemia, colon, breast, lung cells) to nano-PbO(2) led to cell-growth inhibition values (%) ca. ≤18.7%. Finally, as estimated by the Artemia salina test, cell mortality values were found to show high-survival larvae rates. Microscopic observations revealed that Pb particles were swallowed, but caused no mortality, however. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Self-assembled Ag nanoparticle network passivated by a nano-sized ZnO layer for transparent and flexible film heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Kim, Min-Yi

    2015-12-15

    We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, themore » TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.« less

  14. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic

    PubMed Central

    Poinern, GJE; Brundavanam, R; Le, X Thi; Djordjevic, S; Prokic, M; Fawcett, D

    2011-01-01

    Hydroxyapatite (HAP) is a widely used biocompatible ceramic in many biomedical applications and devices. Currently nanometer-scale forms of HAP are being intensely investigated due to their close similarity to the inorganic mineral component of the natural bone matrix. In this study nano-HAP was prepared via a wet precipitation method using Ca(NO3)2 and KH2PO4 as the main reactants and NH4OH as the precipitator under ultrasonic irradiation. The Ca/P ratio was set at 1.67 and the pH was maintained at 9 during the synthesis process. The influence of the thermal treatment was investigated by using two thermal treatment processes to produce ultrafine nano-HAP powders. In the first heat treatment, a conventional radiant tube furnace was used to produce nano-particles with an average size of approximately 30 nm in diameter, while the second thermal treatment used a microwave-based technique to produce particles with an average diameter of 36 nm. The crystalline structure and morphology of all nanoparticle powders produced were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Both thermal techniques effectively produced ultrafine powders with similar crystalline structure, morphology and particle sizes. PMID:22114473

  15. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.

    PubMed

    Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha

    2018-07-01

    Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Nano-sized Contrast Agents to Non-Invasively Detect Renal Inflammation by Magnetic Resonance Imaging

    PubMed Central

    Thurman, Joshua M.; Serkova, Natalie J.

    2013-01-01

    Several molecular imaging methods have been developed that employ nano-sized contrast agents to detect markers of inflammation within tissues. Renal inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active renal inflammation. However, the development of new molecular imaging methods that employ contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys, and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring renal inflammation, and recent advances in the development of nano-sized contrast agents for detection of inflammatory markers of renal disease. PMID:24206601

  17. Polyurethane Filler for Electroplating

    NASA Technical Reports Server (NTRS)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  18. Fillers in dermatology: from past to present.

    PubMed

    Chacon, Anna H

    2015-11-01

    Injectable fillers were introduced in dermatology as a method for reconstructing facial deformities and restoring the aging face. Although fillers have become a popular option among cosmetic patients, clinical experience has shown that fillers must be used with caution, as complications can occur. This article provides a brief review of the history of filler agents currently available for soft tissue augmentation. Although no single filler is ideal for all patients, indications, and situations, residents should be aware of the properties and characteristics that make each product unique.

  19. Nano/macro porous bioactive glass scaffold

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  20. Study on Locally Confined Deposition of Si Nanocrystals in High-Aspect-Ratio Si Nano-Pillar Arrays for Nano-Electronic and Nano-Photonic Applications II

    DTIC Science & Technology

    2010-12-03

    photoluminescence characteristics of equivalent-size controlled silicon quantum dots by employing a nano-porous aluminum oxide membrane as the template for growing...synthesis of Si quantum dots (Si-QDs) embedded in low-temperature (500oC) annealed Si-rich SiOx nano-rod deposited in nano-porous anodic aluminum oxide ...characteristics of the equivalent-size controlled Si-QDs by employing the nano-porous AAO membrane as the template for growing Si-rich SiOx nano-rods

  1. Transparent garnet ceramic scintillators for gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen

    2012-10-01

    Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.

  2. Study of Tetrapodal ZnO-PDMS Composites: A Comparison of Fillers Shapes in Stiffness and Hydrophobicity Improvements

    PubMed Central

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers. PMID:25208080

  3. Study of tetrapodal ZnO-PDMS composites: a comparison of fillers shapes in stiffness and hydrophobicity improvements.

    PubMed

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers.

  4. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal must...

  5. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal must...

  6. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    DOEpatents

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  7. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver.

    PubMed

    Gulyas, G; Csosz, E; Prokisch, J; Javor, A; Mezes, M; Erdelyi, M; Balogh, K; Janaky, T; Szabo, Z; Simon, A; Czegledi, L

    2017-06-01

    The nano-sized (100-500 nm) selenium has higher bioavailability and relatively lower toxicity compared to other selenium forms. The objective of the present study was to compare liver proteome profiles of broiler chicken fed with control diet without Se supplementation and diet supplemented with nano-Se with 4.25 mg/kg DM. Differential proteome analyses were performed by two-dimensional gel electrophoresis (2D-PAGE) followed by tryptic digestion and protein identification by liquid chromatography-mass spectrometry (LC-MS). Seven hundred and eight spots were detected, and 18 protein spots showed significant difference in their intensity (p < 0.05) between the two groups. In response to nano-Se supplementation, the expression of 8 proteins was higher, and 5 proteins were lower in nano-Se supplemented group compared to control group. The functions of the differentially expressed proteins indicate that the high dose of selenium supplementation induced a dietary stress. Selenium supplementation may influence the metabolism of fatty acids and carbohydrates and antioxidant system, and increase the quantity of cytoskeletal actin and the expression of actin regulatory protein as well. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  8. Effect of Zirconia and Alumina Fillers on the Microstructure and Mechanical Strength of Dental Glass Ionomer Cements

    PubMed Central

    Souza, Júlio C. M.; Silva, Joel B.; Aladim, Andrea; Carvalho, Oscar; Nascimento, Rubens M.; Silva, Filipe S.; Martinelli, Antonio E.; Henriques, Bruno

    2016-01-01

    Background: Glass-ionomer cements perform a protective effect on the dentin-pulp complex considering the F ions release and chemical bonding to the dental structures. On the other hand, those materials have poor physic-mechanical properties in comparison with the restorative resin composite. The main aim of this work was to evaluate the influence of zirconia and/or alumina fillers on the microstructure and strength of a resin modified glass-ionomer cement after thermal cycling. Methods: An in vitro experimental study was carried out on 9 groups (n = 10) of cylindrical samples (6 x 4 mm) made from resin modified glass-ionomer (Vitremer, 3M, USA) with different contents of alumina and/or zirconia fillers. A nano-hybrid resin composite was tested as a control group. Samples were mechanically characterized by axial compressive tests and electron scanning microscopy (SEM) coupled to energy dispersive X-ray spectrophotometry (EDS), before and after thermal cycling. Thermal cycling procedures were performed at 3000, 6000 and 10000 cycles in Fusayama´s artificial saliva at 5 and 60 oC. Results: An improvement of compressive strength was noticed on glass-ionomer reinforced with alumina fillers in comparison with the commercial glass ionomer. SEM images revealed the morphology and distribution of alumina or zirconia in the microstructure of glass-ionomers. Also, defects such as cracks and pores were detected on the glass-ionomer cements. The materials tested were not affected by thermal cycling in artificial saliva. Conclusion: Addition of inorganic particles at nano-scale such as alumina can increase the mechanical properties of glass-ionomer cements. However, the presence of cracks and pores present in glass-ionomer can negatively affect the mechanical properties of the material because they are areas of stress concentration. PMID:27053969

  9. Cuticular Membrane of Fuyu Persimmon Fruit Is Strengthened by Triterpenoid Nano-Fillers

    PubMed Central

    Tsubaki, Shuntaro; Sugimura, Kazuki; Teramoto, Yoshikuni; Yonemori, Keizo; Azuma, Jun-ichi

    2013-01-01

    The mechanical defensive performance of fruit cuticular membranes (CMs) is largely dependent on the molecular arrangement of their constituents. Here, we elucidated nano-sized interactions between cutin and triterpenoids in the cuticular matrix of Fuyu persimmon fruits ( Diospyros kaki Thunb. cv. Fuyu), focusing on the mechanical properties using a combination of polymer analyses. The fruit CMs of Fuyu were primarily composed of wax (34.7%), which was predominantly triterpenoids followed by higher aliphatic compounds, and cutin (48.4%), primarily consisting of 9,10-epoxy-18-hydroxyoctadecanoic acid and 9,10,18-trihydroxyoctadecanoic acid. Based on the tensile tests of the CM, the removal of wax lead to a considerable decrease in the maximum stress and elastic modulus accompanied by an increase in the maximum strain, indicating that wax is of significant importance for maintaining the mechanical strength of the CM. Wide-angle X-ray diffraction and relaxation time measurements using solid-state 13C nuclear magnetic resonance indicated that the triterpenoids in the cuticular matrix construct a nanocomposite at a mixing scale below 20-24 nm; however, the higher aliphatic compounds did not exhibit clear interactions with cutin. The results indicated that the triterpenoids in the cuticular matrix endow toughness to the CM by functioning as a nanofiller. PMID:24086493

  10. Enhanced NIR downconversion luminescence by precipitating nano Ca5(PO4)3F crystals in Eu2+-Yb3+ co-doped glass

    NASA Astrophysics Data System (ADS)

    Li, Chen; Song, Zhiguo; Li, Yongjin; Lou, Kai; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Wang, Xue; Wang, Qi; Wan, Ronghua

    2013-10-01

    Eu2+-Yb3+ co-doped transparent glass-ceramic containing nano-Ca5(PO4)3F (FAP) was prepared in reducing atmosphere. XRD and TEM analysis indicated that nano-FAP about 40 nm precipitated homogeneously in glass matrix after heat treatment. Confirmed by spectroscopy measurements, the crystal-like absorption and emission of Eu2+ indicated the partition of Eu2+ into FAP nanocrystals in glass ceramic. NIR emission due to the transition 2F→2F of Yb3+ ions (about 980-1100 nm) was observed from glasses under ultraviolet excitation, ascribed to downconversion from Eu2+ to Yb3+, which can be enhanced by precipitating nano-FAP crystals. The results indicated that Eu2+-Yb3+ co-doped glass-ceramic embedding with nano-FAP is a promising candidate as downconversion materials for enhancing conversion efficiency of solar cells.

  11. Joint Workplan on Filler Investigations for DPCs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Brady, Patrick Vane

    2017-12-01

    This workplan addresses filler attributes (i.e., possible requirements), assumptions needed for analysis, selection of filler materials, testing needs, and a long-range perspective on R&D activities leading to filler demonstration and a safety basis for implementation.

  12. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules.

    PubMed

    Meredith, Alicea N; Harper, Bryan; Harper, Stacey L

    2016-01-01

    Encapsulation technology involves entrapping a chemical active ingredient (a.i.) inside a hollow polymeric shell and has been applied to commercial pesticide manufacturing for years to produce capsule suspension (CS) formulations with average particle sizes in the micron-scale. The few literature sources that investigate the environmental fate and toxicity to non-target organisms of encapsulated commercially available pesticide products with regard to capsule size report on average sizes between 20 and 50 μm. Here, we have identified a CS formulation with an average capsule size of approximately 2 μm with some capsules extending into the nanometer scale (~200 nm). Determining how carrier size influences toxicity is important to understanding if current pesticide risk assessments are sufficient to protect against products that incorporate encapsulation technology. Here, a commercial pyrethroid CS pesticide with lambda-cyhalothrin (λ-Cy) as the a.i. was separated into two suspensions, a fraction consisting of nano-sized capsules (~250 nm) and a fraction of micron-sized capsules (~2200 nm) in order to investigate the influence of capsule size on toxicity to embryonic zebrafish, Danio rerio. Toxicity was evaluated 24h after exposure to equivalent amounts of a.i. by the presence and severity of pyrethroid-specific tremors, 14 sublethal developmental impacts and mortality. Fish exposed to greater than 20 μg a.i. L(-1) technical λ-Cy or formulated product experienced curvature of the body axis, pericardial edema, craniofacial malformations, and mortality. Exposure to the unfractionated formulation, micro fraction, nano fraction and technical a.i. resulted in no significant differences in the occurrence of sublethal impacts or mortality; however, the technical a.i. exposure resulted in significantly less fish experiencing tremors and shorter tremors compared to any of the formulated product exposures. This suggests that the capsule size does not influence the toxic

  13. [Effect of two-step sintering method on properties of zirconia ceramic].

    PubMed

    Huang, Hui; Wei, Bin; Zhang, Fu-Qiang; Sun, Jing; Gao, Lian

    2008-04-01

    To study the influence of two-step sintering method on the sintering property, mechanical properties and microstructure of zirconia ceramic. The nano-size zirconia powder were compacted and divided into two groups, one group for one-step sintering method, another group for two-step sintering method. All samples sintered at different temperature. The relative density, three-bend strength, HV hardness, fracture toughness and microstructure of sintered block were investigated. Two-step sintering method influenced the sintering property and mechanical properties of zirconia ceramic. The maximal relative density was 98.49% at 900 degrees C/1,450 degrees C sintering temperature. There were significant difference of mechanical properties between one-step sintering and two-step sintering, the three-bend strength and fracture toughness declined, hardness increased at two-step sintering. The three-bend strength, HV hardness and fracture toughness reached to maximum value as 1,059.08 MPa +/- 75.24 MPa, 1,377.00 MPa +/- 16.37 MPa and 5.92 MPa x m1/2 +/- 0.37 MPa x m1/2 at 900 degrees C/1,450 degrees C sintering temperature respectively. Microscopy revealed the relationship between the porosity and shapes of grains was correlated to strength of the zirconia ceramics. Despite of the two-step sintering method influences the properties of zirconia, it also is a promising esthetic all-ceramic dental material.

  14. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  15. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr; CEA, LETI, Minatec Campus, 38000 Grenoble; Gravoueille, M.

