Sample records for nano-sized water droplets

  1. Transport of lipid nano-droplets through MDCK epithelial cell monolayer.

    PubMed

    Khatri, Pulkit; Shao, Jun

    2017-05-01

    This study aims to investigate the transport of lipid nano-droplets through MDCK epithelial cell monolayer. Nanoemulsions of self-nano-emulsifying drug delivery systems (SNEDDS) labeled with radioactive C18 triglyceride were developed. The effect of droplet size and lipid composition on the transport was investigated. The results showed that the lipid nano-droplet transport through MDCK cell monolayer was as high as 2.5%. The transport of lipid nano-droplets was higher for nanoemulsions of medium chain glycerides than the long chain glycerides. The transport was reduced by more than half when the average lipid nano-droplet size increased from 38nm to 261nm. The droplet size measurement verified the existence of lipid nano-droplets in the receiver chamber only when the nanoemulsions were added to the donor chamber but not when the surfactant or saline solution was added. Cryo-TEM images confirmed the presence of lipid nano-droplets in both donor and receiver chamber at the end of transport study. In conclusion, lipid nano-droplets can be transported through the cell monolayer. This finding may help to further explore the oral and other non-invasive delivery of macromolecules loaded inside SNEDDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influence of palmitoyl pentapeptide and Ceramide III B on the droplet size of nanoemulsion

    NASA Astrophysics Data System (ADS)

    Sondari, Dewi; Haryono, Agus; Harmami, Sri Budi; Randy, Ahmad

    2010-05-01

    The influence of the Palmitoyl Pentapeptide (PPp) and Ceramide IIIB (Cm III B) as active ingredients on the droplet size of nano-emulsion was studied using different kinds of oil (avocado oil, sweet almond oil, jojoba oil, mineral oil and squalene). The formation of nano-emulsions were prepared in water mixed non ionic surfactant/oils system using the spontaneous emulsification mechanism. The aqueous solution, which consist of water and Tween® 20 as a hydrophilic surfactant was mixed homogenously. The organic solution, which consist of oil and Span® 80 as a lipophilic surfactant was mixed homogenously in ethanol. Ethanol was used as a water miscible solvent, which can help the formation of nano-emulsion. The oil phase (containing the blend of surfactant Span® 80, ethanol, oil and active ingredient) and the aqueous phase (containing water and Tween® 20) were separately prepared at room temperatures. The oil phase was slowly added into aqueous phase under continuous mechanical agitation (18000 rpm). All samples were subsequently homogenized with Ultra-Turrax for 30 minutes. The characterizations of nano-emulsion were carried out using photo-microscope and particle size analyzer. Addition of active ingredients on the formation of nano-emulsion gave smallest droplet size compared without active ingredients addition on the formation of nano-emulsion. Squalene oil with Palmitoyl Pentapeptide (PPm) and Ceramide IIIB (Cm IIIB) gave smallest droplet size (184.0 nm) compared without Palmitoyl Pentapeptide and Ceramide IIIB (214.9 nm), however the droplets size of the emulsion prepared by the other oils still in the range of nano-emulsion (below 500 nm). The stability of nano-emulsion was observed using two methods. In one method, the stability of nano-emulsion was observed for three months at temperature of 5°C and 50°C, while in the other method, the stability nano-emulsion was observed by centrifuged at 12000 rpm for 30 minutes. Nanoemulsion with active ingredient

  3. Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient

    NASA Astrophysics Data System (ADS)

    Foroutan, Masumeh; Fatemi, S. Mahmood; Esmaeilian, Farshad; Fadaei Naeini, Vahid; Baniassadi, Majid

    2018-05-01

    In the present work, the effect of temperature gradient on the behavior of a water nano-droplet resting on a suspended graphene was studied based on a non-equilibrium molecular dynamics simulation. The acquired results indicate that the applied temperature gradient to the suspended graphene drives the water nano-droplet to the colder region. The droplet accelerates its motion toward the cold reservoir as the temperature gradient is increased. In addition to the translational motion of the nano-droplet, the vortical motion of the water molecules was also observed. Contact angle analysis was also utilized to describe the directional motion of the nano-droplet. The translational motion of the droplet leads to the estimation of contact angle hysteresis through advancing and receding contact angles while the rotational motion resulted in the advancing and receding fronts being switched with one another through the simulation. The average displacement vector of the water molecules shows that parts of the droplet seem to stagnate while other parts rotate around them. The reason behind this particular behavior was studied based on interaction energy contours between a water molecule and the suspended graphene. The obtained data indicate that the rotational motion is in agreement with the migration of the water molecules to low interaction energy regions in order to avoid high interaction energy areas.

  4. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.

    PubMed

    Duan, Fei; He, Bin; Wei, Tao

    2015-04-01

    The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.

  5. Homogeneous Freezing of Water Droplets and its Dependence on Droplet Size

    NASA Astrophysics Data System (ADS)

    Schmitt, Thea; Möhler, Ottmar; Höhler, Kristina; Leisner, Thomas

    2014-05-01

    The formulation and parameterisation of microphysical processes in tropospheric clouds, such as phase transitions, is still a challenge for weather and climate models. This includes the homogeneous freezing of supercooled water droplets, since this is an important process in deep convective systems, where almost pure water droplets may stay liquid until homogeneous freezing occurs at temperatures around 238 K. Though the homogeneous ice nucleation in supercooled water is considered to be well understood, recent laboratory experiments with typical cloud droplet sizes showed one to two orders of magnitude smaller nucleation rate coefficients than previous literature results, including earlier results from experiments with single levitated water droplets and from cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. This motivated us to re-analyse homogeneous droplet freezing experiments conducted during the previous years at the AIDA cloud chamber. This cloud chamber has a volume of 84m3 and operates under atmospherically relevant conditions within wide ranges of temperature, pressure and humidity, whereby investigations of both tropospheric mixed-phase clouds and cirrus clouds can be realised. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. According to our new results and their comparison to the results from single levitated droplet experiments, the homogeneous freezing of water droplets seems to be a volume-dependent process, at least for droplets as small as a few micrometers in diameter. A contribution of surface induced freezing can be ruled out, in agreement to previous conclusions from the single droplet experiments. The obtained volume nucleation rate coefficients are in good agreement, within error bars, with some previous literature data, including our own results from earlier AIDA experiments, but they do not agree with recently published lower volume

  6. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    NASA Astrophysics Data System (ADS)

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-04-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (~4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (~5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing.

  7. Dynamic and spectroscopic studies of nano-micelles comprising dye in water/ dioctyl sodium sulfosuccinate /decane droplet microemulsion at constant water content

    NASA Astrophysics Data System (ADS)

    Rahdar, Abbas; Almasi-Kashi, Mohammad

    2017-01-01

    In the present work, the dynamic and spectroscopic properties of water-in-decane dioctyl sodium sulfosuccinate (AOT) microemulsions comprising dye, Rhodamine B (RB), were studied by varying content of decane at the constant water content (W = 20), by using dynamic light scattering (DLS), UV/visible, and fluorescence techniques. The characterization results of DLS of AOT micelles showed that by decreasing concentration of Rhodamine B in the water/AOT/decane microemulsion, the inter-droplet interactions changed from attractive to repulsive as the mass fraction of nano-droplets (MFD) increased. A deviation in the absorption spectra of Rhodamine B from the Beer's law at the high Rhodamine B concentration (0.001) was observed in the AOT reversed micelles. The Quenching in the emission intensity of AOT droplets comprising Rhodamine B and red shift in λmax of fluorescence of dye was observed as a function of concentration of RB in AOT RMs. The Stokes shift of AOT droplets containing the high concentration of RB, increased with mass fraction of nano-droplet (MFD), whereas at the low Rhodamine B concentration, its variation remained constant up to MFD = 0.07, and then increased.

  8. Flow-induced voltage generation by moving a nano-sized ionic liquids droplet over a graphene sheet: Molecular dynamics simulation.

    PubMed

    Shao, Qunfeng; Jia, Jingjing; Guan, Yongji; He, Xiaodong; Zhang, Xiaoping

    2016-03-28

    In this work, the phenomenon of the voltage generation is explored by using the molecular dynamics simulations, which is performed by driving a nano-sized droplet of room temperature ionic liquids moving along the monolayer graphene sheet for the first time. The studies show that the cations and anions of the droplet will move with velocity nonlinearly increasing to saturation arising by the force balance. The traditional equation for calculating the induced voltage is developed by taking the charge density into consideration, and larger induced voltages in μV-scale are obtained from the nano-size simulation systems based on the ionic liquids (ILs) for its enhanced ionic drifting velocities. It is also derived that the viscosity acts as a reduction for the induced voltage by comparing systems composed of two types of ILs with different viscosity and temperature.

  9. Direct current dielectrophoretic manipulation of the ionic liquid droplets in water.

    PubMed

    Zhao, Kai; Li, Dongqing

    2018-07-13

    The ionic liquids (ILs) as the environmentally benign solvents show great potentials in microemulsion carrier systems and have been widely used in the biochemical and pharmaceutical fields. In the work, the ionic liquid-in-water microemulsions were fabricated by using two kinds of hydrophobic ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF 6 ] and 1-Hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6 ] with Tween 20. The ionic liquid droplets in water experience the dielectrophoretic (DEP) forces induced by applying electrical field via a nano-orifice and a micron orifice on the opposite channel walls of a microchannel. The dielectrophoretic behaviors of the ionic liquid-in-water emulsion droplets were investigated under direct current (DC) electric field. The positive and negative DEP behaviors of the ionic liquid-in-water droplets varying with the electrical conductivity of the suspending medium were investigated and two kinds of the ionic liquid droplets of similar sizes were separated by their different DEP behaviors. In addition, the separation of the ionic liquid-in-water droplets by size was conducted. This paper, for the first time to our knowledge, presents the DC-DEP manipulation of the ionic liquid-in-water emulsion droplets by size and by type. This method provides a platform to manipulate the ionic liquid droplets individually. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Suppression of NaNO3 crystal nucleation by glycerol: micro-Raman observation on the efflorescence process of mixed glycerol/NaNO3/water droplets.

    PubMed

    Yu, Jun-Ying; Zhang, Yun; Zeng, Guang; Zheng, Chuan-Ming; Liu, Yong; Zhang, Yun-Hong

    2012-02-09

    Although the hygroscopicity of a NaNO(3)/water microdroplet and a polyalcohol/water microdroplet, two of the most important aerosols in atmosphere, has been widely studied, little is known about the relationship between the hygroscopic behavior of mixed NaNO(3)/polyalcohol/water droplets and their structures on the molecular level. In this study, the hygroscopicity of mixed glycerol/NaNO(3)/water droplets deposited on a hydrophobic substrate was studied by micro-Raman spectroscopy with organic-to-inorganic molar ratios (OIRs) of 0.5, 1, and 2. In the mixed glycerol/NaNO(3)/water droplets, glycerol molecules tended to combine with Na(+) and NO(3)(-) ions by electrostatic interaction and hydrogen bonding, respectively. On the basis of the analyses of the changes of symmetric stretching (v(s)-CH(2)), asymmetric stretching (v(a)-CH(2)), their area ratio (Av(a)-CH(2)/Av(s)-CH(2)) of glycerol, and symmetric stretching band of NO(3)(-) (ν(1)-NO(3)(-)) with relative humidity (RH), it was found that the conformation of glycerol was transformed from αα mainly to γγ and partly to αγ with a decreasing RH in the mixed droplets, contrary to the case in the glycerol/water droplet. In addition, the glycerol with γγ and αγ conformation had strong interaction with Na(+) and NO(3)(-) respectively, which suppressed the formation of contact of ions and delayed the efflorescence relative humidity (ERH) for the mixed droplets compared to the NaNO(3)/water droplet. © 2012 American Chemical Society

  11. An Oil-Stream Photomicrographic Aeroscope for Obtaining Cloud Liquid-Water Content and Droplet Size Distributions in Flight

    NASA Technical Reports Server (NTRS)

    Hacker, Paul T.

    1956-01-01

    An airborne cloud aeroscope by which droplet size, size distribution, and liquid-water content of clouds can be determined has been developed and tested in flight and in wind tunnels with water sprays. In this aeroscope the cloud droplets are continuously captured in a stream of oil, which Is then photographed by a photomicrographic camera. The droplet size and size distribution can be determined directly from the photographs. With the droplet size distribution known, the liquid-water content of the cloud can be computed from the geometry of the aeroscope, the airspeed, and the oil-flow rate. The aeroscope has the following features: Data are obtained semi-automatically, and permanent data are taken in the form of photographs. A single picture usually contains a sufficient number of droplets to establish the droplet size distribution. Cloud droplets are continuously captured in the stream of oil, but pictures are taken at Intervals. The aeroscope can be operated in icing and non-icing conditions. Because of mixing of oil in the instrument, the droplet-distribution patterns and liquid-water content values from a single picture are exponentially weighted average values over a path length of about 3/4 mile at 150 miles per hour. The liquid-water contents, volume-median diameters, and distribution patterns obtained on test flights and in the Lewis icing tunnel are similar to previously published data.

  12. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

    PubMed

    Combe, Nicole A; Donaldson, D James

    2017-09-28

    We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.

  13. Generation of micro- and nano-droplets containing immiscible solutions in view of optical studies

    NASA Astrophysics Data System (ADS)

    Nastasa, V.; Karapantsios, T.; Samaras, K.; Dafnopatidou, E.; Pradines, V.; Miller, R.; Pascu, M. L.

    2010-08-01

    The multiple resistances to treatment, developed by bacteria and malignant tumors require finding alternatives to the existing medicines and treatment procedures. One of them is strengthening the effects of cytostatics by improving the delivery method. Such a method is represented by the use of medicines as micro/nano-droplets. This method can reduce the substance consumption by generating drug micro-droplets incorporated in substances that can favour a faster localization, than the classical mode of medicine administration, to the tumor tissues. This paper contains the results concerning the generation and study of micro/nano-droplets and the generation of micro-droplets with an inner core (medicine) and a thin layer covering it. We have measured the surface tension at water/air interface and water/oil interface for a medicine (Vancomycin) and we have generated and measured droplets of medicine containing a layer of Vitamin A by using a double capillary system. The micro/nano-droplets may be produced by mixing of two immiscible solutions in particular conditions (high rotating speed and/or high pressure difference). For this we have studied the generation of emulsions of vitamin A diluted in sunflower oil and a solution of a surfactant Tween 80 in distilled water. The concentration of surfactant in water was typically 4*10-5M. We have studied in a batch stirred tank system the dependence of the droplet dimensions in emulsion, function of the mixing rotation speed, agitation time and components ratio. The droplet diameters were measured using a Malvern light scattering instrument type Mastersizer Hydro 2000M. We have obtained droplets with diameters smaller than 100 nm; the diameters distribution exhibited a peak at 65 nm.

  14. Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets

    PubMed Central

    Park, Jimin; Han, Hyung-Seop; Kim, Yu-Chan; Ahn, Jae-Pyeong; Ok, Myoung-Ryul; Lee, Kyung Eun; Lee, Jee-Wook; Cha, Pil-Ryung; Seok, Hyun-Kwang; Jeon, Hojeong

    2015-01-01

    The size-dependent wettability of sessile water droplets is an important matter in wetting science. Although extensive studies have explored this problem, it has been difficult to obtain empirical data for microscale sessile droplets at a wide range of diameters because of the flaws resulting from evaporation and insufficient imaging resolution. Herein, we present the size-dependent quantitative change of wettability by directly visualizing the three phase interfaces of droplets using a cryogenic-focused ion beam milling and SEM-imaging technique. With the fundamental understanding of the formation pathway, evaporation, freezing, and contact angle hysteresis for sessile droplets, microdroplets with diameters spanning more than three orders of magnitude on various metal substrates were examined. Wetting nature can gradually change from hydrophobic at the hundreds-of-microns scale to super-hydrophobic at the sub-μm scale, and a nonlinear relationship between the cosine of the contact angle and contact line curvature in microscale water droplets was demonstrated. We also showed that the wettability could be further tuned in a size-dependent manner by introducing regular heterogeneities to the substrate. PMID:26657208

  15. Research on droplet size measurement of impulse antiriots water cannon based on sheet laser

    NASA Astrophysics Data System (ADS)

    Fa-dong, Zhao; Hong-wei, Zhuang; Ren-jun, Zhan

    2014-04-01

    As a new-style counter-personnel non-lethal weapon, it is the non-steady characteristic and large water mist field that increase the difficulty of measuring the droplet size distribution of impulse anti-riots water cannon which is the most important index to examine its tactical and technology performance. A method based on the technologies of particle scattering, sheet laser imaging and high speed handling was proposed and an universal droplet size measuring algorithm was designed and verified. According to this method, the droplet size distribution was measured. The measuring results of the size distribution under the same position with different timescale, the same axial distance with different radial distance, the same radial distance with different axial distance were analyzed qualitatively and some rational cause was presented. The droplet size measuring method proposed in this article provides a scientific and effective experiment method to ascertain the technical and tactical performance and optimize the relative system performance.

  16. Preparation and characterization of a new lipid nano-emulsion containing two cosurfactants, sodium palmitate for droplet size reduction and sucrose palmitate for stability enhancement.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Kawada, Hiroto; Matsumoto, Yu; Kitade, Tatsuya; Ishida, Hiroharu; Nagata, Chieyo

    2008-08-01

    A new lipid nano-emulsion (LNE) was prepared from soybean oil and phosphatidylcholine (PC) employing two cosurfactants, sodium palmitate (PA) for reduced droplet size and sucrose palmitate (SP) for stability enhancement. The mean droplet size of LNEs prepared at a PA/PC (w/w) ratio of larger than 1/10 was found to be ca. 50 nm by dynamic light scattering and atomic force microscopy. However, during the 12-month storage, the PA/PC (1/10)-LNE showed an increase in mean droplet size and broadening of the droplet size distribution due to coalescence of the LNE particles. In a saline solution, the coalescence proceeded very rapidly, i.e., the mean droplet size increased to more than 150 nm within 0.5 h. To suppress the coalescence of LNE particles, four sucrose fatty acid esters of different chain lengths were examined as candidate cosurfactants. The results showed that PA/SP/PC (1/4/10)-LNE could maintain a mean droplet size around 50 nm for 12 months. In a saline solution, the mean droplet size could be maintained within 100 nm even after 24 h. Slight formation of flocculation in the LNEs depending on the storage period was suggested by measurement of the 31P nuclear magnetic resonance line width of the LNEs.

  17. Magnetic water-in-water droplet microfluidics

    NASA Astrophysics Data System (ADS)

    Navi, Maryam; Abbasi, Niki; Tsai, Scott

    2017-11-01

    Aqueous two-phase systems (ATPS) have shown to be ideal candidates for replacing the conventional water-oil systems used in droplet microfluidics. We use an ATPS of Polyethylene Glycol (PEG) and Dextran (DEX) for microfluidic generation of magnetic water-in-water droplets. As ferrofluid partitions to DEX phase, there is no significant diffusion of ferrofluid at the interface of the droplets, rendering generation of magnetic DEX droplets in a non-magnetic continuous phase of PEG possible. In this system, both phases are water-based and highly biocompatible. We microfluidically generate magnetic DEX droplets at a flow-focusing junction in a jetting regime. We sort the droplets based on their size by placing a permanent magnet downstream of the droplet generation region, and show that the deflection of droplets is in good agreement with a mathematical model. We also show that the magnetic DEX droplets can be stabilized by lysozyme and be used for separation of single cell containing water-in-water droplets. This system of magnetic water-in-water droplet manipulation may find biomedical applications such as single-cell studies and drug delivery.

  18. Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent

    USGS Publications Warehouse

    Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett, J.L.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, Roland A.; Buchmann, N.; Eugster, W.

    2012-01-01

    In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog) during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) using a three-stage Caltech Active Strand Cloud water Collector (CASCC). An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range) were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times.

  19. Liquid water content and droplet size calibration of the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.

    1989-01-01

    The icing research tunnel at the NASA Lewis Research Center underwent a major rehabilitation in 1986 to 1987, necessitating recalibration of the icing cloud. The methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content are described. PMS Forward Scattering Spectrometer and Optical Array probes were used for measurement of droplet size. Examples of droplet size distributions are shown for several median volumetric diameters. Finally, the liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and are compared to the FAA icing certification criteria.

  20. Fast electric control of the droplet size in a microfluidic T-junction droplet generator

    NASA Astrophysics Data System (ADS)

    Shojaeian, Mostafa; Hardt, Steffen

    2018-05-01

    The effect of DC electric fields on the generation of droplets of water and xanthan gum solutions in sunflower oil at a microfluidic T-junction is experimentally studied. The electric field leads to a significant reduction of the droplet diameter, by about a factor of 2 in the case of water droplets. The droplet size can be tuned by varying the electric field strength, an effect that can be employed to produce a stream of droplets with a tailor-made size sequence. Compared to the case of purely hydrodynamic droplet production without electric fields, the electric control has about the same effect on the droplet size if the electric stress at the liquid/liquid interface is the same as the hydrodynamic stress.

  1. Effect of molecular exchange on water droplet size analysis as determined by diffusion NMR: The W/O/W double emulsion case.

    PubMed

    Vermeir, Lien; Sabatino, Paolo; Balcaen, Mathieu; Declerck, Arnout; Dewettinck, Koen; Martins, José C; Guthausen, Gisela; Van der Meeren, Paul

    2016-08-01

    The accuracy of the inner water droplet size determination of W/O/W emulsions upon water diffusion measurement by diffusion NMR was evaluated. The resulting droplet size data were compared to the results acquired from the diffusion measurement of a highly water soluble marker compound with low permeability in the oil layer of a W/O/W emulsion, which provide a closer representation of the actual droplet size. Differences in droplet size data obtained from water and the marker were ascribed to extra-droplet water diffusion. The diffusion data of the tetramethylammonium cation marker were measured using high-resolution pulsed field gradient NMR, whereas the water diffusion was measured using both low-resolution and high-resolution NMR. Different data analysis procedures were evaluated to correct for the effect of extra-droplet water diffusion on the accuracy of water droplet size analysis. Using the water diffusion data, the use of a low measurement temperature and diffusion delay Δ could reduce the droplet size overestimation resulting from extra-droplet water diffusion, but this undesirable effect was inevitable. Detailed analysis of the diffusion data revealed that the extra-droplet diffusion effect was due to an exchange between the inner water phase and the oil phase, rather than by exchange between the internal and external aqueous phase. A promising data analysis procedure for retrieving reliable size data consisted of the application of Einstein's diffusion law to the experimentally determined diffusion distances. This simple procedure allowed determining the inner water droplet size of W/O/W emulsions upon measurement of water diffusion by low-resolution NMR at or even above room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions.

    PubMed

    Poulsen, Allan K; Arleth, Lise; Almdal, Kristoffer; Scharff-Poulsen, Anne Marie

    2007-02-01

    Droplet microemulsions are widely used as templates for controlled synthesis of nanometer sized polymer gel beads for use as, e.g., nanobiosensors. Here we examine water-in-oil microemulsions typically used for preparation of sensors. The cores of the microemulsion droplets are constituted by an aqueous component consisting of water, reagent monomer mixture, buffer salts, and the relevant dyes and/or enzymes. The cores are encapsulated by a mixture of the surfactants Brij30 and AOT and the resulting microemulsion droplets are suspended in a continuous hexane phase. The size of the final polymer particles may be of great importance for the applications of the sensors. Our initial working hypothesis was that the size of the droplet cores and therefore the size of the synthesized polymer gel beads could be controlled by the surfactant-to-water ratio of the template microemulsion. In the present work we have tested this hypothesis and investigated how the monomers and the ratio between the two surfactants affect the size of the microemulsion droplets and the microemulsion domain. We find that the monomers in water have a profound effect on the microemulsion domain as well as on the size of the microemulsion droplets. The relation between microemulsion composition and droplet size is in this case more complicated than assumed in standard descriptions of microemulsions [R. Strey, Colloid Polym. Sci. 272 (1994) 1005-1019; I. Danielsson, B. Lindman, Colloids Surf. 3 (1981) 391-392; Y. Chevalier, T. Zemb, Rep. Progr. Phys. 53 (1990) 279-371].

  3. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria?

    PubMed

    Kadri, Hani El; Devanthi, Putu Virgina Partha; Overton, Tim W; Gkatzionis, Konstantinos

    2017-11-01

    Nano-emulsions (typically droplet diameter<1μm) are common in foods, and have been extensively reported to present antimicrobial activity, however, the mechanism is not well defined, and some studies reported no effect. A review of the literature was conducted and revealed strongly contradictory reports regarding the antimicrobial effect of nano-emulsions even in reference to similar microbial species and formulations. Following up, this study aimed to investigate the effect of nano-emulsions on four bacterial species (Staphylococcus epidermidis, Bacillus cereus, Lactobacillus acidophilus and five Escherichia coli strains) possessing different surface charge and hydrophobicity. Model oil-in-water (O/W) emulsions with different size of oil droplets were prepared with sunflower oil stabilised by polysorbate 80 (Tween80) emulsifier (hydrophilic), using high shear mixing followed by ultrasonication. The viability of bacteria was monitored by culture, membrane integrity was assessed with flow cytometric analysis with propidium iodide (PI) staining and fluorescence microscopy monitored the spatial distribution of cells within the O/W emulsions. The stability of the nano-O/W emulsions in the presence of bacteria was assessed by monitoring the droplet size [D (4, 3)] and creaming height. In contrast to other reports the survival and growth of bacteria was not affected by the size of the oil droplets, no damage to the bacterial membrane was evident with flow cytometry and emulsion stability was not affected by the presence of bacteria during 7days of storage. Furthermore, the antimicrobial activity of caprylic acid (CA) was compared between O/W coarse and nano-emulsions while varying the concentration of the hydrophilic surfactant Tween80. The activity of CA was similar in nano-emulsion and coarse emulsion; however, it was higher than in bulk oil and was reduced with increasing Tween80 concentration, suggesting that its efficacy is dictated by formulation rather than oil

  4. Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jian; Graber, Christof; Liburdy, James

    This study examines the hydrodynamics and temperature characteristics of distilled deionized water droplets impinging on smooth and nano-structured surfaces using high speed (HS) and infrared (IR) imaging at We = 23.6 and Re = 1593, both based on initial drop impingement parameters. Results for a smooth and nano-structured surface for a range of surface temperatures are compared. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. The near surface average droplet fluid temperatures are evaluated for conditions of evaporative cooling and boiling. Also included are surface temperature results using a gold layered IR opaque surface on silicon.more » Four stages of the impingement process are identified: impact, boiling, near constant surface diameter evaporation, and final dry-out. For the boiling conditions there is initial nucleation followed by severe boiling, then near constant diameter evaporation resulting in shrinking of the droplet height. When a critical contact angle is reached during evaporation the droplet rapidly retracts to a smaller diameter reducing the contact area with the surface. This continues as a sequence of retractions until final dry out. The basic trends are the same for all surfaces, but the nano-structured surface has a lower dissipated energy during impact and enhances the heat transfer for evaporative cooling with a 20% shorter time to achieve final dry out. (author)« less

  5. Droplet size effects on film drainage between droplet and substrate.

    PubMed

    Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q

    2006-06-06

    When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.

  6. Effects of Energetic and Inert Nano Particles on Burning Liquid Ethanol Droplets

    NASA Astrophysics Data System (ADS)

    Plascencia, Miguel; Sim, Hyung Sub; Vargas, Andres; Smith, Owen; Karagozian, Ann

    2017-11-01

    This study explores the effects of nano particulate additives on ethanol fuel droplet combustion in a quiescent environment. Two different types of droplet combustion experiments were performed: one involving the classic single droplet suspended from a quartz fiber and the other involving a burning droplet that has continual fuel delivery via a quartz capillary. Two alternative nano particles were explored here to demonstrate the effect of energetic additives: reactive nano aluminum (nAl) and inert nano silicon dioxide (nSiO2), each with average diameter 80 nm. Simultaneous high speed visible and OH* chemiluminescence images were taken to determine burning rate constants (K) and to study flame and droplet characteristics with varying particulate concentrations. Particle/vapor ejections were seen in continuously fed droplet experiments, while rod-suspended burning droplets showed limited particle ejection. The nSiO2 -laden, rod-suspended droplets formed a porous, shell-like structure resembling the shape of a droplet at higher nSiO2 concentrations, in contrast to smaller residue structures for nAl-laden droplets. Changes in K depended on concentrations of nAl and nSiO2 as well as the method of droplet formation, and TEM images of particle residue revealed additional insights. Supported by AFOSR Grant FA9550-15-1-0339.

  7. Aspects of droplet and particle size control in miniemulsions

    NASA Astrophysics Data System (ADS)

    Saygi-Arslan, Oznur

    Miniemulsion polymerization has become increasingly popular among researchers since it can provide significant advantages over conventional emulsion polymerization in certain cases, such as production of high-solids, low-viscosity latexes with better stability and polymerization of highly water-insoluble monomers. Miniemulsions are relatively stable oil (e.g., monomer) droplets, which can range in size from 50 to 500 nm, and are normally dispersed in an aqueous phase with the aid of a surfactant and a costabilizer. These droplets are the primary locus of the initiation of the polymerization reaction. Since particle formation takes place in the monomer droplets, theoretically, in miniemulsion systems the final particle size can be controlled by the initial droplet size. The miniemulsion preparation process typically generates broad droplet size distributions and there is no complete treatment in the literature regarding the control of the mean droplet size or size distribution. This research aims to control the miniemulsion droplet size and its distribution. In situ emulsification, where the surfactant is synthesized spontaneously at the oil/water interface, has been put forth as a simpler method for the preparation of miniemulsions-like systems. Using the in situ method of preparation, emulsion stability and droplet and particle sizes were monitored and compared with conventional emulsions and miniemulsions. Styrene emulsions prepared by the in situ method do not demonstrate the stability of a comparable miniemulsion. Upon polymerization, the final particle size generated from the in situ emulsion did not differ significantly from the comparable conventional emulsion polymerization; the reaction mechanism for in situ emulsions is more like conventional emulsion polymerization rather than miniemulsion polymerization. Similar results were found when the in situ method was applied to controlled free radical polymerizations (CFRP), which have been advanced as a

  8. Determination of mean droplet sizes of water-in-oil emulsions using an Earth's field NMR instrument.

    PubMed

    Fridjonsson, Einar O; Flux, Louise S; Johns, Michael L

    2012-08-01

    The use of the Earth's magnetic field (EF) to conduct nuclear magnetic resonance (NMR) experiments has a long history with a growing list of applications (e.g. ground water detection, diffusion measurements of Antarctic sea ice). In this paper we explore whether EFNMR can be used to accurately and practically measure the mean droplet size () of water-in-oil emulsions (paraffin and crude oil). We use both pulsed field gradient (PFG) measurements of restricted self-diffusion and T₂ relaxometry, as appropriate. T₂ relaxometry allows the extension of droplet sizing ability below the limits set by the available magnetic field gradient strength of the EFNMR apparatus. A commercially available bench-top NMR spectrometer is used to verify the results obtained using the EFNMR instrument, with good agreement within experimental error, seen between the two instruments. These results open the potential for further investigation of the application of EFNMR for emulsion droplet sizing. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Nano Liquid Crystal Droplet Impact on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; de Pablo, Juan; dePablo Team

    2015-03-01

    Liquid droplet impaction on solid surfaces is an important problem with a wide range of applications in everyday life. Liquid crystals (LCs) are anisotropic liquids whose internal structure gives rise to rich optical and morphological phenomena. In this work we study the liquid crystal droplet impaction on solid surfaces by molecular dynamics simulations. We employ a widely used Gay-Berne model to describe the elongated liquid crystal molecules and their interactions. Our work shows that, in contrast to isotropic liquids, drop deformation is symmetric unless an instability kicks in, in which case a nano scale liquid crystal droplet exhibits distinct anisotropic spreading modes that do not occur in simple liquids. The drop prefers spreading along the low viscosity direction, but inertia can in some cases overcome that bias. The effects of the director field of the droplet, preferred anchoring direction and the anchoring strength of the wall are investigated. Large scale (0.1 micron) simulations are performed to connect our nano scale results to the experiments. Our studies indicate that LCs could provide an interesting alternative for development of next-generation printing inks.

  10. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    PubMed

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  11. Impact of osmotic pressure and gelling in the generation of highly stable single core water-in-oil-in-water (W/O/W) nano multiple emulsions of aspirin assisted by two-stage ultrasonic cavitational emulsification.

    PubMed

    Tang, Siah Ying; Sivakumar, Manickam; Nashiru, Billa

    2013-02-01

    The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Effect of nanoparticle size on sessile droplet contact angle

    NASA Astrophysics Data System (ADS)

    Munshi, A. M.; Singh, V. N.; Kumar, Mukesh; Singh, J. P.

    2008-04-01

    We report a significant variation in the static contact angle measured on indium oxide (IO) nanoparticle coated Si substrates that have different nanoparticle sizes. These IO nanoparticles, which have well defined shape and sizes, were synthesized by chemical vapor deposition in a horizontal alumina tube furnace. The size of the IO nanoparticles was varied by changing the source material, substrate temperature, and the deposition time. A sessile droplet method was used to determine the macroscopic contact angle on these IO nanoparticle covered Si substrate using two different liquids: de-ionized water and diethylene glycol (DEG). It was observed that contact angle depends strongly on the nanoparticle size. The contact angle was found to vary from 24° to 67° for de-ionized water droplet and from 15° to 60° for DEG droplet, for the nanoparticle sizes varying from 14 to 620 nm. The contact angle decreases with a decrease in the particles size. We have performed a theoretical analysis to determine the dependence of contact angle on the nanoparticle size. This formulation qualitatively shows a similar trend of decrease in the contact angle with a decrease in nanoparticle size. Providing a rough estimate of nanoparticle size by sessile droplet contact angle measurement is the novelty in this work.

  13. Electro-suppression of water nano-droplets' solidification in no man's land: Electromagnetic fields' entropic trapping of supercooled water

    NASA Astrophysics Data System (ADS)

    Nandi, Prithwish K.; Burnham, Christian J.; English, Niall J.

    2018-01-01

    Understanding water solidification, especially in "No Man's Land" (NML) (150 K < T < 235 K) is crucially important (e.g., upper-troposphere cloud processes) and challenging. A rather neglected aspect of tropospheric ice-crystallite formation is inevitably present electromagnetic fields' role. Here, we employ non-equilibrium molecular dynamics of aggressively quenched supercooled water nano-droplets in the gas phase under NML conditions, in externally applied electromagnetic (e/m) fields, elucidating significant differences between effects of static and oscillating fields: although static fields induce "electro-freezing," e/m fields exhibit the contrary - solidification inhibition. This anti-freeze action extends not only to crystal-ice formation but also restricts amorphisation, i.e., suppression of low-density amorphous ice which forms otherwise in zero-field NML environments. E/m-field applications maintain water in the deeply supercooled state in an "entropic trap," which is ripe for industrial impacts in cryo-freezing, etc.

  14. Arrested of coalescence of emulsion droplets of arbitrary size

    NASA Astrophysics Data System (ADS)

    Mbanga, Badel L.; Burke, Christopher; Blair, Donald W.; Atherton, Timothy J.

    2013-03-01

    With applications ranging from food products to cosmetics via targeted drug delivery systems, structured anisotropic colloids provide an efficient way to control the structure, properties and functions of emulsions. When two fluid emulsion droplets are brought in contact, a reduction of the interfacial tension drives their coalescence into a larger droplet of the same total volume and reduced exposed area. This coalescence can be partially or totally hindered by the presence of nano or micron-size particles that coat the interface as in Pickering emulsions. We investigate numerically the dependance of the mechanical stability of these arrested shapes on the particles size, their shape anisotropy, their polydispersity, their interaction with the solvent, and the particle-particle interactions. We discuss structural shape changes that can be induced by tuning the particles interactions after arrest occurs, and provide design parameters for the relevant experiments.

  15. Deliquescence behavior of photo-irradiated single NaNO3 droplets

    NASA Astrophysics Data System (ADS)

    Seng, Samantha; Guo, Fangqin; Tobon, Yeny A.; Ishikawa, Tomoki; Moreau, Myriam; Ishizaka, Shoji; Sobanska, Sophie

    2018-06-01

    Nitrate-containing particles are ubiquitous in the troposphere because of their secondary production due to anthropogenic emissions of NOx from the combustion of fossil fuels. Nitrate ions are recognized as photoactive species that may contribute to the formation of oxidants in the atmosphere through heterogeneous photochemical reactions. The chemical transformation of aerosol particles in the atmosphere often leads to modification of the particles' hygroscopic properties. Although the photo-transformation of nitrate ions into nitrite within aerosol particles has been investigated, the influence of the photoproducts formation on the hygroscopic behavior of particles has not been reported. In this study, we examined the hygroscopic properties of single, ultraviolet-irradiated NaNO3 droplets using Raman microspectrometry. We are the first demonstrated that irradiating NaNO3 particles affects their hygroscopic behavior. For short-term exposures, regarding hygroscopic behavior, the irradiated particles exhibited two-stage transitions that were clearly reproduced in the experimental NaNO3-NaNO2 phase diagram. The production of NO2- decreased the deliquescence relative humidity values. For long irradiation times (>5 h), these values are even more affected by the additional production of peroxynitrite and carbonate ions in individual droplets. The NaNO3-NaNO2 deliquescence phase diagram cannot explain the hygroscopic behavior of long-term irradiated particles. Finally, we demonstrated the influence that CO2 has on the photo-transformation process in NaNO3 droplets.

  16. Evolution of volume fractions and droplet sizes by analysis of electrical conductance curves during destabilization of oil-in-water emulsions.

    PubMed

    Kostoglou, M; Varka, E-M; Kalogianni, E P; Karapantsios, T D

    2010-09-01

    Destabilization of hexane-in-water emulsions is studied by a continuous, non-intrusive, multi-probe, electrical conductance technique. Emulsions made of different oil fractions and surfactant (C(10)E(5)) concentrations are prepared in a stirred vessel using a Rushton turbine to break and agitate droplets. During the separation of phases, electrical signals from pairs of ring electrodes mounted at different heights onto the vessel wall, are recorded. The evolution of the local water volume fractions at the locations of the electrodes is estimated from these signals. It is found that in the absence of coalescence, the water fraction evolution curve from the bottom pair of electrodes is compatible with a bidisperse oil droplet size distribution. The sizes and volume fractions of the two droplet modes are estimated using theoretical arguments. The electrically determined droplet sizes are compared to data from microscopy image analysis. Results are discussed in detail. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.; Hacker, P. T.

    1950-01-01

    A photomicrographic technique for investigating eupercooled. water droplets has been devised and. used. to determine the spontaneous freezing temperatures of eupercooled. water droplets of the size ordinarily found. in the atmosphere. The freezing temperatures of 4527 droplets ranging from 8.75 to 1000 microns in diameter supported on a platinum surface and 571 droplets supported on copper were obtained. The average spontaneous freezing temperature decreased with decrease in the size of the droplets. The effect of size on the spontaneous freezing temperature was particularly marked below 60 microns. Frequency-distribution curves of the spontaneous freezing temperatures observed for droplets of a given size were obtained. Although no droplet froze at a temperature above 20 0 F, all droplets melted at 32 F. Results obtained with a copper support did not differ essentially from those obtained with a platinum surface.

  18. Phase Transformation of Droplets into Particles and Nucleation in Atmospheric Pressure Discharges

    NASA Astrophysics Data System (ADS)

    Iqbal, M. M.; Stallard, C. P.; Dowling, D. P.; Turner, M. M.

    2013-09-01

    We investigate the mechanism of phase transformation of liquid precursor droplets into nano-particulates in an atmospheric pressure discharge (APD). This phase transformation is possible when the solid to a liquid mass ratio of slurry droplet reaches a threshold value. The behaviour of phase transformation of a single slurry droplet of HMDSO is described by developing a numerical model under the saturation condition of evaporation. It is observed from the temporal evolution of inner radius (Ri) of a single slurry droplet that its value approaches zero before the entire shifting of a liquid phase and which explains with an expansion in the crust thickness (Ro - Ri) . The solid traces of nano-particles are observed experimentally on the surface coating depositions because the time for transferring the slurry droplet of HMDSO into solid state is amplified with an increment in the radii of droplets and the entire phase transition occurs within residence time for the nano-sized liquid droplets. The GDE coupled with discharge plasma is numerically solved to describe the mechanism of nucleation of nano-sized particles in APD plasma under similar conditions of the experiment. The growth of nucleation in APD plasma depends on the type of liquid precursor, such as HMDSO, TEOS and water, which is verified with a sharp peak in the nucleation rate and saturation ratio. Science Foundation Ireland under Grant No. 08/SRC/I1411.

  19. Computing fluid-particle interaction forces for nano-suspension droplet spreading: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Weizhou; Shi, Baiou; Webb, Edmund

    2017-11-01

    Recently, there are many experimental and theoretical studies to understand and control the dynamic spreading of nano-suspension droplets on solid surfaces. However, fundamental understanding of driving forces dictating the kinetics of nano-suspension wetting and spreading, especially capillary forces that manifest during the process, is lacking. Here, we present results from atomic scale simulations that were used to compute forces between suspended particles and advancing liquid fronts. The role of nano-particle size, particle loading, and interaction strength on forces computed from simulations will be discussed. Results demonstrate that increasing the particle size dramatically changes observed wetting behavior from depinning to pinning. From simulations on varying particle size, a relationship between computed forces and particle size is advanced and compared to existing expressions in the literature. High particle loading significantly slowed spreading kinetics, by introducing tortuous transport paths for liquid delivery to the advancing contact line. Lastly, we show how weakening the interaction between the particle and the underlying substrate can change a system from exhibiting pinning behavior to de-pinning.

  20. Simultaneous measurement of monocomponent droplet temperature/refractive index, size and evaporation rate with phase rainbow refractometry

    NASA Astrophysics Data System (ADS)

    Wu, Yingchun; Crua, Cyril; Li, Haipeng; Saengkaew, Sawitree; Mädler, Lutz; Wu, Xuecheng; Gréhan, Gérard

    2018-07-01

    The accurate measurements of droplet temperature, size and evaporation rate are of great importance to characterize the heat and mass transfer during evaporation/condensation processes. The nanoscale size change of a micron-sized droplet exactly describes its transient mass transfer, but is difficult to measure because it is smaller than the resolutions of current size measurement techniques. The Phase Rainbow Refractometry (PRR) technique is developed and applied to measure droplet temperature, size and transient size changes and thereafter evaporation rate simultaneously. The measurement principle of PRR is theoretically derived, and it reveals that the phase shift of the time-resolved ripple structures linearly depends on, and can directly yield, nano-scale size changes of droplets. The PRR technique is first verified through the simulation of rainbows of droplets with changing size, and results show that PRR can precisely measure droplet refractive index, absolute size, as well as size change with absolute and relative errors within several nanometers and 0.6%, respectively, and thus PRR permits accurate measurements of transient droplet evaporation rates. The evaporations of flowing single n-nonane droplet and mono-dispersed n-heptane droplet stream are investigated by two PRR systems with a high speed linear CCD and a low speed array CCD, respectively. Their transient evaporation rates are experimentally determined and quantitatively agree well with the theoretical values predicted by classical Maxwell and Stefan-Fuchs models. With the demonstration of evaporation rate measurement of monocomponent droplet in this work, PRR is an ideal tool for measurements of transient droplet evaporation/condensation processes, and can be extended to multicomponent droplets in a wide range of industrially-relevant applications.

  1. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review

    PubMed Central

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.

    2012-01-01

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849

  2. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation.

    PubMed

    Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N; Andersson-Svahn, Helene

    2017-01-01

    The potential of using droplet microfluidics for screening mammalian cell factories has been limited by the difficulty in achieving continuous cell division during cultivation in droplets. Here, we report the influence of droplet size on mammalian cell division and viability during cultivation in droplets. Chinese Hamster Ovary (CHO) cells, the most widely used mammalian host cells for biopharmaceuticals production were encapsulated and cultivated in 33, 180 and 320 pL droplets for 3 days. Periodic monitoring of the droplets during incubation showed that the cell divisions in 33 pL droplets stopped after 24 h, whereas continuous cell division was observed in 180 and 320 pL droplets for 72 h. The viability of the cells cultivated in the 33 pL droplets also dropped to about 50% in 72 h. In contrast, the viability of the cells in the larger droplets was above 90% even after 72 h of cultivation, making them a more suitable droplet size for 72-h cultivation. This study shows a direct correlation of microfluidic droplet size to the division and viability of mammalian cells. This highlights the importance of selecting suitable droplet size for mammalian cell factory screening assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Counterion-enhanced cyanine dye loading into lipid nano-droplets for single-particle tracking in zebrafish.

    PubMed

    Kilin, Vasyl N; Anton, Halina; Anton, Nicolas; Steed, Emily; Vermot, Julien; Vandamme, Thierry F; Mely, Yves; Klymchenko, Andrey S

    2014-06-01

    Superior brightness of fluorescent nanoparticles places them far ahead of the classical fluorescent dyes in the field of biological imaging. However, for in vivo applications, inorganic nanoparticles, such as quantum dots, are limited due to the lack of biodegradability. Nano-emulsions encapsulating high concentrations of organic dyes are an attractive alternative, but classical fluorescent dyes are inconvenient due to their poor solubility in the oil and their tendency to form non-fluorescent aggregates. This problem was solved here for a cationic cyanine dye (DiI) by substituting its perchlorate counterion for a bulky and hydrophobic tetraphenylborate. This new dye salt, due to its exceptional oil solubility, could be loaded at 8 wt% concentration into nano-droplets of controlled size in the range 30-90 nm. Our 90 nm droplets, which contained >10,000 cyanine molecules, were >100-fold brighter than quantum dots. This extreme brightness allowed, for the first time, single-particle tracking in the blood flow of live zebrafish embryo, revealing both the slow and fast phases of the cardiac cycle. These nano-droplets showed minimal cytotoxicity in cell culture and in the zebrafish embryo. The concept of counterion-based dye loading provides a new effective route to ultra-bright lipid nanoparticles, which enables tracking single particles in live animals, a new dimension of in vivo imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Removal of biofilms by impinging water droplets

    NASA Astrophysics Data System (ADS)

    Cense, A. W.; van Dongen, M. E. H.; Gottenbos, B.; Nuijs, A. M.; Shulepov, S. Y.

    2006-12-01

    The process of impinging water droplets on Streptococcus mutans biofilms was studied experimentally and numerically. Droplets were experimentally produced by natural breakup of a cylindrical liquid jet. Droplet diameter and velocity were varied between 20 and 200 μm and between 20 and 100 m/s, respectively. The resulting erosion process of the biofilm was determined experimentally with high-speed recording techniques and a quantitative relationship between the removal rate, droplet size, and velocity was determined. The shear stress and the pressure on the surface during droplet impact were determined by numerical simulations, and a qualitative agreement between the experiment and the simulation was obtained. Furthermore, it was shown that the stresses on the surface are strongly reduced when a water film is present.

  5. Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential.

    PubMed

    Esteban, Patricia Perez; Jenkins, A Toby A; Arnot, Tom C

    2016-03-01

    In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages. The first approach consists of simple calculations to determine the spatial distribution of the components, based on measurements of particle size. It was found that nano-emulsion droplets are much more numerous than bacteria or bacteriophage, and due to their size and surface area they must be covering the surface of both cells and bacteriophage particles. Stabilisation of bacteriophages due to electrostatic forces and interaction with nano-emulsion droplets is suspected, since bacteriophages may be protected against inactivation due to 'charge shielding'. Zeta potential was measured for the individual components in the system, and for all of them combined. It was concluded that the presence of nano-emulsions could be reducing electrostatic repulsion between bacterial cells and bacteriophage, both of which are very negatively 'charged'. Moreover, nano-emulsions lead to more favourable interaction between bacteriophages and bacteria, enhancing the anti-microbial or killing effect. These findings are relevant since the physicochemical properties of nano-emulsions (i.e. particle size distribution and zeta potential) are key in determining the efficacy of the formulation against infection in the context of responsive burn wound dressings-which is the main target for this work. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Arrayed water-in-oil droplet bilayers for membrane transport analysis.

    PubMed

    Watanabe, R; Soga, N; Hara, M; Noji, H

    2016-08-02

    The water-in-oil droplet bilayer is a simple and useful lipid bilayer system for membrane transport analysis. The droplet interface bilayer is readily formed by the contact of two water-in-oil droplets enwrapped by a phospholipid monolayer. However, the size of individual droplets with femtoliter volumes in a high-throughput manner is difficult to control, resulting in low sensitivity and throughput of membrane transport analysis. To overcome this drawback, in this study, we developed a novel micro-device in which a large number of droplet interface bilayers (>500) are formed at a time by using femtoliter-sized droplet arrays immobilized on a hydrophobic/hydrophilic substrate. The droplet volume was controllable from 3.5 to 350 fL by changing the hydrophobic/hydrophilic pattern on the device, allowing high-throughput analysis of membrane transport mechanisms including membrane permeability to solutes (e.g., ions or small molecules) with or without the aid of transport proteins. Thus, this novel platform broadens the versatility of water-in-oil droplet bilayers and will pave the way for novel analytical and pharmacological applications such as drug screening.

  7. Electrohydrodynamic behavior of water droplets on a horizontal super hydrophobic surface and its self-cleaning application

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wei, Yuan; Huang, Zhengyong; Wang, Feipeng; Yan, Xinzhu; Wu, Zhuolin

    2017-05-01

    Moisture is a significant factor that affects the insulation performance of outdoor high-voltage insulators in power systems. Accumulation of water droplets on insulators causes severe problems such as flashover of insulators and power outage. In this study, we develop a method to fabricate a micro/nano hierarchical super hydrophobic surface. The as-prepared super hydrophobic surface exhibits a water contact angle (WCA) of 160.4 ± 2°, slide angle (SA) less than 1° and surface free energy (SFE) of 5.99 mJ/m2. We investigated the electrohydropdynamic behavior of water droplet on a horizontal super hydrophobic surface compared with hydrophobic RTV silicone rubber surface which was widely used as anti-pollution coating or shed material of composite insulator. Results show that water droplet tended to a self-propelled motion on the super hydrophobic surface while it tended to elongate and break up on the RTV surface. The micro/nano hierarchical surface structure and chemical components with low surface free energy of the super hydrophobic surface jointly contributed to the reduction of skin fraction drag and subsequently made it possible for the motion of water droplet driven by electric field. Furthermore, the self-propelled motion of water droplets could also sweep away contaminations along its moving trace, which provides super hydrophobic surface a promising anti-pollution prospect in power systems.

  8. Live single cell functional phenotyping in droplet nano-liter reactors.

    PubMed

    Konry, Tania; Golberg, Alexander; Yarmush, Martin

    2013-11-11

    While single cell heterogeneity is present in all biological systems, most studies cannot address it due to technical limitations. Here we describe a nano-liter droplet microfluidic-based approach for stimulation and monitoring of surface and secreted markers of live single immune dendritic cells (DCs) as well as monitoring the live T cell/DC interaction. This nano-liter in vivo simulating microenvironment allows delivering various stimuli reagents to each cell and appropriate gas exchanges which are necessary to ensure functionality and viability of encapsulated cells. Labeling bioassay and microsphere sensors were integrated into nano-liter reaction volume of the droplet to monitor live single cell surface markers and secretion analysis in the time-dependent fashion. Thus live cell stimulation, secretion and surface monitoring can be obtained simultaneously in distinct microenvironment, which previously was possible using complicated and multi-step in vitro and in vivo live-cell microscopy, together with immunological studies of the outcome secretion of cellular function.

  9. Live single cell functional phenotyping in droplet nano-liter reactors

    NASA Astrophysics Data System (ADS)

    Konry, Tania; Golberg, Alexander; Yarmush, Martin

    2013-11-01

    While single cell heterogeneity is present in all biological systems, most studies cannot address it due to technical limitations. Here we describe a nano-liter droplet microfluidic-based approach for stimulation and monitoring of surfaceand secreted markers of live single immune dendritic cells (DCs) as well as monitoring the live T cell/DC interaction. This nano-liter in vivo simulating microenvironment allows delivering various stimuli reagents to each cell and appropriate gas exchanges which are necessary to ensure functionality and viability of encapsulated cells. Labeling bioassay and microsphere sensors were integrated into nano-liter reaction volume of the droplet to monitor live single cell surface markers and secretion analysis in the time-dependent fashion. Thus live cell stimulation, secretion and surface monitoring can be obtained simultaneously in distinct microenvironment, which previously was possible using complicated and multi-step in vitro and in vivo live-cell microscopy, together with immunological studies of the outcome secretion of cellular function.

  10. Water droplet evaporation from sticky superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  11. Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) at the air-water interface of micron-size water droplets.