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlightedmore » that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.« less

  16. Engulfment of ceramic particles by fibroblasts does not alter cell behavior.

    PubMed

    Faye, Pierre-Antoine; Roualdes, Olivier; Rossignol, Fabrice; Hartmann, Daniel Jean; Desmoulière, Alexis

    2017-02-17

    Despite many studies, the impact of ceramic particles on cell behavior remains unclear. The aim of the present study was to investigate the effects of nano-sized ceramic particles on fibroblastic cells. Fibroblasts (dermal fibroblasts freshly isolated from skin samples and WI26 fibroblastic cells) were cultured in a monolayer in the presence of alumina or cerium-zirconia particles (≈50 nm diameter) at two concentrations (100 or 500 μg ml -1 ). Fluorescent alumina particles were also used. The following properties were analyzed: cell morphology, cytoplasmic ceramic incorporation (using confocal and transmission electron microscopy) and migration (using a silicon insert). Sedimentation field-flow fractionation (SdFFF) was also used to evaluate the rate of incorporation of ceramic particles into the cells. Finally, after treatment with various concentrations of ceramic particles, fibroblasts were also included in a collagen type I lattice constituting a dermal equivalent (DE), and the collagen lattice retraction and cell proliferation were evaluated. In monolayer conditions, the presence of both alumina and cerium-zirconia ceramic particles did not cause any deleterious effects on cultured cells (dermal fibroblast and WI26 cells) and cell fate was not affected in any way by the presence of ceramic particles in the cytoplasm. Confocal (using fluorescent alumina particles) and electron microscopy (using both alumina and cerium-zirconia particles) showed that ceramic particles were internalized in the WI26 cells. Using fluorescent membrane labeling and fluorescent alumina particles, a membrane was observed around the particle-containing vesicles present in the cytoplasm. Electron microscopy on WI26 cells showed the presence of a classical bilayer membrane around the ceramic particles. Interestingly, SdFFF confirmed that some dermal fibroblasts contained many alumina ceramic particles while others contained very few; in WI26 cells, the uptake of alumina ceramic was

  17. Influence of particle size on water absorption capacity and mechanical properties of polyethylene-wood flour composites

    NASA Astrophysics Data System (ADS)

    Zykova, A. K.; Pantyukhov, P. V.; Kolesnikova, N. N.; Popov, A. A.; Olkhov, A. A.

    2015-10-01

    Biocomposites based on low density polyethylene (LDPE) and birch wood flour (WF) were investigated. The mechanical properties and water absorption capacity were examined depending on the particle size of a filler in biocomposites. The aim of the paper is the investigation of composite properties depending on the filler particle size. The filler particle sizes were 0-80 µm, 80-140 µm, 140-200 µm, and 0-200 µm. The tensile strength of composite samples varied within the range 5.7-8.2 MPa. Elongation at break of composites varied within the range 5.1-7.5%. Highest mechanical properties were found in composites with the lowest filler fraction. Highest water absorption was observed in composition with a complex fraction of the filler. The influence of the filler particle size on composite properties was shown. It was found that an increase of the filler particle size decreases mechanical parameters and increases water absorption.

  18. Fluorine sites in glasses and transparent glass-ceramics of the system Na{sub 2}O/K{sub 2}O/Al{sub 2}O{sub 3}/SiO{sub 2}/BaF{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocker, Christian, E-mail: christian.bocker@uni-jena.d; Munoz, Francisco; Duran, Alicia

    2011-02-15

    The transparent glass-ceramics obtained in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} show homogeneously dispersed BaF{sub 2} nano crystals with a narrow size distribution. The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses and the respective glass-ceramics in order to clarify the crystallization mechanism and the role of fluorine during crystallization. With an increasing annealing time, the concentration and also the number of crystals remain approximately constant. With an increasing annealing temperature, the crystalline fraction increases until a saturation limit is reached, while the number of crystals decreases and the size of the crystals increases.more » Fluoride in the glassy network occurs as Al-F-Ba, Al-F-Na and also as Ba-F structures. The latter are transformed into crystalline BaF{sub 2} and fluoride is removed from the Al-F-Ba/Na bonds. However, some fluorine is still present in the glassy phase after the crystallization. -- Graphical abstract: The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} and the respective glass-ceramics with BaF{sub 2} nano crystals in order to clarify the crystallization mechanism and the role of fluorine during crystallization. Display Omitted Research highlights: {yields} BaF{sub 2} nano crystals are precipitated from a silicate glass system. {yields} Ostwald ripening during the late stage of crystallization does not occur. {yields} Fluorine in the glass is coordinated with Ba as well as Al together with Ba or Na.{yields} In the glass-ceramics, the residual fluorine is coordinated as Al-F-Ba/Na.« less

  19. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers.

    PubMed

    Zhao, Jian; Liu, Chang-Sheng; Yuan, Yuan; Tao, Xin-Yi; Shan, Xiao-Qian; Sheng, Yan; Wu, Fan

    2007-03-01

    Hb (hemoglobin)-loaded particles (HbP) encapsulated by a biodegradable polymer used as oxygen carrier were prepared. A modified double emulsion and solvent diffusion/evaporation method was adopted. All experiments were performed based on two types of biodegradable polymers, poly(epsilon-caprolactone) (PCL) and poly(epsilon-caprolactone-ethylene glycol) (PCL-PEG). The biodistribution and the survival time in blood of the particles were investigated in a mouse model. Encapsulation efficiency and pore-connecting efficiency were evaluated by a novel sulfocyanate potassium method. The influence of process parameters on the particle size and pore-connecting efficiency (PCE%) of nanoparticles have been discussed. The prepared conditions: solvent, external aqueous phase, pressure were discussed. The system utilizing dichloromethane (DCM)/ethyl acetate (EA) as a solvent with an unsaturated external aqueous phase yielded the highest encapsulation efficiency (87.35%) with a small mean particle size (153 nm). The formation of porous channels was attributed to the diffusion of solvent. The PCE% was more sensitive to the rate of solvent diffusion that was obviously affected by the preparation temperature. The PCE% reached 87.47% when PCL-PEG was employed at 25 degrees C. P(50) of HbP was 27 mmHg, which does not seem to be greatly affected by the encapsulation procedure. In vivo, following intravenous injection of 6-coumarin labeled HbP, the major organ accumulating Hb-loaded particles was the liver. The half-life of nano-sized PCL HbP was 3.1 times as long as the micro-sized PCL HbP. Also, Nano-sized as well as a PEGylated surface on HbP is beneficial for prolonged blood residence (7.2 fold increase).

  20. Novel Dental Composites Reinforced with Zirconia-Silica Ceramic Nanofibers

    PubMed Central

    Guo, Guangqing; Fan, Yuwei; Zhang, Jian-Feng; Hagan, Joseph; Xu, Xiaoming

    2011-01-01

    Objective To fabricate and characterize dental composites reinforced with various amounts of zirconia-silica (ZS) or zirconia-yttria-silica (ZYS) ceramic nanofibers. Methods Control composites (70 wt% glass particle filler, no nanofibers) and experimental composites (2.5, 5.0, and 7.5 wt% ZS or ZYS nanofibers replacing glass particle filler) were prepared by blending 29 wt% dental resin monomers, 70 wt% filler, and 1.0 wt% initiator, and polymerized by either heat or dental curing light. Flexural strength (FS), flexural modulus (FM), energy at break (EAB), and fracture toughness (FT) were tested after the specimens were stored in 37 °C deionized water for 24 h, 3 months, or 6 months. Degree of conversion (DC) of monomers in composites was measured using Fourier transformed near-infrared (FT-NIR) spectroscopy. Fractured surfaces were observed by field-emission scanning electron microscope (FE-SEM). The data were analyzed using ANOVA with Tukey’s Honestly Significant Differences test used for post hoc analysis. Results Reinforcement of dental composites with ZS or ZYS nanofibers (2.5% or 5.0%) can significantly increase the FS, FM and EAB of dental composites over the control. Further increase the content of ZS nanofiber (7.5%), however, decreases these properties (although they are still higher than those of the control). Addition of nanofibers did not decrease the long-term mechanical properties of these composites. All ZS reinforced composites (containing 2.5%, 5.0% and 7.5% ZS nanofibers) exhibit significantly higher fracture toughness than the control. The DC of the composites decreases with ZS nanofiber content. Significance Incorporation of ceramic nanofibers in dental composites can significantly improve their mechanical properties and fracture toughness and thus may extend their service life. PMID:22153326

  1. Novel dental composites reinforced with zirconia-silica ceramic nanofibers.

    PubMed

    Guo, Guangqing; Fan, Yuwei; Zhang, Jian-Feng; Hagan, Joseph L; Xu, Xiaoming

    2012-04-01

    To fabricate and characterize dental composites reinforced with various amounts of zirconia-silica (ZS) or zirconia-yttria-silica (ZYS) ceramic nanofibers. Control composites (70 wt% glass particle filler, no nanofibers) and experimental composites (2.5, 5.0, and 7.5 wt% ZS or ZYS nanofibers replacing glass particle filler) were prepared by blending 29 wt% dental resin monomers, 70 wt% filler, and 1.0 wt% initiator, and polymerized by either heat or dental curing light. Flexural strength (FS), flexural modulus (FM), energy at break (EAB), and fracture toughness (FT) were tested after the specimens were stored in 37°C deionized water for 24h, 3 months, or 6 months. Degree of conversion (DC) of monomers in composites was measured using Fourier transformed near-infrared (FT-NIR) spectroscopy. Fractured surfaces were observed by field-emission scanning electron microscope (FE-SEM). The data were analyzed using ANOVA with Tukey's Honestly Significant Differences test used for post hoc analysis. Reinforcement of dental composites with ZS or ZYS nanofibers (2.5% or 5.0%) can significantly increase the FS, FM and EAB of dental composites over the control. Further increase the content of ZS nanofiber (7.5%), however, decreases these properties (although they are still higher than those of the control). Addition of nanofibers did not decrease the long-term mechanical properties of these composites. All ZS reinforced composites (containing 2.5%, 5.0% and 7.5% ZS nanofibers) exhibit significantly higher fracture toughness than the control. The DC of the composites decreases with ZS nanofiber content. Incorporation of ceramic nanofibers in dental composites can significantly improve their mechanical properties and fracture toughness and thus may extend their service life. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  3. Effect of fluoride toothpaste with nano-sized trimetaphosphate on enamel demineralization: An in vitro study.

    PubMed

    Danelon, Marcelle; Pessan, Juliano Pelim; Souza-Neto, Francisco Nunes; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo

    2017-06-01

    This study evaluated the effect of toothpastes containing 1100ppm F associated or not with micrometric or nano-sized sodium trimetaphosphate (TMP) on enamel demineralization in vitro, using a pH cycling model. Bovine enamel blocks (4mm×4mm, n=96) were randomly allocated into eight groups (n=12), according to the test toothpastes: Placebo (without fluoride or TMP); 1100ppm F (1100F); 1100F plus micrometric TMP at concentrations of 1%, 3% or 6%; and 1100F plus nanosized TMP at 1%, 3% or 6%. Blocks were treated 2×/day with slurries of toothpastes and submitted to a pH cycling regimen for five days. Next, final surface hardness (SHf), integrated hardness loss (IHL), differential profile of integrated hardness loss (ΔIHL) and enamel fluoride (F) concentrations were determined. Data were analyzed by ANOVA and Student-Newman-Keuls' test (p<0.05). The use of 1100F/3%TMPnano led to SHf 30% higher (p<0.001) and IHL∼80% lower (p<0.001) when compared to 1100F. This toothpaste also resulted in ∼64% reduction of mineral loss (ΔIHL) when compared to 1100F. Moreover, the addition of nano-sized TMP promoted increases in enamel F uptake of 90%, 160% and 100%, respectively for the concentrations of 1%, 3% and 6%, when compared to 1100F (p<0.001). The addition of nano-sized TMP at 3% to a conventional toothpaste significantly decreased enamel demineralization when compared to its counterparts without TMP or supplemented with micrometric TMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Inverardi, Luca; Ricordi, Camillo; Stabler, Cherie L

    2012-10-01

    Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Nano-plastics in the aquatic environment.

    PubMed

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  6. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    PubMed

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  7. Thermal Energy Transfer Through All Ceramic Restorations

    DTIC Science & Technology

    2016-06-01

    particles, but newer generations have reduced the size and narrowed the range of particles in the matrix . This evolution in ceramics improved the...crystalline second phase. These ceramics have a lithium silicate glass matrix with approximately 70% lithium-disilicate crystal fill. The micron size and... composition category described by Giordano and McLaren are the Interpenetrating Phase Ceramics . These ceramics were developed as an alternative to the

  8. Synergistic Effects of Nano-Sized Titanium Dioxide and Zinc on the Photosynthetic Capacity and Survival of Anabaena sp.

    PubMed Central

    Tang, Yulin; Li, Shuyan; Qiao, Junlian; Wang, Hongtao; Li, Lei

    2013-01-01

    Anabaena sp. was used to examine the toxicity of exposure to a nano-TiO2 suspension, Zn2+ solution, and mixtures of nano-TiO2 and Zn2+ suspensions. Typical chlorophyll fluorescence parameters, including effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse-amplitude modulated fluorometer. Nano-TiO2 particles exhibited no significant toxicity at concentrations lower than 10.0 mg/L. The 96 h concentration for the 50% maximal effect (EC50) of Zn2+ alone to Anabaena sp. was 0.38 ± 0.004 mg/L. The presence of nano-TiO2 at low concentrations (<1.0 mg/L) significantly enhanced the toxicity of Zn2+ and consequently reduced the EC50 value to 0.29 ± 0.003 mg/L. However, the toxicity of the Zn2+/TiO2 system decreased with increasing nano-TiO2 concentration because of the substantial adsorption of Zn2+ by nano-TiO2. The toxicity curve of the Zn2+/TiO2 system as a function of incremental nano-TiO2 concentrations was parabolic. The toxicity significantly increased at the initial stage, reached its maximum, and then decreased with increasing nano-TiO2 concentration. Hydrodynamic sizes, concentration of nano-TiO2 and Zn2+ loaded nano-TiO2 were the main parameters for synergistic toxicity. PMID:23852017

  9. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    PubMed

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection.