    PubMed

    Raja, Suresh; Valsaraj, Kalliat T

    2004-12-01

    Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) by typical micrometer-sized fog-water droplets was studied using a falling droplet reactor at temperatures between 296 and 316 K. Uptake of phenanthrene vapor greater than that predicted by bulk (air-water)-phase equilibrium was observed for diameters less than 200 microm, and this was attributed to surface adsorption. The experimental values of the droplet-vapor partition constant were used to obtain the overall mass transfer coefficient and the mass accommodation coefficient for both benzene and phenanthrene. Mass transfer of phenanthrene was dependent only on gas-phase diffusion and mass accommodation at the interface. However, for benzene, the mass transfer was limited by liquid-phase diffusion and mass accommodation. A large value of the mass accommodation coefficient, alpha = (1.4 +/- 0.4) x 10(-2) was observed for the highly surface-active (hydrophobic) phenanthrene, whereas a small alpha = (9.7 +/- 1.8) x 10(-5) was observed for the less hydrophobic benzene. Critical cluster numbers ranging from 2 for benzene to 5.7 for phenanthrene were deduced using the critical cluster nucleation theory for mass accommodation. The enthalpy of mass accommodation was more negative for phenanthrene than it was for benzene. Consequently, the temperature effect was more pronounced for phenanthrene. A linear correlation was observed for the enthalpy of accommodation with the excess enthalpy of solution. A natural organic carbon surrogate (Suwannee Fulvic acid) in the water droplet increased the uptake for phenanthrene and benzene, the effect being more marked for phenanthrene. A characteristic time constant analysis showed that uptake and droplet scavenging would compete for the fog deposition of phenanthrene, whereas deposition would be unimpeded by the uptake rate for benzene vapor. For both compounds, the characteristic atmospheric reaction times were much larger and would not impact fog deposition.

  12. The interfacial structure of water droplets in a hydrophobic liquid

    NASA Astrophysics Data System (ADS)

    Smolentsev, Nikolay; Smit, Wilbert J.; Bakker, Huib J.; Roke, Sylvie

    2017-05-01

    Nanoscopic and microscopic water droplets and ice crystals embedded in liquid hydrophobic surroundings are key components of aerosols, rocks, oil fields and the human body. The chemical properties of such droplets critically depend on the interfacial structure of the water droplet. Here we report the surface structure of 200 nm-sized water droplets in mixtures of hydrophobic oils and surfactants as obtained from vibrational sum frequency scattering measurements. The interface of a water droplet shows significantly stronger hydrogen bonds than the air/water or hexane/water interface and previously reported planar liquid hydrophobic/water interfaces at room temperature. The observed spectral difference is similar to that of a planar air/water surface at a temperature that is ~50 K lower. Supercooling the droplets to 263 K does not change the surface structure. Below the homogeneous ice nucleation temperature, a single vibrational mode is present with a similar mean hydrogen-bond strength as for a planar ice/air interface.

  13. Estimation of aerosol droplet sizes by using a modified DC-III portable droplet measurement system under laboratory and field conditions.

    PubMed

    Dennett, James A; Stark, Pamela M; Vessey, Nathan Y; Parsons, Ray E; Bueno, Rudy

    2006-12-01

    Modification of the DC-III portable droplet measurement system, permitting its use under field conditions, is described. Under laboratory conditions, the system effectively sampled water droplets from aerosols produced by a dry ice/water generator and high-pressure syringe. Seven droplet sizes, totaling 71,053 droplets within 22 tests (dry ice method), consisted of 1-, 2-, 6-, 11-, 18-, 25-, and 34-microm droplets with individual (rounded) percentages of 45.25, 37.22, 13.85, 3.17, 0.45, 0.02, and 0.005, respectively, for each size. Cumulatively, 1-microm droplets accounted for ca. 45.25% of the droplets sampled; combined with 2-microm (ca. 82.48% together), 6-microm (ca. 96.33% together), and 11-microm droplets, yielded ca. 99.51% of the droplets sampled. The syringe produced 12 droplet sizes, with 4,121 droplets sampled, consisting of 1, 2, 6, 11, 18, 25, 34, 45, 56, 69, 83, and 99 microm with individual percentages of 15.43, 21.91, 24.58, 17.30, 10.62, 4.65, 2.93, 1.33, 0.63, 0.33, 0.16, 0.07, respectively, for each size. The 6-microm droplets contributed the highest individual percentage, and cumulatively, these droplets combined with 1- and 2-microm droplets, yielding 61.93%, whereas 11- to 45-microm droplets contributed 36.83%, for a total of 98.76%. Droplets measuring 56-99 microm accounted for ca. 1.24% of droplets sampled. Hand-fogger oil aerosols produced 12 droplet sizes (1-38 microm) at test distances of 7.6 and 15.2 m, with 1,979 and 268 droplets sampled, respectively, during 10 tests at each distance. With analysis of variance of transformed individual percentages for each size at both distances, no significant differences were observed for 7.6 and 15.2 m. Cumulatively, 1-, 2-, 3-, and 5-microm droplets contributed 82.87 and 80.97%, whereas 8-, 11-, 14-, and 18-microm droplets added 14.55% to totals at both 7.6 and 15.2 m, respectively. Droplets measuring 22, 27, 32, and 38 microm contributed 2.57% and 4.47% to samples obtained at 7.6 and 15.2 m. The

  14. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    PubMed

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Investigation of water droplet trajectories within the NASA icing research tunnel

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Ibrahim, Mounir

    1995-01-01

    Water droplet trajectories within the NASA Lewis Research Center's Icing Research Tunnel (IRT) were studied through computer analysis. Of interest was the influence of the wind tunnel contraction and wind tunnel model blockage on the water droplet trajectories. The computer analysis was carried out with a program package consisting of a three-dimensional potential panel code and a three-dimensional droplet trajectory code. The wind tunnel contraction was found to influence the droplet size distribution and liquid water content distribution across the test section from that at the inlet. The wind tunnel walls were found to have negligible influence upon the impingement of water droplets upon a wing model.

  16. Global Survey of the Relationship Between Cloud Droplet Size and Albedo Using ISCCP

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    Aerosols affect climate through direct and indirect effects. The direct effect of aerosols (e.g., sulfates) includes reflection of sunlight back toward space and for some aerosols (e.g., smoke particles), absorption in the atmosphere; both effects cool the Earth's surface. The indirect effect of aerosols refers to the modification of cloud microphysical properties, thereby affecting the radiation balance. Higher concentrations of Cloud Condensation Nuclei (CCN) generally produce higher concentrations of cloud droplets, which are also usually assumed to lead to decreased cloud droplet sizes. The result is an increase in cloud albedo, producing a net radiative cooling, opposite to the warming caused by greenhouse gases (Charlson et al. 1992). The change in clouds that is directly induced by an increase of aerosol concentration is an increase of cloud droplet number density, N; but is is usually assumed that cloud droplet size decreases as if the water mass density Liquid Water Content (LWC) were constant. There is actually no reason why this should be the case. Shifting the cloud droplet size distribution to more numerous smaller droplets can change the relative rates of condensational and coalescence growth, leading to different LWC (e.g., Rossow 1978). Moreover, the resulting change in cloud albedo is usually ascribed to more efficient scattering by smaller droplets, when in fact it is the increase in droplet number density (assuming constant LWC) that produces the most important change in cloud albedo: e.g., holding N constant and decreasing the droplet size would actually decrease the scattering cross-section and, thus, the albedo much more than it is increased by the increased scattering efficiency.

  17. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent

    PubMed Central

    Sugaya, Sari; Yamada, Masumi; Hori, Ayaka; Seki, Minoru

    2013-01-01

    In this study, a microfluidic process is proposed for preparing monodisperse micrometer-sized hydrogel beads. This process utilizes non-equilibrium aqueous droplets formed in a polar organic solvent. The water-in-oil droplets of the hydrogel precursor rapidly shrunk owing to the dissolution of water molecules into the continuous phase. The shrunken and condensed droplets were then gelled, resulting in the formation of hydrogel microbeads with sizes significantly smaller than the initial droplet size. This study employed methyl acetate as the polar organic solvent, which can dissolve water at 8%. Two types of monodisperse hydrogel beads—Ca-alginate and chitosan—with sizes of 6–10 μm (coefficient of variation < 6%) were successfully produced. In addition, we obtained hydrogel beads with non-spherical morphologies by controlling the degree of droplet shrinkage at the time of gelation and by adjusting the concentration of the gelation agent. Furthermore, the encapsulation and concentration of DNA molecules within the hydrogel beads were demonstrated. The process presented in this study has great potential to produce small and highly concentrated hydrogel beads that are difficult to obtain by using conventional microfluidic processes. PMID:24396529

  18. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent.

    PubMed

    Sugaya, Sari; Yamada, Masumi; Hori, Ayaka; Seki, Minoru

    2013-01-01

    In this study, a microfluidic process is proposed for preparing monodisperse micrometer-sized hydrogel beads. This process utilizes non-equilibrium aqueous droplets formed in a polar organic solvent. The water-in-oil droplets of the hydrogel precursor rapidly shrunk owing to the dissolution of water molecules into the continuous phase. The shrunken and condensed droplets were then gelled, resulting in the formation of hydrogel microbeads with sizes significantly smaller than the initial droplet size. This study employed methyl acetate as the polar organic solvent, which can dissolve water at 8%. Two types of monodisperse hydrogel beads-Ca-alginate and chitosan-with sizes of 6-10 μm (coefficient of variation < 6%) were successfully produced. In addition, we obtained hydrogel beads with non-spherical morphologies by controlling the degree of droplet shrinkage at the time of gelation and by adjusting the concentration of the gelation agent. Furthermore, the encapsulation and concentration of DNA molecules within the hydrogel beads were demonstrated. The process presented in this study has great potential to produce small and highly concentrated hydrogel beads that are difficult to obtain by using conventional microfluidic processes.

  19. Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets

    PubMed Central

    Miller, Daniel S.; Abbott, Nicholas L.

    2012-01-01

    We report an investigation of ordering transitions that are induced in water-dispersed, micrometer-sized droplets of a thermotropic liquid crystal (LC) by the bacterial lipopolysaccharide endotoxin. We reveal that the ordering transitions induced by endotoxin – from a bipolar state of the droplets to a radial state – are strongly dependent on the size of the LC droplets. Specifically, as the diameters of the LC droplets increase from 2 μm to above 10 μm (in phosphate buffered saline with an ionic strength of 90 mM and a pH of 7.2), we measured the percentage of droplets exhibiting a radial configuration in the presence of 100 pg/mL endotoxin to decrease from 98 ± 1 % to 3 ± 2 %. In addition, we measured a decrease in either the ionic strength or pH of the aqueous phase to reduce the percentage of droplets exhibiting a radial configuration in the presence of endotoxin. These results, when interpreted within the context of a simple thermodynamic model that incorporates the contributions of elasticity and surface anchoring to the free energies of the LC droplets, lead us to conclude that (i) the elastic constant K24 plays a central role in determining the size-dependent response of the LC droplets to endotoxin, and (ii) endotoxin-triggered ordering transitions occur only under solution conditions (pH, ionic strength) where the combined contributions of elasticity and surface anchoring to the free energies of the bipolar and radial configurations of the LC droplets are similar in magnitude. Our analysis also suggests that the presence of endotoxin perturbs the free energies of the LC droplets by ~10−17 J/droplet, which is comparable to the standard free energy of self-association of ~103 endotoxin molecules. These results, when combined with prior reports of localization of endotoxin at the center of LC droplets, are consistent with the hypothesis that self-assembly of endotoxin within micrometer-sized LC droplets provides the driving force for the ordering

  20. Characterization of organic residues of size-resolved fog droplets and their atmospheric implications

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Ervens, Barbara; Gupta, Tarun; Tripathi, Sachchida N.

    2016-04-01

    Size-resolved fog water samples were collected in two consecutive winters at Kanpur, a heavily polluted urban area of India. Samples were analyzed by an aerosol mass spectrometer after drying and directly in other instruments. Residues of fine fog droplets (diameter: 4-16 µm) are found to be more enriched with oxidized (oxygen to carbon ratio, O/C = 0.88) and low volatility organics than residues of coarse (diameter > 22 µm) and medium size (diameter: 16-22 µm) droplets with O/C of 0.68 and 0.74, respectively. These O/C ratios are much higher than those observed for background ambient organic aerosols, indicating efficient oxidation in fog water. Accompanying box model simulations reveal that longer residence times, together with high aqueous OH concentrations in fine droplets, can explain these trends. High aqueous OH concentrations in smaller droplets are caused by their highest surface-volume ratio and high Fe and Cu concentrations, allowing more uptake of gas phase OH and enhanced Fenton reaction rates, respectively. Although some volatile organic species may have escaped during droplet evaporation, these findings indicate that aqueous processing of dissolved organics varies with droplet size. Therefore, large (regional, global)-scale models need to consider the variable reaction rates, together with metal-catalyzed radical formation throughout droplet populations for accurately predicting aqueous secondary organic aerosol formation.

  1. Secondary atomization of single coal-water fuel droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassel, G.R.; Scaroni, A.W.

    1989-03-01

    The evaporative behavior of single, well characterized droplets of a lignite coal-water slurry fuel (CWSF) and a carbon black in water slurry was studied as a function of heating rate and droplet composition. Induced droplet heating rates were varied from 0 to 10{sup 5} K/s. Droplets studied were between 97 and 170 {mu}m in diameter, with compositions ranging from 25 to 60% solids by weight. The effect of a commercially available surfactant additive package on droplet evaporation rate, explosive boiling energy requirements, and agglomerate formation was assessed. Surfactant concentrations were varied from none to 2 and 4% by weight solutionmore » (1.7 and 3.6% by weight of active species on a dry coal basis). The experimental system incorporated an electrodynamic balance to hold single, free droplets, a counterpropagating pulsed laser heating arrangement, and both video and high speed cinematographic recording systems. Data were obtained for ambient droplet evaporation by monitoring the temporal size, weight, and solids concentration changes. 49 refs., 31 figs.« less

  2. Phase behavior and formation of o/w nano-emulsion in vegetable oil/ mixture of polyglycerol polyricinoleate and polyglycerin fatty acid ester/water systems.

    PubMed

    Wakisaka, Satoshi; Nakanishi, Masami; Gohtani, Shoichi

    2014-01-01

    It is reported that mixing polyglycerol polyricinoleate (PGPR) and polyglycerol laurilester has a great emulsifying capacity, and consequently fine oil-in-water (o/w) emulsions can be formed. However, the role of PGPR is not clear. The objective of this research is to investigate the phase behavior of vegetable oil/mixture of PGPR and polyglycerol fatty acid ester/water systems, and to clarify the role of PGPR in making a fine emulsion. Phase diagrams were constructed to elucidate the optimal process for preparing fine emulsions. In all the systems examined in this study, the phases, including the liquid crystal phase (L(c)) and sponge phase (L(3)), spread widely in the phase diagrams. We examined droplet size of the emulsions prepared from each phase and found that o/w nano-emulsions with droplet sizes as small as 50 nm were formed by emulsifying either from a single L(3) phase or a two-phase region, L(c) + L(3). These results indicate that a sponge phase L(3) or liquid crystal phase L(c) or both is necessary to form an o/w nano-emulsion whose average droplet diameter is less than 50 nm for PGPR and polyglycerin fatty acid ester mixtures used as surfactant.

  3. Research study of droplet sizing technology leading to the development of an advanced droplet sizing system

    NASA Technical Reports Server (NTRS)

    Hess, C. F.; Smart, A. E.; Espinosa, V. E.

    1985-01-01

    An instrument to measure the size and velocity of droplets was developed. The instrument uses one of two techniques, as appropriate. In the first technique two small laser beams of one color identify the center of a larger laser beam of a different color. This defines a region of almost uniform intensity where the light scattered by the individual droplets can be related to their size. The first technique uses the visibility of a Doppler burst and validates it against the peak intensity of the signal's pedestal. Results are presented for monodisperse, bimodal, trimodal, and polydisperse sprays produced by the Berglund-Liu droplet generator and a pressure nozzle. Size distributions of a given spray obtained using three different size ranges show excellent self-consistency in the overlapping region. Measurements of sprays of known characteristics exhibit errors in the order of 10%. The principles of operation and design criteria of the instrument are discussed in great detail.

  4. Impinging Water Droplets on Inclined Glass Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initialmore » droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  5. Measuring droplet size distributions from overlapping interferometric particle images.

    PubMed

    Bocanegra Evans, Humberto; Dam, Nico; van der Voort, Dennis; Bertens, Guus; van de Water, Willem

    2015-02-01

    Interferometric particle imaging provides a simple way to measure the probability density function (PDF) of droplet sizes from out-focus images. The optical setup is straightforward, but the interpretation of the data is a problem when particle images overlap. We propose a new way to analyze the images. The emphasis is not on a precise identification of droplets, but on obtaining a good estimate of the PDF of droplet sizes in the case of overlapping particle images. The algorithm is tested using synthetic and experimental data. We next use these methods to measure the PDF of droplet sizes produced by spinning disk aerosol generators. The mean primary droplet diameter agrees with predictions from the literature, but we find a broad distribution of satellite droplet sizes.

  6. Measurements of the size dependence of the concentration of nonvolatile material in fog droplets

    NASA Astrophysics Data System (ADS)

    Ogren, J. A.; Noone, K. J.; Hallberg, A.; Heintzenberg, J.; Schell, D.; Berner, A.; Solly, I.; Kruisz, C.; Reischl, G.; Arends, B. G.; Wobrock, W.

    1992-11-01

    Measurements of the size dependence of the mass concentration of nonvolatile material dissolved and suspended in fog droplets were obtained with three complementary approaches, covering a size range from c. 1 50µm diameter: a counterflow virtual impactor, an eight-stage aerosol impactor, and a two-stage fogwater impactor. Concentrations were observed to decrease with size over the entire range, contrary to expectations of increasing concentrations at larger sizes. It is possible that the larger droplets had solute concentrations that increased with increasing size, but that the increase was too weak for the measurements to resolve. Future studies should consider the hypothesis that the droplets were coated with a surface-active substance that hindered their uptake of water.

  7. Freezing, fragmentation, and charge separation in sonic sprayed water droplets

    NASA Astrophysics Data System (ADS)

    Zilch, Lloyd W.; Maze, Joshua T.; Smith, John W.; Jarrold, Martin F.

    2009-06-01

    Water droplets are generated by sonic spray, transferred into vacuum through a capillary interface, and then passed through two image charge detectors separated by a drift region. The image charge detectors measure the charge and velocity of each droplet. For around 1% of the droplets, the charge changes significantly between the detectors. In some cases it increases, in others it decreases, and for some droplets the charge changes polarity. We attribute the charge changing behavior to fragmentation caused by freezing. Simulations indicate that the time required for a droplet to cool and freeze in vacuum depends on its size, and that droplets with radii of 1-2 [mu]m have the right size to freeze between the two detectors. These sizes correspond to the smaller end of the distribution present in the experiment. When the charge on a droplet increases or changes polarity, fragmentation must be accompanied by charge separation where fragments carry away opposite charges. In some cases, two fission fragments were observed in the second charge detector. We show examples where the droplet breaks apart to give fragments of the same charge and opposite charges. The fragmentation and charge changing behavior found here is consistent with what has been found in the freezing of larger suspended and supported droplets.

  8. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    van Pinxteren, Dominik; Wadinga Fomba, Khanneh; Mertes, Stephan; Müller, Konrad; Spindler, Gerald; Schneider, Johannes; Lee, Taehyoung; Collett, Jeffrey L.; Herrmann, Hartmut

    2016-03-01

    differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56-0.94, 0.79-0.99, 0.71-98, and 0.67-0.92 for SO42-, NO3-, NH4+, and DOC respectively when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42-, NO3-, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and "U" shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the three-stage collector and somewhat more pronounced from the five-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the five-stage collector was capable of resolving some features of solute size dependencies not seen in the three-stage data, especially sharp concentration increases (up to a factor of 5-10) in the smallest droplets for many solutes.

  9. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Fomba, K. W.; Mertes, S.; Müller, K.; Spindler, G.; Schneider, J.; Lee, T.; Collett, J.; Herrmann, H.

    2015-09-01

    caused by systematic differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56-0.94, 0.79-0.99, 0.71-98, and 0.67-0.92 for SO42-, NO3-, NH4+, and DOC, respectively, when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42-, NO3-, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and "U"-shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the 3-stage collector and somewhat more pronounced from the 5-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the 5-stage collector was capable of resolving some features of solute size dependencies not seen in the 3-stage data, especially sharp concentration increases (up to a factor of 5-10) in the smallest droplets for many solutes.

  10. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water.

    PubMed

    Schuch, Anna; Deiters, Philipp; Henne, Julius; Köhler, Karsten; Schuchmann, Heike P

    2013-07-15

    We investigate breakup of W/O/W double emulsion droplets at high viscosity ratios and coalescence of inner water droplets dependent on the dispersed phase content (DPC) of the inner emulsion. The rheological analyses of the inner emulsions confirm the behavior expected from literature - increasing viscosity with increasing DPC and elastic behavior for high DPC. The resulting droplet sizes seem to be influenced only by the viscosity ratio calculated using the viscosity of the inner emulsion. An influence of the elastic properties of the inner emulsions could not be observed. Moreover, breakup of double emulsion droplets seems to follow the same rules as breakup of Newtonian droplets. In the second part of the paper we focus on the release of water from double emulsions by coalescence. A direct correlation between resulting double emulsion droplet sizes and encapsulation efficiency was found for each system. The initial inner dispersed phase content has a big influence on the release rate. This can partly be explained by the influence of the dispersed phase content on collision rate. Moreover, it was found that for high internal phase concentrations inner droplets coalesce with each other. The so formed bigger inner droplets seem to increase the overall release rate. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. On the Development of Spray Submodels Based on Droplet Size Moments

    NASA Astrophysics Data System (ADS)

    Beck, J. C.; Watkins, A. P.

    2002-11-01

    Hitherto, all polydisperse spray models have been based on discretising the liquid flow field into groups of equally sized droplets. The authors have recently developed a spray model that captures the full polydisperse nature of the spray flow without using droplet size classes (Beck, 2000, Ph.D thesis, UMIST; Beck and Watkins, 2001, Proc. R. Soc. London A). The parameters used to describe the distribution of droplet sizes are the moments of the droplet size distribution function. Transport equations are written for the two moments which represent the liquid mass and surface area, and two more moments representing the sum of drop radii and droplet number are approximated via use of a presumed distribution function, which is allowed to vary in space and time. The velocities to be used in the two transport equations are obtained by defining moment-average quantities and constructing further transport equations for the relevant moment-average velocities. An equation for the energy of the liquid phase and standard gas phase equations, including a k-ɛ turbulence model, are also solved. All the equations are solved in an Eulerian framework using the finite-volume approach, and the phases are coupled through source terms. Effects such as interphase drag, droplet breakup, and droplet-droplet collisions are also captured through the use of source terms. The development of the submodels to describe these effects is the subject of this paper. All the source terms for the hydrodynamics of the spray are derived in this paper in terms of the four moments of the droplet size distribution in order to find the net effect on the whole spray flow field. The development of similar submodels to describe heat and mass transfer effects between the phases is the subject of a further paper (Beck and Watkins, 2001, J. Heat Fluid Flow). The model has been applied to a wide variety of different sprays, including high-pressure diesel sprays, wide-angle solid-cone water sprays, hollow

  12. Comparison of sprinkler droplet size and velocity measurements using a laser precipitation meter and photographic method

    USDA-ARS?s Scientific Manuscript database

    Kinetic energy of water droplets has a substantial effect on development of a soil surface seal and infiltration rate of bare soil. Methods for measuring sprinkler droplet size and velocity needed to calculate droplet kinetic energy have been developed and tested over the past 50 years, each with ad...

  13. An Instrument Employing a Coronal Discharge for the Determination of Droplet-Size Distribution in Clouds

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Levine, Joseph; Kleinknecht, Kenneth S.

    1951-01-01

    A flight instrument that uses electric means for measuring the droplet-size distribution in above-freezing clouds has been devised and given preliminary evaluation in flight. An electric charge is placed on the droplets and they are separated aerodynamically according to their mass. Because the charge placed on the droplets is a. function of the droplet size, the size spectrum can 'be determined by measurement of the charge deposited on cylinders of several different sizes placed to intercept the charged droplets. An expression for the rate of charge acquisition by a water droplet in a field of coronal discharge is derived. The results obtained in flight with an instrument based on the method described indicate that continuous records of droplet-size spectrum variations in clouds can be obtained. The experimental instrument was used to evaluate the method and was not refined to the extent necessary for obtaining conclusive meteorological data. The desirable features of an instrument based on the method described are (i) The instrument can be used in clouds with temperatures above freezing; (2) the size and the shape of the cylinders do not change during the exposure time; (3) the readings are instantaneous and continuous; (4) the available sensitivity permits the study of variations in cloud structures of less than 200 feet in extent.

  14. Mechanically modulated dewetting by atomic force microscope for micro- and nano- droplet array fabrication.

    PubMed

    Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung

    2014-10-06

    Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting.

  15. Mechanically Modulated Dewetting by Atomic Force Microscope for Micro- and Nano- Droplet Array Fabrication

    PubMed Central

    Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung

    2014-01-01

    Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting. PMID:25283744

  16. Droplet size and velocity distributions for spray modelling

    NASA Astrophysics Data System (ADS)

    Jones, D. P.; Watkins, A. P.

    2012-01-01

    Methods for constructing droplet size distributions and droplet velocity profiles are examined as a basis for the Eulerian spray model proposed in Beck and Watkins (2002,2003) [5,6]. Within the spray model, both distributions must be calculated at every control volume at every time-step where the spray is present and valid distributions must be guaranteed. Results show that the Maximum Entropy formalism combined with the Gamma distribution satisfy these conditions for the droplet size distributions. Approximating the droplet velocity profile is shown to be considerably more difficult due to the fact that it does not have compact support. An exponential model with a constrained exponent offers plausible profiles.

  17. Droplets size evolution of dispersion in a stirred tank

    NASA Astrophysics Data System (ADS)

    Kysela, Bohus; Konfrst, Jiri; Chara, Zdenek; Sulc, Radek; Jasikova, Darina

    2018-06-01

    Dispersion of two immiscible liquids is commonly used in chemical industry as wall as in metallurgical industry e. g. extraction process. The governing property is droplet size distribution. The droplet sizes are given by the physical properties of both liquids and flow properties inside a stirred tank. The first investigation stage is focused on in-situ droplet size measurement using image analysis and optimizing of the evaluation method to achieve maximal result reproducibility. The obtained experimental results are compared with multiphase flow simulation based on Euler-Euler approach combined with PBM (Population Balance Modelling). The population balance model was, in that specific case, simplified with assumption of pure breakage of droplets.

  18. Droplet Sizing Research Program.

    DTIC Science & Technology

    1986-03-10

    of size and velocity distributions is needed. For example, fuel spray studies, aer- osol studies, flue gas desulfurization , spray drying, paint...techniques are presented chronologic- ally since there is a logical development as a function of time. Most of the significant technical accomplishments...U3U 0 0 ILI N signals with an apparently different size by using the following logic : droplets that produce a certain visibility are associated with a

  19. Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Keblinski, Pawel; Nanoscale Science; Engineering Center Team

    The coalescence-induced jumping of tens of microns size droplets on super-hydrophobic surfaces has been observed in both experiments and simulations. However, whether the coalescence-induced jumping would occur for smaller, particularly nanoscale droplets, is an open question. Using molecular dynamics simulations, we demonstrate that in spite of the large internal viscous dissipation, coalescence of two nanoscale droplets on a super-hydrophobic surface can result in a jumping of the coalesced droplet from the surface with a speed of a few m/s. Similar to the coalescence-induced jumping of microscale droplets, we observe that the bridge between the coalescing nano-droplets expands and impacts the solid surface, which leads to an acceleration of the coalesced droplet by the pressure force from the solid surface. We observe that the jumping velocity decreases with the droplet size and its ratio to the inertial-capillary velocity is a constant of about 0.126, which is close to the minimum value of 0.111 predicted by continuum-level modeling of Enright et al. [R. Enright, N. Miljkovic, J. Sprittles, K. Nolan, R. Mitchell, and E. N. Wang, ACS Nano 8, 10352 (2014)].

  20. Size resolved fog water chemistry and its atmospheric implications

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida; Ervens, Barbara; Bhattu, Deepika

    2015-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world. It usually contains substantial quantity of liquid water and results in severe visibility reduction leading to disruption of normal life. Fog is generally seen as a natural cleansing agent but it also has the potential to form Secondary Organic Aerosol (SOA) via aqueous processing of ambient aerosols. Size- resolved fog water chemistry for inorganics were reported in previous studies but processing of organics inside the fog water and quantification of aqSOA remained a challenge. To assess the organics processing via fog aqueous processing, size resolved fog water samples were collected in two consecutive winter seasons (2012-13, 2013-14) at Kanpur, a heavily polluted urban area of India. Caltech 3 stage fog collector was used to collect the fog droplets in 3 size fraction; coarse (droplet diameter > 22 µm), medium (22> droplet diameter >16 µm) and fine (16> droplet diameter >4 µm). Collected samples were atomized into various instruments such as Aerosol Mass Spectrometer (AMS), Cloud Condensation Nucleus Counter (CCNc), Total Organic Carbon (TOC) and a thermo denuder (TD) for the physico-chemical characterization of soluble constituents. Fine droplets are found to be more enriched with different aerosol species and interestingly contain more aged and less volatile organics compared to other coarser sizes. Organics inside fine droplets have an average O/C = 0.87 compared to O/C of 0.67 and 0.74 of coarse and medium droplets. Metal chemistry and higher residence time of fine droplets are seemed to be the two most likely reasons for this outcome from as the results of a comprehensive modeling carried out on the observed data indicate. CCN activities of the aerosols from fine droplets are also much higher than that of coarse or medium droplets. Fine droplets also contain light absorbing material as was obvious from their 'yellowish' solution. Source apportionment of fog water organics via

  1. Droplets on bent fibers

    NASA Astrophysics Data System (ADS)

    Weyer, Floriane; Pan, Zhao; Pitt, William; Truscott, Tadd; Vandewalle, Nicolas

    Droplets on fibers are part of our everyday lives. Many phenomena involve drops and fibers such as the formation of dew droplets on a spiderweb, the trapping of water droplets on cactus spines or the motion of droplets on wetted moss hairs. These topics have been widely studied. In particular, Lorenceau et al. determined the critical volume of a water droplet hanging on a horizontal fiber. Here, we address a similar question : we try to find out the maximum droplet size on bent fibers, which are able to hold significantly more water than horizontal fibers. Indeed, we noticed that, in nature, some specific plants can hold large rain droplets thanks to their Y-shaped leaves. We try to mimic these structures with nylon fibers, of different diameters, bent with various angles. For each set-up, the critical water volume is determined. Finally, we propose models of the physics involved in determining droplet size that could be implemented in future fiber-based microfluidic devices.

  2. Droplet-based microreactor for synthesis of water-soluble Ag₂S quantum dots.

    PubMed

    Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-07-10

    A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles.

  3. Mass spectrometric and theoretical investigation of sulfate clusters in nanoscale water droplets

    NASA Astrophysics Data System (ADS)

    Lemke, K.

    2017-12-01

    The solvation of sulfate clusters of varying size and charge in water clusters and in nanoscale water droplets has been studied using electrospray ionization (ESI) FT-MS and density functional theory (DFT) molecular simulations. ESI mass spectra of solvated [Mg(MgSO4)m]2+(H2O)n with m≤10 and up to 15 water molecules have been recorded, and ion cluster experiments have been undertaken using a custom-modified FT-ICR mass spectrometer with the ability of IRMPD for ion dissociation. We present equilibrium geometries and energies for [Mg(MgSO4)m]2+(H2O)n, water-free and solvated with up to 100 water molecules, using swarm-based optimizers and DFT level calculations. Dominant cluster species identified following ESI of dilute (1-5 mM) MgSO4 solutions include hexa- and octa-nuclear magnesium sulfate ions, water-free and with a full first shell of water molecules. The largest clusters identified are magnesium sulfate decamers, i.e. [Mg(MgSO4)10]2+(H2O)n, with n≤15. As a very first step towards understanding the distribution and intensity of ESI ion mass spectra, we have identified the global minima of [Mg(MgSO4)m]2+(H2O)n with m≤10 and n≤100, and located likely global minima of magnesium sulfate clusters in the gas phase and in nano-scale water droplets. We will present a summary of the structural and energetic trends of solvated magnesium sulfate clusters, with a particular focus on structural transitions induced by cluster growth and solvation, the occurrence of "magic" number cluster species, their energetic properties and their potential role as atmospheric aqueous species.

  4. Transdermal delivery of forskolin from emulsions differing in droplet size.

    PubMed

    Sikora, Elżbieta; Llinas, Meritxell; Garcia-Celma, Maria Jose; Escribano, Elvira; Solans, Conxita

    2015-02-01

    The skin permeation of forskolin, a diterpene isolated from Coleus forsholii, was studied using oil in water (O/W) emulsions as delivery formulations and also an oil solution for comparative purposes. Two forskolin-loaded emulsions of water/Brij 72:Symperonic A7/Miglyol 812:Isohexadecane, at 0.075 wt% forskolin concentration were prepared with the same composition and only differing in droplet size (0.38 μm and 10 μm). The emulsions showed high kinetic stability at 25 °C. In vitro study of forskolin penetration through human skin was carried out using the MicroettePlus(®) system. The concentration of the active in the receptor solution (i.e. ethanol/phosphate buffer 40/60, v/v) was analyzed by high performance liquid chromatography with UV detection. The obtained results showed that forskolin permeation from the emulsions and the oil solution, through human skin, was very high (up to 72.10%), and no effect of droplet size was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Size and Velocity Characteristics of Droplets Generated by Thin Steel Slab Continuous Casting Secondary Cooling Air-Mist Nozzles

    NASA Astrophysics Data System (ADS)

    Minchaca M, J. I.; Castillejos E, A. H.; Acosta G, F. A.

    2011-06-01

    Direct spray impingement of high temperature surfaces, 1473 K to 973 K (1200 °C to 700 °C), plays a critical role in the secondary cooling of continuously cast thin steel slabs. It is known that the spray parameters affecting the local heat flux are the water impact flux w as well as the droplet velocity and size. However, few works have been done to characterize the last two parameters in the case of dense mists ( i.e., mists with w in the range of 2 to 90 L/m2s). This makes it difficult to rationalize how the nozzle type and its operating conditions must be selected to control the cooling process. In the present study, particle/droplet image analysis was used to determine the droplet size and velocity distributions simultaneously at various locations along the major axis of the mist cross section at a distance where the steel strand would stand. The measurements were carried out at room temperature for two standard commercial air-assisted nozzles of fan-discharge type operating over a broad range of conditions of practical interest. To achieve statistically meaningful samples, at least 6000 drops were analyzed at each location. Measuring the droplet size revealed that the number and volume frequency distributions were fitted satisfactorily by the respective log-normal and Nukiyama-Tanasawa distributions. The correlation of the parameters of the distribution functions with the water- and air-nozzle pressures allowed for reasonable estimation of the mean values of the size of the droplets generated. The ensemble of measurements across the mist axis showed that the relationship between the droplet velocity and the diameter exhibited a weak positive correlation. Additionally, increasing the water flow rate at constant air pressure caused a decrease in the proportion of the water volume made of finer droplets, whereas the volume proportion of faster droplets augmented until the water flow reached a certain value, after which it decreased. Diminishing the air-to-water

  6. A scattering methodology for droplet sizing of e-cigarette aerosols.

    PubMed

    Pratte, Pascal; Cosandey, Stéphane; Goujon-Ginglinger, Catherine

    2016-10-01

    Knowledge of the droplet size distribution of inhalable aerosols is important to predict aerosol deposition yield at various respiratory tract locations in human. Optical methodologies are usually preferred over the multi-stage cascade impactor for high-throughput measurements of aerosol particle/droplet size distributions. Evaluate the Laser Aerosol Spectrometer technology based on Polystyrene Sphere Latex (PSL) calibration curve applied for the experimental determination of droplet size distributions in the diameter range typical of commercial e-cigarette aerosols (147-1361 nm). This calibration procedure was tested for a TSI Laser Aerosol Spectrometer (LAS) operating at a wavelength of 633 nm and assessed against model di-ethyl-hexyl-sebacat (DEHS) droplets and e-cigarette aerosols. The PSL size response was measured, and intra- and between-day standard deviations calculated. DEHS droplet sizes were underestimated by 15-20% by the LAS when the PSL calibration curve was used; however, the intra- and between-day relative standard deviations were < 3%. This bias is attributed to the fact that the index of refraction of PSL calibrated particles is different in comparison to test aerosols. This 15-20% does not include the droplet evaporation component, which may reduce droplet size prior a measurement is performed. Aerosol concentration was measured accurately with a maximum uncertainty of 20%. Count median diameters and mass median aerodynamic diameters of selected e-cigarette aerosols ranged from 130-191 nm to 225-293 nm, respectively, similar to published values. The LAS instrument can be used to measure e-cigarette aerosol droplet size distributions with a bias underestimating the expected value by 15-20% when using a precise PSL calibration curve. Controlled variability of DEHS size measurements can be achieved with the LAS system; however, this method can only be applied to test aerosols having a refractive index close to that of PSL particles used

  7. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  8. Optical droplet vaporization of micron-sized perfluorocarbon droplets and their photoacoustic detection

    NASA Astrophysics Data System (ADS)

    Strohm, Eric; Rui, Min; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael

    2011-03-01

    An acoustic and photoacoustic characterization of micron-sized perfluorocarbon (PFC) droplets is presented. PFC droplets are currently being investigated as acoustic and photoacoustic contrast agents and as cancer therapy agents. Pulse echo measurements at 375 MHz were used to determine the diameter, ranging from 3.2 to 6.5 μm, and the sound velocity, ranging from 311 to 406 m/s of nine droplets. An average sound velocity of 379 +/- 18 m/s was calculated for droplets larger than the ultrasound beam width of 4.0 μm. Optical droplet vaporization, where vaporization of a single droplet occurred upon laser irradiation of sufficient intensity, was verified using pulse echo acoustic methods. The ultrasonic backscatter amplitude, acoustic impedance and attenuation increased after vaporization, consistent with a phase change from a liquid to gas core. Photoacoustic measurements were used to compare the spectra of three droplets ranging in diameter from 3.0 to 6.2 μm to a theoretical model. Good agreement in the spectral features was observed over the bandwidth of the 375 MHz transducer.

  9. Droplet size distributions in waveplate demisters using optical techniques

    NASA Astrophysics Data System (ADS)

    Layton, J. S.; Zaidi, Sohail H.; Altunbas, Ayse; Walters, J. K.; Azzopardi, B. J.

    1997-11-01

    Droplet separators or demisters are extensively used in the chemical industry. The effectiveness of many demisters is decisively affected by droplet sizes. As the misty gas passes through the demister, the liquid droplets impinge on the walls and form a liquid film. A part of this film can be re-entrained by the gas flow in the form of larger droplets. These droplets can escape the demister, affecting its efficiency. The measurement of drop size distributions inside the zigzag passages of the demister can provide useful information about the complex flow phenomena occurring within the demister. In the present work, a wave plate demister of the industrial dimensional specifications has been chosen to investigate the drop size distributions at various flow conditions. The laser diffraction technique has been employed for this purpose. This paper describes the suitability of the technique and presents some laser results to describe the effect of changing flow conditions inside and outside the demister.

  10. Effect of particle size on droplet infiltration into hydrophobic porous media as a model of water repellent soil.

    PubMed

    Hamlett, Christopher A E; Shirtcliffe, Neil J; McHale, Glen; Ahn, Sujung; Bryant, Robert; Doerr, Stefan H; Newton, Michael I

    2011-11-15

    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤ 10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (~0.2-2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid.

  11. Synthesis and LPG sensing properties of nano-sized cadmium oxide.

    PubMed

    Waghulade, R B; Patil, P P; Pasricha, Renu

    2007-04-30

    This paper reports the synthesis and liquid petroleum gas (LPG) sensing properties of nano-sized cadmium oxide (CdO). The nano-sized CdO powder was successfully synthesized by using a chemical co-precipitation method using cadmium acetate and the ammonium hydroxide, as starting materials and water as a carrier. The resulting nano-sized powder was characterized by X-ray diffraction (XRD) measurements and the transmission electron microscopy (TEM). The LPG sensing properties of the synthesized nano-sized CdO were investigated at different operating temperatures and LPG concentrations. It was found that the calcination temperature and the operating temperature significantly affect the sensitivity of the nano-sized CdO powder to the LPG. The sensitivity is found to be maximum when the calcination temperature was 400 degrees C. The sensitivity to 75ppm of LPG is maximum at an operating temperature 450 degrees C and it was found to be approximately 341%. The response and recovery times were found to be nearly 3-5s and 8-10s, respectively. The synthesized nano-sized CdO powder is able to detect up to 25ppm for LPG with reasonable sensitivity at an operating temperature 450 degrees C and it can be reliably used to monitor the concentration of LPG over the range (25-75ppm). The experimental results of the LPG sensing studies reveal that the nano-sized CdO powder synthesized by a simple co-precipitation method is a suitable material for the fabrication of the LPG sensor.

  12. Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region

    NASA Astrophysics Data System (ADS)

    Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.

    2009-07-01

    The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.

  13. Freezing of Water Droplet due to Evaporation

    NASA Astrophysics Data System (ADS)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  14. Size-isolation of ultrasound-mediated phase change perfluorocarbon droplets using differential centrifugation.

    PubMed

    Mercado, Karla P; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J

    2016-05-01

    Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions.

  15. Size-isolation of ultrasound-mediated phase change perfluorocarbon droplets using differential centrifugation

    PubMed Central

    Mercado, Karla P.; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J.

    2016-01-01

    Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions. PMID:27250199

  16. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.

    PubMed

    Mishchenko, Lidiya; Hatton, Benjamin; Bahadur, Vaibhav; Taylor, J Ashley; Krupenkin, Tom; Aizenberg, Joanna

    2010-12-28

    Materials that control ice accumulation are important to aircraft efficiency, highway and powerline maintenance, and building construction. Most current deicing systems include either physical or chemical removal of ice, both energy and resource-intensive. A more desirable approach would be to prevent ice formation rather than to fight its build-up. Much attention has been given recently to freezing of static water droplets resting on supercooled surfaces. Ice accretion, however, begins with the droplet/substrate collision followed by freezing. Here we focus on the behavior of dynamic droplets impacting supercooled nano- and microstructured surfaces. Detailed experimental analysis of the temperature-dependent droplet/surface interaction shows that highly ordered superhydrophobic materials can be designed to remain entirely ice-free down to ca. -25 to -30 °C, due to their ability to repel impacting water before ice nucleation occurs. Ice accumulated below these temperatures can be easily removed. Factors contributing to droplet retraction, pinning and freezing are addressed by combining classical nucleation theory with heat transfer and wetting dynamics, forming the foundation for the development of rationally designed ice-preventive materials. In particular, we emphasize the potential of hydrophobic polymeric coatings bearing closed-cell surface microstructures for their improved mechanical and pressure stability, amenability to facile replication and large-scale fabrication, and opportunities for greater tuning of their material and chemical properties.

  17. Droplet-based microreactor for synthesis of water-soluble Ag2S quantum dots

    NASA Astrophysics Data System (ADS)

    Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-07-01

    A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles.

  18. Holographic studies of the vapor explosion of vaporizing water-in-fuel emulsion droplets

    NASA Technical Reports Server (NTRS)

    Sheffield, S. A.; Hess, C. F.; Trolinger, J. D.

    1982-01-01

    Holographic studies were performed which examined the fragmentation process during vapor explosion of a water-in-fuel (hexadecane/water) emulsion droplet. Holograms were taken at 700 to 1000 microseconds after the vapor explosion. Photographs of the reconstructed holograms reveal a wide range of fragment droplet sizes created during the explosion process. Fragment droplet diameters range from below 10 microns to over 100 microns. It is estimated that between ten thousand and a million fragment droplets can result from this extremely violent vapor explosion process. This enhanced atomization is thus expected to have a pronounced effect on vaporization processes which are present during combustion of emulsified fuels.

  19. Contact freezing of supercooled cloud droplets on collision with mineral dust particles: effect of particle size

    NASA Astrophysics Data System (ADS)

    Hoffmann, Nadine; Duft, Denis; Kiselev, Alexei; Leisner, Thomas

    2013-04-01

    The contact freezing of supercooled cloud droplets is one of the potentially important and the least investigated heterogeneous mechanism of ice formation in the tropospheric clouds [1]. On the time scales of cloud lifetime the freezing of supercooled water droplets via contact mechanism may occur at higher temperature compared to the same IN immersed in the droplet. However, the laboratory experiments of contact freezing are very challenging due to the number of factors affecting the probability of ice formation. In our experiment we study single water droplets freely levitated in the laminar flow of mineral dust particles acting as the contact freezing nuclei. By repeating the freezing experiment sufficient number of times we are able to reproduce statistical freezing behavior of large ensembles of supercooled droplets and measure the average rate of freezing events. We show that the rate of freezing at given temperature is governed only by the rate of droplet -particle collision and by the properties of the contact ice nuclei. In this contribution we investigate the relationship between the freezing probability and the size of mineral dust particle (represented by illite) and show that their IN efficiency scales with the particle size. Based on this observation, we discuss the similarity between the freezing of supercooled water droplets in immersion and contact modes and possible mechanisms of apparent enhancement of the contact freezing efficiency. [1] - K.C. Young, The role of contact nucleation in ice phase initiation in clouds, Journal of the Atmospheric Sciences 31, 1974

  20. Measurement of Droplet Sizes by the Diffraction Ring Method

    DTIC Science & Technology

    1948-07-27

    for measuring the droplet size distribution in sprays ob- tained by pressure injection of a liquid through an orifice «roby air- stream atomization...Diameter vs Injection Pressure 10 6. Distribution Curves for Spray Sample of Water Injected into Air Stream .... 11 Page ii Page Hi i^ujJa-je jii...tion in sprays obtained by pressure injection of a liquid through an orifice or by air- stream atomization. Perhaps the most widely used method

  1. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-11-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning.

  2. Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks

    NASA Astrophysics Data System (ADS)

    Li, C.; Miller, J.; Wang, J.; Koley, S. S.; Katz, J.

    2017-10-01

    This laboratory experimental study investigates the temporal evolution of the size distribution of subsurface oil droplets generated as breaking waves entrain oil slicks. The measurements are performed for varying wave energy, as well as large variations in oil viscosity and oil-water interfacial tension, the latter achieved by premixing the oil with dispersant. In situ measurements using digital inline holography at two magnifications are applied for measuring the droplet sizes and Particle Image Velocimetry (PIV) for determining the temporal evolution of turbulence after wave breaking. All early (2-10 s) size distributions have two distinct size ranges with different slopes. For low dispersant to oil ratios (DOR), the transition between them could be predicted based on a turbulent Weber (We) number in the 2-4 range, suggesting that turbulence plays an important role. For smaller droplets, all the number size distributions have power of about -2.1, and for larger droplets, the power decreases well below -3. The measured steepening of the size distribution over time is predicted by a simple model involving buoyant rise and turbulence dispersion. Conversely, for DOR 1:100 and 1:25 oils, the diameter of slope transition decreases from ˜1 mm to 46 and 14 µm, respectively, much faster than the We-based prediction, and the size distribution steepens with increasing DOR. Furthermore, the concentration of micron-sized droplets of DOR 1:25 oil increases for the first 10 min after entrainment. These phenomena are presumably caused by the observed formation and breakup oil microthreads associated with tip streaming.

  3. A new droplet generator

    NASA Technical Reports Server (NTRS)

    Slack, W. E.

    1982-01-01

    A new droplet generator is described. A loud speaker driven extractor needle was immersed in a pendant drop. Pulsing the speaker extracted the needle forming a fluid ligament which will decay into a droplet. The droplets were sized by stroboscopic photographs. The droplet's size was changed by varying the amplitude of the speaker pulses and the extractor needle diameter. The mechanism of droplet formation is discussed and photographs of ligament decay are presented. The droplet generator worked well on both oil and water based pesticide formulations. Current applications and results are discussed.

  4. Ignition of an organic water-coal fuel droplet floating in a heated-air flow

    NASA Astrophysics Data System (ADS)

    Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.

    2017-01-01

    Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.

  5. Surfactant induced stabilization of nano liquid crystalline (dodecane-phytantriol) droplet

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Saha, Debasish; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2018-04-01

    The study of formation and stabilization of dodecane-phytantriol (DPT) microemulsions using ionic and nonionic surfactants are investigated. Small Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) techniques have been employed to study the resulting structures of the micro emulsion droplets. We show the formation of stable microemulsion droplets with absence of lyotropic liquid crystalline phase on addition of nonionic surfactant C12E10. The oil to surfactant ratio plays the crucial role in formation of stable droplet and its size. The dense presence of C12E10 molecules between microemulsion droplets protect them from coalescence while less number of C12E10 between the surface of droplets easily triggers the coalescence process. The interaction with both anionic (SDS) as well as cationic (DTAB) surfactants with DPT phase leads to formation of microemulsion droplets with lyotropic liquid crystalline phase.

  6. An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions.

    PubMed

    Li, Zhengkai; Spaulding, Malcolm L; French-McCay, Deborah

    2017-06-15

    A surface oil entrainment model and droplet size model have been developed to estimate the flux of oil under surface breaking waves. Both equations are expressed in dimensionless Weber number (We) and Ohnesorge number (Oh, which explicitly accounts for the oil viscosity, density, and oil-water interfacial tension). Data from controlled lab studies, large-scale wave tank tests, and field observations have been used to calibrate the constants of the two independent equations. Predictions using the new algorithm compared well with the observed amount of oil removed from the surface and the sizes of the oil droplets entrained in the water column. Simulations with the new algorithm, implemented in a comprehensive spill model, show that entrainment rates increase more rapidly with wind speed than previously predicted based on the existing Delvigne and Sweeney's (1988) model, and a quasi-stable droplet size distribution (d<~50μm) is developed in the near surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1997-01-01

    This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.

  8. An investigation into a micro-sized droplet impinging on a surface with sharp wettability contrast

    NASA Astrophysics Data System (ADS)

    Lim, C. Y.; Lam, Y. C.

    2014-10-01

    An experimental investigation was conducted into a micro-sized droplet jetted onto a surface with sharp wettability contrast. The dynamics of micro-sized droplet impingement on a sharp wettability contrast surface, which is critical in inkjet printing technology, has not been investigated in the literature. Hydrophilic lines with line widths ranging from 27 to 53 µm, and contact angle ranging from 17° to 77°, were patterned on a hydrophobic surface with a contact angle of 107°. Water droplets with a diameter of 81 µm were impinged at various offset distances from the centre of the hydrophilic line. The evolution of the droplet upon impingement can be divided into three distinct phases, namely the kinematic phase, the translating phase where the droplet moves towards the centre of the hydrophilic line, and the conforming phase where the droplet spreads along the line. The key parameters affecting the conformability of the droplet to the hydrophilic line pattern are the ratio of the line width to the initial droplet diameter and the contact angle of the hydrophilic line. The droplet will only conform completely to the hydrophilic pattern if the line width is not overly small relative to the droplet and the contact angle of the hydrophilic line is sufficiently low. The impact offset distance does not affect the final shape and final location of the droplet, as long as part of the droplet touches the hydrophilic line upon impingement. This process has a significant impact on inkjet printing technology as high accuracy of inkjet droplet deposition and shape control can be achieved through wettability patterning.

  9. Phenomenology and control of buckling dynamics in multicomponent colloidal droplets

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Basu, Saptarshi

    2015-06-01

    Self-assembly of nano sized particles during natural drying causes agglomeration and shell formation at the surface of micron sized droplets. The shell undergoes sol-gel transition leading to buckling at the weakest point on the surface and produces different types of structures. Manipulation of the buckling rate with inclusion of surfactant (sodium dodecyl sulphate, SDS) and salt (anilinium hydrochloride, AHC) to the nano-sized particle dispersion (nanosilica) is reported here in an acoustically levitated single droplet. Buckling in levitated droplets is a cumulative, complicated function of acoustic streaming, chemistry, agglomeration rate, porosity, radius of curvature, and elastic energy of shell. We put forward our hypothesis on how buckling occurs and can be suppressed during natural drying of the droplets. Global precipitation of aggregates due to slow drying of surfactant-added droplets (no added salts) enhances the rigidity of the shell formed and hence reduces the buckling probability of the shell. On the contrary, adsorption of SDS aggregates on salt ions facilitates the buckling phenomenon with an addition of minute concentration of the aniline salt to the dispersion. Variation in the concentration of the added particles (SDS/AHC) also leads to starkly different morphologies and transient behaviour of buckling (buckling modes like paraboloid, ellipsoid, and buckling rates). Tuning of the buckling rate causes a transition in the final morphology from ring and bowl shapes to cocoon type of structure.

  10. Nano-fabricated size exclusion chromatograph

    NASA Technical Reports Server (NTRS)

    Svehla, D.; Feldman, S.; Feldman, J.; Grunthaner, F.; Shakkottai, P.; Castillo, L. del; White, V.

    2002-01-01

    This paper describes the development of a nano-fabricated size exclusion chromatograph (nSEC) based on the principle that molecules traveling through amicrocolumn containing nano-fabricated features will have characteristic elution times that directly correlate to molecular weight. Compared to conventional size exclusion chromatography, the nSEC offers greater control over the size exclusion process; mass fabrication; integration of the separation column with associated valves, pumps, and detectors; and dramatic reductions in instrument mass and power requirements.

  11. Emulsion oil droplet size significantly affects satiety: A pre-ingestive approach.

    PubMed

    Lett, Aaron M; Norton, Jennifer E; Yeomans, Martin R

    2016-01-01

    Previous research has demonstrated that the manipulation of oil droplet size within oil-in-water emulsions significantly affects sensory characteristics, hedonics and expectations of food intake, independently of energy content. Smaller oil droplets enhanced perceived creaminess, increased Liking and generated greater expectations of satiation and satiety, indicating that creaminess is a satiety-relevant sensory cue within these systems. This paper extends these findings by investigating the effect of oil droplet size (d4,3: 2 and 50 μm) on food intake and appetite. Male participants (n = 34 aged 18-37; BMI of 22.7 ± 1.6 kg/m(2); DEBQ restricted eating score of 1.8 ± 0.1.) completed two test days, where they visited the laboratory to consume a fixed-portion breakfast, returning 3 h later for a "drink", which was the emulsion preload containing either 2 or 50 μm oil droplets. This was followed 20 min later with an ad libitum pasta lunch. Participants consumed significantly less at the ad libitum lunch after the preload containing 2 μm oil droplets than after the 50 μm preload, with an average reduction of 12% (62.4 kcal). Despite the significant differences in intake, no significant differences in sensory characteristics were noted. The findings show that the impact that an emulsion has on satiety can be enhanced without producing significantly perceivable differences in sensory properties. Therefore, by introducing a processing step which results in a smaller droplets, emulsion based liquid food products can be produced that enhance satiety, allowing covert functional redesign. Future work should consider the mechanism responsible for this effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad

    2015-09-14

    Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.

  13. On the Size Dependence of Molar and Specific Properties of Independent Nano-phases and Those in Contact with Other Phases

    NASA Astrophysics Data System (ADS)

    Kaptay, George

    2018-05-01

    Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.

  14. Droplet size in flow: Theoretical model and application to polymer blends

    NASA Astrophysics Data System (ADS)

    Fortelný, Ivan; Jůza, Josef

    2017-05-01

    The paper is focused on prediction of the average droplet radius, R, in flowing polymer blends where the droplet size is determined by dynamic equilibrium between the droplet breakup and coalescence. Expressions for the droplet breakup frequency in systems with low and high contents of the dispersed phase are derived using available theoretical and experimental results for model blends. Dependences of the coalescence probability, Pc, on system parameters, following from recent theories, is considered and approximate equation for Pc in a system with a low polydispersity in the droplet size is proposed. Equations for R in systems with low and high contents of the dispersed phase are derived. Combination of these equations predicts realistic dependence of R on the volume fraction of dispersed droplets, φ. Theoretical prediction of the ratio of R to the critical droplet radius at breakup agrees fairly well with experimental values for steadily mixed polymer blends.

  15. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions.

    PubMed

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A; Yang, Fan

    2016-12-13

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

  16. Evaporation of inclined water droplets.

    PubMed

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-16

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  17. Evaporation of inclined water droplets

    PubMed Central

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  18. Fat Emulsion Intragastric Stability and Droplet Size Modulate Gastrointestinal Responses and Subsequent Food Intake in Young Adults1234

    PubMed Central

    Hussein, Mahamoud O; Hoad, Caroline L; Wright, Jeff; Singh, Gulzar; Stephenson, Mary C; Cox, Eleanor F; Placidi, Elisa; Pritchard, Susan E; Costigan, Carolyn; Ribeiro, Henelyta; Ciampi, Elisabetta; Nandi, Asish; Hedges, Nick; Sanderson, Paul; Peters, Harry PF; Rayment, Pip; Spiller, Robin C; Gowland, Penny A

    2015-01-01

    Background: Intragastric creaming and droplet size of fat emulsions may affect intragastric behavior and gastrointestinal and satiety responses. Objectives: We tested the hypotheses that gastrointestinal physiologic responses and satiety will be increased by an increase in intragastric stability and by a decrease in fat droplet size of a fat emulsion. Methods: This was a double-blind, randomized crossover study in 11 healthy persons [8 men and 3 women, aged 24 ± 1 y; body mass index (in kg/m2): 24.4 ± 0.9] who consumed meals containing 300-g 20% oil and water emulsion (2220 kJ) with 1) larger, 6-μm mean droplet size (Coarse treatment) expected to cream in the stomach; 2) larger, 6-μm mean droplet size with 0.5% locust bean gum (LBG; Coarse+LBG treatment) to prevent creaming; or 3) smaller, 0.4-μm mean droplet size with LBG (Fine+LBG treatment). The participants were imaged hourly by using MRI and food intake was assessed by using a meal that participants consumed ad libitum. Results: The Coarse+LBG treatment (preventing creaming in the stomach) slowed gastric emptying, resulting in 12% higher gastric volume over time (P < 0.001), increased small bowel water content (SBWC) by 11% (P < 0.01), slowed appearance of the 13C label in the breath by 17% (P < 0.01), and reduced food intake by 9% (P < 0.05) compared with the Coarse treatment. The Fine+LBG treatment (smaller droplet size) slowed gastric emptying, resulting in 18% higher gastric volume (P < 0.001), increased SBWC content by 15% (P < 0.01), and significantly reduced food intake by 11% (P < 0.05, equivalent to an average of 411 kJ less energy consumed) compared with the Coarse+LBG treatment. These high-fat meals stimulated substantial increases in SBWC, which increased to a peak at 4 h at 568 mL (range: 150–854 mL; P < 0.01) for the Fine+LBG treatment. Conclusion: Manipulating intragastric stability and fat emulsion droplet size can influence human gastrointestinal physiology and food intake. PMID

  19. Marangoni flow in an evaporating water droplet

    NASA Astrophysics Data System (ADS)

    Xu, Xuefeng; Luo, Jianbin

    2007-09-01

    Marangoni effect has been observed in many liquids, but its existence in pure water is still a debated problem. In the present work, the Marangoni flow in evaporating water droplets has been observed by using fluorescent nanoparticles. Flow patterns indicate that a stagnation point where the surface flow, the surface tension gradient, and the surface temperature gradient change their directions exists at the droplet surface. The deduced nonmonotonic variation of the droplet surface temperature, which is different from that in some previous works, is explained by a heat transfer model considering the adsorbed thin film of the evaporating liquid droplet.

  20. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    PubMed Central

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-01-01

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc<τt) for high aerosol concentration, and slow microphysics (τc>τt) for low aerosol concentration; here, τc is the phase-relaxation time and τt is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs−1=τc−1+τt−1, and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation. PMID:27911802

  1. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE PAGES

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; ...

    2016-11-28

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  2. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  3. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosol concentration;more » here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  4. Nano-sized crystalline drug production by milling technology.

    PubMed

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  5. The interaction of radio frequency electromagnetic fields with atmospheric water droplets and applications to aircraft ice prevention. Thesis

    NASA Technical Reports Server (NTRS)

    Hansman, R. J., Jr.

    1982-01-01

    The feasibility of computerized simulation of the physics of advanced microwave anti-icing systems, which preheat impinging supercooled water droplets prior to impact, was investigated. Theoretical and experimental work performed to create a physically realistic simulation is described. The behavior of the absorption cross section for melting ice particles was measured by a resonant cavity technique and found to agree with theoretical predictions. Values of the dielectric parameters of supercooled water were measured by a similar technique at lambda = 2.82 cm down to -17 C. The hydrodynamic behavior of accelerated water droplets was studied photograhically in a wind tunnel. Droplets were found to initially deform as oblate spheroids and to eventually become unstable and break up in Bessel function modes for large values of acceleration or droplet size. This confirms the theory as to the maximum stable droplet size in the atmosphere. A computer code which predicts droplet trajectories in an arbitrary flow field was written and confirmed experimentally. The results were consolidated into a simulation to study the heating by electromagnetic fields of droplets impinging onto an object such as an airfoil. It was determined that there is sufficient time to heat droplets prior to impact for typical parameter values. Design curves for such a system are presented.

  6. Retrievals of Cloud Droplet Size from the RSP Data: Validation Using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Sinclair, Kenneth; Wasilewski, Andrzej P.; Ziemba, Luke; Crosbie, Ewan; Hair, John; Hu, Yongxiang; Hostetler, Chris; Stamnes, Snorre

    2016-01-01

    We present comparisons of cloud droplet size distributions retrieved from the Research Scanning Polarimeter (RSP) data with correlative in situ measurements made during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). This field experiment was based at St. Johns airport, Newfoundland, Canada with the latest deployment in May - June 2016. RSP was onboard the NASA C-130 aircraft together with an array of in situ and other remote sensing instrumentation. The RSP is an along-track scanner measuring polarized and total reflectances in9 spectral channels. Its unique high angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135 and 165 degrees. A parametric fitting algorithm applied to the polarized reflectances provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution (DSD) itself. The latter is important in the case of clouds with complex structure, which results in multi-modal DSDs. During NAAMES the aircraft performed a number of flight patterns specifically designed for comparison of remote sensing retrievals and in situ measurements. These patterns consisted of two flight segments above the same straight ground track. One of these segments was flown above clouds allowing for remote sensing measurements, while the other was at the cloud top where cloud droplets were sampled. We compare the DSDs retrieved from the RSP data with in situ measurements made by the Cloud Droplet Probe (CDP). The comparisons show generally good agreement with deviations explainable by the position of the aircraft within cloud and by presence of additional cloud layers in RSP view that do not contribute to the in situ DSDs. In the

  7. Oil Droplet Size Distribution and Optical Properties During Wave Tank Simulated Oil Spills

    NASA Astrophysics Data System (ADS)

    Conmy, R. N.; Venosa, A.; Courtenay, S.; King, T.; Robinson, B.; Ryan, S.

    2013-12-01

    Fate and transport of spilled petroleum oils in aquatic environments is highly dependent upon oil droplet behavior which is a function of chemical composition, dispersibility (natural and chemically-enhanced) and droplet size distribution (DSD) of the oil. DSD is influenced by mixing energy, temperature, salinity, pressure, presence of dissolved and particulate materials, flow rate of release, and application of dispersants. To better understand DSD and droplet behavior under varying physical conditions, flask-scale experiments are often insufficient. Rather, wave tank simulations allow for scaling to field conditions. Presented here are experiment results from the Bedford Institute of Oceanography wave tank facility, where chemically-dispersed (Corexit 9500; DOR = 1:20) Louisiana Sweet crude, IFO-120 and ANS crude oil were exposed to mixing energies to achieve dispersant effectiveness observed in the field. Oil plumes were simulated, both surface and subsea releases with varying water temperature and flow rate. Fluorometers (Chelsea Technologies Group AQUATracka, Turner Designs Cyclops, WET Labs Inc ECO) and particle size analyzers (Sequoia LISST) were used to track the dispersed plumes in the tank and characterize oil droplets. Sensors were validated with known oil volumes (down to 300 ppb) and measured Total Petroleum Hydrocarbons (TPH) and Benzene-Toluene-Ethylbenzene-Xylene (BTEX) values. This work has large implications for tracking surface and deep sea oil plumes with fluorescence and particle size analyzers, improved weathering and biodegradation estimates, and understanding the fate and transport of spill oil.

  8. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  9. Assessing the size distribution of droplets in a cloud chamber from light extinction data during a transient regime

    NASA Astrophysics Data System (ADS)

    Vâjâiac, Sorin Nicolae; Filip, Valeriu; Štefan, Sabina; Boscornea, Andreea

    2014-03-01

    The paper describes a method of assessing the size distribution of fog droplets in a cloud chamber, based on measuring the time variation of the transmission of a light beam during the gravitational settling of droplets. Using a model of light extinction by floating spherical particles, the size distribution of droplets is retrieved, along with characteristic structural parameters of the fog (total droplet concentration, liquid water content and effective radius). Moreover, the time variation of the effective radius can be readily extracted from the model. The errors of the method are also estimated and fall within acceptable limits. The method proves sensitive enough to resolve various modes in the droplet distribution and to point out changes in the distribution due to diverse types of aerosol present in the chamber or to the thermal condition of the fog. It is speculated that the method can be further simplified to reach an in-situ version for real-time field measurements.

  10. Nano-sized water-in-oil-in-water emulsion enhances intestinal absorption of calcein, a high solubility and low permeability compound.

    PubMed

    Koga, Kenjiro; Takarada, Nobuo; Takada, Kanji

    2010-02-01

    Our goal was to develop safe and stable multilayer emulsions capable of enhancing intestinal absorption of biopharmaceutics classification system (BCS) class III drugs. First, w/o emulsions were prepared using calcein as a model BCS class III compound and condensed ricinoleic acid tetraglycerin ester as a hydrophobic emulsifier. Then water-in-oil-in-water (w/o/w) emulsions were prepared with shirasu porous glass (SPG) membranes. Particle size analyses and calcein leakage from oil droplets in w/o/w emulsions led us to select stearic acid hexaglycerin esters (HS-11) and Gelucire 44/14 as hydrophilic emulsifiers. Analyses of the absorption-enhancing effects of w/o/w emulsions on intestinal calcein absorption in rats showed that calcein bioavailability after intraduodenal (i.d.) administration of HS-11 or Gelucire 44/14+polyvinyl alcohol (PVA) w/o/w emulsions prepared with 0.1-microm pore-sized SPGs was significantly higher than that of the calcein control. However, serum calcein concentration vs. time profiles after i.d. administration of w/o/w emulsions prepared with 1.1-microm and 30-microm pore-sized SPGs and an emulsion prepared with a calcein-containing outer water phase were comparable to control profiles. These results suggested that HS-11 or Gelucire 44/14+PVA are safe outer water phase additives and that 0.1-microm pore-sized SPGs are important for preparing w/o/w emulsions that enhanced intestinal calcein absorption. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  11. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    NASA Astrophysics Data System (ADS)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  12. Thermophoretically driven water droplets on graphene and boron nitride surfaces.

    PubMed

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P

    2018-05-25

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  13. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    NASA Astrophysics Data System (ADS)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  14. Cloud Droplet Size and Liquid Water Path Retrievals From Zenith Radiance Measurements: Examples From the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    NASA Technical Reports Server (NTRS)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.

    2012-01-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  15. Characterizations of particle size distribution of the droplets exhaled by sneeze

    PubMed Central

    Han, Z. Y.; Weng, W. G.; Huang, Q. Y.

    2013-01-01

    This work focuses on the size distribution of sneeze droplets exhaled immediately at mouth. Twenty healthy subjects participated in the experiment and 44 sneezes were measured by using a laser particle size analyser. Two types of distributions are observed: unimodal and bimodal. For each sneeze, the droplets exhaled at different time in the sneeze duration have the same distribution characteristics with good time stability. The volume-based size distributions of sneeze droplets can be represented by a lognormal distribution function, and the relationship between the distribution parameters and the physiological characteristics of the subjects are studied by using linear regression analysis. The geometric mean of the droplet size of all the subjects is 360.1 µm for unimodal distribution and 74.4 µm for bimodal distribution with geometric standard deviations of 1.5 and 1.7, respectively. For the two peaks of the bimodal distribution, the geometric mean (the geometric standard deviation) is 386.2 µm (1.8) for peak 1 and 72.0 µm (1.5) for peak 2. The influences of the measurement method, the limitations of the instrument, the evaporation effects of the droplets, the differences of biological dynamic mechanism and characteristics between sneeze and other respiratory activities are also discussed. PMID:24026469

  16. Application of dynamic light scattering for studying the evolution of micro- and nano-droplets

    NASA Astrophysics Data System (ADS)

    Derkachov, G.; Jakubczyk, D.; Kolwas, K.; Shopa, Y.; Woźniak, M.; Wojciechowski, T.

    2018-01-01

    The dynamic light scattering (DLS) technique was used for studying the processes of aggregation of spherical SiO2 particles in various diethylene glycol (DEG) suspensions. The suspensions were studied in a cuvette, in a millimeter-sized droplet and in a micrometer-sized droplet. For the first time DLS signals for droplets of picolitre volume, levitated in an electrodynamic quadrupole trap, were obtained. It is shown that the correlation analysis of light scattered from a micro-droplet allows monitoring the changes of its internal structure, as well as its motions: trap-constricted Brownian motions and random rotations.

  17. Compound Method to Disperse CaCO3 Nanoparticles to Nano-Size in Water.

    PubMed

    Gu, Sui; Cai, Jihua; Wang, Jijun; Yuan, Ye; Chang, Dewu; Chikhotkin, Viktor F

    2015-12-01

    The invalidation of CaCO3 nanoparticles (nCaCO3) is often caused by the fact of agglomeration and inhomogeneous dispersion which limits its application into water-based drilling muds for low permeability reservoirs such as coalbed methane reservoir and shale gas/oil reservoir. Effective methods to disperse nCaCO3 to nano-size (≤ 100 nm) in water have seldom been reported. Here we developed a compound method containing mechanical stirring, ultrasonic treatment, the use of surfactant and stabilizer to disperse nCaCO3 in water. It comprises the steps adding 2% nCaCO3, 1% sodium dodecyl sulfonate (SDS), 2% cetyltrimethyl ammonium bromide (CTAB), 2% OP-10, 3% to 4% biopolymer (XC) in water successively, stirring it at a shear rate of 6000 to 8000 r/min for 15 minutes and treating it with ultrasonic at a frequency of 28 KHz for 30 to 40 minutes. The dispersed nCaCO3 was characterized with scanning electron microscope (SEM), transmission electron microscope (TEM) and particle size distribution (PSD) tests. We found that nCaCO3 could be dispersed to below 100 nm in water and the medium value of nCaCO3 was below 50 nm. This method paved the way for the utilization of nCaCO3 in drilling fluid and completion fluid for low permeability reservoirs such as coal seams and shale gas/oil formations.

  18. Skylab near-infrared observations of clouds indicating supercooled liquid water droplets

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Wu, M.-L. C.

    1982-01-01

    Orographically-induced lee-wave clouds were observed over New Mexico by a multichannel scanning radiometer on Skylab during December 1973. Channels centered at 0.83, 1.61 and 2.125 microns were used to determine the cloud optical thickness, thermodynamic phase and effective particle size. An additional channel centered at 11.4 microns was used to determine cloud-top temperature, which was corroborated through comparison with the stereographically determined cloud top altitudes and conventional temperature soundings. Analysis of the measured near-infrared reflection functions at 1.61 and 2.125 microns are most easily interpreted as indicating the presence of liquid-phase water droplets. This interpretation is not conclusive even after considerable effort to understand possible sources for misinterpretation. However, if accepted the resulting phase determination is considered anomalous due to the inferred cloud-top temperatures being in the -32 to -47 C range. Theory for the homogeneous nucleation of pure supercooled liquid water droplets predicts very short lifetimes for the liquid phase at these cold temperatures. A possible explanation for the observations is that the wave-clouds are composed of solution droplets. Impurities in the cloud droplets could decrease the homogeneous freezing rate for these droplets, permitting them to exist for a longer time in the liquid phase, at the cold temperatures found.

  19. Self-arraying of charged levitating droplets.

    PubMed

    Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent

    2011-06-01

    Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation.

  20. Investigation of the charging characteristics of micrometer sized droplets based on parallel plate capacitor model.

    PubMed

    Zhang, Yanzhen; Liu, Yonghong; Wang, Xiaolong; Shen, Yang; Ji, Renjie; Cai, Baoping

    2013-02-05

    The charging characteristics of micrometer sized aqueous droplets have attracted more and more attentions due to the development of the microfluidics technology since the electrophoretic motion of a charged droplet can be used as the droplet actuation method. This work proposed a novel method of investigating the charging characteristics of micrometer sized aqueous droplets based on parallel plate capacitor model. With this method, the effects of the electric field strength, electrolyte concentration, and ion species on the charging characteristics of the aqueous droplets was investigated. Experimental results showed that the charging characteristics of micrometer sized droplets can be investigated by this method.

  1. Electrophoretic manipulation of multiple-emulsion droplets

    NASA Astrophysics Data System (ADS)

    Schoeler, Andreas M.; Josephides, Dimitris N.; Chaurasia, Ankur S.; Sajjadi, Shahriar; Mesquida, Patrick

    2014-02-01

    Electrophoretic manipulation of multiple-emulsion oil-in-water-in-oil (O/W)/O and water-in-oil-in-water-in-oil (W/O/W)/O core-shell droplets is shown. It was found that the electrophoretic mobility of the droplets is determined solely by the outer water shell, regardless of size or composition of the inner droplets. It was observed that the surface charge of the outer water shell can be changed and the polarity can be reversed through contact with a biased electrode in a similar way as with simple W/O droplets. Furthermore, addition of the anionic surfactant, sodium dodecyl sulfate to the outer water shell reverses the initial polarity and hence, electrophoretic mobility of the core-shell droplets before contact with an electrode. The results have practical implications for the manipulation of oil droplets in a continuous oil phase.

  2. Electrowetting in a water droplet with a movable floating substrate

    NASA Astrophysics Data System (ADS)

    Shahzad, Amir; Masud, A. R.; Song, Jang-Kun

    2016-05-01

    Electrowetting (EW) enables facile manipulation of a liquid droplet on a hydrophobic surface. In this study, manipulation of an electrolyte droplet having a small floating object on it was investigated on a solid hydrophobic substrate under the EW process. Herein, the floating object exhibited a vertical motion under an applied electric field owing to the spreading and contraction of the droplet on its connecting substrates. The field-induced height variation of the floating object was significantly influenced by the thicknesses of the dielectric and hydrophobic materials. A small mass was also placed on the top floating object and its effect on the spreading of the droplet was observed. In this system, the height of the top floating object is precisely controllable under the application of an electric voltage. The proposed system is expected to be highly useful in the design of nano- and micro-oscillatory systems for microengineering.

  3. Electrowetting in a water droplet with a movable floating substrate.

    PubMed

    Shahzad, Amir; Masud, A R; Song, Jang-Kun

    2016-05-01

    Electrowetting (EW) enables facile manipulation of a liquid droplet on a hydrophobic surface. In this study, manipulation of an electrolyte droplet having a small floating object on it was investigated on a solid hydrophobic substrate under the EW process. Herein, the floating object exhibited a vertical motion under an applied electric field owing to the spreading and contraction of the droplet on its connecting substrates. The field-induced height variation of the floating object was significantly influenced by the thicknesses of the dielectric and hydrophobic materials. A small mass was also placed on the top floating object and its effect on the spreading of the droplet was observed. In this system, the height of the top floating object is precisely controllable under the application of an electric voltage. The proposed system is expected to be highly useful in the design of nano- and micro-oscillatory systems for microengineering.

  4. Eddy correlation measurements of size-dependent cloud droplet turbulent fluxes to complex terrain

    NASA Astrophysics Data System (ADS)

    Vong, Richard J.; Kowalski, Andrew S.

    1995-07-01

    An eddy correlation technique was used to measure the turbulent flux of cloud droplets to complex, forested terrain near the coast of Washington State during the spring of 1993. Excellent agreement was achieved for cloud liquid water content measured by two instruments. Substantial downward liquid water fluxes of ~ 1mm per 24 h were measured at night during "steady and continuous" cloud events, about twice the magnitude of those measured by Beswick etal. in Scotland. Cloud water chemical fluxes were estimated to represent up to 50% of the chemical deposition associated with precipitation at the site. An observed size-dependence in the turbulent liquid water fluxes suggested that both droplet impaction, which leads to downward fluxes, and phase change processes, which can lead to upward fluxes, consistently are important contributors to the eddy correlation results. The diameter below which phase change processes were important to observed fluxes was shown to depend upon σLL, the relative standard deviation of the liquid water content (LWC) within a 30-min averaging period. The crossover from upward to downward LW flux occurs at 8µm for steady and continuous cloud events but at ~ 13µm for events with a larger degree of LWC variability. This comparison of the two types of cloud events suggested that evaporation was the most likely cause of upward droplet fluxes for the smaller droplets (dia<13µm) during cloud with variable LWC (σLL>0.3).

  5. Particle-Laden Leidenfrost Droplets: Final-Stage Observations

    NASA Astrophysics Data System (ADS)

    Fang, Zecong; Xu, Jie

    2015-03-01

    Little interest has been paid to the final stage of a Leidenfrost droplet until a recent study by Celestini et al [Phys. Rev. Lett. 109, 034501 (2012)] reporting an unexpected take-off phenomenon of micrometer sized pure liquid droplets (Rl < R droplets start to lose sphericity). In our study, we first report an unexpected observation on millimeter sized water Leidenfrost droplets (R >Ri), which behave quite differently from the previous study. While an originally micrometer sized Leidenfrost droplet takes off due to breakdown of lubrication regime, and hovers above its vapor layer until disappearing in the final stage of evaporation, an originally millimetric Leidenfrost drop is observed to hover and oscillate, taking off and falling back consecutively. We further report another interesting observation on water droplets containing micrometric glass beads. These droplets spontaneously organize and buckle together during evaporation. In addition to oscillation just like pure droplets, these particle-laden drops create an unexpected explosive shoot-up at the end of evaporation.

  6. Droplet Growth Kinetics in Various Environments

    NASA Astrophysics Data System (ADS)

    Raatikainen, T. E.; Lathem, T. L.; Moore, R.; Lin, J. J.; Cerully, K. M.; Padro, L.; Lance, S.; Cozic, J.; Anderson, B. E.; Nenes, A.

    2012-12-01

    The largest uncertainties in the effects of atmospherics aerosols on the global radiation budget are related to their indirect effects on cloud properties (IPCC, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007). Cloud formation is a kinetic process where the resulting cloud properties depend on aerosol properties and meteorological parameters such as updraft velocity (e.g. McFiggans et al., Atmos. Chem. Phys., 6, 2593-2649, 2006). Droplet growth rates are limited by the water vapor diffusion, but additional kinetic limitations, e.g., due to organic surface films, slow solute dissociation or highly viscous or glassy aerosol states have been hypothesized. Significant additional kinetic limitations can lead to increased cloud droplet number concentration, thus the effect is similar to those of increased aerosol number concentration or changes in vertical velocity (e.g. Nenes et al., Geophys. Res. Lett., 29, 1848, 2002). There are a few studies where slow droplet growth has been observed (e.g. Ruehl et al., Geophys. Res. Lett., 36, L15814, 2009), however, little is currently known about their global occurrence and magnitude. Cloud micro-physics models often describe kinetic limitations by an effective water vapor uptake coefficient or similar parameter. Typically, determining aerosol water vapor uptake coefficients requires experimental observations of droplet growth which are interpreted by a numerical droplet growth model where the uptake coefficient is an adjustable parameter (e.g. Kolb et al., Atmos. Chem. Phys., 10, 10561-10605, 2010). Such methods have not been practical for high time-resolution or long term field measurements, until a model was recently developed for analyzing Droplet Measurement Technologies (DMT) cloud condensation nuclei (CCN) counter data (Raatikainen et al., Atmos. Chem. Phys., 12, 4227-4243, 2012). Model verification experiments showed that the calibration aerosol droplet size can be predicted accurately

  7. Classification of spray nozzles based on droplet size distributions and wind tunnel tests.

    PubMed

    De Schamphelerie, M; Spanoghe, P; Nuyttens, D; Baetens, K; Cornelis, W; Gabriels, D; Van der Meeren, P

    2006-01-01

    Droplet size distribution of a pesticide spray is recognised as a main factor affecting spray drift. As a first approximation, nozzles can be classified based on their droplet size spectrum. However, the risk of drift for a given droplet size distribution is also a function of spray structure, droplet velocities and entrained air conditions. Wind tunnel tests to determine actual drift potentials of the different nozzles have been proposed as a method of adding an indication of the risk of spray drift to the existing classification based on droplet size distributions (Miller et al, 1995). In this research wind tunnel tests were performed in the wind tunnel of the International Centre for Eremology (I.C.E.), Ghent University, to determine the drift potential of different types and sizes of nozzles at various spray pressures. Flat Fan (F) nozzles Hardi ISO 110 02, 110 03, 110 04, 110 06; Low-Drift (LD) nozzles Hardi ISO 110 02, 110 03, 110 04 and Injet Air Inclusion (AI) nozzles Hardi ISO 110 02, 110 03, 110 04 were tested at a spray pressures of 2, 3 and 4 bar. The droplet size spectra of the F and the LD nozzles were measured with a Malvern Mastersizer at spray pressures 2 bar, 3 bar and 4 bar. The Malvern spectra were used to calculate the Volume Median Diameters (VMD) of the sprays.

  8. Micrometer-sized TPM emulsion droplets with surface-mobile binding groups

    NASA Astrophysics Data System (ADS)

    van der Wel, Casper; van de Stolpe, Guido L.; Verweij, Ruben W.; Kraft, Daniela J.

    2018-03-01

    Colloids coated with lipid membranes have been widely employed for fundamental studies of lipid membrane processes, biotechnological applications such as drug delivery and biosensing, and more recently, for self-assembly. The latter has been made possible by inserting DNA oligomers with covalently linked hydrophobic anchors into the membrane. The lateral mobility of the DNA linkers on micrometer-sized droplets and solid particles has opened the door to creating structures with unprecedented structural flexibility. Here, we investigate micro-emulsions of TPM (3-(trimethoxysilyl)propyl methacrylate) as a platform for lipid monolayers and further functionalization with proteins and DNA oligonucleotides. TPM droplets can be produced with a narrow size distribution and are polymerizable, thus providing supports for model lipid membranes with controlled size and curvature. With fluorescence recovery after photobleaching, we observed that droplet-attached lipids, NeutrAvidin proteins, as well as DNA oligonucleotides all show mobility on the surface. We explored the assembly of micron-sized particles on TPM-droplets by exploiting either avidin-biotin interactions or double-stranded DNA with complementary single-stranded end groups. While the single molecules are mobile, the particles that are attached to them are not. We propose that this is caused by the heterogeneous nature of emulsified TPM, which forms an oligomer network that limits the collective motion of linkers, but allows the surface mobility of individual molecules.

  9. Physics of puffing and microexplosion of emulsion fuel droplets

    NASA Astrophysics Data System (ADS)

    Shinjo, J.; Xia, J.; Ganippa, L. C.; Megaritis, A.

    2014-10-01

    The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.

  10. Size Limit for Particle-Stabilized Emulsion Droplets under Gravity

    NASA Astrophysics Data System (ADS)

    Tavacoli, J. W.; Katgert, G.; Kim, E. G.; Cates, M. E.; Clegg, P. S.

    2012-06-01

    We demonstrate that emulsion droplets stabilized by interfacial particles become unstable beyond a size threshold set by gravity. This holds not only for colloids but also for supracolloidal glass beads, using which we directly observe the ejection of particles near the droplet base. The number of particles acting together in these ejection events decreases with time until a stable acornlike configuration is reached. Stability occurs when the weight of all remaining particles is less than the interfacial binding force of one particle. We also show the importance of the curvature of the droplet surface in promoting particle ejection.

  11. Optics of Water Cloud Droplets Mixed with Black-Carbon Aerosols

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Cairns, Brian; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to calculate scattering and absorption properties of micrometer-sized water droplets contaminated by black carbon. Our numerically exact results reveal that, depending on the mode of soot-water mixing, the soot specific absorption can vary by a factor exceeding 6.5. The specific absorption is maximized when the soot material is quasi-uniformly distributed throughout the droplet interior in the form of numerous small monomers. The range of mixing scenarios captured by our computations implies a wide range of remote sensing and radiation budget implications of the presence of black carbon in liquid-water clouds. We show that the popular Maxwell-Garnett effective-medium approximation can be used to calculate the optical cross sections, single-scattering albedo, and asymmetry parameter for the quasi-uniform mixing scenario, but is likely to fail in application to other mixing scenarios and in computations of the elements of the scattering matrix.

  12. Shock wave attenuation by water droplets

    NASA Astrophysics Data System (ADS)

    Eliasson, Veronica; Wan, Qian; Deiterding, Ralf

    2017-11-01

    The ongoing research on shock wave attenuation is fueled by the desire to predict and avoid damage caused by shock and blast waves. For example, during an explosion in an underground mine or subway tunnel, the shock front is forced to propagate in the direction of the channel. In this work, numerical simulations using water droplets in a 2D channel are conducted to study shock wave attenuation. Four different droplet configurations (1x1, 2x2, 3x3, and 4x4) are considered, where the total volume of water is kept constant throughout all the cases. Meanwhile, the incident shock Mach number was varied from 1.1 to 1.4 with increments of 0.1. The physical motion of the water droplets, such as the center-of-mass drift and velocity, and the energy exchange between air and water are quantitatively studied. Results for center-of-mass velocity, maximum peak pressure and impulse will be presented for all different cases that were studied. NSF CBET-1437412.

  13. What Does Reflection from Cloud Sides Tell Us About Vertical Distribution of Cloud Droplet Sizes?

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Martins, J. Vanderlei; Zubko, Victor; Kaufman, Yoram, J.

    2005-01-01

    Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from Cloudsat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimensional (3D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 micrometers) and one with liquid water efficient absorption of solar radiation (2.1 micrometers). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.

  14. What does Reflection from Cloud Sides tell us about Vertical Distribution of Cloud Droplet Sizes?

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Martins, J. V.; Zubko, V.; Kaufman, Y. J.

    2006-01-01

    Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from CloudSat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3-D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimentional(3-D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 microns) and one with liquid water efficient absorption of solar radiation (2.1 microns). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3-D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.

  15. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    PubMed

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  16. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure.

    PubMed

    Inthavong, Kiao; Fung, Man Chiu; Yang, William; Tu, Jiyuan

    2015-02-01

    To evaluate the deposition efficiency of spray droplets in a nasal cavity produced from a spray device, it is important to determine droplet size distribution, velocity, and its dispersion during atomization. Due to the limiting geometric dimensions of the nasal cavity airway, the spray plume cannot develop to its full size inside the nasal vestibule to penetrate the nasal valve region for effective drug deposition. Particle/droplet image analysis was used to determine local mean droplet sizes at eight regions within the spray plume under different actuation pressures that represent typical hand operation from pediatric to adult patients. The results showed that higher actuation pressure produces smaller droplets in the atomization. Stronger actuation pressure typical of adult users produces a longer period of the fully atomized spray stage, despite a shorter overall spray duration. This produces finer droplets when compared with the data obtained by weaker actuation pressure, typical of pediatric users. The experimental technique presented is able to capture a more complete representation of the droplet size distribution and the atomization process during an actuation. The measured droplet size distribution produced can be related to the empirically defined deposition efficiency curve of the nasal cavity, allowing a prediction of the likely deposition.

  17. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    DTIC Science & Technology

    2010-04-01

    The EZVI is composed of food-grade surfactant, biodegradable oil , water, and ZVI particles (either nano- or micro-scale iron), which form...emulsion particles (Figure 2-1). Each emulsion particle or droplet contains ZVI particles in water surrounded by an oil -liquid membrane. Since the...exterior oil membrane of the emulsion droplet has hydrophobic properties similar to that of DNAPL, the droplets are miscible with DNAPL. It is believed

  18. [Dynamics of Irreversible Evaporation of a Water-Protein Droplet and a Problem of Structural and Dynamical Experiments with Single Molecules].

    PubMed

    Shaitan, K V; Armeev, G A; Shaytan, A K

    2016-01-01

    We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an

  19. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  20. O the Size Dependence of the Chemical Properties of Cloud Droplets: Exploratory Studies by Aircraft

    NASA Astrophysics Data System (ADS)

    Twohy, Cynthia H.

    1992-09-01

    Clouds play an important role in the climate of the earth and in the transport and transformation of chemical species, but many questions about clouds remain unanswered. In particular, the chemical properties of droplets may vary with droplet size, with potentially important consequences. The counterflow virtual impactor (CVI) separates droplets from interstitial particles and gases in a cloud and also can collect droplets in discrete size ranges. As such, the CVI is a useful tool for investigating the chemical components present in droplets of different sizes and their potential interactions with cloud processes. The purpose of this work is twofold. First, the sampling characteristics of the airborne CVI are investigated, using data from a variety of experiments. A thorough understanding of CVI properties is necessary in order to utilize the acquired data judiciously and effectively. Although the impaction characteristics of the CVI seem to be predictable by theory, the airborne instrument is subject to influences that may result in a reduced transmission efficiency for droplets, particularly if the inlet is not properly aligned. Ways to alleviate this problem are being investigated, but currently the imperfect sampling efficiency must be taken into account during data interpretation. Relationships between the physical and chemical properties of residual particles from droplets collected by the CVI and droplet size are then explored in both stratiform and cumulus clouds. The effects of various cloud processes and measurement limitations upon these relationships are discussed. In one study, chemical analysis of different -sized droplets sampled in stratiform clouds showed a dependence of chemical composition on droplet size, with larger droplets containing higher proportions of sodium than non-sea-salt sulfate and ammonium. Larger droplets were also associated with larger residual particles, as expected from simple cloud nucleation theory. In a study of marine

  1. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; Vogelmann, Andrew M.

    2018-05-01

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and rain formation, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a moving-size-grid cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, submicrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with early work. The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by numerous smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are as follows: (1) droplets form on aerosols of different sizes, and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism

  2. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    PubMed

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  3. Tight coupling of particle size and composition in atmospheric cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Topping, D.; McFiggans, G.

    2011-09-01

    The substantial uncertainty in the indirect effect on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i) the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the longwave, and on (ii) their ability to precipitate, with implications for cloud cover and lifetime. Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived in 1936. However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate. We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition and a particles size under ambient conditions. Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; moreso even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.

  4. Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    NASA Astrophysics Data System (ADS)

    Courbin, Laurent; Panizza, Pascal; Salmon, Jean-Baptiste

    2004-01-01

    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress, whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for such kinds of oscillations is discussed.

  5. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    PubMed Central

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  6. Reynolds number scaling to predict droplet size distribution in dispersed and undispersed subsurface oil releases.

    PubMed

    Li, Pu; Weng, Linlu; Niu, Haibo; Robinson, Brian; King, Thomas; Conmy, Robyn; Lee, Kenneth; Liu, Lei

    2016-12-15

    This study was aimed at testing the applicability of modified Weber number scaling with Alaska North Slope (ANS) crude oil, and developing a Reynolds number scaling approach for oil droplet size prediction for high viscosity oils. Dispersant to oil ratio and empirical coefficients were also quantified. Finally, a two-step Rosin-Rammler scheme was introduced for the determination of droplet size distribution. This new approach appeared more advantageous in avoiding the inconsistency in interfacial tension measurements, and consequently delivered concise droplet size prediction. Calculated and observed data correlated well based on Reynolds number scaling. The relation indicated that chemical dispersant played an important role in reducing the droplet size of ANS under different seasonal conditions. The proposed Reynolds number scaling and two-step Rosin-Rammler approaches provide a concise, reliable way to predict droplet size distribution, supporting decision making in chemical dispersant application during an offshore oil spill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An infrared scattering by evaporating droplets at the initial stage of a pool fire suppression by water sprays

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.; Dembele, Siaka; Wen, Jennifer X.

    2018-06-01

    The computational analysis of downward motion and evaporation of water droplets used to suppress a typical transient pool fire shows local regions of a high volume fraction of relatively small droplets. These droplets are comparable in size with the infrared wavelength in the range of intense flame radiation. The estimated scattering of the radiation by these droplets is considerable throughout the entire spectrum except for a narrow region in the vicinity of the main absorption peak of water where the anomalous refraction takes place. The calculations of infrared radiation field in the model pool fire indicate the strong effect of scattering which can be observed experimentally to validate the fire computational model.

  8. Maximum Evaporation Rates of Water Droplets Approaching Obstacles in the Atmosphere Under Icing Conditions

    NASA Technical Reports Server (NTRS)

    Lowell, H. H.

    1953-01-01

    When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius

  9. Membrane fouling by extracellular polymeric substances after ozone pre-treatment: Variation of nano-particles size.

    PubMed

    Yu, Wenzheng; Zhang, Dizhong; Graham, Nigel J D

    2017-09-01

    The application of ozone pre-treatment for ultrafiltration (UF) in drinking water treatment has been studied for more than 10 years, but its performance in mitigating or exacerbating membrane fouling has been inconclusive, and sometimes contradictory. To help explain this, our study considers the significance of the influent organic matter and its interaction with ozone on membrane fouling, using solutions of two representative types of extracellular polymeric substances (EPS), alginate and bovine serum albumin (BSA), and samples of surface water. The results show that at typical ozone doses there is no measurable mineralization of alginate and BSA, but substantial changes in their structure and an increase in the size of nano-particle aggregates (micro-flocculation). The impact of ozonation on membrane fouling, as indicated by the membrane flux, was markedly different for the two types of EPS and found to be related to the size of the nano-particle aggregates formed in comparison with the UF pore size. Thus, for BSA, ozonation created aggregate sizes similar to the UF pore size (100 k Dalton) which led to an increase in fouling. In contrast, ozonation of alginate created the nano-particle aggregates greater than the UF pore size, giving reduced membrane fouling/greater flux. For solutions containing a mixture of the two species of EPS the overall impact of ozonation on UF performance depends on the relative proportion of each, and the ozone dose, and the variable behaviour has been demonstrated by the surface water. These results provide new information about the role of nano-particle aggregate size in explaining the reported ambiguity over the benefits of applying ozone as pre-treatment for ultrafiltration. Copyright © 2017. Published by Elsevier Ltd.

  10. Evaporation of Water Droplets Moving Through High-Temperature Gases

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Strizhak, P. A.

    2018-01-01

    With the use of high-speed recording and diagnostic facilities, an experimental study has been made of the evaporation of droplets (of characteristic size Rm ≈ 0.05-0.035 mm) of atomized flow of water-based suspensions with typical soil impurities (silt and clay) moving in a high-temperature (about 1100 K) gaseous medium (with the example of acetone combustion products). The relative mass concentration of soil components in the suspension was varied over the range of γ = 0-1%. A strong influence of the above impurities on the main characteristic of evaporation — the relative change in the droplet radius ΔR — has been established. The influence of the initial temperature (varied over the range of Tw = 278-320 K) of the atomized suspension on the evaporation rate of the latter has been determined. It has been shown that the values of integral characteristics of the process of evaporation of suspensions with soil impurities can be much (2-3 times) higher than for water without these components.

  11. Observations of stimulated Raman scattering and laser-induced breakdown in millimeter-sized droplets

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Pinnick, R. G.; Xie, J.-G.; Ruekgauer, T. E.; Armstrong, R. L.

    1992-01-01

    We report the first observations, to our knowledge, of nonlinear optical effects in large (millimeter-sized) droplets. Stimulated Raman scattering (SRS) and laser-induced breakdown (LIB) are simultaneously observed in acoustically levitated millimeter-sized glycerol droplets irradiated by either a frequency-doubled (532-nm) or a frequency-tripled (355-nm) Nd:YAG laser. The two processes, which occur above a nearby coincident irradiation threshold, are conjectured to arise from a common initiation mechanism: self-focusing. LIB generates vapor bubbles within the droplet, resulting in the quenching of SRS emission.

  12. Effects of Droplet Size on Intrusion of Sub-Surface Oil Spills

    NASA Astrophysics Data System (ADS)

    Adams, Eric; Chan, Godine; Wang, Dayang

    2014-11-01

    We explore effects of droplet size on droplet intrusion and transport in sub-surface oil spills. Negatively buoyant glass beads released continuously to a stratified ambient simulate oil droplets in a rising multiphase plume, and distributions of settled beads are used to infer signatures of surfacing oil. Initial tests used quiescent conditions, while ongoing tests simulate currents by towing the source and a bottom sled. Without current, deposited beads have a Gaussian distribution, with variance increasing with decreasing particle size. Distributions agree with a model assuming first order particle loss from an intrusion layer of constant thickness, and empirically determined flow rate. With current, deposited beads display a parabolic distribution similar to that expected from a source in uniform flow; we are currently comparing observed distributions with similar analytical models. Because chemical dispersants have been used to reduce oil droplet size, our study provides one measure of their effectiveness. Results are applied to conditions from the `Deep Spill' field experiment, and the recent Deepwater Horizon oil spill, and are being used to provide ``inner boundary conditions'' for subsequent far field modeling of these events. This research was made possible by grants from Chevron Energy Technology Co., through the Chevron-MITEI University Partnership Program, and BP/The Gulf of Mexico Research Initiative, GISR.

  13. Physical properties of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to develop and evaluate a frozen yogurt (FY) fortified with a nano-emulsion containing purple rice bran oil (NPRBO). A nano-emulsion with a droplet size range of 150-300 nm was produced by sonication followed by ultra-shear homogenization. The nano-emulsion was mi...

  14. Observation of Droplet Size Oscillations in a Two Phase Fluid under Shear Flow

    NASA Astrophysics Data System (ADS)

    Courbin, Laurent; Panizza, Pascal

    2004-11-01

    It is well known that complex fluids exhibit strong couplings between their microstructure and the flow field. Such couplings may lead to unusual non linear rheological behavior. Because energy is constantly brought to the system, richer dynamic behavior such as non linear oscillatory or chaotic response is expected. We report on the observation of droplet size oscillations at fixed shear rate. At low shear rates, we observe two steady states for which the droplet size results from a balance between capillary and viscous stress. For intermediate shear rates, the droplet size becomes a periodic function of time. We propose a phenomenological model to account for the observed phenomenon and compare numerical results to experimental data.

  15. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  16. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE PAGES

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo; ...

    2017-03-16

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  17. Direct Observation of Zhang-Li Torque Expansion of Magnetic Droplet Solitons

    NASA Astrophysics Data System (ADS)

    Chung, Sunjae; Le, Q. Tuan; Ahlberg, Martina; Awad, Ahmad A.; Weigand, Markus; Bykova, Iuliia; Khymyn, Roman; Dvornik, Mykola; Mazraati, Hamid; Houshang, Afshin; Jiang, Sheng; Nguyen, T. N. Anh; Goering, Eberhard; Schütz, Gisela; Gräfe, Joachim; Åkerman, Johan

    2018-05-01

    Magnetic droplets are nontopological dynamical solitons that can be nucleated in nanocontact based spin torque nano-oscillators (STNOs) with perpendicular magnetic anisotropy free layers. While theory predicts that the droplet should be of the same size as the nanocontact, its inherent drift instability has thwarted attempts at observing it directly using microscopy techniques. Here, we demonstrate highly stable magnetic droplets in all-perpendicular STNOs and present the first detailed droplet images using scanning transmission X-ray microscopy. In contrast to theoretical predictions, we find that the droplet diameter is about twice as large as the nanocontact. By extending the original droplet theory to properly account for the lateral current spread underneath the nanocontact, we show that the large discrepancy primarily arises from current-in-plane Zhang-Li torque adding an outward pressure on the droplet perimeter. Electrical measurements on droplets nucleated using a reversed current in the antiparallel state corroborate this picture.

  18. The clouds of Venus. II - An investigation of the influence of coagulation on the observed droplet size distribution

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.

    1977-01-01

    An approximate numerical technique is used to investigate the influence of coagulation, sedimentation and turbulent motions on the observed droplet size distribution in the upper layers of the Venus clouds. If the cloud mass mixing ratio is less than 0.000001 at 250 K or the eddy diffusivity throughout the cloud is greater than 1,000,000 sq cm per sec, then coagulation is unimportant. In this case, the observed droplet size distribution is the initial size distribution produced by the condensation of the droplets. It is found that all cloud models with droplet formation near the cloud top (e.g., a photochemical model) must produce the observed droplet size distribution by condensation without subsequent modification by coagulation. However, neither meteoritic or surface dust can supply sufficient nucleating particles to account for the observed droplet number density. If the cloud droplets are formed near the cloud bottom, the observed droplet size distribution can be produced solely by the interaction of coagulation and dynamics; all information about the initial size distribution is lost. If droplet formation occurs near the cloud bottom, the lower atmosphere of Venus is oxidizing rather than reducing.

  19. Water Droplet Impingement on Simulated Glaze, Mixed, and Rime Ice Accretions

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Rachman, Arief; Wong, See-Cheuk; Yeong, Hsiung-Wei; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.

    2007-01-01

    Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for a 36-in. chord NACA 23012 airfoil with and without simulated ice using a dye-tracer method. The simulated ice shapes were defined with the NASA Glenn LEWICE 2.2 ice accretion program and including one rime, four mixed and five glaze ice shapes. The impingement experiments were performed with spray clouds having median volumetric diameters of 20, 52, 111, 154, and 236 micron. Comparisons to the experimental data were generated which showed good agreement for the rime and mixed shapes at lower drop sizes. For larger drops sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove or shadow regions of ice shapes.

  20. Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes.

    PubMed

    Brakstad, Odd G; Nordtug, Trond; Throne-Holst, Mimmi

    2015-04-15

    During the Deepwater Horizon (DWH) accident in 2010 a dispersant (Corexit 9500) was applied at the wellhead to disperse the Macondo oil and reduce the formation of surface slicks. A subsurface plume of small oil droplets was generated near the leaking well at 900-1300 m depth. A novel laboratory system was established to investigate biodegradation of small droplet oil dispersions (10 μm or 30 μm droplet sizes) of the Macondo oil premixed with Corexit 9500, using coastal Norwegian seawater at a temperature similar to the DWH plume (4-5°C). Biotransformation of volatile and semivolatile hydrocarbons and oil compound groups was generally faster in the 10 μm than in the 30 μm dispersions, showing the importance of oil droplet size for biodegradation. These data therefore indicated that dispersant treatment to reduce the oil droplet size may increase the biodegradation rates of oil compounds in the deepwater oil droplets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems.

    PubMed

    Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao

    2017-07-01

    The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.

  2. Uniform-droplet spray forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets thatmore » can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.« less

  3. Deforming water droplets with a superhydrophobic silica coating.

    PubMed

    Li, Xiaoguang; Shen, Jun

    2013-11-04

    The surface liquidity of a water droplet is eliminated by rubbing hydrophobic particles onto the droplet surface using a sol-gel silica coating with extremely weak binding force, which results in solid-like deformability of a liquid drop.

  4. Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A

    2010-02-01

    Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size. Copyright 2009 SETAC.

  5. Measuring the effect of spray plume angle on the accuracy of droplet size data

    USDA-ARS?s Scientific Manuscript database

    Analysis of droplet size data using laser diffraction allows for quick and easy assessment of droplet size for agricultural spray nozzles and pesticides; however, operation and setup of the instrument and test system can potentially influence the accuracy of the data. One of the factors is the orie...

  6. Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation.

    PubMed

    Jo, HangJin; Hwang, Kyung Won; Kim, DongHyun; Kiyofumi, Moriyama; Park, Hyun Sun; Kim, Moo Hwan; Ahn, Ho Seon

    2015-04-23

    Condensed liquid behavior on hydrophobic micro/nano-structured surfaces is a subject with multiple practical applications, but remains poorly understood. In particular, the loss of superhydrophobicity of hydrophobic micro/nanostructures during condensation, even when the same surface shows water-repellant characteristics when exposed to air, requires intensive investigation to improve and apply our understanding of the fundamental physics of condensation. Here, we postulate the criterion required for condensation to form from inside the surface structures by examining the grand potentials of a condensation system, including the properties of the condensed liquid and the conditions required for condensation. The results imply that the same hydrophobic micro/nano-structured surface could exhibit different liquid droplet behavior depending on the conditions. Our findings are supported by the observed phenomena: the initiation of a condensed droplet from inside a hydrophobic cavity, the apparent wetted state changes, and the presence of sticky condensed droplets on the hydrophobic micro/nano-structured surface.