    PubMed

    Singha, Debal Kanti; Mahata, Partha

    2017-08-29

    Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.

  11. Spectroscopic properties of Nd3+ doped transparent oxyfluoride glass ceramics.

    PubMed

    Yu, Yunlong; Chen, Daqin; Ma, En; Wang, Yuansheng; Hu, Zhongjian

    2007-07-01

    In this paper, the spectroscopic properties of Nd(3+) doped transparent oxyfluoride glass ceramics containing LaF(3) nano-crystals were systematically studied. The formation and distribution of LaF(3) nano-crystals in the glass matrix were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Based on Judd-Ofelt theory, the intensity parameters Omega(t) (t=2, 4, 6), spontaneous emission probability, radiative lifetime, radiative quantum efficiency, width of the emission line and stimulated emission cross-section of Nd(3+) were evaluated. Particularly, the effect of Nd(3+) doping level on them was discussed. With the increase of Nd(3+) concentration in the glass ceramic, the experimental luminescence lifetime, radiative quantum efficiency and stimulated emission cross-section vary from 353.4 micros, 78.3% and 1.86 x 10(-20)cm(2) to 214.7 micros, 39.9% and 1.52 x 10(-20)cm(2), respectively. The comparative study of Nd(3+) spectroscopic parameters in different hosts suggests that the investigated glass ceramic system is potentially applicable as laser materials for 1.06 microm emission.

  12. Development of lightweight ceramic ablators and arc-jet test results

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.

    1994-01-01

    Lightweight ceramic ablators (LCA's) were recently developed at Ames to investigate the use of low density fibrous substrates and organic resins as high temperature, high strength ablative heat shields. Unlike the traditional ablators, LCA's use porous ceramic/carbon fiber matrices as substrates for structural support, and polymeric resins as fillers. Several substrates and resins were selected for the initial studies, and the best performing candidates were further characterized. Three arcjet tests were conducted to determine the LCA's thermal performance and ablation characteristics in a high enthalpy, hypersonic flow environment. Mass loss and recession measurements were obtained for each sample at post test, and the recession rates were determined from high speed motion films. Surface temperatures were also obtained from optical pyrometers.

  13. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  14. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    NASA Astrophysics Data System (ADS)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  15. Ceramic pore channels with inducted carbon nanotubes for removing oil from water.

    PubMed

    Chen, Xinwei; Hong, Liang; Xu, Yanfang; Ong, Zheng Wei

    2012-04-01

    Water contaminated with tiny oil emulsions is costly and difficult to treat because of the colloidal stability and deformable nature of emulsified oil. This work utilizes carbon nanotubes (CNTs) in macro/mesopore channels of ceramic membrane to remove tiny oil droplets from water. The CNTs were implanted into the porous ceramic channels by means of chemical vapor deposition. Being hydrophobic in nature and possessing an interfacial curvature at nanoscale, CNTs enabled tiny oil emulsion in submicrometer and nano scales to be entrapped while permeating through the CNTs implanted pore channels. Optimizing the growth condition of the CNTs resulted in a uniform distribution of CNT grids, which allowed the development of lipophilic layers during filtration. These lipo-layers drastically enhanced the separation performance. The filtration capability of CNT-ceramic membrane was assessed by the purification of a dilute oil-in-water (o/w) emulsion containing ca. 210 ppm mineral oil 1600 ppm emulsifier, and a trace amount of dye, a proxy polluted water source. The best CNT-tailored ceramic membrane, prepared under the optimized CNT growth condition, claimed 100% oil rejection rate and a permeation flux of 0.6 L m(-2) min(-1), driven by a pressure drop of ca. 1 bar for 3 days on the basis of UV measurement. The CNT-sustained adsorption complements the size-exclusion mechanism in removing soluble oil.

  16. Nano-sized graphene flakes: insights from experimental synthesis and first principles calculations.

    PubMed

    Lin, Pin-Chun; Chen, Yi-Rui; Hsu, Kuei-Ting; Lin, Tzu-Neng; Tung, Kuo-Lun; Shen, Ji-Lin; Liu, Wei-Ren

    2017-03-01

    In this study, we proposed a cost-effective method for preparing graphene nano-flakes (GNFs) derived from carbon nanotubes (CNTs) via three steps (pressing, homogenization and sonication exfoliation processes). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), laser scattering, as well as ultraviolet-visible and photoluminescence (PL) measurements were carried out. The results indicated that the size of as-synthesized GNFs was approximately 40-50 nm. Furthermore, we also used first principles calculations to understand the transformation from CNTs to GNFs from the viewpoints of the edge formation energies of GNFs in different shapes and sizes. The corresponding photoluminescence measurements of GNFs were carried out in this work.

  17. Microstructurally tailored ceramics for advanced energy applications by thermoreversible gelcasting

    NASA Astrophysics Data System (ADS)

    Shanti, Noah Omar

    Thermoreversible gelcasting (TRG) is an advantageous technique for rapidly producing bulk, net-shape ceramics and laminates. In this method, ceramic powder is suspended in warm acrylate triblock copolymer/alcohol solutions that reversibly gel upon cooling by the formation of endblock aggregates, to produce slurries which are cast into molds. Gel properties can be tailored by controlling the endblock and midblock lengths of the copolymer network-former and selecting an appropriate alcohol solvent. This research focuses on expanding and improving TRG techniques, focusing specifically on advanced energy applications including the solid oxide fuel cell (SOFC). Rapid drying of filled gels can lead to warping and cracking caused by high differential capillary stresses. A new drying technique using concentrated, alcohol-based solutions as liquid desiccants (LDs) to greatly reduce warping is introduced. The optimal LD is a poly(tert-butyl acrylate)/isopropyl alcohol solution with 5 mol% tert-butyl acrylate units. Alcohol emissions during drying are completely eliminated by combining initial drying in an LD with final stage drying in a vacuum oven having an in-line solvent trap. Porous ceramics are important structures for many applications, including SOFCs. Pore network geometries are tailored by the addition of fugitive fillers to TRG slurries. Uniform spherical, bimodal spherical and uniform fibrous fillers are used. Three-dimensional pore structures are visualized by X-ray computed tomography, allowing for direct measurements of physical parameters such as concentration and morphology as well as transport properties such as tortuosity. Tortuosity values as low as 1.52 are achieved when 60 vol% of solids are uniform spherical filler. Functionally graded laminates with layers ranging from 10 mum to > 1 mm thick are produced with a new technique that combines TRG with tape casting. Gels used for bulk casting are not suitable for use with tape casting, and appropriate base

  18. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less

  19. Chemical Routes to Ceramics with Tunable Properties and Structures: Chemical Routes to Nano and Micro-Structured Ceramics

    DTIC Science & Technology

    2009-12-20

    condensations, ordered macroporous arrays of titania , zirconia, and alumina . Other work employing the silica templates has yielded macroporous carbons...Final 3. DATES COVERED (From - To) 05/01/05-09/30/09 4. TITLE AND SUBTITLE Chemical Routes to Ceramics with Tunable Properties and...ORGANIZATION REPORT NUMBER 9-2009 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Office of Scientific Research Ceramic and

  20. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler...

  1. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler...

  2. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler...

  3. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler...

  4. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler...

  5. Evaluating Weathering of Food Packaging Polyethylene-Nano-clay Composites: Release of Nanoparticles and their Impacts.

    PubMed

    Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E

    2018-01-01

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites

  6. Optimizing outcomes with polymethylmethacrylate fillers.

    PubMed

    Gold, Michael H; Sadick, Neil S

    2018-06-01

    The ideal filler should be long-lasting, biocompatible, chemically inert, soft and easy to use, and have a long history of safety. This review focuses on the evolution and development of the PMMA-collagen gel, Bellafill, and the 10 years of postmarketing experience of Bellafill since it received premarket approval (PMA) from the FDA as Artefill in 2006. Artefill was rebranded to Bellafill in 2015. The authors conducted a literature search on PubMed for key articles describing the steps in which Arteplast, a PMMA filler developed in 1989, led to the development of Bellafill, the only PMMA filler approved by the US FDA for the treatment of nasolabial folds and acne scar correction. The factors governing efficacy and safety were also evaluated for the major PMMA fillers available in the world. The process of manufacturing and purifying PMMA has played a major role in minimizing adverse events for Bellafill. Postmarketing surveillance data for the 2007-2016 period show that for more than 530 000 Bellafill syringes distributed worldwide, 11 confirmed granulomas (excluding clinical trial data) (0.002% of syringes sold) have been reported. Data on other PMMA fillers are limited and inconsistent. The authors suggest that adverse events are often attributable to lack of proficiency in treatment technique and other factors. Bellafill has demonstrated an excellent safety and effectiveness profile in multiple clinical studies, customer feedback, and 10 years of postmarketing surveillance experience. Adverse events occur with all fillers for a variety of reasons. In addition to quality of the product, injector skill and technique are critical to ensuring good clinical outcomes. © 2018 Wiley Periodicals, Inc.

  7. Magnetic high throughput screening system for the development of nano-sized molecularly imprinted polymers for controlled delivery of curcumin.

    PubMed

    Piletska, Elena V; Abd, Bashar H; Krakowiak, Agata S; Parmar, Anitha; Pink, Demi L; Wall, Katie S; Wharton, Luke; Moczko, Ewa; Whitcombe, Michael J; Karim, Kal; Piletsky, Sergey A

    2015-05-07

    Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.

  8. Preparation of ceramic filler from reusing sewage sludge and application in biological aerated filter for soy protein secondary wastewater treatment.

    PubMed

    Wu, Suqing; Qi, Yuanfeng; Yue, Qinyan; Gao, Baoyu; Gao, Yue; Fan, Chunzhen; He, Shengbing

    2015-01-01

    Dehydrated sewage sludge (DSS) and clay used as raw materials for preparation of novel media-sludge ceramic filler (SCF) and SCF employed in a lab-scale up-flow biological aerated filter (BAF) were investigated for soy protein secondary wastewater treatment. Single factor experiments were designed to investigate the preparation of SCF, and the characteristics (microstructure properties, toxic metal leaching property and other physical properties) of SCF prepared under the optimum conditions were examined. The influences of media height, hydraulic retention time (HRT) and air-liquid ratio (A/L) on chemical oxygen demand (CODcr) and ammonia nitrogen (NH4(+)-N) removal rate were studied. The results showed that the optimum addition of DSS was approximately 25.0 wt% according to the physical properties of SCF (expansion ratio of 53.0%, v/v, water absorption of 8.24 wt%, bulk density of 350.4 kg m(-3) and grain density of 931.5 kg m(-3)), and the optimum conditions of BAF system were media height of 75.0 cm, HRT of 10.0 h and A/L of 15:1 in terms of CODcr and NH4(+)-N removal rate (91.02% and 90.48%, respectively). Additionally, CODcr and NH4(+)-N (81.6 and 15.3 mg L(-1), respectively) in the final effluent of BAF system met the national standard (CODcr ≤ 100 mg L(-1), NH4(+)-N ≤ 25.0 mg L(-1), GB 18918-2002, secondary standard). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Magnetic Nano-Materials: Truly Sustainable Green Chemistry Nano Catalysis

    EPA Science Inventory

    We envisioned a novel nano-catalyst system, which can bridge the homogenous and heterogeneous system, and simultaneously be cheaper, easily accessible (sustainable) and possibly does not require elaborate work-up. Because of its nano-size, i.e. high surface area, the contact betw...

  10. FILLERS-Q: an instrument for assessing patient experiences after treatment with facial injectable soft tissue fillers.

    PubMed

    Sclafani, Anthony P; Pizzi, Laura; Jutkowitz, Eric; Mueller, Nancy; Jung, Matthew

    2010-08-01

    Patient-reported outcomes data are limited after injectable soft tissue filler treatment. Patient-reported outcome measures (PROMs) are becoming integral to medical practices in other specialties and will become so as well in facial plastic surgery. The obvious differences in types of disorders treated and the outcomes of primary importance seen between general medical/surgical and facial plastic surgery practices make institution of standard outcomes studies difficult in facial plastic surgery. However, understanding the patient's experience and satisfaction with treatment is essential to continue to provide excellent care to facial aesthetic patients. This article describes use of a new survey instrument, Facial Injectables: Longevity, Late and Early Reactions and Satisfaction Questionnaire (FILLERS-Q), in assessing patient response to facial injections of soft tissue fillers. FILLERS-Q is a 43-item questionnaire that captures patient demographics (4 items), patient satisfaction with treatment (10 items), procedure-related events (3 to 7 items), impact on relationships (9 to 15 items), and economic considerations related to dermal filler treatment (3 to 7 items). The results provide a "snapshot" of patients treated in an individual surgeon's practice. (c) Thieme Medical Publishers.

  11. Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics.

    PubMed

    Sun, Zheng; Li, Lingxia; Yu, Shihui; Kang, Xinyu; Chen, Siliang

    2017-10-24

    Lead-free Ba 1-x Sm 2x/3 Zr 0.15 Ti 0.85 O 3 (BSZT) ceramics were synthesized by a solid state reaction route. The microstructure, dielectric relaxor behavior and energy storage properties of BSZT ceramics were studied. The growth of grain size was suppressed with the increase of Sm addition and kept in the submicrometer scale. Successive substitution of Sm 3+ for Ba 2+ disrupted the long-range dipole and promoted the increase of polar nano-region (PNR) size, resulting in the enhanced degree of relaxor behavior. The increasing PNR size also lead to the slimmer hysteresis loops and improved the energy storage efficiency. Furthermore, high saturated polarization (P max ) and low remnant polarization (P r ) were obtained due to the formation of defect dipoles, which facilitated the switch of PNRs and contributed to the enhancement of energy storage density. The x = 0.003 sample was found to exhibit a higher energy storage density of 1.15 J cm -3 and an energy storage efficiency of 92%. The result revealed that the BSZT ceramics may be a good candidate for energy storage application.