  7. Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2015-02-01

    "Back to Nature" is a promising way to solve the problems that we face today, such as air pollution and shortage of energy supply based on conventional fossil fuels. A Mn cluster inside photosystem II catalyzes light-induced water-splitting leading to the generation of protons, electrons and oxygen in photosynthetic organisms, and has been considered as a good model for the synthesis of new artificial water-oxidizing catalysts. Herein, we surveyed the structural and functional details of this cluster and its surrounding environment. Then, we review the mechanistic findings concerning the cluster and compare this biological catalyst with nano-sized Mn oxides, which are among the best artificial Mn-based water-oxidizing catalysts. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Evaporation of liquid droplets of nano- and micro-meter size as a function of molecular mass and intermolecular interactions: experiments and molecular dynamics simulations.

    PubMed

    Hołyst, Robert; Litniewski, Marek; Jakubczyk, Daniel

    2017-09-13

    Transport of heat to the surface of a liquid is a limiting step in the evaporation of liquids into an inert gas. Molecular dynamics (MD) simulations of a two component Lennard-Jones (LJ) fluid revealed two modes of energy transport from a vapour to an interface of an evaporating droplet of liquid. Heat is transported according to the equation of temperature diffusion, far from the droplet of radius R. The heat flux, in this region, is proportional to temperature gradient and heat conductivity in the vapour. However at some distance from the interface, Aλ, (where λ is the mean free path in the gas), the temperature has a discontinuity and heat is transported ballistically i.e. by direct individual collisions of gas molecules with the interface. This ballistic transport reduces the heat flux (and consequently the mass flux) by the factor R/(R + Aλ) in comparison to the flux obtained from temperature diffusion. Thus it slows down the evaporation of droplets of sizes R ∼ Aλ and smaller (practically for sizes from 10 3 nm down to 1 nm). We analyzed parameter A as a function of interactions between molecules and their masses. The rescaled parameter, A(k B T b /ε 11 ) 1/2 , is a linear function of the ratio of the molecular mass of the liquid molecules to the molecular mass of the gas molecules, m 1 /m 2 (for a series of chemically similar compounds). Here ε 11 is the interaction parameter between molecules in the liquid (proportional to the enthalpy of evaporation) and T b is the temperature of the gas in the bulk. We tested the predictions of MD simulations in experiments performed on droplets of ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol. They were suspended in an electrodynamic trap and evaporated into dry nitrogen gas. A changes from ∼1 (for ethylene glycol) to approximately 10 (for tetraethylene glycol) and has the same dependence on molecular parameters as obtained for the LJ fluid in MD simulations. The value of x = A

  9. Traversing the Skin Barrier with Nano-emulsions.

    PubMed

    Burger, Cornel; Shahzad, Yasser; Brummer, Alicia; Gerber, Minja; du Plessis, Jeanetta

    2017-01-01

    In recent years, colloidal delivery systems based on nano-emulsion are gaining popularity; being used for encapsulation and delivery of many drugs. This review therefore aims at summarizing various methods of nano-emulsion formulation and their use as a topical and transdermal delivery vehicle for a number of active pharmaceutical ingredients from different pharmacological classes. This article represents a systematic review of nano-emulsions for topical and transdermal drug delivery. A vast literature was searched and critically analysed. Nano-emulsions are thermokinetically stable dispersion systems, which have been used in topical and transdermal delivery of a number of pharmaceutically active compounds. Nano-emulsions have a narrow droplet size range with tuneable surface properties, which make them an ideal delivery vehicle. Nanoemulsions have a number of advantages over conventional emulsions, including easy preparation using various low and high energy methods, optical transparency, high solubilisation capacity, high stability to droplet aggregation and the ability to penetrate the skin; thus allowing the transdermal delivery of drugs. This review indicated that nano-emulsions are promising vehicle for entrapping various drugs and are suitable for traversing the skin barrier for systemic effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. On-chip dilution in nanoliter droplets.

    PubMed

    Thakur, Raviraj; Amin, Ahmed M; Wereley, Steve

    2015-09-07

    Droplet microfluidics is enabling reactions at nano- and picoliter scale, resulting in faster and cheaper biological and chemical analyses. However, varying concentrations of samples on a drop-to-drop basis is still a challenging task in droplet microfluidics, primarily limited due to lack of control over individual droplets. In this paper, we report an on-chip microfluidic droplet dilution strategy using three-valve peristaltic pumps.

  11. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    NASA Astrophysics Data System (ADS)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  12. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    PubMed

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-09-10

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  13. Oil biodegradation. Water droplets in oil are microhabitats for microbial life.

    PubMed

    Meckenstock, Rainer U; von Netzer, Frederick; Stumpp, Christine; Lueders, Tillmann; Himmelberg, Anne M; Hertkorn, Norbert; Schmitt-Kopplin, Philipp; Harir, Mourad; Hosein, Riad; Haque, Shirin; Schulze-Makuch, Dirk

    2014-08-08

    Anaerobic microbial degradation of hydrocarbons, typically occurring at the oil-water transition zone, influences the quality of oil reservoirs. In Pitch Lake, Trinidad and Tobago--the world's largest asphalt lake--we found that microorganisms are metabolically active in minuscule water droplets (1 to 3 microliters) entrapped in oil. Pyrotag sequencing of individual droplet microbiomes revealed complex methanogenic microbial communities actively degrading the oil into a diverse range of metabolites, as shown by nuclear magnetic resonance and Fourier transform ion cyclotron resonance mass spectrometry. High salinity and water-stable isotopes of the droplets indicate a deep subsurface origin. The 13.5% water content and the large surface area of the droplets represent an underestimated potential for biodegradation of oil away from the oil-water transition zone. Copyright © 2014, American Association for the Advancement of Science.

  14. Instability of nano- and microscale liquid metal filaments: Transition from single droplet collapse to multidroplet breakup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartnett, Chris A.; Mahady, Kyle; Fowlkes, Jason Davidson

    We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting.more » The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. Additionally, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.« less

  15. Instability of nano- and microscale liquid metal filaments: Transition from single droplet collapse to multidroplet breakup

    DOE PAGES

    Hartnett, Chris A.; Mahady, Kyle; Fowlkes, Jason Davidson; ...

    2015-11-23

    We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting.more » The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. Additionally, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.« less

  16. Quantitative Raman microspectroscopy for water permeability parameters at a droplet interface bilayer.

    PubMed

    Braziel, S; Sullivan, K; Lee, S

    2018-01-29

    Using confocal Raman microspectroscopy, we derive parameters for bilayer water transport across an isolated nanoliter aqueous droplet pair. For a bilayer formed with two osmotically imbalanced and adherent nanoliter aqueous droplets in a surrounding oil solvent, a droplet interface bilayer (DIB), the water permeability coefficient across the lipid bilayer was determined from monitoring the Raman scattering from the C[triple bond, length as m-dash]N stretching mode of K 3 Fe(CN) 6 as a measure of water uptake into the swelling droplet of a DIB pair. We also derive passive diffusional permeability coefficient for D 2 O transport across a droplet bilayer using O-D Raman signal. This method provides a significant methodological advance in determining water permeability coefficients in a convenient and reliable way.

  17. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance

  18. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    DOE PAGES

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; ...

    2017-12-06

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance

  19. Droplet size distributions of adjuvant-amended sprays from an air-assisted five-port PWM nozzle

    USDA-ARS?s Scientific Manuscript database

    Verification of droplet size distributions is essential for the development of real-time variable-rate sprayers that synchronize spray outputs with canopy structures. Droplet sizes from a custom-designed, air-assisted, five-port nozzle coupled with a pulse-width-modulated (PWM) solenoid valve were m...

  20. Droplet Growth

    NASA Astrophysics Data System (ADS)

    Marder, Michael Paolo

    When a mixture of two materials, such as aluminum and tin, or alcohol and water, is cooled below a certain temperature, the two components begin to separate. If one component is dilute in the other, it may separate out in the form of small spheres, and these will begin to enlarge, depleting the supersaturated material around them. If the dynamics is sufficiently slow, thermodynamics gives one considerable information about how the droplets grow. Two types of experiment have explored this behavior and given puzzling results. Nucleation experiments measure the rate at which droplets initially appear from a seemingly homogeneous mixture. Near the critical point in binary liquids, experiments conducted in the 1960's and early 1970's showed that nucleation was vastly slower than theory seemed to predict. The resolution of this problem arises by considering in detail the dynamics of growing droplets and comparing it with what experiments actually measure. Here will be presented a more detailed comparison of theory and experiment than has before been completed, obtaining satisfactory agreement with no free parameters needed. A second type of experiment measures droplet size distributions after long times. In the late stage, droplets compete with each other for material, a few growing at the expense of others. A theory first proposed by Lifshitz and Slyozov claims that this distribution, properly scaled, should be universal, and independent of properties of materials. Yet experimental measurements consistently find distributions that are more broad and squat than the theory would predict. Satisfactory agreement with experiment can be achieved by considering two points. First, one must study the complete time development of droplet size distributions, to understand when the asymptotic regime obtains. Second, droplet size distributions are spread by correlations between droplets. If one finds a small droplet, it is small because large droplets nearby are competing with it

  1. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-03-17

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermalmore » stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO{sub 2} passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness.« less

  2. The role of the cubic structure in freezing of a supercooled water droplet on an ice substrate

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Kobayashi, T.

    1983-12-01

    The possibility of the formation of a metastable cubic (diamond) structure and its role in freezing of a supercooled water droplet on an ice substrate are discussed in terms of two-dimensional nucleation. The mode of stacking sequence of new layers formed by two-dimensional nucleation is divided into single and multi-nucleation according to the degree of supercooling and to the size of the supercooled droplet. In the case of single nucleation a frozen droplet develops into a complete hexagonal single crystal or an optically single crystal (containing discontinuous stacking faults). In the case of multi-nucleation attention is paid to the size effect and the stacking direction of the nucleus to calculate the waiting time in the nucleation. Then the frozen droplets are crystallographically divided into three categories: completely single crystals, optically single crystals (containing a small cubic structure, i.e. stacking faults) and polycrystals with a misorientation of 70.53° between the c-axes.

  3. Water droplets as template for next-generation self-assembled poly-(etheretherketone) with cardo membranes.

    PubMed

    Gugliuzza, Annarosa; Aceto, Marianna Carmela; Macedonio, Francesca; Drioli, Enrico

    2008-08-28

    Next generation PEEK-WC membranes have been fabricated by using an innovative self-assembly technique. Patterned architectures have been achieved via a solvent-reduced and water-assisted process, resulting in honeycomb packed geometry. The membranes exhibit monodisperse pores with size and shape comparable to those left by templating water droplets. Influencing factors for the formation of self-assembled poly-(etheretherketone) with Cardo [PEEK-WC] membranes have been evaluated, identifying the critical parameters for nucleation, growth, and propagation of the droplet-mobile arrays through the overall films. Structure-transport relationships have been discussed according to the results achieved from the implementation of membrane distillation processes, yielding indication about the suitability of self-assembled PEEK-WC films to work as interfaces in contactor operations.

  4. Droplet ejection and sliding on a flapping film

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Doughramaji, Nicole; Betz, Amy Rachel; Derby, Melanie M.

    2017-03-01

    Water recovery and subsequent reuse are required for human consumption as well as industrial, and agriculture applications. Moist air streams, such as cooling tower plumes and fog, represent opportunities for water harvesting. In this work, we investigate a flapping mechanism to increase droplet shedding on thin, hydrophobic films for two vibrational cases (e.g., ± 9 mm and 11 Hz; ± 2 mm and 100 Hz). Two main mechanisms removed water droplets from the flapping film: vibrational-induced coalescence/sliding and droplet ejection from the surface. Vibrations mobilized droplets on the flapping film, increasing the probability of coalescence with neighboring droplets leading to faster droplet growth. Droplet departure sizes of 1-2 mm were observed for flapping films, compared to 3-4 mm on stationary films, which solely relied on gravity for droplet removal. Additionally, flapping films exhibited lower percentage area coverage by water after a few seconds. The second removal mechanism, droplet ejection was analyzed with respect to surface wave formation and inertia. Smaller droplets (e.g., 1-mm diameter) were ejected at a higher frequency which is associated with a higher acceleration. Kinetic energy of the water was the largest contributor to energy required to flap the film, and low energy inputs (i.e., 3.3 W/m2) were possible. Additionally, self-flapping films could enable novel water collection and condensation with minimal energy input.

  5. Heterogeneous freezing of super cooled water droplets in micrometre range- freezing on a chip

    NASA Astrophysics Data System (ADS)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    A new setup to analyse the freezing behaviour of ice nucleation particles (INPs) dispersed in aqueous droplets has been developed with the aim to analyse ensembles of droplets with sizes in the micrometre range, in which INPs are immersed. Major disadvantages of conventional drop-freezing experiments like varying drop sizes or interactions between the water- oil mixture and the INP, were solved by introducing a unique freezing- chip consisting of an etched and sputtered 15x15x1 mm gold-plated silicon or pure gold film (Pummer et al., 2012; Zolles et al., 2015). Using this chip, isolated micrometre-sized droplets can be generated with sizes similar to droplets in real world clouds. The experimental set-up for drop-freezing experiments was revised and improved by establishing automated process control and image evaluation. We were able to show the efficiency and accuracy of our setup by comparing measured freezing temperatures of different INPs (Snomax®, K- feldspar, birch pollen (Betula pendula) washing water, juniper pollen suspension (Juniperus communis) and ultrapure water) with already published results (Atkinson et al., 2013; Augustin et al., 2013; Pruppacher and Klett, 1997; Pummer et al., 2012; Wex et al., 2015; Zolles et al., 2015). Comparison of our measurements with literature data show the important impact of droplet size, INP concentration and number of active sites on the T50 values. Here, the new set-up exhibits its strength in reproducibility and accuracy which is due to the defined and isolated droplets. Finally, it opens a temperature window down to -37˚ C for freezing experiments which was not accessible with former traditional approaches .Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds (vol 498, pg 355, 2013), Nature, 500, 491-491, 2013. Augustin, S., Wex, H

  6. Influence of fine water droplets to temperature and humidity

    NASA Astrophysics Data System (ADS)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  7. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  8. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.

    PubMed

    Hewitt, Andrew J; Solomon, Keith R; Marshall, E J P

    2009-01-01

    A wind tunnel atomization study was conducted to measure the emission droplet size spectra for water and Glyphos (a glyphosate formulation sold in Colombia) + Cosmo-flux sprays for aerial application to control coca and poppy crops in Colombia. The droplet size spectra were measured in a wind tunnel for an Accu-Flo nozzle (with 16 size 0.085 [2.16 mm] orifices), under appropriate simulated aircraft speeds (up to 333 km/h), using a laser diffraction instrument covering a dynamic size range for droplets of 0.5 to 3,500 microm. The spray drift potential of the glyphosate was modeled using the AGDISP spray application and drift model, using input parameters representative of those occurring in Colombia for typical aerial application operations. The droplet size spectra for tank mixes containing glyphosate and Cosmo-Flux were considerably finer than water and became finer with higher aircraft speeds. The tank mix with 44% glyphosate had a D(v0.5) of 128 microm, while the value at the 4.9% glyphosate rate was 140 microm. These are classified as very fine to fine sprays. Despite being relatively fine, modeling showed that the droplets would not evaporate as rapidly as most similarly sized agricultural sprays because the nonvolatile proportion of the tank mix (active and inert adjuvant ingredients) was large. Thus, longer range drift is small and most drift that does occur will deposit relatively close to the application area. Drift will only occur downwind and, with winds of velocity less than the modeled maximum of 9 km/h, the drift distance would be substantially reduced. Spray drift potential might be additionally reduced through various practices such as the selection of nozzles, tank mix adjuvants, aircraft speeds, and spray pressures that would produce coarser sprays. Species sensitivity distributions to glyphosate were constructed for plants and amphibians. Based on modeled drift and 5th centile concentrations, appropriate no-spray buffer zones (distance from the

  9. Designing magnetic droplet soliton nucleation employing spin polarizer

    NASA Astrophysics Data System (ADS)

    Mohseni, Morteza; Mohseni, Majid

    2018-04-01

    We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.

  10. Is There a Maximum Size of Water Drops in Nature?

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2013-01-01

    In nature, water drops can have a large variety of sizes and shapes. Small droplets with diameters of the order of 5 to 10 µm are present in fog and clouds. This is not sufficiently large for gravity to dominate their behavior. In contrast, raindrops typically have sizes of the order of 1 mm, with observed maximum sizes in nature of around 5 mm in…

  11. Removal of arsenic from water using nano adsorbents and challenges: A review.

    PubMed

    Lata, Sneh; Samadder, S R

    2016-01-15

    Many researchers have used nanoparticles as adsorbents to remove water pollutants including arsenic after modifying the properties of nanoparticles by improving reactivity, biocompatibility, stability, charge density, multi-functionalities, and dispersibility. For arsenic removal, nano adsorbents emerged as the potential alternatives to existing conventional technologies. The present study critically reviewed the past and current available information on the potential of nano adsorbents for arsenic removal from contaminated water and the challenges involved in that. The study discussed the separation and regeneration techniques of nano adsorbents and the performance thereof. The study evaluated the adsorption efficiency of the various nanoparticles based on size of nanoparticles, types of nano adsorbents, method of synthesis, separation and regeneration of the nano adsorbents. The study found that more studies are required on suitable holding materials for the nano adsorbents to improve the permeability and to make the technology applicable at the field condition. The study will help the readers to choose suitable nanomaterials and to take up further research required for arsenic removal using nano adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.

    PubMed

    Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H

    2006-08-15

    The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.

  13. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE PAGES

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; ...

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  14. Investigation of water droplet dynamics in PEM fuel cell gas channels

    NASA Astrophysics Data System (ADS)

    Gopalan, Preethi

    Water management in Proton Exchange Membrane Fuel Cell (PEMFC) has remained one of the most important issues that need to be addressed before its commercialization in automotive applications. Accumulation of water on the gas diffusion layer (GDL) surface in a PEMFC introduces a barrier for transport of reactant gases through the GDL to the catalyst layer. Despite the fact that the channel geometry is one of the key design parameters of a fluidic system, very limited research is available to study the effect of microchannel geometry on the two-phase flow structure. In this study, the droplet-wall dynamics and two-phase pressure drop across the water droplet present in a typical PEMFC channel, were examined in auto-competitive gas channel designs (0.4 x 0.7 mm channel cross section). The liquid water flow pattern inside the gas channel was analyzed for different air velocities. Experimental data was analyzed using the Concus-Finn condition to determine the wettability characteristics in the corner region. It was confirmed that the channel angle along with the air velocity and the channel material influences the water distribution and holdup within the channel. Dynamic contact angle emerged as an important parameter in controlling the droplet-wall interaction. Experiments were also performed to understand how the inlet location of the liquid droplet on the GDL surface affects the droplet dynamic behavior in the system. It was found that droplets emerging near the channel wall or under the land lead to corner filling of the channel. Improvements in the channel design has been proposed based on the artificial channel roughness created to act as capillary grooves to transport the liquid water away from the land area. For droplets emerging near the center of the channel, beside the filling and no-filling behavior reported in the literature, a new droplet jumping behavior was observed. As droplets grew and touched the sidewalls, they jumped off to the sidewall leaving the

  15. Probing chemical transformation in picolitre volume aerosol droplets

    NASA Astrophysics Data System (ADS)

    Miloserdov, Anatolij; Day, Calum P. F.; Rosario, Gabriela L.; Horrocks, Benjamin R.; Carruthers, Antonia E.

    2017-08-01

    We have demonstrated chemical transformation in single microscopic-sized aerosol droplets localised in optical tweezers. Droplets in situ are measured during chemical transformation processes of solvent exchange and solute transformation through an ion exchange reaction. Solvent exchange between deionised water and heavy water in aerosol droplets is monitored through observation of the OH and OD Raman stretches. A change in solute chemistry of aerosol is achieved through droplet coalescence events between calcium chloride and sodium carbonate to promote ion exchange. The transformation forming meta-stable and stable states of CaCO3 is observed and analysed using Gaussian peak decomposition to reveal polymorphs.

  16. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  17. Nano-composites for water remediation: a review.

    PubMed

    Tesh, Sarah J; Scott, Thomas B

    2014-09-17

    As global populations continue to increase, the pressure on water supplies will inevitably intensify. Consequently the international need for more efficient and cost effective water remediation technologies will also rise. The introduction of nano-technology into the industry may represent a significant advancement and zero-valent iron nano-particles (INPs) have been thoroughly studied for potential remediation applications. However, the application of water dispersed INP suspensions is limited and somewhat contentious on the grounds of safety, whilst INP reaction mechanisms, transport properties and ecotoxicity are areas still under investigation. Theoretically, the development of nano-composites containing INPs to overcome these issues provides the logical next step for developing nano-materials that are better suited to wide application across the water industry. This review provides an overview of the range of static, bulk nano-composites containing INPs being developed, whilst highlighting the limitations of individual solutions, overall classes of technology, and lack of comparative testing for nano-composites. The review discusses what further developments are needed to optimize nano-composite water remediation systems to subsequently achieve commercial maturity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Free energy study of H2O, N2O5, SO2, and O3 gas sorption by water droplets/slabs

    NASA Astrophysics Data System (ADS)

    Li, Wentao; Pak, Chi Yuen; Tse, Ying-Lung Steve

    2018-04-01

    Understanding gas sorption by water in the atmosphere is an active research area because the gases can significantly alter the radiation and chemical properties of the atmosphere. We attempt to elucidate the molecular details of the gas sorption of water and three common atmospheric gases (N2O5, SO2, and O3) by water droplets/slabs in molecular dynamics simulations. The system size effects are investigated, and we show that the calculated solvation free energy decreases linearly as a function of the reciprocal of the number of water molecules from 1/215 to 1/1000 in both the slab and the droplet systems. By analyzing the infinitely large system size limit by extrapolation, we find that all our droplet results are more accurate than the slab results when compared to the experimental values. We also show how the choice of restraints in umbrella sampling can affect the sampling efficiency for the droplet systems. The free energy changes were decomposed into the energetic ΔU and entropic -TΔS contributions to reveal the molecular details of the gas sorption processes. By further decomposing ΔU into Lennard-Jones and Coulombic interactions, we observe that the ΔU trends are primarily determined by local effects due to the size of the gas molecule, charge distribution, and solvation structure around the gas molecule. Moreover, we find that there is a strong correlation between the change in the entropic contribution and the mean residence time of water, which is spatially nonlocal and related to the mobility of water.

  19. The electroosmotic droplet switch: countering capillarity with electrokinetics.

    PubMed

    Vogel, Michael J; Ehrhard, Peter; Steen, Paul H

    2005-08-23

    Electroosmosis, originating in the double-layer of a small liquid-filled pore (size R) and driven by a voltage V, is shown to be effective in pumping against the capillary pressure of a larger liquid droplet (size B) provided the dimensionless parameter sigmaR(2)/epsilon|zeta|VB is small enough. Here sigma is surface tension of the droplet liquid/gas interface, epsilon is the liquid dielectric constant, and zeta is the zeta potential of the solid/liquid pair. As droplet size diminishes, the voltage required to pump electroosmotically scales as V approximately R(2)/B. Accordingly, the voltage needed to pump against smaller higher-pressure droplets can actually decrease provided the pump poresize scales down with droplet size appropriately. The technological implication of this favorable scaling is that electromechanical transducers made of moving droplets, so-called "droplet transducers," become feasible. To illustrate, we demonstrate a switch whose bistable energy landscape derives from the surface energy of a droplet-droplet system and whose triggering derives from the electroosmosis effect. The switch is an electromechanical transducer characterized by individual addressability, fast switching time with low voltage, and no moving solid parts. We report experimental results for millimeter-scale droplets to verify key predictions of a mathematical model of the switch. With millimeter-size water droplets and micrometer-size pores, 5 V can yield switching times of 1 s. Switching time scales as B(3)/VR(2). Two possible "grab-and-release" applications of arrays of switches are described. One mimics the controlled adhesion of an insect, the palm beetle; the other uses wettability to move a particle along a trajectory.

  20. Motion of fine-spray liquid droplets in hot gas flow

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Kuibin, P. A.; Strizhak, P. A.

    2014-12-01

    Experimental study was performed on motion of fine-spray liquid (water) droplets in a high-temperature (above 1000 K) gases. The study distinguishes three modes of droplet motion through gas medium under condition of intensive evaporation. Experiments defined the ranges of gas velocity, droplets sizes, and velocities that correspond to the droplet motion modes.

  1. Field induced anomalous spreading, oscillation, ejection, spinning, and breaking of oil droplets on a strongly slipping water surface.

    PubMed

    Kumar, Sunny; Sarma, Bhaskarjyoti; Dasmahapatra, Ahsok Kumar; Dalal, Amaresh; Basu, Dipankar Narayan; Bandyopadhyay, Dipankar

    2017-07-01

    Application of an electric field on an oil droplet floating on the surface of a deionized water bath showed interesting motions such as spreading, oscillation, and ejection. The electric field was generated by connecting a pointed platinum cathode at the top of the oil droplet and a copper anode coated with polymer at the bottom of the water layer. The experimental setup mimicked a conventional electrowetting setup with the exception that the oil was spread on a soft and deformable water isolator. While at relatively lower field intensities we observed spreading of the droplet, at intermediate field intensities the droplet oscillated around the platinum cathode, before ejecting out at a speed as high as ∼5 body lengths per second at even stronger field intensities. The experiments suggested that when the electric field was ramped up abruptly to a particular voltage, any of the spreading, oscillation, or ejection motions of the droplet could be engendered at lower, intermediate and higher field intensities, respectively. However, when the field was ramped up progressively by increasing by a definite amount of voltage per unit time, all three aforementioned motions could be generated simultaneously with the increase in the field intensity. Interestingly, when the aforementioned setup was placed on a magnet, the droplet showed a rotational motion under the influence of the Lorentz force, which was generated because of the coupling of the weak leakage current with the externally applied magnetic field. The spreading, oscillation, ejection, and rotation of the droplet were found to be functions of the oil-water interfacial tension, viscosity, and size of the oil droplet. We developed simple theoretical models to explain the experimental results obtained. Importantly, rotating at a higher speed broke the droplet into a number of smaller ones, owing to the combined influence of the spreading due to the centripetal force and the shear at the oil-water interface. While

  2. High-resolution droplet-based fractionation of nano-LC separations onto microarrays for MALDI-MS analysis.

    PubMed

    Küster, Simon K; Pabst, Martin; Jefimovs, Konstantins; Zenobi, Renato; Dittrich, Petra S

    2014-05-20

    We present a robust droplet-based device, which enables the fractionation of ultralow flow rate nanoflow liquid chromatography (nano-LC) eluate streams at high frequencies and high peak resolution. This is achieved by directly interfacing the separation column to a micro T-junction, where the eluate stream is compartmentalized into picoliter droplets. This immediate compartmentalization prevents peak dispersion during eluate transport and conserves the chromatographic performance. Subsequently, nanoliter eluate fractions are collected at a rate of one fraction per second on a high-density microarray to retain the separation with high temporal resolution. Chromatographic separations of up to 45 min runtime can thus be archived on a single microarray possessing 2700 sample spots. The performance of this device is demonstrated by fractionating the separation of a tryptic digest of a known protein mixture onto the microarray chip and subsequently analyzing the sample archive using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Resulting peak widths are found to be significantly reduced compared to standard continuous flow spotting technologies as well as in comparison to a conventional nano-LC-electrospray ionization-mass spectrometry interface. Moreover, we demonstrate the advantage of our high-definition nanofractionation device by applying two different MALDI matrices to all collected fractions in an alternating fashion. Since the information that is obtained from a MALDI-MS measurement depends on the choice of MALDI matrix, we can extract complementary information from neighboring spots containing almost identical composition but different matrices.

  3. Effect of viscosity on droplet-droplet collisional interaction

    NASA Astrophysics Data System (ADS)

    Finotello, Giulia; Padding, Johan T.; Deen, Niels G.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2017-06-01

    A complete knowledge of the effect of droplet viscosity on droplet-droplet collision outcomes is essential for industrial processes such as spray drying. When droplets with dispersed solids are dried, the apparent viscosity of the dispersed phase increases by many orders of magnitude, which drastically changes the outcome of a droplet-droplet collision. However, the effect of viscosity on the droplet collision regime boundaries demarcating coalescence and reflexive and stretching separation is still not entirely understood and a general model for collision outcome boundaries is not available. In this work, the effect of viscosity on the droplet-droplet collision outcome is studied using direct numerical simulations employing the volume of fluid method. The role of viscous energy dissipation is analysed in collisions of droplets with different sizes and different physical properties. From the simulations results, a general phenomenological model depending on the capillary number (Ca, accounting for viscosity), the impact parameter (B), the Weber number (We), and the size ratio (Δ) is proposed.

  4. Motion behavior of water droplets driven by triboelectric nanogenerator

    NASA Astrophysics Data System (ADS)

    Nie, Jinhui; Jiang, Tao; Shao, Jiajia; Ren, Zewei; Bai, Yu; Iwamoto, Mitsumasa; Chen, Xiangyu; Wang, Zhong Lin

    2018-04-01

    By integrating a triboelectric nanogenerator (TENG) and a simple circuit board, the motion of water droplets can be controlled by the output of the TENG, which demonstrates a self-powered microfluidic system toward various practical applications in the fields of microfluidic system and soft robotics. This paper describes a method to construct a physical model for this self-powered system on the basis of electrostatic induction theory. The model can precisely simulate the detailed motion behavior of the droplet under driving of TENG, and it can also reveal the influences of surface hydrophobicity on the motion of the droplet, which can help us to better understand the key parameters that decide the performance of the system. The experimental observation of the dynamic performance of the droplet has also been done with a high speed camera system. A comparison between simulation results and real measurements confirms that the proposed model can predict the velocity and position of the water droplet driven by high voltage source as well as TENG. Hence, the proposed model in this work could serve as a guidance for optimizing the self-powered systems in future studies.

  5. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process.

    PubMed

    Anzehaee, Mohammad Mousavi; Haeri, Mohammad

    2011-07-01

    New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  6. The Nano-filters as the tools for the management of the water imbalance in the human society

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Kontar, V.

    2011-12-01

    The imbalance of water in the human society there is some situation where the water demand is not equivalent to the water supply. We are talking now about the shortage of some clear water which suitable for human use, animals, plants, technologies etc. There are existing some various imbalances of water in the human society, but about this will be other publications. The humanity has have the millennial experience of the water imbalance management. The novelty of the matter is the new nano-materials which offer a lot of the new principles more effective management of the water imbalance in the human society. The nano-materials have typical pore size 0.001 micron (1 nano-meter). There are some metal-containing nano-particles, CNTs, fullerene, graphene, zeolites and dendrimers etc, The nano-materials have unique physicochemical properties due to their large surface areas, size and shape-dependent optical, electronic, and catalytic properties that make them very useful for separation components some various stuff and water also. They have ability to functionalize with various chemical groups to increase their affinity toward a desired compound. The silver nano-wires have established a variety of applications, including transparent conductive electrodes for solar cells and optoelectronic. The salt of silver i.e. bulk silver shows photo-catalytic properties. The gold decorated silver nano-wires film may clean the organic molecule while irradiated with either commercial bulb or sun light. The mat (membrane) papers of nano-wires may clean up spilled oil at sea and organic pollutants in water. Arsenic-poisoned drinking water is a global problem, affecting people in Asia, Africa, North America, South America and Europe. Tiny bits of iron oxide that are smaller than living cells known as nanorust, which naturally binds with arsenic, could be used as a low-cost means of removing arsenic from water. Nano-tea bag purifies water on a small scale. The sachets are made up from the

  7. Impact of mixing time and energy on the dispersion effectiveness and droplets size of oil.

    PubMed

    Pan, Zhong; Zhao, Lin; Boufadel, Michel C; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth

    2017-01-01

    The effects of mixing time and energy on Alaska Northern Slope (ANS) and diluted bitumen Cold Lake Blend (CLB) were investigated using EPA baffled flask test. Dispersion effectiveness and droplet size distribution were measured after 5-120 min. A modeling method to predict the mean droplet size was introduced for the first time to tentatively elucidate the droplet size breakup mechanism. The ANS dispersion effectiveness greatly increased with dispersant and mixing energy. However, little CLB dispersion was noted at small energy input (ε = 0.02 Watt/kg). With dispersant, the ANS droplet size distribution reached quasi-equilibrium within 10 min, but that of CLB seems to reach quasi-equilibrium after 120 min. Dispersants are assumed ineffective on high viscosity oils because dispersants do not penetrate them. We provide an alternative explanation based on the elongation time of the droplets and its residence in high intensity zones. When mixing energy is small, CLB did not disperse after 120 min, long enough to allow the surfactant penetration. Our findings suggest that dispersants may disperse high viscosity oils at a rougher sea state and a longer time. The latter could determine how far offshore one can intervene for effective responses to a high viscosity oil spill offshore. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface

    PubMed Central

    Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon

    2015-01-01

    Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10−15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%. PMID:26202206

  9. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer

    Riihimaki, Laura

    2014-05-15

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  10. Analysis of stochastic crystallization in micron-sized droplets of undercooled liquid l-arabitol.

    PubMed

    Guinet, Yannick; Carpentier, Laurent; Paccou, Laurent; Derollez, Patrick; Hédoux, Alain

    2016-11-29

    Kinetics of isothermal crystallization of l-arabitol were analyzed from the undercooled liquid state within micron-sized droplets from micro-Raman spectroscopy. This study reveals that crystallization slightly above T g is controlled by stochastic heterogeneous nucleation inherent to the droplet size. Microscopic Raman investigations performed in droplets give the unique opportunity to analyze the pure metastable Form II of l-arabitol. It was found that Form II is characterized by a molecular packing more compact than that of the stable Form I, inherent to strong intermolecular hydrogen bonding. Kinetics laws obtained by analyzing several droplets at different temperatures, reveal the transient character of Form II, quasi systematically detected during the crystallization process of form I. Form II appears as the first step of crystallization prior to successive short-living metastable states which is necessary to achieve a complete crystallization in Form I. It was found that the kinetics of conversion between the metastable states (Form II) into Form I is dependent on the amount of strong hydrogen bonding distinctive of Form II. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy.

    PubMed

    Contreras, Victor; Valencia, Ricardo; Peralta, Jairo; Sobral, H; Meneses-Nava, M A; Martinez, Horacio

    2018-05-15

    Laser-induced breakdown spectroscopy is presented for trace element detection of liquid samples by analyzing a single droplet levitated by ultrasonic waves. A single liquid droplet is placed in the node of a standing acoustic wave produced by a uniaxial levitator for further chemical analysis. The acoustic levitator consists of a commercial Langevin-type transducer, attached to a concave mechanical amplifier, and a concave reflector. A micro-syringe was used to manually place individual liquid droplet samples in the acoustic levitation system. For chemical analysis, a laser-induced plasma is produced by focusing a single laser pulse on the levitated water droplet after it partially dries. The performance of the acoustic levitator on micron-sized droplets is discussed, and the detection of Ba, Cd, Hg, and Pb at parts per million (milligrams/liter) and sub-parts per million levels is reported. The process, starting from placing the sample in the acoustic levitator and ending on the chemical identification of the traces, takes a few minutes. The approach is particularly interesting in applications demanding limited volumes of liquid samples and relative simple and inexpensive techniques.

  12. Droplet size effects on NO/x/ formation in a one-dimensional monodisperse spray combustion system

    NASA Technical Reports Server (NTRS)

    Sarv, H.; Nizami, A. A.; Cernansky, N. P.

    1982-01-01

    A one-dimensional monodisperse aerosol spray combustion facility is described and experimental results of post flame NO/NO(x) emissions are presented. Four different hydrocarbon fuels were studied: isopropanol, methanol, n-heptane, and n-octane. The results indicate an optimum droplet size in the range of 48-58 microns for minimizing NO/NO(x) production for all of the test fuels. This NO(x) behavior is associated with droplet interactions and the transition from diffusive type of spray burning to that of a prevaporized and premixed case. Decreasing the droplet size results in a trend of increasing droplet interactions, which suppresses temperatures and reduces NO(x). This trend continues until prevaporization effects begin to dominate and the system tends towards the premixed limit. The occurrence of the minimum NO(x) point at different droplet diameters for the different fuels appears to be governed by the extent of prevaporization of the fuel in the spray, and is consistent with theoretical calculations based on each fuel's physical properties.

  13. ABC Triblock Copolymer Worms: Synthesis, Characterization, and Evaluation as Pickering Emulsifiers for Millimeter-Sized Droplets

    PubMed Central

    2016-01-01

    Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition–fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via “seeded” RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks—instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA–PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions. PMID:27795581

  14. Nano-Sized Natural Colorants from Rocks and Soils

    NASA Astrophysics Data System (ADS)

    Ahmad, W. Y. W.; Ruznan, W. S.; Hamid, H. A.; Kadir, M. I. A.; Yusoh, M. K. M.; Ahmad, M. R.

    2010-03-01

    Colored rocks (lateritic) and soils (shales) are available in abundant all around Malaysia and they are from natural sources. The colorants will be useful if they can be transferred to substrates using dyeing, printing or brushing with acceptable fastness. First of all the rocks need to be crushed into powder form before coloration can take place. The sizes of the colorants particles obtained with coffee grinder were of 7-8 microns. They can be reduced to 3-5 micron using fluidized bed jetmill and to nano sizes with the help of planetary mono mill grinders. The experiment was conducted in both dyeing and printing of textiles using all three sizes (7-8 microns, 3-5 microns and nano sizes) of colorants on silk fabric. The colorants were applied on silk fabrics by dyeing and tie and dye techniques. In addition, the colorants can also be applied by brushing technique as in batik canting or batik block as well as silk screen printing. The evaluations of colored materials were based on the levelness of dyeing, fastness properties (washing, light and rubbing fastness) and color strength. The wash fastness testing shows that all colorants sizes have more or less the same fastness to washing but nano sized colorants produced better uniform dyes distribution (levelness of dyeing) and higher color strength.

  15. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive.

    PubMed

    Peters, Ruud; Kramer, Evelien; Oomen, Agnes G; Rivera, Zahira E Herrera; Oegema, Gerlof; Tromp, Peter C; Fokkink, Remco; Rietveld, Anton; Marvin, Hans J P; Weigel, Stefan; Peijnenburg, Ad A C M; Bouwmeester, Hans

    2012-03-27

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products subjected to in vitro digestion included (i) hot water, (ii) coffee with powdered creamer, (iii) instant soup, and (iv) pancake which either contained silica as the food additive E551, or to which a form of synthetic amorphous silica or 32 nm SiO(2) particles were added. The results showed that, in the mouth stage of the digestion, nano-sized silica particles with a size range of 5-50 and 50-500 nm were present in food products containing E551 or added synthetic amorphous silica. However, during the successive gastric digestion stage, this nano-sized silica was no longer present for the food matrices coffee and instant soup, while low amounts were found for pancakes. Additional experiments showed that the absence of nano-sized silica in the gastric stage can be contributed to an effect of low pH combined with high electrolyte concentrations in the gastric digestion stage. Large silica agglomerates are formed under these conditions as determined by DLS and SEM experiments and explained theoretically by the extended DLVO theory. Importantly, in the subsequent intestinal digestion stage, the nano-sized silica particles reappeared again, even in amounts higher than in the saliva (mouth) digestion stage. These findings suggest that, upon consumption of foods containing E551, the gut epithelium is most likely exposed to nano-sized silica. © 2012 American Chemical Society

  16. Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate.

    PubMed

    Sato, A C K; Perrechil, F A; Costa, A A S; Santana, R C; Cunha, R L

    2015-09-01

    The aim of this work was to evaluate the influence of laccase and ferulic acid on the characteristics of oil-in-water emulsions stabilized by sodium caseinate at different pH (3, 5 and 7). Emulsions were prepared by high pressure homogenization of soybean oil with sodium caseinate solution containing varied concentrations of laccase (0, 1 and 5mg/mL) and ferulic acid (5 and 10mM). Laccase treatment and pH exerted a strong influence on the properties with a consequent effect on stability, structure and rheology of emulsions stabilized by Na-caseinate. At pH7, O/W emulsions were kinetically stable due to the negative protein charge which enabled electrostatic repulsion between oil droplets resulting in an emulsion with small droplet size, low viscosity, pseudoplasticity and viscoelastic properties. The laccase treatment led to emulsions showing shear-thinning behavior as a result of a more structured system. O/W emulsions at pH5 and 3 showed phase separation due to the proximity to protein pI, but the laccase treatment improved their stability of emulsions especially at pH3. At pH3, the addition of ferulic acid and laccase produced emulsions with larger droplet size but with narrower droplet size distribution, increased viscosity, pseudoplasticity and viscoelastic properties (gel-like behavior). Comparing laccase treatments, the combined addition of laccase and ferulic acid generally produced emulsions with lower stability (pH5), larger droplet size (pH3, 5 and 7) and higher pseudoplasticity (pH5 and 7) than emulsion with only ferulic acid. The results suggested that the cross-linking of proteins by laccase and ferulic acid improved protein emulsifying properties by changing functional mechanisms of the protein on emulsion structure and rheology, showing that sodium caseinate can be successfully used in acid products when treated with laccase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Motion of water droplets in the counter flow of high-temperature combustion products

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Strizhak, P. A.

    2018-01-01

    This paper presents the experimental studies of the deceleration, reversal, and entrainment of water droplets sprayed in counter current flow to a rising stream of high-temperature (1100 K) combustion gases. The initial droplets velocities 0.5-2.5 m/s, radii 10-230 μm, relative volume concentrations 0.2·10-4-1.8·10-4 (m3 of water)/(m3 of gas) vary in the ranges corresponding to promising high-temperature (over 1000 K) gas-vapor-droplet applications (for example, polydisperse fire extinguishing using water mist, fog, or appropriate water vapor-droplet veils, thermal or flame treatment of liquids in the flow of combustion products or high-temperature air; creating coolants based on flue gas, vapor and water droplets; unfreezing of granular media and processing of the drossed surfaces of thermal-power equipment; ignition of liquid and slurry fuel droplets). A hardware-software cross-correlation complex, high-speed (up to 105 fps) video recording tools, panoramic optical techniques (Particle Image Velocimetry, Particle Tracking Velocimetry, Interferometric Particle Imagine, Shadow Photography), and the Tema Automotive software with the function of continuous monitoring have been applied to examine the characteristics of the processes under study. The scale of the influence of initial droplets concentration in the gas flow on the conditions and features of their entrainment by high-temperature gases has been specified. The dependencies Red = f(Reg) and Red' = f(Reg) have been obtained to predict the characteristics of the deceleration of droplets by gases at different droplets concentrations.

  18. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions.

    PubMed

    Parthasarathi, S; Muthukumar, S P; Anandharamakrishnan, C

    2016-05-18

    Vitamin E (α-tocopherol) is a nutraceutical compound, which has been shown to possess potent antioxidant and anticancer activity. However, its biological activity may be limited by its poor bioavailability. Colloidal delivery systems have shown wide applications in the food and pharmaceutical industries to deliver lipophilic bioactive compounds. In this study, we have developed conventional and nanoemulsions of vitamin E from food grade ingredients (sunflower oil, saponin, and water) and showed the nanoemulsion formulation increased the oral bioavailability when compared to the conventional emulsion. The mean droplet diameters in the nano and conventional emulsions were 0.277 and 1.285 μm, respectively. The stability of the emulsion formulation after thermal processing, long-term storage at different temperatures, mechanical stress and in plasma was determined. The results showed that the saponin coated nanoemulsion was stable to droplet coalescence during thermal processing (30-90 °C), long-term storage and mechanical stress when compared to the conventional emulsion. The biological fate of the emulsion formulations were studied using male Wistar rats as an animal model. The emulsion droplet stability during passage through the gastrointestinal tract was evaluated by their introduction into rat stomachs. Microscopy was used to investigate the structural changes that occurred during digestion. Both the conventional emulsion and nanoemulsion formulations showed strong evidence of droplet flocculation and coalescence during in vivo digestion. The in vivo oral bioavailability study revealed that vitamin E in a nanoemulsion form showed a 3-fold increase in the AUC when compared to the conventional emulsion. The information reported in this study will facilitate the design of colloidal delivery systems using nanoemulsion formulations.

  19. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  20. Measurement of interaction between water droplets and curved super-hydrophobic substrates in the air

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyi; Zhao, Meirong; Jiang, Jile; Zhang, Lele; Zhuang, Shuya; Zhao, Yuchen; Huang, Yinguo; Zheng, Yelong

    2018-04-01

    The interaction force is very important in the study of the contact process of droplets and super-hydrophobic substrates. Accurate interaction force measurement in the air has far-reaching impact on industrial production and biomimetic field. However, limited by the evaporation of small droplets, interaction force can only be measured in the liquid by AFM and other devices. A millimetric cantilever was used to make it possible to measure the interaction between droplets and super-hydrophobic substrates in the air. The optical lever was calibrated with the electrostatic force. The super- hydrophobic substrates were fabricated using nano particles and copper grids. We finally acquired the interaction force and wetting time between the droplet and super- hydrophobic substrates with different grid fractions and similar contact angle. The results showed that the interaction force decreased with the increase of the grid fraction. These would open a new way of understanding the mechanism of hydrophobic.

  1. LN2 spray droplet size measurement via ensemble diffraction technique

    NASA Technical Reports Server (NTRS)

    Saiyed, N. H.; Jurns, J.; Chato, David J.

    1991-01-01

    The size of subcooled liquified nitrogen droplets are measured with a 5 mW He-Ne laser as a function of pressure difference (delta P) across flat spray and full cone pressure atomizing nozzles. For delta P's of 3 to 30 psid, the spray sauter mean diameter (SMD) ranged between 250 to 50 microns. The pressure range tested is representative of those expected during cryogenic fluid transfer operations in space. The droplet sizes from the flat spray nozzles were greater than those from the full cone nozzle. A power function of the form, SMD varies as delta P(exp a), describes the spray SMD as a function of the delta P very well. The values of a were -0.36 for the flat spray and -0.87 for the full cone. The reduced dependence of the flat spray SMD on the delta P was probably because of: (1) the absence of a swirler that generates turbulence within the nozzle to enhance atomization, and (2) a possible increase in shearing stress resulting from the delayed atomization due to the absence of turbulence. The nitrogen quality, up to 1.5 percent is based on isenthalpic expansion, did not have a distinct and measurable effect on the spray SMD. Both bimodal and monomodal droplet size population distributions were measured. In the bimodal distribution, the frequency of the first mode was much greater than the frequency of the second mode. Also, the frequency of the second mode was low enough such that a monomodal approximation probably would give reasonable results.

  2. Measurement of droplet size distribution in core region of high-speed spray by micro-probe L2F

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Le Amida, Oluwo; Ueki, Hironobu; Ishida, Masahiro

    2008-03-01

    In order to investigate the distribution of droplet sizes in the core region of diesel fuel spray, instantaneous measurement of droplet sizes was conducted by an advanced laser 2-focus velocimeter (L2F). The micro-scale probe of the L2F is made up of two foci and the distance between them is 36 µm. The tested nozzle had a 0.2 mm diameter single-hole. The measurements of injection pressure, needle lift, and crank angle were synchronized with the measurement by the L2F at the position 10 mm downstream from the nozzle exit. It is clearly shown that the droplet near the spray axis is larger than that in the off-axis region under the needle full lift condition and that the spatial distribution of droplet sizes varies temporally. It is found that the probability density distribution of droplet sizes in the spray core region can be fitted to the Nukiyama-Tanasawa distribution in most injection periods.

  3. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    PubMed

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades.

  4. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    PubMed Central

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  5. Measurements of gas hydrate formation probability distributions on a quasi-free water droplet

    NASA Astrophysics Data System (ADS)

    Maeda, Nobuo

    2014-06-01

    A High Pressure Automated Lag Time Apparatus (HP-ALTA) can measure gas hydrate formation probability distributions from water in a glass sample cell. In an HP-ALTA gas hydrate formation originates near the edges of the sample cell and gas hydrate films subsequently grow across the water-guest gas interface. It would ideally be desirable to be able to measure gas hydrate formation probability distributions of a single water droplet or mist that is freely levitating in a guest gas, but this is technically challenging. The next best option is to let a water droplet sit on top of a denser, immiscible, inert, and wall-wetting hydrophobic liquid to avoid contact of a water droplet with the solid walls. Here we report the development of a second generation HP-ALTA which can measure gas hydrate formation probability distributions of a water droplet which sits on a perfluorocarbon oil in a container that is coated with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane. It was found that the gas hydrate formation probability distributions of such a quasi-free water droplet were significantly lower than those of water in a glass sample cell.

  6. Fabrication of micro/nano-structures by electrohydrodynamic jet technique

    NASA Astrophysics Data System (ADS)

    Wang, Dazhi; Zhao, Xiaojun; Lin, Yigao; Ren, Tongqun; Liang, Junsheng; Liu, Chong; Wang, Liding

    2017-12-01

    Electrohydrodynamic jet (E-Jet) is an approach to the fabrication of micro/nano-structures by the use of electrical forces. In this process, the liquid is subjected to electrical and mechanical forces to form a liquid jet, which is further disintegrated into droplets. The major advantage of the E-Jet technique is that the sizes of the jet formed can be at the nanoscale far smaller than the nozzle size, which can realize high printing resolution with less risk of nozzle blockage. The E-Jet technique, which mainly includes E-Jet deposition and E-Jet printing, has a wide range of applications in the fabrication of micro/nano-structures for micro/nano-electromechanical system devices. This technique is also considered a micro/nano-fabrication method with a great potential for commercial use. This study mainly reviews the E-Jet deposition/printing fundamentals, fabrication process, and applications.

  7. Volumetric Collection Efficiency and Droplet Sizing Accuracy of Rotary Impactors

    DTIC Science & Technology

    2011-02-01

    commonly associated with drift from agrochemical applications, another less com‐ mon application is vector control, which relies on the movement of...droplet sizes are commonly less than 40 m (Mount, 1998). With potential increases in overall exposure levels from agrochemical ap‐ plication as well as

  8. Droplet size prediction in ultrasonic nebulization for non-oxide ceramic powder synthesis.

    PubMed

    Muñoz, Mariana; Goutier, Simon; Foucaud, Sylvie; Mariaux, Gilles; Poirier, Thierry

    2018-03-01

    Spray pyrolysis process has been used for the synthesis of non-oxide ceramic powders from liquid precursors in the Si/C/N system. Particles with a high thermal stability and with variable composition and size distribution have been obtained. In this process, the mechanisms involved in precursor decomposition and gas phase recombination of species are still unknown. The final aim of this work consists in improving the whole process comprehension by an experimental/modelling approach that helps to connect the synthesized particles characteristics to the precursor properties and process operating parameters. It includes the following steps: aerosol formation by a piezoelectric nebulizer, its transport and the chemical-physical phenomena involved in the reaction processes. This paper focuses on the aerosol characterization to understand the relationship between the liquid precursor properties and the liquid droplet diameter distribution. Liquids with properties close to the precursor of interest (hexamethyldisilazane) have been used. Experiments have been performed using a shadowgraphy technique to determine the drop size distribution of the aerosol. For all operating parameters of the nebulizer device and liquids used, bimodal droplet size distributions have been obtained. Correlations proposed in the literature for the droplet size prediction by ultrasonic nebulization were used and adapted to the specific nebulizer device used in this study, showing rather good agreement with experimental values. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Large Scale Behavior and Droplet Size Distributions in Crude Oil Jets and Plumes

    NASA Astrophysics Data System (ADS)

    Katz, Joseph; Murphy, David; Morra, David

    2013-11-01

    The 2010 Deepwater Horizon blowout introduced several million barrels of crude oil into the Gulf of Mexico. Injected initially as a turbulent jet containing crude oil and gas, the spill caused formation of a subsurface plume stretching for tens of miles. The behavior of such buoyant multiphase plumes depends on several factors, such as the oil droplet and bubble size distributions, current speed, and ambient stratification. While large droplets quickly rise to the surface, fine ones together with entrained seawater form intrusion layers. Many elements of the physics of droplet formation by an immiscible turbulent jet and their resulting size distribution have not been elucidated, but are known to be significantly influenced by the addition of dispersants, which vary the Weber Number by orders of magnitude. We present experimental high speed visualizations of turbulent jets of sweet petroleum crude oil (MC 252) premixed with Corexit 9500A dispersant at various dispersant to oil ratios. Observations were conducted in a 0.9 m × 0.9 m × 2.5 m towing tank, where large-scale behavior of the jet, both stationary and towed at various speeds to simulate cross-flow, have been recorded at high speed. Preliminary data on oil droplet size and spatial distributions were also measured using a videoscope and pulsed light sheet. Sponsored by Gulf of Mexico Research Initiative (GoMRI).

  10. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces

    PubMed Central

    Lv, Cunjing; Zhang, Xiwen; Niu, Fenglei; He, Feng; Hao, Pengfei

    2017-01-01

    Understanding how droplet condensation happens plays an essential role for our fundamental insights of wetting behaviors in nature and numerous applications. Since there is a lack of study of the initial formation and growing processes of condensed droplets down to nano-/submicroscale, relevant underlying mechanisms remain to be explored. We report an in situ observation of vapor condensation on nano-/microtextured superhydrophobic surfaces using optical microscopy. An interesting picture of the vapor condensation, from the initial appearance of individual small droplets (≤1 μm) to a Cassie-Baxter wetting state (>30 μm), are exhibited. It is found that individual droplets preferentially nucleate at the top and the edge of single micropillars with very high apparent contact angles on the nanotextures. Scenarios of two distinguished growing modes are reported statistically and the underlying mechanisms are discussed in the view of thermodynamics. We particularly reveal that the formation of the Cassie-Baxter wetting state is a result of a continuous coalescence of individual small droplets, in which the nanotexture-enhanced superhydrophobicity plays a crucial role. We envision that these fundamental findings can deepen our understanding of the nucleation and development of condensed droplets in nanoscale, so as to optimize design strategies of superhydrophobic materials for a broad range of water-harvesting and heat-transfer systems. PMID:28202939

  12. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces.

    PubMed

    Lv, Cunjing; Zhang, Xiwen; Niu, Fenglei; He, Feng; Hao, Pengfei

    2017-02-16

    Understanding how droplet condensation happens plays an essential role for our fundamental insights of wetting behaviors in nature and numerous applications. Since there is a lack of study of the initial formation and growing processes of condensed droplets down to nano-/submicroscale, relevant underlying mechanisms remain to be explored. We report an in situ observation of vapor condensation on nano-/microtextured superhydrophobic surfaces using optical microscopy. An interesting picture of the vapor condensation, from the initial appearance of individual small droplets (≤1 μm) to a Cassie-Baxter wetting state (>30 μm), are exhibited. It is found that individual droplets preferentially nucleate at the top and the edge of single micropillars with very high apparent contact angles on the nanotextures. Scenarios of two distinguished growing modes are reported statistically and the underlying mechanisms are discussed in the view of thermodynamics. We particularly reveal that the formation of the Cassie-Baxter wetting state is a result of a continuous coalescence of individual small droplets, in which the nanotexture-enhanced superhydrophobicity plays a crucial role. We envision that these fundamental findings can deepen our understanding of the nucleation and development of condensed droplets in nanoscale, so as to optimize design strategies of superhydrophobic materials for a broad range of water-harvesting and heat-transfer systems.

  13. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Lv, Cunjing; Zhang, Xiwen; Niu, Fenglei; He, Feng; Hao, Pengfei

    2017-02-01

    Understanding how droplet condensation happens plays an essential role for our fundamental insights of wetting behaviors in nature and numerous applications. Since there is a lack of study of the initial formation and growing processes of condensed droplets down to nano-/submicroscale, relevant underlying mechanisms remain to be explored. We report an in situ observation of vapor condensation on nano-/microtextured superhydrophobic surfaces using optical microscopy. An interesting picture of the vapor condensation, from the initial appearance of individual small droplets (≤1 μm) to a Cassie-Baxter wetting state (>30 μm), are exhibited. It is found that individual droplets preferentially nucleate at the top and the edge of single micropillars with very high apparent contact angles on the nanotextures. Scenarios of two distinguished growing modes are reported statistically and the underlying mechanisms are discussed in the view of thermodynamics. We particularly reveal that the formation of the Cassie-Baxter wetting state is a result of a continuous coalescence of individual small droplets, in which the nanotexture-enhanced superhydrophobicity plays a crucial role. We envision that these fundamental findings can deepen our understanding of the nucleation and development of condensed droplets in nanoscale, so as to optimize design strategies of superhydrophobic materials for a broad range of water-harvesting and heat-transfer systems.

  14. Improvements for retrieval of cloud droplet size by the POLDER instrument

    NASA Astrophysics Data System (ADS)

    Shang, H.; Husi, L.; Bréon, F. M.; Ma, R.; Chen, L.; Wang, Z.

    2017-12-01

    The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR ( 1.5µm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (>15 µm) and to reduce the uncertainties caused by cloud heterogeneity. A premium resoltion of 0.8° is determined by considering successful retrievals and cloud horizontal homogeneity. The improved algorithm is applied to measurements of POLDER in 2008, and we further compared our retrievals with cloud effective radii estimations of Moderate Resolution Imaging Spectroradiometer (MODIS). The results indicate that in global scale, the cloud effective radii and effective variance is larger in the central ocean than inland and coast areas. Over heavy polluted regions, the cloud droplets has small effective radii and narraw distribution due to the influence of aerosol particles.

  15. Effects of nozzle spray angle on droplet size and velocity

    USDA-ARS?s Scientific Manuscript database

    Spray applicators have many choices in selecting a spray nozzle to make an application of an agricultural product. They must balance flowrate, spray pressure, and nozzle type and setup to deliver their agrochemical in the right droplet size for their particular needs. Studies were conducted to det...

  16. Nonlinear transport of soft droplets in pore networks

    NASA Astrophysics Data System (ADS)

    Vernerey, Franck; Benet Cerda, Eduard; Koo, Kanghyeon

    A large number of biological and technological processes depend on the transport of soft colloidal particles through porous media; this includes the transport and separation of cells, viruses or drugs through tissues, membranes and microfluidic devices. In these systems, the interactions between soft particles, background fluid and the surrounding pore space yield complex, nonlinear behaviors such as non-Darcy flows, localization and jamming. We devise a computational strategy to investigate the transport of non-wetting and deformable water droplets in a microfluidic device made of a random distribution of cylindrical obstacles. We first derive scaling laws for the entry of the droplet in a single pore and discuss the role of surface tension, contact angle and size in this process. This information is then used to study the transport of multiple droplets in an obstacle network. We find that when the droplet size is close to the pore size, fluid flow and droplet trafficking strongly interact, leading to local redistributions in pressure fields, intermittent clogging and jamming. Importantly, it is found that the overall droplet and fluid transport display three different scaling regimes depending on the forcing pressure, and that these regimes can be related to droplet properties.

  17. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces

    PubMed Central

    Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.

    2015-01-01

    Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality. PMID:26603940

  18. Mechanical vibration of viscoelastic liquid droplets

    NASA Astrophysics Data System (ADS)

    Sharp, James; Harrold, Victoria

    2014-03-01

    The resonant vibrations of viscoelastic sessile droplets supported on different substrates were monitored using a simple laser light scattering technique. In these experiments, laser light was reflected from the surfaces of droplets of high Mw poly acrylamide-co-acrylic acid (PAA) dissolved in water. The scattered light was allowed to fall on the surface of a photodiode detector and a mechanical impulse was applied to the drops using a vibration motor mounted beneath the substrates. The mechanical impulse caused the droplets to vibrate and the scattered light moved across the surface of the photodiode. The resulting time dependent photodiode signal was then Fourier transformed to obtain the mechanical vibrational spectra of the droplets. The frequencies and widths of the resonant peaks were extracted for droplets containing different concentrations of PAA and with a range of sizes. This was repeated for PAA loaded water drops on surfaces which displayed different values of the three phase contact angle. The results were compared to a simple model of droplet vibration which considers the formation of standing wave states on the surface of a viscoelastic droplet. We gratefully acknowledge the support of the Leverhulme trust under grant number RPG-2012-702.

  19. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V

    PubMed Central

    Mahdipoor, M.S.; Kirols, H.S.; Kevorkov, D.; Jedrzejowski, P.; Medraj, M.

    2015-01-01

    Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ Vn, where the speed exponent is 7–9 for Ti6Al4V and 11–13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl. PMID:26391370

  20. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V.

    PubMed

    Mahdipoor, M S; Kirols, H S; Kevorkov, D; Jedrzejowski, P; Medraj, M

    2015-09-22

    Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ V(n), where the speed exponent is 7-9 for Ti6Al4V and 11-13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl.

  1. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    PubMed Central

    Fan, Yuting; Yokoyama, Wally; Yi, Jiang

    2017-01-01

    The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM) of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery. PMID:29072633

  2. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.

    PubMed

    Wang, X; Shih, K; Li, X Y

    2010-01-01

    A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H(2) generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x=0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1 g L(-1). The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmol g(-1) L(-1) h(-1) and a quantum yield of 16.1% under visible light (165 W Xe lamp, lambda>420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.

  3. On Spectral Invariance of Single Scattering Albedo for Water Droplets and Ice Crystals at Weakly Absorbing Wavelengths

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2012-01-01

    The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

  4. Condensation and jumping relay of droplets on lotus leaf

    NASA Astrophysics Data System (ADS)

    Lv, Cunjing; Hao, Pengfei; Yao, Zhaohui; Song, Yu; Zhang, Xiwen; He, Feng

    2013-07-01

    Dynamic behavior of micro water droplet condensed on a lotus leaf with two-tier roughness is studied. Under laboratory environment, the contact angle of the micro droplet on single micro papilla increases smoothly from 80° to 160° during the growth of condensed water. The best-known "self-cleaning" phenomenon will be lost. A striking observation is the out-of-plane jumping relay of condensed droplets triggered by falling droplets, as well as its sustained speed obtained in continuous jumping relays. The underlying mechanism can be used to enhance the automatic removal of dropwise condensation without the help from any external force. The surface tension energy dissipation is the main reason controlling the critical size of jumping droplet and its onset velocity of rebounding.

  5. Measuring spray droplet size from agricultural nozzles using laser diffraction

    USDA-ARS?s Scientific Manuscript database

    When making an application of any crop protection material such as a herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e. plant). Information critical in this process is the droplet size that a parti...

  6. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOEpatents

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  7. The influence of initial atomized droplet size on residual particle size from pressurized metered dose inhalers.

    PubMed

    Sheth, Poonam; Stein, Stephen W; Myrdal, Paul B

    2013-10-15

    Pressurized metered dose inhalers (pMDIs) are widely used for the treatment of diseases of the lung, including asthma and chronic obstructive pulmonary disease. The mass median aerodynamic diameter of the residual particles (MMADR) delivered from a pMDI plays a key role in determining the amount and location of drug deposition in the lung and thereby the efficacy of the inhaler. The mass median diameter of the initial droplets (MMDI), upon atomization of a formulation, is a significant factor influencing the final particle size. The purpose of this study was to evaluate the extent that MMDI and initial droplet geometric standard deviation (GSD) influence the residual aerodynamic particle size distribution (APSDR) of solution and suspension formulations. From 48 solution pMDI configurations with varying ethanol concentrations, valve sizes and actuator orifice diameters, it was experimentally found that the effective MMDI ranged from 7.8 to 13.3 μm. Subsequently, computational methods were utilized to determine the influence of MMDI on MMADR, by modulating the MMDI for solution and suspension pMDIs. For solution HFA-134a formulations of 0.5% drug in 10% ethanol, varying the MMDI from 7.5 to 13.5 μm increased the MMADR from 1.4 to 2.5 μm. For a suspension formulation with a representative particle size distribution of micronized drug (MMAD=2.5 μm, GSD=1.8), the same increase in MMDI resulted in an increase in the MMADR from 2.7 to only 3.3 μm. Hence, the same increase in MMDI resulted in a 79% increase in MMADR for the solution formulation compared to only a 22% increase for the suspension formulation. Similar trends were obtained for a range of drug concentrations and input micronized drug sizes. Thus, APSDR is more sensitive to changes in MMDI for solution formulations than suspension formulations; however, there are situations in which hypothetically small micronized drug in suspension (e.g. 500 nm MMAD) could resemble trends observed for solution formulations

  8. A zero-gravity demonstration of the collision and coalescence of water droplets

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Vaughan, O. H.; Smith, R. E.

    1974-01-01

    The mechanics of the collision and coalescence of liquid droplets is one of the main research areas in the fields of nuclear physics, astrophysics, meteorology and fluid mechanics. The crew members on the Skylab 3 and 4 missions were requested to perform demonstrations of the collision and coalescence of water droplets under the low gravity environment at orbital altitude. In Skylab 4 two water droplets with equal volumes, 30 cu cm each, were used. A dark colored droplet (contaminated with grape drink) moving with a velocity of 3.14 cm/sec collided with a stationary pink colored droplet (contaminated with strawberry drink) and coalescence occurred. Theoretical models are proposed to study the various stages of the collision-coalescence processes. Special considerations are concentrated in the investigation of the bounce-coalescence and coalescence-instability processes. The surface tension of the coalesced droplets was calculated to be 52 dynes/cm in perfect agreement with laboratory measurements made after the flight using a reproduction of the liquids.

  9. [Drug delivery systems using nano-sized drug carriers].

    PubMed

    Nakayama, Masamichi; Okano, Teruo

    2005-07-01

    Nanotechnology has attracted great attention all over the world in recent several years and has led to the establishment of the novel technical field of "nanomedicine" through collaboration with advanced medical technology. Particularly, site-specific drug targeting using particle drug carrier systems has made substantial progress and been actively developed. This review explains the essential factors (size and chemical character) of drug carriers to allow long circulation in the bloodstream avoiding the reticuloendothelial system, and shows the present status and future perspective of several types of nano-carrier systems (water-soluble polymer, liposome and polymeric micelle). We also introduce the novel concept of multi-targeting system (combination of two or more targeting methodologies) for ideal drug therapies.

  10. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    PubMed Central

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  11. Spontaneous Droplet Motion on a Periodically Compliant Substrate.

    PubMed

    Liu, Tianshu; Nadermann, Nichole; He, Zhenping; Strogatz, Steven H; Hui, Chung-Yuen; Jagota, Anand

    2017-05-23

    Droplet motion arises in many natural phenomena, ranging from the familiar gravity-driven slip and arrest of raindrops on windows to the directed transport of droplets for water harvesting by plants and animals under dry conditions. Deliberate transportation and manipulation of droplets are also important in many technological applications, including droplet-based microfluidic chemical reactors and for thermal management. Droplet motion usually requires gradients of surface energy or temperature or external vibration to overcome contact angle hysteresis. Here, we report a new phenomenon in which a drying droplet placed on a periodically compliant surface undergoes spontaneous, erratic motion in the absence of surface energy gradients and external stimuli such as vibration. By modeling the droplet as a mass-spring system on a substrate with periodically varying compliance, we show that the stability of equilibrium depends on the size of the droplet. Specifically, if the center of mass of the drop lies at a stable equilibrium point of the system, it will stay there until evaporation reduces its size and this fixed point becomes unstable; with any small perturbation, the droplet then moves to one of its neighboring fixed points.

  12. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Qiang; Dong, Xin; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning; Ling, Zhi-Yong

    2015-02-01

    Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.

  13. Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

    2012-01-01

    The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

  14. Nano-emulsions as vehicles for topical delivery of forskolin.

    PubMed

    Miastkowska, Małgorzata; Sikora, Elżbieta; Lasoń, Elwira; Garcia-Celma, Maria Jose; Escribano-Ferrer, Elvira; Solans, Conxita; Llinas, Meritxell

    2017-01-01

    Two O/W forskolin-loaded nano-emulsions (0.075% wt.) based on medium chain triglycerides (MCT) and stabilized by a nonionic surfactant (Polysorbate 80 or Polysorbate 40) were studied as forskolin delivery systems. The nano-emulsions were prepared by the PIC method. The mean droplet size of the nano-emulsions with Polysorbate 80 and Polysorbate 40 with oil/surfactant (O/S) ratios of 20/80 and 80% water concentration, measured by Dynamic Light Scattering (DLS), was of 118 nm and 111 nm, respectively. Stability of the formulations, as assessed by light backscattering for 24 h, showed that both nano-emulsions were stable at 25°C. Studies of forskolin in vitro skin permeation from the nano-emulsions and from a triglyceride solution were carried out at 32°C, using Franz-type diffusion cells. A mixture of PBS/ethanol (60/40 v/v) was used as a receptor solution. The highest flux and permeability coefficient was obtained for the system stabilized with Polysorbate 80 (6.91±0.75 µg · cm -2 ·h -1 and 9.21 · 10 -3 ±1.00 · 10 -3 cm · h -1 , respectively) but no significant differences were observed with the flux and permeability coefficient value of forskolin dissolved in oil. The obtained results showed that the nano-emulsions developed in this study could be used as effective carriers for topical administration of forskolin.

  15. Droplet-size distribution and stability of commercial injectable lipid emulsions containing fish oil.

    PubMed

    Gallegos, Críspulo; Valencia, Concepción; Partal, Pedro; Franco, José M; Maglio, Omay; Abrahamsson, Malin; Brito-de la Fuente, Edmundo

    2012-08-01

    The droplet size of commercial fish oil-containing injectable lipid emulsions, including conformance to United States Pharmacopeia (USP) standards on fat-globule size, was investigated. A total of 18 batches of three multichamber parenteral products containing the emulsion SMOFlipid as a component were analyzed. Samples from multiple lots of the products were evaluated to determine compliance with standards on the volume-weighted percentage of fat exceeding 0.05% (PFAT(5)) specified in USP chapter 729 to ensure the physical stability of i.v. lipid emulsions. The products were also analyzed to determine the effects of various storage times (3, 6, 9, and 12 months) and storage temperatures (25, 30, and 40 °C) on product stability. Larger-size lipid particles were quantified via single-particle optical sensing (SPOS). The emulsion's droplet-size distribution was determined via laser light scattering. SPOS and light-scattering analysis demonstrated mean PFAT(5) values well below USP-specified globule-size limits for all the tested products under all study conditions. In addition, emulsion aging at any storage temperature in the range studied did not result in a significant increase of PFAT(5) values, and mean droplet-size values did not change significantly during storage of up to 12 months at temperatures of 25-40 °C. PFAT(5) values were below the USP upper limits in SMOFlipid samples from multiple lots of three multichamber products after up to 12 months of storage at 25 or 30 °C or 6 months of storage at 40 °C.

  16. Self-Propulsion of Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion

    NASA Astrophysics Data System (ADS)

    Izri, Ziane; van der Linden, Marjolein N.; Michelin, Sébastien; Dauchot, Olivier

    2014-12-01

    We report spontaneous motion in a fully biocompatible system consisting of pure water droplets in an oil-surfactant medium of squalane and monoolein. Water from the droplet is solubilized by the reverse micellar solution, creating a concentration gradient of swollen reverse micelles around each droplet. The strong advection and weak diffusion conditions allow for the first experimental realization of spontaneous motion in a system of isotropic particles at sufficiently large Péclet number according to a straightforward generalization of a recently proposed mechanism [S. Michelin, E. Lauga, and D. Bartolo, Phys. Fluids 25, 061701 (2013); S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)]. Experiments with a highly concentrated solution of salt instead of water, and tetradecane instead of squalane, confirm the above mechanism. The present swimming droplets are able to carry external bodies such as large colloids, salt crystals, and even cells.

  17. Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion.

    PubMed

    Izri, Ziane; van der Linden, Marjolein N; Michelin, Sébastien; Dauchot, Olivier

    2014-12-12

    We report spontaneous motion in a fully biocompatible system consisting of pure water droplets in an oil-surfactant medium of squalane and monoolein. Water from the droplet is solubilized by the reverse micellar solution, creating a concentration gradient of swollen reverse micelles around each droplet. The strong advection and weak diffusion conditions allow for the first experimental realization of spontaneous motion in a system of isotropic particles at sufficiently large Péclet number according to a straightforward generalization of a recently proposed mechanism [S. Michelin, E. Lauga, and D. Bartolo, Phys. Fluids 25, 061701 (2013); S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)]. Experiments with a highly concentrated solution of salt instead of water, and tetradecane instead of squalane, confirm the above mechanism. The present swimming droplets are able to carry external bodies such as large colloids, salt crystals, and even cells.

  18. Experimental Investigation of Droplet Evaporation of Water with Ground Admixtures while Motion in a Flame of Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Dmitriyenko, Margarita A.; Nyashina, Galina S.; Zhdanova, Alena O.; Vysokomornaya, Olga V.

    2016-02-01

    The evaporation features for the atomized flow of suspension on the base of water with ground admixtures in an area of high-temperature combustion products of liquid flammable substance (acetone) were investigated experimentally by the optical methods of gas flow diagnostic and the high-speed video recording. The scales of influence of clay and silt concentration in droplets of atomized flow on the intensity of its evaporation were determined. The approximation dependences describing a decrease in typical size of suspension droplets at various values of ground admixtures were obtained.

  19. Chembio extraction on a chip by nanoliter droplet ejection.

    PubMed

    Yu, Hongyu; Kwon, Jae Wan; Kim, Eun Sok

    2005-03-01

    This paper describes a novel liquid separation technique for chembio extraction by an ultrasonic nanoliter-liquid-droplet ejector built on a PZT sheet. This technique extracts material from an aqueous two-phase system (ATPS) in a precise amount through digital control of the number of nanoliter droplets, without any mixing between the two liquids in the ATPS. The ultrasonic droplet ejector uses an acoustic streaming effect produced by an acoustic beam focused on the liquid surface, and ejects liquid droplets only from the liquid surface without disturbing most of the liquid below the surface. This unique characteristic of the focused acoustic beam is perfect (1) for separating a top-layer liquid (from the bulk of liquid) that contains particles of interest or (2) for recovering a top-layer liquid that has different phase from a bottom-layer liquid. Three kinds of liquid extraction are demonstrated with the ultrasonic droplet ejector: (1) 16 microl of top layer in Dextran-polyethylene glycol-water ATPS (aqueous two-phase system) is recovered within 20 s; (2) micron sized particles that float on water surface are ejected out with water droplets; and (3) oil layer on top of water is separated out.

  20. Nano-sized Mn3O4 and β-MnOOH from the decomposition of β-cyclodextrin-Mn: 2. The water-oxidizing activities.

    PubMed

    Najafpour, Mohammad Mahdi; Mostafalu, Ramin; Hołyńska, Małgorzata; Ebrahimi, Foad; Kaboudin, Babak

    2015-11-01

    Nano-sized Mn oxides contain Mn3O4, β-MnOOH and Mn2O3 have been prepared by a previously reported method using thermal decomposition of β-cyclodextrin-Mn complexes. In the next step, the water-oxidizing activities of these Mn oxides using cerium(IV) ammonium nitrate as a chemical oxidant are studied. The turnover frequencies for β-MnO(OH) and Mn3O4 are 0.24 and 0.01-0.17 (mmol O2/mol Mns), respectively. Subsequently, water-oxidizing activities of these compounds are compared to the other previously reported Mn oxides. Important factors affecting water oxidation by these Mn oxides are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fiber Supported Droplet Combustion-2 (FSDC-2)

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato; Dietrich, Daniel; Haggard, John B., Jr.; Nayagan, Vedha; Dryer, Frederick L.; Shaw, Benjamin D.; Williams, Forman A.

    1998-01-01

    Experimental results for the burning characteristics of fiber supported, liquid droplets in ambient Shuttle cabin air (21% oxygen, 1 bar pressure) were obtained from the Glove Box Facility aboard the STS-94/MSL-1 mission using the Fiber Supported Droplet Combustion - 2 (FSDC-2) apparatus. The combustion of individual droplets of methanol/water mixtures, ethanol, ethanol/water azeotrope, n-heptane, n-decane, and n-heptane/n-hexadecane mixtures were studied in quiescent air. The effects of low velocity, laminar gas phase forced convection on the combustion of individual droplets of n-heptane and n-decane were investigated and interactions of two droplet-arrays of n-heptane and n-decane droplets were also studied with and without gas phase convective flow. Initial diameters ranging from about 2mm to over 6mm were burned on 80-100 micron silicon fibers. In addition to phenomenological observations, quantitative data were obtained in the form of backlit images of the burning droplets, overall flame images, and radiometric combustion emission measurements as a function of the burning time in each experiment. In all, 124 of the 129 attempted experiments (or about twice the number of experiments originally planned for the STS-94/MSL-1 mission) were conducted successfully. The experimental results contribute new observations on the combustion properties of pure alkanes, binary alkane mixtures, and simple alcohols for droplet sizes not studied previously, including measurements on individual droplets and two-droplet arrays, inclusive of the effects of forced gas phase convection. New phenomena characterized experimentally for the first time include radiative extinction of droplet burning for alkanes and the "twin effect" which occurs as a result of interactions during the combustion of two-droplet arrays. Numerical modeling of isolated droplet combustion phenomenon has been conducted for methanol/water mixtures, n-heptane, and n-heptane/n-hexadecane mixtures, and results

  2. Thermally induced gelling of oil-in-water emulsions comprising partially crystallized droplets: the impact of interfacial crystals.

    PubMed

    Thivilliers, Florence; Laurichesse, Eric; Saadaoui, Hassan; Leal-Calderon, Fernando; Schmitt, Véronique

    2008-12-02

    We produced triglyceride-in-water emulsions comprising partially crystallized droplets, stabilized by a mixture of protein and low molecular weight surfactant. The emulsions were emulsified in the melted state of the oil phase and stored at low temperature (4 degrees C) right after fabrication to induce oil crystallization. The systems were then warmed to room temperature for a short period of time and cooled again to 4 degrees C. Owing to this treatment referred to as temperature cycling or "tempering", the initially fluid emulsions turned into hard gels. We followed the bulk rheological properties of the materials during and after tempering. The storage modulus, G', exhibited a dramatic increase when tempering was applied. We showed that the systems evolved following two distinct regimes that depend on the average droplet size and on the surfactant-to-protein molar ratio. Gelling may involve partial coalescence of the droplets, i.e., film rupturing with no further shape relaxation because of the solid nature of the droplets. Alternatively, gelling may occur without film rupturing, and is reminiscent of a jamming transition induced by surface roughness. We discussed the origin of these two mechanisms in terms of the properties (size and protuberance) of the interfacial oil crystals.

  3. The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance

    NASA Astrophysics Data System (ADS)

    Clausen, Carol A.; Kartal, S. Nami; Arango, Rachel A.; Green, Frederick

    2011-06-01

    Historically most residential wood preservatives were aqueous soluble metal formulations, but recently metals ground to submicron size and dispersed in water to give particulate formulations have gained importance. In this study, the specific role nano-zinc oxide (ZnO) particle size and leach resistance plays in termite mortality resulting from exposure to particulate ZnO-treated wood was investigated. Southern yellow pine (SYP) sapwood impregnated with three concentrations of two particle sizes (30 and 70 nm) of ZnO were compared to wood treated with soluble zinc sulphate (ZnSO4) preservative for leach resistance and termite resistance. Less than four percent leached from the particulate nano-ZnO-treated specimens, while 13 to 25% of the zinc sulphate leached from the soluble treated wood. Nano-ZnO was essentially non-leachable from wood treated with 5% formulation for the 30-nm particle size. In a no-choice laboratory test, eastern subterranean termites ( Reticulitermes flavipes) consumed less than 10% of the leached nano-ZnO-treated wood with 93 to 100% mortality in all treatment concentrations. In contrast, termites consumed 10 to 12% of the leached ZnSO4-treated wood, but with lower mortality: 29% in the 1% treatment group and less than 10% (5 and 8%, respectively) in the group of wood blocks treated with 2.5 and 5.0% ZnSO4. We conclude that termites were repelled from consuming wood treated with nano-ZnO, but when consumed it was more toxic to eastern subterranean termites than wood treated with the soluble metal oxide formulation. There were no differences in leaching or termite mortality between the two particle sizes of nano-ZnO.

  4. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE PAGES

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    2018-05-09

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  5. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  6. Velocity of mist droplets and suspending gas imaged separately

    NASA Astrophysics Data System (ADS)

    Kuethe, Dean O.; McBride, Amber; Altobelli, Stephen A.

    2012-03-01

    Nuclear Magnetic Resonance Images (MRIs) of the velocity of water droplets and velocity of the suspending gas, hexafluoroethane, are presented for a vertical and horizontal mist pipe flow. In the vertical flow, the upward velocity of the droplets is clearly slower than the upward velocity of the gas. The average droplet size calculated from the average falling velocity in the upward flow is larger than the average droplet size of mist drawn from the top of the pipe measured with a multi-stage aerosol impactor. Vertical flow concentrates larger particles because they have a longer transit time through the pipe. In the horizontal flow there is a gravity-driven circulation with high-velocity mist in the lower portion of the pipe and low-velocity gas in the upper portion. MRI has the advantages that it can image both phases and that it is unperturbed by optical opacity. A drawback is that the droplet phase of mist is difficult to image because of low average spin density and because the signal from water coalesced on the pipe walls is high. To our knowledge these are the first NMR images of mist.

  7. A Photographic Study of Freezing of Water Droplets Falling Freely in Air

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Levine, Joseph

    1952-01-01

    A photographic technique for investigating water droplets of diameter less than 200 microns falling freely in air at temperatures between 0 C and -50 C has been devised and used to determine: (i) The shape of frozen droplets (2) The occurrence of collisions of partly frozen or of frozen and liquid droplets (3) The statistics on the freezing temperatures of individual free-falling droplets A considerable number of droplets were found to have a nonspherical shape after freezing because of various protuberances and frost growth, and droplet aggregates formed by collision. The observed frequency of collision of partly frozen droplets showed good order of magnitude agreement with the frequency computed from theoretical collection efficiencies. The freezing temperature statistics indicated a general similarity of the data to those obtained for droplets frozen on a metallic surface in previous experiments.

  8. Was the Deepwater Horizon Well Discharge Churn Flow? Implications on the Estimation of the Oil Discharge and Droplet Size Distribution

    NASA Astrophysics Data System (ADS)

    Boufadel, Michel C.; Gao, Feng; Zhao, Lin; Özgökmen, Tamay; Miller, Richard; King, Thomas; Robinson, Brian; Lee, Kenneth; Leifer, Ira

    2018-03-01

    Improved understanding of the character of an uncontrolled pipeline flow is critical for the estimation of the oil discharge and droplet size distribution both essential for evaluating oil spill impact. Measured oil and gas properties at the wellhead of the Macondo255 and detailed numerical modeling suggested that the flow within the pipe could have been "churn," whereby oil and gas tumble violently within the pipe and is different from the bubbly flow commonly assumed for that release. The churn flow would have produced 5 times the energy loss in the pipe compared to bubbly flow, and its plume would have entrained 35% more water than that of the bubbly flow. Both findings suggest that the oil discharge in Deepwater Horizon could have been overestimated, by up to 200%. The resulting oil droplet size distribution of churn flow is likely smaller than that of bubbly flow.

  9. The effect of different spectral shape parameterizations of cloud droplet size distribution on first and second aerosol indirect effects in NACR CAM5 and evaluation with satellite data

    NASA Astrophysics Data System (ADS)

    Wang, M.; Peng, Y.; Xie, X.; Liu, Y.

    2017-12-01

    Aerosol cloud interaction continues to constitute one of the most significant uncertainties for anthropogenic climate perturbations. The parameterization of cloud droplet size distribution and autoconversion process from large scale cloud to rain can influence the estimation of first and second aerosol indirect effects in global climate models. We design a series of experiments focusing on the microphysical cloud scheme of NCAR CAM5 (Community Atmospheric Model Version 5) in transient historical run with realistic sea surface temperature and sea ice. We investigate the effect of three empirical, two semi-empirical and one analytical expressions for droplet size distribution on cloud properties and explore the statistical relationships between aerosol optical thickness (AOT) and simulated cloud variables, including cloud top droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP). We also introduce the droplet spectral shape parameter into the autoconversion process to incorporate the effect of droplet size distribution on second aerosol indirect effect. Three satellite datasets (MODIS Terra/ MODIS Aqua/ AVHRR) are used to evaluate the simulated aerosol indirect effect from the model. Evident CDER decreasing with significant AOT increasing is found in the east coast of China to the North Pacific Ocean and the east coast of USA to the North Atlantic Ocean. Analytical and semi-empirical expressions for spectral shape parameterization show stronger first aerosol indirect effect but weaker second aerosol indirect effect than empirical expressions because of the narrower droplet size distribution.

  10. The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry

    NASA Astrophysics Data System (ADS)

    Eid, K. F.; Panth, M.; Sommers, A. D.

    2018-03-01

    This paper explores the fluid property commonly called surface tension, its effect on droplet shape and contact angle, and the major influences of contact angle behaviour (i.e. surface roughness and surface chemistry). Images of water droplets placed on treated copper surfaces are used to measure the contact angles between the droplets and the surface. The surface wettability is manipulated either by growing a self-assembled monolayer on the surface to make it hydrophobic or by changing the surface roughness. The main activities in this experiment, then, are (1) preparing and studying surfaces with different surface wettability and roughness; (2) determining the shape and contact angles of water droplets on these surfaces; and (3) demonstrating the spontaneous motion of water droplets using surface tension gradients.

  11. Suppression of coffee ring: (Particle) size matters

    NASA Astrophysics Data System (ADS)

    Bansal, Lalit; Seth, Pranjal; Murugappan, Bhubesh; Basu, Saptarshi

    2018-05-01

    Coffee ring patterns in drying sessile droplets are undesirable in various practical applications. Here, we experimentally demonstrate that on hydrophobic substrates, the coffee ring can be suppressed just by increasing the particle diameter. Particles with larger size flocculate within the evaporation timescale, leading to a significant gravimetric settling (for Pe > 1) triggering a uniform deposit. Interestingly, the transition to a uniform deposit is found to be independent of the internal flow field and substrate properties. Flocculation of particles also alters the particle packing at the nanoscale resulting in order to disorder transitions. In this letter, we exhibit a physical exposition on how particle size affects morphodynamics of the droplet drying at macro-nano length scales.

  12. Regulation of Lipid Droplet Size in Mammary Epithelial Cells by Remodeling of Membrane Lipid Composition—A Potential Mechanism

    PubMed Central

    Cohen, Bat-Chen; Shamay, Avi; Argov-Argaman, Nurit

    2015-01-01

    Milk fat globule size is determined by the size of its precursors—intracellular lipid droplets—and is tightly associated with its composition. We examined the relationship between phospholipid composition of mammary epithelial cells and the size of both intracellular and secreted milk fat globules. Primary culture of mammary epithelial cells was cultured in medium without free fatty acids (control) or with 0.1 mM free capric, palmitic or oleic acid for 24 h. The amount and composition of the cellular lipids and the size of the lipid droplets were determined in the cells and medium. Mitochondrial quantity and expression levels of genes associated with mitochondrial biogenesis and polar lipid composition were determined. Cells cultured with oleic and palmitic acids contained similar quantities of triglycerides, 3.1- and 3.8-fold higher than in controls, respectively (P < 0.0001). When cultured with oleic acid, 22% of the cells contained large lipid droplets (>3 μm) and phosphatidylethanolamine concentration was higher by 23 and 63% compared with that in the control and palmitic acid treatments, respectively (P < 0.0001). In the presence of palmitic acid, only 4% of the cells contained large lipid droplets and the membrane phosphatidylcholine concentration was 22% and 16% higher than that in the control and oleic acid treatments, respectively (P < 0.0001). In the oleic acid treatment, approximately 40% of the lipid droplets were larger than 5 μm whereas in that of the palmitic acid treatment, only 16% of the droplets were in this size range. Triglyceride secretion in the oleic acid treatment was 2- and 12-fold higher compared with that in the palmitic acid and control treatments, respectively. Results imply that membrane composition of bovine mammary epithelial cells plays a role in controlling intracellular and secreted lipid droplets size, and that this process is not associated with cellular triglyceride content. PMID:25756421

  13. Theoretical Analysis for the Optical Shaping of Emulsion Droplets

    NASA Astrophysics Data System (ADS)

    Tapp, David; Taylor, Jonathan; Lubanksy, Alex; Bain, Colin; Chakrabarti, Buddhapriya

    2014-03-01

    Motivated by recent experimental observations, I discuss a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and beyond, and assuming isotropic surface energy at the oil-water interface, the resulting shape equations are numerically solved to elucidate the three-dimensional droplet geometry. A plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry are obtained. Experimentally, two-dimensional emulsion droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. The model I present elucidates and quantifies this difference for the first time. Supported by funding from EPSRC via grant EP/I013377/1.

  14. Grain Refinement and Mechanical Properties of Cu–Cr–Zr Alloys with Different Nano-Sized TiCp Addition

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-01-01

    The TiCp/Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiCp/Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu–Cr–Zr alloys to fabricate the nano-sized TiCp-reinforced Cu–Cr–Zr composites. Results show that nano-sized TiCp can effectively refine the grain size of Cu–Cr–Zr alloys. The morphologies of grain in Cu–Cr–Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiCp. The grain size decreased from 82 to 28 μm with the nano-sized TiCp content. Compared with Cu–Cr–Zr alloys, the ultimate compressive strength (σUCS) and yield strength (σ0.2) of 4 wt% TiCp-reinforced Cu–Cr–Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu–Cr–Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiCp-reinforced Cu–Cr–Zr composites decreased with the increasing TiCp content under abrasive particles. The eletrical conductivity of Cu–Cr–Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu–Cr–Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively. PMID:28786937

  15. An interfacial mechanism for cloud droplet formation on organic aerosols

    DOE PAGES

    Ruehl, C. R.; Davies, J. F.; Wilson, K. R.

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depressionmore » by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.« less

  16. An interfacial mechanism for cloud droplet formation on organic aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruehl, C. R.; Davies, J. F.; Wilson, K. R.

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depressionmore » by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.« less

  17. Polymer loaded microemulsions: Changeover from finite size effects to interfacial interactions

    NASA Astrophysics Data System (ADS)

    Kuttich, B.; Ivanova, O.; Grillo, I.; Stühn, B.

    2016-10-01

    Form fluctuations of microemulsion droplets are observed in experiments using dielectric spectroscopy (DS) and neutron spin echo spectroscopy (NSE). Previous work on dioctyl sodium sulfosuccinate based water in oil microemulsions in the droplet phase has shown that adding a water soluble polymer (Polyethylene glycol M = 1500 g mol-1) modifies these fluctuations. While for small droplet sizes (water core radius rc < 37 Å) compared to the size of the polymer both methods consistently showed a reduction in the bending modulus of the surfactant shell as a result of polymer addition, dielectric spectroscopy suggests the opposite behaviour for large droplets. This observation is now confirmed by NSE experiments on large droplets. Structural changes due to polymer addition are qualitatively independent of droplet size. Dynamical properties, however, display a clear variation with the number of polymer chains per droplet, leading to the observed changes in the bending modulus. Furthermore, the contribution of structural and dynamical properties on the changes in bending modulus shifts in weight. With increasing droplet size, we initially find dominating finite size effects and a changeover to a system, where interactions between the confined polymer and the surfactant shell dominate the bending modulus.

  18. Water droplet erosion mechanisms of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Kamkar Zahmatkesh, Niloofar

    Water impingement erosion of materials can be a life-limiting phenomenon for the components in many erosive environments. For example, aircraft body exposed to rain, steam turbine blade, and recently in gas turbine coupled with inlet fogging system. The last is the focus of this study. Inlet fogging system is the most common method used to augment gas turbine output during hot days; high ambient temperature causes strong deterioration of the engine performance. Micro-scaled droplets introduced into the inlet airflow allow the cooling of entering air as well as intercooling the compressor (overspray) and thus optimizes the output power. However, erosion damage of the compressor blades in overspray stage is one of the major concerns associated with the inlet fogging system. The main objective of this research work (CRIAQ MANU419 project) is to understand the erosion induced by water droplets on Titanium alloy to eventually optimize the erosion resistance of the Ti-based compressor blade. Therefore, characterization of the water droplet erosion damage on Ti-6Al-4V receives the major importance. The influence of base material microstructure and impact parameters were considered in erosion evaluation in present study. This work covers the characterization of the erosion damage on Ti-6Al-4V alloy in two parts: - The water droplet erosion damage through a novel experimental approach. The collected data were processed both qualitatively and quantitatively for multi-aspects damage study. - The influence of impact velocity on erosion in an attempt to represent the in-service conditions.

  19. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.

    PubMed

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli

    2017-03-08

    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  20. A Water Droplet Pinning and Heat Transfer Characteristics on an Inclined Hydrophobic Surface.

    PubMed

    Al-Sharafi, Abdullah; Yilbas, Bekir Sami; Ali, Haider; AlAqeeli, N

    2018-02-15

    A water droplet pinning on inclined hydrophobic surface is considered and the droplet heat transfer characteristics are examined. Solution crystallization of polycarbonate is carried out to create hydrophobic characteristics on the surface. The pinning state of the water droplet on the extreme inclined hydrophobic surface (0° ≤ δ ≤ 180°, δ being the inclination angle) is assessed. Heat transfer from inclined hydrophobic surface to droplet is simulated for various droplet volumes and inclination angles in line with the experimental conditions. The findings revealed that the hydrophobic surface give rise to large amount of air being trapped within texture, which generates Magdeburg like forces between the droplet meniscus and the textured surface while contributing to droplet pinning at extreme inclination angles. Two counter rotating cells are developed for inclination angle in the range of 0° < δ < 20° and 135° < δ < 180°; however, a single circulation cell is formed inside the droplet for inclination angle of 25° ≤ δ ≤ 135°. The Nusselt number remains high for the range of inclination angle of 45° ≤ δ ≤ 135°. Convection and conduction heat transfer enhances when a single and large circulation cell is formed inside the droplet.

  1. Mechanism of Supercooled Water Droplet Breakup near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Veras-Alba, Belen; Palacios, Jose; Vargas, Mario; Ruggeri, Charles; Bartkus, Tadas P.

    2017-01-01

    This work presents the results of an experimental study on supercooled droplet deformation and breakup near the leading edge of an airfoil. The results are compared to prior room temperature droplet deformation results to explore the effects of droplet supercooling. The experiments were conducted in the Adverse Environment Rotor Test Stand (AERTS) at The Pennsylvania State University. An airfoil model placed at the end of the rotor blades mounted onto the hub in the AERTS chamber was moved at speeds ranging between 50 and 80 m/sec. The temperature of the chamber was set at -20°C. A monotonic droplet generator was used to produce droplets that fell from above, perpendicular to the path of the airfoil. The supercooled state of the droplets was determined by measurement of the temperature of the drops at various locations below the droplet generator exit. A temperature prediction code was also used to estimate the temperature of the droplets based on vertical velocity and the distance traveled by droplets from the droplet generator to the airfoil stagnation line. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging provided droplet deformation information as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure the horizontal and vertical displacement of the droplet against time. It was demonstrated that to compare the effects of water supercooling on droplet deformation, the ratio of the slip velocity and the initial droplet velocity must be equal. A case with equal slip velocity to initial velocity ratios was selected for room temperature and supercooled droplet conditions. The airfoil velocity was 60 m/s and the slip velocity for both sets of data was 40 m/s. In these cases, the deformation of the weakly supercooled and warm droplets did not present different trends. The similar behavior for both environmental conditions indicates that water

  2. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  3. The mechanisms of filter feeding on oil droplets: Theoretical considerations.

    PubMed

    Mehrabian, Sasan; Letendre, Francis; Cameron, Christopher B

    2018-04-01

    Filter feeding animals capture food particles and oil droplets from the fluid environment using cilia or appendages composed of arrays of fibers. Here we review the theoretical models that have provided a foundation for observations on the efficiency of particle capture. We then provide the mathematical theoretical framework to characterize the efficient filtration of oil droplets. In the aquatic and marine environments oil droplets are released from the decay of organisms or as hydrocarbons. Droplet size and flow velocity, oil-to-water viscosity ratio, oil-water interfacial tension, oil and water density difference, and the surface wettability, or surface texture, of the filter fiber are the key parameters for oil droplet capture. Following capture, capillary force maintains the droplet at its location due to the oil-water interfacial tension. If the oil-coated fiber is subject to any external force such as viscous or gravitational forces, it may deform and separate from the fiber and re-enter the fluid stream. We show oil droplet capture in Daphnia and the barnacle Balanus glandula, and outline some of the ecological unknowns regarding oil capture in the oceans. Awareness of these mechanisms and their interrelationships will provide a foundation for investigations into the efficiency of various modes of filter feeding on oil droplets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Holographic interferometry of oil films and droplets in water with a single-beam mirror-type scheme.

    PubMed

    Kukhtarev, Nickolai; Kukhtareva, Tatiana; Gallegos, Sonia C

    2011-03-01

    Application of single-beam reflective laser optical interferometry for oil films and droplets in water detection and characterization is discussed. Oil films can be detected by the appearance of characteristic interference patterns. Analytical expressions describing intensity distribution in these interference patterns allow determination of oil film thickness, size of oil droplets, and distance to the oil film from the observation plane. Results from these analyses indicate that oil spill aging and breakup can be monitored in real time by analyzing time-dependent holographic fringe patterns. Interferometric methods of oil spill detection and characterization can be automated using digital holography with three-dimensional reconstruction of the time-changing oil spill topography. In this effort, the interferometric methods were applied to samples from Chevron oil and British Petroleum MC252 oil obtained during the Deep Water Horizon oil spill in the Gulf of Mexico. © 2011 Optical Society of America

  5. Design of Experiments to Study the Impact of Process Parameters on Droplet Size and Development of Non-Invasive Imaging Techniques in Tablet Coating

    PubMed Central

    Dennison, Thomas J.; Smith, Julian; Hofmann, Michael P.; Bland, Charlotte E.; Badhan, Raj K.; Al-Khattawi, Ali; Mohammed, Afzal R.

    2016-01-01

    Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats. PMID:27548263

  6. Open-atmosphere sustenance of highly volatile attoliter-size droplets on surfaces.

    PubMed

    Galliker, Patrick; Schneider, Julian; Rüthemann, Lukas; Poulikakos, Dimos

    2013-08-13

    The controlled formation and handling of minute liquid volumes on surfaces is essential to the success of microfluidics in biology, chemistry, and materials applications. Even though current methods have demonstrated their potential in a variety of experimental assays, there remain significant difficulties concerning breadth of applicability, standardization, throughput, and economics. Here we introduce a unique microfluidic paradigm in which microscopic volatile droplets are formed, sustained, and manipulated in size and content at any desired spot on unpatterned substrates. Their sustainability is warranted by continuous replacement of the rapidly vaporizing sessile fluid through controlled equivalent volume deposition of smaller discrete liquid entities by an electrohydrodynamic nanodripping process. Using nanoparticle inks we show that the concentration of solutes in so-stabilized droplets can be linearly increased at isochoric conditions and user-defined rates. An intriguing insensitivity of the droplet shape toward surface heterogeneities ensures robustness and experimental reproducibility, even when handling attoliter quantities. The unique capabilities and technical simplicity of the presented method introduce a high degree of flexibility and make it pertinent to a diverse range of applications.

  7. Open-atmosphere sustenance of highly volatile attoliter-size droplets on surfaces

    PubMed Central

    Galliker, Patrick; Schneider, Julian; Rüthemann, Lukas; Poulikakos, Dimos

    2013-01-01

    The controlled formation and handling of minute liquid volumes on surfaces is essential to the success of microfluidics in biology, chemistry, and materials applications. Even though current methods have demonstrated their potential in a variety of experimental assays, there remain significant difficulties concerning breadth of applicability, standardization, throughput, and economics. Here we introduce a unique microfluidic paradigm in which microscopic volatile droplets are formed, sustained, and manipulated in size and content at any desired spot on unpatterned substrates. Their sustainability is warranted by continuous replacement of the rapidly vaporizing sessile fluid through controlled equivalent volume deposition of smaller discrete liquid entities by an electrohydrodynamic nanodripping process. Using nanoparticle inks we show that the concentration of solutes in so-stabilized droplets can be linearly increased at isochoric conditions and user-defined rates. An intriguing insensitivity of the droplet shape toward surface heterogeneities ensures robustness and experimental reproducibility, even when handling attoliter quantities. The unique capabilities and technical simplicity of the presented method introduce a high degree of flexibility and make it pertinent to a diverse range of applications. PMID:23898173

  8. A flow-free droplet-based device for high throughput polymorphic crystallization.

    PubMed

    Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi

    2015-06-21

    Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing

  9. Velocity and size of droplets in dense region of diesel fuel spray on transient needle opening condition

    NASA Astrophysics Data System (ADS)

    Ueki, Hironobu; Ishida, Masahiro; Sakaguchi, Daisaku

    2005-06-01

    In order to investigate the effect of transient needle opening on early stage of spray behavior, simultaneous measurements of velocity and size of droplet were conducted by a newly developed laser 2-focus velocimeter (L2F). The micro-scale probe of the L2F was consisted of two foci with a distance of 36 µm. The tested nozzle had a single hole with a diameter of 0.2 mm. The measurements of injection pressure, needle lift, and crank angle were synchronized with the spray measurement by the L2F at the position 10 mm downstream from the nozzle exit. It has been clearly shown that the velocity and size of droplet increase with needle valve opening and that the probability density distribution of droplet size can be fitted to the Nukiyama-Tanasawa distribution under the transient needle opening condition.

  10. [Effects of polyacrylamide on settling and separation of oil droplets in polymer flooding produced water].

    PubMed

    Deng, Shubo; Zhou, Fusheng; Chen, Zhongxi; Xia, Fujun; Yu, Gang; Jiang, Zhanpeng

    2002-03-01

    The research found anion polyacrylamide (HPAM) had positive and negative effects on oil-water separation. Polymer made oily wastewater's viscosity increase and reduce rising velocity, and polymer can also increase intensity of water films between oil droplets and lengthen coalescence time of oil droplets. Those were not in favor of settling and separation for oil droplets. The positive effects on separation were that polyacrylamide had flocculating activity and made small droplets contact each other and combine into big droplets. When polymer's molecular weight was 2.72 x 10(6), and concentration was less than 800 mg/L, polymer was in favor of oil droplets settling and separation. The prime reason for oily wastewater of polymer flooding difficult to dispose was that initial median diameters of oil droplets were small. The transverse flow oil separator can intensify oil droplets combination and shorten rising time. The locale experiments showed the separator was suitable for dealing with oily wastewater of polymer flooding.

  11. Rebounding droplet-droplet collisions on superhydrophobic surfaces: from the phenomenon to droplet logic.

    PubMed

    Mertaniemi, Henrikki; Forchheimer, Robert; Ikkala, Olli; Ras, Robin H A

    2012-11-08

    When water droplets impact each other while traveling on a superhydrophobic surface, we demonstrate that they are able to rebound like billiard balls. We present elementary Boolean logic operations and a flip-flop memory based on these rebounding water droplet collisions. Furthermore, bouncing or coalescence can be easily controlled by process parameters. Thus by the controlled coalescence of reactive droplets, here using the quenching of fluorescent metal nanoclusters as a model reaction, we also demonstrate an elementary operation for programmable chemistry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Coalescence preference and droplet size inequality during fluid phase segregation

    NASA Astrophysics Data System (ADS)

    Roy, Sutapa

    2018-02-01

    Using molecular dynamics simulations and scaling arguments, we investigate the coalescence preference dynamics of liquid droplets in a phase-segregating off-critical, single-component fluid. It is observed that the preferential distance of the product drop from its larger parent, during a coalescence event, gets smaller for large parent size inequality. The relative coalescence position exhibits a power-law dependence on the parent size ratio with an exponent q ≃ 3.1 . This value of q is in strong contrast with earlier reports 2.1 and 5.1 in the literature. The dissimilarity is explained by considering the underlying coalescence mechanisms.

  13. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation

    NASA Astrophysics Data System (ADS)

    Farshchian, Bahador; Gatabi, Javad R.; Bernick, Steven M.; Park, Sooyeon; Lee, Gwan-Hyoung; Droopad, Ravindranath; Kim, Namwon

    2017-02-01

    We demonstrate a facile single step laser treatment process to render a polydimethylsiloxane (PDMS) surface superhydrophobic. By synchronizing a pulsed nanosecond laser source with a motorized stage, superhydrophobic grid patterns were written on the surface of PDMS. Hierarchical micro and nanostructures were formed in the irradiated areas while non-irradiated areas were covered by nanostructures due to deposition of ablated particles. Arrays of droplets form spontaneously on the laser-patterned PDMS with superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water due to different wetting properties of the irradiated and non-irradiated areas. The effects of withdrawal speed and pitch size of superhydrophobic grid on the size of formed droplets were investigated experimentally. The droplet size increases initially with increasing the withdrawal speed and then does not change significantly beyond certain points. Moreover, larger droplets are formed by increasing the pitch size of the superhydrophobic grid. The droplet arrays formed on the laser-patterned PDMS with wettability contrast can be used potentially for patterning of particles, chemicals, and bio-molecules and also for cell screening applications.

  14. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.

    PubMed

    Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun

    2016-02-17

    In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.

  15. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds.