  12. High resolution photolithography using arrays of polystyrene and SiO2 micro- and nano-sized spherical lenses

    NASA Astrophysics Data System (ADS)

    Dvoretckaia, L. N.; Mozharov, A. M.; Mukhin, I. S.

    2017-11-01

    Photolithography mask made of close-packed array of micro- and nano-sized spherical lenses allows to obtain the ordered structures and provides highest “optical resolution/cost” ratio between all existing photolithography and laser direct writing methods. In this letter, we present results of modeling the propagation of a plane wave falling on the array of quartz (SiO2) microspherical lenses and focusing in the image reverse photoresist layer. We present here experimental results on fabrication of ordered arrays of submicron wells and columns and substrate preparation for growth of monocrystalline nanowires on metal surface using photolithography with mask of SiO2 microspheres. Such ordered nano-sized arrays of wells and columns can be used in fabrication of further growth of monocrystalline nanowires, quantum dots and production of plasmon structures.

  13. Characterization of Inorganic Filler Content, Mechanical Properties, and Light Transmission of Bulk-fill Resin Composites.

    PubMed

    Fronza, B M; Ayres, Apa; Pacheco, R R; Rueggeberg, F A; Dias, Cts; Giannini, M

    The aims of this study were to characterize inorganic content (IC), light transmission (LT), biaxial flexural strength (BFS), and flexural modulus (FM) of one conventional (layered) and four bulk-fill composites at different depths. Bulk-fill composites tested were Surefil SDR flow (SDR), Filtek Bulk Fill (FBF), Tetric EvoCeram Bulk Fill (TEC), and EverX Posterior (EXP). Herculite Classic (HER) was used as a control. Energy dispersive x-ray analysis and scanning electron microscopy were used to characterize filler particle composition and morphology. The LT through different composite thicknesses (1, 2, 3, and 4 mm) was measured using a laboratory-grade spectral radiometer system (n=5). For the BFS and FM tests, sets of eight stacked composite discs (0.5-mm thick) were prepared simulating bulk filling of a 4-mm-thick increment (n=8). SDR demonstrated larger, irregular particles than those observed in TEC or HER. Filler particles in FBF were spherical, while those in EXP were composed of fiberglass strands. The LT decreased with increased composite thickness for all materials. Bulk-fill composites allowed higher LT than the HER. Furthermore, HER proved to be the unique material, having lower BFS values at deeper regions. SDR, FBF, and TEC bulk-fill composites presented reduced FM with increasing composite depth. The bulk-fill composites investigated exhibited higher LT, independent of different filler content and characteristics. Although an increase in composite thickness reduced LT, the BFS of bulk-fill composites at deeper layers was not compromised.

  14. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  15. Thermal Analysis of Filler Reinforced Polymeric Composites

    NASA Astrophysics Data System (ADS)

    Ghadge, Mahesh Devidas

    Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is

  16. Wrinkle Fillers

    MedlinePlus

    ... A sore at the injection site Allergic reaction Necrosis (tissue death) The following rare side effects have ... injection, and do not inject dermal fillers into blood vessels in the face. Before injection, thoroughly inform the ...

  17. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  18. Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings

    NASA Astrophysics Data System (ADS)

    Zhu, Dong

    2017-10-01

    Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.

  19. Joining of ceramics for high performance energy systems. Mid-term progress report, August 1, 1979-March 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smeltzer, C E; Metcalfe, A G

    The subject program is primarily an exploratory and demonstration study of the use of silicate glass-based adhesives for bonding silicon-base refractory ceramics (SiC, Si/sub 3/N/sub 4/). The projected application is 1250 to 2050/sup 0/F relaxing joint service in high-performance energy conversion systems. The five program tasks and their current status are as follows. Task 1 - Long-Term Joint Stability. Time-temperature-transformation studies of candidate glass adhesives, out to 2000 hours simulated service exposure, are half complete. Task 2 - Environmental and Service Effects on Joint Reliability. Start up delayed due to late delivery of candidate glass fillers and ceramic specimens. Taskmore » 3 - Viscoelastic Damping of Glass Bonded Ceramics. Promising results obtained over approximately the same range of glass viscosity required for joint relaxation function (10/sup 7.5/ to 10/sup 9.5/ poise). Work is 90% complete. Task 4 - Crack Arrest and Crack Diversion by Joints. No work started due to late arrival of materials. Task 5 - Improved Joining and Fabrication Methods. Significant work has been conducted in the area of refractory pre-glazing and the application and bonding of high-density candidate glass fillers (by both hand-artisan and slip-spray techniques). Work is half complete.« less

  20. Characteristic Asphalt Concrete Wearing Course (ACWC) Using Variation Lime Filler

    NASA Astrophysics Data System (ADS)

    Permana, R. A.; Pramesti, F. P.; Setyawan, A.

    2018-03-01

    This research use of lime filler Sukaraja expected add durability layers of concrete pavement is asphalt damage caused by the weather and load traffic. This study attempts to know how much value characteristic Marshall on a mixture of concrete asphalt using lime filler. This research uses experimental methods that is with a pilot to get results, thus will look filler utilization lime on construction concrete asphalt variation in filler levels 2 %, 3 %, 4 %.The results showed that the use of lime filler will affect characteristic a mixture of concrete asphalt. The more filler chalk used to increase the value of stability. On the cretaceous filler 2 % value of stability is 1067,04 kg. When lime filler levels added to the levels of filler 4 %, the value of stability increased to 1213,92 kg. The flexibility increased the number of filler as levels lime 2 % to 4 % suggests that are conducted more stiff mix.

  1. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  2. High-frequency sonography of temporary and permanent dermal fillers.

    PubMed

    Grippaudo, Francesca Romana; Mattei, Mauro

    2010-08-01

    Dermal fillers are used widely; some have a permanent effect, whereas others are temporary. The aim of this study is to describe the ultrasonographic features of permanent and temporary fillers injected into patients for cosmetic purposes. Between December 2006 and April 2009, 36 subjects, aged 25-45, who had received lips or nasolabial fold filler augmentation, were enrolled for a high-frequency sonographic examination by a blinded investigator. The criteria for exclusion were a history of autoimmunity, infection, neoplastic diseases or episodes of local reactions to the injected filler. Twenty patients underwent a sonographic exam after the injection of a temporary filler (collagen or hyaluronic acid) by FRG; the rest were enrolled among patients seeking a consultation for further cosmetic reasons, but had been treated with an identifiable filler before. It was always possible to identify the filler at the site of injection. Seldom was it possible to discover a silent inflammatory reaction, otherwise unsuspected. The sonographic images differed according to the temporary or the permanent nature of the filler. Ultrasonography has proved to be a useful, non-invasive tool for the identification of the presence and type of the filler injected.

  3. Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential.

    PubMed

    Esteban, Patricia Perez; Jenkins, A Toby A; Arnot, Tom C

    2016-03-01

    In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages. The first approach consists of simple calculations to determine the spatial distribution of the components, based on measurements of particle size. It was found that nano-emulsion droplets are much more numerous than bacteria or bacteriophage, and due to their size and surface area they must be covering the surface of both cells and bacteriophage particles. Stabilisation of bacteriophages due to electrostatic forces and interaction with nano-emulsion droplets is suspected, since bacteriophages may be protected against inactivation due to 'charge shielding'. Zeta potential was measured for the individual components in the system, and for all of them combined. It was concluded that the presence of nano-emulsions could be reducing electrostatic repulsion between bacterial cells and bacteriophage, both of which are very negatively 'charged'. Moreover, nano-emulsions lead to more favourable interaction between bacteriophages and bacteria, enhancing the anti-microbial or killing effect. These findings are relevant since the physicochemical properties of nano-emulsions (i.e. particle size distribution and zeta potential) are key in determining the efficacy of the formulation against infection in the context of responsive burn wound dressings-which is the main target for this work. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  5. Preliminary investigation on the thermal conversion of automotive shredder residue into value-added products: Graphitic carbon and nano-ceramics.

    PubMed

    Mayyas, Mohannad; Pahlevani, Farshid; Handoko, Wilson; Sahajwalla, Veena

    2016-04-01

    Large increasing production volumes of automotive shredder residue (ASR) and its hazardous content have raised concerns worldwide. ASR has a desirable calorific value, making its pyrolysis a possible, environmentally friendly and economically viable solution. The present work focuses on the pyrolysis of ASR at temperatures between 950 and 1550°C. Despite the high temperatures, the energy consumption can be minimized as the decomposition of ASR can be completed within a short time. In this study, the composition of ASR was investigated. ASR was found to contain about 3% Ti and plastics of high calorific value such as polypropylene, polyethylene, polycarbonate and polyurethane. Based on thermogravimetric analysis (TGA) of ASR, the non-isothermal degradation kinetic parameters were determined using Coats-Redfern's and Freeman and Carroll methods. The evolved gas analysis indicated that the CH4 was consumed by the reduction of some oxides in ASR. The reduction reactions and the presence of Ti, silicates, C and N in ASR at 1550°C favor the formation of specific ceramics such as TiN and SiC. The presence of nano-ceramics along with a highly-crystalline graphitic carbon in the pyrolysis residues obtained at 1550°C was confirmed by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Raman imaging microscope (RIM) analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinementmore » of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.« less

  7. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    NASA Astrophysics Data System (ADS)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  8. Grain size effect on the giant dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} nanoceramics prepared by mechanosynthesis and spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Mohamad M., E-mail: mmohamad@kfu.edu.sa; Department of Physics, Faculty of Science, Assiut University in the New Valley, El-Kharga 72511; Yamada, Koji

    2014-04-21

    In the present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80 nm to ∼200 nm for the ceramics sintered at 800 °C and 975 °C, respectively. Further increase of SPS temperature to 1050 °C leads to micro-sized ceramics of 2–3 μm. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed inmore » CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3 × 10{sup 3}, 2.4 × 10{sup 4}, and 3.2 × 10{sup 4} for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14 × 10{sup 4}. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.« less

  9. Porous poly(L-lactic acid) sheet prepared by stretching with starch particles as filler for tissue engineering.

    PubMed

    Ju, Dandan; Han, Lijing; Li, Zonglin; Chen, Yunjing; Wang, Qingjiang; Bian, Junjia; Dong, Lisong

    2016-05-20

    Porous poly(L-lactic acid) (PLLA) sheets were prepared by uniaxial stretching PLLA sheets containing starch filler. Here, the starch filler content, stretching ratio, stretching rate and stretching temperature are important factors to influence the structure of the porous PLLA sheets, therefore, they have been investigated in detail. The pore size distribution and tortuosity were characterized by Mercury Intrusion Porosimetry. The results revealed that the porosity and pore size enlarged with the increase of the starch filler content and stretching ratio, while shrank with the rise of stretching temperature. On the other hand, the pore structure almost had no changes with the stretching rate ranging between 5 and 40 mm/min. In order to test and verify that the porous PLLA sheet was suitable for the tissue engineering, the starch particles were removed by selective enzymatic degradation and its in vitro biocompatibility to osteoblast-like MC3T3-E1 cells was investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  11. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  12. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    NASA Astrophysics Data System (ADS)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  13. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  14. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    NASA Astrophysics Data System (ADS)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of <2 microns. Thin-film membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to <50 nm. Additionally, these membranes may be non-porous or porous (with controllable pore sizes from 200 nm to <5 nm), for sophisticated size-based separations. With previous and current support from the NIH SBIR program, we have built several unique devices, and demonstrated improved separations, cell culturing, and imaging (optical and electron microscopy) versus standard products. Being ceramic, the material is much more robust to demanding environments (e.g. high and low temperatures and organic solvents), compared to polymer-based devices. Additionally, we have applied multiple surface modification techniques, including atomic layer deposition, to manipulate properties such as electrical conductivity. This microfabrication technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  15. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites.

    PubMed

    Zainuddin, Siti Yasmine Zanariah; Ahmad, Ishak; Kargarzadeh, Hanieh; Abdullah, Ibrahim; Dufresne, Alain

    2013-02-15

    Biodegradable materials made from cassava starch and kenaf fibers were prepared using a solution casting method. Kenaf fibers were treated with NaOH, bleached with sodium chlorite and acetic buffer solution, and subsequently acid hydrolyzed to obtain cellulose nanocrystals (CNCs). Biocomposites in the form of films were prepared by mixing starch and glycerol/sorbitol with various filler compositions (0-10 wt%). X-ray diffraction revealed that fiber crystallinity increased after each stage of treatment. Morphological observations and size reductions of the extracted cellulose and CNCs were studied using field emission scanning electron microscopy and transmission electron microscopy. The effects of different treatments and filler contents of the biocomposites were evaluated through mechanical tests. Results showed that the tensile strengths and moduli of the biocomposites increased after each treatment and the optimum filler content was 6%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE PAGES

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    2018-05-09

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  17. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  18. Determining the Size of Pores in a Partially Transparent Ceramics from Total-Reflection Spectra

    NASA Astrophysics Data System (ADS)

    Mironov, R. A.; Zabezhailov, M. O.; Georgiu, I. F.; Cherepanov, V. V.; Rusin, M. Yu.

    2018-03-01

    A technique is proposed for determining the pore-size distribution based on measuring the dependence of total reflectance in the domain of partial transparency of a material. An assumption about equality of scattering-coefficient spectra determined by solving the inverse radiation transfer problem and by theoretical calculation with the Mie theory is used. The technique is applied to studying a quartz ceramics. The poresize distribution is also determined using mercury and gas porosimetry. All three methods are shown to produce close results for pores with diameters of <180 nm, which occupy 90% of the void volume. In the domain of pore dimensions of >180 nm, the methods show differences that might be related to both specific procedural features and the structural properties of ceramics. The spectral-scattering method has a number of advantages over traditional porosimetry, and it can be viewed as a routine industrial technique.