    PubMed

    King, Philip H; Jones, Gareth; Morgan, Hywel; de Planque, Maurits R R; Zauner, Klaus-Peter

    2014-02-21

    In droplet microfluidics, aqueous droplets are typically separated by an oil phase to ensure containment of molecules in individual droplets of nano-to-picoliter volume. An interesting variation of this method involves bringing two phospholipid-coated droplets into contact to form a lipid bilayer in-between the droplets. These interdroplet bilayers, created by manual pipetting of microliter droplets, have proved advantageous for the study of membrane transport phenomena, including ion channel electrophysiology. In this study, we adapted the droplet microfluidics methodology to achieve automated formation of interdroplet lipid bilayer arrays. We developed a 'millifluidic' chip for microliter droplet generation and droplet packing, which is cast from a 3D-printed mould. Droplets of 0.7-6.0 μL volume were packed as homogeneous or heterogeneous linear arrays of 2-9 droplets that were stable for at least six hours. The interdroplet bilayers had an area of up to 0.56 mm(2), or an equivalent diameter of up to 850 μm, as determined from capacitance measurements. We observed osmotic water transfer over the bilayers as well as sequential bilayer lysis by the pore-forming toxin melittin. These millifluidic interdroplet bilayer arrays combine the ease of electrical and optical access of manually pipetted microdroplets with the automation and reproducibility of microfluidic technologies. Moreover, the 3D-printing based fabrication strategy enables the rapid implementation of alternative channel geometries, e.g. branched arrays, with a design-to-device time of just 24-48 hours.

  16. An interfacial mechanism for cloud droplet formation on organic aerosols.

    PubMed

    Ruehl, Christopher R; Davies, James F; Wilson, Kevin R

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. Copyright © 2016, American Association for the Advancement of Science.

  17. Fog, plant leaves and deposition of droplets

    NASA Astrophysics Data System (ADS)

    Konrad, W.; Ebner, M.; Traiser, C.; Roth-Nebelsick, A.

    2010-07-01

    For various plants and animals, the accumulation of fog or dew droplets constitutes an essential part of their water supply. Understanding how water droplets deposited by fog or dew events interact with plant or animal surfaces is essential for gaining insight into the functionality of these surfaces. Besides being interesting within the realm of biology, this knowledge is indispensable for technical applications. Frequently, it is advantageous to know (i) the growth rate of a droplet attached by surface tension to a surface which grows due to a given influx of fog particles, (ii) the maximum volume and (iii) the "lifespan" of a droplet before it detaches from the surface or starts to slide down along the plant surface, driven by gravity. Starting from principles of physics, we calculate quantitative expressions addressing questions (i) to (iii) for droplets which are attached to surfaces characterised by a high degree of symmetry, such as horizontally oriented or inclined planes, sections of spheres, cones and rotationally symmetric crevices. Furthermore, we treat the behaviour of droplets attached to a surface of non-constant contact angle. Although real surfaces never meet their geometric idealisations, results based on these often represent suitable and useful approximations to reality. Finally, we apply our results to Stipagrostis sabulicola, a dune grass of the Namib desert which satisfies its water demand solely by capturing fog and dew droplets. Pictures taken with a scanning electron microscope show that the stem of S. sabulicola is longitudinally built up by alternating elevated and countersunk strips. Filling gaps in the experimental observation with theoretical speculation, the following picture emerges: Assuming that the elevated strips exhibit a higher contact angle than the countersunk strips, water droplets being deposited on the elevated strips are drawn towards the latter. The lower contact angle which prevails there increases the droplets

  18. Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection.

    PubMed

    Singha, Debal Kanti; Mahata, Partha

    2017-08-29

    Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.

  19. Quasi 1-D Analysis of a Circular, Compressible, Turbulent Jet Laden with Water Droplets. Appendix C

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Recent experimental studies indicate that presence of small amount of liquid droplets reduces the Overall Sound Pressure Level (OASPL) of a jet. Present study is aimed at numerically investigating the effect of liquid particles on the overall flow quantities of a heated, compressible round jet. The jet is assumed perfectly expanded. A quasi-1D model was developed for this purpose which uses area-averaged quantities that satisfy integral conservation equations. Special attention is given to represent the early development region since it is acoustically important. Approximate velocity and temperature profiles were assumed in this region to evaluate entrainment rate. Experimental correlations were used to obtain spreading rate of shear layer. The base flow thus obtained is then laden with water droplets at the exit of the nozzle. Mass, momentum and energy coupling between the two phases is represented using empirical relations. Droplet size and mass loading are varied to observe their effect on flow variables.

  20. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  1. Theoretical analysis for the optical deformation of emulsion droplets.

    PubMed

    Tapp, David; Taylor, Jonathan M; Lubansky, Alex S; Bain, Colin D; Chakrabarti, Buddhapriya

    2014-02-24

    We propose a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and assuming isotropic surface energy at the oil-water interface, we numerically solve the resulting shape equations to elucidate the three-dimensional droplet geometry. We obtain a plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry. Experimentally, two-dimensional droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. Our model elucidates and quantifies this difference for the first time. We also provide a dimensionless number that indicates the shape transformation (ellipsoidal to dumbbell) at a value ≈ 1.0, obtained by balancing interfacial tension and laser forces, substantiated using a data collapse.

  2. Development of method of optimized flavor production systems design based on nano-emulsification Kawista (Feronia limonia) Fruit extraction

    NASA Astrophysics Data System (ADS)

    Suyanto, A.; Noor, E.; Fahma, F.; Rusli, M. S.; Djatna, T.

    2018-01-01

    ‘Kawista’ (Feronia limonia) as a tropical fruit has unique flavor that can be applied as a flavor for food products. Flavor as volatile components are unstable by environment factors such as temperature and storage. Flavor nano emulsification form to improve the stability towards environment and increase its use in food products. Research carried out is system development of the nano emulsification Kawista extract flavor with sonication method. The best treatments are selected by Response Surface Methodology (RSM) for independent variable are amplitude (70-100%), time (90-150s) and temperature (5-45°C) controlled by the software of the device. The Flavor Extraction by maceration technique extended highest yield and flavor components. Nano-emulsions made with composition 1% (w/w) flavor extract, 2% (w/w) surfactant (tween 80), 0.25% Gum, and 96.75% (w/w) deionized water. The probe of sonication successfully for preparing stable O/W nano emulsions at amplitude, time and temperature 81.01%, 150s, 45°C, respectively. Characteristic of nano-emulsions i.e energy input (15.489J), viscosity (2.076 mPa.s), droplet size (13.446nm), and Polydispersity index (0.469).

  3. Fiber-Supported Droplet Combustion. Experiment 32

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Haggard, John B., Jr.; Nayagam, Vedha; Dryer, Frederick L.; Williams, Forman A.; Shaw, Ben D.

    1998-01-01

    Individual droplets with diameters ranging from about 2 mm to 5 mm were burned under microgravity conditions in air at 1 bar with an ambient temperature of 300 K. Each droplet was tethered by a silicon carbide fiber of 80 mm or 150 mm diameter to keep it in view of video recording, and, in some tests, a forced air flow was applied in a direction parallel to the fiber axis. Methanol, two methanol-water mixtures, two methanol-dodecanol mixtures, and two heptane-hexadecane mixtures were the fuels. Droplet diameters were measured as functions of time and compared with existing theoretical predictions. The prediction that methanol droplets extinguish at diameters that increase with increasing initial droplet diameter is verified by these experiments. In addition, the quasi-steady burning rate constant of the heptane-hexadecane mixtures appears to decrease with increasing droplet diameter; obscuration consistent with very heavy sooting, but without the formation of soot shells, is observed for the largest of these droplets. Forced convective flow around methanol droplets was found to increase the burning rate and to produce a ratio of downstream-to-upstream flame radius that remained constant as the droplet size decreased, a trend in agreement with earlier results obtained at higher convective velocities for smaller droplets having larger flame standoff ratios. There are a number of implications of the experimental results regarding droplet-combustion theory.

  4. Merging magnetic droplets by a magnetic field pulse

    NASA Astrophysics Data System (ADS)

    Wang, Chengjie; Xiao, Dun; Liu, Yaowen

    2018-05-01

    Reliable manipulation of magnetic droplets is of immense importance for their applications in spin torque oscillators. Using micromagnetic simulations, we find that the antiphase precession state, which originates in the dynamic dipolar interaction effect, is a favorable stable state for two magnetic droplets nucleated at two identical nano-contacts. A magnetic field pulse can be used to destroy their stability and merge them into a big droplet. The merging process strongly depends on the pulse width as well as the pulse strength.

  5. Preconcentration and speciation of ultra-trace Se (IV) and Se (VI) in environmental water samples with nano-sized TiO2 colloid and determination by HG-AFS.

    PubMed

    Fu, Jiaqi; Zhang, Xu; Qian, Shahua; Zhang, Lin

    2012-05-30

    A united method for speciation analysis of Se (IV) and Se (VI) in environmental water samples was developed using nano-sized TiO(2) colloid as adsorbent and hydride generation atomic fluorescence spectrometry (HG-AFS) as determination means. When the pH values of bulk solution were between 6.0 and 7.0, successful adsorption onto 1 mL nano-sized TiO(2) colloid (0.2%) was achieved for more than 97.0% of Se (IV) while Se (VI) barely got adsorbed. Therefore, the method made it possible to preconcentrate and determine Se (IV) and Se (VI) separately. The precipitated TiO(2) with concentrated selenium was directly converted to colloid without desorption. Selenium in the resulting colloid was then determined by HG-AFS. The detection limits (3σ) and relative standard deviations (R.S.D) of this method were 24 ng/L and 42 ng/L, 7.8% (n=6) and 7.0% (n=6) for Se (IV) and Se (VI), respectively. This simple, sensitive, and united method was successfully applied to the separation and speciation of ultra-trace Se (IV) and Se (VI) in environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Can a droplet break up under flow without elongating? Fragmentation of smectic monodisperse droplets

    NASA Astrophysics Data System (ADS)

    Courbin, L.; Engl, W.; Panizza, P.

    2004-06-01

    We study the fragmentation under shear flow of smectic monodisperse droplets at high volume fraction. Using small angle light scattering and optical microscopy, we reveal the existence of a break-up mechanism for which the droplets burst into daughter droplets of the same size. Surprisingly, this fragmentation process, which is strain controlled and occurs homogeneously in the cell, does not require any transient elongation of the droplets. Systematic experiments as a function of the initial droplet size and the applied shear rate show that the rupture is triggered by an instability of the inner droplet structure.

  7. Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.

    PubMed

    Hirama, Hirotada; Kambe, Taisuke; Aketagawa, Kyouhei; Ota, Taku; Moriguchi, Hiroyuki; Torii, Toru

    2013-01-15

    We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (<100 μm in diameter) due to the diffusion of water molecules from the sodium alginate droplets to the agarose slab gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.

  8. CFD Lagrangian Modeling of Water Droplet Transport for ISS Hygiene Activity Application

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2013-01-01

    The goal of this study was to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC) installed in Node 3. Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow enable identifying the paths of water transport. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 5-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain.

  9. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    PubMed

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Self-Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets.

    PubMed

    Steinhaus, Andrea; Pelras, Théophile; Chakroun, Ramzi; Gröschel, André H; Müllner, Markus

    2018-05-02

    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilized oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Generation of monodisperse droplets by spontaneous condensation of flow in nozzles

    NASA Technical Reports Server (NTRS)

    Lai, Der-Shaiun; Kadambi, J. R.

    1993-01-01

    Submicron size monodisperse particles are of interest in many industrial and scientific applications. These include the manufacture of ceramic parts using fine ceramic particles, the production of thin films by deposition of ionized clusters, monodisperse seed particles for laser anemometry, and the study of size dependence of cluster chemical and physical properties. An inexpensive and relatively easy way to generate such particles is by utilizing the phenomenon of spontaneous condensation. The phenomenon occurs when the vapor or a mixture of a vapor and a noncondensing gas is expanded at a high expansion rate. The saturation line is crossed with the supercooled vapor behaving like a gas, until all of a sudden at the so called Wilson point, condensation occurs, resulting in a large number of relatively monodisperse droplets. The droplet size is a function of the expansion rate, inlet conditions, mass fraction of vapor, gas properties, etc. Spontaneous condensation of steam and water vapor and air mixture in a one dimensional nozzle was modeled and the resulting equations solved numerically. The droplet size distribution at the exit of various one dimensional nozzles and the flow characteristics such as pressure ratio, mean droplet radius, vapor and droplet temperatures, nucleation flux, supercooling, wetness, etc., along the axial distance were obtained. The numerical results compared very well with the available experimental data. The effect of inlet conditions, nozzle expansion rates, and vapor mass fractions on droplet mean radius, droplet size distribution, and pressure ratio were examined.

  12. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    NASA Astrophysics Data System (ADS)

    Kondo, Tomoki; Ando, Keita

    2016-03-01

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s is inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh-Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.

  13. Responsiveness of emulsions stabilized by lactoferrin nano-particles to simulated intestinal conditions.

    PubMed

    Meshulam, Dafna; Lesmes, Uri

    2014-01-01

    There is an upsurge of interest in the use of nano-particles to fabricate emulsions and modulate their functionality, with particular emphasis on modulating emulsion digestive fate. Food grade nano-particles formed through controlled processing and electrostatic biopolymer interactions are yet to be systematically studied for their ability to stabilize emulsions and modulate emulsion digestibility. This study focused on the responsiveness of emulsions stabilized by lactoferrin (LF) nano-particles (NPs) and dietary fibers to key digestive parameters. Compared to native LF, LF-NPs comprised emulsion exhibited elevated creaming rates as evident from accelerated stability tests performed by analytical centrifugation. The electrostatic deposition of alginate or carrageenan onto the LF-NPs significantly improved the stability of the corresponding emulsions. Further, the use of various nano-particles showed to have both beneficial and deleterious effects on emulsion responsiveness to pH (2.0 < pH < 10.0), CaCl2 (0-40 mM) and bile (0-25 mg mL(-1)). Simulated pH-stat lipolysis experiments show that the use of LF or LF-NPs had no marked effect on lipolysis. Intriguingly, the use of LF-NPs and alginate reduced emulsion lipolysis by 14% while the use of LF-NPs and carrageenan increased lipolysis by 10%. Microscopy images as well as droplet characterization in terms of size and charge indicate that the altered emulsion responsiveness may be due to physical differences in emulsion properties (e.g. droplet size) and overall organization during digestion (e.g. aggregation vs. coalescence). Overall, this study's insights could prospectively be used to harness protein nano-particles to tweak emulsion behavior during digestion.

  14. Self-organization of quantum-dot pairs by high-temperature droplet epitaxy

    PubMed Central

    Holmes, Kyland; Mazur, Yuriy I; Ramsey, Kimberly A; Salamo, Gregory J

    2006-01-01

    The spontaneously formation of epitaxial GaAs quantum-dot pairs was demonstrated on an AlGaAs surface using Ga droplets as a Ga nano-source. The dot pair formation was attributed to the anisotropy of surface diffusion during high-temperature droplet epitaxy.

  15. Seasonal and photoperiodic effects on lipid droplet size and lipid peroxidation in the brown adipose tissue of bank voles (Myodes glareolus).

    PubMed

    Bonda-Ostaszewska, Elżbieta; Włostowski, Tadeusz; Krasowska, Alicja; Kozłowski, Paweł

    2012-10-01

    Seasonal changes in lipid droplet size and lipid peroxidation in the brown adipose tissue (BAT) of wild bank voles were examined. In addition, a role of photoperiod in these changes was studied; bank voles were held from the birth under long photoperiod (LP) for 12 weeks, and then half of them was transferred to short photoperiod (SP) for 6 weeks and another one remained under LP. In the wild bank voles the absolute BAT weight was seasonally constant, while the significant differences in the lipid droplet size were observed. The smallest lipid droplets (mean, 11 μm(2)) were seen in winter; they increased by 30 % in spring and reached the highest size (24 μm(2)) in summer. Lipid peroxidation in the BAT did not differ significantly between the seasons, although high intraseason variation of this process was noted. The laboratory experiment revealed that the size of lipid droplets was determined by photoperiod; SP induced 13-fold decrease, and continuous exposure to LP brought about a further 2.5-fold increase in the size of lipid droplets. Conversely, a significant decrease in lipid peroxidation was seen in LP bank voles in comparison with the SP animals. The data indicate that short photoperiod is responsible for the small size of lipid droplets in the BAT of bank voles during winter, which may be a necessary requirement for high thermogenic capacity of the tissue. Photoperiod appears also to affect lipid peroxidation in the BAT of these animals.

  16. Synthesis and characterization of nano-sized CaCO3 in purified diet

    NASA Astrophysics Data System (ADS)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  17. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  18. High-Energy Laser Interaction with Gases, Droplets, and Bulk Liquids.

    NASA Astrophysics Data System (ADS)

    Jarzembski, Maurice Anthony

    Breakdown threshold intensities (I_ {rm TH}) were measured as functions of wavelengths and pressure for air, He, Ar, and Xe using a Nd:YAG pulsed laser. Multiphoton absorption dominates in the UV and cascade collision ionization dominates in the IR; however, both can be affected by other electron gain and loss processes. Presence of droplets lowers breakdown of gases due to field enhancements. Breakdown is initiated either in the droplet material or in the gas. At lambda = 0.532mum for a 50 μm dia. water droplet in He, Ar, and air for p < 800 Torr, breakdown occurs inside the droplet and is independent of gas pressure. For droplet -in-Xe, at p < 140 Torr breakdown occurs inside the droplet and is independent of gas pressure. For droplet-in-Xe, at p < 140 Torr breakdown occurs inside the droplet but at p > 140 Torr, breakdown occurs outside the droplet and is dependent on gas pressure. Pressure dependence of breakdown was observed for 120mum dia. water droplets in Ar at p > 400 Torr. The required intensity for breakdown of droplet depends on I_{ rm TH} of bulk liquid and the effective field enhancement created by the droplet. The I _{rm TH} of droplet-in-air provides an upper limit to the propagation of a high energy laser beam in the atmosphere containing particles. By geometrical optics approach, a significant field enhancement located at the critical ring region, encircling the axis of the sphere in the forward direction at angle theta_{c}, was discovered where nonlinear processes can occur. This was confirmed experimentally and by Mie theory. Field enhancements calculated at the critical ring for water droplets of different sizes agree well with measurements. For a droplet of given size and real refractive index, the effective field enhancement and the volume over which it occurs are two important factors governing the occurrence of breakdown in droplets for both off resonance and on resonance conditions. Measurements of wavelength dependence of breakdown

  19. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid.

    PubMed

    Jaworska, Małgorzata; Sikora, Elżbieta; Ogonowski, Jan; Konieczna, Monika

    2015-01-01

    Nano- and microemulsions containing as the oil phase caprylic/capric propylene glycol diesters (Crodamol PC) were investigated as potential vehicle for controlled release of geranic acid. The influence of emulsifiers and co-surfactants on stability of the emulsions was investigated. Different kind of polysorbates (ethoxylated esters of sorbitan and fatty acids) were applied as the emulsifiers. The short-chain alcohols (ethanol, 1-propanol, 1-butanol) were used as co-surfactants. The emulsions were prepared at ambient temperature (25°C), by the phase inversion composition method (PIC). The stable O/W high dispersed emulsion systems based on Crodamol PC, of mean droplets size less than 200 nm, were prepared. Microemulsions stabilized by the mixture of Polisorbat 80 and 1-butanol were characterized by the largest degree of dispersion (137 nm) and the lowest PDI value (0.094), at surfactant/co-surfactant: oil weight ratio 90:10. The stable nano-emulsion (mean droplet size of 33 nm) was obtained for surfactant: oil (S:O) weight ratio 90:10, without co-surfactant addition. This nano-emulsion was chosen to release studies. The obtained results showed that the prepared stable nano-emulsion can be used as a carrier for controlled release of geranic acid. The active substance release from the nano-emulsion and the oil solution, after 24 hours was 22%.

  20. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Chakraborty, Prodyut R.; Hiremath, Kirankumar R.; Sharma, Manvendra

    2017-02-01

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  1. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.

    PubMed

    Chavan, Shreyas; Park, Deokgeun; Singla, Nitish; Sokalski, Peter; Boyina, Kalyan; Miljkovic, Nenad

    2018-05-21

    Frost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets. The relative significance of these two mechanisms is still not understood. Here, we study the significance of the latent heat released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by studying the dynamics of individual water droplet freezing on aluminum-, copper-, and glass-based hydrophobic and superhydrophobic surfaces. The latent heat flux released into the substrate was calculated from the measured droplet sizes and the respective freezing times ( t f ), defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To probe the effect of latent heat release, we performed three-dimensional transient finite element simulations showing that the transfer of latent heat to neighboring droplets is insignificant and accounts for a negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet evaporation during condensation frosting is governed solely by vapor pressure gradients. This study not only provides key insights into the individual droplet freezing process but also

  2. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae.

    PubMed

    Bergami, Elisa; Bocci, Elena; Vannuccini, Maria Luisa; Monopoli, Marco; Salvati, Anna; Dawson, Kenneth A; Corsi, Ilaria

    2016-01-01

    Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on the impact of nano-sized plastics on marine organisms. Therefore, the present study aims to evaluate the effects of 40nm anionic carboxylated (PS-COOH) and 50nm cationic amino (PS-NH2) polystyrene nanoparticles (PS NPs) on brine shrimp Artemia franciscana larvae. No signs of mortality were observed at 48h of exposure for both PS NPs at naplius stage but several sub-lethal effects were evident. PS-COOH (5-100μg/ml) resulted massively sequestered inside the gut lumen of larvae (48h) probably limiting food intake. Some of them were lately excreted as fecal pellets but not a full release was observed. Likewise, PS-NH2 (5-100µg/ml) accumulated in larvae (48h) but also adsorbed at the surface of sensorial antennules and appendages probably hampering larvae motility. In addition, larvae exposed to PS-NH2 undergo multiple molting events during 48h of exposure compared to controls. The activation of a defense mechanism based on a physiological process able to release toxic cationic NPs (PS-NH2) from the body can be hypothesized. The general observed accumulation of PS NPs within the gut during the 48h of exposure indicates a continuous bioavailability of nano-sized PS for planktonic species as well as a potential transfer along the trophic web. Therefore, nano-sized PS might be able to impair food uptake (feeding), behavior (motility) and physiology (multiple molting) of brine shrimp larvae with consequences not only at organism and population level but on the overall ecosystem based on the key role of zooplankton on marine food webs. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lau, Gabriel V.; Hunt, Patricia A.; Müller, Erich A.; Jackson, George; Ford, Ian J.

    2015-12-01

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  4. A better understanding of POLDER's cloud droplet size retrieval: impact of cloud horizontal inhomogeneity and directional sampling

    NASA Astrophysics Data System (ADS)

    Shang, H.; Chen, L.; Bréon, F.-M.; Letu, H.; Li, S.; Wang, Z.; Su, L.

    2015-07-01

    The principles of the Polarization and Directionality of the Earth's Reflectance (POLDER) cloud droplet size retrieval requires that clouds are horizontally homogeneous. Nevertheless, the retrieval is applied by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using the POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval, and then analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-scale variability in droplet effective radius (CDR) can mislead both the CDR and effective variance (EV) retrievals. Nevertheless, the sub-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval is accurate using limited observations and is largely independent of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, the measurements in the primary rainbow region (137-145°) are used to ensure accurate large droplet (> 15 μm) retrievals and reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data for June 2008, the new CDR results are compared with the operational CDRs. The comparison show that the operational CDRs tend to be underestimated for large droplets. The reason is that the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Lastly, a sub-scale retrieval case is analyzed, illustrating that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size parameters from POLDER measurements.

  5. Studies on remote sensing method of particle size and water density distribution in mists and clouds using laser radar techniques

    NASA Technical Reports Server (NTRS)

    Shimizu, H.; Kobayasi, T.; Inaba, H.

    1979-01-01

    A method of remote measurement of the particle size and density distribution of water droplets was developed. In this method, the size of droplets is measured from the Mie scattering parameter which is defined as the total-to-backscattering ratio of the laser beam. The water density distribution is obtained by a combination of the Mie scattering parameter and the extinction coefficient of the laser beam. This method was examined experimentally for the mist generated by an ultrasonic mist generator and applied to clouds containing rain and snow. Compared with the conventional sampling method, the present method has advantages of remote measurement capability and improvement in accuracy.

  6. Freezing Behavior of a Supercooled Water Droplet Impacting on Surface Using Dual-Luminescent Imaging Technique

    NASA Astrophysics Data System (ADS)

    Tanaka, Mio; Morita, Katsuaki; Yamamoto, Makoto; Sakaue, Hirotaka

    2015-11-01

    A collision of a supercooled-water droplet on an object creates ice accretion on its surface. These icing problems can be seen in any cold environments and may lead to severe damages on aircrafts, ships, power cables, trees, road signs, and architectures. To solve these problems, various studies on ice-prevention and ice-prediction techniques have been conducted. It is very important to know the detail freezing mechanism of supercooled water droplets to propose or improve those techniques. The icing mechanism of a single supercooled-water droplet impacting on object surface would give us great insights for constructing those techniques. In the present study, we use a dual-luminescent imaging technique to measure the time-resolved temperatures of a supercooled water droplet impacting with different speed. The technique we applied consists of high-speed color camera and two luminescent probes. We will report the current status of this experiment in the presentation.

  7. Experimental study on the droplet formation around pins of different geometry for the design of a compact falling-droplet absorber

    NASA Astrophysics Data System (ADS)

    Cola, Fabrizio; Romagnoli, Alessandro; Hey, Jonathan

    2018-05-01

    Absorber downsizing for the development of compact absorption chillers is a known challenge of this type of refrigerator. Past studies have revealed how a droplet flow regime can increase the interface area and enhance absorption rates, especially during the droplet formation. This study proposes a space-efficient design for an adiabatic absorber based on a bank of solid pins coupled with a droplet flow regime. Manufacturing through 3D printing technique is used to study the effect of different fin shapes during droplet formation. Droplet behavior is firstly studied analytically through a variational approach. Experiments on pure water are then carried out to validate the model and produce design guidelines for a H2O-LiBr absorber. Results show that the analytical model is more accurate in the regions close to the droplet bottom. The rhomboidal geometry with 120° returned the smallest droplet volume without allowing coalescence of more droplets, ensuring the maintenance of droplet flow and a high surface area for mass transfer. Disturbances in the droplet profiles were observed, caused by the pin-droplet interaction. A map has been then created to allow a quick sizing of the absorber and find its main geometrical and operational features.

  8. Characterization of nebulized liposomal amikacin (Arikace) as a function of droplet size.

    PubMed

    Li, Zhili; Zhang, Yanling; Wurtz, William; Lee, Jin K; Malinin, Vladimir S; Durwas-Krishnan, Sripriya; Meers, Paul; Perkins, Walter R

    2008-09-01

    The stress of nebulization has been shown to alter the properties of liposomal drugs. What has not been demonstrated is whether nebulized liposomes differ as a function of droplet size. Because droplet size influences lung deposition, liposomes with different properties could be deposited in different areas of the lung (e.g., central vs. peripheral). In this report, a liposomal amikacin formulation (Arikace, a registered trademark of Transave, Inc., Monmouth Junction, NJ) that is being developed as an inhaled treatment for gram negative infections was aerosolized with an eFlow (registered trademark of PARI, GmbH, Munich, Germany) nebulizer, reclaimed from the various stages of an Andersen cascade impactor (ACI) and analyzed for lipid-to-drug (L/D) (w/w) ratio, amikacin retention, and liposome size. For the nebulized solution, 99.7% of the total deposited drug was found on ACI stages 0 through 5, which have cutoff diameters of 9, 5.8, 4.7, 3.3, 2.1, and 1.1 microm, respectively. Properties were found to differ for drug reclaimed on stage 0 compared stages 1-5, which were not different from one another. For drug found on stages 1-5 (97% of total drug), the averages (n = 3) for L/D, percent encapsulated amikacin, and liposome mean diameter ranged from 0.59 to 0.68 (w/w), 71% to 75%, 248 to 282 nm, respectively. Drug found on stage 0 (2.8% of total drug) had an average L/D ratio of 0.51 and average liposome mean diameter of 375 nm. Examination of another batch of liposomal amikacin revealed no statistically significant differences between drug reclaimed on stages 0-5. Although a droplet size dependence was noted for one batch of Arikace aerosolized with the eFlow, the effect was considered to be inconsequential because the fraction in doubt represented nonrespirable particles >9 microm and accounted for <3% of the total deposited dose. The methodology applied here appears useful in evaluating aerosolized liposome systems. However, our results should not be assumed to

  9. Reduction of Escherichia Coli using ceramic disk filter decorated by nano-TiO2: A low-cost solution for household water purification.

    PubMed

    He, Yuan; Huang, Guohe; An, Chunjiang; Huang, Jing; Zhang, Peng; Chen, Xiujuan; Xin, Xiaying

    2018-03-01

    Lack of access to safe water is a challenge in many developing countries, especially in rural areas. It is urgent to develop cost-effective water purification technologies to guarantee drinking water safety in these areas. The present study investigated the reduction of Escherichia coli (E. coli) using ceramic disk filters (CDFs) decorated by nano-TiO 2. The production of CDFs coated with nano-TiO 2 in terms of rice-husk ratio, rice-husk particle size, heating hold time and nano-TiO 2 mass fraction was optimized. The results show that the optimum conditions for CDFs with nano-TiO 2 coating included rice-husk ratio of 29.03%, rice-husk particle size of 0.28mm, heating hold time of 1.41h and nano-TiO 2 mass fraction of 2.21%. Additionally, the morphological and crystal phase characteristics of CDFs were revealed after the decoration by nano-TiO 2 . The effects of temperature, influent E. coli concentration, lamp power and their interactions were explored via factorial analysis. Influent E. coli concentration and lamp power had significant effects on E. coli removal efficiency. This study provided the solid theoretical support for understanding the production and bacteria inactivation relevant to CDFs impregnated with nano-TiO 2 . The results have important implications for finding a safe and cost-effective approach to solve drinking water problems in developing countries. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code.

    PubMed

    Tekin, H O; Singh, V P; Manici, T

    2017-03-01

    In the present work the effect of tungsten oxide (WO 3 ) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO 3 and micro-WO 3 into concrete sample. The mass attenuation coefficients of pure concrete and WO 3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO 3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO 3 significanlty improve shielding properties than micro-WO 3 . It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Nano-sized Ni-doped carbon aerogel for supercapacitor.

    PubMed

    Lee, Yoon Jae; Jung, Ji Chul; Park, Sunyoung; Seo, Jeong Gil; Baeck, Sung-Hyeon; Yoon, Jung Rag; Yi, Jongheop; Song, In Kyu

    2011-07-01

    Carbon aerogel was prepared by polycondensation of resorcinol with formaldehyde using sodium carbonate as a catalyst in ambient conditions. Nano-sized Ni-doped carbon aerogel was then prepared by a precipitation method in an ethanol solvent. In order to elucidate the effect of nickel content on electrochemical properties, Ni-doped carbon aerogels (21, 35, 60, and 82 wt%) were prepared and their performance for supercapacitor electrode was investigated. Electrochemical properties of Ni-doped carbon aerogel electrodes were measured by cyclic voltammetry at a scan rate of 10 mV/sec and charge/discharge test at constant current of 1 A/g in 6 M KOH electrolyte. Among the samples prepared, 35 wt% Ni-doped carbon aerogel (Ni/CA-35) showed the highest capacitance (110 F/g) and excellent charge/discharge behavior. The enhanced capacitance of Ni-doped carbon aerogel was attributed to the faradaic redox reactions of nano-sized nickel oxide. Moreover, Ni-doped carbon aerogel exhibited quite stable cyclability, indicating long-term electrochemical stability.

  12. Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro

    NASA Astrophysics Data System (ADS)

    Ishijima, A.; Minamihata, K.; Yamaguchi, S.; Yamahira, S.; Ichikawa, R.; Kobayashi, E.; Iijima, M.; Shibasaki, Y.; Azuma, T.; Nagamune, T.; Sakuma, I.

    2017-03-01

    While chemotherapy is a major mode of cancer therapeutics, its efficacy is limited by systemic toxicities and drug resistance. Recent advances in nanomedicine provide the opportunity to reduce systemic toxicities. However, drug resistance remains a major challenge in cancer treatment research. Here we developed a nanomedicine composed of a phase-change nano-droplet (PCND) and an anti-cancer antibody (9E5), proposing the concept of ultrasound cancer therapy with intracellular vaporisation. PCND is a liquid perfluorocarbon nanoparticle with a liquid-gas phase that is transformable upon exposure to ultrasound. 9E5 is a monoclonal antibody targeting epiregulin (EREG). We found that 9E5-conjugated PCNDs are selectively internalised into targeted cancer cells and kill the cells dynamically by ultrasound-induced intracellular vaporisation. In vitro experiments show that 9E5-conjugated PCND targets 97.8% of high-EREG-expressing cancer cells and kills 57% of those targeted upon exposure to ultrasound. Furthermore, direct observation of the intracellular vaporisation process revealed the significant morphological alterations of cells and the release of intracellular contents.

  13. Size fractionation and size characterization of nanoemulsions of lipid droplets and large unilamellar lipid vesicles by asymmetric-flow field-flow fractionation/multi-angle light scattering and dynamic light scattering.

    PubMed

    Vezočnik, Valerija; Rebolj, Katja; Sitar, Simona; Ota, Katja; Tušek-Žnidarič, Magda; Štrus, Jasna; Sepčić, Kristina; Pahovnik, David; Maček, Peter; Žagar, Ema

    2015-10-30

    Asymmetric-flow field-flow fractionation technique coupled to a multi-angle light-scattering detector (AF4-MALS) was used together with dynamic light-scattering (DLS) in batch mode and transmission electron microscopy (TEM) to study the size characteristics of the trioleoylglycerol lipid droplets covered by a monolayer of sphingomyelin and cholesterol, in water phase. These lipid droplet nanoemulsions (LD) were formed by ultrasonication. In parallel, the size characteristics of large unilamellar lipid vesicles (LUV) prepared by extrusion and composed of sphingomyelin and cholesterol were determined. LD and LUV were prepared at two different molar ratios (1/1, 4/1) of sphingomyelin and cholesterol. In AF4-MALS, various cross-flow conditions and mobile phase compositions were tested to optimize the separation of LD or LUV particles. The particle radii, R, as well as the root-mean-square radii, Rrms, of LD and LUV were determined by AF4-MALS, whereas the hydrodynamic radii, Rh, were obtained by DLS. TEM visualization revealed round shape particles of LD and LUV. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Tomoki; Ando, Keita, E-mail: kando@mech.keio.ac.jp

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s ismore » inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh–Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.« less

  15. Slow relaxation mode in concentrated oil-in-water microemulsions consisting of repulsive droplets

    NASA Astrophysics Data System (ADS)

    Hattori, Y.; Ushiki, H.; Courbin, L.; Panizza, P.

    2007-02-01

    The present contribution reports on the observation of two diffusive relaxation modes in a concentrated microemulsion made of repulsive droplets. These two modes can be interpreted in the frame of Weissman’s and Pusey’s theoretical pioneering works. The fast mode is associated to the collective diffusion of droplets whereas the slow one corresponds to the relaxation of droplet concentration fluctuations associated with composition and/or size. We show that (i) repulsive interactions considerably slow down the latter and (ii) a generalized Stokes Einstein relationship between its coefficient of diffusion and the Newtonian viscosity of the solutions, similar to the Walden’s rule for electrolytes, holds for concentrated microemulsion systems made of repulsive droplets.

  16. Replication of surface nano-structure of the wing of dragonfly ( Pantala Flavescens) using nano-molding and UV nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Cho, Joong-Yeon; Kim, Gyutae; Kim, Sungwook; Lee, Heon

    2013-07-01

    The hydrophobicity of a dragonfly's wing originates from the naturally occurring nano-structure on its surface. The nano-structure on a dragonfly's wing consists of an array of nano-sized pillars, 100 nm in diameter. We re-create this hydrophobicity on various substrates, such as Si, glass, curved acrylic polymer, and flexible PET film, by replicating the nano-structure using UV curable nano-imprint lithography (NIL) and PDMS molding. The success of the nano-structure duplication was confirmed using scanning electron microscopy (SEM). The hydrophobicity was measured by water-based contact angle measurements. The water contact angle of the replica made of UV cured polymer was 135° ± 2°, which was slightly lower than that of the original dragonfly's wing (145° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (80°). The hydrophobicity was further improved by applying a coating of Teflon-like material.

  17. Coalescence of repelling colloidal droplets: a route to monodisperse populations.

    PubMed

    Roger, Kevin; Botet, Robert; Cabane, Bernard

    2013-05-14

    Populations of droplets or particles dispersed in a liquid may evolve through Brownian collisions, aggregation, and coalescence. We have found a set of conditions under which these populations evolve spontaneously toward a narrow size distribution. The experimental system consists of poly(methyl methacrylate) (PMMA) nanodroplets dispersed in a solvent (acetone) + nonsolvent (water) mixture. These droplets carry electrical charges, located on the ionic end groups of the macromolecules. We used time-resolved small angle X-ray scattering to determine their size distribution. We find that the droplets grow through coalescence events: the average radius (R) increases logarithmically with elapsed time while the relative width σR/(R) of the distribution decreases as the inverse square root of (R). We interpret this evolution as resulting from coalescence events that are hindered by ionic repulsions between droplets. We generalize this evolution through a simulation of the Smoluchowski kinetic equation, with a kernel that takes into account the interactions between droplets. In the case of vanishing or attractive interactions, all droplet encounters lead to coalescence. The corresponding kernel leads to the well-known "self-preserving" particle distribution of the coalescence process, where σR/(R) increases to a plateau value. However, for droplets that interact through long-range ionic repulsions, "large + small" droplet encounters are more successful at coalescence than "large + large" encounters. We show that the corresponding kernel leads to a particular scaling of the droplet-size distribution-known as the "second-scaling law" in the theory of critical phenomena, where σR/(R) decreases as 1/√(R) and becomes independent of the initial distribution. We argue that this scaling explains the narrow size distributions of colloidal dispersions that have been synthesized through aggregation processes.

  18. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    NASA Astrophysics Data System (ADS)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  19. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  20. Electrohydrodynamic coalescence of droplets using an embedded potential flow model

    NASA Astrophysics Data System (ADS)

    Garzon, M.; Gray, L. J.; Sethian, J. A.

    2018-03-01

    The coalescence, and subsequent satellite formation, of two inviscid droplets is studied numerically. The initial drops are taken to be of equal and different sizes, and simulations have been carried out with and without the presence of an electrical field. The main computational challenge is the tracking of a free surface that changes topology. Coupling level set and boundary integral methods with an embedded potential flow model, we seamlessly compute through these singular events. As a consequence, the various coalescence modes that appear depending upon the relative ratio of the parent droplets can be studied. Computations of first stage pinch-off, second stage pinch-off, and complete engulfment are analyzed and compared to recent numerical studies and laboratory experiments. Specifically, we study the evolution of bridge radii and the related scaling laws, the minimum drop radii evolution from coalescence to satellite pinch-off, satellite sizes, and the upward stretching of the near cylindrical protrusion at the droplet top. Clear evidence of partial coalescence self-similarity is presented for parent droplet ratios between 1.66 and 4. This has been possible due to the fact that computational initial conditions only depend upon the mother droplet size, in contrast with laboratory experiments where the difficulty in establishing the same initial physical configuration is well known. The presence of electric forces changes the coalescence patterns, and it is possible to control the satellite droplet size by tuning the electrical field intensity. All of the numerical results are in very good agreement with recent laboratory experiments for water droplet coalescence.

  1. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    DOE PAGES

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; ...

    2016-05-20

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted formore » in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. Furthermore, we bring these observations into a coherent framework and discuss their significance in the atmosphere.« less

  2. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    PubMed Central

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. PMID:27197574

  3. The formation process and responsive impacts of single oil droplet in submerged process.

    PubMed

    Li, Haoshuai; Meng, Long; Shen, Tiantian; Zhang, Jianrui; Bao, Mutai; Sun, Peiyan

    2017-11-15

    Simulated column was applied to research forming progress of single oil droplet in submerged process, floating progress, and study effects of environment factors and dispersants on the concentration of oil hydrocarbon in water as well as changing rules of oil droplet sizes. As expected, particular formation mechanism of single oil droplet was presented. When necking down length L is 0.5 time of oil droplet diameter (d) after expansion phase, necking down becomes long and thin; when L=2d, necking down begins to break. In floating progress, the shape changes oval and its motion trail becomes an auger-type. Fluctuation occurs at horizontal direction. Dispersants decrease oil droplet size by its dispersion effect, and cut down effect of Van Der Waals force among oil droplets. More broadly, these findings provide rare empirical evidence expounding formation mechanism of single oil droplet to increasing ability of oil spill response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    PubMed

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  5. Nano-architecture based photoelectrochemical water oxidation efficiency enhancement by CdS photoanodes

    NASA Astrophysics Data System (ADS)

    Pareek, Alka; Kim, Hyun Gyu; Paik, Pradip; Joardar, Joydip; Borse, Pramod H.

    2017-02-01

    In the present work, 2D nanostructuring has been utilized to impart an efficiency improvement to the hexagonal phase CdS films for the photoelectrochemical (PEC) cells those were deposited by spray pyrolysis technique. By controlling the aerosol droplet- size, population and impingement time during the spray pyrolysis deposition, various nano-features viz. randomly aligned nanorods, nanotubes and nanowires of CdS has been demonstrated for the first time. A growth mechanism has been proposed to predict the temporal evolution of the nanostructures. The prominent nanoscale structures show improved optical properties in the visible range of solar spectrum. The structural studies validate the morphological differences of nanostructures in terms of the texture coefficient analysis as well as 2D micro x-ray diffraction imaging. Electrochemical characterization is carried out to understand the effect of nanostructuring on the PEC performance of the CdS photoanodes in the sulphide (0.1 M Na2S  +  0.02 M Na2SO3) electrolyte at applied bias of 0.2 V (versus SCE). The evolution of morphology from randomly aligned rods to nanowire is responsible for improved photocurrent (3.5 times). CdS film morphology can be tuned to nanotubes, nano- rose buds and nanorod bunches even by doping Zn2+ ions in CdS lattice. Nano-structuring of doped CdS has shown enhanced performance of the photoanodes. The nanotubes structures yielded highest photocurrent density of 1.6 mA cm-2. Whereas modifying the 2D-nanostructured CdS film by simple MoO3 spray coating yields the photocurrent enhancement to 2.1 mA cm-2.

  6. Droplet microfluidics with a nanoemulsion continuous phase.

    PubMed

    Gu, Tonghan; Yeap, Eunice W Q; Somasundar, Ambika; Chen, Ran; Hatton, T Alan; Khan, Saif A

    2016-07-05

    We present the first study of a novel, generalizable method that uses a water-in-oil nanoemulsion as the continuous phase to generate uniform aqueous micro-droplets in a capillary-based microfluidic system. We first study the droplet generation mechanism in this system and compare it to the more conventional case where a simple oil/solvent (with surfactant) is used as the continuous phase. Next, we present two versatile methods - adding demulsifying chemicals and heat treatment - to allow active online chemical interaction between the continuous and dispersed phases. These methods allow each generated micro-droplet to act as a well-mixed micro-reactor with walls that are 'permeable' to the nanoemulsion droplets and their contents. Finally, we demonstrate an application of this system in the fabrication of uniform hydrogel (alginate) micro-beads with control over particle properties such as size and swelling. Our work expands the toolbox of droplet-based microfluidics, enabling new opportunities and applications involving active colloidal continuous phases carrying chemical payloads, both in advanced materials synthesis and droplet-based screening and diagnostic methods.

  7. Specific and reversible DNA-directed self-assembly of oil-in-water emulsion droplets

    PubMed Central

    Hadorn, Maik; Boenzli, Eva; Sørensen, Kristian T.; Fellermann, Harold; Eggenberger Hotz, Peter; Hanczyc, Martin M.

    2012-01-01

    Higher-order structures that originate from the specific and reversible DNA-directed self-assembly of microscopic building blocks hold great promise for future technologies. Here, we functionalized biotinylated soft colloid oil-in-water emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker. We show the components of this modular linking system to be stable and to induce sequence-specific aggregation of binary mixtures of emulsion droplets. Three length scales were thereby involved: nanoscale DNA base pairing linking microscopic building blocks resulted in macroscopic aggregates visible to the naked eye. The aggregation process was reversible by changing the temperature and electrolyte concentration and by the addition of competing oligonucleotides. The system was reset and reused by subsequent refunctionalization of the emulsion droplets. DNA-directed self-assembly of oil-in-water emulsion droplets, therefore, offers a solid basis for programmable and recyclable soft materials that undergo structural rearrangements on demand and that range in application from information technology to medicine. PMID:23175791

  8. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability.

    PubMed

    Ali, Ali; Mekhloufi, Ghozlene; Huang, Nicolas; Agnely, Florence

    2016-03-16

    To avoid the toxicological concerns associated to synthetic surfactants, proteins might be an alternative for the stabilization of pharmaceutical nanoemulsions. The present study investigates the use of β-lactoglobulin (β-lg) to stabilize oil in water biocompatible nanoemulsions intended for a pharmaceutical use and prepared by high pressure homogenization (HPH). The effects of composition (nature and weight fraction of oil, β-lg concentration) and of process parameters (pressure and number of cycles) on the droplet size and on the stability of nanoemulsions were thoroughly assessed. The nanoemulsions prepared with β-lg at 1 wt% and with 5 wt% Miglyol 812 (the oil with the lowest viscosity) displayed a relatively small particle size (about 200 nm) and a low polydispersity when a homogenization pressure of 100 MPa was applied for 4 cycles. These nanoemulsions were the most stable formulations over 30 days at least. Emulsification efficiency of β-lg was reduced at higher homogenization pressures (200 MPa and 300 MPa). The effect of HPH process on the interfacial properties of β-lg was evaluated by drop shape analysis. This treatment had an effect neither on the interfacial tension nor on the interfacial dilatational rheology of β-lg at the Miglyol 812/water interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Numerical investigation of interfacial transport resistance due to water droplets in proton exchange membrane fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa; Kandlikar, Satish G.

    2013-12-01

    Oxygen transport resistance at the air flow channel and gas diffusion layer (GDL) interface is needed in modelling the performance of a proton exchange membrane fuel cell (PEMFC). This resistance is expressed through the non-dimensional Sherwood number (Sh). The effect of the presence of a droplet on Sh is studied numerically in an isolated air flow channel using a commercially available package, COMSOL Multiphysics®. A droplet is represented as a solid obstruction placed on the GDL-channel interface and centred along the channel width. The effect of a single droplet is first studied for a range of superficial mean air velocities and droplet sizes. Secondly, the effect of droplet spacing on Sh is studied through simulations of two consecutive droplets. Lastly, multiple droplets in a row are studied as a more representative case of a PEMFC air flow channel. The results show that the droplets significantly increase Sh above the fully developed value in the wake region. This enhancement increases with the number of droplets, droplet size, and superficial mean air velocity. Moreover, the analogy between mass and heat transfer is investigated by comparing Sh to the equivalent Nusselt number.

  10. Computational insights of water droplet transport on graphene sheet with chemical density

    NASA Astrophysics Data System (ADS)

    Zhang, Liuyang; Wang, Xianqiao

    2014-05-01

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  11. The Orbit of Water Droplets around Charged Rod

    ERIC Educational Resources Information Center

    Ferstl, Andrew; Burns, Andrew

    2013-01-01

    The motion of charges around a centrally charged object is often compared to gravitational orbits (such as satellites around planets). Recently, a video taken by astronaut Don Pettit onboard the International Space Station shows water droplets orbiting a charged knitting needle. Here we attempt to model this motion and estimate the charges on the…

  12. High-throughput controllable generation of droplet arrays with low consumption

    NASA Astrophysics Data System (ADS)

    Lin, Yinyin; Wu, Zhongsheng; Gao, Yibo; Wu, Jinbo; Wen, Weijia

    2018-06-01

    We describe a controllable sliding method for fabricating millions of isolated femto- to nanoliter-sized droplets with defined volume, geometry and position and a speed of up to 375 kHz. In this work, without using a superhydrophobic or superoleophobic surface, arrays of droplets are instantly formed on the patterned substrate by sliding a strip of liquid, including water, low-surface-tension organic solvents and solution, along the substrate. To precisely control the volume of the droplets, we systemically investigate the effects of the size of the wettable pattern, the viscosity of the liquid and sliding speed, which were found to vary independently to tune the height and volume of the droplets. Through this method, we successfully fabricated an oriented single metal-organic framework crystal array with control over their XY positioning on the surface, as characterized by microscopy and X-ray diffraction (XRD) techniques.

  13. Moisture condensation behavior of hierarchically carbon nanotube-grafted carbon nanofibers.

    PubMed

    Park, Kyu-Min; Lee, Byoung-Sun; Youk, Ji Ho; Lee, Jinyong; Yu, Woong-Reol

    2013-11-13

    Hierarchical micro/nanosurfaces with nanoscale roughness on microscale uneven substrates have been the subject of much recent research interest because of phenomena such as superhydrophobicity. However, an understanding of the effect of the difference in the scale of the hierarchical entities, i.e., nanoscale roughness on microscale uneven substrates as opposed to nanoscale roughness on (a larger) nanoscale uneven surface, is still lacking. In this study, we investigated the effect of the difference in scale between the nano- and microscale features. We fabricated carbon nanotube-grafted carbon nanofibers (CNFs) by dispersing a catalyst precursor in poly (acrylonitrile) (PAN) solution, electrospinning the PAN/catalyst precursor solution, carbonization of electrospun PAN nanofibers, and direct growth of carbon nanotubes (CNTs) on the CNFs. We investigated the relationships between the catalyst concentrations, the size of catalyst nanoparticles on CNFs, and the sizes of CNFs and CNTs. Interestingly, the hydrophobic behavior of micro/nano and nano/nano hierarchical surfaces with water droplets was similar; however a significant difference in the water condensation behavior was observed. Water condensed into smaller droplets on the nano/nano hierarchical surface, causing it to dry much faster.

  14. Formation and characterization of simulated small droplet icing clouds

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1986-01-01

    Two pneumatic two-fluid atomizers operating at high liquid and gas pressures produced water sprays that simulated small droplet clouds for use in studying icing effects on aircraft performance. To measure median volume diameter, MVD or D sub v.5, of small droplet water sprays, a scattered-light scanning instrument was developed. Drop size data agreed fairly well with calculated values at water and nitrogen pressures of 60 and 20 psig, respectively, and at water and nitrogen pressures of 250 and 100 psig, respectively, but not very well at intermediate values of water and nitrogen pressure. MVD data were correlated with D sub 0, W sub N, and W sub w, i.e., orifice diameter, nitrogen, and water flowrate, respectively, to give the expression for MVD in microns.

  15. A multi-module microfluidic platform for continuous pre-concentration of water-soluble ions and separation of oil droplets from oil-in-water (O/W) emulsions using a DC-biased AC electrokinetic technique.

    PubMed

    Das, Dhiman; Phan, Dinh-Tuan; Zhao, Yugang; Kang, Yuejun; Chan, Vincent; Yang, Chun

    2017-03-01

    A novel continuous flow microfluidic platform specifically designed for environmental monitoring of O/W emulsions during an aftermath of oil spills is reported herein. Ionized polycyclic aromatic hydrocarbons which are toxic are readily released from crude oil to the surrounding water phase through the smaller oil droplets with enhanced surface area. Hence, a multi-module microfluidic device is fabricated to form ion enrichment zones in the water phase of O/W emulsions for the ease of detection and to separate micron-sized oil droplets from the O/W emulsions. Fluorescein ions in the water phase are used to simulate the presence of these toxic ions in the O/W emulsion. A DC-biased AC electric field is employed in both modules. In the first module, a nanoporous Nafion membrane is used for activating the concentration polarization effect on the fluorescein ions, resulting in the formation of stable ion enrichment zones in the water phase of the emulsion. A 35.6% amplification of the fluorescent signal is achieved in the ion enrichment zone; corresponding to 100% enrichment of the fluorescent dye concentration. In this module, the main inlet is split into two channels by using a Y-junction so that there are two outlets for the oil droplets. The second module located downstream of the first module consists of two oil droplet entrapment zones at two outlets. By switching on the appropriate electrodes, either one of the two oil droplet entrapment zones can be activated and the droplets can be blocked in the corresponding outlet. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion

    PubMed Central

    Vulgarakis Minov, Sofija; Cointault, Frédéric; Vangeyte, Jürgen; Pieters, Jan G; Nuyttens, David

    2016-01-01

    Accurate spray characterization helps to better understand the pesticide spray application process. The goal of this research was to present the proof of principle of a droplet size and velocity measuring technique for different types of hydraulic spray nozzles using a high speed backlight image acquisition and analysis system. As only part of the drops of an agricultural spray can be in focus at any given moment, an in-focus criterion based on the gray level gradient was proposed to decide whether a given droplet is in focus or not. In a first experiment, differently sized droplets were generated with a piezoelectric generator and studied to establish the relationship between size and in-focus characteristics. In a second experiment, it was demonstrated that droplet sizes and velocities from a real sprayer could be measured reliably in a non-intrusive way using the newly developed image acquisition set-up and image processing. Measured droplet sizes ranged from 24 μm to 543 μm, depending on the nozzle type and size. Droplet velocities ranged from around 0.5 m/s to 12 m/s. The droplet size and velocity results were compared and related well with the results obtained with a Phase Doppler Particle Analyzer (PDPA). PMID:26861338

  17. Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion.