  19. Nanoscale hydroxyapatite particles for bone tissue engineering.

    PubMed

    Zhou, Hongjian; Lee, Jaebeom

    2011-07-01

    Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAp formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Comparative effectiveness of ceramic-on-ceramic implants in stemmed hip replacement: a multinational study of six national and regional registries.

    PubMed

    Sedrakyan, Art; Graves, Stephen; Bordini, Barbara; Pons, Miquel; Havelin, Leif; Mehle, Susan; Paxton, Elizabeth; Barber, Thomas; Cafri, Guy

    2014-12-17

    The rapid decline in use of conventional total hip replacement with a large femoral head size and a metal-on-metal bearing surface might lead to increased popularity of ceramic-on-ceramic bearings as another hard-on-hard alternative that allows implantation of a larger head. We sought to address comparative effectiveness of ceramic-on-ceramic and metal-on-HXLPE (highly cross-linked polyethylene) implants by utilizing the distributed health data network of the ICOR (International Consortium of Orthopaedic Registries), an unprecedented collaboration of national and regional registries and the U.S. FDA (Food and Drug Administration). A distributed health data network was developed by the ICOR and used in this study. The data from each registry are standardized and provided at a level of aggregation most suitable for the detailed analysis of interest. The data are combined across registries for comprehensive assessments. The ICOR coordinating center and study steering committee defined the inclusion criteria for this study as total hip arthroplasty performed without cement from 2001 to 2010 in patients forty-five to sixty-four years of age with osteoarthritis. Six national and regional registries (Kaiser Permanente and HealthEast in the U.S., Emilia-Romagna region in Italy, Catalan region in Spain, Norway, and Australia) participated in this study. Multivariate meta-analysis was performed with use of linear mixed models, with survival probability as the unit of analysis. We present the results of the fixed-effects model and include the results of the random-effects model in an appendix. SAS version 9.2 was used for all analyses. We first compared femoral head sizes of >28 mm and ≤28 mm within ceramic-on-ceramic implants and then compared ceramic-on-ceramic with metal-on-HXLPE. A total of 34,985 patients were included; 52% were female. We found a lower risk of revision associated with use of ceramic-on-ceramic implants when a larger head size was used (HR [hazard

  1. Injectable fillers: review of material and properties.

    PubMed

    Attenello, Natalie Huang; Maas, Corey S

    2015-02-01

    With an increasing understanding of the aging process and the rapidly growing interest in minimally invasive treatments, injectable facial fillers have changed the perspective for the treatment and rejuvenation of the aging face. Other than autologous fat and certain preformed implants, the collagen family products were the only Food and Drug Administration approved soft tissue fillers. But the overwhelming interest in soft tissue fillers had led to the increase in research and development of other products including bioengineered nonpermanent implants and permanent alloplastic implants. As multiple injectable soft tissue fillers and biostimulators are continuously becoming available, it is important to understand the biophysical properties inherent in each, as these constitute the clinical characteristics of the product. This article will review the materials and properties of the currently available soft tissue fillers: hyaluronic acid, calcium hydroxylapatite, poly-l-lactic acid, polymethylmethacrylate, and autologous fat (and aspirated tissue including stem cells). Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Ensuring near-optimum homogeneity and densification levels in nano-reinforced ceramics

    NASA Astrophysics Data System (ADS)

    Dassios, Konstantinos G.; Barkoula, Nektaria-Marianthi; Alafogianni, Panagiota; Bonnefont, Guillaume; Fantozzi, Gilbert; Matikas, Theodore E.

    2016-04-01

    The development of a new generation of high temperature ceramic materials for aerospace applications, reinforced at a scale closer to the molecular level and three orders of magnitude less than conventional fibrous reinforcements, by embedded carbon nanotubes, has recently emerged as a uniquely challenging scientific effort. The properties of such materials depend strongly on two main factors: i) the homogeneity of the dispersion of the hydrophobic medium throughout the ceramic volume and ii) the ultimate density of the resultant product after sintering of the green body at the high-temperatures and pressures required for ceramic consolidation. The present works reports the establishment of two independent experimental strategies which ensure achievement of near perfect levels of tube dispersion homogeneity and fully dense final products. The proposed methodologies are validated across non-destructive evaluation data of materials performance.

  3. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface.

  4. Validation of a particle tracking analysis method for the size determination of nano- and microparticles

    NASA Astrophysics Data System (ADS)

    Kestens, Vikram; Bozatzidis, Vassili; De Temmerman, Pieter-Jan; Ramaye, Yannic; Roebben, Gert

    2017-08-01

    Particle tracking analysis (PTA) is an emerging technique suitable for size analysis of particles with external dimensions in the nano- and sub-micrometre scale range. Only limited attempts have so far been made to investigate and quantify the performance of the PTA method for particle size analysis. This article presents the results of a validation study during which selected colloidal silica and polystyrene latex reference materials with particle sizes in the range of 20 nm to 200 nm were analysed with NS500 and LM10-HSBF NanoSight instruments and video analysis software NTA 2.3 and NTA 3.0. Key performance characteristics such as working range, linearity, limit of detection, limit of quantification, sensitivity, robustness, precision and trueness were examined according to recommendations proposed by EURACHEM. A model for measurement uncertainty estimation following the principles described in ISO/IEC Guide 98-3 was used for quantifying random and systematic variations. For nominal 50 nm and 100 nm polystyrene and a nominal 80 nm silica reference materials, the relative expanded measurement uncertainties for the three measurands of interest, being the mode, median and arithmetic mean of the number-weighted particle size distribution, varied from about 10% to 12%. For the nominal 50 nm polystyrene material, the relative expanded uncertainty of the arithmetic mean of the particle size distributions increased up to 18% which was due to the presence of agglomerates. Data analysis was performed with software NTA 2.3 and NTA 3.0. The latter showed to be superior in terms of sensitivity and resolution.

  5. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles.

    PubMed

    Chiari, Marina D S; Rodrigues, Marcela C; Xavier, Tathy A; de Souza, Eugen M N; Arana-Chavez, Victor E; Braga, Roberto R

    2015-06-01

    To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites.

    PubMed

    Mirjalili, F; Chuah, L; Salahi, E

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt.

  7. Evaluation of the filler packing structures in dental resin composites: From theory to practice.

    PubMed

    Wang, Ruili; Habib, Eric; Zhu, X X

    2018-07-01

    The aim of this study is to evaluate the packing properties of uniform silica particles and their mixture with secondary particles yielding maximally loaded dental composites. We intend to verify the difference between the idealized models (the close-packed structures and the random-packed structures) and the actual experimental results, in order to provide guidance for the preparation of dental composites. The influence of secondary particle size and the resin composition on the physical-mechanical properties and the rheological properties of the experimental dental composites was also investigated. Silica particles (S-920, S-360, and S-195) with average diameters of 920, 360, and 195nm were synthesized via the Stöber process. Their morphology and size distribution were determined by field-emission scanning electron microscopy and laser particle sizer. A series of silica fillers, S-920, S-920+195, S-920+360, and S-920+360+195, were then formulated with two Bis-GMA/TEGDMA resins (weight ratios of 70:30 and 50:50). For these experimental dental composites, their maximum filler loadings were assessed and compared to the theory. The mechanical properties, degree of conversion, depth of cure, and polymerization shrinkage of these composites were then evaluated. Their rheological behaviors were measured with a rheometer. Unimodal S-920 had the maximally filler loading of 70.80wt% with the 5B5T resin, close to the theoretical estimation of the random loose packing (71.92wt%). The maximum loading of the S-920+360+195 filled composite was 72.92wt% for the same resin, compared to the theoretical estimation of 89.29wt% obtained for the close-packed structures. These findings indicate that random loose packing matches more closely to the real packing state for the filler formulations used. When maximally loaded, the composite with S-920+360+195 produced the best mechanical properties and the lowest polymerization shrinkage. The degree of conversion and depth of cure were

  8. Micro-/Nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zhou, Gang; Zheng, Lisha; Liu, Haifeng; Niu, Xufeng; Fan, Yubo

    2012-03-01

    Regenerative medicine consisting of cells and materials provides a new way for the repair and regeneration of tissues and organs. Nano-biomaterials are highlighted due to their advantageous features compared with conventional micro-materials. The aim of this study is to investigate the effects of micro-/nano- sized hydroxyapatite (μ/n-HA) on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells (rBMSCs). μ/n-HA were prepared by a microwave synthesizer and precipitation method, respectively. Different sizes of μ/n-HA were characterized by IR, XRD, SEM, TEM and co-cultured with rBMSCs. It was shown that rBMSCs expressed higher levels of osteoblast-related markers by n-HA than μ-HA stimulation. The size of HA is an important factor for affecting the osteogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.

  9. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice.

    PubMed

    Zhang, Jinsong; Wang, Xufang; Xu, Tongwen

    2008-01-01

    Selenium (Se) is an essential trace element with a narrow margin between beneficial and toxic effects. As a promising chemopreventive agent, its use requires consumption over the long term, so the toxicity of Se is always a crucial concern. Based on clinical findings and recent studies in selenoprotein gene-modified mice, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect of Se. Furthermore, upregulation of phase 2 enzymes by Se has been implicated as a possible chemopreventive mechanism at supranutritional dietary levels. Se-methylselenocysteine (SeMSC), a naturally occurring organic Se product, is considered as one of the most effective chemopreventive selenocompounds. The present study revealed that, as compared with SeMSC, elemental Se at nano size (Nano-Se) possessed equal efficacy in increasing the activities of glutathione peroxidase, thioredoxin reductase, and glutathione S-transferase, but had much lower toxicity as indicated by median lethal dose, acute liver injury, survival rate, and short-term toxicity. Our results suggest that Nano-Se can serve as a potential chemopreventive agent with reduced risk of Se toxicity.

  10. Controlling morphology and crystallite size of Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} nano-crystals synthesized using a heating-up method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Wei-Hsiang; Hsiang, Hsing-I, E-mail: hsingi@mail.ncku.edu.tw; Chia, Chih-Ta

    2013-12-15

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn{sub 0.7}Ga{submore » 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.« less

  11. Multifunctional carbon nano-paper composite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Chu, Hetao; Wang, Kuiwen; Liu, Yanjv; Leng, Jinsong

    2013-08-01

    Carbon Nanotube (CNT), for its excellent mechanical, electrical properties and nano size, large special surface physical property, become the most promising material. But carbon nanotube can still fabricated in micro dimension, and can't be made into macro size, so to the carbon nanotube filled composite can't explore the properties of the CNT. Carbon nano-paper is made of pure CNT, with micro pore, and it turn micro sized CNT into macro shaped membrane. Based on the piezo-resistivity and electrical conductivity of the carbon nano-paper, we used the carbon nano-paper as functional layers fabricate functional composite, and studies its strain sensing, composite material deicing and shape memory polymer (SMP) material electric actuation performance. The results shown that the resin can pregnant the nano paper, and there was good bond for nano paper and composite. The functional composite can monitoring the strain with high sensitivity comparing to foil strain gauge. The functional composite can be heated via the carbon nano paper with low power supply and high heating rate. The composite has good deicing and heat actuation performance to composite material. For the good strain sensing, electric conductivity and self-heating character of the carbon nano-paper composite, it can be used for self sensing, anti lightning strike and deicing of composite materials in aircrafts and wind turbine blades.

  12. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder.

    PubMed

    Yuan, Chunmiao; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-30

    Minimum ignition temperature (MIT) of micro Ti powder increased gradually with increases in nano-sized TiO2 employed as an inertant. Solid TiO2 inertant significantly reduced ignition hazard of micro Ti powder in contact with hot surfaces. The MIT of nano Ti powder remained low (583 K), however, even with 90% TiO2. The MIT of micro Ti powder, when mixed with nano Ti powder at concentrations as low as 10%, decreased so dramatically that its application as a solid fuel may be possible. A simple MIT model was proposed for aggregate particle size estimation and better understanding of the inerting effect of nano TiO2 on MIT. Estimated particle size was 1.46-1.51 μm larger than that in the 20-L sphere due to poor dispersion in the BAM oven. Calculated MITs were lower than corresponding empirically determined values for micro Ti powder because nano-sized TiO2 coated the micro Ti powder, thereby decreasing its reaction kinetics. In the case of nano Ti powder, nano-sized TiO2 facilitated dispersion of nano Ti powder which resulted in a calculated MIT that was greater than the experimentally determined value. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. 7 CFR 58.514 - Container fillers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Container fillers. 58.514 Section 58.514 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....514 Container fillers. Shall comply with the 3-A Sanitary Standards for Equipment for Packaging Frozen...

  14. Effect of Calcium Sulphate Nanoparticles on Fusion, Mechanical and Thermal Behaviour Polyvinyl Chloride (pvc)

    NASA Astrophysics Data System (ADS)

    Patil, C. B.; Shisode, P. S.; Kapadi, U. R.; Hundiwale, D. G.; Mahulikar, P. P.

    Calcium Sulphate [CaSO4] was synthesized by in-situ deposition technique and its nano size (60 to 100 nm) was confirmed by Transmission Electron Microscopy (TEM). Composites of the filler CaSO4 (micro and nano) and the matrix poly (vinyl chloride) (PVC) were prepared with different filler loading (0-5 wt. %) by melt mixing. The Brabender torque rheometer equipped with an internal mixer was used for preparation and evaluation of fusion behaviour of composites of different formulations. The effect of nano and micro-CaSO4 content on the structure and properties of composites was studied. The nanostructures and dispersion were studied by wide angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM). The mechanical and thermal properties of PVC/ micro and nano-CaSO4 composites were characterized using Universal Testing Machine (UTM) and Thermo Gravimetric Analyzer (TGA). From the results of WAXD and SEM the flocculation of CaSO4 nanoparticles were observed on the surfaces of PVC matrix. The thermal analysis results showed that the first thermal degradation onset (T onset) of PVC/nano-CaSO4 composites for 1 wt. % of filler were higher as compared with corresponding microcomposites and pristine PVC. However, the tensile strength was decreasing with increasing filler content while, it shows increment in magnitude at 1 and 2 wt. % of nano-CaSO4 as compared with corresponding micro-CaSO4 as well as pristine PVC.

  15. [Cytocompatibility of nanophase hydroxyapatite ceramics].

    PubMed

    Wen, Bo; Chen, Zhi-qing; Jiang, Yin-shan; Yang, Zheng-wen; Xu, Yong-zhong

    2004-12-01

    To evaluate the cytocompatibility of nanophase hydroxyapatite ceramics in vitro. Hydroxyapatite (HA) was prepared via wet method. The grain size of the hydroxyapatite in the study was determined by scanning electron microscope and atomic force microscope with image analysis software. Primary osteoblast culture was established from rat calvaria. Cell adherence and proliferation on nanophase hydroxyapatite ceramics and conventional hydroxyapatite ceramics were examined at 1, 3, 5, 7 days. Morphology of the cells was observed by microscope. The average grain size of the nanophase and conventional HA was 55 nm and 780 nm, respectively. Throughout 7 days period, osteoblast proliferation on the HA was similar to that on tissue culture borosilicate glass controls, osteoblasts could attach, spread and proliferate on HA. However, compared to conventional ceramics, osteoblast proliferation on nanophase HA was significantly better after 1, 3, 5 and 7 days. Cytocompatibility of nanophase HA was significantly better than conventional ceramics.

  16. Biodegradation of natural reinforcing fillers for polymer composites

    NASA Astrophysics Data System (ADS)

    Mastalygina, E. E.; Pantyukhov, P. V.; Popov, A. A.

    2018-05-01

    Twelve different natural raw materials were selected as possible fillers for eco-friendly biocomposites. The target was to find the most biodegradable ones. Two mycological tests were held: in the aqueous and agar media. It was found that two tests showed different results. In aqueous media, the fillers with a high content of water-soluble and easy-hydrolysed compounds demostrated the most intensive biofouling. In agar media, the entire filler was exposed to biodigestion by fungi. Therefore, multi-compound fillers with a set of different macro- and microelements were more biodegradable than others.

  17. A novel copper (II) complex containing a tetradentate Schiff base: Synthesis, spectroscopy, crystal structure, DFT study, biological activity and preparation of its nano-sized metal oxide

    NASA Astrophysics Data System (ADS)

    Tohidiyan, Zeinab; Sheikhshoaie, Iran; Khaleghi, Mouj; Mague, Joel T.

    2017-04-01

    A new nano-sized copper (II) complex, [Cu(L)] with a tetra dentate Schiff base ligand, 2-((E)-(2-(E-5- bromo-2-hydroxybezenylideneamino) methyl)-4-bromophenol [H2L] was prepared by the reaction between of Cu (CH3COO)2·2H2O and (H2L) ligand with the ratio of 1:1, at the present of triethylamine by sonochemical method. The structure of [Cu (L)] complex was determined by FT-IR, UV-Vis, FESEM and molar conductivity. The structure of [Cu (L)] complex was characterized by single crystal X-ray diffraction. The geometry of [Cu (L)] complex was optimized using density functional theory (DFT) method with the B3LYP/6-31(d) level of theory. The calculated bond lengths and bond angles are in good agreement with the X-ray data. This complex was used as a novel precursor for preparing of CuO nano particles by the thermal decomposition method. The antibacterial activities of [H2L] ligand, nano-sized [Cu (L)] complex and nano-sized CuO have been screened against various strains of bacteria. According to the results, nano-sized CuO can be considered as an appropriate antibiotic agent.

  18. Transparent Lu 2 O 3 :Eu ceramics by sinter and HIP optimization

    NASA Astrophysics Data System (ADS)

    Seeley, Z. M.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.

    2011-09-01

    Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu 2O 3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP'ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 °C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 °C to reach full density. Vacuum sintering above 1650 °C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 °C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP'ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu 2O 3:Eu showed ˜4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices.

  19. Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors.

    PubMed

    Rodrigues, Ligia R

    2015-07-01

    Microbial surfactants, so-called biosurfactants, comprise a wide variety of structurally distinct amphipathic molecules produced by several microorganisms. Besides exhibiting surface activity at the interfaces, these molecules present powerful characteristics including high biodegradability, low toxicity and special biological activities (e.g. antimicrobial, antiviral, anticancer, among others), that make them an alternative to their chemical counterparts. Several medical-related applications have been suggested for these molecules, including some reports on their potential use in the formulation of nano-sized drug delivery vectors. However, despite their promises, due to the generalized lack of knowledge on microbial surfactants phase behavior and stability under diverse physicochemical conditions, these applications remain largely unexplored, thus representing an exciting field of research. These nano-sized vectors are a powerful approach towards the current medical challenges regarding the development of efficient and targeted treatments for several diseases. In this review, a special emphasis will be given to nanoparticles and microemulsions. Nanoparticles are very auspicious as their size, shape and stability can be manipulated by changing the environmental conditions. On the other hand, the easiness of formulation, as well as the broad possibilities of administration justifies the recent popularity of the microemulsions. Notwithstanding, both vector types still require further developments to overcome some critical limitations related with toxicity and costs, among others. Such developments may include the search for other system components, as the microbial surfactants, that can display improved features. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effect of phase inversion on microporous structure development of Al 2O 3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jeong, Hyun-Seok; Kim, Dong-Won; Jeong, Yeon Uk; Lee, Sang-Young

    To improve the thermal shrinkage of the separators that are essential to securing the electrical isolation between electrodes in lithium-ion batteries, we develop a new separator based on a ceramic composite membrane. Introduction of microporous, ceramic coating layers onto both sides of a polyethylene (PE) separator allows such a progress. The ceramic coating layers consist of nano-sized alumina (Al 2O 3) powders and polymeric binders (PVdF-HFP). The microporous structure of the ceramic coating layers is observed to be crucial to governing the thermal shrinkage as well as the ionic transport of the ceramic composite separators. This microporous structure is determined by controlling the phase inversion, more specifically, nonsolvent (water) contents in the coating solutions. To provide a theoretical basis for this approach, a pre-investigation on the phase diagram for a ternary mixture comprising PVdF-HFP, acetone, and water is conducted. On the basis of this observation, the effect of phase inversion on the morphology and air permeability (i.e. Gurley value) of ceramic coating layers is systematically discussed. In addition, to explore the application of ceramic composite separators to lithium-ion batteries, the influence of the structural change in the coating layers on the thermal shrinkage and electrochemical performance of the separators is quantitatively identified.

  1. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    NASA Astrophysics Data System (ADS)

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-04-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (~4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (~5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing.

  2. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate

    NASA Astrophysics Data System (ADS)

    Lv, Weixin; Zhou, Jing; Bei, Jingjing; Zhang, Rui; Wang, Lei; Xu, Qi; Wang, Wei

    2017-01-01

    Electrochemical reduction of carbon dioxide (CO2) to formate is energetically inefficient because high overpotential is required for reduction of CO2 to formate on most traditional catalysts. In this paper, a novel nano-sized Bi-based electrocatalyst deposited on a Cu foil has been synthesized, which can be used as a cathode for electrochemical reduction of CO2 to formate with a low overpotential (0.69 V) and a high selectivity (91.3%). The electrocatalyst can show excellent catalytic performance toward reduction of CO2 which can probably be attributed to the nano-sized structure and the surface oxide layer. The energy efficiency for reduction of CO2 to formate can reach to 50% when an IrxSnyRuzO2/Ti electrode is used as anode, it is one of the highest values found in the literatures and very practicable for sustainable fuel synthesis.

  3. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    PubMed

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  4. Prevention of dental erosion of a sports drink by nano-sized hydroxyapatite in situ study.

    PubMed

    Min, Ji Hyun; Kwon, Ho Keun; Kim, Baek Il

    2015-01-01

    To evaluate the inhibitory effects of the sports drink containing nano-sized hydroxyapatite (nano-HA) on dental erosion in situ. The study had a single-blind, two-treatment crossover design. The two treatment groups were a control group (CG; Powerade only) and an experimental group (EG; 0.25% wt/vol nano-HA was added to Powerade). Ten subjects wore removable palatal appliances containing bovine enamel specimens. The appliances were immersed in each drink for 10 mins, 4 times a day for 10 days. The tooth surface microhardness (SMH) was tested, and the erosion depth and the morphology of the tooth surface were observed. The data were analysed by repeated measures anova and t-test. Between the baseline and the 10th day, SMH was decreased by 80% in the specimens of the CG (P < 0.001), whereas there was only a 6% decrease in the SMH of the specimens in the EG. An erosion depth of 12.70 ± 4.66 μm and an irregular tooth surface were observed on the 10th day in the specimens of the CG. No dental erosions, however, was observed in the specimens of the EG. The sports drink containing 0.25% nano-HA was effective in preventing dental erosion in situ. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. [Evaluation of alumina effects on the mechanical property and translucency of nano-zirconia all-ceramics].

    PubMed

    Jiang, Li; Zhao, Yong-qi; Zhang, Jing-chao; Liao, Yun-mao; Li, Wei

    2010-06-01

    To study the effects of alumina content on sintered density, mechanical property and translucency of zirconia nanocomposite all-ceramics. Specimens of zirconia nanocomposite all-ceramics were divided into five groups based on their alumina content which are 0% (control group), 2.5%, 5.0%, 7.5% and 10.0% respectively. The sintered densities were measured using Archimedes' method. Specimens' bending strengths were measured with three-point bending test (ISO 6872). The visible light transmittances were measured with spectrophotometric arrangements and the fractured surfaces were observed using scanning electron microscope (SEM). The control group of pure zirconia could be sintered to the theoretical density under pressure-less sintering condition. The bending strength was (1100.27 ± 54.82) MPa, the fracture toughness was (4.96 ± 0.35) MPa×m(1/2) and the transmittance could reach 17.03%. The sintered density and transmittance decreased as alumina content increased from 2.5% to 10%. However, the fracture toughness only increased slightly. In all four alumina groups, the additions of alumina had no significant effect on samples' bending strengths (P > 0.05). When the content of alumina was 10%, fracture toughness of specimens reached (6.13 ± 0.44) MPa×m(1/2) while samples' transmittance declined to 6.21%. SEM results showed that alumina particles had no significant effect on the grain size and distribution of tetragonal zirconia polycrystals. Additions of alumina to yttria-tetragonal zirconia polycrystals could influence its mechanical property and translucency. Additions of the other phase to zirconia ceramics should meet the clinical demands of strength and esthetics.

  6. Effect of Nanofiller Shape on Effective Thermal Conductivity of Fluoropolymer Composites

    DTIC Science & Technology

    2015-08-24

    SECURITY CLASSIFICATION OF: Filler particle size and shape influence interconnectivity within a polymer matrix and play a significant role in controlling...the effective thermal conductivity of a composite. This study examines the effect of nanofiller particle shape in a polytetrafluorethylene (PTFE...carbon fillers: nano-diamond spheres, carbon nanotubes (CNT) and graphene flakes. The experimental results are coupled with a particle connectivity model

  7. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications.

    PubMed

    Rau, J V; Antoniac, I; Fosca, M; De Bonis, A; Blajan, A I; Cotrut, C; Graziani, V; Curcio, M; Cricenti, A; Niculescu, M; Ortenzi, M; Teghil, R

    2016-07-01

    Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100μm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Sustainable nano-catalysis

    EPA Science Inventory

    A novel nano-catalyst system which bridges the homogenous and heterogeneous system is described that is cheaper, easily accessible (sustainable) and requires no need of catalyst filtration during the work-up. Because of its nano-size, i.e. high surface area, the contact between r...

  9. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, J.L.; Chenghung Hung.

    1993-12-07

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

  10. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, Joseph L.; Hung, Cheng-Hung

    1993-01-01

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

  11. Influence of Poly (Ethylene Glycol) and Oleylamine on the Formation of Nano to Micron Size Spherical SiO2 Particles

    EPA Science Inventory

    We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration...

  12. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone.

    PubMed

    Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija

    2017-05-01

    Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.

  13. The fabrication and characterization of barium titanate/akermanite nano-bio-ceramic with a suitable piezoelectric coefficient for bone defect recovery.

    PubMed

    Shokrollahi, H; Salimi, F; Doostmohammadi, A

    2017-10-01

    In recent years, due to the controllable mechanical properties and degradation rate, calcium silicates such as akermanite (Ca 2 MgSi 2 O 7 ) with Ca-Mg and Si- containing bio-ceramics have received much more attention. In addition, the piezoelectric effect plays an important role in bone growth, remodeling and defect healing. To achieve our objective, the porous bioactive nano-composite with a suitable piezoelectric coefficient was fabricated by the freeze-casting technique from the barium titanate and nano-akermanite (BT/nAK) suspension. The highest d 33 of 4pC/N was obtained for BT90/nAK10. The compressive strength and porosity were for BT75/nAK25 and BT60/nAK40 at the highest level, respectively. The average pore channel diameter was 41 for BT75/nAK25. Interestingly enough, the inter-connected pore channel was observed in the SEM images. There was no detectable transformation phase in the XRD pattern for the BT/nAK composites. The manipulation flexibility of this method indicated the potential for the customized needs in the application of bone substitutes. An ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)) MTT assay indicated that the obtained scaffolds have no cytotoxic effects on the human bone marrow mesenchymal stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Processing of oil palm empty fruit bunch as filler material of polymer recycles

    NASA Astrophysics Data System (ADS)

    Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.

    2017-05-01

    Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.