    PubMed

    Minov, Sofija Vulgarakis; Cointault, Frédéric; Vangeyte, Jürgen; Pieters, Jan G; Nuyttens, David

    2016-02-06

    Accurate spray characterization helps to better understand the pesticide spray application process. The goal of this research was to present the proof of principle of a droplet size and velocity measuring technique for different types of hydraulic spray nozzles using a high speed backlight image acquisition and analysis system. As only part of the drops of an agricultural spray can be in focus at any given moment, an in-focus criterion based on the gray level gradient was proposed to decide whether a given droplet is in focus or not. In a first experiment, differently sized droplets were generated with a piezoelectric generator and studied to establish the relationship between size and in-focus characteristics. In a second experiment, it was demonstrated that droplet sizes and velocities from a real sprayer could be measured reliably in a non-intrusive way using the newly developed image acquisition set-up and image processing. Measured droplet sizes ranged from 24 μm to 543 μm, depending on the nozzle type and size. Droplet velocities ranged from around 0.5 m/s to 12 m/s. The droplet size and velocity results were compared and related well with the results obtained with a Phase Doppler Particle Analyzer (PDPA).

  18. Bridging the condensation-collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds

    NASA Astrophysics Data System (ADS)

    Chen, Sisi; Yau, Man-Kong; Bartello, Peter; Xue, Lulin

    2018-05-01

    In most previous direct numerical simulation (DNS) studies on droplet growth in turbulence, condensational growth and collisional growth were treated separately. Studies in recent decades have postulated that small-scale turbulence may accelerate droplet collisions when droplets are still small when condensational growth is effective. This implies that both processes should be considered simultaneously to unveil the full history of droplet growth and rain formation. This paper introduces the first direct numerical simulation approach to explicitly study the continuous droplet growth by condensation and collisions inside an adiabatic ascending cloud parcel. Results from the condensation-only, collision-only, and condensation-collision experiments are compared to examine the contribution to the broadening of droplet size distribution (DSD) by the individual process and by the combined processes. Simulations of different turbulent intensities are conducted to investigate the impact of turbulence on each process and on the condensation-induced collisions. The results show that the condensational process promotes the collisions in a turbulent environment and reduces the collisions when in still air, indicating a positive impact of condensation on turbulent collisions. This work suggests the necessity of including both processes simultaneously when studying droplet-turbulence interaction to quantify the turbulence effect on the evolution of cloud droplet spectrum and rain formation.

  19. Cavitation-induced fragmentation of an acoustically-levitated droplet

    NASA Astrophysics Data System (ADS)

    Gonzalez Avila, Silvestre Roberto; Ohl, Claus-Dieter

    2015-12-01

    In this paper we investigate the initial sequence of events that lead to the fragmentation of a millimetre sized water droplets when interacting with a focused ns-laser pulse. The experimental results show complex processes that result from the reflection of an initial shock wave from plasma generation with the soft boundary of the levitating droplet; furthermore, when the reflected waves from the walls of the droplet refocus they leave behind a trail of microbubbles that later act as cavitation inception regions. Numerical simulations of a shock wave impacting and reflecting from a soft boundary are also reported; the simulated results show that the lowest pressure inside the droplet occurs at the equatorial plane. The results of the numerical model display good agreement with the experimental results both in time and in space.

  20. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  1. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology

    PubMed Central

    Cartwright, Bethany R.; Binns, Derk D.; Hilton, Christopher L.; Han, Sungwon; Gao, Qiang; Goodman, Joel M.

    2015-01-01

    Seipin is necessary for both adipogenesis and lipid droplet (LD) organization in nonadipose tissues; however, its molecular function is incompletely understood. Phenotypes in the seipin-null mutant of Saccharomyces cerevisiae include aberrant droplet morphology (endoplasmic reticulum–droplet clusters and size heterogeneity) and sensitivity of droplet size to changes in phospholipid synthesis. It has not been clear, however, whether seipin acts in initiation of droplet synthesis or at a later step. Here we utilize a system of de novo droplet formation to show that the absence of seipin results in a delay in droplet appearance with concomitant accumulation of neutral lipid in membranes. We also demonstrate that seipin is required for vectorial budding of droplets toward the cytoplasm. Furthermore, we find that the normal rate of droplet initiation depends on 14 amino acids at the amino terminus of seipin, deletion of which results in fewer, larger droplets that are consistent with a delay in initiation but are otherwise normal in morphology. Importantly, other functions of seipin, namely vectorial budding and resistance to inositol, are retained in this mutant. We conclude that seipin has dissectible roles in both promoting early LD initiation and in regulating LD morphology, supporting its importance in LD biogenesis. PMID:25540432

  2. Design of negative refractive index metamaterial with water droplets using 3D-printing

    NASA Astrophysics Data System (ADS)

    Shen, Zhaoyang; Yang, Helin; Huang, Xiaojun; Yu, Zetai

    2017-11-01

    We numerically and experimentally demonstrate a negative refractive index (NRI) behavior in combined water droplets and photosensitive resin materials operating in the microwave regime. The NRI is achieved over a very wide frequency range in 10.27-15 GHz with bandwidth of 4.63 GHz. The simulated results approximately agree with the experimental results. The negative index band can be controlled by water droplet radius. The proposed metamaterial production process is simple and may have potential applications in broadband tunable devices.

  3. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    PubMed

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  4. Development of a unified oil droplet size distribution model with application to surface breaking waves and subsea blowout releases considering dispersant effects.

    PubMed

    Li, Zhengkai; Spaulding, Malcolm; French McCay, Deborah; Crowley, Deborah; Payne, James R

    2017-01-15

    An oil droplet size model was developed for a variety of turbulent conditions based on non-dimensional analysis of disruptive and restorative forces, which is applicable to oil droplet formation under both surface breaking-wave and subsurface-blowout conditions, with or without dispersant application. This new model was calibrated and successfully validated with droplet size data obtained from controlled laboratory studies of dispersant-treated and non-treated oil in subsea dispersant tank tests and field surveys, including the Deep Spill experimental release and the Deepwater Horizon blowout oil spill. This model is an advancement over prior models, as it explicitly addresses the effects of the dispersed phase viscosity, resulting from dispersant application and constrains the maximum stable droplet size based on Rayleigh-Taylor instability that is invoked for a release from a large aperture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Lithography-free nanofluidic concentrator based on droplets-on-demand system

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Zhou, Hongbo; Yao, Shuhuai

    2013-11-01

    Biomarkers are usually low-abundance proteins in biofluids and below detection limit of conventional biosensors. Nanofluidic concentration devices allow efficient biomolecules trapping by utilizing ion concentration polarization near nanochannels. However, once the electric field is turned off, the electrokinetic concentration plug cannot maintain its concentration status and starts to diffuse. In order to maintain the high concentration and extract the concentrated sample for further analysis, a good approach is to encapsulate these plugs into water-in-oil droplets. Here we developed a nanofluidic concentrator based on droplet-on-demand generator to encapsulate concentrated sample in nL droplets. The lithography-free nanochannels were patterned by thermal cracking on the surface of PS Petri-dish. The resulting nanochannel arrays were 30 nm in depth. In combination with microchannels on PDMS, the micro-nano hybrid chip was developed. We used FITC solution to demonstrate that the chip significantly increased the sample concentration for more than 100 folds within 5 minutes. By tuning the pulsed pressure imposed by the solenoid valve connected to the concentration channel, the system can generate a desired volume of droplet with a target sample concentration at a prescribed time. This work was supported by the Research Grants Council of Hong Kong under General Research Fund (Grant No. 621110).

  6. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chen; Liu, Hong, E-mail: hongliu@sjtu.edu.cn

    Supercooled large droplet (SLD), which can cause abnormal icing, is a well-known issue in aerospace engineering. Although efforts have been exerted to understand large droplet impact dynamics and the supercooled feature in the film/substrate interface, respectively, the thermodynamic effect during the SLD impact process has not received sufficient attention. This work conducts experimental studies to determine the effects of drop size on the thermodynamics for supercooled large droplet impingement. Through phenomenological reproduction, the rapid-freezing characteristics are observed in diameters of 400, 800, and 1300 μm. The experimental analysis provides information on the maximum spreading rate and the shrinkage rate ofmore » the drop, the supercooled diffusive rate, and the freezing time. A physical explanation of this unsteady heat transfer process is proposed theoretically, which indicates that the drop size is a critical factor influencing the supercooled heat exchange and effective heat transfer duration between the film/substrate interface. On the basis of the present experimental data and theoretical analysis, an impinging heating model is developed and applied to typical SLD cases. The model behaves as anticipated, which underlines the wide applicability to SLD icing problems in related fields.« less

  7. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets

    PubMed Central

    Banno, Taisuke; Asami, Arisa; Ueno, Naoko; Kitahata, Hiroyuki; Koyano, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-01-01

    The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we report an artificial molecular system of underwater oil droplets exhibiting self-propelled motion with deformation as an initial experimental model. We describe the heterogeneity in a deformable self-propelled oil droplet system in aqueous and oil phases and at their interface based on the behavior and interaction of surfactant and oil molecules. The current results have great importance for scientific frontiers such as developing deformable micro-swimmers and exploring the emergence of self-locomotion of oil droplet-type protocells. PMID:27503336

  8. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets

    NASA Astrophysics Data System (ADS)

    Banno, Taisuke; Asami, Arisa; Ueno, Naoko; Kitahata, Hiroyuki; Koyano, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-08-01

    The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we report an artificial molecular system of underwater oil droplets exhibiting self-propelled motion with deformation as an initial experimental model. We describe the heterogeneity in a deformable self-propelled oil droplet system in aqueous and oil phases and at their interface based on the behavior and interaction of surfactant and oil molecules. The current results have great importance for scientific frontiers such as developing deformable micro-swimmers and exploring the emergence of self-locomotion of oil droplet-type protocells.

  9. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets.

    PubMed

    Banno, Taisuke; Asami, Arisa; Ueno, Naoko; Kitahata, Hiroyuki; Koyano, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-08-09

    The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we report an artificial molecular system of underwater oil droplets exhibiting self-propelled motion with deformation as an initial experimental model. We describe the heterogeneity in a deformable self-propelled oil droplet system in aqueous and oil phases and at their interface based on the behavior and interaction of surfactant and oil molecules. The current results have great importance for scientific frontiers such as developing deformable micro-swimmers and exploring the emergence of self-locomotion of oil droplet-type protocells.

  10. Broadening of Cloud Droplet Size Distributions and Warm Rain Initiation Associated with Turbulence: An Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie

    In the paper of warm clouds, there are many outstanding questions. Cloud droplet size distributions are much wider, and warm rain is initiated in a shorter time and with a shallower cloud depth than theoretical expectations. This review summarizes the studies related to the effects of turbulent fluctuations and turbulent entrainment-mixing on the broadening of droplet size distributions and warm rain initiation, including observational, laboratorial, numerical, and theoretical achievements. Particular attention is paid to studies by Chinese scientists since the 1950s, since most results have been published in Chinese. The review reveals that high-resolution observations and simulations, and laboratory experimentsmore » are needed because knowledge of the detailed physical processes involved in the effects of turbulence and entrainment-mixing on cloud microphysics still remains elusive.« less

  11. Broadening of Cloud Droplet Size Distributions and Warm Rain Initiation Associated with Turbulence: An Overview

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; ...

    2017-10-12

    In the paper of warm clouds, there are many outstanding questions. Cloud droplet size distributions are much wider, and warm rain is initiated in a shorter time and with a shallower cloud depth than theoretical expectations. This review summarizes the studies related to the effects of turbulent fluctuations and turbulent entrainment-mixing on the broadening of droplet size distributions and warm rain initiation, including observational, laboratorial, numerical, and theoretical achievements. Particular attention is paid to studies by Chinese scientists since the 1950s, since most results have been published in Chinese. The review reveals that high-resolution observations and simulations, and laboratory experimentsmore » are needed because knowledge of the detailed physical processes involved in the effects of turbulence and entrainment-mixing on cloud microphysics still remains elusive.« less

  12. Pyrolysis of Large Black Liquor Droplets

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; Dietrich, Daniel L.; T'ien, James S.; Wessel, Richard A.

    2007-01-01

    This paper presents the results of experiments involving the pyrolysis of large black liquor droplets in the NASA KC-135 reduced gravity aircraft. The reduced gravity environment facilitated the study of droplets up to 9 mm in diameter extending the results of previous studies to droplet sizes that are similar to those encountered in recovery boilers. Single black liquor droplets were rapidly inserted into a 923 K oven. The primary independent variables were the initial droplet diameter (0.5 mm to 9 mm), the black liquor solids content (66.12% - 72.9% by mass), and the ambient oxygen mole fraction (0.0 - 0.21). Video records of the experiments provided size and shape of the droplets as a function of time. The results show that the particle diameter at the end of the drying stage (D(sub DRY)) increases linearly with the initial particle diameter (D(sub O)). The results further show that the ratio of the maximum swollen diameter (D(sub MAX)) to D(sub O) decreases with increasing D(sub O) for droplets with D(sub O) less than 4 mm. This ratio was independent of D(sub O) for droplets with D(sub O) greater than 4 mm. The particle is most spherical at the end of drying, and least spherical at maximum swollen size, regardless of initial sphericity and droplet size.

  13. Pyrolysis of Large Black Liquor Droplets

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; T'ien, James S.; Dietrich, Daniel L.; Wessel, Richard A.

    2007-01-01

    This paper presents the results of experiments involving the pyrolysis of large black liquor droplets in the NASA KC-135 reduced gravity aircraft. The reduced gravity environment facilitated the study of droplets up to 9 mm in diameter extending the results of previous studies to droplet sizes that are similar to those encountered in recovery boilers. Single black liquor droplets were rapidly inserted into a 923 K oven. The primary independent variables were the initial droplet diameter (0.5 mm to 9 mm), the black liquor solids content (66.12% - 72.9% by mass), and the ambient oxygen mole fraction (0.0 - 0.21). Video records of the experiments provided size and shape of the droplets as a function of time. The results show that the particle diameter at the end of the drying stage (D(sub DRY) ) increases linearly with the initial particle diameter (D(sub O)). The results further show that the ratio of the maximum swollen diameter (D(sub MAX)) to D(sub O) decreases with increasing D(sub O) for droplets with D(sub O) less than 4 mm. This ratio was independent of D(sub O) for droplets with D(sub O) greater than 4 mm. The particle is most spherical at the end of drying, and least spherical at maximum swollen size, regardless of initial sphericity and droplet size.

  14. Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John B.; Avgoustopoulos, Constantine G.; Black, Wolfgang J.; Allen, Roy C.; McFarland, Jacob A.

    2018-06-01

    Shock-driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching applications in engineering and science such as high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase field is impulsively accelerated by a shock wave and evolves as a result of gradients in particle-gas momentum transfer. A new shock tube facility has been constructed to study the SDMI. Experiments were conducted to investigate liquid particle and multiphase effects in the SDMI. A multiphase cylindrical interface was created with water droplet laden air in our horizontal shock tube facility. The interface was accelerated by a Mach 1.66 shock wave, and its reflection from the end wall. The interface development was captured using laser illumination and a high-resolution CCD camera. Laser interferometry was used to determine the droplet size distribution. A particle filtration technique was used to determine mass loading within an interface and verify particle size distribution. The effects of particle number density, particle size, and a secondary acceleration (reshock) of the interface were noted. Particle number density effects were found comparable to Atwood number effects in the Richtmyer-Meshkov instability for small (˜ 1.7 {μ }m) droplets. Evaporation was observed to alter droplet sizes and number density, markedly after reshock. For large diameter droplets (˜ 10.7 {μ }m), diminished development was observed with larger droplets lagging far behind the interface. These lagging droplets were also observed to breakup after reshock into structured clusters of smaller droplets. Mixing width values were reported to quantify mixing effects seen in images.

  15. Lossless droplet transfer of droplet-based microfluidic analysis

    DOEpatents

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Smith, Richard D [Richland, WA

    2011-11-22

    A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.

  16. Inhomogeneous distribution of water droplets in cloud turbulence

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak; Park, Yongnam; Harduf, Roei; Lee, Changhoon

    2015-09-01

    We consider sedimentation of small particles in the turbulent flow where fluid accelerations are much smaller than acceleration of gravity g . The particles are dragged by the flow by linear friction force. We demonstrate that the pair-correlation function of particles' concentration diverges with decreasing separation as a power law with negative exponent. This manifests fractal distribution of particles in space. We find that the exponent is proportional to ratio of integral of energy spectrum of turbulence times the wave number over g . The proportionality coefficient is a universal number independent of particle size. We derive the spectrum of Lyapunov exponents that describes the evolution of small patches of particles. It is demonstrated that particles separate dominantly in the horizontal plane. This provides a theory for the recently observed vertical columns formed by the particles. We confirm the predictions by direct numerical simulations of Navier-Stokes turbulence. The predictions include conditions that hold for water droplets in warm clouds thus providing a tool for the prediction of rain formation.

  17. Water Entry by a Train of Droplets

    NASA Astrophysics Data System (ADS)

    Ohl, Claus-Dieter; Huang, Xin; Chan, Chon U.; Frommhold, Philipp Erhard; Lippert, Alexander

    2014-11-01

    The impact of single droplets on a deep pool is a well-studied phenomenon which reveals reach fluid mechanics. Lesser studied is the impact of a train of droplet and the accompanied formation of largely elongated cavities, in particular for well controlled droplets. The droplets with diameters of 20-40 μm and velocities of approx. 20 m/s are generated with a piezo-actuated nozzle at rates of 200-300 kHz. Individual droplets are selected by electric charging and deflection and the impact is visualized with stroboscopic photography and high-speed videos. We study in particular the formation and shape of the cavity as by varying the number of droplets from one to 64. The cavities reach centimetres in length with lateral diameters of the order of 100 of micrometres.

  18. Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization

    PubMed Central

    Dalmoro, Annalisa; d’Amore, Matteo; Barba, Anna Angela

    Microencapsulation processes of drugs or other functional molecules are of great interest in pharmaceutical production fields. Ultrasonic assisted atomization is a new technique to produce microencapsulated systems by mechanical approach. It seems to offer several advantages (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) with respect to more conventional techniques. In this paper the groundwork of atomization is briefly introduced and correlations to predict droplet size starting from process parameters and material properties are presented. PMID:24251250

  19. Acoustic levitator for contactless motion and merging of large droplets in air

    NASA Astrophysics Data System (ADS)

    Bjelobrk, Nada; Nabavi, Majid; Poulikakos, Dimos

    2012-09-01

    Large droplet transport in a line-focussed acoustic manipulator in terms of maximum droplet size is achieved by employing a driving voltage control mechanism. The maximum volume of the transported droplets in the order of few microliters is thereby increased by three orders of magnitude compared to the constant voltage case, widening the application field of this method significantly. A drop-on-demand droplet generator is used to supply the liquid droplets into the system. The ejected sequence of picoliter-size droplets is guided along trajectories by the acoustic field and accumulates at the selected pressure node, merging into a single large droplet. Droplet movement is achieved by varying the reflector height. This also changes the intensity of the radiation pressure during droplet movement, which in turn could atomise the droplet. The acoustic force is adjusted by regulating the driving voltage of the actuator to keep the liquid droplet suspended in air and to prevent atomisation. In the herein presented levitation concept, liquids with a wide range of surface tension (water and tetradecane were tested) can be transported over distances of several mm. The aspect ratio of the droplet in the acoustic field is shown to be a good indicator for radiation pressure intensity and is kept between 1.1 and 1.4 during droplet transport. Despite certain limitations with volatile liquids, the presented acoustic levitator concept has the potential to expand the range of analytical characterisation and manipulation methods in applications ranging from chemistry and biology.

  20. Detection of bisphenol A using palm-size NanoAptamer analyzer.

    PubMed

    Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2017-08-15

    We have demonstrated a palm-size NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (<1ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. Modified NanoGene assay was used as the sensing mechanism where signaling DNA and QD 655 was tethered to QD 565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD 655 from the complex and hence corresponding decrease in QD 655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  2. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets.

    PubMed

    Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan

    2016-05-01

    Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released.

  3. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets

    PubMed Central

    Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan

    2016-01-01

    Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released. PMID:27279935

  4. Water-walled microfluidics for high-optical finesse cavities

    NASA Astrophysics Data System (ADS)

    Maayani, Shai; Martin, Leopoldo L.; Carmon, Tal

    2016-01-01

    In submerged microcavities there is a tradeoff between resonant enhancement for spatial water and light overlap. Why not transform the continuously resonating optical mode to be fully contained in a water microdroplet per se? Here we demonstrate a sustainable 30-μm-pure water device, bounded almost completely by free surfaces, enabling >1,000,000 re-circulations of light. The droplets survive for >16 h using a technique that is based on a nano-water bridge from the droplet to a distant reservoir to compensate for evaporation. More than enabling a nearly-perfect optical overlap with water, atomic-level surface smoothness that minimizes scattering loss, and ~99% coupling efficiency from a standard fibre. Surface tension in our droplet is 8,000 times stronger than gravity, suggesting a new class of devices with water-made walls, for new fields of study including opto-capillaries.

  5. Confinement by carbon nanotubes drastically alters the boiling and critical behavior of water droplets.

    PubMed

    Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V

    2012-03-27

    Vapor pressure grows rapidly above the boiling temperature, and past the critical point liquid droplets disintegrate. Our atomistic simulations show that this sequence of events is reversed inside carbon nanotubes (CNT). Droplets disintegrate first and at low temperature, while pressure remains low. The droplet disintegration temperature is independent of the CNT diameter. In contrast, depending on CNT diameter, a temperature that is much higher than the bulk boiling temperature is required to raise the internal pressure. The control over pressure by CNT size can be useful for therapeutic drug delivery. © 2012 American Chemical Society

  6. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies.

    PubMed

    Cheng, Shaoan; Jang, Je-Hun; Dempsey, Brian A; Logan, Bruce E

    2011-01-01

    Acid mine drainage (AMD) is an important contributor to surface water pollution due to the release of acid and metals. Fe(II) in AMD reacts with dissolved oxygen to produce iron oxide precipitates, resulting in further acidification, discoloration of stream beds, and sludge deposits in receiving waters. It has recently been shown that new fuel cell technologies, based on microbial fuel cells, can be used to treat AMD and generate electricity. Here we show that this approach can also be used as a technique to generate spherical nano-particles of iron oxide that, upon drying, are transformed to goethite (α-FeOOH). This approach therefore provides a relatively straightforward way to generate a product that has commercial value. Particle diameters ranged from 120 to 700 nm, with sizes that could be controlled by varying the conditions in the fuel cell, especially current density (0.04-0.12 mA/cm(2)), pH (4-7.5), and initial Fe(II) concentration (50-1000 mg/L). The most efficient production of goethite and power occurred with pH = 6.3 and Fe(II) concentrations above 200 mg/L. These results show that fuel cell technologies can not only be used for simultaneous AMD treatment and power generation, but that they can generate useful products such as iron oxide particles having sizes appropriate for used as pigments and other applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Yina; Li, Cong; Zhang, Hui; Yang, Rui

    2017-10-01

    It is quite important to clearly understand the dynamic and freezing process of water droplets impacting a cold substrate for the prevention of ice accretion. In this study, a three-dimensional model including an extended phase change method was developed on OpenFOAM platform to simulate the impact, spreading and freezing of a water droplet on a cooled solid substrate. Both normal and oblique impact conditions were studied numerically. The evolution of the droplet shape and dynamic characteristics such as area ratio and spread factor were compared between numerical and experimental results. Good agreements were obtained. The effects of Weber number and Ohnersorge number on the oblique impact and freezing process were investigated. A regime map which depicts the different responses of droplets as a function of normal Weber number and Ohnesorge number was obtained. Moreover, the impact, spreading and freezing behaviour of water droplets were analyzed in detail from the numerical results.

  8. Wetting behavior and drainage of water droplets on microgrooved brass surfaces.

    PubMed

    Rahman, M Ashiqur; Jacobi, Anthony M

    2012-09-18

    In the present study, contact angle hysteresis and sliding behavior of water droplets on parallel, periodic microgrooved brass surfaces are investigated experimentally for enhancement of water drainage and compared to that on flat baseline surfaces. The surfaces (a total of 17 microgrooved samples, with a range of groove depth of 22 to 109 μm, pillar width of 26 to 190 μm, and groove width of 103 and 127 μm) are fabricated using a mechanical micromachining process. The wetting state and shape/elongation of deposited water droplets, anisotropy of the contact angle hysteresis, and the drainage behavior of water droplets on the microgrooved surfaces are found to be strongly dependent on the topography of the groove geometry, which is analyzed in detail. The wetting state is found to be Wenzel for microgrooved surfaces with very low aspect ratio (<0.2) and narrow pillars (pillar width to groove width ratio of ≈0.2), and also for the two deepest grooved surfaces of two different sample series, all of which exhibit high contact angle hysteresis. Mechanisms of the advancing and receding motions are identified. The critical sliding angle (the angle from horizontal at incipient motion of the advancing confluence) for the microgrooved surfaces is found to be significantly smaller than for flat surfaces. The sliding angle exhibits significant groove geometry dependence and is found to increase with pillar width and decrease with groove depth. The findings of this study may be useful in a broad range of applications where water retention plays an important role.

  9. Splash Dynamics of Falling Surfactant-Laden Droplets

    NASA Astrophysics Data System (ADS)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  10. Engineering Interfacial Processes at Mini-Micro-Nano Scales Using Sessile Droplet Architecture.

    PubMed

    Bansal, Lalit; Sanyal, Apratim; Kabi, Prasenjit; Pathak, Binita; Basu, Saptarshi

    2018-03-01

    Evaporating sessile functional droplets act as the fundamental building block that controls the cumulative outcome of many industrial and biological applications such as surface patterning, 3D printing, photonic crystals, and DNA sequencing, to name a few. Additionally, a drying single sessile droplet forms a high-throughput processing technique using low material volume which is especially suitable for medical diagnosis. A sessile droplet also provides an elementary platform to study and analyze fundamental interfacial processes at various length scales ranging from macroscopically observable wetting and evaporation to microfluidic transport to interparticle forces operating at a nanometric length scale. As an example, to ascertain the quality of 3D printing we must understand the fundamental interfacial processes at the droplet scale. In this article, we review the coupled physics of evaporation flow-contact-line-driven particle transport in sessile colloidal droplets and provide methodologies to control the same. Through natural alterations in droplet vaporization, one can change the evaporative pattern and contact line dynamics leading to internal flow which will modulate the final particle assembly in a nontrivial fashion. We further show that control over particle transport can also be exerted by external stimuli which can be thermal, mechanical oscillations, vapor confinement (walled or a fellow droplet), or chemical (surfactant-induced) in nature. For example, significant augmentation of an otherwise evaporation-driven particle transport in sessile droplets can be brought about simply through controlled interfacial oscillations. The ability to control the final morphologies by manipulating the governing interfacial mechanisms in the precursor stages of droplet drying makes it perfectly suitable for fabrication-, mixing-, and diagnostic-based applications.

  11. Satellite Remote Sensing of the Liquid Water Sensitivity in Water Clouds

    NASA Technical Reports Server (NTRS)

    Han, Qing-Yuan; Rossow, William B.; Welch, Ronald; Zeng, Jane; Jansen, James E. (Technical Monitor)

    2001-01-01

    In estimation of the aerosol indirect effect, cloud liquid water path is considered either constant (Twomey effect) or increasing with enhanced droplet number concentrations (drizzle-suppression effect, or Albrecht effect) if cloud microphysics is the prevailing mechanism during the aerosol-cloud interactions. On the other hand, if cloud thermodynamics and dynamics are considered, the cloud liquid water path may be decreased with increasing droplet number concentration, which is predicted by model calculations and observed in ship-track and urban influence studies. This study is to examine the different responses of cloud liquid water path to changes of cloud droplet number concentration. Satellite data (January, April, July and October 1987) are used to retrieve the cloud liquid water sensitivity, defined as the changes of liquid water path versus changes of column droplet number concentrations. The results of a global survey reveal that 1) in at least one third of the cases the cloud liquid water sensitivity is negative, and the regional and seasonal variations of the negative liquid water sensitivity are consistent with other observations; 2) cloud droplet sizes are always inversely proportional to column droplet number concentrations. Our results suggest that an increase of cloud droplet number concentration leads to reduced cloud droplet size and enhanced evaporation, which weakens the coupling between water clouds and boundary layer in warm zones, decreases water supply from surface and desiccates cloud liquid water. Our results also suggest that the current evaluations of negative aerosol indirect forcing by global climate models (GCM), which are based on Twomey effect or Albrecht effect, may be overestimated.

  12. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less

  13. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  14. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  15. Experimental, water droplet impingement data on two-dimensional airfoils, axisymmetric inlet and Boeing 737-300 engine inlet

    NASA Technical Reports Server (NTRS)

    Papadakis, M.; Elangovan, E.; Freund, G. A., Jr.; Breer, M. D.

    1987-01-01

    An experimental method has been developed to determine the droplet impingement characteristics on two- and three-dimensional bodies. The experimental results provide the essential droplet impingement data required to validate particle trajectory codes, used in aircraft icing analyses and engine inlet particle separator analyses. A body whose water droplet impingement characteristics are required is covered at strategic locations by thin strips of moisture absorbing (blotter) paper, and then exposed to an air stream containing a dyed-water spray cloud. Water droplet impingement data are extracted from the dyed blotter strips, by measuring the optical reflectance of the dye deposit on the strips, using an automated reflectometer. Impingement efficiency data obtained for a NACA 65(2)015 airfoil section, a supercritical airfoil section, and Being 737-300 and axisymmetric inlet models are presented in this paper.

  16. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.

    PubMed

    Nakashoji, Yuta; Tanaka, Hironari; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2017-01-01

    A PDMS microfluidic chip with T-junction channel geometry, two inlet reservoirs, and one outlet reservoir was reversibly adhered on a glass plate through the viscoelastic properties of PDMS. This formed a detachable microfluidic device for creation of water-in-oil emulsion droplets that were used as discrete reaction compartments for the droplet digital PCR. The PDMS/glass device could continuously produce monodisperse droplets without leakage of fluids using a vacuum-driven autonomous micropumping method. This droplet preparation technique only required evacuation of air dissolved in the PDMS before loading of oil and aqueous phases into separate inlet reservoirs. Degassing of the PDMS chip at approximately 300 Pa for 1.5 h in a vacuum desiccator gave 40 000 droplets in 80 min, which corresponded to a generation frequency of up to nine droplets per second. Over multiple runs the droplet creation was very reproducible, and the size reproducibility of generated droplets (polydispersity of up to 4.1%) was comparable to that acquired using other microfluidic droplet preparation techniques. Because the PDMS chip can be peeled off the glass plate, blocked channels can easily be fixed when they arise, and this extends the lifetime of the chip. Single DNA molecules partitioned into the droplets were successfully amplified by PCR. In addition, the droplet digital PCR platform allowed absolute quantification of low copy numbers of target DNA, and was robust against instrumental variance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Droplet Microfluidics for Chip-Based Diagnostics

    PubMed Central

    Kaler, Karan V. I. S.; Prakash, Ravi

    2014-01-01

    Droplet microfluidics (DMF) is a fluidic handling technology that enables precision control over dispensing and subsequent manipulation of droplets in the volume range of microliters to picoliters, on a micro-fabricated device. There are several different droplet actuation methods, all of which can generate external stimuli, to either actively or passively control the shape and positioning of fluidic droplets over patterned substrates. In this review article, we focus on the operation and utility of electro-actuation-based DMF devices, which utilize one or more micro-/nano-patterned substrates to facilitate electric field-based handling of chemical and/or biological samples. The underlying theory of DMF actuations, device fabrication methods and integration of optical and opto-electronic detectors is discussed in this review. Example applications of such electro-actuation-based DMF devices have also been included, illustrating the various actuation methods and their utility in conducting chip-based laboratory and clinical diagnostic assays. PMID:25490590

  18. Examining the Roles of Emulsion Droplet Size and Surfactant in the Interfacial Instability-Based Fabrication Process of Micellar Nanocrystals

    NASA Astrophysics Data System (ADS)

    Sun, Yuxiang; Mei, Ling; Han, Ning; Ding, Xinyi; Yu, Caihao; Yang, Wenjuan; Ruan, Gang

    2017-06-01

    The interfacial instability process is an emerging general method to fabricate nanocrystal-encapsulated micelles (also called micellar nanocrystals) for biological detection, imaging, and therapy. The present work utilized fluorescent semiconductor nanocrystals (quantum dots or QDs) as the model nanocrystals to investigate the interfacial instability-based fabrication process of nanocrystal-encapsulated micelles. Our experimental results suggest intricate and intertwined roles of the emulsion droplet size and the surfactant poly (vinyl alcohol) (PVA) used in the fabrication process of QD-encapsulated poly (styrene-b-ethylene glycol) (PS-PEG) micelles. When no PVA is used, no emulsion droplet and thus no micelle is successfully formed; Emulsion droplets with large sizes ( 25 μm) result in two types of QD-encapsulated micelles, one of which is colloidally stable QD-encapsulated PS-PEG micelles while the other of which is colloidally unstable QD-encapsulated PVA micelles; In contrast, emulsion droplets with small sizes ( 3 μm or smaller) result in only colloidally stable QD-encapsulated PS-PEG micelles. The results obtained in this work not only help to optimize the quality of nanocrystal-encapsulated micelles prepared by the interfacial instability method for biological applications but also offer helpful new knowledge on the interfacial instability process in particular and self-assembly in general.

  19. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associatedmore » with the “mitosis” or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.« less

  20. Liquid-in-gas droplet microfluidics; experimental characterization of droplet morphology, generation frequency, and monodispersity in a flow-focusing microfluidic device

    NASA Astrophysics Data System (ADS)

    Tirandazi, Pooyan; Hidrovo, Carlos H.

    2017-07-01

    Microfluidic techniques for production of uniform droplets usually rely on the use of two immiscible liquids (e.g. water-in-oil emulsions). It has been shown recently that a continuous gas flow instead of a second liquid carrier can be used as an alternative approach in droplet microfluidics. In this work we experimentally investigate the generation of liquid water droplets within air in flow-focusing configurations. Over a wide range of flow conditions we identify six distinct flow regimes inside the microchannel: Co-flowing, Threading, Plugging, Dripping, Multi-Satellite Formation, and Jetting. Flow regimes and their transitions are plotted and characterized based on the Weber number (We) of the system. We further investigate the impact of liquid microchannel size on the flow maps. Generation frequency, morphology, and monodispersity of the droplets are characterized in more detail in the Dripping regime. Generation frequency can be related to the product of the liquid and gas flow rates. However, droplet morphology (length and width) is more dependent on the gas flow rate. We demonstrate the production of monodisperse droplets (d < 100 µm and σ/d < 5 %) up to kHz formation rates in liquid-gas microfluidic systems for the first time. The results of this work provide practical and useful guidelines for precise, oil-free delivery of ultra-small volumes of fluid which can be integrated in lab-on-a-chip systems for a variety of applications in biochemical research and material synthesis.

  1. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution.

    PubMed

    Garimella, Martand Mayukh; Koppu, Sudheer; Kadlaskar, Shantanu Shrikant; Pillutla, Venkata; Abhijeet; Choi, Wonjae

    2017-11-01

    This paper reports the condensation and subsequent motion of water droplets on bi-philic surfaces, surfaces that are patterned with regions of different wettability. Bi-philic surfaces can enhance the water collection efficiency: droplets condensing on hydrophobic regions wick into hydrophilic drain channels when droplets grow to a certain size, renewing the condensation on the dry hydrophobic region. The onset of drain phenomenon can be triggered by multiple events with distinct nature ranging from gravity, direct contact between a droplet and a drain channel, to a mutual coalescence between droplets. This paper focuses on the effect of the length scale of hydrophobic regions on the dynamics of mutual coalescence between droplets and subsequent drainage. The main hypothesis was that, when the drop size is sufficient, the kinetic energy associated with a coalescence of droplets may cause dynamic advancing of a newly formed drop, leading to further coalescence with nearby droplets and ultimately to a chain reaction. We fabricate bi-philic surfaces with hydrophilic and hydrophobic stripes, and the result confirms that coalescing droplets, when the length scale of droplets increases beyond 0.2mm, indeed display dynamic expansion and chain reaction. Multiple droplets can thus migrate to hydrophilic drain simultaneously even when the initial motion of the droplets was not triggered by the direct contact between the droplet and the hydrophilic drain. Efficiency of drain due to mutual coalescence of droplets varies depending on the length scale of bi-philic patterns, and the drain phenomenon reaches its peak when the width of hydrophobic stripes is between 800μm and 1mm. The Ohnesorge number of droplets draining on noted surfaces is between 0.0042 and 0.0037 respectively. The observed length scale of bi-philic patterns matches that on the Stenocara beetle's fog harvesting back surface. This match between length scales suggests that the surface of the insect is optimized

  2. The effects of turbulence on droplet drag and secondary droplet breakup

    NASA Technical Reports Server (NTRS)

    Song, Y.-H.; Coy, E.; Greenfield, S.; Ondas, M.; Prevish, T.; Spegar, T.; Santavicca, D.

    1994-01-01

    The objective of this research is to obtain an improved understanding of the behavior of droplets in vaporizing sprays, particularly under conditions typical of those in high pressure rocket sprays. Experiments are conducted in a variety of high pressure, high temperature, optically-accessible flow systems, including one which is capable of operation at pressures up to 70 atm, temperatures up to 600 K, gas velocities up to 30 m/sec and turbulence intensities up to 40 percent. Single droplets, 50 to 500 micron in diameter, are produced by an aerodynamic droplet generator and transversely injected into the flow. Measurements are made of the droplet position, size, velocity and temperature and of the droplet's vapor wake from which droplet drag, dispersion, heating, vaporization and breakup are characterized.

  3. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets.

    PubMed

    Amjad, Muhammad; Yang, Yang; Raza, Ghulam; Gao, Hui; Zhang, Jun; Zhou, Leping; Du, Xiaoze; Wen, Dongsheng

    2017-11-15

    The understanding of near-wall motion, evaporation behavior and dry pattern of sessile nanofluid droplets is fundamental to a wide range of applications such as painting, spray drying, thin film coating, fuel injection and inkjet printing. However, a deep insight into the heat transfer, fluid flow, near-wall particle velocity and their effects on the resulting dry patterns is still much needed to take the full advantage of these nano-sized particles in the droplet. This work investigates the effect of direct absorptive silicon/silver (Si/Ag) hybrid nanofluids via two experiments. The first experiment identifies the motion of tracer particles near the triple line of a sessile nanofluid droplet on a super-hydrophilic substrate under ambient conditions by the multilayer nanoparticle image velocimetry (MnPIV) technique. The second experiment reveals the effect of light-sensitive Si/Ag composite nanoparticles on the droplet evaporation rate and subsequent drying patterns under different radiation intensities. The results show that the presence of nanoparticle in a very small proportion significantly affects the motion of tracer particles, leading to different drying patterns and evaporation rates, which can be very important for the applications such as spray coating and inkjet printing. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Microfluidic generation of particle-stabilized water-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Abbasi, Niki; Navi, Maryam; Tsai, Scott

    2017-11-01

    We present a microfluidic platform that generates particle-stabilized water-in-water emulsions, using an aqueous two-phase system (ATPS) of polyethylene glycol (PEG) and Dextran (DEX). DEX droplets are generated passively at a flow focusing junction, in a continuous phase of PEG and carboxylated particles, using weak hydrostatic pressure to drive the flow. As DEX droplets travel inside the microfluidic device, carboxylated particles partition to the interface of the droplets. The number of particles partitioning to the interface of droplets increases as the droplets migrate downstream in the microchannel. As a result, the DEX droplets become stabilized against coalescence. We study the coverage and stability of the DEX droplets further downstream inside a reservoir, by changing the carboxylated particle concentration and the particle size. We anticipate that particle-stabilized water-in-water emulsions may have important biotechnological applications, due to their intrinsic biocompatibility compared to traditional particle-stabilized water-in-oil emulsions, for example for cell encapsulation.

  5. Improvement of stability of oil-in-water emulsions containing caseinate-coated droplets by addition of sodium alginate.

    PubMed

    Pallandre, S; Decker, E A; McClements, D J

    2007-11-01

    The potential of sodium alginate for improving the stability of emulsions containing caseinate-coated droplets was investigated. One wt% corn oil-in-water emulsions containing anionic caseinate-coated droplets (0.15 wt% sodium caseinate) and anionic sodium alginate (0 to 1 wt%) were prepared at pH 7. The pH of these emulsions was then adjusted to 3.5, so that the anionic alginate molecules adsorbed to the cationic caseinate-coated droplets. Extensive droplet aggregation occurred when there was insufficient alginate to completely saturate the droplet surfaces due to bridging flocculation, and when the nonadsorbed alginate concentration was high enough to induce depletion flocculation. Emulsions with relatively small particle sizes could be formed over a range of alginate concentrations (0.1 to 0.4 wt%). The influence of pHs (3 to 7) and sodium chloride (0 to 500 mM) on the properties of primary (0 wt% alginate) and secondary (0.15 wt% alginate) emulsions was studied. Alginate adsorbed to the droplet surfaces at pHs 3, 4, and 5, but not at pHs 6 and 7, due to electrostatic attraction between anionic groups on the alginate and cationic groups on the adsorbed caseinate. Secondary emulsions had better stability than primary emulsions at pH values near caseinate's isoelectric point (pHs 4 and 5). In addition, secondary emulsions were stable up to higher ionic strengths (< 300 mM) than primary emulsions (<50 mM). The controlled electrostatic deposition method utilized in this study could be used to extend the range of application of dairy protein emulsifiers in the food industry.

  6. Impact of cloud horizontal inhomogeneity and directional sampling on the retrieval of cloud droplet size by the POLDER instrument

    NASA Astrophysics Data System (ADS)

    Shang, H.; Chen, L.; Bréon, F. M.; Letu, H.; Li, S.; Wang, Z.; Su, L.

    2015-11-01

    The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR (~ 1.5 μm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (> 15 μm) and to reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data from June 2008, and the new CDR results are compared with the operational CDRs. The comparison shows that the operational CDRs tend to be underestimated for large droplets because the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Finally, a sub-grid-scale retrieval case demonstrates that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size distribution parameters from POLDER measurements.

  7. Stability relationship for water droplet crystallization with the NASA Lewis icing spray

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Bartlett, C. Scott

    1987-01-01

    In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

  8. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity.

    PubMed

    Peng, Dungeng; Zhang, Jinsong; Liu, Qingliang; Taylor, Ethan Will

    2007-10-01

    It has been shown that 36 nm Nano-Se has lower toxicity than selenite or selenomethionine, but these forms of selenium (Se) all possess similar ability to increase selenoenzyme levels. The size of nanoparticles plays an important role in their biological activity: as expected, 5-200 nm Nano-Se can directly scavenge free radicals in vitro in a size-dependent fashion. However, in Se-deficient cells and Se-deficient mice, the size effect of Nano-Se on increasing selenoenzymes and liver Se disappears unexpectedly. We hypothesize that under conditions of Se deficiency, the avidity of Se uptake mechanisms may be increased to maintain the biosynthesis of selenoenzymes, which are fundamental for redox homeostasis. This increased avidity may override the potential advantage of small size Nano-Se seen under Se-replete conditions, thereby eliminating the size effect. Once selenoenzymes have been saturated, Se uptake mechanisms may downregulate; accordingly, the size effect of Nano-Se can then reappear. To test this hypothesis, Se-deficient mice were administered either 36 or 90 nm Nano-Se at supranutritional doses, in both a short-term model and a single-dose model. Under these conditions, Nano-Se showed a size effect on Se accumulation and glutathione S-transferase (GST) activity. A size effect of Nano-Se was found in 15 out of 18 total comparisons between sizes at the same dose and time in the two models. Furthermore, the magnitude of the size effect was more prominent on Se accumulation than on GST activity. GST is strictly regulated by transcriptional and translational mechanisms, so its increase in activity normally does not exceed 3-fold. In contrast, the homeostasis of Se accumulation is not as tightly controlled. In the present experiments, GST activity had reached or was approaching saturation, but liver Se was far below saturation. Therefore, our results strongly suggest that the saturation profile of the tested biomarker has an impact on the size effect of Nano

  9. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    NASA Technical Reports Server (NTRS)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  10. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    PubMed

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  11. Large-scale production of kappa-carrageenan droplets for gel-bead production: theoretical and practical limitations of size and production rate.

    PubMed

    Hunik, J H; Tramper, J

    1993-01-01

    Immobilization of biocatalysts in kappa-carrageenan gel beads is a widely used technique nowadays. Several methods are used to produce the gel beads. The gel-bead production rate is usually sufficient to make the relatively small quantities needed for bench-scale experiments. The droplet diameter can, within limits, be adjusted to the desired size, but it is difficult to predict because of the non-Newtonian fluid behavior of the kappa-carrageenan solution. Here we present the further scale-up of the extrusion technique with the theory to predict the droplet diameters for non-Newtonian fluids. The emphasis is on the droplet formation, which is the rate-limiting step in this extrusion technique. Uniform droplets were formed by breaking up a capillary jet with a sinusoidal signal of a vibration exciter. At the maximum production rate of 27.6 dm3/h, uniform droplets with a diameter of (2.1 +/- 0.12) x 10(-3) m were obtained. This maximum flow rate was limited by the power transfer of the vibration exciter to the liquid flow. It was possible to get a good prediction of the droplet diameter by estimating the local viscosity from shear-rate calculations and an experimental relation between the shear rate and viscosity. In this way the theory of Newtonian fluids could be used for the non-Newtonian kappa-carrageenan solution. The calculated optimal break-up frequencies and droplet sizes were in good agreement with those found in the experiments.

  12. Droplet Deformation Prediction With the Droplet Deformation and Breakup Model (DDB)

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2012-01-01

    The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.

  13. Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets

    NASA Astrophysics Data System (ADS)

    Lin, I.-Hsin; Miller, Daniel S.; Bertics, Paul J.; Murphy, Christopher J.; de Pablo, Juan J.; Abbott, Nicholas L.

    2011-06-01

    The ordering of liquid crystals (LCs) is known to be influenced by surfaces and contaminants. Here, we report that picogram per milliliter concentrations of endotoxin in water trigger ordering transitions in micrometer-size LC droplets. The ordering transitions, which occur at surface concentrations of endotoxin that are less than 10-5 Langmuir, are not due to adsorbate-induced changes in the interfacial energy of the LC. The sensitivity of the LC to endotoxin was measured to change by six orders of magnitude with the geometry of the LC (droplet versus slab), supporting the hypothesis that interactions of endotoxin with topological defects in the LC mediate the response of the droplets. The LC ordering transitions depend strongly on glycophospholipid structure and provide new designs for responsive soft matter.

  14. Wettability and impact dynamics of water droplets on rice ( Oryza sativa L.) leaves

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Hee; Huh, Hyung Kyu; Lee, Sang Joon

    2014-03-01

    We investigated the wettability and impact dynamics of water droplets on rice leaves at various leaf inclination angles and orientations. Contact angle, contact angle hysteresis (CAH), and roll-off angle ( α roll) of water droplets were measured quantitatively. Results showed that droplet motion exhibited less resistance along the longitudinal direction. Impact dynamic parameters, such as impact behaviors, maximum spreading factor, contact distance, and contact time were also investigated. Three different impact behaviors were categorized based on the normal component of Weber number irrespective of the inclination angle of the rice leaf. The asymmetric impact behavior induced by the tangential Weber number was also identified. Variation in the maximum spreading factor according to the normal Weber number was measured and compared with theoretical value obtained according to scaling law to show the wettability of the rice leaves. The contact distance of the impacting droplets depended on the inclination angle of the leaves. Along the longitudinal direction of rice leaves, contact distance was farther than that along the transverse direction. This result is consistent with the smaller values of CAH and α roll along the longitudinal direction.

  15. How coalescing droplets jump.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Sprittles, James; Nolan, Kevin; Mitchell, Robert; Wang, Evelyn N

    2014-10-28

    Surface engineering at the nanoscale is a rapidly developing field that promises to impact a range of applications including energy production, water desalination, self-cleaning and anti-icing surfaces, thermal management of electronics, microfluidic platforms, and environmental pollution control. As the area advances, more detailed insights of dynamic wetting interactions on these surfaces are needed. In particular, the coalescence of two or more droplets on ultra-low adhesion surfaces leads to droplet jumping. Here we show, through detailed measurements of jumping droplets during water condensation coupled with numerical simulations of binary droplet coalescence, that this process is fundamentally inefficient with only a small fraction of the available excess surface energy (≲ 6%) convertible into translational kinetic energy. These findings clarify the role of internal fluid dynamics during the jumping droplet coalescence process and underpin the development of systems that can harness jumping droplets for a wide range of applications.

  16. Dueling Mechanisms for Dry Zones around Frozen Droplets

    NASA Astrophysics Data System (ADS)

    Bisbano, Caitlin; Nath, Saurabh; Boreyko, Jonathan

    2016-11-01

    Ice acts as a local humidity sink, due to its depressed saturation pressure relative to that of supercooled water. Hygroscopic chemicals typically exhibit annular dry zones of inhibited condensation; however, dry zones do not tend to form around ice because of inter-droplet frost growth to nearby liquid droplets that have already condensed on the chilled surface. Here, we use a humidity chamber with an embedded Peltier stage to initially suppress the growth of condensation on a chilled surface containing a single frozen droplet, in order to characterize the dry zone around ice for the first time. The length of the dry zone was observed to vary by at least two orders of magnitude as a function of surface temperature, ambient humidity, and the size of the frozen droplet. The surface temperature and ambient humidity govern the magnitudes of the in-plane and out-of-plane gradients in vapor pressure, while the size of the frozen droplet effects the local thickness of the concentration boundary layer. We develop an analytical model that reveals two different types of dry zones are possible: one in which nucleation is inhibited and one where the net growth of condensate is inhibited. Finally, a phase map was developed to predict the parameter space in which nucleation dry zones versus flux dry zones are dominant.

  17. Preparation of nano fluids by mechanical method

    NASA Astrophysics Data System (ADS)

    Boopathy, J.; Pari, R.; Kavitha, M.; Angelo, P. C.

    2012-07-01

    Nanofluids are conventional heat transfer fluids that contain nano particles of metals, oxides, carbides, nitrides, or nanotubes. Nanofluids exhibit enhanced thermal conductivity and heat transfer coefficients compared to the base fluids. This paper presents the procedure for preparing nanofluids consisting of Copper and Aluminium nano powders in base fluids. Copper and Aluminium nano powders were produced by planetary ball wet milling at 300rpm for 50hrs. Toluene was added to ensure wet milling. These powders were characterized in XRD and SEM for their purity, particle size and shape. The XRD results confirmed the final particle sizes of Copper and Aluminium in the nano range. Then the 0.01 gm of nano metal powders was added in 150 ml of double distilled water and magnetic stirring was done at 1500 rpm for 15 minutes. Sodium lauryl sulphate (0.05%) was added in water as surfactant to ensure the stability of the dispersion. Ultrasonication in the 3000 watts bath was done for 10 minutes to enhance the uniform dispersion of metal powders in water. The pH, dynamic viscosity, ionic conductivity and the stability of the fluids were determined for further usage of synthesized nanofluids as coolant during grinding operation.

  18. Nanoscale Footprints of Self-Running Gallium Droplets on GaAs Surface

    PubMed Central

    Wu, Jiang; Wang, Zhiming M.; Li, Alvason Z.; Benamara, Mourad; Li, Shibin; Salamo, Gregory J.

    2011-01-01

    In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001) surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems. PMID:21673965

  19. Electrical and magnetic properties of nano-sized magnesium ferrite

    NASA Astrophysics Data System (ADS)

    T, Smitha; X, Sheena; J, Binu P.; Mohammed, E. M.