  15. Nb-doped SrTiO3 glass-ceramics as high temperature stable n-type oxide thermoelectrics

    NASA Astrophysics Data System (ADS)

    Lingner, Julian; Jakob, Gerhard; Letz, Martin

    2012-06-01

    Niobium doped SrTiO3 is known for its high potential as an oxide thermoelectric material and is one of the possible candidates for the n-type site in an oxidic thermoelectric module. The high thermal conductivity [1] and the lack of high-temperature stability of the oxygen vacancies [2] limit its properties in the ceramic systems. Glass-ceramics are intrinsic nano-structured systems and provide crystal phases densely embedded in a glass matrix which prevents the material from detoriation at high temperatures. In particular, the glass-matrix prevents an uncontrolled reoxidization as well as an uncontrolled grain growth therefore retaining the nano-structure even at high temperatures. Here, measurements and results of first glass-ceramic systems are presented, which show a low thermal conductivity due to the residue glass phase. Furthermore a stable thermal cycling up to 650 °C is demonstrated.

  16. Advanced Material-Ordered Nanotubular Ceramic Membranes Covalently Capped with Single-Wall Carbon Nanotubes.

    PubMed

    Al-Gharabli, Samer; Hamad, Eyad; Saket, Munib; Abu El-Rub, Ziad; Arafat, Hassan; Kujawski, Wojciech; Kujawa, Joanna

    2018-05-07

    Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs) were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE)), mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM), single-area electron diffraction (SAED) analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs) changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20) and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20) and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.

  17. Fillers as Signs of Distributional Learning

    ERIC Educational Resources Information Center

    Taelman, Helena; Durieux, Gert; Gillis, Steven

    2009-01-01

    A longitudinal analysis is presented of the fillers of a Dutch-speaking child between 1;10 and 2;7. Our analysis corroborates familiar regularities reported in the literature: most fillers resemble articles in shape and distribution, and are affected by rhythmic and positional constraints. A novel finding is the impact of the lexical environment:…

  18. Intumescent-ablator coatings using endothermic fillers

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R. (Inventor)

    1978-01-01

    An intumescent-ablator coating composition which contains the ammonium salt of 1,4-nitroaniline-2-sulfonic acid or 4,4 dinitrosul fanilide, a polymeric binder system and about 5 to 30% weight of an endothermic filler is reported. The filler has a decomposition temperature about or within the exothermic region of the intumescent agent.

  19. [Spectral studies on nano-sized titania photocatalysts prepared by different drying methods].

    PubMed

    Ye, Zhao; Zhang, Han-hui; Pan, Hai-bo; Pan, Hong-qing

    2002-12-01

    Nano-sized TiO2 photocatalysts were prepared by drying the ethanol gel of titanium tetrabutoxide through natural state, supercritical ethanol, supercritical carbon dioxide drying methods and characterized by XRD, FTIR spectroscopy, FT-Raman spectroscopy and fluorescent spectroscopy, respectively. We regard degradation of rhodamine B by photocatalyst as a model reaction, and compare photocatalytic activities of samples obtained. The experimental results show that different drying methods have strong effect on crystal structure, energy band structure, optical adsorption property, surface quality and photocatalytic activity, TiO2 photocatalyst prepared by supercritical carbon dioxide drying method has superior photocatalytic activity.

  20. Selecting fillers on emotional appearance improves lineup identification accuracy.

    PubMed

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells.

    PubMed

    Gong, Weiyu; Huang, Zhiwei; Dong, Yanmei; Gan, Yehua; Li, Shenglin; Gao, Xuejun; Chen, Xiaofeng

    2014-01-01

    This study aimed to investigate the effects of a novel nano-sized 58S bioactive glass (nano-58S BG) on the odontogenic differentiation and mineralization of human dental pulp cells (hDPCs) in vitro. Extractions were prepared by incubating nano-58S BG, 45S5 BG, or 58S BG particulates in Dulbecco modified Eagle medium at 1% w/v for 24 hours and were filtrated through 0.22-μm filters. The supernatants were used as BG extractions. The hDPCs were cultured in nano-58S BG, 45S5 BG, and 58S BG extractions. The proliferation of hDPCs was evaluated using the methylthiazol tetrazolium assay. Odontogenic differentiation was evaluated based on the real-time polymerase chain reaction of differentiation- and mineralization-related genes, namely, alkaline phosphatase (ALP), collagen type I, dentin sialophosphoprotein (DSPP), and dentin matrix protein 1. The gene expressions were verified using ALP activity assessment, immunocytochemistry staining of osteocalcin and DSPP, and mineralization assay using alizarin red S stain. All BG extractions up-regulated the expression of odontogenic genes, and the most significant enhancement was in the nano-58S BG group. All BG extractions, especially nano-58S, increased ALP activity, osteocalcin and DSPP protein production, and mineralized nodules formation. Compared with regular BG, the novel nano-58S BG can induce the differentiation and mineralization of hDPCs more efficiently and might be a better potential candidate for dentin-pulp complex regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder.

    PubMed

    Hwang, E J; Lee, S K; Jeong, M G; Lee, Y B; Lim, D S

    2012-07-01

    Carbon nanotubes (CNTs) have unique atomic structure and properties, such as a high aspect ratio and high mechanical, electrical and thermal properties. On the other hand, the agglomeration and entanglement of CNTs restrict their applications. Sea urchin-like multiwalled carbon nanotubes, which have a small aspect ratio, can minimize the problem of dispersion. The high hardness, thermal conductivity and chemical inertness of the nano-diamond powder make it suitable for a wide range of applications in the mechanical and electronic fields. CNTs were synthesized on nano-diamond powder by thermal CVD to fabricate a filler with suitable mechanical properties and chemical stability. This paper reports the growth of CNTs with a sea urchin-like structure on the surface of the nano-diamond powder. Nano-diamond powders were dispersed in an attritional milling system using zirconia beads in ethanol. After the milling process, 3-aminopropyltrimethoxysilane (APS) was added as a linker. Silanization was performed between the nano-diamond particles and the metal catalyst. Iron chloride was used as a catalyst for the fabrication of the CNTs. After drying, catalyst-attached nano-diamond powders could be achieved. The growth of the carbon nanotubes was carried out by CVD. The CNT morphology was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mean diameter and length of the CNTs were 201 nm and 3.25 microm, respectively.

  3. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  4. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  5. Synthesis of new 2-amino-4H-pyran-3,5-dicarboxylate derivatives using nanocrystalline MIIZr4(PO4)6 ceramics as reusable and robust catalysts under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Safaei-Ghomi, Javad; Javidan, Abdollah; Ziarati, Abolfazl; Shahbazi-Alavi, Hossein

    2015-08-01

    In the present paper, we report the successful synthesis of nanocrystalline MIIZr4(PO4)6 ceramics (M: Mn, Ni, Fe, Co). These nano-structures were characterized by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometer (VSM). Size of nano-structures was in the range of 20-150 nm. Nano-MIIZr4(PO4)6 as an efficient and green catalyst has been used for the preparation of 2-amino-4H-pyran-3,5-dicarboxylate derivatives by the three-component condensation reaction of ethyl cyanoacetate, ethyl acetoacetate, and various aromatic aldehydes under microwave irradiation. Extraordinarily, the best results were obtained using MnZr4(PO4)6 nanocrystallines as an efficient catalyst. This method provides several advantages including easy work-up, excellent yields, short reaction times, using of microwave as green method, recoverability of the catalyst, and little catalyst loading.

  6. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    NASA Astrophysics Data System (ADS)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  7. Filler migration and extensive lesions after lip augmentation: Adverse effects of polydimethylsiloxane filler.

    PubMed

    Abtahi-Naeini, Bahareh; Faghihi, Gita; Shahmoradi, Zabihollah; Saffaei, Ali

    2018-01-07

    Polydimethylsiloxane (PDMS), also called liquid silicone, belongs to a group of polymeric compounds that are commonly referred to as silicones. These filling agents have been used as injectable filler for soft tissue augmentation. There are limited experiences about management of the severe complications related to filler migration associated with PDMS injection. We present a 35-year-old female with severe erythema, edema over her cheeks and neck, and multiple irregularities following cosmetic lip augmentation with PDMS. Further studies are required for management of this complicated case of PDMS injection. © 2018 Wiley Periodicals, Inc.

  8. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  9. Effect of microstructure of nano- and micro-particle filled polymer composites on their tribo-mechanical performance

    NASA Astrophysics Data System (ADS)

    Devaprakasam, D.; Hatton, P. V.; Möbus, G.; Inkson, B. J.

    2008-08-01

    In this work we have investigated the influence of nanoscale and microscale structure on the tribo-mechanical performance and failure mechanisms of two biocompatible dental polymer composites, with different reinforcing particulates, using advanced microscopy techniques. Nano- and micro structural analysis reveals the shape, size and distribution of the particles in the composites. In the microparticle filled polymer composite (microcomposite), the particles are of irregular shape with sharp edges with non-uniform distribution in the matrix. However, in the nanoparticle filled composites (nanocomposite), filler particles are spherical in shape with uniform distribution in the matrix. From nanoindentation measurements, hardness and reduced modulus of the microcomposite were found to be heterogeneous. However, the hardness and reduced modulus of the nanocomposite were found to be homogeneous. The nanocomposite shows better tribo-mechanical performance compared to that of the microcomposite.

  10. Changes in size of nano phase iron inclusions with temperature: Experimental simulation of space weathering effects at high temperature

    NASA Astrophysics Data System (ADS)

    Rout, S. S.; Moroz, L. V.; Stockhoff, T.; Baither, D.; Bischoff, A.; Hiesinger, H.

    2011-10-01

    The mean size of nano phase iron inclusions (npFe0), produced during the space weathering of iron-rich regolith of airless solar system bodies, significantly affects visible and near-infrared (VNIR) spectra. To experimentally simulate the change in the size of npFe0 inclusions with increasing temperature, we produced sputter film deposits on a silicon dioxide substrate by sputtering a pressed pellet prepared from fine olivine powder using 600V Ar+ ions. This silicon dioxide substrate covered with the deposit was later heated to 450°C for 24 hours in an oven under argon atmosphere. Initial TEM analysis of the unheated silicon dioxide substrate showed the presence of a ~ 50 nm-thick layer of an amorphous deposit with nano clusters that has not yet been identified.

  11. Influence of reactive fillers on concrete corrosion resistance

    NASA Astrophysics Data System (ADS)

    Rakhimbayev, Sh M.; Tolypina, N. M.; Khakhaleva, E. N.

    2018-03-01

    Contact surfaces represent the weakest link in a conglomerate structure of materials. They ensure the diffusion of aggressive agents inside the material. To reduce the conductivity of contact surfaces it is advisable to use reactive fillers, which interact with cement matrix via certain mechanisms, which in turn, reduces the permeability of the contact layer and fosters durability of products. The interaction of reactive fillers with calcium hydroxide of a concrete liquid phase in a contact area leads to the formation of hydrated calcium silicates of a tobermorite group. Such compounds, being settled in pores and capillaries of a product, colmatage and clog them to some extent thus leading to diffusion delay (inhibition) with regard to aggressive components of external media inside porous material, which in turn inhibits the corrosion rate. The authors studied and compared the corrosion of cement concrete with a standard filler (quartz sand) and a reactive filler (perlite and urtit). The experiments confirmed the positive influence of active fillers on concrete corrosion resistance.

  12. Nanotechnologies for Composite Structures- From Nanocomposites to Multifunctional Nano-Enabled Fibre Reinforced Composites for Spacecrafts

    NASA Astrophysics Data System (ADS)

    Kostopoulos, Vassilis; Vavouliotis, Antonios; Baltopoulos, Athanasios; Sotiririadis, George; Masouras, Athanasios; Pambaguian, Laurent

    2014-06-01

    The past decade, extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. In this work, we present the experience obtained from the latest nanotechnology research activities supported by ESA. The paper focuses on prepreg composite manufacturing technology and addresses:- Approaches for nano-enabling of composites- Up-scaling strategies towards final structures- Latest results on performance of nano-enabledfiber reinforced compositesSeveral approaches for the utilization of nanotechnology products in structural composite structures have been proposed and are reviewed, in short along with respective achieved results. A variety of nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. A major part of the work deals with the up-scaling routes of these technologies to reach final products and industrial scales and processes while meeting end-user performance.

  13. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    PubMed

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites

    PubMed Central

    Mirjalili, F.; Chuah, L.; Salahi, E.

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421

  15. Raman and dielectric studies of GdMnO3 bulk ceramics synthesized from nano powders

    NASA Astrophysics Data System (ADS)

    Samantaray, S.; Mishra, D. K.; Roul, B. K.

    2017-05-01

    Nanocrystalline GdMnO3 (GMO) powders has been synthesized by a simple chemical route i. e. pyrophoric reaction technique and then sintered in the form of bulk pellet at 850°C for 24 hours by adopting slow step sintering schedule. It is observed that by reducing the particles size, chemical route enhances the mixing process as well as decreasing the sintering temperature to get single phase material system in compared to the polycrystalline sample prepared directly from the micron sized commercial powder. Raman spectroscopic studies confirm that the sample is in single phase without any detectable impurity. Frequency dependent dielectric properties i.e., dielectric constant (K) and dielectric loss (tanδ) of GMO ceramics sintered at 850°C for 24 hours were studied at room temperature. The sample showed high K value (˜2736) in the frequency of 100 Hz at room temperature.

  16. Remarkable Second-Order Optical Nonlinearity of Nano-Sized Au Cluster: A TDDFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kechen; Li, Jun; Lin, Chensheng

    2004-04-21

    The dipole polarizability, static first hyperpolarizability, and UV-vis spectrum of the recently identified nano-sized tetrahedral cluster of Au have been investigated by using time-dependent density functional response theory. We have discovered that the Au cluster possesses remarkably large molecular second-order optical nonlinearity with the first hyperpolarizabilty (xyz) calculated to be 14.3 x 10 electrostatic unit (esu). The analysis of the low-energy absorption band suggests that the charge transfer from the edged gold atoms to the vertex ones plays the key role in nonlinear optical (NLO) response of Au.

  17. Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research

    DTIC Science & Technology

    2008-11-04

    and their composites . This grant was used to procure equipment to synthesize and characterize the nano- and meso-porous geopolymers , and study their...and meso-porosity and microstructure of geopolymers and their composites is part of an ongoing research project in the PIs research group, which has...the synthesis and processing of geopolymers and geopolymer composites . The attritor mill enables synthesis Technical Report of nano-sized high

  18. Stability Enhancement of Polymeric Sensing Films Using Fillers

    NASA Technical Reports Server (NTRS)

    Lin, Brian; Shevade, Abhijit; Ryan, Margaret Amy; Kisor, Adam; Yen, Shiao-Pin; Manatt, Kenneth; Homer, Margie; Fleurial, Jean-Pierre

    2006-01-01

    Experiments have shown the stability enhancement of polymeric sensing films on mixing the polymer with colloidal filler particles (submicron-sized) of carbon black, silver, titanium dioxide, and fumed silicon dioxide. The polymer films are candidates for potential use as sensing media in micro/nano chemical sensor devices. The need for stability enhancement of polymer sensing films arises because such films have been found to exhibit unpredictable changes in sensing activity over time, which could result in a possible failure of the sensor device. The changes in the physical properties of a polymer sensing film caused by the sorption of a target molecule can be measured by any of several established transduction techniques: electrochemical, optical, calorimetric, or piezoelectric, for example. The transduction technique used in the current polymer stability experiments is based on piezoelectric principles using a quartz-crystal microbalance (QCM). The surface of the QCM is coated with the polymer, and the mass uptake by the polymer film causes a change in the oscillating frequency of the quartz crystal. The polymer used for the current study is ethyl cellulose. The polymer/ polymer composite solutions were prepared in 1,3 dioxolane solvent. The filler concentration was fixed at 10 weight percent for the composites. The polymer or polymer composite solutions were cast on the quartz crystal having a fundamental frequency of about 6 MHz. The coated crystal was subjected to a multistage drying process to remove all measurable traces of the solvent. In each experiment, the frequency of oscillation was measured while the QCM was exposed to clean, dry, flowing air for about 30 minutes, then to air containing a known concentration of isopropanol for about 30 minutes, then again to clean dry air for about 30 minutes, and so forth. This cycle of measurements for varying isopropanol concentrations was repeated at intervals for several months. The figure depicts some of the

  19. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin.

    PubMed

    Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2011-07-01

    The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker's microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker's microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness.

  20. Size and Crystallographic Orientation Effects on the Mechanical Behavior of 4H-SiC Micro-/nano-pillars

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolei; Guo, Qiang; Li, Zhiqiang; Fan, Genlian; Xiong, Ding-Bang; Su, Yishi; Zhang, Jie; Tan, Zhanqiu; Guo, Cuiping; Zhang, Di

    2018-02-01

    Single crystalline 4H-SiC micro-/nano-pillars of various sizes and different crystallographic orientations were fabricated and tested by uniaxial compression. The pillars with zero shear stress resolved on the basal slip system were found to fracture in a brittle manner without showing significant size dependence, while the pillars with non-zero resolved shear stress showed a "smaller is stronger" behavior and a jerky plastic flow. These observations were interpreted by homogeneous dislocation nucleation and dislocation glide on the basal plane.

  1. Mechanical properties of experimental composites with different calcium phosphates fillers.

    PubMed

    Okulus, Zuzanna; Voelkel, Adam

    2017-09-01

    Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    PubMed

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Applications of Nano palm oil fuel ash and Nano fly ash in concrete

    NASA Astrophysics Data System (ADS)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    This paper discusses the applications of Nano waste materials including palm oil fuel ash and fly ash in the concrete production. The implementation of nanotechnology has been instrumental in the development of significant interest among the stakeholders to improve the mechanical and chemical properties of materials involved in the production of concrete. Although many researchers have shown the potential of nanomaterials to increase strength and durability of concrete and improve its physical and chemical properties, there is still a knowledge gap regarding the preparation of Nano waste materials from agricultural waste to use as cement replacement instead of non-renewable materials. Therefore, it should be focused on to study Nano- waste materials to benefit from these characteristics during preparation of concrete mixtures. Therefore, this paper highlights the potential of waste materials in the Nano size to partially replace cement in concrete and achieve the same or better result than the traditional concrete. This paper recommends to conduct further experimental works to improve the concrete material properties by investigating the properties of waste materials in Nano size.

  4. Ultrasound detection and identification of cosmetic fillers in the skin.

    PubMed

    Wortsman, X; Wortsman, J; Orlandi, C; Cardenas, G; Sazunic, I; Jemec, G B E

    2012-03-01

    While the incidence of cosmetic filler injections is rising world-wide, neither exact details of the procedure nor the agent used are always reported or remembered by the patients. Thus, although complications are reportedly rare, availability of a precise diagnostic tool to detect cutaneous filler deposits could help clarify the association between the procedure and the underlying pathology. The aim of this study was to evaluate cutaneous sonography in the detection and identification of cosmetic fillers deposits and, describe dermatological abnormalities found associated with the presence of those agents. We used ultrasound in a porcine skin model to determine the sonographic characteristics of commonly available filler agents, and subsequently applied the analysis to detect and identify cosmetic fillers among patients referred for skin disorders. Fillers are recognizable on ultrasound and generate different patterns of echogenicity and posterior acoustic artefacts. Cosmetic fillers were identified in 118 dermatological patients; most commonly hyaluronic acid among degradable agents and silicone oil among non-degradable. Fillers deposits were loosely scattered throughout the subcutaneous tissue, with occasional infiltration of local muscles and loco-regional lymph nodes. Accompanying dermatopathies were represented by highly localized inflammatory processes unresponsive to conventional treatment, morphea-like reactions, necrosis of fatty tissue and epidermal cysts; in the case of non-degradable agents, the associated dermatopathies were transient, resolving upon disappearance of the filler. Cosmetic filler agents may be detected and identified during routine ultrasound of dermatological lesions; the latter appear to be pathologically related to the cosmetic procedure. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  5. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Bjorkman, Gerry; McCool, Carolyn (Technical Monitor)

    2000-01-01

    A viewgraph presentation outlines NASA Marshall Space Flight Center, Lockheed Martin Michoud Space Systems, and McCook Metals' development an aluminum-copper weld filler wire for fusion welding 2195 aluminum lithium. The aluminum-copper based weld filler wire has been identified as B218, which is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The Super Lightweight External Tank for the NASA Space Shuttle Program consists of 2195 welded with 4043 aluminum-silicon weld filler wire. The B218 filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties. An initial characterization of the B218 weld filler wire was performed consisting of initial weld and repair weld evaluation comparing B218 and 4043. The testing involved room temperature and cryogenic tensile testing along with fracture toughness testing. B218 weld filler wire proved to produce enhanced initial and repair weld tensile and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding 2195 and other aluminum lithium alloys over 4043.

  6. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  7. The Effects of Natural Clinoptilolite and Nano-Sized Clinoptilolite Supplementation on Glucose Levels and Oxidative Stress in Rats With Type 1 Diabetes.

    PubMed

    Hossein Nia, Behnoosh; Khorram, Sirous; Rezazadeh, Hassan; Safaiyan, Abdolrasol; Tarighat-Esfanjani, Ali

    2018-02-01

    Oxidative stress has a major role in development of diabetic complications. In this study we investigated whether clinoptilolite and nano-sized clinoptilolite could reduce hyperglycemia and oxidative stress in streptozotocin-induced diabetic rats and attempted to determine which intervention was more effective. Thirty-six rats were randomly allocated to 2 groups; 1 group was randomly chosen as a diabetic group and injected with streptozotocin (60 mg/kg body weight in 0.1 mol/L sodium citrate buffer, pH 4.5) to induce diabetes. Three days after diabetes induction, each group (diabetic group and nondiabetic group) was randomly divided into 3 subgroups of 6 animals each ([1] control, [2] 1% clinoptilolite/food, [3] 1% nano-sized clinoptilolite/food). Supplementation was continued for 28 days. Blood glucose was measured 3 times, at the beginning of the study and on the 14th and 28th days. Activity of antioxidant enzymes, including glutathione peroxidase and superoxide dismutase, and levels of total antioxidant capacity, as well as malondialdehyde, were evaluated. Blood glucose and malondialdehyde were significantly elevated, but there were no statistically significant changes in superoxide dismutase, glutathione peroxidase or total antioxidant capacity in diabetic rats. In diabetic rats treated with nano-sized clinoptilolite, blood glucose decreased to near normal levels (12.4 vs. 27.5 mmol/L). No significant changes were found in the other groups. None of the oxidative stress indices showed significant changes in either the treated or untreated rats. Nano-sized clinoptilolite exerted a hypoglycemic effect in streptozotocin-induced diabetic rats but had no significant influence on oxidative stress markers. Copyright © 2018. Published by Elsevier Inc.

  8. Repair bond strength of resin composite to bilayer dental ceramics

    PubMed Central

    2018-01-01

    PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P<.005). HF etching showed higher bond strength values in Groups A, C, D, and E than the other tested ST. However, bonding durability of all the surface-treated groups were similar after thermocycling (P>.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430

  9. Flow-induced voltage generation by moving a nano-sized ionic liquids droplet over a graphene sheet: Molecular dynamics simulation.

    PubMed

    Shao, Qunfeng; Jia, Jingjing; Guan, Yongji; He, Xiaodong; Zhang, Xiaoping

    2016-03-28

    In this work, the phenomenon of the voltage generation is explored by using the molecular dynamics simulations, which is performed by driving a nano-sized droplet of room temperature ionic liquids moving along the monolayer graphene sheet for the first time. The studies show that the cations and anions of the droplet will move with velocity nonlinearly increasing to saturation arising by the force balance. The traditional equation for calculating the induced voltage is developed by taking the charge density into consideration, and larger induced voltages in μV-scale are obtained from the nano-size simulation systems based on the ionic liquids (ILs) for its enhanced ionic drifting velocities. It is also derived that the viscosity acts as a reduction for the induced voltage by comparing systems composed of two types of ILs with different viscosity and temperature.

  10. Sol-gel-Derived nano-sized double layer anti-reflection coatings (SiO2/TiO2) for low-cost solar cell fabrication.

    PubMed

    Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho

    2013-11-01

    We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.

  11. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  12. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  13. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  14. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  15. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  16. Effects of Particle Size and Porosity on In Vivo Remodeling of Settable Allograft Bone/Polymer Composites

    PubMed Central

    Prieto, Edna M.; Talley, Anne D.; Gould, Nicholas R.; Zienkiewicz, Katarzyna J.; Drapeau, Susan J.; Kalpakci, Kerem N.

    2014-01-01

    Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity (LV) and high viscosity (HV) grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105 – 500 μm) allograft particles healed at 12 weeks post-implantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. PMID:25581686

  17. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  18. Safety and effectiveness of hyaluronic acid fillers in skin of color.

    PubMed

    Grimes, Pearl E; Thomas, Jane A; Murphy, Diane K

    2009-09-01

    To assess the safety and effectiveness of hyaluronic acid (HA) fillers in skin of color. Two prospective studies followed up subjects with Fitzpatrick skin phototypes of IV, V, or VI for 24 weeks after dermal filler injections. In a double-blind, randomized study, subjects were injected with one of three high concentration (24 mg/mL) HA fillers (Juvéderm Ultra, Ultra Plus, and 30) in one nasolabial fold and Zyplast collagen in the other. In an open-label, randomized study, subjects received one of three low concentration (5.5 mg/mL) HA fillers (Hylaform, Hylaform Plus, and Captique) in both nasolabial folds. A total of 160 subjects (a subset of 439 study subjects) were randomized and treated with one of the three high concentration fillers, and 119 subjects were randomized and treated with one of the three low concentration fillers. For subjects treated with the high concentration fillers there were no occurrences of hypersensitivity or hypertrophic scarring, and no increased incidence of hyperpigmentation or hypopigmentation in non-Caucasian vs. Caucasian subjects. For subjects treated with the low concentration fillers there were no occurrences of keloid formation, hypertrophic scarring, hypopigmentation, hypersensitivity, and three instances of mild hyperpigmentation. For all of the fillers the majority of subjects maintained >/=1 point improvement in nasolabial fold severity scores through 24 weeks. All of the HA fillers were well tolerated in individuals with skin of color and demonstrated effectiveness throughout the 24 week period. Furthermore, the fillers provided smooth, natural-looking wrinkle correction in darker skin types.

  19. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice.

    PubMed

    Wang, Huali; Zhang, Jinsong; Yu, Hanqing

    2007-05-15

    Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.

  20. Nano-Pore Size Analysis by SAXS Method of Cementitious Mortars Undergoing Delayed Ettringite Formation

    NASA Astrophysics Data System (ADS)

    Shekar, Yamini

    This research investigates the nano-scale pore structure of cementitious mortars undergoing delayed ettringite formation (DEF) using small angle x-ray scattering (SAXS). DEF has been known to cause expansion and cracking during later ages (around 4000 days) in concrete that has been heat cured at temperatures of 70°C or above. Though DEF normally occurs in heat cured concrete, mass cured concrete can also experience DEF. Large crystalline pressures result in smaller pore sizes. The objectives of this research are: (1) to investigate why some samples expand early than later expansion, (2) to evaluate the effects of curing conditions and pore size distributions at high temperatures, and (3) to assess the evolution of the pore size distributions over time. The most important outcome of the research is the pore sizes obtained from SAXS were used in the development of a 3-stage model. From the data obtained, the pore sizes increase in stage 1 due to initial ettringite formation and in turn filling up the smallest pores. Once the critical pore size threshold is reached (around 20nm) stage 2 is formed due to cracking which tends to decrease in the pore sizes. Finally, in stage 3, the cracking continues, therefore increasing in the pore size.