    2015-02-01

    Nano-sized magnesium ferrite was synthesized using sol-gel techniques. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. Vibration Sample Magnetometer was used to record the magnetic measurements. XRD analysis reveals the prepared sample is single phasic without any impurity. Particle size calculation shows the average crystallite size of the sample is 19nm. FTIR analysis confirmed spinel structure of the prepared samples. Magnetic measurement study shows that the sample is ferromagnetic with high degree of isotropy. Hysterisis loop was traced at temperatures 100K and 300K. DC electrical resistivity measurements show semiconducting nature of the sample.

  20. Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Wagner, Justin L.; Farias, Paul Abraham

    Liquid metal breakup processes are important for understanding a variety of physical phenomena including metal powder formation, thermal spray coatings, fragmentation in explosive detonations and metalized propellant combustion. Since the breakup behaviors of liquid metals are not well studied, we experimentally investigate the roles of higher density and fast elastic surface oxide formation on breakup morphology and droplet characteristics. This work compares the column breakup of water with Galinstan, a room-temperature eutectic liquid metal alloy of gallium, indium and tin. A shock tube is used to generate a step change in convective velocity and back-lit imaging is used to classifymore » morphologies for Weber numbers up to 250. Digital in-line holography (DIH) is then used to quantitatively capture droplet size, velocity and three-dimensional position information. Differences in geometry between canonical spherical drops and the liquid columns utilized in this paper are likely responsible for observations of earlier transition Weber numbers and uni-modal droplet volume distributions. Scaling laws indicate that Galinstan and water share similar droplet size-velocity trends and root-normal volume probability distributions. Furthermore, measurements indicate that Galinstan breakup occurs earlier in non-dimensional time and produces more non-spherical droplets due to fast oxide formation.« less

  1. Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow

    DOE PAGES

    Chen, Yi; Wagner, Justin L.; Farias, Paul Abraham; ...

    2018-05-22

    Liquid metal breakup processes are important for understanding a variety of physical phenomena including metal powder formation, thermal spray coatings, fragmentation in explosive detonations and metalized propellant combustion. Since the breakup behaviors of liquid metals are not well studied, we experimentally investigate the roles of higher density and fast elastic surface oxide formation on breakup morphology and droplet characteristics. This work compares the column breakup of water with Galinstan, a room-temperature eutectic liquid metal alloy of gallium, indium and tin. A shock tube is used to generate a step change in convective velocity and back-lit imaging is used to classifymore » morphologies for Weber numbers up to 250. Digital in-line holography (DIH) is then used to quantitatively capture droplet size, velocity and three-dimensional position information. Differences in geometry between canonical spherical drops and the liquid columns utilized in this paper are likely responsible for observations of earlier transition Weber numbers and uni-modal droplet volume distributions. Scaling laws indicate that Galinstan and water share similar droplet size-velocity trends and root-normal volume probability distributions. Furthermore, measurements indicate that Galinstan breakup occurs earlier in non-dimensional time and produces more non-spherical droplets due to fast oxide formation.« less

  2. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites

    PubMed Central

    Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan

    2015-01-01

    Nano-sized TiCx/2009Al composites (with 5, 7, and 9 vol% TiCx) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiCx particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiCx particles in 2009Al as well as the tensile properties of nano-sized TiCx/2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiCx particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiCx/2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiCx/2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiCx particles and tensile properties of composites. PMID:28793749

  3. Nano-Sized Grain Refinement Using Friction Stir Processing

    DTIC Science & Technology

    2013-03-01

    friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During

  4. Preventing droplet deformation during dielectrophoretic centering of a compound emulsion droplet

    NASA Astrophysics Data System (ADS)

    Randall, Greg; Blue, Brent

    2012-11-01

    Compound droplets, or droplets-within-droplets, are traditionally key components in applications ranging from drug delivery to the food industry. Presently, millimeter-sized compound droplets are precursors for shell targets in inertial fusion energy work. However, a key constraint in target fabrication is a uniform shell wall thickness, which in turn requires a centered core droplet in the compound droplet precursor. Previously, Bei et al. (2009, 2010) have shown that compound droplets could be centered in a static fluid using an electric field of 0.7 kV/cm at 20 MHz. Randall et al. (2012) developed a process to center the core of a moving compound droplet, though the ~kV/cm field induced small (< 5%) but undesirable droplet stretching. This work shows that by using macromolecular emulsifiers to strengthen the droplet's interfaces, (proteins, tunable peptides, or biotinylated streptavidin) droplet stretching can be greatly inhibited. Proof-of-principle experiments are performed in either a stagnant density-matched aquarium or a vertical channel of buoyancy-driven droplets in a ~kV/cm electric field. A scaling analysis is given from a fluid mechanics and interfacial rheology perspective and we discuss the effective interfacial charge from an emulsifier and its impact on centering. Work funded by General Atomics Internal R&D.

  5. Core/Shell Microstructure Induced Synergistic Effect for Efficient Water-Droplet Formation and Cloud-Seeding Application.

    PubMed

    Tai, Yanlong; Liang, Haoran; Zaki, Abdelali; El Hadri, Nabil; Abshaev, Ali M; Huchunaev, Buzgigit M; Griffiths, Steve; Jouiad, Mustapha; Zou, Linda

    2017-12-26

    Cloud-seeding materials as a promising water-augmentation technology have drawn more attention recently. We designed and synthesized a type of core/shell NaCl/TiO 2 (CSNT) particle with controlled particle size, which successfully adsorbed more water vapor (∼295 times at low relative humidity, 20% RH) than that of pure NaCl, deliquesced at a lower environmental RH of 62-66% than the hygroscopic point (h g.p ., 75% RH) of NaCl, and formed larger water droplets ∼6-10 times its original measured size area, whereas the pure NaCl still remained as a crystal at the same conditions. The enhanced performance was attributed to the synergistic effect of the hydrophilic TiO 2 shell and hygroscopic NaCl core microstructure, which attracted a large amount of water vapor and turned it into a liquid faster. Moreover, the critical particle size of the CSNT particles (0.4-10 μm) as cloud-seeding materials was predicted via the classical Kelvin equation based on their surface hydrophilicity. Finally, the benefits of CSNT particles for cloud-seeding applications were determined visually through in situ observation under an environmental scanning electron microscope on the microscale and cloud chamber experiments on the macroscale, respectively. These excellent and consistent performances positively confirmed that CSNT particles could be promising cloud-seeding materials.

  6. Efficient demulsification of oil-in-water emulsions using a zeolitic imidazolate framework: Adsorptive removal of oil droplets from water.

    PubMed

    Lin, Kun-Yi Andrew; Chen, Yu-Chien; Phattarapattamawong, Songkeart

    2016-09-15

    To demulsify oil-in-water (O/W) emulsions, a zinc-based zeolitic imidazolate framework (ZIF-8) was employed for the first time to remove oil droplets from water. ZIF-8 exhibits a high surface area and positive surface charges, making it a suitable adsorbent to adsorb negatively-charged oil droplets. Adsorption behaviors of oil droplets to ZIF-8 were studied by analyzing the adsorption kinetics and isotherm with theoretical models. The activation energy of adsorption of oil droplets to ZIF-8 was determined as 24.1kJmol(-1). The Langmuir-Freundlich (L-F) model was found to be most applicable to interpret the isotherm data and the predicated maximum adsorption capacity of ZIF-8 can reach 6633mgg(-1), revealing a promising capability of ZIF-8 for demulsification. Factors influencing the adsorption of oil droplets to ZIF-8 were investigated including temperature, pH, salt and surfactants. The adsorption capacity of ZIF-8 for oil was improved at elevated temperatures, whereas alkaline condition was unfavorable for the adsorption of oil droplets due to the electrostatic repulsion at high pH. The adsorption capacity of ZIF-8 remained similar in the presence of NaCl but it was reduced in the presence of surfactants. ZIF-8 was regenerated by a simple ethanol-washing method; the regenerated ZIF-8 exhibited more than 85% of regeneration efficiency over six cycles. Its crystalline structure also remained intact after the regeneration. These characteristics indicate that ZIF-8 can be a promising and effective adsorbent to remove oil droplets for demulsification of O/W emulsions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Performance of the Phase Doppler Particle Analyzer icing cloud droplet sizing probe in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Rudoff, R. C.; Bachalo, E. J.; Bachalo, W. D.; Oldenburg, J. R.

    1992-01-01

    The design, development, and testing of an icing cloud droplet sizing probe based upon the Phase Doppler Particle Analyzer (PDPA) are discussed. This probe is an in-situ laser interferometry based single particle measuring device capable of determining size distributions. The probe is designed for use in harsh environments such as icing tunnels and natural icing clouds. From the measured size distribution, Median Volume Diameter (MVD) and Liquid Water Content (LWC) may be determined. Both the theory of measurement and the mechanical aspects of the probe design and development are discussed. The MVD results from the probe are compared to an existing calibration based upon different instruments in a series of tests in the NASA Lewis Icing Research Tunnel. Agreement between the PDPA probe and the existing calibration is close for MVDs between 15 to 30 microns, but the PDPA results are considerably smaller for MVDs under 15 microns.

  8. Chemical consequences of the initial diffusional growth of cloud droplets - A clean marine case

    NASA Technical Reports Server (NTRS)

    Twohy, C. H.; Charlson, R. J.; Austin, P. H.

    1989-01-01

    A simple microphysical cloud parcel model and a simple representation of the background marine aerosol are used to predict the concentrations and compositions of droplets of various sizes near cloud base. The aerosol consists of an externally-mixed ammonium bisulfate accumulation mode and a sea-salt coarse particle mode. The difference in diffusional growth rates between the small and large droplets as well as the differences in composition between the two aerosol modes result in substantial differences in solute concentration and composition with size of droplets in the parcel. The chemistry of individual droplets is not, in general, representative of the bulk (volume-weighted mean) cloud water sample. These differences, calculated to occur early in the parcel's lifetime, should have important consequences for chemical reactions such as aqueous phase sulfate production.

  9. Correlation of Emulsion Structure with Cellular Uptake Behavior of Encapsulated Bioactive Nutrients: Influence of Droplet Size and Interfacial Structure.

    PubMed

    Lu, Wei; Kelly, Alan L; Maguire, Pierce; Zhang, Hongzhou; Stanton, Catherine; Miao, Song

    2016-11-16

    In this study, an in vitro Caco-2 cell culture assay was employed to evaluate the correlation between emulsion structure and cellular uptake of encapsulated β-carotene. After 4 h of incubation, an emulsion stabilized with whey protein isolate showed the highest intracellular accumulation of β-carotene (1.06 μg), followed by that stabilized with sodium caseinate (0.60 μg) and Tween 80 (0.20 μg), which are 13-, 7.5-, and 2.5-fold higher than that of free β-carotene (0.08 μg), respectively. Emulsions with small droplet size (239 ± 5 nm) showed a higher cellular uptake of β-carotene (1.56 μg) than emulsiond with large droplet size (489 ± 9 nm) (0.93 μg) (p < 0.01). The results suggested that delivery in an emulsion significantly improved the cellular uptake of β-carotene and thus potentially its bioavailability; uptake was closely correlated with the interfacial composition and droplet size of emulsions. The findings support the potential for achieving optimal controlled and targeted delivery of bioactive nutrients by structuring emulsions.

  10. Dynamics of skirting droplets

    NASA Astrophysics Data System (ADS)

    Akers, Caleb; Hale, Jacob

    2014-11-01

    It has been observed that non-coalescence between a droplet and pool of like fluid can be prolonged or inhibited by sustained relative motion between the two fluids. In this study, we quantitatively describe the motion of freely moving droplets that skirt across the surface of a still pool of like fluid. Droplets of different sizes and small Weber number were directed horizontally onto the pool surface. After stabilization of the droplet shape after impact, the droplets smoothly moved across the surface, slowing until coalescence. Using high-speed imaging, we recorded the droplet's trajectory from a top-down view as well as side views both slightly above and below the fluid surface. The droplets' speed is observed to decrease exponentially, with the smaller droplets slowing down at a greater rate. Droplets infused with neutral density micro beads showed that the droplet rolls along the surface of the pool. A qualitative model of this motion is presented.

  11. Antioxidant activities of nano-bubble hydrogen-dissolved water assessed by ESR and 2,2'-bipyridyl methods.

    PubMed

    Kato, Shinya; Matsuoka, Daigo; Miwa, Nobuhiko

    2015-08-01

    We prepared nano-bubble hydrogen-dissolved water (nano-H water) which contained hydrogen nano-bubbles of <717-nm diameter for 54% of total bubbles. In the DMPO-spin trap electron spin resonance (ESR) method, the DMPO-OH:MnO ratio, being attributed to amounts of hydroxyl radicals (OH), was 2.78 for pure water (dissolved hydrogen [DH]≤0.01 ppm, oxidation-reduction potential [ORP]=+324 mV), 2.73 for tap water (0.01 ppm, +286 mV), 2.93 for commercially available hydrogen water (0.075 ppm, +49 mV), and 2.66 for manufactured hydrogen water (0.788 ppm, -614 mV), whereas the nano-H water (0.678 ppm, -644 mV) exhibited 2.05, showing the superiority of nano-H water to other types of hydrogen water in terms of OH-scavenging activity. Then, the reduction activity of nano-H water was assessed spectrophotometrically by the 2,2'-bipyridyl method. Differential absorbance at 530 nm was in the order: 0.018 for pure water, 0.055 for tap water, 0.079 for nano-H water, 0.085 for commercially available hydrogen water, and 0.090 for manufactured hydrogen water, indicating a prominent reduction activity of hydrogen water and nano-H water against oxidation in ascorbate-coupled ferric ion-bipyridyl reaction. Thus, nano-H water has an improved antioxidant activity as compared to hydrogen water of similar DH-level, indicating the more marked importance of nano-bubbles rather than the concentration of hydrogen in terms of OH-scavenging. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dynamic Impacts of Water Droplets onto Icephobic Soft Surfaces at High Weber Numbers

    NASA Astrophysics Data System (ADS)

    Ma, Liqun; Liu, Yang; Hu, Hui; Wang, Wei; Kota, Arun

    2017-11-01

    An experimental investigation was performed to examine the effects of the stiffness of icephobic soft PDMS materials on the impact dynamics of water drops at high weber numbers pertinent to aircraft icing phenomena. The experimental study was performed in the Icing Research Tunnel available at Iowa State University (ISU-IRT). During the experiments, both the shear modulus of the soft PDMS surface and the Weber numbers of the impinging water droplets are controlled for the comparative study. While the shear modulus of the soft PDMS surface was changed by tuning the recipes to make the PDMS materials, the Weber number of the impinging water droplets was altered by adjusting the airflow speed in the wind tunnel. A suite of advanced flow diagnostic techniques, which include high-speed photographic imaging, digital image projection (DIP), and infrared (IR) imaging thermometry, were used to quantify the transient behavior of water droplet impingement, unsteady heat transfer and dynamic ice accreting process over the icephobic soft airfoil surfaces. The findings derived from the icing physics studies can be used to improve current icing accretion models for more accurate prediction of ice formation and accretion on aircraft wings and to develop effective anti-/deicing strategies for safer and more efficient operation of aircraft in cold weather.

  13. Experimental and Modeling Study of the Burning of an Ethanol Droplet in Microgravity

    NASA Technical Reports Server (NTRS)

    Kazakov, Andrei; Conley, Jordan; Dryer, Frederick L.; Ferkul, Paul (Technical Monitor)

    2000-01-01

    The microgravity ethanol droplet combustion experiments were performed aboard the STS-94/MSL-1 Shuttle mission within the Fiber-Supported Droplet Combustion-2 (FSDC-2) program. The burning histories and flame standoffs for pure ethanol and ethanol/water droplets were obtained from the images recorded with two 8 mm videocameras. The obtained results show that average gasification rate is related to the initial droplet size in a manner similar to n-alkanes and methanol and consistent with the results of Hara and Kumagai and the data taken recently in the NASA-Lewis 2.2 s droptower. A transient, moving finite-element chemically reacting flow model applied previously to sphero-symmetric combustion of methanol, methanol/water, n-alkane, and n-alkane binary mixture droplets was adopted for the problem of ethanol droplet combustion. The model includes detailed description of gas-phase reaction chemistry and transport, a simplified description of liquid phase transport, and non-luminous radiative heat transfer. Gas-phase chemistry was described with the detailed reaction mechanism of Norton and Dryer, which consists of 142 reversible elementary reactions of 33 species. Another recently published reaction mechanism of high-temperature ethanol oxidation was also considered. The model predictions were found to compare favorably with the experimental data. The model analysis also indicates that water condensation in the case of ethanol has smaller effect on average droplet gasification rate as compared with previously studied methanol cases. This effect is explained by non-ideal (azeotropic) behavior of binary ethanol-water mixtures. Further analysis of computational results and ethanol droplet radiative extinction behavior will be discussed.

  14. Statistical steady states in turbulent droplet condensation

    NASA Astrophysics Data System (ADS)

    Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph

    2017-11-01

    We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.

  15. Novel Parallelized Electroporation by Electrostatic Manipulation of a Water-in-Oil Droplet as a Microreactor

    PubMed Central

    Takahashi, Shota; Asada, Atsushi; Matsuo, Minako; Kishikawa, Kenta; Mizuno, Akira

    2015-01-01

    Electroporation is the most widely used transfection method for delivery of cell-impermeable molecules into cells. We developed a novel gene transfection method, water-in-oil (W/O) droplet electroporation, using dielectric oil and an aqueous droplet containing mammalian cells and transgene DNA. When a liquid droplet suspended between a pair of electrodes in dielectric oil is exposed to a DC electric field, the droplet moves between the pair of electrodes periodically and droplet deformation occurs under the intense DC electric field. During electrostatic manipulation of the droplet, the local intense electric field and instantaneous short circuit via the droplet due to droplet deformation facilitate gene transfection. This method has several advantages over conventional transfection techniques, including co-transfection of multiple transgene DNAs into even as few as 103 cells, transfection into differentiated neural cells, and the capable establishment of stable cell lines. In addition, there have been improvements in W/O droplet electroporation electrodes for disposable 96-well plates making them suitable for concurrent performance without thermal loading by a DC electric field. This technique will lead to the development of cell transfection methods for novel regenerative medicine and gene therapy. PMID:26649904

  16. Effect of surface roughness on droplet splashing

    NASA Astrophysics Data System (ADS)

    Hao, Jiguang

    2017-12-01

    It is well known that rough surfaces trigger prompt splashing and suppress corona splashing on droplet impact. Upon water droplet impact, we experimentally found that a slightly rough substrate triggers corona splashing which is suppressed to prompt splashing by both further increase and further decrease of surface roughness. The nonmonotonic effect of surface roughness on corona splashing weakens with decreasing droplet surface tension. The threshold velocities for prompt splashing and corona splashing are quantified under different conditions including surface roughness, droplet diameter, and droplet surface tension. It is determined that slight roughness significantly enhances both prompt splashing and corona splashing of a water droplet, whereas it weakly affects low-surface-tension droplet splashing. Consistent with previous studies, high roughness triggers prompt splashing and suppresses corona splashing. Further experiments on droplet spreading propose that the mechanism of slight roughness enhancing water droplet splashing is due to the decrease of the wetted area with increasing surface roughness.

  17. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites.

    PubMed

    Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan

    2015-12-17

    Nano-sized TiC x /2009Al composites (with 5, 7, and 9 vol% TiC x ) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiC x particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiC x particles in 2009Al as well as the tensile properties of nano-sized TiC x /2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiC x particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiC x /2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiC x /2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiC x particles and tensile properties of composites.

  18. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhou; Xu, Junbo; He, Xianfeng

    2018-07-01

    The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.

  19. Influence of process conditions during impulsed electrostatic droplet formation on size distribution of hydrogel beads.

    PubMed

    Lewińska, Dorota; Rosiński, Stefan; Weryński, Andrzej

    2004-02-01

    In the medical applications of microencapsulation of living cells there are strict requirements concerning the high size uniformity and the optimal diameter, the latter dependent on the kind of therapeutic application, of manufactured gel beads. The possibility of manufacturing small size gel bead samples (diameter 300 microm and below) with a low size dispersion (less than 10%), using an impulsed voltage droplet generator, was examined in this work. The main topic was the investigation of the influence of values of electric parameters (voltage U, impulse time tau and impulse frequency f) on the quality of obtained droplets. It was concluded that, owing to the implementation of the impulse mode and regulation of tau and f values, it is possible to work in a controlled manner in the jet flow regime (U> critical voltage UC). It is also possible to obtain uniform bead samples with the average diameter, deff, significantly lower than the nozzle inner diameter dI (bead diameters 0.12-0.25 mm by dI equal to 0.3 mm, size dispersion 5-7%). Alterations of the physical parameters of the process (polymer solution physico-chemical properties, flow rate, distance between nozzle and gellifying bath) enable one to manufacture uniform gel beads in the wide range of diameters using a single nozzle.

  20. The effect of dispersed Petrobaltic oil droplet size on photosynthetically active radiation in marine environment.

    PubMed

    Haule, Kamila; Freda, Włodzimierz

    2016-04-01

    Oil pollution in seawater, primarily visible on sea surface, becomes dispersed as an effect of wave mixing as well as chemical dispersant treatment, and forms spherical oil droplets. In this study, we examined the influence of oil droplet size of highly dispersed Petrobaltic crude on the underwater visible light flux and the inherent optical properties (IOPs) of seawater, including absorption, scattering, backscattering and attenuation coefficients. On the basis of measured data and Mie theory, we calculated the IOPs of dispersed Petrobaltic crude oil in constant concentration, but different log-normal size distributions. We also performed a radiative transfer analysis, in order to evaluate the influence on the downwelling irradiance Ed, remote sensing reflectance Rrs and diffuse reflectance R, using in situ data from the Baltic Sea. We found that during dispersion, there occurs a boundary size distribution characterized by a peak diameter d0  = 0.3 μm causing a maximum E d increase of 40% within 0.5-m depth, and the maximum Ed decrease of 100% at depths below 5 m. Moreover, we showed that the impact of size distribution on the "blue to green" ratios of Rrs and R varies from 24% increase to 27% decrease at the same crude oil concentration.

  1. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Relation between Raman backscattering from droplets and bulk water: Effect of refractive index dispersion

    NASA Astrophysics Data System (ADS)

    Plakhotnik, Taras; Reichardt, Jens

    2018-03-01

    A theoretical framework is presented that permits investigations of the relation between inelastic backscattering from microparticles and bulk samples of Raman-active materials. It is based on the Lorentz reciprocity theorem and no fundamental restrictions concerning the microparticle shape apply. The approach provides a simple and intuitive explanation for the enhancement of the differential backscattering cross-section in particles in comparison to bulk. The enhancement factor for scattering of water droplets in the diameter range from 0 to 60 μm (vitally important for the a priori measurement of liquid water content of warm clouds with spectroscopic Raman lidars) is about a factor of 1.2-1.6 larger (depending on the size of the sphere) than an earlier study has shown. The numerical calculations are extended to 1000 μm and demonstrate that dispersion of the refractive index of water becomes an important factor for spheres larger than 100 μm. The physics of the oscillatory phenomena predicted by the simulations is explained.

  3. Impingement of Water Droplets on NACA 65A004 Airfoil at 8 deg Angle of Attack

    NASA Technical Reports Server (NTRS)

    Brun, R. J.; Gallagher, H. M.; Vogt, D. E.

    1954-01-01

    The trajectories of droplets in the air flowing past an NACA 65AO04 airfoil at an angle of attack of 8 deg were determined.. The amount of water in droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and presented to cover a large range of flight and atmospheric conditions. These impingement characteristics are compared briefly with those previously reported for the same airfoil at an angle of attack of 4 deg.

  4. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice.

    PubMed

    Zhang, Jinsong; Wang, Huali; Bao, Yongping; Zhang, Lide

    2004-05-28

    We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice.

  5. Small-angle-neutron-scattering from giant water-in-oil microemulsion droplets. II. Polymer-decorated droplets in a quaternary system

    NASA Astrophysics Data System (ADS)

    Foster, Tobias; Sottmann, Thomas; Schweins, Ralf; Strey, Reinhard

    2008-02-01

    Amphiphilic block copolymers of the type poly(ethylenepropylene)-co-poly(ethyleneoxide) dramatically enhance the solubilisation efficiency of non-ionic surfactants in microemulsions that contain equal volumes of water in oil. Consequently, the length scale of the microstructure of such bicontinuous microemulsions is dramatically increased up to the order of a few 100nm. In this paper, we show that this so-called efficiency boosting effect can also be applied to water-in-oil microemulsions with droplet microstructure. Such giant water-in-oil microemulsions would provide confined compartments in which chemical reactions of biological macromolecules can be performed on a single molecule level. With this motivation we investigated the phase behavior and the microstructure of oil-rich microemulsions containing D2O, n-decane(d22), C10E4 and the amphiphilic block copolymer PEP5-PEO5 [poly(ethylenepropylene)-co-poly(ethyleneoxide), weight per block of 5000g/mol]. We found that 15wt% of water can be solubilised by 5wt% of surfactant and block copolymer when about 6wt% of surfactant is replaced by the block copolymer. Small-angle-neutron-scattering experiments were performed to determine the length scales and microstructure topologies of the oil-rich microemulsions. To analyze the scattering data, we derived a novel form factor that also takes into account the scattering contribution of the hydrophobic part of the block copolymer molecules that reside in the surfactant shell. The quantitative analysis of the scattering data with this form factor shows that the radius of the largest droplets amounts up to 30nm. The novel form factor also yielded qualitative information on the stretching of the polymer chains in dependence on the polymer surface density and the droplet radius.

  6. Minimal size of coffee ring structure.

    PubMed

    Shen, Xiaoying; Ho, Chih-Ming; Wong, Tak-Sing

    2010-04-29

    A macroscopic evaporating water droplet with suspended particles on a solid surface will form a ring-like structure at the pinned contact line due to induced capillary flow. As the droplet size shrinks, the competition between the time scales of the liquid evaporation and the particle movement may influence the resulting ring formation. When the liquid evaporates much faster than the particle movement, coffee ring formation may cease. Here, we experimentally show that there exists a lower limit of droplet size, D(c), for the successful formation of a coffee ring structure. When the particle concentration is above a threshold value, D(c) can be estimated by considering the collective effects of the liquid evaporation and the particle diffusive motion within the droplet. For suspended particles of size approximately 100 nm, the minimum diameter of the coffee ring structure is found to be approximately 10 microm.

  7. Evaporation-Triggered Segregation of Sessile Binary Droplets.

    PubMed

    Li, Yaxing; Lv, Pengyu; Diddens, Christian; Tan, Huanshu; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2018-06-01

    Droplet evaporation of multicomponent droplets is essential for various physiochemical applications, e.g., in inkjet printing, spray cooling, and microfabrication. In this work, we observe and study the phase segregation of an evaporating sessile binary droplet, consisting of a miscible mixture of water and a surfactantlike liquid (1,2-hexanediol). The phase segregation (i.e., demixing) leads to a reduced water evaporation rate of the droplet, and eventually the evaporation process ceases due to shielding of the water by the nonvolatile 1,2-hexanediol. Visualizations of the flow field by particle image velocimetry and numerical simulations reveal that the timescale of water evaporation at the droplet rim is faster than that of the Marangoni flow, which originates from the surface tension difference between water and 1,2-hexanediol, eventually leading to segregation.

  8. Retrieval of Droplet size Density Distribution from Multiple field of view Cross polarized Lidar Signals: Theory and Experimental Validation

    DTIC Science & Technology

    2016-06-02

    Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...theoretical and experimental studies of mul- tiple scattering and multiple-field-of-view (MFOV) li- dar detection have made possible the retrieval of cloud...droplet cloud are typical of Rayleigh scattering, with a signature close to a dipole (phase function quasi -flat and a zero-depolarization ratio

  9. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  10. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    NASA Astrophysics Data System (ADS)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  11. A Study of Large Droplet Ice Accretions in the NASA-Lewis IRT at Near-Freezing Conditions

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Addy, Harold E. , Jr.; Ide, Robert F.

    1996-01-01

    This report documents the results of an experimental study on large droplet ice accretions which was conducted in the NASA-Lewis Icing Research Tunnel (IRT) with a full-scale 77.25 inch chord Twin-Otter wing section. This study was intended to: (1) document the existing capability of the IRT to produce a large droplet icing cloud, and (2) study the effect of various parameters on large droplet ice accretions. Results are presented from a study of the IRT's capability to produce large droplets with MVD of 99 and 160 microns. The effect of the initial water droplet temperature on the resultant ice accretion was studied for different initial spray bar air and water temperatures. The initial spray bar water temperature was found to have no discernible effect upon the large droplet ice accretions. Also, analytical and experimental results suggest that the water droplet temperature is very nearly the same as the tunnel ambient temperature, thus providing a realistic simulation of the large droplet natural icing condition. The effect of temperature, droplet size, airspeed, angle-of attack, flap setting and de-icer boot cycling time on ice accretion was studied, and will be discussed in this report. It was found that, in almost all of the cases studied, an ice ridge formed immediately aft of the active portion of the de-icer boot. This ridge was irregular in shape, varied in location, and was in some cases discontinuous due to aerodynamic shedding.

  12. Refreeze experiments with water droplets containing different types of ice nuclei interpreted by classical nucleation theory

    NASA Astrophysics Data System (ADS)

    Kaufmann, Lukas; Marcolli, Claudia; Luo, Beiping; Peter, Thomas

    2017-03-01

    CNT using the contact angle α as the only fit parameter. Conversely, birch pollen washing water and small nonadecanol-coated water droplets show temperature dependencies of freezing rates steeper than predicted by all three CNT parameterizations. Good agreement of observations and calculations can be obtained when a pre-factor β is introduced to the rate coefficient as a second fit parameter. Thus, the following microphysical picture emerges: heterogeneous freezing occurs at ice-nucleating sites that need a minimum (critical) surface area to host embryos of critical size to grow into a crystal. Fits based on CNT suggest that the critical active site area is in the range of 10-50 nm2, with the exact value depending on sample, temperature, and CNT-based parameterization. Two fitting parameters are needed to characterize individual active sites. The contact angle α lowers the energy barrier that has to be overcome to form the critical embryo at the site compared to the homogeneous case where the critical embryo develops in the volume of water. The pre-factor β is needed to adjust the calculated slope of freezing rate increase with temperature decrease. When this slope is steep, this can be interpreted as a high frequency of nucleation attempts, so that nucleation occurs immediately when the temperature is low enough for the active site to accommodate a critical embryo. This is the case for active sites of birch pollen washing water and for small droplets coated with nonadecanol. If the pre-factor is low, the frequency of nucleation attempts is low and the increase in freezing rate with decreasing temperature is shallow. This is the case for Hoggar Mountain dust, the large droplets coated with nonadecanol, and ATD. Various hypotheses why the value of the pre-factor depends on the nature of the active sites are discussed.

  13. Impingement of Water Droplets on a Sphere

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Saper, Paul G.; Kadow, Charles F.

    1955-01-01

    Droplet trajectories about a sphere in ideal fluid flow were calculated. From the calculated droplet trajectories the droplet impingement characteristics of the sphere were determined. Impingement data and equations for determining the collection efficiency, the area, and the distribution of impingement are presented in terms of dimensionless parameters. The range of flight and atmospheric conditions covered in the calculations was extended considerably beyond the range covered by previously reported calculations for the sphere.

  14. Microfluidic droplet-based liquid-liquid extraction.

    PubMed

    Mary, Pascaline; Studer, Vincent; Tabeling, Patrick

    2008-04-15

    We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solute-fluorescein-from the external phase (extraction) and the opposite case, where droplets reject a solute-rhodamine-into the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe-2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.

  15. Sintering of polydisperse viscous droplets

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Dingwell, Donald B.

    2017-03-01

    Sintering—or coalescence—of compacts of viscous droplets is driven by the interfacial tension between the droplets and the interstitial gas phase. The process, which occurs in a range of industrial and natural settings, such as the manufacture of ceramics and the welding of volcanic ash, causes the compact to densify, to become stronger, and to become less permeable. We investigate the role of droplet polydispersivity in sintering dynamics by conducting experiments in which populations of glass spheres with different size distributions are heated to temperatures above the glass transition interval. We quantify the progress of sintering by tracking changes in porosity with time. The sintering dynamics is modeled by treating the system as a random distribution of interstitial gas bubbles shrinking under the action of interfacial tension only. We identify the scaling between the polydispersivity of the initial droplets and the dynamics of bulk densification. The framework that we develop allows the sintering dynamics of arbitrary polydisperse populations of droplets to be predicted if the initial droplet (or particle) size distribution is known.

  16. Bütschli dynamic droplet system.

    PubMed

    Armstrong, Rachel; Hanczyc, Martin

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Bütschli water-in-oil droplets as a model for further investigation into the development of a technology with living properties. Otto Bütschli first described the system in 1898, when he used alkaline water droplets in olive oil to initiate a saponification reaction. This simple recipe produced structures that moved and exhibited characteristics that resembled, at least superficially, the amoeba. We reconstructed the Bütschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water to the oil phase), qualify this system as an example of living technology. The analysis of the Bütschli droplets suggests that a set of conditions may precede the emergence of lifelike characteristics and exemplifies the richness of this rudimentary chemical system, not only for artificial life investigations but also for possible real-world applications in architectural practice.

  17. [Synthesis of hollow titania microspheres by using microfluidic droplet-template].

    PubMed

    Ma, Jingyun; Jiang, Lei; Qin, Jianhu

    2011-09-01

    Droplet-based microfluidics is of great interest due to its particular characteristics compared with the conventional methods, such as reduced reagent consumption, rapid mixing, high-throughput, shape controlled, etc. A novel method using microfluidic droplet as soft template for the synthesis of hollow titania microspheres was developed. A typical polydimethylsiloxane (PDMS) microfluidic device containing "flow-focusing" geometry was used to generate water/oil (W/O) droplet. The mechanism for the hollow structure formation was based on the interfacial hydrolysis reaction between the continuous phase containing titanium butoxide precursor and the dispersed containing water. The continuous phase mixed with butanol was added in the downstream of the channel after the hydrolysis reaction. This step was used for drawing the water out of the microgels for further hydrolysis. The microgels obtained through a glass pipe integrated were washed, dried under vacuum and calcined after aging for a certain time. The fluorescence and scanning electron microscope (SEM) image of the microspheres indicated the hollow structure and the thickness of the shell. In addition, these microspheres with thin shell (about 2 microm) were apt to rupture and collapse. Droplet-based microfluidic offered a gentle and size-controllable manner to moderate this problem. Moreover, it has potential applications in photocatalysis combined with some modification realized on the chip simultaneously.

  18. Experimental Measurement of Frozen and Partially Melted Water Droplet Impact Dynamics

    NASA Technical Reports Server (NTRS)

    Palacios, Jose; Yan, Sihong; Tan, Jason; Kreeger, Richard E.

    2014-01-01

    High-speed video of single frozen water droplets impacting a surface was acquired. The droplets diameter ranged from 0.4 mm to 0.9 mm and impacted at velocities ranging from 140 m/sec to 309 m/sec. The techniques used to freeze the droplets and launch the particles against the surfaces is described in this paper. High-speed video was used to quantify the ice accretion area to the surface for varying impact angles (30 deg, 45 deg, 60 deg), impacting velocities, and break-up angles. An oxygen /acetylene cross-flow flame used to ensure partial melting of the traveling frozen droplets is also discussed. A linear relationship between impact angle and ice accretion is identified for fully frozen particles. The slope of the relationship is affected by impact speed. Perpendicular impacts, i.e. 30 deg, exhibited small differences in ice accretion for varying velocities, while an increase of 60% in velocity from 161 m/sec to 259 m/sec, provided an increase on ice accretion area of 96% at an impact angle of 60 deg. The increase accretion area highlights the importance of impact angle and velocity on the ice accretion process of ice crystals. It was experimentally observed that partial melting was not required for ice accretion at the tested velocities when high impact angles were used (45 and 60 deg). Partially melted droplets doubled the ice accretion areas on the impacting surface when 0.0023 Joules were applied to the particle. The partially melted state of the droplets and a method to quantify the percentage increase in ice accretion area is also described in the paper.

  19. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets.

    PubMed

    Mangan, T P; Atkinson, J D; Neuberg, J W; O'Sullivan, D; Wilson, T W; Whale, T F; Neve, L; Umo, N S; Malkin, T L; Murray, B J

    2017-01-01

    Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry.

  20. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets

    PubMed Central

    Atkinson, J. D.; Neuberg, J. W.; O’Sullivan, D.; Wilson, T. W.; Whale, T. F.; Neve, L.; Umo, N. S.; Malkin, T. L.; Murray, B. J.

    2017-01-01

    Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry. PMID:28056077

  1. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.

    PubMed

    Abolghasemibizaki, Mehran; Mohammadi, Reza

    2018-01-01

    Impacting on a superhydrophobic surface, water droplet spreads to a pancake shape and then retracts and bounces off. Although the collision time is mostly in the order of couple of 10ms for millimetric droplets, researchers have shown recently that decorating the superhydrophobic surface with a single macrotexture or intersecting ridge reduces this contact time if the droplet hits the texture or the intersection exactly in the center. Hence, covering the surface with ridges should address this hitting point restriction. Using an extruder-type 3D printer, we fabricated a superhydrophobic surface fully decorated with cylindrical ridges. The dynamic of water droplet impact on this surface at different impact velocities has been studied for varied droplet volumes and ridge sizes. Our data show that regardless of the location of the contact point, when the kinetic energy of the drop is sufficient to completely wet the ridges, the contact time reduces ∼13% as the consequence of ∼20% faster retraction. For higher impact velocity, the contact becomes shorter since the flattened drop splashes from the periphery. Moreover, the simplified, time-efficient and inexpensive method of fabricating the surfaces presented in this paper can be implemented in fabricating many versatile superhydrophobic surfaces with complex geometries. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Chemical composition of polluted mist droplets

    NASA Astrophysics Data System (ADS)

    Igawa, Manabu; Kamijo, Kosuke; Nanzai, Ben; Matsumoto, Kiyoshi

    2017-12-01

    Mist events occur frequently worldwide, but the chemical characteristics of the mist droplets has never been investigated because of very low liquid water contents of them. We estimated the concentrations of the mist water, the average concentration of the mist droplets, via the determination of water-soluble components of the coarse aerosol and the observation of the imprints of the droplets on a MgO-coated glass slide. The pH of the mist water was estimated from the equilibrium calculation with the data of the Gran plot of the solution of the dissolved coarse particles, the inorganic ion concentrations of aerosol larger than 10 μm, and the estimated volume of mist water. The mist water was measured as about 1 eq/L total concentration for typical inorganic ions and about pH 4.5 in Yokohama. Such highly concentrated mist droplets may have intense environmental effects.

  3. Interpretation of multi-wavelength-retrieved cloud droplet effective radii in terms of cloud vertical inhomogeneity based on water cloud simulations using a spectral-bin microphysics cloud model

    NASA Astrophysics Data System (ADS)

    Matsui, T. N.; Suzuki, K.; Nakajima, T. Y.; Matsumae, Y.

    2011-12-01

    Clouds play an import role in energy balance and climate changes of the Earth. IPCC AR4, however, pointed out that cloud feedback is still the large source of uncertainty in climate estimates. In the recent decade, the new satellites with the active instruments (e.g. Cloudsat) represented a new epoch in earth observations. The active remote sensing is powerful for illustrating the vertical structures of clouds, but the passive remote sensing from satellite images also contribute to better understating of cloud system. For instance, Nakajima et al. (2010a) and Suzuki et al. (2010) illustrated transition of cloud growth, from cloud droplet to drizzle to rain, using the combine analysis of the cloud droplet size retrieved from passive images (MODIS) and the reflectivity profiles from Cloudsat. Furthermore, EarthCARE that is a new satellite launched years later is composed of not only the active but also passive instruments for the combined analysis. On the other hands, the methods to retrieve the advanced information of cloud properties are also required because many imagers have been operated and are now planned (e.g. GCOM-C/SGLI), and have the advantages such as wide observation width and more observation channels. Cloud droplet effective radius (CDR) and cloud optical thickness (COT) can be retrieved using a non-water-absorbing band (e.g. 0.86μm) and a water-absorbing band (1.6, 2.1, 3.7μm) of imagers under the assumptions such as the log-normal droplet size distribution and the plane-parallel cloud structure. However, the differences between three retrieved CDRs using 1.6, 2.1 or 3.7μm (R16, R21 and R37) are found in the satellite observations. Several studies pointed out that vertical/horizontal inhomogeneity of cloud structure, difference of penetration depth of water-absorbing bands, multi-modal droplet distribution and/or 3-D radiative transfer effect cause the CDR differences. In other words, the advanced information of clouds may lie hidden in the

  4. Dual-nozzle microfluidic droplet generator

    NASA Astrophysics Data System (ADS)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  5. Electropermanent magnet actuation for droplet ferromicrofluidics

    PubMed Central

    Padovani, José I.; Jeffrey, Stefanie S.; Howe, Roger T.

    2016-01-01

    Droplet actuation is an essential mechanism for droplet-based microfluidic systems. On-demand electromagnetic actuation is used in a ferrofluid-based microfluidic system for water droplet displacement. Electropermanent magnets (EPMs) are used to induce 50 mT magnetic fields in a ferrofluid filled microchannel with gradients up to 6.4 × 104 kA/m2. Short 50 µs current pulses activate the electropermanent magnets and generate negative magnetophoretic forces that range from 10 to 70 nN on 40 to 80 µm water-in-ferrofluid droplets. Maximum droplet displacement velocities of up to 300 µm/s are obtained under flow and no-flow conditions. Electropermanent magnet-activated droplet sorting under continuous flow is demonstrated using a split-junction microfluidic design. PMID:27583301

  6. Morphology of supercooled droplets freezing on solid surfaces

    NASA Astrophysics Data System (ADS)

    La, Shiren; Huang, Zhiting; Liu, Cong; Zhang, Xingyi

    2018-05-01

    Supercooled droplets freezing on solid surfaces are ubiquitous in nature. This letter investigates the influences of droplet viscosity on freezing velocity and frosting formation. Several experiments were conducted for three kinds of sessile droplets (water, silicone oil and oil) on two types of substrates (copper and iron) with different surface roughness at various temperatures. The results show that the water droplets exhibit obvious phase transition lines and their freezing speeds increase when the temperature of substrates decreases. It is found that the freezing speed is independent of the thermal conductivities of the substrates. Notably, the water droplets develop prominent bulges after freezing and subsequently nucleate to frost. In contrast, the high viscosity oil and silicone oil do not manifest an obvious phase transition line. Besides, no bulges are observed in these two kinds of droplets, suggesting that these frosting forms are of different mechanisms compared with water droplets.

  7. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    PubMed

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    PubMed

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Intramyocellular Lipid Droplet Size Rather Than Total Lipid Content is Related to Insulin Sensitivity After 8 Weeks of Overfeeding.

    PubMed

    Covington, Jeffrey D; Johannsen, Darcy L; Coen, Paul M; Burk, David H; Obanda, Diana N; Ebenezer, Philip J; Tam, Charmaine S; Goodpaster, Bret H; Ravussin, Eric; Bajpeyi, Sudip

    2017-12-01

    Intramyocellular lipid (IMCL) is inversely related to insulin sensitivity in sedentary populations, yet no prospective studies in humans have examined IMCL accumulation with overfeeding. Twenty-nine males were overfed a high-fat diet (140% caloric intake, 44% from fat) for 8 weeks. Measures of IMCL, whole-body fat oxidation from a 24-hour metabolic chamber, muscle protein extracts, and muscle ceramide measures were obtained before and after the intervention. Eight weeks of overfeeding did not increase overall IMCL. The content of smaller lipid droplets peripherally located in the myofiber decreased, while increases in larger droplets correlated inversely with glucose disposal rate. Overfeeding resulted in inhibition of Akt activity, which correlated with the reductions in smaller, peripherally located lipid droplets and drastic increases in ceramide content. Additionally, peripherally located lipid droplets were associated with more efficient lipid oxidation. Finally, participants who maintained a greater number of smaller, peripherally located lipid droplets displayed a better resistance to weight gain with overfeeding. These results show that lipid droplet size and location rather than mere IMCL content are important to understanding insulin sensitivity. © 2017 The Obesity Society.

  10. Chip-based droplet sorting

    DOEpatents

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2014-07-01

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  11. The mechanical properties of phase separated protein droplets

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Ijavi, Mahdiye; Patel, Avinash; Saha, Shambaditya; Jülicher, Frank; Hyman, Anthony

    In vivo, numerous proteins associate into liquid compartments by de-mixing from the surrounding solution, similar to oil molecules in water. Many of these proteins and their corresponding liquid compartments play a crucial role in important biological processes, for instance germ line specification in C. elegans or in neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS). However, despite their importance, very little is known about the physical properties of the resulting droplets as well as the physical mechanisms that control their phase separation from solution. To gain a deeper understanding of these aspects, we study a few such proteins in vitro. When these proteins are purified and added to a physiological buffer, they phase separate into droplets ranging in size from a few to tens of microns with liquid-like behavior similar to their physiological counterparts. By attaching small beads to the surface of the droplets, we can deform the droplets by manipulating the beads directly using optical tweezers. By measuring the force required to deform the droplets we determine their surface tension, elasticity and viscosity as well as the frequency response of these properties. We also measure these properties using passive micro-rheology.

  12. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu

    2015-04-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results.

  13. The dynamics of milk droplet-droplet collisions

    NASA Astrophysics Data System (ADS)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol

  14. Effect of drying environment on grain size of titanium dioxide nano-powder synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Zandi, Pegah; Hosseini, Elham; Rashchi, Fereshteh

    2018-01-01

    Titanium dioxide Nano powder has been synthesized from titanium isopropoxide (TTIP) in chloride media by sol-gel method. In this research, the effect of the drying environment, from air to oven drying at 100 °C, calcination time and temperature on nano TiO2 grain size was investigated. The synthesized powder was analyzed by x-ray diffraction and scanning electron microscope. Based on the results, the powder has been crystallized in anatase and rutile phases, due to different calcination temperatures. At temperatures above 600 °C, the Titanium dioxide nano powder has been crystallized as rutile. The crystalline structure of titanium dioxide nano powder changed because of the different calcination temperatures and time applied. The average particle size of the powder dried in air was larger than the powder dried in oven. The minimum particle size of the powder dried in air was 50 nm and in the oven was 9 nm, observed and calculated Williamson-Hall equation. All in all, with overall increasing of calcination time and temperature the grain size increased. Moreover, in the case of temperature, after a certain temperature, the grain size became constant and didn't change significantly.

  15. Blood drop size in passive dripping from weapons.

    PubMed

    Kabaliuk, N; Jermy, M C; Morison, K; Stotesbury, T; Taylor, M C; Williams, E

    2013-05-10

    Passive dripping, the slow dripping of blood under gravity, is responsible for some bloodstains found at crime scenes, particularly drip trails left by a person moving through the scene. Previous work by other authors has established relationships, under ideal conditions, between the size of the stain, the number of spines and satellite stains, the roughness of the surface, the size of the blood droplet and the height from which it falls. To apply these relationships to infer the height of fall requires independent knowledge of the size of the droplet. This work aims to measure the size of droplets falling from objects representative of hand-held weapons. Pig blood was used, with density, surface tension and viscosity controlled to fall within the normal range for human blood. Distilled water was also tested as a reference. Drips were formed from stainless steel objects with different roughnesses including cylinders of diameter between 10 and 100 mm, and flat plates. Small radius objects including a knife and a wrench were also tested. High speed images of the falling drops were captured. The primary blood drop size ranged from 4.15±0.11 mm up to 6.15±0.15 mm (depending on the object), with the smaller values from sharper objects. The primary drop size correlated only weakly with surface roughness, over the roughness range studied. The number of accompanying droplets increased with the object size, but no significant correlation with surface texture was observed. Dripping of blood produced slightly smaller drops, with more accompanying droplets, than dripping water. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Accuracy Assessments of Cloud Droplet Size Retrievals from Polarized Reflectance Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail Dmitrievic; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; vanDiedenhove, Bastiaan

    2012-01-01

    We present an algorithm for the retrieval of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was on-board of the NASA Glory satellite. This instrument measures both polarized and total reflectance in 9 spectral channels with central wavelengths ranging from 410 to 2260 nm. The cloud droplet size retrievals use the polarized reflectance in the scattering angle range between 135deg and 165deg, where they exhibit the sharply defined structure known as the rain- or cloud-bow. The shape of the rainbow is determined mainly by the single scattering properties of cloud particles. This significantly simplifies both forward modeling and inversions, while also substantially reducing uncertainties caused by the aerosol loading and possible presence of undetected clouds nearby. In this study we present the accuracy evaluation of our algorithm based on the results of sensitivity tests performed using realistic simulated cloud radiation fields.

  17. Direct measurements of the interactions between clathrate hydrate particles and water droplets.

    PubMed

    Liu, Chenwei; Li, Mingzhong; Zhang, Guodong; Koh, Carolyn A

    2015-08-14

    Clathrate hydrate particle agglomeration is often considered to be one of the key limiting factors in plug formation. The hydrate particle-water interaction can play a critical role in describing hydrate agglomeration, yet is severely underexplored. Therefore, this work investigates the interactions between water droplets and cyclopentane hydrate particles using a micromechanical force (MMF) apparatus. Specifically, the effect of contact time, temperature/subcooling, contact area, and the addition of Sorbitane monooleate (Span 80) surfactant on the water droplet-hydrate particle interaction behavior are studied. The measurements indicate that hydrate formation during the measurement would increase the water-hydrate interaction force significantly. The results also indicate that the contact time, subcooling and concentration of cyclopentane, which determine the hydrate formation rate and hydrate amount, will affect the hydrate-water interaction force. In addition, the interaction forces also increase with the water-hydrate contact area. The addition of Span 80 surfactant induces a change in the hydrate morphology and renders the interfaces stable versus unstable (leading to coalescence), and the contact force can affect the hydrate-water interaction behavior significantly. Compared with the hydrate-hydrate cohesion force (measured in cyclopentane), the hydrate-water adhesion force is an order of magnitude larger. These new measurements can help to provide new and critical insights into the hydrate agglomeration process and potential strategies to control this process.

  18. Water droplet erosion of stainless steel steam turbine blades

    NASA Astrophysics Data System (ADS)

    Kirols, H. S.; Kevorkov, D.; Uihlein, A.; Medraj, M.

    2017-08-01

    Steam turbine blades are highly subjected to water droplet erosion (WDE) caused by high energy impingement of liquid water droplets. However, most of the published research on this wear phenomenon is performed on laboratory test rigs, instead of addressing WDE of actual steam turbine blades. In this work, the progression of erosion on the surface of ex-service low pressure steam turbine blades was investigated using scanning electron microscopy. The erosion appearance and mechanisms are compared with laboratory test rig results that are carried out using a rotating disk rig according to ASTM G73 standard. Initial and advanced erosion stages could be observed on the steam turbine blades. Similar to the WDE rig coupons, initial pits and cracks were preceded by blade surface roughening through the formation of asperities and depressions. In addition, it was also observed that the twist angle of the turbine blade around its diagonal, is an important parameter that influences its WDE. Twist angle has an effect on: impact angle, erosion appearance, impact speed, and the affected area. Furthermore, according to the current experimental results, multi-ray rig erosion test results are considered the closest simulation to the actual ex-service blade in terms of damage appearance.

  19. Advances and patents about grinding equipments with nano-particle jet minimum quantity lubrication.

    PubMed

    Jia, Dongzhou; Li, Changhe; Wang, Sheng; Zhang, Qiang; Hou, Yali

    2014-01-01

    In recent years, a large number of patents have been devoted to developing minimum quantity lubrication (MQL) grinding techniques that can significantly improve both environmentally conscious and energy saving and costeffective sustainable grinding fluid alternatives. Among them, one patent is about a controllable nano-fluids jet MQL grinding system based on electrostatic atomization. Using the principle of electrostatics, it can achieve the control of droplet transfer by charging the sprayed droplets. This system can improve the uniformity of the droplet spectrum, liquid deposition efficiency and effective utilization of liquid. It can also effectively control the movement patterns of the droplets, thereby reducing the pollution of the environment and providing better health protection for workers. Although researchers accomplished profound and systematic studies on MQL, especially on nano-particles jet MQL. It can solve the shortage of MQL in cooling performance, greatly improve the working environment, save energy and reduce costs to achieve a low-carbon manufacturing. The unique lubricating performance and tribological property of solid nano-particles form nano-particle shearing films at the grinding wheel/workpiece interface, which can enhance the lubricating performance of MQL grinding. Existing studies on MQL grinding equipments, however, cannot meet the needs of the technological development. Therefore, our research provided a general introduction of the latest patients and research progress of nanoparticles jet MQL grinding equipments presented by the research team from Qingdao Technological University.

  20. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    PubMed

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.